COMPACT DRUG RESPONSIVE DOMAINS FOR REGULATION OF FUNCTION/ABUNDANCE AND DELIVERY OF POLYPEPTIDE PAYLOADS

Abstract
Provided herein are engineered, regulatable polypeptides comprising a payload and a drug responsive domains (DRD), wherein the DRD is operably linked to the payload and wherein the DRD is responsive to a ligand. The DRD is optionally FKBP13, either wildtype or a variant thereof.
Description
SEQUENCE LISTING

A Sequence Listing conforming to the rules of WIPO Standard ST.26 is hereby incorporated by reference. Said Sequence Listing has been filed as an electronic document via Patent Center in ASCII format encoded as XML. The electronic document, created on Jun. 16, 2023, is entitled “108407-1365434-002WO1_ST26”, and is 573 kilobytes in size.


BACKGROUND

Administration of biological agents by providing genetically modified cells to a subject or by the use of gene editing methods, such as CRISPR/Cas9 methods, shows great promise but present substantial challenges. Means of regulating the genetically modified cells or gene editing agents are needed in order to optimize the therapeutic benefits and to reduce off-target effects. Regulation of payloads in genetically modified cells can be achieved by coupling the payloads to drug responsive domains (DRDs) that bind a ligand such that administration of the ligand regulates the activity of the payload in a dose dependent fashion. The size of the payload and other components within a nucleic acid construct encoding the regulatable payload operably linked to a DRD, however, may preclude use of known DRDs because of the limited capacity within a selected viral or non-viral vector. Thus, regulation of larger payloads, such as gene-editing agents, or transduction using smaller vectors, such as adeno-associated virus (AAV) vectors, present substantial challenges in regulation.


SUMMARY

This disclosure relates to compositions and systems capable of delivering a regulatable payload using a DRD, as well as methods of making and using the compositions and systems. By way of example, gene-editing functions can be regulated by modifying and/or modulating, among other things, abundance and/or activity of the payload. Abundance and/or activity of a gene-editing payload can be regulated by operably linking the payload to a drug-responsive domain (DRD) responsive to a ligand and providing the ligand to the DRD operably linked to the gene-editing payload. In some instances, the DRD must be tailored such that the nucleic acid encoding the DRD can be accommodated in an expression system, such as a viral vector, along with other nucleic acids encoding additional elements, including components of a gene-editing system. Accordingly, provided herein is a compact DRD and a nucleic acid encoding it.


The compact DRD is optionally an FKBP13 or a variant thereof that is responsive to a ligand such as FK506 (tacrolimus) and/or rapamycin (sirolimus). In the presence of the ligand, the payload abundance or activity increases. Thus, when the payload comprises gene-editing components, the FKBP13 in the presence of the ligand, increases the abundance of the gene-editing components and/or increases the gene-editing activity. In the absence of the ligand, the payload is down-regulated or turned off and gene editing is reduced or eliminated.


Provided herein is a nucleic acid that encodes a payload and an FKBP13 or variant thereof that binds a ligand, wherein, upon expression, the FKBP13 or variant thereof is operably linked to the payload. Optionally the FKBP13 variant includes one or more mutations in a ligand binding site and can further include one or more mutations in a non-ligand binding region. For example, the FKBP13 can be a fragment of FKBP13 (e.g., a C-terminal fragment of less than 100 amino acids). The fragment optionally includes one or more mutations in the ligand binding site and optionally further includes one or more mutations outside the ligand binding site. Optionally, the one or more mutations differentially affect binding of FK5065 and rapamycin. For example, the encoded FKBP13 variant can be designed to modulate the biological activity of the payload in response to FK506 more than in response to rapamycin. Optionally, this differential effect between responses to rapamycin and FK506 is achieved by mutations that reduce the binding affinity of the FKBP13 variant for rapamycin.


The nucleic acid encoding the FKBP13 or variant thereof and the payload can further include or encode additional components, such as one or more promoters or linkers.


The encoded payload can be one or more biological molecules having the desired biological activity. The desired biological activity can be, for example, gene editing. Accordingly, the payload optionally comprises an RNA-guided endonuclease (e.g., a Cas9 endonuclease). The payload optionally further comprises at least one guide RNA. By way of example, provided herein is a nucleic acid encoding FKBP13 or a variant thereof responsive to a ligand, wherein the nucleic acid is configured for packaging in an AAV vector as a single nucleotide sequence that includes a promoter sequence, a guide RNA, and a sequence that encodes a Cas9 endonuclease payload, wherein the promoter sequence, the guide RNA, and the sequence encoding the Cas9 endonuclease comprise at least 3000 base pairs.


Also provided herein is a genetically modified FKBP13, for example, an FKBP13 fragment (e.g., a C-terminal fragment) with one or more mutations in the ligand binding site and/or one or more mutations in a non-ligand binding site. The genetically modified FKBP13 fragment optionally has a lower binding affinity for rapamycin and/or a higher binding affinity for FK506 than a control FKBP13 fragment without mutations.


Provided herein is a recombinant polypeptide comprising a DRD and a payload, wherein the payload is operably linked to the FKBP13 or variant thereof and wherein activity of the payload in a biological system (e.g., mammalian blood) is regulatable by the concentration of the ligand contacting the FKBP13. Optionally, the EC50 of FK506 for the FKBP13 or variant thereof in the biological system is about 2-fold to about 20-fold lower than the Cmax of FK506 in the biological system.


Further provided are vectors comprising the expressible nucleic acids and cells comprising the vectors or expressible nucleic acids as described herein. By way of example, the vector or cell can include a nucleotide sequence that encodes an RNA-guided endonuclease, one or more guide RNA sequences comprising a first nucleotide sequence that hybridizes to a target DNA in the genome of a cell and a second nucleotide sequence configured to interact with the RNA-guided endonuclease. Optionally the vector is a viral vector (e.g., an AAV vector).


Also provided are methods of producing a recombinant cell by introducing the vector into a target cell. Further provided are methods of regulating a payload in the cell by contacting the target cell comprising the vector with a ligand. When the payload comprises the components for gene editing, the method or regulation provides regulation of gene editing by contacting the target cell comprising the vector with a ligand to modify the DNA expressed in the cell.


For example, the method of modifying target DNA in a cell includes introducing into the cell a vector comprising (1) an RNA-guided endonuclease-encoding nucleic acid comprising a sequence that encodes an FKBP13 or variant thereof responsive to a ligand, a promoter sequence, and a sequence that encodes an RNA-guided endonuclease, and (2) one or more guide RNAs comprising a nucleotide sequence that hybridizes to a target DNA in the genome of a cell and a nucleotide sequence configured to interact with the RNA-guided endonuclease. The method further comprises contacting the vector-containing cell with an effective amount of ligand to induce or increase activity of the RNA-guided endonuclease, wherein the RNA-guided endonuclease interacts with the guide RNA and wherein the RNA-guided endonuclease specifically binds and cleaves the target DNA in the cell. Also provided are methods of treating a disease or disorder responsive to genetic modification in a subject in need thereof by introducing into one or more cells of the subject the vector and contacting the vector-containing one or more cells with an effective amount of ligand to induce or increase activity of the RNA-guided endonuclease, wherein the RNA-guided endonuclease interacts with the guide RNA and wherein the RNA-guided endonuclease specifically binds and cleaves the target DNA in one or more cells of the subject. Also provided is a method of treating a disease or disorder responsive to genetic modification in a subject in need thereof by administering to the subject one or more cells comprising the vector and administering to the subject an effective amount of ligand to induce activity of the RNA-guided endonuclease, wherein the RNA-guided endonuclease interacts with the guide RNA and wherein the RNA-guided endonuclease specifically modifies the genome of one or more cells.


Disclosed herein are methods of controlling the dose or duration of administration of a payload to a subject, comprising administering to the subject one or more nucleic acid constructs, vectors, or cells as described herein. The method optionally further includes administering to the subject a selected amount of a ligand to deliver a selected activity of the payload to the subject thereby controlling the activity level of the payload administered by way of the one or more nucleic acid constructs, vectors or cells.


Also disclosed herein are methods of regulating expression of a downstream target protein or peptide of a gene editing process. Such methods can comprise engineering a cell to express an engineered, regulatable oligomer or polypeptide comprising a payload such as a Cas9 protein or transcription factor protein involved in controlling a gene editor, wherein the payload is operably linked to a DRD. In such methods, a nucleic acid construct or vector described herein is administered to a cell (in vivo or in vitro). Optionally, a cell comprising the nucleic acid or vector is administered to a subject to regulate expression of the target protein or peptide by the cell.


The identified embodiments are exemplary only and are therefore non-limiting. The details of one or more non-limiting embodiments of the invention are set forth in the accompanying drawing and the description below. Other embodiments of the invention should be apparent to those of ordinary skill in the art after consideration of the present disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a schematic showing the general organization of an exemplary nucleic acid construct comprising (i) a nucleic acid sequence encoding a potential FKBP DRD sequence; (ii) a nucleic acid sequence encoding Aequorea coerulescens GFP (AcGFP); (iii) a nucleic acid sequence encoding an exemplary self-cleaving peptide (porcine teschovirus-1 2A (P2A)); and (iv) a nucleic acid sequence encoding mCherry.



FIG. 1B provides fluorescence activated cell sorting (FACS) data for tacrolimus dose response studies in transiently transfected HEK293 cells. Several FKBP13 mutations (D90G, M54A and M96V) were effective in destabilizing AcGFP and reducing AcGFP fluorescence.



FIG. 2 is a graph showing tacrolimus dose response curves for FKBP13 constructs designated FKBP-039, FKBP-040, FKBP-041, FKBP-042, FKBP-043, FKBP-044, and FKBP-045 stably transduced into Jurkat cells.



FIG. 3 is a superimposition of rapamycin and tacrolimus represented as sticks.



FIG. 4 is a graph showing tacrolimus dose response fluorescence-activated cell sorting (FACS) data for Jurkat cells stably transduced with FKBP13 constructs designated FKBP-044, FKBP-052, FKBP-053, FKBP-054, FKBP-055, FKBP-056, FKBP-057, FKBP-058, FKBP-059, FKBP-060, FKBP-061, FKBP-062, FKBP-063, or FKBP-064.



FIG. 5 is a graph showing tacrolimus dose response curves for FKBP13 constructs designated FKBP-044, FKBP-066, FKBP-067, FKBP-068, FKBP-069, FKBP-070, FKBP-071, and FKBP-072 transiently transfected into HEK293 cells and EC50 values for each construct.



FIG. 6 is a graph showing tacrolimus dose response curves for FKBP13 constructs designated FKBP-044, FKBP-073, FKBP-074, FKBP-075, FKBP-076, and FKBP-077, transiently transfected into HEK293 cells and EC50 values for each construct.



FIG. 7 is a graph showing tacrolimus dose response curves for FKBP13 constructs designated FKBP-044, FKBP-083, FKBP-084, FKBP-085, and FKBP-086 transiently transfected into HEK293 cells and EC50 values for each construct.



FIG. 8 is a graph showing tacrolimus dose response curves for FKBP13 constructs designated FKBP-044, FKBP-087, FKBP-088, FKBP-089, FKBP-090, and FKBP-091 transiently transfected into HEK293 cells and EC50 values for each construct.



FIG. 9 is a graph showing tacrolimus dose response curves for FKBP13 constructs designated FKBP-044, FKBP-092, FKBP-093, FKBP-094, FKBP-095, FKBP-096 and FKBP-097 transiently transfected into HEK293 cells and EC50 values for each construct.



FIG. 10 is a graph showing tacrolimus dose response FACS data (GFP mean fluorescent intensity (MFI)) for Jurkat cells stably transduced with FKBP13 constructs designated FKBP-044, FKBP-059, FKBP-068, FKBP-077, FKBP-084, FKBP-085, FKBP-091, FKBP-094, FKBP-095, and FKBP-097.



FIG. 11 is a graph showing tacrolimus dose response curves for FKBP13 constructs designated FKBP-091, FKBP-098, FKBP-099, FKBP-100, and FKBP-101 transiently transfected into HEK293 cells and EC50 values for each construct.



FIG. 12 is a graph showing tacrolimus dose response curves for FKBP13 constructs designated FKBP-091, FKBP-102, FKBP-103, FKBP-104, FKBP-105 and FKBP-106 transiently transfected into HEK293 cells and EC50 values for each construct.



FIG. 13 is a graph showing tacrolimus dose response curves for FKBP13 constructs designated FKBP-091, FKBP-107, FKBP-108, FKBP-109, FKBP-110, and FKBP-111 transiently transfected into HEK293 cells and EC50 values for each construct.



FIG. 14 is a graph showing tacrolimus dose response curves for FKBP13 constructs designated FKBP-091, FKBP-112, FKBP-113, FKBP-114, FKBP-115 and FKBP-116 transiently transfected into HEK293 cells and EC50 values for each construct.



FIG. 15A is a graph showing tacrolimus dose response curves FACS data for FKBP13 constructs designated FKBP-091, FKBP-117, FKBP-118, FKBP-119, FKBP-120, FKBP-121, FKBP-122, and FKBP-123 in stably transduced Jurkat cells as measured using FACS and MFI for GFP.



FIG. 15B is another representation of the tacrolimus dose response curves for FKBP13 constructs designated FKBP-091, FKBP-117, FKBP-118, FKBP-119, FKBP-120, FKBP-121, FKBP-122, and FKBP-123, the data is presented as the ratio of GFP MFI to mCherry MFI.



FIG. 15C is a graph showing tacrolimus dose response curves for FKBP13 constructs designated FKBP-091, FKBP-124, FKBP-125, FKBP-126, FKBP-127, FKBP-128, FKBP-129, and FKBP-130 as measured using FACS and MFI for GFP.



FIG. 15D is another representation of the tacrolimus dose response curves for FKBP13 constructs designated FKBP-091, FKBP-124, FKBP-125, FKBP-126, FKBP-127, FKBP-128, FKBP-129, and FKBP-130, the data is presented as the ratio of GFP MFI to mCherry MFI.



FIG. 15E is a graph showing tacrolimus dose response curves for FKBP13 constructs designated FKBP-091, FKBP-131, FKBP-132, FKBP-133, FKBP-134, FKBP-135, FKBP-136, and FKBP-137 as measured using FACS based MFI for GFP.



FIG. 15F is another representation of the tacrolimus dose response curves for FKBP13 constructs designated FKBP-091, FKBP-131, FKBP-132, FKBP-133, FKBP-134, FKBP-135, FKBP-136, and FKBP-137, the data is presented as the ratio of GFP MFI to mCherry MFI.



FIG. 15G is a graph showing tacrolimus dose response curves for FKBP13 constructs designated FKBP-091, FKBP-138, FKBP-139, FKBP-140, FKBP-141, FKBP-142, FKBP-143, and FKBP-144 as measured using FACS based MFI for GFP.



FIG. 15H is another representation of the tacrolimus dose response curves for FKBP13 constructs designated FKBP-091, FKBP-138, FKBP-139, FKBP-140, FKBP-141, FKBP-142, FKBP-143, and FKBP-144, the data is presented as the ratio of GFP MFI to mCherry MFI.



FIG. 15I is a graph showing tacrolimus dose response curves for FKBP13 constructs designated FKBP-091, FKBP-145, FKBP-146, FKBP-147, FKBP-148, FKBP-149, and FKBP-150 as measured using FACS based MFI for GFP.



FIG. 15J is another representation of the tacrolimus dose response curves for FKBP13 constructs designated FKBP-091, FKBP-145, FKBP-146, FKBP-147, FKBP-148, FKBP-149, and FKBP-150, the data is presented as the ratio of GFP MFI to mCherry MFI.



