The invention generally relates to a communication system and method of signal transmission. In particular, the invention relates to a signal communication system comprising a signal conduction matrix that has a light-transmissive material that allows the transmission of a signal through the use of surface signal routers.
Electronic components are commonly mounted on the surface of conventional molded 3-dimensional substrates. Presently, communications between the components on such a substrate occur mainly through the use of hole drillings, electrical wirings, and other conventional connectors. However, reliance on conventional connection techniques creates various disadvantages such as added complexity in component assembly, inconsistent connector reliability due to the large number of required wirings, signal interference and cross-talking between adjacent wires, increase in the weight of the substrate, lower data transfer rate, and high production cost.
The present invention is directed to a molded signal conduction matrix for use as a signal conductor to permit communications between various electrical, optical, optoelectronic, and other types of components. This can be achieved by using techniques such as converting a signal into a light or RF signal and then allowing the signal to propagate through a signal conduction matrix.
In one aspect of the invention, a signal transmission system is provided that comprises a signal conduction matrix formed into a shape that allows transmission of a signal through the matrix through the use of at least one surface signal router. The matrix may be partially or substantially composed of a light-transmissive material. At least one signal source is operatively connected to a surface of the matrix and generates a signal that propagates through the matrix. The signal, which may undergo multiple internal reflections within the matrix, is received by the at least one signal receiver operatively connected to a surface of the matrix.
In another aspect, a signal transmission system is provided that has a signal conduction matrix formed into a shape that allows transmission of a signal through the matrix through the use of at least one surface signal router. The matrix may be partially or entirely composed of a light-transmissive material. At least one signal source is operatively connected to a surface of the matrix and generates a signal that propagates through the light-transmissive material. In this aspect, the signal is coded to allow its selective detection by a target signal receiver. At least one signal receiver is operatively connected to a surface of the matrix and receives the signal from the signal source,
In still another aspect of the invention, a signal transmission system is provided that comprises a signal conduction matrix formed into a shape that allows wireless transmission of a signal through the matrix using a surface signal router. The matrix may be partially or entirely composed of a light-transmissive material. At least one signal source is operatively connected to a surface of the matrix and generates the signal that propagates through the matrix. In this aspect of the invention, the signal may be coded, modulated, frequency-converted, or amplified. At least one signal receiver is operatively connected to a surface of the matrix and receives a signal from the signal source.
In another aspect, a signal transmission system is provided that comprises a signal conduction matrix that is formed into a shape that allows transmission of a signal through the matrix through the use of a reflective coating and at least one surface signal router selected from an indentation, pressure fit structure, or an inclined cut on the surface of the matrix. The matrix may be partially or entirely composed of a light-transmissive material. At least one signal source is operatively connected to a surface of the matrix and generates a signal that propagates through the matrix. At least one signal receiver is operatively connected to a surface of the matrix and receives a signal from the signal source. In this aspect, a frequency-selective filter is used to permit the signal to be selectively detected by a signal receiver.
The present invention is also directed to various methods of transmitting a signal using the signal conduction matrix of the invention. In one aspect of the invention, a method of transmitting a signal is provided that comprises generating a signal using at least one signal source that is operatively connected to a surface of a signal conduction matrix. The matrix may be partially or entirely composed of a light-transmissive material. The direction of propagation of the signal is controlled using at least one surface signal router, wherein the signal propagates through the matrix. The matrix is formed into a shape that allows or maximizes the transmission of a signal through the matrix using at least one surface signal router. A subsequent step of the method involves receiving the signal using at least one signal receiver that is operatively connected to a surface of the matrix.
In another aspect of the invention, a method of transmitting a signal is provided that comprises generating a signal using at least one signal source that is operatively connected to a surface of a signal conduction matrix. The matrix may be partially or entirely composed of a light-transmissive material. The signal is coded to allow its selective detection by a signal receiver. In this method, the direction of propagation of the signal is controlled using at least one surface signal router, wherein the signal propagates through the matrix. The matrix is formed into a shape that allows the direction of propagation of a signal to be controlled using at least one surface signal router. In a subsequent step, the signal is received using the signal receiver that is operatively connected to a surface of the matrix.
