The present application relates to the field of electronics, and more particularly, to methods of forming electronic component packages and related structures.
To form an electronic component package, an electronic component is flip chip mounted to flip chip terminals on a substrate core with flip chip solder bumps. An underfill is applied between the electronic component and the substrate core and encloses the flip chip solder bumps.
To prevent the underfill from bleeding on to and contaminating ball terminals within the vicinity of the flip chip mounted electronic component, the ball terminals are spaced a sufficient distance from the flip chip mounted electronic component. For a fixed pattern of ball terminals, this required spacing fundamentally limits the allowable size of the flip chip mounted electronic component placed within the confines of the ball terminals.
In the following description, the same or similar elements are labeled with the same or similar reference numbers.
As an overview and in accordance with one embodiment, referring to
By forming stacking balls 330 prior to the application of underfill 544, contamination of ball terminals 208 by underfill 544 is avoided. This allows the spacing between ball terminals 208 and electronic component 432 to be minimized.
More particularly, for a fixed pattern of ball terminals 208, the minimal spacing required between ball terminals 208 and electronic component 432 enables a maximum allowable size of electronic component 432 to be placed within the confines of a fixed pattern of ball terminals 208. In accordance with another embodiment, for a fixed size electronic component 432, the spacing between ball terminals 208 and electronic component 432 can be minimized thus resulting in a minimal overall size for underfill contacting solder balls package 200.
Now in more detail,
Underfill contacting stacking balls package 200, sometimes called an electronic component package, includes a substrate core 202 including an upper, e.g., first, surface 202U and an opposite lower, e.g., second, surface 202L. Substrate core 202 further includes sides 202S extending perpendicularly between upper surface 202U and lower surface 202L. Substrate core 202 is a dielectric material such as laminate, ceramic, printed circuit board material, or other dielectric material.
Although the terms parallel, perpendicular, and similar terms are used herein, it is to be understood that the described features may not be exactly parallel and perpendicular, but only substantially parallel and perpendicular to within excepted manufacturing tolerances.
Formed on upper surface 202U of substrate core 202 are electrically conductive upper, e.g., first, traces 204, e.g., formed of copper. Upper traces 204 include flip chip terminals 206 and ball terminals 208, sometimes collectively called land openings. Flip chip terminals 206 are sometimes called bond fingers and ball terminals 208 are sometimes called ball pads.
Formed on lower surface 202L of substrate core 202 are lower, e.g., second, traces 210. Lower traces 210 including electrically conductive lands 212.
Lower traces 210 are electrically connected to upper traces 204 by electrically conductive vias 214 extending through substrate core 202 between upper surface 202U and lower surface 202L.
In accordance with this embodiment, underfill contacting stacking balls package 200 further includes a dielectric upper, e.g., first, solder mask 216 on upper surface 202U. Upper solder mask 216 protects, i.e., covers, first portions of upper traces 204 while exposing second portions, e.g., flip chip terminals 206 and ball terminals 208, of upper traces 204.
Underfill contacting stacking balls package 200 further includes a dielectric lower, e.g., second, solder mask 218 on lower surface 202L. Lower solder mask 218 protects, i.e., covers, first portions of lower traces 210 while exposing second portions, e.g., lands 212, of lower traces 210.
Upper and lower solder masks 216, 218 are optional, and in one embodiment, are not formed. Accordingly, although upper and lower solder masks 216, 218 are illustrated in the figures and discussed below, in light of this disclosure, those of skill in the art will understand that the description is equally applicable to upper and lower surface 202U, 202L of substrate core 202 in the event that upper and lower solder masks 216, 218 are not formed.
Although a particular electrically conductive pathway between upper traces 204 and lower traces 210 is described above, other electrically conductive pathways can be formed. For example, contact metallizations can be formed between the various electrical conductors.
Further, instead of straight though vias 214, in one embodiment, a multilayer substrate includes a plurality of vias and/or internal traces that form the electrical interconnection between upper traces 204 and lower traces 210.