FIG. 16A is a graph showing the tacrolimus (T) vs. rapamycin(S) response dose curves for FKBP13 constructs designated FKBP-151, FKBP-152, and FKBP-153 as measured using FACS based MFI for GFP.



FIG. 16B is another representation of the tacrolimus (T) vs. rapamycin(S) response dose curves for FKBP13 constructs designated FKBP-151, FKBP-152, and FKBP-153, the data is presented as the ratio of GFP MFI to mCherry MFI.



FIG. 17A is a graph showing the tacrolimus (T) vs. rapamycin(S) response dose curves for FKBP13 constructs designated FKBP-153, FKBP-155, and FKBP-157 as measured using FACS based MFI for GFP.



FIG. 17B is another representation of the tacrolimus (T) vs. rapamycin(S) response dose curves for FKBP13 constructs designated FKBP-153, FKBP-155, and FKBP-157, the data is presented as the ratio of GFP MFI to mCherry MFI.



FIG. 18A is a graph showing the tacrolimus (T) vs. rapamycin(S) response dose curves for FKBP13 constructs designated FKBP-154, FKBP-155, and FKBP-156 as measured using FACS based MFI for GFP.



FIG. 18B is another representation of the tacrolimus (T) vs. rapamycin(S) response dose curves for FKBP13 constructs designated FKBP-154, FKBP-155, and FKBP-156, the data is presented as the ratio of GFP MFI to mCherry MFI.



FIG. 19A is a graph showing the tacrolimus (T) vs. rapamycin(S) response dose curves for FKBP13 constructs designated FKBP-157, FKBP-158, and FKBP-159 as measured using FACS based MFI for GFP.



FIG. 19B is another representation of the tacrolimus (T) vs. rapamycin(S) response dose curves for FKBP13 constructs designated FKBP-157, FKBP-158, and FKBP-159, the data is presented as the ratio of GFP MFI to mCherry MFI.



FIG. 20A is a graph showing the tacrolimus (T) vs. rapamycin(S) response dose curves for FKBP13 constructs designated FKBP-044, and FKBP-117 as measured using FACS based MFI for GFP.



FIG. 20B is another representation of the tacrolimus (T) vs. rapamycin(S) response dose curves for FKBP13 constructs designated FKBP-044 and FKBP-117, the data is presented as the ratio of GFP MFI to mCherry MFI.



FIG. 21 is a graph showing the tacrolimus dose response curves for FKBP13 constructs designated FKBP-044, FKBP-059, FKBP-091 and AcGFP-001 as measured using FACS based MFI for GFP.



FIG. 22 is a graph showing the tacrolimus dose response curves for FKBP13 constructs designated FKBP-191, FKBP-199, FKBP-197, FKBP-200, FKBP-91 and FKBP-117 as measured using FACS based MFI for GFP.



FIG. 23 is a graph showing the tacrolimus dose response curves for FKBP13 constructs designated FKBP-201, FKBP-243, FKBP-244, FKBP-251, FKBP-91 and FKBP-117 as measured using FACS based MFI for GFP.



FIG. 24 is a graph showing the tacrolimus dose response curves for FKBP13 constructs designated FKBP-195, FKBP-198, FKBP-209, FKBP-91 and FKBP-117 as measured using FACS based MFI for GFP.



FIG. 25 is a graph showing the tacrolimus dose response curves for FKBP13 constructs designated FKBP-214, FKBP-215, FKBP-220, FKBP-91 and FKBP-117 as measured using FACS based MFI for GFP.



FIG. 26 is a graph showing the tacrolimus dose response curves for FKBP13 constructs designated FKBP-223, FKBP-226, FKBP-240, FKBP-91 and FKBP-117 as measured using FACS based MFI for GFP.



FIG. 27 is a graph showing the tacrolimus dose response curves for FKBP13 constructs designated FKBP-192, FKBP-203, FKBP-228, FKBP-229, FKBP-91 and FKBP-117 as measured using FACS based MFI for GFP.



FIG. 28 is a graph showing the tacrolimus dose response curves for FKBP13 constructs designated FKBP-230, FKBP-233, FKBP-255, FKBP-91 and FKBP-117 as measured using FACS based MFI for GFP.



FIG. 29 is a graph showing the tacrolimus dose response curves for FKBP13 constructs designated FKBP-256, FKBP-257, FKBP-258, FKBP-259, and FKBP-195 as measured using FACS based MFI for GFP.



FIG. 30 is a graph showing the tacrolimus dose response curves for FKBP13 constructs designated FKBP-230, FKBP-233, FKBP-255, FKBP-91 and FKBP-117, the data is presented as the ratio of GFP MFI to mCherry MFI.



FIG. 31 is a graph showing the tacrolimus dose response curves for FKBP13 constructs designated FKBP-260, FKBP-262, FKBP-263, FKBP-265, FKBP-268 and FKBP-195 as measured using FACS based MFI for GFP.



FIG. 32 is a graph showing the tacrolimus dose response curves for FKBP13 constructs designated FKBP-260, FKBP-262, FKBP-263, FKBP-265, FKBP-268 and FKBP-195, the data is presented as the ratio of GFP MFI to mCherry MFI.



FIG. 33 is a graph showing the tacrolimus dose response curves for FKBP13 constructs designated FKBP-270, FKBP-271, FKBP-273, FKBP-274, FKBP-275 and FKBP-195 as measured using FACS based MFI for GFP.



FIG. 34 is a graph showing the tacrolimus dose response curves for FKBP13 constructs designated FKBP-270, FKBP-271, FKBP-273, FKBP-274, FKBP-275 and FKBP-195, the data is presented as the ratio of GFP MFI to mCherry MFI.



FIG. 35 is a graph showing the tacrolimus dose response curves for FKBP13 constructs designated FKBP-276, FKBP-277, FKBP-278, FKBP-279, FKBP-117, FKBP-195 and FKBP-291 as measured using FACS based MFI for GFP.



FIG. 36 is a graph showing the tacrolimus dose response curves for FKBP13 constructs designated FKBP-280, FKBP-281, FKBP-282, FKBP-283, FKBP-117, FKBP-195 and FKBP-291 as measured using FACS based MFI for GFP.



FIG. 37 is a graph showing the tacrolimus dose response curves for FKBP13 constructs designated FKBP-284, FKBP-285, FKBP-286, FKBP-287, FKBP-117, FKBP-195 and FKBP-251 as measured using FACS based MFI for GFP.



FIG. 38 is a graph showing the tacrolimus dose response curves for FKBP13 constructs designated FKBP-288, FKBP-289, FKBP-290, FKBP-291, FKBP-292, FKBP-195, FKBP-251 and FKBP-117 as measured using FACS based MFI for GFP.



FIG. 39 is a graph showing the drug dose response curves for FKBP13 constructs designated FKBP-272 and FKBP-195 as measured using FACS based MFI for GFP.



FIG. 40 is a graph showing the drug dose response curves for FKBP13 constructs designated FKBP-258, FKBP-251, and FKBP-259 as measured using FACS based MFI for GFP.



FIG. 41 is a graph showing the drug dose response curves for FKBP13 constructs designated FKBP-256, FKBP-257, and FKBP-228 as measured using FACS based MFI for GFP.



FIG. 42 is a graph showing the tacrolimus dose response curves for FKBP13 construct designated FKBP-228 as measured using FACS based MFI for GFP. BR1 and BR2 refer to repeated experiment 1 and repeated experiment 2.



FIG. 43 is a graph showing the tacrolimus dose response curves for FKBP13 constructs designated FKBP-256 and FKBP-257 as measured using FACS based MFI for GFP. BR1 and BR2 refer to repeated experiment 1 and repeated experiment 2.



FIG. 44 is a graph showing the tacrolimus dose response curves for FKBP13 constructs designated FKBP-167 and FKBP-168 as measured using FACS based MFI for GFP.



FIG. 45 is a graph showing the tacrolimus dose response curves for FKBP13 constructs designated FKBP-265 and FKBP-264 as measured using FACS based MFI for GFP. BR1 and BR2 refer to repeated experiment 1 and repeated experiment 2.



FIG. 46 is a graph showing the tacrolimus dose response curves for FKBP13 constructs designated FKBP-197 and FKBP-251 as measured using FACS based MFI for GFP.



FIG. 47 is a graph showing the tacrolimus dose response curves for FKBP13 constructs designated FKBP-258 and FKBP-259 as measured using FACS based MFI for GFP. BR1 and BR2 refer to repeated experiment 1 and repeated experiment 2.



FIG. 48 is a graph showing the tacrolimus dose response curves for FKBP13 constructs designated FKBP-215 as measured using FACS based MFI for GFP. BR1 and BR2 refer to repeated experiment 1 and repeated experiment 2.



FIG. 49 is a graph showing the tacrolimus dose response curves for FKBP13 constructs designated FKBP-262 and FKBP-263 as measured using FACS based MFI for GFP. BR1 and BR2 refer to repeated experiment 1 and repeated experiment 2.



FIG. 50 is a graph showing the tacrolimus dose response curves for FKBP13 constructs designated FKBP-195 and FKBP-272 as measured using FACS-based MFI for GFP.



FIG. 51 is a graph showing the tacrolimus dose response curves for FKBP13 construct designated FKBP-195 under different serum concentrations as measured using FACS based MFI for GFP.



FIG. 52 is a graph showing the tacrolimus dose response curves for FKBP13 construct designated FKBP-251 under different serum concentrations as measured using FACS based MFI for GFP.



FIG. 53 is a graph showing the tacrolimus dose response curves for FKBP13 construct designated FKBP-195 under different serum concentrations as measured using FACS based MFI for GFP.



FIG. 54 is a graph showing the tacrolimus dose response curves for FKBP13 construct designated FKBP-251 under different serum concentrations as measured using FACS based MFI for GFP.





DETAILED DESCRIPTION

The present disclosure provides compositions and systems for regulatory control of a payload. Abundance and/or activity of the payload can be regulated by operably linking the payload to a drug-responsive domain (DRD) responsive to a ligand and providing the ligand to the DRD operably linked to the payload such that abundance and/or activity of the payload is increased in the presence of the ligand in a dose-dependent fashion. The DRD is optionally an FKBP13 or a variant thereof that is responsive to a ligand such as FK506 (tacrolimus) and/or rapamycin (sirolimus). By way of example, when the payload comprises gene-editing components, the FKBP13 in the presence of the ligand, increases the abundance of the gene-editing components and/or increases the gene-editing activity. In the absence of the ligand, the payload abundance is down-regulated and gene editing is consequently reduced or eliminated. Thus, provided herein are regulatable polypeptides comprising a payload, a DRD, and optionally one or more additional components (e.g., linkers, hinges and transmembrane domains, tails, tags); nucleic acids encoding the regulatable polypeptides; vectors comprising the nucleic acids that encode the regulatable polypeptides; cells comprising the nucleic acids or vectors described herein; and methods of making and using the regulatable polypeptides (e.g., methods of gene editing and methods of treating subjects with the regulated payload).


Compositions
Engineered, Regulatable Polypeptides

Provided herein are engineered, regulatable polypeptides having at least one payload and at least one FKBP13 drug responsive domain (DRD), wherein the FKBP13 DRD is operably linked to a payload, and wherein the FKBP13 DRD is responsive to a ligand. The activity level of the payload ranges from a basal activity level in the absence of the ligand to a maximum activity level in the presence of a saturating amount of the ligand. Saturating amount of the ligand refers to any amount of ligand at or above the amount that results in the maximum abundance and/or activity of the payload. By way of example, the activity level of the at least one payload ranges from a basal activity level in the absence of the ligand to a maximum activity level in the presence of a saturating amount of the ligand.


Without meaning to be limited by theory, DRDs are thought to be unstable polypeptides that degrade in the absence of their corresponding stabilizing ligand (also referred to as the paired ligand or ligand), but whose stability is rescued by binding to the stabilizing ligand. Because binding of the ligand to the DRD is reversible, later removal of the ligand could result in the DRD unfolding, becoming unstable, and ultimately being tagged for degradation by the ubiquitin-proteasome system (“UPS”). Accordingly, it is believed that when a DRD, for example, an FKBP13 DRD, is operably linked to a payload, the entire construct (i.e., DRD plus payload) is rendered unstable and is degraded by the UPS. However, in the presence of the paired ligand, the construct is stabilized, and the payload remains available for use. Further, it is believed that the conditional nature of DRD stability allows a rapid and non-perturbing switch from stable polypeptide to unstable UPS substrate, which may facilitate regulation or modulation of a payload's activity level.


Because the abundance and availability of a payload are related to the activity of a payload, for purposes of this disclosure, the terms abundance, availability, activity, and the phrase abundance and/or activity (and similarly level of abundance, level of availability, level of activity, and level of abundance and/or activity) are used interchangeably throughout this disclosure and are generally referred to as activity, unless explicitly stated otherwise or nonsensical in context. Further, measurements of abundance or availability are used as a proxy for activity level and may be used herein to reflect the activity level. Consequently, changes in the abundance or availability of a payload in the presence of an effective amount of ligand as compared to in the absence of ligand optionally serves as a proxy for measuring changes in activity level.


Example components (building blocks) of the regulatable polypeptides described herein are referenced throughout this disclosure and provided below. Any of the polypeptides described herein can include at least a payload, for example, a gene editing payload, and a DRD. Optionally, the polypeptide can include one or more additional components such as linkers, hinges (e.g., sheddable and non-sheddable hinges), tails (e.g., cytoplasmic tails), and transmembrane domains. As described below in the section related to methods of making, one of skill in the art may select from the various components using guideposts provided below to achieve a desired outcome (e.g., location of the payload or DRD relative to the cell in which it is expressed and the desired activity of the payload).


DRDs

DRDs interact with a ligand such that, when the DRD is operatively linked to a payload, it confers ligand-dependent reversible regulation of a characteristic of the payload (for example, activity). Although referred to as drug responsive domains, the ligand to which a DRD is responsive need not be a drug. Suitable FKBP13 DRDs (and their paired ligands), which may be referred to as destabilizing domains or ligand binding domains, are provided throughout the specification.


The FKBP13 DRD, by way of example, can be an amino acid sequence comprising a wildtype FKBP13 DRD or a variant (e.g., genetically modified) FKBP13 DRD that is responsive to a ligand. Optionally, the FKBP13 DRD is a full-length wild-type FKBP13 polypeptide (SEQ ID NO: 1) or a fragment (i.e., a DRD functional fragment that binds the ligand) thereof. By way of example, the FKBP13 DRD can be a fragment of FKBP13, for example, a C-terminal fragment of SEQ ID NO: 1, such as SEQ ID NO: 2. In some embodiments, the C-terminal fragment comprises less than 100 amino acids. In some embodiments, the fragment comprises SEQ ID NO: 2, or an amino acid sequence having at least 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identity to SEQ ID NO: 2.


The genetically modified FKBP13 optionally comprises one or more mutations relative to a wildtype FKBP13 DRD (SEQ ID NO: 1). Optionally, the genetically modified FKBP13 is a C-terminal fragment of SEQ ID NO: 1 of less than 100 amino acids comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 3-109, or an amino acid sequence having at least 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identity to an amino acid sequence selected from the group consisting of SEQ ID NOs: 3-109. One or more genetic modifications, for example, mutations (including truncations, substitutions, and deletions) in the amino acid sequence of FKBP13 can be advantageous, as outlined in the Examples.