In still another aspect of the invention, a method of transmitting a signal is provided that comprises generating a signal using at least one signal source that is operatively connected to a surface of a signal conduction matrix. The matrix may be partially or entirely composed of a light-transmissive material. The matrix is formed into a shape that allows transmission of a signal through the matrix using at least one surface signal router. The signal is received by at least one signal receiver that is operatively connected to a surface of the matrix, and a frequency-selective filter is used to allow selective detection by the at least one signal receiver.
a is a perspective view of an Integrated Powertrain Control System (IPCS) that incorporates a signal conduction matrix.
b shows an IPCS system that incorporates a molded signal conduction matrix, splitters, and reflectors.
a shows an IPCS system that incorporates a molded signal conduction matrix that includes optical fibers molded inside the matrix.
b shows another configuration of an IPCS system in which the light travels in a molded wave guide.
c shows a variation of the IPCS system shown in
d shows another configuration of an IPCS system that incorporates a signal conduction matrix.
The signal conduction matrix is a structure that is partially or substantially made of at least one type of light-transmissive material formed into a shape that would allow the transmission of a signal within the signal conduction matrix using at least one surface signal router. The signal conduction matrix is described in more detail below, but one of its characteristics is that it can be used as a substrate, such as an optical substrate, that can be formed into various shapes such as a rectangular slab or the shape of a part or the entirety of, for example, a main frame of an instrument panel display. The signal conduction matrix can also be integrated as a substrate or part of the substrate of, for example, a printed circuit board. As such, it can be used as a primary or secondary transmission means for a signal, such as an optical signal propagating from at least one signal source to at least one signal receiver.
The signal conduction matrix and signal transmission method of the invention provides several advantages. It eliminates or minimizes the need for wiring and connectors on the substrate and eliminates the need for shielding which is normally necessary to block electromagnetic interferences involving light signals. The present invention is also highly reliable, easier to assemble, and has a higher efficiency of coupling between transmitter/receiver and the signal conduction matrix. Another advantage of the present invention is that optical signals can be transferred within the matrix multi-directionally, i.e., a single master transmitter can talk to multiple slave receivers simultaneously and a single receiver can listen to multiple transmitters. In addition, the signal conduction matrix of the invention can be integrated as a substrate or part of the substrate of, for example, a printed circuit board, or as part of a molded three-dimensional structure. Further, because the present invention eliminates cross-talking and interference between adjacent signal conductors, noise and signal distortion are excluded or reduced.
In one aspect of the invention, electronic, optical, or optoelectronic components are placed on the surface of the signal conduction matrix. In another aspect, the signal conduction matrix encompasses one or more electronic, optical, or optoelectronic components to allow a signal such as an optical signal to be directed to the various components within the substrate. Thus, one or more components may be embedded within the signal conduction matrix while other components are positioned on the surface of the signal conduction matrix. Signal transmission can therefore be accomplished without having to resort to the use of conventional connectors, wirings, or signal focusing means such as a beam splitter or focusing lens. The signal conduction matrix may also assume other shapes such as a ring, strand, sheet, or ribbon.
Structures that comprise a matrix include a matrix in the form of strands or other structural shapes. Structures that comprise a matrix also include a matrix connected or fabricated with one or more components or systems such as a detector, light source, or an electronic system.
A surface signal router directs a signal from the signal source to one or more target signal recipients, such as a photodetector or an IR analyzer, that are positioned at various points on the surface of the signal conduction matrix. A surface signal router can be a reflective coating on the surface of the signal conduction matrix. When reflective coatings are used as surface signal routers, they are preferably strategically distributed throughout the various areas or sections of the surface of the signal conduction matrix depending on factors such as the number and type of components that form part of a signal conduction network.
A surface signal router can also assume the form of an indentation or a pressure fit structure. It can also assume the form of inclined, oblique, or wedge-shaped cuts on the surface of the 3-D signal conduction matrix. As used herein, an “inclined” cut includes cuts having an angular shape relative to a surface of the matrix; this includes oblique and wedge-shaped cuts. Routers in the form of surface cuts with other shapes such as zig-zag, wavy, or combinations of various shapes may also be used. Preferably, these surface cuts are coated with at least one reflective material such as a metal or metal alloy. In one aspect, a combination of reflective coatings and surface cuts with reflective coatings is used to enable a signal to propagate through the signal conduction matrix via, for example, multiple internal reflections.