Further, lands 212 can be distributed in an array thus forming a Land Grid Array (LGA). In another embodiment, interconnection balls, e.g., solder balls, are formed on lands 212 to provide a Ball Grid Array (BGA). However, in other embodiment, other package configurations other than a LGA and a BGA are used.
In a form metallic studs operation 102, metallic studs 220 are formed on flip chip terminals 206 of upper traces 204. In accordance with one embodiment, metallic studs 220 are formed of an electrically conductive material, e.g., copper, on flip chip terminals 206.
For example, a mask is formed on upper solder mask 216 and patterned to form a positive image of metallic studs 220. The pattern within the mask is filled with an electrically conductive material, e.g., by plating copper, to form metallic studs 220. The mask is then removed.
Metallic studs 220 are metallic protrusions that protrude vertically upwards from flip chip terminals 206 and above upper solder mask 216. Metallic studs 202 include bases 222, tops 224, and sidewalls 226.
Bases 222 are formed directly upon flip chip terminals 206. Tops 224 are the uppermost portion of metallic studs 220 and are located above the plane defined by an upper, e.g., first, surface 216U of upper solder mask 216. Sidewalls 226 extending perpendicularly upward between bases 222 and tops 224.
In one embodiment, metallic studs 220 are cylindrical. In accordance with this embodiment, bases 222 and tops 224 are circular planes and sidewalls 226 are cylindrical. Although metallic studs 220 are described as being cylindrical, in light of this disclosure, those of skill in the art will understand that metallic studs 220 may not be exactly cylindrical, but only substantially cylindrical to within excepted manufacturing tolerances. Illustratively, tops 224 of metallic studs 220 may be slightly rounded or otherwise non-planer.
Further, in another embodiment, metallic studs 220 have a shape other than cylindrical. For example, metallic studs 220 are rectangular, spherical, smooth curves, or other shapes.
Optionally, in form metallic studs operation 102, an organic surface protectant (OSP) 228 and/or a thin metallic layer, is applied to tops 224 and, optionally, to sidewalls 226. Organic surface protectant 228 protects metallic studs 220, e.g., from oxidation, as well as enhances soldering to metallic studs 220 as discussed further below. Metallic studs 220 can be smaller or larger than the openings in upper solder mask 216.
In accordance with one embodiment, stacking balls 330 are formed of an electrically conductive material, e.g., solder, on ball terminals 208. For example, solder balls are applied to ball terminals 208, e.g., held in place by solder flux. The solder balls are reflowed, i.e., heated to a melt and then cooled to resolidify, thus forming stacking balls 330 mounted to ball terminals 208.
Metallic studs 220 do not melt or otherwise deform during formation of stacking balls 330. Generally, metallic studs 220 are formed of an electrically conductive material, e.g., copper, that has a higher melting temperature than the electrically conductive material, e.g., solder, of stacking balls 330. In this manner, metallic studs 220 are prevented from being deformed during formation of stacking balls 330.
Stacking balls 330 are spherical, or at least curved, and protrude vertically upwards from ball terminals 208 and above upper solder mask 216.
In one embodiment, electronic component 432 is an integrated circuit chip, e.g., an active component. However, in other embodiments, electronic component 432 is a passive component such as a capacitor, resistor, or inductor.
In accordance with this embodiment, electronic component 432 includes an active surface 434, an opposite inactive surface 436, and sides 438 extending perpendicularly between active surface 434 and inactive surface 436. Electronic component 432 further includes bond pads 440 formed on active surface 434.
Bond pads 440 are flip chip mounted to metallic studs 220 in flip chip mount electronic component to metallic studs operation 106. More particularly, bond pads 440 are flip chip mounted to metallic studs 220 by electrically conductive metallic stud interconnects 442.
In one embodiment, metallic stud interconnects 442 are solder. Metallic stud interconnects 442 are placed between bond pads 440 and metallic studs 220, e.g., tops 224 thereof including organic surface protectant 238. Metallic stud interconnects 442 are ref lowed to physically and electrically connected bond pads 440 to metallic studs 220, e.g., tops 224 thereof. Organic surface protectant 238 is consumed during this reflow.
Illustratively, electronic component 432 is provided as a bumped chip, i.e., includes metallic stud interconnects 442, sometimes called solder bumps, upon bond pads 440.