The term identity or substantial identity, as used in the context of a polypeptide or polynucleotide sequence described herein, refers to a sequence that has at least 80% sequence identity to a reference sequence. Alternatively, percent identity can be any integer from 80% to 100%. Exemplary embodiments include at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, as compared to a reference sequence using programs known to those of skill in the art, for example, BLAST, using standard parameters, as described below.


For sequence comparison, typically one sequence acts as a reference sequence to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.


A comparison window, as used herein, includes reference to a segment of any one of the number of contiguous positions selected from the group consisting of from 20 to 600, about 20 to 50, about 20 to 100, about 50 to about 200 or about 100 to about 150, in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. Methods of alignment of sequences for comparison are well-known in the art. Optimal alignment of sequences for comparison may be conducted by the local homology algorithm of Smith and Waterman Add. APL. Math. 2:482 (1981), by the homology alignment algorithm of Needleman and Wunsch J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson and Lipman Proc. Natl. Acad. Sci. (U.S.A.) 85:2444 (1988), by computerized implementations of these algorithms (e.g., BLAST), or by manual alignment and visual inspection.


Algorithms that are suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al. (1990) J. Mol. Biol. 215:403-410 and Altschul et al. (1977) Nucleic Acids Res. 25:3389-3402, respectively. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (NCBI) web site. The algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al, supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are then extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always <0). Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a word size (W) of 28, an expectation (E) of 10, M=1, N=−2, and a comparison of both strands.


The BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin & Altschul, Proc. Nat'l. Acad. Sci. USA 90:5873-5787 (1993)). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.01, more preferably less than about 10-5, and most preferably less than about 10-20.


In some embodiments, the genetically modified FKBP13 comprises one or more mutations in a binding site for FK506. In some embodiments, the genetically modified FKBP13 fragment has a lower binding affinity for rapamycin than a control FKBP13 fragment, for example, a control FKBP13 fragment lacking certain mutations in the binding site or outside the binding site such that three-dimensional structure of the binding site is altered. In some embodiments, the genetically modified FKBP13 fragment has a higher binding affinity for FK506 than a control FKBP13 fragment without mutations in the ligand binding site. In some embodiments, the genetically modified FKBP13 fragment has a higher binding affinity for FK506 than a control FKBP13 fragment and, optionally, has lower binding affinity for rapamycin than a control FKBP13 fragment.


Numerous FKBP13 DRDs are described herein, but one of skill in the art can identify additional FKBP13 DRDs suitable for use in regulatable compositions according to this disclosure. By way of example, FKBP13 DRDs can be identified using library screening and structure-guided engineering to select the optimal FKBP13 DRD variant with sufficient instability in the absence of the ligand and sufficient stability in the presence of the ligand. A variant library can be generated using random mutagenesis screening by transducing cells (e.g., Jurkat cells) with mutant FKBP13 DRD candidates. To produce an enriched library, cells with the desired characteristics (low basal activity/expression and high dynamic range) are selected by testing polypeptide abundance across a range of concentrations of ligand. Single cell clones are then produced and characterized to identify candidate FKBP13 DRDs. The FKBP13 DRDs described herein are responsive to a paired ligand (also referred to as a stabilizing ligand or simply as a ligand.


Optionally, the EC50 of FK506 for the FKBP13 or variant thereof in the biological system is about 2-fold to about 20-fold lower than the Cmax of FK506 in the biological system. Biological systems include, but are not limited to, tissues, cells, or blood (e.g., mammalian blood).


Payloads

By way of example, the payload can be any polypeptide or polypeptides having a desired biological function. Such payloads can be modified polypeptides, such as glycosylated polypeptides or lipopeptides, or any active portion thereof. For example, a payload can be an RNA-guided endonuclease, for example, a Cas9 polypeptide or an active portion thereof.


In some embodiments, payloads of the present disclosure may be one or more components of a gene editing system. In such embodiments, the engineered, regulatable polypeptide regulates activity of the gene editing system and consequently expression of a downstream target protein. A target protein, as used herein, refers to a protein selected for gene editing, including, for example, a protein having a genetic mutation that results in a deleterious effect in a subject or in a cell. Any of the polypeptides described herein comprising one or more components of a gene editing system can be used to modify the genome of a cell, in vitro or in vitro, to alter expression and/or activity of a target protein in the cell.


When the payloads include an RNA-guided endonuclease, any one of several endonucleases can be selected. For example, the selected RNA-guided endonuclease can be a Cas protein (CRISPR-associated protein) such as Cas9 and Cas12. The CRISPR/Cas system refers to a widespread class of bacterial systems for defense against foreign nucleic acids. CRISPR/Cas systems are found in a wide range of eubacterial and archaeal organisms. CRISPR/Cas systems include type I, II, and III sub-types. Wild-type type II CRISPR/Cas systems utilize an RNA-mediated nuclease, for example, Cas9, in complex with guide and activating RNA to recognize and cleave foreign nucleic acid. Guide RNAs having the activity of both a guide RNA and an activating RNA are also known in the art. In some cases, such dual activity guide RNAs are referred to as a single guide RNA (sgRNA).


As used herein, the term Cas9 refers to an RNA-mediated endonuclease (e.g., of bacterial or archeal origin, or derived/modified therefrom). Exemplary RNA-mediated nucleases in the payload include the Cas9 proteins and homologs thereof. Other RNA-mediated nucleases include Cpf1 (Cas12a) (See, e.g., Zetsche et al., Cell, Volume 163, Issue 3, p759-771, 22 Oct. 2015) and homologs thereof. It is understood that in any of the embodiments described herein, a Cas9 nuclease can be subsitututed with a Cpf1 nuclease or any other guided nuclease.


Cas9 homologs are found in a wide variety of eubacteria, including, but not limited to bacteria of the following taxonomic groups: Actinobacteria, Aquificae, Bacteroidetes-Chlorobi, Chlamydiae-Verrucomicrobia, Chlroflexi, Cyanobacteria, Firmicutes, Proteobacteria, Spirochaetes, and Thermotogae. An exemplary Cas9 protein is the Streptococcus pyogenes Cas9 protein. Additional Cas9 proteins and homologs thereof are described in, e.g., Chylinksi et al., RNA Biol. 2013 May 1; 10 (5): 726-737; Makarova et al., Nat. Rev. Microbiol. 2011 June; 9 (6): 467-477; Hou et al., Proc Natl Acad Sci USA. 2013 Sep. 24; 110 (39):15644-9; Sampson et al., Nature. 2013 May 9; 497 (7448): 254-7; and Jinek et al., Science. 2012 Aug. 17; 337 (6096): 816-21. Variants of any of the Cas9 nucleases provided herein can be optimized for efficient activity or enhanced stability in the host cell. Thus, engineered Cas9 nucleases are also contemplated. See, for example, Slaymaker et al., Science 351 (6268): 84-88 (2016)).


In some cases, the Cas9 protein is a nickase, such that when bound to target nucleic acid as part of a complex with a guide RNA, a single strand break or nick is introduced into the target nucleic acid. A pair of Cas9 nickases, each bound to a structurally different guide RNA, can be targeted to two proximal sites of a target genomic region and thus introduce a pair of proximal single stranded breaks into the target genomic region. Exemplary Cas9 nickases include Cas9 nucleases having a D10A or H840A mutation (See, for example, Ran et al., Cell 154 (6): 1380-1389 (2013)).


The RNA-guided endonuclease, for example, a Cas9 endonuclease, can also be an inactive Cas9, for example, dCas9. As used herein, a dCas9 polypeptide is a deactivated or nuclease-dead Cas9 that has been modified to inactivate Cas9 nuclease activity. Modifications include, but are not limited to, altering one or more amino acids to inactivate the nuclease activity or the nuclease domain. Other modifications include removing all or a portion of the nuclease domain of Cas9, such that the sequences exhibiting nuclease activity are absent from Cas9. Accordingly, a dCas9 may include polypeptide sequences modified to inactivate nuclease activity or removal of a polypeptide sequence or sequences to inactivate nuclease activity. The dCas9 retains the ability to bind to DNA even though the nuclease activity has been inactivated. Accordingly, dCas9 includes the polypeptide sequence or sequences required for DNA binding but includes modified nuclease sequences or lacks nuclease sequences responsible for nuclease activity. It is understood that similar modifications can be made to inactivate nuclease activity in other site-directed nucleases, for example, in Cpf1.


Optionally, the polypeptide comprising an RNA-guided endonuclease, for example, a Cas9 endonuclease linked to an FKBP13 DRD described herein, is complexed with one or more guide RNAs in vitro, and the resulting complex is introduced into the cell. The complex can optionally include a nucleotide sequence, for example, a DNA template, for insertion at a specific site in the genomic sequence of the cell. As used herein, the phrase introducing in the context of introducing a nucleic acid, a polypeptide, or a complex described herein, refers to the translocation of the nucleic acid sequence, polypeptide, or complex from outside a cell to inside the cell. In some cases, introducing refers to translocation of the nucleic acid, polypeptide or complex from outside the cell to inside the nucleus of the cell. Various methods of such translocation are contemplated, including but not limited to, electroporation, contact with nanowires or nanotubes, receptor mediated internalization, translocation via cell penetrating peptides, liposome mediated translocation, and the like.


As used herein, the phrase modifying in the context of modifying a genome of a cell refers to inducing a structural change in the sequence of the genome at a target genomic region. For example, the modifying can take the form of inserting a nucleotide sequence into the genome of the cell. For example, a nucleotide sequence encoding one or more polypeptides can be inserted into the genomic sequence, at a specific locus, of the cell. Such modifying can be performed, for example, by inducing a double stranded break within a target genomic region, or a pair of single stranded nicks on opposite strands and flanking the target genomic region. Methods for inducing single or double stranded breaks at or within a target genomic region include the use of a Cas9 nuclease domain, or a derivative thereof, and a guide RNA, or pair of guide RNAs, directed to the target genomic region.


Other gene editing payloads include nucleases (e.g., Zinc finger nuclease, TALEN (Transcription activator-like effector-based nucleases), or meganucleases) and/or recombinases, such as a Cre recombinase. As used herein, the term “TALEN” means a protein comprising a Transcription Activator-like (TAL) effector binding domain and a nuclease domain and includes monomeric TALENs that are functional per se as well as others that require dimerization with another monomeric TALEN. The dimerization can result in a homodimeric TALEN when both monomeric TALEN are identical or can result in a heterodimeric TALEN when monomeric TALEN are different. TALENs are often used in pairs but monomeric TALENs are known. A genetic modification made by TALENs or other tools may be, for example, chosen from the list consisting of an insertion, a deletion, insertion of an exogenous nucleic acid fragment, and a substitution. In general, a target DNA site is identified, and a TALEN-pair is created that will specifically bind to the site. The TALEN is delivered to the cell or embryo, e.g., as a protein, mRNA or by a vector that encodes the TALEN. The TALEN cleaves the DNA to make a double-strand break that is then repaired, often resulting in the creation of an indel, or incorporating sequences or polymorphisms contained in an accompanying exogenous nucleic acid that is either inserted into the chromosome or serves as a template for repair of the break with a modified sequence.


Zinc-finger nucleases (ZFNs) are artificial restriction enzymes generated by fusing a zinc finger DNA-binding domain to a DNA-cleavage domain. Zinc finger domains can be engineered to target desired DNA sequences, and this enables zinc-finger nucleases to target unique sequences within complex genomes. By taking advantage of endogenous DNA repair machinery, these reagents can be used to alter the genomes of higher organisms. ZFNs may be used in method of inactivating genes. Materials and methods for using zinc fingers and zinc finger nucleases for making genetically modified animals are disclosed in, e.g., U.S. Pat. No. 8,106,255; U.S. 2012/0192298; U.S. 2011/0023159; and U.S. 2011/0281306.


Linkers

Numerous linker sequences (linkers) are known in the art. Linkers include, for example, GS linkers, GSG linkers, and GGSG linkers. These linkers are repeats of the subunit one or more times. Thus, a GS linker is a GSn linker where n is a numerical number being 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more. Similarly, a GSG linker is a GSGn linker where n is a numerical number being 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more. A GGSG linker is a GGSGn linker where n is a numerical number being 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more.


Hinges and Transmembrane Domains

A hinge sequence is a short sequence of amino acids that facilitates flexibility between connected components. The hinge sequence can be any suitable sequence derived or obtained from any suitable molecule. The hinge sequence may be derived from all or part of an immunoglobulin (e.g., IgG1, IgG2, IgG3, IgG4) hinge region, i.e., the sequence that falls between the CH1 and CH2 domains of an immunoglobulin (e.g., an IgG4 Fc hinge), or the extracellular regions of type 1 membrane proteins such as CD8α CD4, CD28 and CD7, which may be a wild-type sequence or a derivative thereof. Some hinge regions include an immunoglobulin CH3 domain or both a CH3 domain and a CH2 domain. In some embodiments, the hinge is derived from a transmembrane domain.


Transmembrane domains, useful in the engineered regulatable polypeptide constructs of the present disclosure can include, for example, a MHC1 transmembrane domain, a CD8α transmembrane domain, a B7-1 transmembrane domain, a CD4 transmembrane domain, a CD28 transmembrane domain, a CTLA-4 transmembrane domain, a PD-1 transmembrane domain, or a human IgG4 Fc region.


Intracellular/Cytoplasmic or Transmembrane Tails

Optionally, the herein provided polypeptide constructs comprise an intracellular/cytoplasmic or transmembrane tail. Optionally, the intracellular/cytoplasmic or transmembrane tail is a CD8, CD40L, LIGHT, NKG2C, or B7.1 intracellular tail. The absence of a transmembrane region in a construct can be, for example, designed for a secreted payload or a payload with intracellular or intranuclear activity.


Tags

Optionally, the polypeptides described herein include a tag. Such a tag allows for isolation or detection of the polypeptide or for isolation or detection of the payload. Such tags optionally include fluorescent proteins (e.g., green fluorescent protein), His-tag, HA-tag, Myc tag, FLAG tag, mCherry, CD20, CD34, nerve growth factor receptor (NGFR), truncated NGFR (tNGFR), epidermal growth factor (EGFR), or a truncated EGFR (tEGFR).


Ligands

Ligands may be any agent that binds to the FKBP13 DRDs of the engineered, regulatable polypeptides described herein, an effective amount of which results in a measurable change in a characteristic (e.g., abundance, availability, activity) of a payload operably linked to the FKBP13 DRD. In some embodiments, ligands may be synthetic molecules. In some embodiments, stabilizing ligands of the present disclosure may be small molecule compounds. Stabilizing ligands are optionally small molecule therapeutic drugs previously approved by a regulatory agency, such as the U.S. Food and Drug Administration (FDA). Optionally, the FKBP13 DRDs are responsive to a paired ligand that is a small molecule drug, such as an FDA-approved small molecule, for example, tacrolimus (FK506) and/or sirolimus (rapamycin). As described herein, the DRD can be modified to affect the binding affinity of the ligand to the DRD. Optionally, the DRD can be modified to differentially affect binding of a first ligand (e.g., tacrolimus) as compared to a second ligand (e.g., sirolimus). For example, the modified DRD may show increased binding affinity for a first ligand and reduced binding affinity for a second ligand as compared to a control unmodified DRD.


