Not Applicable
Not Applicable
1. Field of the Invention
The present invention relates generally to a combustion engine start system and more particularly to a pull-cord start system for an engine.
2. Description of Related Art
For many decades small internal combustion engines, such as those used for recreational vehicles and landscaping tools like chain saws, trimmers, tractors, and lawn mowers, have typically used mechanical, manually-operated recoil pull-starters. In a direct recoil pull-starter, an operator of the vehicle or garden tool pulls a cord that is wound about a recoil pulley to rotate the recoil pulley in a first direction. The rotating recoil pulley rotates an engine crankshaft, via a one-way coupling, to start a combustion engine. The one-way coupling allows the crankshaft of the running engine to rotate freely relative to the recoil pulley. When the cord is released by the operator, the recoil pulley automatically reverses rotation, by way of a torsional recoil spring, to retract the cord back around the recoil pulley.
In the past, small engines were designed to start at wide open throttle (WOT) however, current small engines are designed to start at idle. Unfortunately, the end users are accustomed to holding down or depressing the throttle trigger to place the throttle valve in the WOT position even for the idle start engines. Retraining the end user to not hold down the throttle trigger while attempting to start the engine is difficult. In fact, even though new engines are not designed to start with the throttle lever fully depressed, the product of the engine application is returned to the manufacturer because the engine will not easily or reliably start at WOT.
Moreover, when the engine is running and a throttle trigger is fully depressed, ideally, the throttle valve of a carburetor is at WOT. This requires close tolerances that can be expensive to manufacture. If the tolerances are off, the throttle trigger may not be fully depressed when the throttle valve is at WOT and further movement of the trigger can place undue stress upon the linkage components. If the throttle trigger is fully depressed before the throttle valve reaches WOT, the engine will not operate at its full power potential.
A pull-cord start system has a recoil pulley coupled to a crankshaft of a combustion engine and a pull-cord wound about the recoil pulley that is pulled by an end user to rotate the recoil pulley and thereby start the engine. A throttle override device of the pull-cord start system has a shuttle coupled to the pull-cord for movement from a biased rest position to an active position when the pull-cord is being pulled by an end user. A linkage preferably including a Bowden cable extends between a throttle control and a throttle valve of a carburetor and is operably associated with the shuttle so that actuation of the throttle control when the shuttle is in the active position will not open the throttle valve which preferably is biased to its idle position.
When the engine is running, the shuttle is preferably biased into the rest position by a tension spring engaged between a housing and a trailing end of the shuttle. A cable at an unsheathed portion of the Bowden cable preferably loops about a tensioner of the shuttle between opposing open ends of first and second sheaths of the Bowden cable held generally stationary to the housing. When the engine is being started, the pull-cord is pulled, and the throttle control is not actuated, the shuttle moves to the active position but does not carry the cable with it. If the engine is being started after the throttle control is actuated placing the biased closed throttle valve in an unduly WOT position, pulling the pull-cord will move the throttle valve back to the idle position as the shuttle moves toward the active position due to available slack created in the cord.
Preferably, the pull-cord start system also has an auxiliary device that shares the shuttle to actuate other attributes of an engine-driven apparatus. Preferably, the auxiliary device is a start assist device having a linkage engaged between the shuttle and a choke valve of the carburetor to hold the biased open choke valve substantially closed during starting of the engine and automatically releasing the choke valve after the engine starts.
At least some of the objects, features and advantages that may be achieved by at least certain embodiments of the invention include providing an engine that starts reliably (at idle) has a simplified start-up procedure that overrides a throttle lever only during start-up, automatically actuates various startup elements of an engine-powered apparatus, reduces or eliminates engine stalling on overly rich mixtures of fuel-and-air during engine startup, automatically places a choke valve in partially open positions upon engine startup and automatically returns the choke valve to an “off” or fully open position after the engine has successfully started, is of relatively compact construction, simple design, low cost when mass produced, rugged, durable, reliable, requires little to no maintenance and adjustment in use, and in service has a long useful life.