In accordance with this embodiment, metallic stud interconnects 442 have a lower melting temperature than metallic studs 220. Accordingly, during reflow of metallic stud interconnects 442, metallic studs 220 are not deformed.
Although form stacking balls operation 104 is described above as being performed prior to flip chip mount electronic component to metallic studs operation 106, in other embodiments, form stacking balls operation 104 is performed after, or simultaneously with, flip chip mount electronic component to metallic studs operation 106.
In accordance with one embodiment, one or more of upper traces 204 is not electrically connected to a lower traces 210, i.e., is electrically isolated from lower traces 210, and electrically connected to bond pads 440. To illustrate, a first upper trace 204A of the plurality of upper traces 204 is electrically isolated from lower traces 210 and electrically connected to a respective bond pad 440. In accordance with this embodiment, the respective bond pad 440 electrically connected to upper trace 204A is also electrically isolated from lower traces 210.
In accordance with one embodiment, one or more of upper traces 204 is electrically connected to both bond pads 440 and to lower traces 210. To illustrate, a second upper trace 204B of the plurality of upper traces 204 is electrically connected to a respective bond pad 440 and to one or more lower traces 210. In accordance with this embodiment, the respective bond pad 440 is electrically connected to upper trace 204B and is also electrically connected to lower traces 210.
In accordance with one embodiment, one or more of upper traces 204 is not electrically connected to a bond pad 440, i.e., is electrically isolated from bond pads 440, and electrically connected to a lower trace 210. To illustrate, a third upper trace 204C of the plurality of upper traces 204 is electrically isolated from bond pads 440 and electrically connected to lower trace(s) 210. In accordance with this embodiment, the respective lower trace(s) 210 electrically connected to upper trace 204C are electrically isolated from bond pads 440.
Although various examples of connections between bond pads 440, upper traces 204, and lower traces 210 are set forth above, in light of this disclosure, those of skill in the art will understand that any one of a number of electrical configurations are possible depending upon the particular application.
Underfill 544 is applied in the space between electronic component 432 and upper solder mask 216 at sides 438 of electronic component 432. Underfill 544 is pulled between electronic component 432 and upper solder mask 216 due to capillary action and cured, if necessary. Accordingly, underfill 544 entirely contacts active surface 434 of electronic component 432 and directly contacts and encloses metallic studs 220 including metallic stud interconnects 442. Underfill 544 is sometimes called a capillary underfill (CUF).
Due to the relatively small lateral spacing between electronic component 432 and ball terminals 208 including stacking balls 330 thereon, underfill 544 bleeds, i.e., flows, around stacking balls 330. More particularly, underfill 544 extends in a direction parallel with upper surface 202U of substrate core 202 and laterally outwards past sides 438 of electronic component 432. As used herein, lateral is in the direction parallel with upper surface 202U of substrate core 202.
In accordance with one embodiment, underfill 544 directly contacts and at least partially encloses the inner row 546 of stacking balls 330 closest to and directly adjacent electronic component 432. However, depending upon the spacing of stacking balls 330 from electronic component 432 and the degree of bleeding of underfill 544, underfill 544 may contact all of stacking balls 330, or just some of stacking balls 330.
In one embodiment, underfill 544 extends laterally outward from electronic component 432 to sides 202S of substrate core 202. More typically, underfill 544 extends laterally outward from electronic component 432 to be inward of sides 202S of substrate core 202 as illustrated in
However, by forming stacking balls 330 prior to the application of underfill 544, contamination of ball terminals 208 by underfill 544 is avoided. This allows the spacing between ball terminals 208 and electronic component 432 to be minimized.
More particularly, for a fixed pattern of ball terminals 208, the minimal spacing required between ball terminals 208 and electronic component 432 enables a maximum allowable size of electronic component 432 to be placed within the confines of the fixed pattern of ball terminals 208. For example, as long as the size of electronic component 432 does not cause electronic component 432 to overlie, contact, or otherwise obstruct stacking balls 330, electronic component 432 can be incorporated into underfill contacting solder balls package 200.