Nucleic Acids

Provided herein are expressible nucleic acid constructs encoding one or more engineered, regulatable polypeptides as described herein. For example, provided herein is a nucleic acid encoding an FKBP13 or a variant (e.g., genetically modified FKBP13) thereof responsive to a ligand and a payload having a biological activity, wherein, upon expression of the nucleic acid, the FKBP13 is operably linked to the payload. Upon expression of the nucleic acid, the FKBP13 is capable of interacting with an effective amount of the ligand to modulate the biological activity of the payload. In some embodiments, the nucleic acid constructs encode a payload (e.g., a gene editing payload) and a DRD, and optionally encode additional components, such as hinges, linkers, transmembrane domains, tags, and intracellular/cytoplasmic and transmembrane tails as described herein. The nucleic acid constructs optionally also encode additional components such as signal sequences and cleavage sites including shedding domains. The constructs optionally further comprise a promoter sequence and other regulatory elements (enhancers, translational control elements (e.g., IRES), and elements that control half-life).


As used throughout, the term nucleic acid refers to deoxyribonucleic acids (DNA) or ribonucleic acids (RNA) and polymers thereof in either single- or double-stranded form. It is understood that, when a DNA sequence is described, its corresponding RNA is also described, wherein thymidine is represented as uridine. Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses modified variants thereof, alleles, orthologs, SNPs, and complementary sequences as well as the sequence explicitly indicated.


Optionally the nucleic acid encodes an FKBP13 fragment responsive to the ligand. Optionally, the FKBP13 fragment, for example, a C-terminal fragment, is less than 100 amino acids. Optionally, the encoded FKBP13 fragment is less than 99, 98, 97, 96, 95, 94, 93, 92, 91, or 90 amino acids. Optionally, the encoded FKBP13 fragment is 90-99 amino acids.


In some embodiments, the nucleic acid encodes SEQ ID NO: 1 (i.e., a wildtype FKBP13) or a fragment thereof. Optionally, the nucleic acid encodes a variant of SEQ ID NO: 1 or a fragment thereof. The encoded FKBP13 fragment is optionally SEQ ID NO: 2. In some embodiments, the encoded FKBP13 is a variant of SEQ ID NO: 2 comprising one or more mutations relative to SEQ ID NO: 2, for example, an FKPB13 comprising an amino acid sequence having at least 80%, 85%, 90%, 95%, 99% or 100% identify with any one of SEQ ID NOs: 3-109. In some embodiments, the encoded FKBP13 variant comprises one or more mutations in a ligand binding site. Residues of FKBP13 that are within 4 angstroms of tacrolimus were deemed to be part of the binding site for FKBP13. The binding site of FKBP13 comprises residues Y56, F66, D67, F76, Q84, V85, I86, W89, Y112, R115, K120, I121 and F129


The FKBP13 ligand is optionally FK506 (tacrolimus), rapamycin (sirolimus), or both FK506 (tacrolimus) and rapamycin (sirolimus), such that the encoded FKBP13 binds one or both ligands. In some embodiments, the encoded FKBP13 variant modulates the biological activity of the payload in response to FK506 more than in response to rapamycin by a factor of 5-10×, for example about 7×.


Some nucleic acid sequences described herein encode a payload comprising an RNA-guided endonuclease, for example, a CRISPR/Cas-associated endonuclease. Optionally, the CRISPR/Cas-associated endonuclease is a Cas9 endonuclease or a Cas12 endonuclease. Optionally, the Cas9 endonuclease is a Staphylococcus aureus Cas9 (SaCas9) or Staphylococcus lugdunensis Cas9 (SluCas9). Optionally, the nucleic acid further encodes at least one guide RNA sequence. As used throughout, a guide RNA (gRNA) is a sequence that interacts with a site-specific or targeted nuclease, for example, an RNA-guided endonuclease, and specifically binds to or hybridizes to a target nucleic acid within the genome of a cell, such that the gRNA and the targeted nuclease co-localize to the target nucleic acid in the genome of the cell. Each gRNA includes a DNA targeting sequence or protospacer sequence of about 10 to 50 nucleotides in length that specifically binds to or hybridizes to a target DNA sequence in the genome. For example, the DNA targeting sequence is about 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 nucleotides in length. In some embodiments, the gRNA comprises a crRNA sequence and a transactivating crRNA (tracrRNA) sequence. In some embodiments, the gRNA does not comprise a tracrRNA sequence.


In some embodiments, the RNA-guided endonuclease, for example, a Cas9 protein, can be in an active endonuclease form, such that, when bound to a target nucleic acid as part of a complex with a guide RNA, a double strand break is introduced into the target nucleic acid.


Vectors and Cells

Also provided herein are vectors for expressing one or more of the nucleic acids. Such a vector can be chosen from viral vectors and non-viral vectors, plasmids, cosmids, and artificial chromosomes. By way of example, the vector can be a viral vector, such as an adeno-associated viral (AAV) vector, a lentiviral vector, a retroviral vector, or an adenoviral vector. The vector optionally comprises nucleic acid sequences that encode transposases and/or nucleases. Optionally, the vector comprises one or more inverted terminal repeats (ITRs).


In some cases, the vector comprises any of the nucleic acid sequences described herein, wherein the encoded payload is an RNA-guided endonuclease and the vector further comprises one or more guide RNA sequences comprising a first nucleotide sequence that hybridizes to a target DNA in the genome of a cell and a second nucleotide sequence configured to interact with the RNA-guided endonuclease.


In some embodiments, the nucleic acid is configured for packaging as a single nucleotide sequence in vector, for example, a viral vector, with a promoter sequence, a guide RNA, and a sequence that encodes a Cas9 endonuclease payload. Optionally, the nucleic acid is configured for packaging as a single nucleotide sequence in an AAV vector with a promoter sequence, a guide RNA, and a sequence that encodes a Cas9 endonuclease payload, and wherein the promoter sequence, the guide RNA, and the sequence encoding the Cas9 comprise at least 3000 base pairs. Such a vector construct, given the limited capacity of the vector and the size of the payload, requires a compact DRD. Nucleic acids encoding a FKBP13 DRD or a variant thereof, such as a fragment of FKBP13 of 100 or fewer amino acids, are particularly well-suited to such a vector construct.


Cells containing one or more nucleic acid constructs or vectors as described herein are provided. Optionally, the cells are immune cells, stem cells, muscle cells, etc. Optionally, the immune cells are primary human T cells, such as T cells derived from human peripheral blood mononuclear cells (PBMCs), PBMCs collected after stimulation with G-CSF, bone marrow, or umbilical cord blood. In some embodiments, the immune cells are tumor infiltrating lymphocytes (TILs), for example collected from a tumor. The immune effector cells may also be NK cells, αβ T cells, iNKT cells, γδ T cells, macrophages, B cells, dendritic cells, myeloid derived progenitor cells, eosinophils, basophils, neutrophils, or Tregs. Optionally, the stem cells are hematopoietic stem cells, human embryonic stem cells, or induced pluripotent stem cells (iPSCs). The cells provided herein are optionally mammalian cells, or, more specifically, human cells.


As used herein, the phrase hematopoietic stem cell refers to a type of stem cell that can give rise to a blood cell. Hematopoietic stem cells can give rise to cells of the myeloid or lymphoid lineages or a combination thereof. Hematopoietic stem cells are predominantly found in bone marrow, although they can be isolated from peripheral blood. Various cell surface markers can be used to identify, sort, or purify hematopoietic stem cells. In some cases, hematopoietic stem cells are identified as c-kit+ and lin. In some cases, human hematopoietic stem cells are identified as CD34+, CD59+, Thy1/CD90+, CD38lo/−, C-kit/CD117+, lin. In some cases, human hematopoietic stem cells are identified as CD34, CD59+, Thy1/CD90+, CD38lo/−, C-kit/CD117+, lin. In some cases, human hematopoietic stem cells are identified as CD133+, CD59+, Thy1/CD90+, CD38lo/−, C-kit/CD117+, lin. In some cases, the hematopoietic stem cells are CD150+CD48CD244.


As used herein, the phrase hematopoietic cell refers to a cell derived from a hematopoietic stem cell. The hematopoietic cell may be obtained or provided by isolation from an organism, system, organ, or tissue (e.g., blood or a fraction thereof). Alternatively, a hematopoietic stem cell can be isolated, and the hematopoietic cell obtained or provided by differentiating the stem cell. Hematopoietic cells include cells with limited potential to differentiate into further cell types. Such hematopoietic cells include, but are not limited to, multipotent progenitor cells, lineage-restricted progenitor cells, common myeloid progenitor cells, granulocyte-macrophage progenitor cells, or megakaryocyte-erythroid progenitor cells. Hematopoietic cells include cells of the lymphoid and myeloid lineages, such as lymphocytes, erythrocytes, granulocytes, monocytes, and thrombocytes. In some embodiments, the hematopoietic cell is an immune cell, such as a T cell, B cell, macrophage, a natural killer (NK) cell or dendritic cell. In some embodiments the cell is an innate immune cell.


As used herein, the phrase T cell refers to a lymphoid cell that expresses a T cell receptor molecule. T cells include human alpha beta (aß) T cells and human gamma delta (78) T cells. T cells include, but are not limited to, naïve T cells, stimulated T cells, primary T cells (e.g., uncultured), cultured T cells, immortalized T cells, helper T cells, cytotoxic T cells, memory T cells, regulatory T cells, natural killer T cells, combinations thereof, or sub-populations thereof. T cells can be CD4+, CD8+, or both CD4+ and CD8+. T cells can also be CD4, CD8, or both CD4 and CD8. T cells can be helper cells, for example, helper cells of type TH1, TH2, TH3, TH9, TH17, or TFH. T cells can be cytotoxic T cells. Regulatory T cells can be FOXP3+ or FOXP3. In some cases, the T cell is a CD4+CD25hiCD127lo regulatory T cell. In some cases, the T cell is a regulatory T cell selected from the group consisting of type 1 regulatory (Tr1), TH3, CD8+CD28−, Treg17, and Qa-1 restricted T cells, or a combination or sub-population thereof. In some cases, the T cell is a FOXP3+ T cell. In some cases, the T cell is a CD4+CD25loCD127hi effector T cell. In some cases, the T cell is a CD4+CD25loCD127hiCD45RAhiCD45RO naïve T cell. A T cell can be a recombinant T cell that has been genetically manipulated.


As used herein, the phrase primary in the context of a primary cell is a cell that has not been transformed or immortalized. Such primary cells can be cultured, sub-cultured, or passaged a limited number of times (e.g., passaged 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 times). In some cases, the primary cells are adapted to in vitro culture conditions. In some cases, the primary cells are isolated from an organism, system, organ, or tissue, optionally sorted, and utilized directly without culturing or sub-culturing. In some cases, the primary cells are stimulated, activated, or differentiated. For example, primary T cells can be activated by contact with (e.g., culturing in the presence of) CD3, CD28 agonists, IL-2, IFN-γ, or a combination thereof.


This disclosure also includes any of the engineered or genetically modified cells, as well as populations of engineered or genetically modified cells produced by any of the methods described herein.


Methods of Making

The present disclosure provides methods of making nucleic acid constructs and vectors encoding polypeptides of this disclosure, methods of making the polypeptides of this disclosure by expression of nucleic acid constructs, and methods of making cells comprising the nucleic acid constructs or vectors described herein. Generally, a DRD/ligand pair, for example, FKBP13/FK506, is chosen for regulation of the desired payload. Optionally, the ligand is an FDA-approved small molecule drug. In some embodiments, the DRD/ligand pair is chosen such that it is clinically tractable. For example, the pair is selected such that the ligand is capable of regulating the abundance of or regulating the activity of the payload within an acceptable range of the ligand. Such a range is optionally the approved FDA dose range of the ligand. Thereafter, the nucleic acid or vector is designed to encode the building blocks/components of the regulatable polypeptide described herein, which components include in the case of polypeptides at least a payload and an FKBP13 DRD. The nucleic acid or vector may be further designed to encode additional building block/components such as transmembrane domains, linkers, hinges, tags, or other components mentioned herein. One of skill in the art, using this disclosure, can select the appropriate components and order them within the construct to achieve the desired outcome. For example, the order of building blocks influences whether the DRD regulates the payload at the N- or C-terminus.


As another example, linker and linker length may influence constitutive activity level (i.e., basal activity in the absence of ligand) and in certain embodiments, the specific linker and length is chosen to maximize the on state (e.g., maximum activity level in the presence of ligand) while maintaining low basal activity level in the absence of ligand. As yet another example, the specific hinge may allow for conformational changes and thereby influence ligand responsiveness, and the hinge is thus chosen to result in a sufficient dynamic range to obtain a desired range of payload abundance and biologic activity (i.e., an acceptable payload activity range that corresponds to variation in ligand from zero or minimal activity to maximum saturation activity).


In some cases, the nucleic acid constructs are optionally configured to encode payloads associated with an intracellular or transmembrane domain such that the payload is optionally tethered to the cell membrane.


Vehicles/vectors are chosen and designed to deliver the nucleic acid constructs into the desired cell. For example, the vehicles may be chosen from those previously described including viral vectors (such as adeno-associated vectors, lentiviral vectors, retroviral vectors, and), plasmids, cosmids, and artificial chromosomes. Such vectors can be designed to encode transposases, nucleases, and elements that control translation (e.g., IRES). The choice of vector may also influence the choice of various building block components. For example, vectors which demand smaller constructs may require using smaller DRDs. Appropriate components such as promoters, enhancers, multicistronic expression, translation control and half-life control elements are selected to achieve the desired control of payload abundance or activity.


Additionally, nucleic acid constructs are designed for cistronic or multicistronic expression as required for the desired expression of various engineered components. In some embodiments, for multi-cistronic expression, two or more nucleic acids encoding two or more polypeptides, for example, an FKBP13 and payload fusion and a second payload, can be separated by nucleic acid sequences encoding self-cleaving peptides. Examples of self-cleaving peptides include, but are not limited to, self-cleaving viral 2A peptides, for example, a porcine teschovirus-1 (P2A) peptide, a Thosea asigna virus (T2A) peptide, an equine rhinitis A virus (E2A) peptide, or a foot-and-mouth disease virus (F2A) peptide. Self-cleaving 2A peptides allow expression of multiple gene products from a single construct. (See, for example, Chng et al., MAbs 7 (2): 403-412 (2015)). In some embodiments, the nucleic acid construct comprises two or more self-cleaving peptides. In some embodiments, the two or more self-cleaving peptides are all the same. In other embodiments, at least one of the two or more self-cleaving peptides is different.


The cell to which the nucleic acid is delivered is selected based, at least in part, on the ability of the cell to allow expression of the regulatable polypeptides disclosed herein and to allow payload activity in a sufficient dynamic range. Optionally, the cell expresses little or none of the payload in the absence of the provided nucleic acid or vector. In certain embodiments, one of skill in the art would select a cell in need of an increase in payload activity or abundance in a cell that naturally expresses the payload. In certain embodiments, one of skill in the art would select a cell in need of gene editing. In certain embodiments the cell is selected as an effector cell, for example, an immune effector cell.


A person of ordinary skill in the art applying knowledge from this disclosure can build a variety of regulatable polypeptides, as well as nucleic acids and vectors encoding and cells engineered to express the regulatable polypeptides, within the scope of this disclosure beyond those explicitly exemplified herein.


Methods of Use

Disclosed herein are methods of regulating a payload, for example, methods of regulating abundance, availability and/or activity of a gene editing payload. In some embodiments, the method of regulation is a method of modifying the activity of the payload by engineering a cell to express a payload operably linked to an FKBP13 DRD responsive to a ligand. The activity of the payload (e.g., corresponding to the abundance and/or availability of the payload) is reduced as compared to the activity of a payload in a control cell, for example, a cell engineered to express the payload independent of a DRD.