These and other objects, features and advantages of this invention will be apparent from the following detailed description of the preferred embodiments and best mode, appended claims, and accompanying drawings in which:
Referring in more detail to the drawings,
The engine is preferably used for applications such as chainsaws, leaf blowers, and the like that typically receive a mixture of fuel and air from a carburetor 32 having a biased closed throttle valve 34 that moves between a substantially closed or idle position 36 (see
The Bowden cable 44 preferably has a first hollow tube or sheath 46 held generally stationary between the carburetor 32 and the housing 30 of the recoil starter assembly 22, and a second hollow tube or sheath 48 spaced longitudinally or separated from the first sheath 46 and held generally stationary between the throttle control 42 and the housing 30. An elongate member or flexible cable 50 of the Bowden cable 44 is linked between the throttle valve 34 and the throttle control 42 so that actuation of the throttle control 42 generally causes the cable 50 to slide in the first and second sheaths 46, 48 when the pull-cord 24 is not being pulled by the end user to start the engine. Between the first and second sheaths 46, 48, the cable 50 engages a dampener member or shuttle 52 of the throttle override device 40 that is supported by the housing 30 and moves with respect to the housing 30 via interaction with the pull-cord 24. The shuttle 52 is in a biased rest position 54 (see
Preferably, the pull-cord 24 attaches to the pulley 26 at a base end 57 and extends, while wrapping around the pulley 26 in a counter-clockwise direction, to a distal end 58 connected to a handle 60 accessible from outside the housing 30 at a passage 62 through which the pull-cord 24 extends for consistent circumferential orientation of where the pull-cord 24 departs from the pulley 26 during any given time of operation of the recoil starter assembly 22. When the recoil starter assembly 22 is in a fully wound recoiled state 64, the handle 60 is preferably slightly biased against the housing 30 by the biasing force of the recoil spring (not shown) of the recoil starter assembly 22.
After winding about the pulley 26 in a counter-clockwise direction, the pull-cord 24 preferably loops in a clockwise direction about the shuttle 52 generally adjacent to the distal end 58 and before the pull-cord 24 exits the passage 62 in the housing 30. When the throttle override device 40 is in the rest position 54 and the recoil starter assembly is in a recoiled state 64, the shuttle 52 is located at its farthest point (i.e. the rest position 54) from the handle 60 and generally from opposing open ends 66, 68 of the respective first and second sheaths 46, 48. The shuttle 52 is yieldably biased to its rest position 54 by a coiled tension spring 69 attached between the housing 30 and the shuttle 52. Because the shuttle 52 is required to substantially remain in the rest position 54 during normal throttle control 42 operation and after starting the engine, the tension spring 69 has a sufficient spring force to resist movement of the shuttle 52 via any residual recoil force of the coil spring (not shown) of the recoil starter assembly 22. One skilled in the art would now know that rotational directions and orientations are merely described as reflected in
As best illustrated in
The pull-cord 24 preferably loops about a spindle or pin 92 of the shuttle 52 journaled for rotation to the body 76. The pin 92 projects axially outward from the body 76 and is substantially parallel to the axis of the pulley 26 for clear or unobstructed receipt of the pull-cord 24. Preferably, the pin 92 is mounted to a trailing end 94 of the body 76 connected to the tension spring 69 and nearer the active stop end 90 of the slot 78. Conversely, a slack or mid-segment 72 of the throttle cable 50 loops about a cable tensioner or protrusion 96 of the shuttle 52 in substantially the same or matching circumferential position (i.e. three o-clock position as illustrated in
As best illustrated in
When starting the engine, the operator manually grasps the handle 60 attached to the pull-cord 24 and pulls the pull-cord 24 outward from the housing 30. This turns or rotates the pulley 26 in a counter-clockwise direction (as viewed in
When the recoil starter assembly 22 is in the recoiled state 64, the shuttle 52 is in the rest position 54 hence the tension spring 69 is not under substantial tension. However, because a residual force of the recoil spring is preferably biasing the pulley 26 in a clockwise direction that in turn through the pull-cord 24 biases the shuttle 52 toward the active position 56, the tension spring 69 preferably resists this residual force to maintain the shuttle 52 substantially in the rest position 54. One skilled in the art would now understand that if the recoil spring of the pulley 26 had no remaining recoil force left after recoiling the pull-cord 24 but before the handle 60 is snugly against the housing 30, the tension spring 69 could be utilized to exert a biasing force that places the handle 60 against the housing 30. That is, the tension spring 69 can be used to take up any slack of the pull-cord 24 when the recoil starter assembly 22 is generally in the recoiled state 64.