In accordance with another embodiment, for a fixed size electronic component 432, the spacing between ball terminals 208 and electronic component 432 can be minimized thus resulting in a minimal overall size for underfill contacting stacking balls package 200.
Paying attention to inner row 546 of stacking balls 330, and particularly to a first stacking ball 330A of stacking balls 330, underfill 544 directly contacts and encloses a lower stacking ball portion 548 of stacking ball 330A directly adjacent and protruding upwards from upper solder mask 216. Underfill 544 does not contact and exposes an upper stacking ball portion 550 of stacking ball 330A.
In accordance with this embodiment, underfill 544 is thickest at electronic component 432 and becomes thinner as the lateral distance from electronic component 432 increases. Stated another way, underfill 544 tapers to become thinner as the lateral distance from electronic component 432 increases. More particularly, the distance in a direction perpendicular to upper surface 202U of substrate core 202 between a lower, e.g., first, surface 544L of underfill 544 and an upper, e.g., second, surface 544U of underfill 544 decreases as the lateral distance in a direction parallel to upper surface 202U of substrate core 202 increases. Lower surface 544L is in direct contact with upper solder mask 216 and upper surface 544U is the exposed outermost surface of underfill 544.
Accordingly, the stacking balls 330 located at a greater lateral distance from electronic component 432 are surrounded in less underfill 544, if surrounded at all, as compared to stacking balls 330 located closer to electronic component 432. To illustrate, stacking ball 330A of inner row 546 is surrounded with more underfill 544 then a second stacking ball 330B of stacking balls 330 of an outer row 552 of stacking balls 330. In one embodiment, underfill 544 does not contact, i.e., completely exposes, second stacking ball 330B and outer row 552 of stacking balls 330.
Illustratively, package body 654 is a cured liquid encapsulant, molding compound, or other dielectric material. Package body 654 protects electronic component 432, underfill 544, stacking balls 330, and any exposed portions of upper solder mask 216 from the ambient environment, e.g., from contact, moisture and/or shorting to other structures.
Package body 654 includes a principal surface 654P parallel to upper surface 202U of substrate core 202. In accordance with this embodiment, package body 654 includes sides 654S extending perpendicularly between upper solder mask 216 and principal surface 654P. Sides 654S are parallel to and coplanar with sides 202S of substrate core 202.
Illustratively, underfill contacting stacking balls package 200 is formed simultaneously with a plurality of packages in an array or strip. The array or strip is singulated resulting in sides 654S of package body 654 parallel to and coplanar with sides 202S of substrate core 202. In another embodiment, the array or strip of underfill contacting stacking balls packages 200 is singulated at a later stage during fabrication, e.g., after the stage of fabrication illustrated in
Package body 654 directly contacts and covers inactive surface 436 and at least a portion, or all, of sides 438 of electronic component 432. Further, package body 654 directly contacts and covers upper surface 544U of underfill 544 and the exposed portions of stacking balls 330. Further, package body 654 directly contacts and covers any exposed portions of upper solder mask 216.
In accordance with one embodiment, via apertures 756 are formed using a laser ablation process. More particularly, a laser is repeatedly directed perpendicularly at principal surface 654P of package body 654. This laser ablates, i.e., removes, package body 654 and, optionally, underfill 544 to form via apertures 756, sometimes called through holes. Via apertures 756 extend from principal surface 654P through package body 654 to the respective stacking balls 330. In one embodiment, the minimum diameter of via apertures 756 is greater than the maximum diameter of stacking balls 330.
Although a laser-ablation process for formation of via apertures 756 is set forth above, in other embodiments, other via apertures formation techniques are used. For example, via apertures 756 are formed using milling, mechanical drilling, chemical etching and/or other via aperture formation techniques.
In accordance with one embodiment, at least some of via apertures 756 extend entirely through package body 654 and partially into underfill 544. For example, an inner via apertures 756A of via apertures 756 extend entirely through package body 654 and into underfill 544 around stacking ball 330A.