For example, provided herein is a method of regulating a payload in a cell, comprising introducing into the cell a vector comprising a nucleic acid encoding an FKBP13 or variant thereof responsive to a ligand, wherein the nucleic acid further comprises a promoter sequence and a sequence that encodes the payload. The method further comprises contacting the cell with an effective amount of the ligand such that the desired level of payload activity is achieved.


Optionally, the payload has a biological activity level ranging from a basal activity level in the absence of ligand to a maximum activity in the presence of a saturating amount of ligand, and the method is a method of modulating the activity of a payload comprising contacting a cell engineered to express a payload (e.g., a gene editing payload) operably linked to an FKBP13 DRD with an effective amount of ligand such that the activity of the payload is increased relative to the basal activity level. In some embodiments, the method comprises contacting the cell with a selected amount of ligand, wherein the selected amount of ligand results in a selected activity level of the payload. In certain embodiments, the method comprises alternatively contacting the cell with varying selected amounts of ligand, to achieve varying selected activity levels ranging from the basal level to the maximum level.


The contacting step can occur in vivo or in vitro. The contacting step is optionally performed to achieve a continuous selected activity of the payload (i.e., to achieve a continuous on-state of the payload) or to achieve intermittent activity of the payload (i.e., to provide a pulsed delivery of the payload between an on-state and an off-state). Off-state means the payload activity is the basal activity level. On-state means a selected activity level in the presence of an effective amount of ligand, which is greater than the off-state. Continuous activity of the payload can be achieved by continuous contact of the FKBP13 DRD with an effective amount of ligand or by providing a subsequent contacting step or steps of the FKBP DRD with the ligand, wherein the subsequent contacting step or steps is/are performed before the activity level of the payload from the previous contacting step reaches the basal activity level. Each contacting step can be varied with regard to the amount of ligand such that, when more ligand is used, more payload activity results, and, when less ligand is used, less payload activity results within the dynamic range of the ligand/DRD pair. Thus, the amount of ligand can be varied with subsequent contacting steps to tune up or tune down the amount and/or activity of the payload over time. Each contacting step can also be varied with respect to frequency in order to achieve a desired pattern of activity level.


Also provided is a method of modifying target DNA in a cell by (a) introducing into the cell a vector comprising (1) an RNA-guided endonuclease-encoding nucleic acid comprising a sequence that encodes an FKBP13 or variant thereof responsive to a ligand, a promoter sequence, and a sequence that encodes an RNA-guided endonuclease, and (2) one or more guide RNAs comprising a nucleotide sequence that hybridizes to a target DNA in the genome of a cell and a nucleotide sequence configured to interact with the RNA-guided endonuclease; and (b) contacting the vector-containing cell with an effective amount of ligand to induce activity of the RNA-guided endonuclease, wherein the RNA-guided endonuclease interacts with the guide RNA and wherein the RNA-guided endonuclease specifically binds and cleaves the target DNA in the cell. Any of the methods for modifying a cell described herein can be performed, in vitro or in vivo. Any of the cells described herein can be genetically modified by any of the methods described herein.


Treatment Methods

Provided herein are methods of delivering a payload operably linked to a DRD to a subject by administering to the subject nucleic acids or vectors as described herein or a cell containing a nucleic acid or vector described herein. Thus, methods of delivering a payload to a subject in need thereof is provided. The payload can be delivered by administering to the subject a nucleic acid construct or a vector as described herein. The payload can be any biologically active payload including, for example, a therapeutically effective gene editing payload. The method results in expression and gene editing in target cells of the subject. Also provided are methods of delivering to a subject one or more cells as that comprises a nucleic acid or vector that encodes a regulatable polypeptide. The one or more cells into which the vector is introduced can be derived from the same subject or a different subject. The one or more cells can be derived from the same or different subject and then expanded in culture prior to and/or after introduction of the vector.


By way of example, provided herein is a method of treating a disease or disorder responsive to genetic modification in a subject in need of genetic modification by (a) introducing into one or more cells of the subject a vector comprising (1) an RNA-guided endonuclease encoding nucleic acid comprising a sequence that encodes an FKBP13 or variant thereof responsive to a ligand, a promoter sequence and a sequence that encodes an RNA-guided endonuclease, and (2) at least one guide RNA comprising a nucleotide sequence that hybridizes to a target DNA in the genome of a cell and a nucleotide sequence configured to interact with the RNA-guided endonuclease; (b) contacting the vector-containing one or more cells with an effective amount of ligand to induce activity of the RNA-guided endonuclease, wherein the RNA-guided endonuclease interacts with the guide RNA and wherein the RNA-guided endonuclease specifically binds and cleaves the target DNA one or more cells of the subject.


Also provided herein is a method of treating a disease or disorder responsive to genetic modification in a subject in need thereof, comprising (a) administering to the subject one or more cells comprising a vector, wherein the vector comprises (1) an RNA-guided endonuclease encoding nucleic acid comprising a sequence that encodes an FKBP13 or variant thereof responsive to a ligand, a promoter sequence and a sequence that encodes an RNA-guided endonuclease, and (2) a guide RNA comprising a nucleotide sequence that hybridizes to a target DNA in the genome of the one or more cells and a nucleotide sequence configured to interact with the RNA-guided endonuclease; (b) administering to the subject an effective amount of ligand to induce activity of the RNA-guided endonuclease, wherein the RNA-guided endonuclease interacts with the guide RNA and wherein the RNA-guided endonuclease specifically modifies the genome of one or more cells.


Any method described herein wherein one or more cells comprising a nucleic acid or vector that encodes a regulatable polypeptide are delivered to the subject can further comprise isolating cells from a subject, transducing the isolated cells with the nucleic acids or vectors encoding the regulatable polypeptides described in this disclosure, expanding the cells in vitro, and providing the cells to the same or different subject. The subject may have a genetic mutation. The cells can be isolated from the same subject (autologous source) that receives the transduced cells or the cells can be isolated from a different subject (e.g., an allogeneic source). In certain embodiments, the cells are administered in an amount from about 1000 cells/injection to up to about 10 billion cells/injection, such as 1×1010, 1×109, 1×108, 1×107, 5×107, 1×106, 5×106, 1×105, 5×105, 1×104, 5×104, 1×103, 5×103 cells per injection, or any ranges between any two of the numbers, end points inclusive. Optionally, from 1×108 to 1×1010 cells are administered to the subject. Optionally, the cells are administered one, two, three, or four times as needed. In some methods, one or more genetically modified cells described herein or made by a method described herein are administered to the subject.


The methods may further comprise controlling the dose or duration of administration of a payload to a subject by administering to the subject a selected amount of a paired ligand to deliver a selected activity of the payload to the subject. The ligand can be delivered to achieve continuous or intermittent payload activity in the subject. Continuous payload activity may be a substantially consistent level of activity, or the level of activity may be modulated. Intermittent activity, between the off-state and on-state includes modulating activity between the off-state and a substantially consistent on-state, or between the off-state and varying on-state activity levels. A higher dose or longer duration of administration of the ligand is administered when more activity of the payload is desired, and reduction or elimination of the ligand dose is chosen when less activity is desired. The dose and duration of ligand administration and the resulting activity of the payload may be selected to avoid unacceptable or undesired side effects or toxicity in the subject. Dosages of ligand and schedules for administering the dosages of ligand may be determined empirically by one skilled in the art based on the amount of resulting payload, the activity of the payload, or based on one or more signs of the effect of the payload activity. The ranges for administration of the ligand range from any amount above zero to a saturating dose and the resulting payload activity ranges from a basal level to a maximal level, optionally with a sufficient dynamic range that allows for the desired dose-response to the ligand and concomitant activity range for the payload (e.g., for a given ligand and payload, the range of difference in off-state and maximum payload activity would result from at least a 10 fold range of ligand). This sufficient dynamic range allows for fine tuning and a dose response curve that is not unacceptably steep. In embodiments, the dosage or frequency of administration of ligand and resulting abundance and activity of payload is chosen to avoid, mitigate against, or limit unacceptable or undesired adverse side effects and will vary with the age, condition, and/or sex of the subject, and type of condition being treated, the extent of the condition, or, and whether other therapeutic agents are included in the treatment regimen. Guidance can be found in the literature for appropriate dosages for given classes of ligands. Exemplary dosages, for example, clinically approved dosages of tacrolimus for various tissue/organ transplants are 0.1-0.3 mg/kg of body weight. Such dosages can achieve a Cmax value of 20-68 ng/ml.


In the treatment methods described herein, the ligand dosage regimen including the selected amount of ligand for administration to the subject and frequency of administration of the selected amount of ligand is chosen to result in regulation of the payload and/or a desired outcome for the subject. The subject is optionally monitored for the outcome. Thus, for example, for treatment of cancer in a subject, the number of malignant cells in a sample, the circulating tumor DNA in a sample, or the size of a solid tumor upon imaging can be detected. If the desired end point is achieved (e.g., showing successful treatment of a genetic mutation), the ligand can be reduced or discontinued so as to reduce or eliminate the gene editing payload, for example to reduce the abundance, availability and/or activity of the payload below a pre-determined threshold to eliminate or mitigate against unwanted or undesired side effects. Similarly, if the subject develops unacceptable off-target effects or other adverse effects from the payload, the ligand can be reduced or discontinued.


Also disclosed herein are methods of regulating expression of a downstream target protein of a gene editing process. In some embodiments, such a method comprises engineering a cell to express an oligomer or engineered, regulatable polypeptide comprising a payload such as a CAS9 protein or transcription factor protein operably linked to a DRD. In certain embodiments, for a subject with a genetic mutation, a nucleic acid construct or vector according to this disclosure is provided to cells of the subject to deliver a payload that provides a nucleic acid editing polypeptide. Target cells in the subject are transduced with the nucleic acid construct or vector to allow the gene editing payload to modify the nucleic acid (e.g., genomic DNA or RNA) of the transduced cell. The activity level of the payload and therefore expression of the target protein can be regulated by administration of ligand to the subject.


Also provided is a method of treating a disease or disorder comprising administering to the subject one or more cells that have been edited using any of the gene editing systems described herein, for example CRISPR/Cas9 editing, to edit the genome of a cell.


Any of the treatment methods described herein can be used to treat a disease or disorder associated with a genetic mutation, for example, but not limited to, Duchenne muscular dystrophy, myotonic dystrophy, cystic fibrosis, sickle cell, beta thalassemia, alpha-1 antitrypsin deficiency, APOL1-mediated kidney disease, or Type 1 diabetes.


Definitions

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs.


As used in the specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. For example, reference to “a transcript” or “the transcript” may include a plurality of transcripts.


The use of any and all examples or exemplary language (e.g., “such as”) provided herein, is intended merely to better illustrate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed.


The terms “optional” and “optionally” mean that the subsequently described event, circumstance, or material may or may not occur or be present, and that the description includes instances where the event, circumstance, or material occurs or is present as well as instances where it does not occur or is not present.


The use herein of the terms “including,” “comprising,” or “having,” and variations thereof, is meant to encompass the elements listed thereafter and equivalents thereof as well as additional elements. Embodiments recited as “including,” “comprising,” or “having” certain elements are also contemplated as “consisting essentially of” and “consisting of” those certain elements.


As used herein, “and/or” refers to and encompasses any and all possible combinations of one or more of the associated listed items, as well as the lack of combinations where interpreted in the alternative (“or”).


As used herein, the transitional phrase “consisting essentially of” (and grammatical variants) is to be interpreted as encompassing the recited materials or steps “and those that do not materially affect the basic and novel characteristic(s)” of the claimed invention. See, In re Herz, 537 F.2d 549, 551-52, 190 U.S.P.Q. 461, 463 (CCPA 1976) (emphasis in the original); see also MPEP § 2111.03. Thus, the term “consisting essentially of” as used herein should not be interpreted as equivalent to “comprising.”


The terms “about” and “approximate,” when used to refer to a measurable value such as an amount, concentration, dose, time, temperature, activity, level, number, frequency, percentage, dimension, size, weight, position, length and the like, is meant to account for variations due to experimental error, which could encompass variations of ±15%, ±10%, ±5%, ±1%, ±0.5%, or even ±0.1% of the specified amount, concentration, dose, time, temperature, activity, level, number, frequency, percentage, dimension, size, weight, position, length and the like. All measurements or numbers are implicitly understood to be modified by the word about, even if the measurement or number is not explicitly modified by the word about. In instances in which the terms “about” and “approximate” are used in connection with the location or position of regions within a reference polypeptide, these terms encompass variations of ±up to 20 amino acid residues, ±up to 15 amino acid residues, ±up to 10 amino acid residues, ±up to 5 amino acid residues, ±up to 4 amino acid residues, ±up to 3 amino acid residues, ±up to 2 amino acid residues, or even±1 amino acid residue.


Reference is made herein to a “basal activity level.” Basal level as used herein can be zero, near zero, or any amount in the absence of exogenous ligand. Basal activity may occur because of endogenous levels of the same or different ligand or may occur because of a resting level of payload production in the absence of exogenous ligand.


Reference to “biological activity” is understood to mean under appropriate conditions even if not so stated.


As used herein “contacting” is understood to mean providing an agent (such as a ligand) to a target (such as a DRD) such that the agent and target may come into contact with one another. For example, contacting includes providing a ligand in vitro to a cell (e.g., when the DRD is located extracellularly or on the cell surface). As another example, contacting also includes providing the ligand to a cell, wherein the DRD is located intracellularly, such that the ligand reaches the cytoplasm. Similarly, a cell can be contacted in vivo, by administering a ligand to a subject such that the ligand reaches a cell or DRD.


“DRD” is understood to mean a domain responsive to a ligand, even if not so stated.


The terms “ligand,” “paired ligand,” and “stabilizing ligand” are used interchangeably and mean the same thing when used in reference to a drug responsive domain (“DRD”).


As used herein, “operably linked” means that, in the presence of a paired ligand, the DRD is linked to the payload directly or indirectly so as to alter a measurable characteristic of the payload (e.g., alters the level of activity of the payload as compared to the level of activity in the absence of the paired ligand). In some embodiments, the measured level of amount and/or activity of the payload increases in the presence of an effective amount of ligand as compared to the measured level of expression or activity in the absence of ligand. An effective amount of ligand means the amount of ligand needed to see an increase in the measure of the amount or activity of the payload. In some embodiments, the effective amount is not so great as to produce unacceptable toxicity or off-target effects. Optionally, the measurable characteristic is a therapeutic outcome, an amount of the payload in a sample, or a biological activity level of the payload (for which measuring the amount of payload can serve as a proxy).


The term “payload” refers to the agent whose abundance, activity, availability, expression, function or other characteristic is desired to be regulated by a DRD.


Wherever the phrase “linked” or “bound” or the like is used, the phrase “directly or indirectly” is understood to follow unless explicitly stated otherwise or nonsensical in context.


The details of one or more embodiments of the present disclosure are set forth in the description and accompanying drawings. It is to be understood that other embodiments may be utilized and structural or process changes made without departing from the scope of the disclosure. In other words, illustrative embodiments and aspects are described below. But it will be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions may be made to achieve the developer's specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it will be appreciated that such development effort might be complex and time-consuming but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.


Publications cited herein and the material for which they are cited are hereby specifically incorporated by reference in their entireties.


The examples below are intended to further illustrate certain aspects of the methods and compositions described herein and are not intended to limit the scope of the claims.