Examples of the various possible configurations of a system incorporating the signal conduction matrix of the invention are provided in, for example,
The surface signal routers can be applied or incorporated onto the surface of the signal conduction matrix so a signal can be transferred directionally to their receivers. As
For a given substrate volume, the signals reflected by various surface signal routers can be combined into a total internal reflection signal. The total internal reflection signal can then be directed to another portion or section of the matrix where another component such as a receiver may receive and/or process the collected internally reflected signal.
When different frequencies are used, multiple signals can be transmitted simultaneously. One signal source can have several corresponding receivers. To eliminate possible interference between signals having different frequencies, frequency-specific filters, such as bandpass filters, can be used to selectively allow a signal with a particular frequency or frequency range to be picked up by an intended receiver. The signals can also be amplified during signal propagation so the signal can propagate over longer distances.
The signal sources 102, 104 and receivers 108, 110, 112 are operatively connected to one or more surfaces of the signal conduction matrix 106. Each signal source 102, 104 and each receiver 108, 110, 112 may be on the same or different surfaces of the signal conduction matrix 106.
As used herein, “operatively connected” refers to the formation of an optical, electrical, or other interface for transmitting and receiving the signals through the signal conduction matrix 106. The phrase “operatively connected” also means being connected, attached, or bonded to a surface using attachment configurations, attachment substances, other attachment mechanisms, or any of their combination to affix the signal sources 102, 104 and the receivers 108, 110, 112 onto the signal conduction matrix 106. Attachment configurations include physical adaptations of the signal conduction matrix 106 such as an indentation or a pressure fit structure. Attachment substances include adhesives, resins, solder, and other substances that can function as suitable attachment substances.
Each signal source 102, 104 transmits one or more signals through the signal conduction matrix 106 to one or more signal receivers or collectors 108, 110, 112. Preferably, the signal sources 102, 104 transmit the one or more signals in response to an input signal from the electronic component system. The signal sources 102, 104 may transmit the one or more signals continuously, in pulses, or through a combination of continuous or pulsed signals. Each signal source 102, 104 can be any electromagnetic radiation generation device. For example, the signal sources 102, 104 may be a visible light generation device such as a light emitting diode (LED). In another aspect, at least one signal source is a radio frequency (RF) generation device such as an RF transmitter. In a further aspect, a first signal source 102 is an electromagnetic radiation generation device such as a green LED, and the second signal source 104 is another electromagnetic radiation generation device such as a blue or infrared LED.
Each signal receiver 108, 110, 112 is an electromagnetic radiation reception or collection device such as a photodiode or an RF receiver. Each receiver 108, 110, 112 receives or collects one or more signals from the signal conduction matrix 106. Preferably, each receiver 108, 110, 112 provides an output signal to the electronic component system in response to the signal. Each receiver 108, 110, 112 may have a frequency specific filter to reduce or eliminate interference from signals with different frequencies. The frequency specific filter allows a particular signal receiver to selectively receive a signal having one particular frequency. The receivers 108, 110, 112 may be positioned essentially anywhere on the surface of the signal conduction matrix 106 to receive the one or more signals. Multiple signal receivers may receive the signal from a single signal source.
In yet another aspect of the invention, a signal source and a receiver may be integrated into a single component such as an RF transceiver, which may transmit a first signal at a given time and receive a second signal at another time. The first and second signals may have different frequencies.
Each signal may essentially diffuse throughout the entire volume of the signal conduction matrix 106. As used herein, “essentially diffuses” refers to the propagation of a signal in substantially all directions within the signal conduction matrix 106 unless, for example, a component blocks the signal. A signal may propagate in various directions as it undergoes multiple internal reflections within the signal conduction matrix.
The signals are any electromagnetic frequency capable of transmission through the signal conduction matrix 106 and communication between the signal sources 102, 104 and the receivers 108, 110, 112. The signals may be a combination of electromagnetic frequencies. Thus, the signals may have a frequency that lies in the visible, ultraviolet, or IR region of the electromagnetic spectrum. The signal can also be an RF signal. The signals may have one or more modulated and/or coded signals. The signals may be amplified to allow a longer transmission distance.
The signal conduction matrix 106 may have various configurations such as flat, curvilinear, wavy, or asymmetrical. The signal conduction matrix 106 may also have various dimensions including non-uniform thickness, width, and length. The signal conduction matrix 106 can be a molded material so that the material can be cast and cured into a desired shape or size.