As best illustrated in FIGS. 3 and 5-6, when the engine is running and the end user desires to accelerate the engine, the throttle control 42 is actuated preferably by a pivoting trigger 118 that moves the cable 50 by a distance or throw of (2×) wherein (x) is the distance that the shuttle 52 moves between the rest and active positions. When the cable 50 moves with respect to both sheaths 46, 48, by throw (2×) the shuttle 52 remains substantially stationary and the throttle valve 34 opens against the biasing force of a throttle spring (not shown). So that the shuttle 52 remains substantially stationary, the strength of the tension spring 69 is generally greater than the strength of the throttle spring that biases the throttle valve toward its idle position 36 plus any residual recoiling force of the pulley's recoil spring (not shown) acting on the shuttle. Also when the engine is running, the shuttle 52 preferably acts to dampen movement between the throttle control 42 and the throttle valve 34 near fully actuated positions. For instance, if the trigger 118 is not fully actuated or seated against a physical stop at the instant the throttle valve reaches its wide open throttle position 38, or the trigger is generally out of sync with the throttle valve, the shuttle 52 will move or be extended slightly against the bias of the tension spring 69, thus preventing undue stress upon the cable 50 and throttle valve 34 due to operator exertion upon the trigger 118. That is, if the throw of the trigger 118 is slightly greater than the throw of the throttle valve 34 or simply out of sync, slight movement of the shuttle 52 can make up for the difference between throws.
During engine starting, the pulling force placed upon the handle 60 by the end user overcomes both the pulley recoil spring force and the force of the tension spring 69. As previously described and although the force of tension spring 69 is preferably greater than the residual force on the shuttle 52 of the pulley recoil spring, the recoil spring force that exerts a tension upon the pull-cord 24 increases as the pulley 26 is rotated counter-clockwise with pulling of cord 24 and exceeds the resistive force of the tension spring 69. When exceeded, the shuttle 52 shifts to the active position 56 placing slack in the cable 50 that overrides any unintended depression of the throttle trigger 118 to close the throttle valve 34. The shuttle 52 preferably shifts early on in the pull of the handle 60 placing the shuttle in the active position 56 during the majority, if not substantially all, of the revolution of the pulley 26. Preferably, as the shuttle 52 shifts toward the active position 56 and toward the housing passage 62, the start assist device 112 is also actuated such as closing a choke valve 114 of the carburetor 32. Regardless of whether the throttle control 42 is actuated or not, the shuttle 52 movement does not open the biased closed throttle valve 34.
As best illustrated in
As best illustrated in
During operation of a running engine, the shuttle 52 generally remains in the rest position 54. When the trigger 118 of the throttle control 42 is depressed to open the throttle valve 34 to accelerate the engine, the shuttle 52 remains in the rest position 54 and generally the mid segment 52 slides across the preferably substantially frictionless convex surface 100 of tensioner 96. The tensioner 96 is frictionless to a degree so as not to contribute excessive tension forces upon the control leg 102 of the cable 50 that would exceed the force of the tension spring 69 causing the shuttle 52 to substantially shift out of the rest position 54. When the shuttle 52 is functioning as a dampener, however, the cable 50 does not generally slide against the cable tensioner 96 but the shuttle 52 will slightly shift out of the rest position 54 in order for full depression of trigger 118 to the wide open position of the throttle valve 34. One skilled in the art would now know that the tensioner 96 can be journaled for rotation to the body 76 of the shuttle 52 to reduce the effects of friction upon the cable 50.