EXAMPLES
Example 1

FKBP13 and fragments thereof were studied to identify DRDs that are responsive to FDA approved drugs. For the purposes of these experiments, tacrolimus was used as an exemplary FDA approved drug. Tacrolimus's binding affinity for FKBP13 is 166 nM, which is substantially lower than the binding affinity for FKBP12, which is 0.2 nM. To increase FKBP13 responsiveness to tacrolimus, the binding site of FKBP13 was targeted with the goal of making the FBKP13 binding site more similar to that of FKBP12. To this end, the tacrolimus bound three dimensional structures of FKBP12 and FKBP13 were compared. Mutations that could increase the drug responsiveness of FKBP13 were designed based on expert visual examination. Library based screening was also conducted. The DRDs corresponding to SEQ ID NOs: 3-109 were derived from library selections. The library was generated as a site-saturation library using the binding site having an A117H variant (Q72R, Q84E, and A117H binding site mutations), where 117H is the residue found in the FKBP12 binding site. While the library was under selection, about five additional binding site mutations were designed, and it was shown that an A117W mutation improved EC50, and likely resulted in a 6-fold increase in binding affinity. When the library output was analyzed, via sequencing, the DRD-genic mutations were made with the A117W version of the binding site. As a control, five of the top FKBP13 mutants were also produced with the A117H sequence that came out of the library. While FKBP-117, 119, 121, 123, 125 were formatted with the improved binding site (A117W; identified in FKBP-091); FKBP-118, 120, 122, 124, 126 are exactly as sequenced from the library and have the A117H mutation in the binding site. The rest of the library output (127-150) was only formatted with the improved binding site mutations (i.e., with Q72R, Q84E, and A117W).


The full-length wildtype FKBP13 sequence, which served as the starting point, is as follows:









(SEQ ID NO: 1)


MRLSWFRVLTVLSICLSAVATATGAEGKRKLQIGVKKRVDHCPIKSRKG


DVLHMHYTGKLEDGTEFDSSLPQNQPFVFSLGTGQVIKGWDQGLLGMCE


GEKRKLVIPSELGYGERGAPPKIPGGATLVFEVELLKIERRTEL.






Table 1 provides exemplary FKBP13 DRD sequences that were used in the constructs described throughout the Examples. A wildtype FKBP13 fragment is designated SEQ ID NO: 2. SEQ ID NOs: 3-109 are examples of genetically modified FKBP13 polypeptides derived from fragment corresponding to SEQ ID NO:2. As used throughout, reference to constructs FKBP-039-FKBP—









TABLE 1-Exem







plary DRD Sequences










Construct Name





(FKBP13-AcGFP-
FKBP13 DRD in




mCherry Fusion)
Construct
FKBP13 DRD Sequence
SEQ ID NO:













FKBP-039
FKBP13 (WT)
HCPIKSRKGDVLHMHYTG
2




KLEDGTEFDSSLPQNQPFV





FSLGTGQVIKGWDQGLLG





MCEGEKRKLVIPSELGYG





ERGAPPKIPGGATLVFEVE





LLKIER






FKBP-040
FKBP13
HCPIKSRKGDVLHMHYTG
3



(DRD-D90G)
KLEDGTEFDSSLPQNQPFV





FSLGTGQVIKGWGQGLLG





MCEGEKRKLVIPSELGYG





ERGAPPKIPGGATLVFEVE





LLKIER






FKBP-041
FKBP13
HCPIKSRKGDVLHAHYTG
4



(DRD-M54A)
KLEDGTEFDSSLPQNQPFV





FSLGTGQVIKGWDQGLLG





MCEGEKRKLVIPSELGYG





ERGAPPKIPGGATLVFEVE





LLKIER






FKBP-042
FKBP13
HCPIKSRKGDVLHMHYTG
5



(DRD-M96V)
KLEDGTEFDSSLPQNQPFV





FSLGTGQVIKGWDQGLLG





VCEGEKRKLVIPSELGYGE





RGAPPKIPGGATLVFEVEL





LKIER






FKBP-043
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
6



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site-Q72R, Q84E,
FSLGTGEVIKGWGQGLLG




A117H)
MCEGEKRKLVIPSELGYG




(DRD-D90G)
ERGHPPKIPGGATLVFEVE





LLKIER






FKBP-044
FKBP13 (mutated to
HCPIKSRKGDVLHAHYTG
7



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site-Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117H)
MCEGEKRKLVIPSELGYG




(DRD-M54A)
ERGHPPKIPGGATLVFEVE





LLKIER






FKBP-045
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
8



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site-Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117H)
VCEGEKRKLVIPSELGYGE




(DRD-M96V)
RGHPPKIPGGATLVFEVEL





LKIER






FKBP-053
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
9



match FKBP12 active
KLEDGTEHDSSLPRNQPF




site-Q72R, Q84E,
VFSLGTGEVIKGWGQGLL




A117H)
GMCEGEKRKLVIPSELGY




(DRD-D90G, F66H)
GERGHPPKIPGGATLVFEV





ELLKIER






FKBP-054
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
10



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site-Q72R, Q84E,
FSLGTGEVIKGWGQGLLG




A117H)
MCEGEKRKLVIPSELGYG




(DRD-D90G, L127K)
ERGHPPKIPGGATKVFEVE





LLKIER






FKBP-055
FKBP13 mutated to
HCPIKSRKGDVLHMHYTG
11



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site-(Q72R, Q84E,
VSLGTGEVIKGWDQGLLG




A117H)
MCEGEKRKLVIPSELGYG




(DRD-F78V)
ERGHPPKIPGGATLVFEVE





LLKIER






FKBP-056
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
12



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site-Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117H)
MCEGEKRKLVIPSELGYG




(DRD-F129K)
ERGHPPKIPGGATLVKEVE





LLKIER






FKBP-057
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
13



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site-Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117H)
MCEGEKRKLVAPSELGYG




(DRD-I106A)
ERGHPPKIPGGATLVFEVE





LLKIER






FKBP-058
FKBP13 (mutated to
HCPIKSRKGDVAHMHYTG
14



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site-Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117H)
MCEGEKRKLVIPSELGYG




(DRD-L52A)
ERGHPPKIPGGATLVFEVE





LLKIER






FKBP-059
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
15



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site-Q72R, Q84E,
FSLGTGEVIKGWDQGALG




A117H)
MCEGEKRKLVIPSELGYG




(DRD-L93A)
ERGHPPKIPGGATLVFEVE





LLKIER






FKBP-060
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
16



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site-Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117H)
MCEGEKRKAVIPSELGYG




(DRD-L104A)
ERGHPPKIPGGATLVFEVE





LLKIER






FKBP-061
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
17



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site-Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117H)
MCEGEKRKLVIPSELGYG




(DRD-L133A)
ERGHPPKIPGGATLVFEVE





ALKIER






FKBP-062
FKBP13 (mutated to
HSPIKSRKGDVLHAHYTG
18



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site-Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117H) (DRD-
MSEGEKRKLVIPSELGYG




M54A, [−]disulfide)
ERGHPPKIPGGATLVFEVE





LLKIER






FKBP-063
FKBP13 (mutated to
HSPIKSRKGDVLHAHYTG
19



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site-Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117H)
MCEGEKRKLVIPSELGYG




(DRD-M54A, C42S)
ERGHPPKIPGGATLVFEVE





LLKIER






FKBP-064
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
20



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site-Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117H)
MCEGEKLKLVIPSELGYG




(DRD-R102L)
ERGHPPKIPGGATLVFEVE





LLKIER






FKBP-065
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
21



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site-Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117H)
MCEGEKRKLVIPSELGYG





ERGHPPKIPGGATLVFEVE





LLKIER






FKBP-066
FKBP13 (mutated to
HCPIKSRKGDVLHKHYTG
22



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site-Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117H)
MCEGEKRKLVIPSELGYG




(DRD-M54K)
ERGHPPKIPGGATLVFEVE





LLKIER






FKBP-067
FKBP13 (mutated to
HCPIKSRKGDVLHHHYTG
23



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site-Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117H)
MCEGEKRKLVIPSELGYG




(DRD-M54H)
ERGHPPKIPGGATLVFEVE





LLKIER






FKBP-068
FKBP13 (mutated to
HCPIKSRKGDVLHSHYTG
24



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site-Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117H)
MCEGEKRKLVIPSELGYG




(DRD-M54S)
ERGHPPKIPGGATLVFEVE





LLKIER






FKBP-069
FKBP13 (mutated to
HCPIKSRKGDVLHGHYTG
25



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site-Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117H)
MCEGEKRKLVIPSELGYG




(DRD-M54G)
ERGHPPKIPGGATLVFEVE





LLKIER






FKBP-070
FKBP13 (mutated to
HCPIKSRKGDVLHDHYTG
26



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site-Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117H)
MCEGEKRKLVIPSELGYG




(DRD-M54D)
ERGHPPKIPGGATLVFEVE





LLKIER






FKBP-071
FKBP13 (mutated to
HCPIKSRKGDVLHVHYTG
27



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site-Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117H)
MCEGEKRKLVIPSELGYG




(DRD-M54V)-AcGFP-
ERGHPPKIPGGATLVFEVE




P2A-mCherry
LLKIER






FKBP-072
pELNS-FKBP13
HCPIKSRKGDVLHMHYTG
28



(mutated to match
KLEDGTEFDSSLPRNQPFV




FKBP12 active site-
FSLGTGEVIKGWDQGKLG




Q72R, Q84E,
MCEGEKRKLVIPSELGYG




A117H)
ERGHPPKIPGGATLVFEVE




(DRD-L93K)
LLKIER






FKBP-073
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
29



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site-Q72R, Q84E,
FSLGTGEVIKGWDQGHLG




A117H)
MCEGEKRKLVIPSELGYG




(DRD-L93H)
ERGHPPKIPGGATLVFEVE





LLKIER






FKBP-074
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
30



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site-Q72R, Q84E,
FSLGTGEVIKGWDQGSLG




A117H)
MCEGEKRKLVIPSELGYG




(DRD-L93S)
ERGHPPKIPGGATLVFEVE





LLKIER






FKBP-075
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
31



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site-Q72R, Q84E,
FSLGTGEVIKGWDQGGLG




A117H)
MCEGEKRKLVIPSELGYG




(DRD-L93G)
ERGHPPKIPGGATLVFEVE





LLKIER






FKBP-076
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
32



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site-Q72R, Q84E,
FSLGTGEVIKGWDQGDLG




A117H)
MCEGEKRKLVIPSELGYG




(DRD-L93D)
ERGHPPKIPGGATLVFEVE





LLKIER






FKBP-083
FKBP13 trunc1
CPIKSRKGDVLHAHYTGK
33



(mutated to match
LEDGTEFDSSLPRNQPFVF




FKBP12 active site-
SLGTGEVIKGWDQGLLG




Q72R, Q84E,
MCEGEKRKLVIPSELGYG




A117H)
ERGHPPKIPGGATLVFEVE




(DRD-M54A)
LLKIER






FKBP-084
FKBP13 trunc2
PIKSRKGDVLHAHYTGKL
34



(mutated to match
EDGTEFDSSLPRNQPFVFS




FKBP12 active site
LGTGEVIKGWDQGLLGM




Q72R, Q84E,
CEGEKRKLVIPSELGYGER




A117H)
GHPPKIPGGATLVFEVELL




(DRD-M54A)
KIER






FKBP-085
FKBP13 trunc 1WT
CPIKSRKGDVLHMHYTGK
35



(mutated to match
LEDGTEFDSSLPRNQPFVF




FKBP12 active site
SLGTGEVIKGWDQGLLG




Q72R, Q84E,
MCEGEKRKLVIPSELGYG




A117H) (DRD-WT)
ERGHPPKIPGGATLVFEVE





LLKIER






FKBP-086
FKBP13 trunc2WT
PIKSRKGDVLHMHYTGKL
36



(mutated to match
EDGTEFDSSLPRNQPFVFS




FKBP12 active site
LGTGEVIKGWDQGLLGM




Q72R, Q84E,
CEGEKRKLVIPSELGYGER




A117H) (DRD-WT)
GHPPKIPGGATLVFEVELL





KIER






FKBP-087
FKBP13 (mutated to
HCPIKSRKGDVLHAHYTG
37



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117H; and I121H)
MCEGEKRKLVIPSELGYG




(DRD-M54A)
ERGHPPKHPGGATLVFEV





ELLKIER






FKBP-088
FKBP13 (mutated to
HCPIKSRKGDVLHAHYTG
38



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117H; and F129Y)
MCEGEKRKLVIPSELGYG




(DRD-M54A)
ERGHPPKIPGGATLVYEVE





LLKIER






FKBP-089
FKBP13 (mutated to
HCPIKSRKGDVLHAHYTG
39



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, V85D,
FSLGTGQDIKGWDQGLLG




A117H)
MCEGEKRKLVIPSELGYG




(DRD-M54A)
ERGHPPKIPGGATLVFEVE





LLKIER






FKBP-090
FKBP13 (mutated to
HCPIKSRKGDVLHAHYTG
40



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, 186D,
FSLGTGQVDKGWDQGLL




A117H)
GMCEGEKRKLVIPSELGY




(DRD-M54A)
GERGHPPKIPGGATLVFEV





ELLKIER






FKBP-091
FKBP13 (mutated to
HCPIKSRKGDVLHAHYTG
41



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117W)
MCEGEKRKLVIPSELGYG




(DRD-M54A)
ERGWPPKIPGGATLVFEV





ELLKIER






FKBP-092
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
42



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117H)
MCEGEKRKLVIPSELGYG




(DRD-L127A)
ERGHPPKIPGGATAVFEVE





LLKIER






FKBP-093
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
43



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSAGTGEVIKGWDQGLLG




A117H)
MCEGEKRKLVIPSELGYG




(DRD-L80A)
ERGHPPKIPGGATLVFEVE





LLKIER






FKBP-094
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
44



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117H)
MCEGEKRKLVISSELGYG




(DRD-P107S)
ERGHPPKIPGGATLVFEVE





LLKIER






FKBP-095
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
45



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117H)
MCEGEKRKLVIPSELGYG




(DRD-P122S)
ERGHPPKISGGATLVFEVE





LLKIER






FKBP-096
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
46



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117H)
MCEGLKRKLVIPSELGYG




(DRD-E100L)
ERGHPPKIPGGATLVFEVE





LLKIER






FKBP-097
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
47



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117H)
MCEGSKRKLVIPSELGYG




(DRD-E100S)
ERGHPPKIPGGATLVFEVE





LLKIER






FKBP-098
FKBP13 (mutated to
HCPIKSRKGDVLHSHYTG
48



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117W) (DRD-
MCEGEKRKLVIPSELGYG




M54S)
ERGWPPKIPGGATLVFEV





ELLKIER






FKBP-099
FKBP13 (mutated to
HCPIKSRKGDVLHAHYTG
49



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117W) (DRD-
MCEGEKRKLVIPSELGYG




M54A, del c-term R)
ERGWPPKIPGGATLVFEV





ELLKIE






FKBP-100
FKBP13 (mutated to
HCPIKSRKGDVLHAHYTG
50



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117W) (DRD-
VCEGEKRKL VIPSELGYGE




M54A, M96V)
RGWPPKIPGGATLVFEVE





LLKIER






FKBP-101
FKBP13 (mutated to
PIKSRKGDVLHAHYTGKL
51



match FKBP12 active
EDGTEFDSSLPRNQPFVFS




site Q72R, Q84E,
LGTGEVIKGWDQGLLGM




A117W) (DRD-
CEGEKRKLVIPSELGYGER




M54A, Nterm-2 aa
GWPPKIPGGATLVFEVELL




trunc)
KIER






FKBP-102
FKBP13 (mutated to
HCPIKSRKGDVLHAHYTG
52



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117W) (DRD-
MCEGEKRKLVIPSELGYG