The signal conduction matrix 106 may be used in combination with one or more substrates in a component or structure such as a printed circuit (PC) board. In one aspect, the signal conduction matrix 106 forms part of a PC board layer, or it can form the entire PC board layer. In another aspect, the signal conduction matrix 106 comprises one or more strips ironed or otherwise pressed onto a surface of a PC board. The signal conduction matrix 106 may be divided into portions or sections that are separated by a reflective or absorptive material.
The electronic component system may be an automobile control panel, which is described in detail below. The electronic component system can also be a wireless video streaming system having cluster, interior, and exterior cameras, a multimedia/telematics functions including real time video and networking, intelligent transportation system controls, single-source backlighting and graphics lighting, electronics integration with night vision, laser burst download systems, heads-up displays, biometric identification, multi-zone and personalized climate control systems, lane detection devices, rain and moisture signal receivers, occupant classification and restraint controls, suspension and steering controls, drowsiness detection, collision warning and avoidance, higher speed safety systems, air bag enabling systems, door close and lock signal receivers, fuel level signal receivers, aircraft electronic systems, and vehicle to vehicle communication and tracking system.
a is a perspective view of an electronic component system 750 that incorporates a signal conduction matrix 700. As shown, the electronic component system 750 is an integrated power train control system (IPCS) that has a base 728 and a cover 730. The matrix 700 preferably comprises signal sources 702, 704, a matrix strand 706, and detectors or collectors 708, 710. The matrix strand 706 may be disposed across and may be incorporated with the base 728. The signal sources 702, 704 and detectors 708, 710, 712 are linked by wires 720, 722, 724, 726 to pin connections 728, which connect to other components (not shown). Preferably, the signal sources 702, 704 transmit the signals in response to an input signal from the pin connections 728. Preferably, the detectors 708, 710, 712 transmit an output signal to the pin connections 728 in response to the signals.
b shows an IPCS that incorporates a signal conduction matrix, splitters, and reflectors. For a given obstruction in a layer of the substrate, the directional splitter redirects a light signal using a molded piece of material such as plastic, metal or a rough surface to diffuse the light signal. This allows bypassing of any obstacle present in the signal path. Also shown are molded-in reflectors that redirect the light signal to a desired location.
a–d are perspective views of an IPCS that incorporates a signal conduction substrate and optical fibers molded inside the matrix. In this configuration, the IPCS circuitry is both optical and electrical. The two integrated circuits (IC) that control the timing of the firing of the eight spark plugs in an 8-cylinder engine can be replaced and controlled by one or more optoelectronic devices such as a transmitter. Light signals, as opposed to electrical signals in a conventional power distribution system, can be transmitted as digital signals. The light signals received at each cylinder spark location are used to switch on and off an ignition coil so that an electrical spark can ignite the combustion of an air-and-fuel mixture in a cylinder. Further, with respect to fuel injection, optoelectronic chips can replace I/C chips that control the opening and closing of valves in the fuel injection ports.
a shows an IPCS that comprises a signal source for the fuel injection, a signal source for the firing spark, a receiver for the fuel injection, a receiver for the firing spark, and a signal conduction matrix. In this IPCS configuration, optical fibers are molded inside the signal conduction matrix. A single wavelength of light from a signal source can be used for all communications.
In the present invention, signal receivers preferably have at least one photo-voltaic receptors that converts light energy into electrical energy. The electrical energy can then be used to power the signal receivers. In one aspect, the electrical energy is stored in a capacitor and used as needed.
The signal receivers are preferably embedded within the matrix or attached to it. In one aspect of the invention, an emitted signal or energy from the central signal source may be directed to the signal receivers using a routing means such as a prism, lens, or mirror through the matrix.
Power sources that produce energies corresponding to different wavelengths may be used to power different signal receivers that have photoreceptors sensitive to certain wavelengths. Further narrowing of a wavelength range may be performed using at least one optic element such as bandpass filter.
Data obtained from the signal receivers may be transmitted through a main communication bus to an electronic system, such as an electronic controller, for further data processing. The data may be transmitted using a light signal, such as an IR signal. A power distribution system may also be included in an instrument panel, on-engine system, or other devices that require power distribution to the signal receivers.
Preferably, the matrix comprises a polymeric material. The material comprising the matrix may be polybutylene terephthalate, polyethylene terephthalate, polypropylene, polyethylene, polyisobutylene, polyacrylonitrile, poly(vinyl chloride), poly(methyl methacrylate), silica, or polycarbonate. Preferably, the polymeric material is a photorefractive polymer.