As best illustrated in the bottom portion of
A modified version of the throttle override device 40 is illustrated in
The contour or profile of the spindle 92′ preferably includes a circular valley or V-groove that axially centers and retains the pull-cord 24′ on the spindle 92′ of the shuttle 52′. A rotational axis of the spindle 92′ is orientated substantially parallel to a rotation axis 28′ of the pulley 26′. Pulling of the pull-cord 24′ by the operator creates a tension in the pull-cord that biases the spindle 92′ and shuttle 52′ radially inward against the pulley 26′.
In operation, as shown in
The shuttle 52′ moves a sufficient angular distance to actuate the throttle override device 22′ and preferably the start assist device 112′ via respective Bowden cables 44,′ 110′. Both Bowden cables 44′, 110′ are preferably connected to a radially projecting arm 124 of the shuttle 52′ that extends through a slot 126 of the housing 30′. With the shuttle 52′ in the active position 56′ or pressed against the stop 88′, the remaining windings of the pull-cord 24′ are withdrawn from the housing 30′ by the operator's continuing pull on the handle 60′ causing the pulley 26′ to continue its rotation.
During this remaining or continuing pull, the frictional engagement of the shuttle 52′ and the pulley 26′ is overcome by the pulling force exerted upon the cord 24′ by the operator. Therefore, the pulley 26′ continues to rotate counter-clockwise as the pull-cord 24′ is withdrawn from the housing 30′ and as the shuttle 52′ remains stationary. The circumferential location of the stop 88′ generally lies within the range of ninety to one hundred and twenty degrees away and in a clockwise direction from the passage 62′ which generally locates the channel 122 (i.e. shuttle travel range) diametrically opposite the passage 62′. This generally diametrically opposed orientation assures that the shuttle 52′ does not become bound or entangled proximate to the passage 62′ of the housing 30′.
When the pull-cord 24′ is released, the clockwise rotation of the pulley 26′ moves the shuttle 52′ clockwise away from the stop 88′ and toward the rest stop 84′ carried by the housing 30′ and that preferably defines the opposite end of the channel 122. Upon release of the pull-cord, the shuttle 52′ and the remote start assist device automatically re-align themselves, wherein the bias force of the biasing member or tension spring 69′ acts on the shuttle 52′ moving the shuttle toward the rest stop 84′ and creating a degree of slack within the Bowden cable 110′ that can be taken-up by a biasing member or tensioner 128, as illustrated in
The descriptions of all of the above-described embodiments and modified forms are incorporated by reference into one another.
While the forms of the invention herein disclosed constitute presently preferred embodiments, many others are possible. It is not intended herein to mention all the possible equivalent forms or ramifications of the invention. It is understood that terms used herein are merely descriptive, rather than limiting, and that various changes may be made without departing from the spirit or scope of the invention as defined by the following claims.
This is a continuation-in-part of U.S. patent application, Ser. No. 10/951,149, filed on Sep. 27, 2004 now abandoned, U.S. patent application, Ser. No. 11/059,038, filed on Feb. 16, 2005, and U.S. patent application, Ser. No. 11/285,554, filed Nov. 25, 2005.
Number | Name | Date | Kind |
---|---|---|---|
3361124 | Fend | Jan 1968 | A |
4257367 | Fujikawa et al. | Mar 1981 | A |
5500159 | Martinsson | Mar 1996 | A |
5927241 | Dahlberg et al. | Jul 1999 | A |
20060065224 | Pattullo | Mar 2006 | A1 |
20060070594 | Pattullo | Apr 2006 | A1 |
20060180113 | Pattullo | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
40 16 224 | Nov 1991 | DE |
4016224 | Nov 1991 | DE |
19618699 | Nov 1997 | DE |
1640592 | Mar 2006 | EP |
1051828 | Dec 1966 | GB |
03 121267 | May 1991 | JP |
Number | Date | Country | |
---|---|---|---|
20070251484 A1 | Nov 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11285554 | Nov 2005 | US |
Child | 11414423 | US | |
Parent | 11059038 | Feb 2005 | US |
Child | 11285554 | US | |
Parent | 10951149 | Sep 2004 | US |
Child | 11059038 | US |