In accordance with another embodiment, at least some of via apertures 756 are formed entirely within package body 654, i.e., do not extend into underfill 544. For example, an outer via apertures 756B of via apertures 756 is formed entirely within package body 654 and around stacking ball 330B. Outer via apertures 756B does not extend into underfill 544.
As discussed above, the thickness of underfill 544 tapers laterally away from electronic component 432. However, the depth of via apertures 756 is uniform, i.e., all of via apertures 756 have the same depth. For example, via apertures 756 extend downward to about the middle of stacking balls 330 in a direction perpendicular to upper surface 202U of substrate core 202. Accordingly, the distance that via apertures 756 extend into underfill 544, if at all, depends upon the thickness of underfill 544 surrounding the respective stacking ball 330.
In another embodiment, package body 654 is not formed. In accordance with the embodiment, overmold operation 110 and form via apertures to expose stacking balls operation 112 are not performed and so are optional operations.
In light of this disclosure, those of skill in the art will understand that upper stacked electronic component package 801 can be any one of a number of different types of electronic component packages. Thus, although a particular upper stacked electronic component package 801 is illustrated in
In accordance with this embodiment, upper stacked electronic component package 801 includes a substrate core 802 having upper and lower surfaces 802U, 802L, upper traces 804, lower traces 810 having lands 812, and vias 814 similar to substrate core 202 having upper and lower surfaces 202U, 202L, upper traces 204, lower traces 210 having lands 212, and vias 214 of underfill contacting stacking balls package 200 as described above so the description is not repeated here. Although not illustrated, upper and lower solder masks are formed on upper and lower surfaces 802U, 802L of substrate core 802 in other embodiments.
In accordance with this embodiment, an inactive surface 836 of an electronic component 832 is mounted to upper surface 802U of substrate core 802 by an adhesive 860 in a wirebond configuration. Electronic component 832 further includes an active surface 834 having bond pads 840 form thereon.
Bond wires 862 are formed between bond pads 840 and bond fingers 864 of upper traces 804. Electronic component 832, bond wires 862, upper surface 802U of substrate core 802 including upper traces 804 form thereon are enclosed within a package body 866.
Lands 812 of upper stacked electronic component package 801 are physically and electrically connected to ball terminals 208 of underfill contacting stacking balls package 200 by solder columns 868. More particularly, solder columns 868 extend between lands 812 and ball terminals 208 and through via apertures 756.
In one embodiment, to mount stacked electronic component package 801, solder balls (not shown) on lands 812 of stacked electronic component package 801 are placed within respective via apertures 756 and on the exposed stacking balls 330 therein. Stacked assembly 800 is heated to reflow and fuse the solder balls and stacking balls 330 thus forming solder columns 868.