The polymeric material that forms the signal conduction matrix may be connected to or manufactured as part of engine structures such as intake manifolds. Information obtained from the signal receivers that relates to monitored parameters can then be routed through the signal conduction matrix to at least one electronic system such as a process control system.
Preferably, the signal conduction matrix material is made of at least one material that allows the transmission of light of various frequencies. Thus, for example, the matrix may comprise a first material transparent or translucent to a first frequency of the signals and a second material that is transparent or translucent to a second frequency of the signals.
The signal conduction matrix can have various configurations. Thus, the matrix may be flat, curvilinear, wavy, or asymmetrical. The matrix may also have various dimensions including non-uniform thickness, diameter, width, and length. The matrix may be fabricated using a moldable material so that the matrix can be cast and then cured to a desired shape. The matrix may have sections or areas that are connected, molded, or pressed onto a surface of a circuit board. In one aspect, the matrix is integrated with structures such as printed circuit boards, flexible substrates, flatwire, and MID (Molded in Device) circuits.
The entire signal conduction matrix may be coated with a reflective material. Preferably, the reflective coating minimizes energy loss by reducing the intensity of the optical signal that leaks out of the matrix.
The matrix preferably has a reflective coating on at least one of its surfaces. In one aspect of the invention, the reflective coating covers the entire surface or substantially the entire surface of the matrix except for the portions of the surface where the signal source and signal receivers are operatively connected to the matrix. The reflective coating may be used to, for example, cover only the surface of the matrix that substantially encompass a volume of the matrix through which the signal source is transmitted to the signal receivers.
The reflective coating may comprise any material that reflects the signal transmitted through the matrix. The reflective coating may also comprise at least one metal or metallic alloy containing metals such as aluminum, copper, silver, or gold.
The signal source may be a light source. An example of a preferred light source is an infrared light source. However, the signals can have any electromagnetic frequency capable of transmission through the matrix and communication between the signal source and the signal receivers. The signal being transmitted may be a combination of electromagnetic frequencies. The signal source includes, but is not limited to, an LED, a laser, or an RF source. The laser may emit IR, visible, or ultraviolet light.
A signal may be directed to any or various directions within the matrix, unless, for example, the signal source or another component blocks the signal. The signals may propagate, sequentially or simultaneously, along the same or opposite directions. The signal receivers may be positioned in any suitable location on a surface of the matrix where the signal receivers can receive a signal from at least one signal source. Multiple signal receivers may receive signals from a single signal source.
The signal source is preferably an electromagnetic radiation generation device. Preferably, each signal source is a light generation device such as a laser or a light emitting diode (LED). Alternatively, each signal source is a radio frequency (RF) generation device such as an RF transmitter. For example, a first signal source may be an electromagnetic radiation generation device such as a LED or a laser and a second signal source may be an RF transmitter.
A signal source and at least one signal receiver may be integrated with a component such as an RF transceiver, which may transmit a first signal at a given time and receive a second signal at another time. The first and second signals may have the same or different frequencies. The signal receiver may include both a detector and another component such as a capacitor where the collected energy may be stored.
Signals such as optical signals from optoelectronic transmitters can be channeled or transported through air if there are no obstacles in their path. The transmitters preferably generate a light signal with a unique wavelength. In an aspect of the invention, a wavelength selective filter is placed in front of the signal receiver so that little or no interference occurs between different transmitters and signal receivers.
As used herein, a signal receiver refers to a device that receives a signal from a given source. The signal received by a signal receiver may be a light signal. Thus, a signal receiver may include at least one component such as a photodetector or both a photodetector and a capacitor. In particular, at least one of the signal receivers may include an electromagnetic radiation reception or collection device such as a photodiode or an RF sensor. The signal receivers include, but are not limited to, photodiodes, microchannel plates, photomultiplier tubes, or a combination of signal receivers. The signal receivers may receive or collect at least one signal through the matrix. In one aspect of the invention, the signal receivers provide an output signal to an electronic system in response to a signal that propagates through the matrix. The signal receivers preferably have at least one frequency specific filters to reduce or eliminate interference from signals with certain frequencies or frequency ranges.
Various embodiments of the invention have been described and illustrated. However, the description and illustrations are by way of example only. Other embodiments and implementations are possible within the scope of this invention and will be apparent to those of ordinary skill in the art. Therefore, the invention is not limited to the specific details, representative embodiments, and illustrated examples in this description. Accordingly, the invention is not to be restricted except in light as necessitated by the accompanying claims and their equivalents.