M54A, P118V)
ERGWVPKIPGGATLVFEV





ELLKIER






FKBP-103
FKBP13 (mutated to
HCPIKSRKGDVLHAHYTG
53



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117W) (DRD-
MCEGEKRKLVIPSELGYG




M54A, P119V)
ERGWPVKIPGGATLVFEV





ELLKIER






FKBP-104
FKBP13 (mutated to
HCPIKSRKGDVLHAHYTG
54



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117W), K120I
MCEGEKRKLVIPSELGYG




(DRD-M54A)
ERGWPPIIPGGATLVFEVE





LLKIER






FKBP-105
FKBP13 (mutated to
HCPIKSRKGDVLHAHYTG
55



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117W), K120R
MCEGEKRKLVIPSELGYG




(DRD-M54A)
ERGWPPRIPGGATLVFEVE





LLKIER






FKBP-106
FKBP13 (mutated to
HCPIKSRKGDVLHAHYTG
56



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117Y (DRD-
MCEGEKRKLVIPSELGYG




M54A)
ERGYPPKIPGGATLVFEVE





LLKIER






FKBP-107
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
57



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117W) (DRD-
MCEGEKRKLVVPSELGYG




I106V)
ERGWPPKIPGGATLVFEV





ELLKIER






FKBP-108
FKBP13 (mutated to
HCPIKSRKGDVLHAHYTG
58



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117W) (DRD-
MCEGEKRKLVVPSELGYG




M54A I106V)
ERGWPPKIPGGATLVFEV





ELLKIER






FKBP-109
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
59



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117W) (DRD-
MCEGEKRKVVIPSELGYG




L104V)
ERGWPPKIPGGATLVFEV





ELLKIER






FKBP-110
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
60



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117W) (DRD-
MCEGEKRKLVIPSEAGYG




L110A)
ERGWPPKIPGGATLVFEV





ELLKIERG






FKBP-111
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
61



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWAQGLLG




A117W) (DRD-
MCEGEKRKLVIPSELGYG




D90A)
ERGWPPKIPGGATLVFEV





ELLKIER






FKBP-112
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
62



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGVLG




A117W) (DRD-
MCEGEKRKLVIPSELGYG




L93V)
ERGWPPKIPGGATLVFEV





ELLKIER






FKBP-113
FKBP13 (mutated to
HCPIKSRKGDVLHSHYTG
63



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117W) (DRD-
MCEGEKRKLVIPSELGYG




M54S)
ERGWPPKIPGGATLVFEV





ELLKIER






FKBP-114
FKBP13 (mutated to
CPIKSRKGDVLHAHYTGK
64



match FKBP12 active
LEDGTEFDSSLPRNQPFVF




site Q72R, Q84E,
SLGTGEVIKGWDQGLLG




A117W) (DRD-
MCEGEKRKLVIPSELGYG




M54A, Trunc1)
ERGWPPKIPGGATLVFEV





ELLKIER






FKBP-115
FKBP13 (mutated to
PIKSRKGDVLHMHYTGKL
65



match FKBP12 active
EDGTEFDSSLPRNQPFVFS




site Q72R, Q84E,
LGTGEVIKGWDQGLLGM




A117W) (DRD-
CEGEKRKLVIPSELGYGER




none, Trunc2)
GWPPKIPGGATLVFEVELL





KIER






FKBP-116
FKBP13 (mutated to
IKSRKGDVLHMHYTGKLE
66



match FKBP12 active
DGTEFDSSLPRNQPFVFSL




site Q72R, Q84E,
GTGEVIKGWDQGLLGMC




A117W) (DRD-
EGEKRKLVIPSELGYGERG




none, Trunc3)
WPPKIPGGATLVFEVELLK





IER






FKBP-117
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
67



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGERIKGWDQGLLG




A117W) (DRD
MCEGEKRKLVIPSELGYG




V85R)
ERGWPPKIPGGATLVFEV





ELLKIER






FKBP-118
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
68



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGERIKGWDQGLLG




A117H) (DRD
MCEGEKRKLVIPSELGYG




V85R)
ERGHPPKIPGGATLVFEVE





LLKIER






FKBP-119
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
69



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117W) (DRD
MCEGEWRKLVIPSELGYG




K101W)
ERGWPPKIPGGATLVFEV





ELLKIER






FKBP-120
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
70



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117H) (DRD
MCEGEWRKLVIPSELGYG




K101W)
ERGHPPKIPGGATLVFEVE





LLKIER






FKBP-121
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
71



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117W) (DRD
MCEGEKRKLVIPSELGYG




I136V)
ERGWPPKIPGGATLVFEV





ELLKVER






FKBP-122
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
72



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117H) (DRD
MCEGEKRKLVIPSELGYG




I136V)
ERGHPPKIPGGATLVFEVE





LLKVER






FKBP-123
FKBP13 (mutated to
HCPIKSRKSDVLHMHYTG
73



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117W) (DRD
MCEGEKRKLVIPSELGYG




G49S)
ERGWPPKIPGGATLVFEV





ELLKIER






FKBP-124
FKBP13 (mutated to
HCPIKSRKSDVLHMHYTG
74



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117H) (DRD G49S)
MCEGEKRKLVIPSELGYG





ERGHPPKIPGGATLVFEVE





LLKIER






FKBP-125
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
75



match FKBP12 active
KLESGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117W) (DRD
MCEGEKRKLVIPSELGYG




D62S)
ERGWPPKIPGGATLVFEV





ELLKIER






FKBP-126
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
76



match FKBP12 active
KLESGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117H) (DRD D62S)
MCEGEKRKLVIPSELGYG





ERGHPPKIPGGATLVFEVE





LLKIER






FKBP-127
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
77



match FKBP12 active
KLEDGTEFDSSLPRNQPQ




site Q72R, Q84E,
VFSLGTGEVIKGWDQGLL




A117W) (DRD
GMCEGEKRKLVIPSELGY




F76Q)
GERGWPPKIPGGATLVFE





VELLKIER






FKBP-128
FKBP13 (mutated to
HCPIKSRKGDVLLMHYTG
78



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117W) (DRD
MCEGEKRKLVIPSELGYG




H53L)
ERGWPPKIPGGATLVFEV





ELLKIER






FKBP-129
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
79



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117W) (DRD
MCLGEKRKLVIPSELGYG




E98L)
ERGWPPKIPGGATLVFEV





ELLKIER






FKBP-130
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
80



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117W) (DRD
MCEGEKRKLVIKSELGYG




P107K)
ERGWPPKIPGGATLVFEV





ELLKIER






FKBP-131
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
81



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117W) (DRD
MCEGEKRKLVIPSELGYG




T126C)
ERGWPPKIPGGACLVFEV





ELLKIER






FKBP-132
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
82



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQYLLG




A117W) (DRD
MCEGEKRKLVIPSELGYG




G92Y)
ERGWPPKIPGGATLVFEV





ELLKIER






FKBP-133
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
83



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTTEVIKGWDQGLLG




A117W) (DRD
MCEGEKRKLVIPSELGYG




G83T)
ERGWPPKIPGGATLVFEV





ELLKIER






FKBP-134
FKBP13 (mutated to
RCPIKSRKGDVLHMHYTG
84



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117W) (DRD
MCEGEKRKLVIPSELGYG




H41R)
ERGWPPKIPGGATLVFEV





ELLKIER






FKBP-135
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
85



match FKBP12 active
KLYDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117W) (DRD
MCEGEKRKLVIPSELGYG




E61Y)
ERGWPPKIPGGATLVFEV





ELLKIER






FKBP-136
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
86



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117W) (DRD
MCEGEKRKLVIPMELGYG




S108M)
ERGWPPKIPGGATLVFEV





ELLKIER






FKBP-137
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
87



match FKBP12 active
KLEDGTEFDSSLPRNQLFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117W) (DRD
MCEGEKRKLVIPSELGYG




P75L)
ERGWPPKIPGGATLVFEV





ELLKIER






FKBP-138
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
88



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117W) (DRD
MCEGEKRKLVIPSELGYG




G124R)
ERGWPPKIPGRATLVFEVE





LLKIER






FKBP-139
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
89



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117W) (DRD
MCEGEKRKLVIPSELGYG




E130R)
ERGWPPKIPGGATLVFRV





ELLKIER






FKBP-140
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
90



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117W) (DRD
MCEGEKRKLVIPSELGYG




K135Y)
ERGWPPKIPGGATLVFEV





ELLYIER






FKBP-141
FKBP13 (mutated to
HCPIKSRKGDVRHMHYTG
91



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117R (DRD L52R)
MCEGEKRKLVIPSELGYG





ERGRPPKIPGGATLVFEVE





LLKIER






FKBP-142
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
92



match FKBP12 active
KLEDGGEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117W) (DRD
MCEGEKRKLVIPSELGYG




T64G)
ERGWPPKIPGGATLVFEV





ELLKIER






FKBP-143
FKBP13 (mutated to
HCRIKSRKGDVLHMHYTG
93



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84G,
FSLGTGGVIKGWDQGLLG




A117H) (DRD P43R)
MCEGEKRKLVIPSELGYG





ERGHPPKIPGGATLVFEVE





LLKIER






FKBP-144
FKBP13 (mutated to
HCPIKSRKGRVLHMHYTG
94



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117H) (DRD
MCMGEKRKLVIPSELGYG




D50R, E98M)
ERGHPPKIPGGATLVFEVE





LLKIER






FKBP-145
FKBP13 (mutated to
SCPIKSRKGDVLHMHYTG
95



match FKBP12 active
KLDDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117H) (DRD H41S,
MCEGEKRKLVIPSELGYG




E61D)
ERGHPPKIPGGATLVFEVE





LLKIER






FKBP-146
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
96



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117H) (DRD
MCEGEKRKSVIPSELGYG




L104S, I136L)
ERGHPPKIPGGATLVFEVE





LLKLER






FKBP-147
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
97



match FKBP12 active
KLEDGREFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117H) (DRD T64R,
MCEGEKRKLVIPGELGYG




S108G, E137F)
ERGHPPKIPGGATLVFEVE





LLKIFR






FKBP-148
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
98



match FKBP12 active
KLENGTEFNSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWNQGLLG




A117H) (DRD
GCEGEKRKLVIPSELGYGE




D62N, D67N, D90N,
RGHPPKIPGGATLVFKVEL




M96G, E130K)
LKIER






FKBP-149
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
99



match FKBP12 active
KLEDGQEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLGG




A117H) (DRD T64Q,
MCEGEKRKLVIPSELGYG




L94G)
ERGHPPKIPGGATLVFEVE





LLKIER






FKBP-150
FKBP13 (mutated to
HCPIKSRKGDVLHMHYTG
100



match FKBP12 active
KLGDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117H) (DRD E61G,
MCEGEKRKLVIPSELGYG




G124P)
ERGHPPKIPGPATLVFEVE





LLKIER






FKBP-151
FKBP13 (mutated to
HCPIKSRKGDVLHAHYTG
101



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84R,
FSLGTGRVIKGWDQGLLG




A117W) (DRD
MCEGEKRKLVIPSELGYG




M54A)
ERGWPPKIPGGATLVFEV





ELLKIER






FKBP-152
FKBP13 (mutated to
HCPIKSRKGDVLHAHYTG
102



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84W,
FSLGTGWVIKGWDQGLL




A117W) (DRD
GMCEGEKRKLVIPSELGY




M54A)
GERGWPPKIPGGATLVFE





VELLKIER






FKBP-153
FKBP13 (mutated to
HCPIKSRKGDVLHAHYTG
103



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, S79W,
FWLGTGEVIKGWDQGLL




Q84E, A117W)
GMCEGEKRKLVIPSELGY




(DRD M54A)
GERGWPPKIPGGATLVFE





VELLKIER






FKBP-154
FKBP13 (mutated to
HCPIKSRKGDVLHAHYTG
104



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, S79W,
FSLGTGEVIKGWDQGLLG




Q84W, A117W)
MCEGEKRKLVIPSELGYG




(DRD M54A)






ERGWPPKIPGGATLVFEV





ELLKIER






FKBP-155
FKBP13 (mutated to
HCPIKSRKGDVLHAHYTG
105



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, S79W,
FWLGTGRVIKGWDQGLL




Q84R, A117W)
GMCEGEKRKLVIPSELGY




(DRD M54A)
GERGWPPKIPGGATLVFE





VELLKIER






FKBP-156
FKBP13 (mutated to
HCPIKSRKGDVLHAHYTG
106



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, T82W,
FSLGWGWVIKGWDQGLL




Q84W, A117W)
GMCEGEKRKLVIPSELGY




(DRD M54A)
GERGWPPKIPGGATLVFE





VELLKIER






FKBP-157
FKBP13 (mutated to
HCPIKSRKGDVLHAHYTG
107



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, T82W,
FSLGWGRVIKGWDQGLL




Q84E, A117W)
GMCEGEKRKLVIPSELGY




(DRD M54A)
GERGWPPKIPGGATLVFE





VELLKIER






FKBP-158
FKBP13 (mutated to
HCPIKSRKGDVLHAHYTG
108



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117W) (DRD
MCEGEKRKLVIPSELEYG




M54A G111E)
ERGWPPKIPGGATLVFEV





ELLKIER






FKBP-159
FKBP13 (mutated to
HCPIKSRKGDVLHAHYTG
109



match FKBP12 active
KLEDGTEFDSSLPRNQPFV




site Q72R, Q84E,
FSLGTGEVIKGWDQGLLG




A117W) (DRD
MCEGEKRKLVIPSELYYG




M54A G111Y)
ERGWPPKIPGGATLVFEV





ELLKIER









Constructs comprising the DRD sequences set forth in Table 1 were made to determine the effect of each DRD on an exemplary payload polypeptide (i.e., Aequorea coerulescens GFP). These constructs are set forth in Table 2.