Although specific embodiments were described herein, the scope of the invention is not limited to those specific embodiments. Numerous variations, whether explicitly given in the specification or not, such as differences in structure, dimension, and use of material, are possible. The scope of the invention is at least as broad as given by the following claims.
The present application is a continuation of U.S. application Ser. No. 13/236,916, titled UNDERFILL CONTACTING STACKING BALLS PACKAGE FABRICATION METHOD AND STRUCTURE, filed Sep. 20, 2011, presently pending, which is hereby incorporated herein in its entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
3868724 | Perrino | Feb 1975 | A |
3916434 | Garboushian | Oct 1975 | A |
4322778 | Barbour et al. | Mar 1982 | A |
4532419 | Takeda | Jul 1985 | A |
4642160 | Burgess | Feb 1987 | A |
4645552 | Vitriol et al. | Feb 1987 | A |
4685033 | Inoue | Aug 1987 | A |
4706167 | Sullivan | Nov 1987 | A |
4716049 | Patraw | Dec 1987 | A |
4786952 | MacIver et al. | Nov 1988 | A |
4806188 | Rellick | Feb 1989 | A |
4811082 | Jacobs et al. | Mar 1989 | A |
4897338 | Spicciati et al. | Jan 1990 | A |
4905124 | Banjo et al. | Feb 1990 | A |
4964212 | Deroux-Dauphin et al. | Oct 1990 | A |
4974120 | Kodai et al. | Nov 1990 | A |
4996391 | Schmidt | Feb 1991 | A |
5021047 | Movern | Jun 1991 | A |
5072075 | Lee et al. | Dec 1991 | A |
5072520 | Nelson | Dec 1991 | A |
5081520 | Yoshii et al. | Jan 1992 | A |
5091769 | Eichelberger | Feb 1992 | A |
5108553 | Foster et al. | Apr 1992 | A |
5110664 | Nakanishi et al. | May 1992 | A |
5191174 | Chang et al. | Mar 1993 | A |
5229550 | Bindra et al. | Jul 1993 | A |
5239448 | Perkins et al. | Aug 1993 | A |
5247429 | Iwase et al. | Sep 1993 | A |
5250843 | Eichelberger | Oct 1993 | A |
5278726 | Bernardoni et al. | Jan 1994 | A |
5283459 | Hirano et al. | Feb 1994 | A |
5353498 | Fillion et al. | Oct 1994 | A |
5371654 | Beaman et al. | Dec 1994 | A |
5379191 | Carey et al. | Jan 1995 | A |
5404044 | Booth et al. | Apr 1995 | A |
5463253 | Waki et al. | Oct 1995 | A |
5474957 | Urushima | Dec 1995 | A |
5474958 | Djennas et al. | Dec 1995 | A |
5497033 | Fillion et al. | Mar 1996 | A |
5508938 | Wheeler | Apr 1996 | A |
5530288 | Stone | Jun 1996 | A |
5531020 | Durand et al. | Jul 1996 | A |
5546654 | Wojnarowski et al. | Aug 1996 | A |
5574309 | Papapietro et al. | Nov 1996 | A |
5578934 | Wood et al. | Nov 1996 | A |
5581498 | Ludwig et al. | Dec 1996 | A |
5582858 | Adamopoulos et al. | Dec 1996 | A |
5616422 | Ballard et al. | Apr 1997 | A |
5637832 | Danner | Jun 1997 | A |
5674785 | Akram et al. | Oct 1997 | A |
5719749 | Stopperan | Feb 1998 | A |
5721496 | Farnworth et al. | Feb 1998 | A |
5726493 | Yamashita et al. | Mar 1998 | A |
5739581 | Chillara | Apr 1998 | A |
5739585 | Akram et al. | Apr 1998 | A |
5739588 | Ishida et al. | Apr 1998 | A |
5742479 | Asakura | Apr 1998 | A |
5774340 | Chang et al. | Jun 1998 | A |
5784259 | Asakura | Jul 1998 | A |
5798014 | Weber | Aug 1998 | A |
5822190 | Iwasaki | Oct 1998 | A |
5826330 | Isoda et al. | Oct 1998 | A |