This application claims the benefit of a U.S. Provisional Application No. 60/330,306 filed on Oct. 19, 2001, the entirety of which is incorporated herein.
Number | Name | Date | Kind |
---|---|---|---|
3448616 | Wostl et al. | Jun 1969 | A |
3463134 | Zechnall et al. | Aug 1969 | A |
3895612 | Keely et al. | Jul 1975 | A |
4134639 | DiVita | Jan 1979 | A |
4269152 | Van Siclen, Jr. | May 1981 | A |
4280751 | SiVita | Jul 1981 | A |
4311048 | Merz | Jan 1982 | A |
4447118 | Mulkey | May 1984 | A |
4674828 | Takahashi et al. | Jun 1987 | A |
4711997 | Miller | Dec 1987 | A |
4745293 | Christensen | May 1988 | A |
4757212 | Saito | Jul 1988 | A |
4789214 | Vilhelmsson et al. | Dec 1988 | A |
4817466 | Kawamura et al. | Apr 1989 | A |
4851969 | Davenport et al. | Jul 1989 | A |
4912522 | Oates et al. | Mar 1990 | A |
4928319 | Pitt et al. | May 1990 | A |
4963729 | Spillman et al. | Oct 1990 | A |
5001642 | Botzenhardt et al. | Mar 1991 | A |
5077482 | Vali et al. | Dec 1991 | A |
5089696 | Turpin | Feb 1992 | A |
5214707 | Fujimoto et al. | May 1993 | A |
5226090 | Kimura | Jul 1993 | A |
5247580 | Kimura et al. | Sep 1993 | A |
5291032 | Vali et al. | Mar 1994 | A |
5323477 | Lebby et al. | Jun 1994 | A |
5328665 | Geiger | Jul 1994 | A |
5380014 | Schäperkötter | Jan 1995 | A |
5384467 | Plimon et al. | Jan 1995 | A |
5521992 | Chun et al. | May 1996 | A |
5539200 | Lebby et al. | Jul 1996 | A |
5659132 | Novak et al. | Aug 1997 | A |
5693936 | Komachiya et al. | Dec 1997 | A |
5745611 | Komachiya et al. | Apr 1998 | A |
5822099 | Takamatsu | Oct 1998 | A |
5831263 | Komachiya et al. | Nov 1998 | A |
5872609 | Hiji et al. | Feb 1999 | A |
5936235 | Minamitani et al. | Aug 1999 | A |
6036329 | Iimura | Mar 2000 | A |
6150734 | Neibecker et al. | Nov 2000 | A |
6173609 | Modlin et al. | Jan 2001 | B1 |
6186106 | Glovatsky et al. | Feb 2001 | B1 |
6230138 | Everhart | May 2001 | B1 |
6240347 | Everhart et al. | May 2001 | B1 |
6243416 | Matsushiro et al. | Jun 2001 | B1 |
6301030 | Robinson | Oct 2001 | B1 |
6301957 | Sakaguchi et al. | Oct 2001 | B1 |
6320184 | Winklhofer et al. | Nov 2001 | B1 |
6330377 | Kosemura | Dec 2001 | B1 |
6357426 | Schleupen | Mar 2002 | B1 |
6567590 | Okada et al. | May 2003 | B1 |
6650822 | Zhou | Nov 2003 | B1 |
20010019568 | Sakata | Sep 2001 | A1 |
20020028045 | Yoshimura et al. | Mar 2002 | A1 |
Number | Date | Country |
---|---|---|
28 39 127 | Mar 1980 | DE |
0 266 934 | May 1988 | EP |
0 454 165 | Oct 1991 | EP |
0 487 918 | Jun 1992 | EP |
2 164 516 | Mar 1986 | GB |
2 177 869 | Jan 1987 | GB |
58 225 746 | Jun 1982 | JP |
360183630 | Sep 1985 | JP |
61-106930 | May 1986 | JP |
2-207204 | Aug 1990 | JP |
WO 8503179 | Jul 1985 | WO |
WO8503179 | Jul 1985 | WO |
WO 8909324 | Oct 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20030099426 A1 | May 2003 | US |
Number | Date | Country | |
---|---|---|---|
60330306 | Oct 2001 | US |