5835355 | Dordi | Nov 1998 | A |
5847453 | Uematsu et al. | Dec 1998 | A |
5883425 | Kobayashi | Mar 1999 | A |
5894108 | Mostafazadeh et al. | Apr 1999 | A |
5903052 | Chen et al. | May 1999 | A |
5907477 | Tuttle et al. | May 1999 | A |
5915977 | Hembree et al. | Jun 1999 | A |
5924003 | Slocum | Jul 1999 | A |
5936843 | Ohshima et al. | Aug 1999 | A |
5952611 | Eng et al. | Sep 1999 | A |
6004619 | Dippon et al. | Dec 1999 | A |
6013948 | Akram et al. | Jan 2000 | A |
6021564 | Hanson | Feb 2000 | A |
6028364 | Ogino et al. | Feb 2000 | A |
6034427 | Lan et al. | Mar 2000 | A |
6035527 | Tamm | Mar 2000 | A |
6040239 | Akram et al. | Mar 2000 | A |
6040622 | Wallace | Mar 2000 | A |
6060778 | Jeong et al. | May 2000 | A |
6069407 | Hamzehdoost | May 2000 | A |
6072243 | Nakanishi | Jun 2000 | A |
6081036 | Hirano et al. | Jun 2000 | A |
6119338 | Wang et al. | Sep 2000 | A |
6122171 | Akram et al. | Sep 2000 | A |
6127833 | Wu et al. | Oct 2000 | A |
6160705 | Stearns et al. | Dec 2000 | A |
6172419 | Kinsman | Jan 2001 | B1 |
6175087 | Keesler et al. | Jan 2001 | B1 |
6184463 | Panchou et al. | Feb 2001 | B1 |
6194250 | Melton et al. | Feb 2001 | B1 |
6204453 | Fallon et al. | Mar 2001 | B1 |
6214641 | Akram | Apr 2001 | B1 |
6235554 | Akram et al. | May 2001 | B1 |
6239485 | Peters et al. | May 2001 | B1 |
D445096 | Wallace | Jul 2001 | S |
D446525 | Okamoto et al. | Aug 2001 | S |
6274821 | Echigo et al. | Aug 2001 | B1 |
6280641 | Gaku et al. | Aug 2001 | B1 |
6316285 | Jiang et al. | Nov 2001 | B1 |
6351031 | Iijima et al. | Feb 2002 | B1 |
6353999 | Cheng | Mar 2002 | B1 |
6365975 | DiStefano et al. | Apr 2002 | B1 |
6376906 | Asai et al. | Apr 2002 | B1 |
6392160 | Andry et al. | May 2002 | B1 |
6395578 | Shin et al. | May 2002 | B1 |
6405431 | Shin et al. | Jun 2002 | B1 |
6406942 | Honda | Jun 2002 | B2 |
6407341 | Anstrom et al. | Jun 2002 | B1 |
6407930 | Hsu | Jun 2002 | B1 |
6448510 | Neftin et al. | Sep 2002 | B1 |
6451509 | Keesler et al. | Sep 2002 | B2 |
6479762 | Kusaka | Nov 2002 | B2 |
6497943 | Jimarez et al. | Dec 2002 | B1 |
6517995 | Jacobson et al. | Feb 2003 | B1 |
6534391 | Huemoeller et al. | Mar 2003 | B1 |
6544461 | Hembree et al. | Apr 2003 | B1 |
6544638 | Fischer et al. | Apr 2003 | B2 |
6586682 | Strandberg | Jul 2003 | B2 |
6608757 | Bhatt et al. | Aug 2003 | B1 |
6660559 | Huemoeller et al. | Dec 2003 | B1 |
6715204 | Tsukada et al. | Apr 2004 | B1 |
6727645 | Tsujimura et al. | Apr 2004 | B2 |
6730857 | Konrad et al. | May 2004 | B2 |
6734542 | Nakatani et al. | May 2004 | B2 |
6740964 | Sasaki | May 2004 | B2 |
6753612 | Adae-Amoakoh et al. | Jun 2004 | B2 |
6774748 | Ito et al. | Aug 2004 | B1 |
6787443 | Boggs et al. | Sep 2004 | B1 |
6803528 | Koyanagi | Oct 2004 | B1 |
6815709 | Clothier et al. | Nov 2004 | B2 |
6815739 | Huff et al. | Nov 2004 | B2 |
6838776 | Leal et al. | Jan 2005 | B2 |
6888240 | Towle et al. | May 2005 | B2 |
6919514 | Konrad et al. | Jul 2005 | B2 |
6921968 | Chung | Jul 2005 | B2 |
6921975 | Leal et al. | Jul 2005 | B2 |
6931726 | Boyko et al. | Aug 2005 | B2 |
6953995 | Farnworth et al. | Oct 2005 | B2 |
6987314 | Yoshida et al. | Jan 2006 | B1 |
7015075 | Fay et al. | Mar 2006 | B2 |
7030469 | Mahadevan et al. | Apr 2006 | B2 |
7081661 | Takehara et al. | Jul 2006 | B2 |
7125744 | Takehara et al. | Oct 2006 | B2 |
7129113 | Lin et al. | Oct 2006 | B1 |
7185426 | Hiner et al. | Mar 2007 | B1 |
7198980 | Jiang et al. | Apr 2007 | B2 |
7242081 | Lee | Jul 2007 | B1 |
7282394 | Cho et al. | Oct 2007 | B2 |
7285855 | Foong | Oct 2007 | B2 |
7345361 | Mallik et al. | Mar 2008 | B2 |
7372151 | Fan et al. | May 2008 | B1 |
7429786 | Karnezos et al. | Sep 2008 | B2 |
7459202 | Magera et al. | Dec 2008 | B2 |
7548430 | Huemoeller et al. | Jun 2009 | B1 |
7550857 | Longo et al. | Jun 2009 | B1 |
7633765 | Scanlan et al. | Dec 2009 | B1 |
7671457 | Hiner et al. | Mar 2010 | B1 |
7732912 | Damberg | Jun 2010 | B2 |
7777351 | Berry et al. | Aug 2010 | B1 |
7825520 | Longo et al. | Nov 2010 | B1 |
7960827 | Miller, Jr. et al. | Jun 2011 | B1 |
8294279 | Chen et al. | Oct 2012 | B2 |
8300423 | Darveaux et al. | Oct 2012 | B1 |
8341835 | Huemoeller et al. | Jan 2013 | B1 |
8482134 | Darveaux et al. | Jul 2013 | B1 |
8525318 | Kim et al. | Sep 2013 | B1 |
8633598 | St. Amand | Jan 2014 | B1 |
20020017712 | Bessho et al. | Feb 2002 | A1 |
20020061642 | Haji et al. | May 2002 | A1 |
20020066952 | Taniguchi et al. | Jun 2002 | A1 |
20020195697 | Mess et al. | Dec 2002 | A1 |
20030025199 | Wu et al. | Feb 2003 | A1 |
20030128096 | Mazzochette | Jul 2003 | A1 |
20030141582 | Yang et al. | Jul 2003 | A1 |
20030197284 | Khiang et al. | Oct 2003 | A1 |
20040063246 | Karnezos | Apr 2004 | A1 |
20040145044 | Sugaya et al. | Jul 2004 | A1 |
20040159462 | Chung | Aug 2004 | A1 |
20050082657 | Tago | Apr 2005 | A1 |
20050139985 | Takahashi | Jun 2005 | A1 |
20050242425 | Leal et al. | Nov 2005 | A1 |
20070216008 | Gerber | Sep 2007 | A1 |
20070273049 | Khan et al. | Nov 2007 | A1 |
20070281471 | Hurwitz et al. | Dec 2007 | A1 |
20070290376 | Zhao et al. | Dec 2007 | A1 |
20080230887 | Sun et al. | Sep 2008 | A1 |
20120038064 | Camacho et al. | Feb 2012 | A1 |
20120104590 | Do et al. | May 2012 | A1 |
20120133053 | Lo et al. | May 2012 | A1 |
20120273960 | Park et al. | Nov 2012 | A1 |
20120292738 | Lin et al. | Nov 2012 | A1 |
20130154076 | Camacho et al. | Jun 2013 | A1 |
Number | Date | Country |
---|---|---|
05-109975 | Apr 1993 | JP |
05-136323 | Jun 1993 | JP |
07-017175 | Nov 1995 | JP |
08-190615 | Jul 1996 | JP |
10-334205 | Dec 1998 | JP |
Entry |
---|
IBM Technical Disclosure Bulletin, “Microstructure Solder Mask by Means of a Laser”, vol. 36, Issue 11, p. 589, Nov. 1, 1993. (NN9311589). |
Kim et al., “Application of Through Mold via (TMV) as PoP base package”, 58th ECTC Proceedings, May 2008, Lake Buena Vista, FL, 6 pages, IEEE. |
Scanlan, “Package-on-package (PoP) with Through-mold Vias”, Advanced Packaging, Jan. 2008, 3 pages, vol. 17, Issue 1, PennWell Corporation. |
Hiner et al., “Printed Wiring Motherboard Having Bonded Interconnect Redistribution Mesa”, U.S. Appl. No. 10/992,371, filed Nov. 18, 2004. |
Huemoeller et al., “Build Up Motherboard Fabrication Method and Structure”, U.S. Appl. No. 11/824,395, filed Jun. 29, 2007. |
Number | Date | Country | |
---|---|---|---|
Parent | 13236916 | Sep 2011 | US |
Child | 14152035 | US |