TABLE 2







Exemplary DRD/AcGFP Constructs








Name
Description





FKBP-044
pELNS-FKBP13 (matching FKBP12 Q72R, Q84E, A117H DRD M54A)-



AcGFP-P2A-mCherry


FKBP-052
pELNS-FKBP13 (matching FKBP12 Q72R, Q84E, A117H, [−]disulfide)-



AcGFP-P2A-mCherry


FKBP-053
pELNS-FKBP13 (matching FKBP12 Q72R, Q84E, A117H DRD D90G,



F66H)-AcGFP-P2A-mCherry


FKBP-054
pELNS-FKBP13 (matching FKBP12 Q72R, Q84E, A117H DRD D90G,



L127K)-AcGFP-P2A-mCherry


FKBP-055
pELNS-FKBP13 (matching FKBP12 Q72R, Q84E, A117H DRD F78V)-



AcGFP-P2A-mCherry


FKBP-056
pELNS-FKBP13 (matching FKBP12 Q72R, Q84E, A117H DRD



F129K)-AcGFP-P2A-mCherry


FKBP-057
pELNS-FKBP13 (matching FKBP12 Q72R, Q84E, A117H DRD I106A)-



AcGFP-P2A-mCherry


FKBP-058
pELNS-FKBP13 (matching FKBP12 Q72R, Q84E, A117H DRD L52A)-



AcGFP-P2A-mCherry


FKBP-059
pELNS-FKBP13 (matching FKBP12 Q72R, Q84E, A117H DRD L93A)-



AcGFP-P2A-mCherry


FKBP-060
pELNS-FKBP13 (matching FKBP12 Q72R, Q84E, A117H DRD



L104A)-AcGFP-P2A-mCherry


FKBP-061
pELNS-FKBP13 (matching FKBP12 Q72R, Q84E, A117H DRD



L133A)-AcGFP-P2A-mCherry


FKBP-062
pELNS-FKBP13 (matching FKBP12 Q72R, Q84E, A117H DRD M54A,



[−]disulfide)-AcGFP-P2A-mCherry


FKBP-063
pELNS-FKBP13 (matching FKBP12 Q72R, Q84E, A117H DRD M54A,



C42S)-AcGFP-P2A-mCherry


FKBP-064
pELNS-FKBP13 (matching FKBP12 Q72R, Q84E, A117H DRD



R102L)-AcGFP-P2A-mCherry


FKBP-066
pELNS-FKBP13 (matching FKBP12 Q72R, Q84E, A117H DRD M54K)-



AcGFP-P2A-mCherry


FKBP-067
pELNS-FKBP13 (matching FKBP12 Q72R, Q84E, A117H DRD M54H)-



AcGFP-P2A-mCherry


FKBP-068
pELNS-FKBP13 (matching FKBP12 Q72R, Q84E, A117H DRD M54S)-



AcGFP-P2A-mCherry


FKBP-069
pELNS-FKBP13 (matching FKBP12 Q72R, Q84E, A117H DRD M54G)-



AcGFP-P2A-mCherry


FKBP-070
pELNS-FKBP13 (matching FKBP12 Q72R, Q84E, A117H DRD M54D)-



AcGFP-P2A-mCherry


FKBP-071
pELNS-FKBP13 (matching FKBP12 Q72R, Q84E, A117H DRD M54V)-



AcGFP-P2A-mCherry


FKBP-072
pELNS-FKBP13 (matching FKBP12 Q72R, Q84E, A117H DRD L93K)-



AcGFP-P2A-mCherry


FKBP-074
pELNS-FKBP13 (matching FKBP12 Q72R, Q84E, A117H DRD L93S)-



AcGFP-P2A-mCherry


FKBP-075
pELNS-FKBP13 (matching FKBP12 Q72R, Q84E, A117H DRD L93G)-



AcGFP-P2A-mCherry


FKBP-076
pELNS-FKBP13 (matching FKBP12 Q72R, Q84E, A117H DRD L93D)-



AcGFP-P2A-mCherry


FKBP-077
pELNS-FKBP13 (matching FKBP12 Q72R, Q84E, A117H DRD L93V)-



AcGFP-P2A-mCherry


FKBP-083
pELNS-FKBP13 trunc1 (mutated to match FKBP12 active site Q72R,



Q84E, A117H DRD M54A)-AcGFP-P2A-mCherry


FKBP-084
pELNS-FKBP13 trunc2 (mutated to match FKBP12 active site Q72R,



Q84E, A117H DRD M54A)-AcGFP-P2A-mCherry


FKBP-085
pELNS-FKBP13 trunc1WT (mutated to match FKBP12 active site Q72R,



Q84E, A117H DRD WT)-AcGFP-P2A-mCherry


FKBP-086
pELNS-FKBP13 trunc2WT (mutated to match FKBP12 active site Q72R,



Q84E, A117H DRD WT)-AcGFP-P2A-mCherry


FKBP-087
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117H and I121H DRD M54A)-AcGFP-P2A-mCherry


FKBP-088
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117H and F129Y DRD M54A)-AcGFP-P2A-mCherry


FKBP-089
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, V85D,



A117H DRD M54A)-AcGFP-P2A-mCherry


FKBP-090
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, I86D,



A117H DRD M54A)-AcGFP-P2A-mCherry


FKBP-091
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W DRD M54A)-AcGFP-P2A-mCherry


FKBP-092
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117H DRD L127A)-AcGFP-P2A-mCherry


FKBP-093
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117H DRD L80A)-AcGFP-P2A-mCherry


FKBP-094
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117H DRD P107S)-AcGFP-P2A-mCherry


FKBP-095
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117H DRD P122S)-AcGFP-P2A-mCherry


FKBP-096
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117H DRD E100L)-AcGFP-P2A-mCherry


FKBP-097
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117H DRD E100S)-AcGFP-P2A-mCherry


FKBP-098
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W DRD M54S)-AcGFP-P2A-mCherry


FKBP-099
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W DRD M54A, del c-term R)-AcGFP-P2A-mCherry


FKBP-100
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W DRD M54A, M96V)-AcGFP-P2A-mCherry


FKBP-101
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W DRD M54A, Nterm- 2aa trunc)-AcGFP-P2A-mCherry


FKBP-102
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W DRD M54A, P118V)-AcGFP-P2A-mCherry


FKBP-103
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W DRD M54A, P119V)-AcGFP-P2A-mCherry


FKBP-104
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W, K120I DRD M54A)-AcGFP-P2A-mCherry


FKBP-105
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W, K120R DRD M54A)-AcGFP-P2A-mCherry


FKBP-106
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117Y DRD M54A)-AcGFP-P2A-mCherry


FKBP-107
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W DRD I106V)-AcGFP-P2A-mCherry


FKBP-108
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W DRD M54A I106V)-AcGFP-P2A-mCherry


FKBP-109
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W DRD L104V)-AcGFP-P2A-mCherry


FKBP-110
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W DRD L110A)-AcGFP-P2A-mCherry


FKBP-111
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W DRD D90A)-AcGFP-P2A-mCherry


FKBP-112
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W DRD L93V)-AcGFP-P2A-mCherry


FKBP-113
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W DRD M54S)-AcGFP-P2A-mCherry


FKBP-114
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W DRD M54A, Trunc1)-AcGFP-P2A-mCherry


FKBP-115
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W DRD none, Trunc2)-AcGFP-P2A-mCherry


FKBP-116
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W DRD none, Trunc3)-AcGFP-P2A-mCherry


FKBP-117
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W DRD V85R)-AcGFP-P2A-mCherry


FKBP-118
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117H DRD V85R)-AcGFP-P2A-mCherry


FKBP-119
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W DRD K101W)-AcGFP-P2A-mCherry


FKBP-120
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117H DRD K101W)-AcGFP-P2A-mCherry


FKBP-121
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W DRD I136V)-AcGFP-P2A-mCherry


FKBP-122
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117H DRD I136V)-AcGFP-P2A-mCherry


FKBP-123
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W DRD G49S)-AcGFP-P2A-mCherry


FKBP-124
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117H DRD G49S)-AcGFP-P2A-mCherry


FKBP-125
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W DRD D62S)-AcGFP-P2A-mCherry


FKBP-126
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117H DRD D62S)-AcGFP-P2A-mCherry


FKBP-127
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W DRD F76Q)-AcGFP-P2A-mCherry


FKBP-128
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W DRD H53L)-AcGFP-P2A-mCherry


FKBP-129
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W DRD E98L)-AcGFP-P2A-mCherry


FKBP-130
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W DRD P107K)-AcGFP-P2A-mCherry


FKBP-131
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W DRD T126C)-AcGFP-P2A-mCherry


FKBP-132
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W DRD G92Y)-AcGFP-P2A-mCherry


FKBP-133
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W DRD G83T)-AcGFP-P2A-mCherry


FKBP-134
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W DRD H41R)-AcGFP-P2A-mCherry


FKBP-135
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W DRD E61Y)-AcGFP-P2A-mCherry


FKBP-136
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W DRD S108M)-AcGFP-P2A-mCherry


FKBP-137
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W DRD P75L)-AcGFP-P2A-mCherry


FKBP-138
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W DRD G124R)-AcGFP-P2A-mCherry


FKBP-139
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W DRD E130R)-AcGFP-P2A-mCherry


FKBP-140
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W DRD K135Y)-AcGFP-P2A-mCherry


FKBP-141
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117R DRD L52R)-AcGFP-P2A-mCherry


FKBP-142
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W DRD T64G)-AcGFP-P2A-mCherry


FKBP-143
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84G,



A117H DRD P43R)-AcGFP-P2A-mCherry


FKBP-144
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117H DRD D50R, E98M)-AcGFP-P2A-mCherry


FKBP-145
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117H DRD H41S, E61D)-AcGFP-P2A-mCherry


FKBP-146
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117H DRD L104S, I136L)-AcGFP-P2A-mCherry


FKBP-147
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117H DRD T64R, S108G, E137F)-AcGFP-P2A-mCherry


FKBP-148
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117H DRD D62N, D67N, D90N, M96G, E130K)-AcGFP-P2A-



mCherry


FKBP-149
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117H DRD T64Q, L94G)-AcGFP-P2A-mCherry


FKBP-150
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117H DRD E61G, G124P)-AcGFP-P2A-mCherry


FKBP-151
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84R,



A117W DRD M54A)-AcGFP-P2A-mCherry


FKBP-152
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84W,



A117W DRD M54A)-AcGFP-P2A-mCherry


FKBP-153
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, S79W,



Q84E, A117W DRD M54A)-AcGFP-P2A-mCherry


FKBP-154
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, S79W,



Q84W, A117W DRD M54A)-AcGFP-P2A-mCherry


FKBP-155
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, S79W,



Q84R, A117W DRD M54A)-AcGFP-P2A-mCherry


FKBP-156
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, T82W,



Q84W, A117W DRD M54A)-AcGFP-P2A-mCherry


FKBP-157
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, T82W,



Q84E, A117W DRD M54A)-AcGFP-P2A-mCherry


FKBP-158
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W DRD M54A G111E)-AcGFP-P2A-mCherry


FKBP-159
pELNS-FKBP13 (mutated to match FKBP12 active site Q72R, Q84E,



A117W DRD M54A G111Y)-AcGFP-P2A-mCherry









To test the effect of mutations that increase FKBP13 responsiveness to tacrolimus (i.e., DRD-genic mutations) in the presence and absence of a binding site mutation, constructs FKBP13-039, FKBP13-040, FKBP13-041, FKBP13-042, FKBP13-043, FKBP13-044 and FKBP13-045 were made. The sequences for these constructs are set forth below. In constructs FKBP13-039, FKBP13-040, FKBP13-041, FKBP13-042, FKBP13-043, FKBP13-044 and FKBP13-045, the FKBP13 DRD sequence is bolded, the AcGFP amino acid sequence is underlined, and the mCherry sequence is italicized. It is understood that any of the constructs described herein comprising an FBKP13 DRD sequence can also comprise an AcGFP amino acid sequence (SEQ ID NO: 117, underlined in SEQ ID NOs:110-116 below) and/or a mCherry amino acid sequence (SEQ ID NO: 118, in italics SEQ ID NOs:110-116 below) as set forth in any one of constructs FKBP13-039, FKBP13-040, FKBP13-041, FKBP13-042, FKBP13-043, FKBP13-044 and FKBP13-045.














FKBP-039


FKBP13 DRD-AcGFP-mCherry AA sequence (SEQ ID NO: 110)



HCPIKSRKGDVLHMHYTGKLEDGTEFDSSLPQNQPFVFSLGTGQVIKGWDQGL




LGMCEGEKRKLVIPSELGYGERGAPPKIPGGATLVFEVELLKIERGGSMVSKGA




ELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTL




SYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLV




NRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQ




LADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGM




DELYKGSGATNFSLLKQAGDVEENPGPLSKGEEDNMAIIKEFMRFKVHMEGSVNGHEF




EIEGEGEGRPYEGTQTAKLKVTKGGPLPFAWDILSPQFMYGSKAYVKHPADIPDYLKLSF




PEGFKWERVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSDGPVMQKKTMGWEA




SSERMYPEDGALKGEIKQRLKLKDGGHYDAEVKTTYKAKKPVQLPGAYNVNIKLDITSHN




EDYTIVEQYERAEGRHSTGGMDELYK






FKBP13-040


FKBP13 DRD-AcGFP-mCherry AA sequence (SEQ ID NO: 111)



HCPIKSRKGDVLHMHYTGKLEDGTEFDSSLPQNQPFVFSLGTGQVIKGWGQGL




LGMCEGEKRKLVIPSELGYGERGAPPKIPGGATLVFEVELLKIERGGSMVSKGA




ELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTL




SYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLV




NRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQ




LADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGM




DELYKGSGATNFSLLKQAGDVEENPGPLSKGEEDNMAIIKEFMRFKVHMEGSVNGHEF




EIEGEGEGRPYEGTQTAKLKVTKGGPLPFAWDILSPQFMYGSKAYVKHPADIPDYLKLSF




PEGFKWERVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSDGPVMQKKTMGWEA




SSERMYPEDGALKGEIKQRLKLKDGGHYDAEVKTTYKAKKPVQLPGAYNVNIKLDITSHN




EDYTIVEQYERAEGRHSTGGMDELYK






FKBP-041


FKBP13 DRD-AcGFP-mCherry AA sequence (SEQ ID NO: 112)



HCPIKSRKGDVLHAHYTGKLEDGTEFDSSLPQNQPFVFSLGTGQVIKGWDQGL




LGMCEGEKRKLVIPSELGYGERGAPPKIPGGATLVFEVELLKIERGGSMVSKGA




ELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTL




SYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLV




NRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQ




LADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGM




DELYKGSGATNFSLLKQAGDVEENPGPLSKGEEDNMAIIKEFMRFKVHMEGSVNGHEF




EIEGEGEGRPYEGTQTAKLKVTKGGPLPFAWDILSPQFMYGSKAYVKHPADIPDYLKLSF




PEGFKWERVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSDGPVMQKKTMGWEA




SSERMYPEDGALKGEIKQRLKLKDGGHYDAEVKTTYKAKKPVQLPGAYNVNIKLDITSHN




EDYTIVEQYERAEGRHSTGGMDELYK






FKBP-042


FKBP13 DRD-AcGFP-mCherry AA sequence (SEQ ID NO: 113)



HCPIKSRKGDVLHMHYTGKLEDGTEFDSSLPQNQPFVFSLGTGQVIKGWDQGL




LGVCEGEKRKLVIPSELGYGERGAPPKIPGGATLVFEVELLKIERGGSMVSKGAE




LFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLS




YGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVN




RIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQL




ADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMD




ELYKGSGATNFSLLKQAGDVEENPGPLSKGEEDNMAIIKEFMRFKVHMEGSVNGHEFEI




EGEGEGRPYEGTQTAKLKVTKGGPLPFAWDILSPQFMYGSKAYVKHPADIPDYLKLSFPE




GFKWERVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSDGPVMQKKTMGWEASS




ERMYPEDGALKGEIKQRLKLKDGGHYDAEVKTTYKAKKPVQLPGAYNVNIKLDITSHNED




YTIVEQYERAEGRHSTGGMDELYK






FKBP-043


FKBP13 DRD-AcGFP-mCherry AA sequence (SEQ ID NO: 114)



HCPIKSRKGDVLHMHYTGKLEDGTEFDSSLPRNQPFVFSLGTGEVIKGWGQGL




LGMCEGEKRKLVIPSELGYGERGHPPKIPGGATLVFEVELLKIERGGSMVSKGA




ELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTL




SYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLV




NRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQ




LADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGM




DELYKGSGATNFSLLKQAGDVEENPGPLSKGEEDNMAIIKEFMRFKVHMEGSVNGHEF




EIEGEGEGRPYEGTQTAKLKVTKGGPLPFAWDILSPQFMYGSKAYVKHPADIPDYLKLSF




PEGFKWERVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSDGPVMQKKTMGWEA




SSERMYPEDGALKGEIKQRLKLKDGGHYDAEVKTTYKAKKPVQLPGAYNVNIKLDITSHN




EDYTIVEQYERAEGRHSTGGMDELYK






FKBP-044


FKBP13 DRD-AcGFP-mCherry AA sequence (SEQ ID NO: 115)



HCPIKSRKGDVLHAHYTGKLEDGTEFDSSLPRNQPFVFSLGTGEVIKGWDQGLL




GMCEGEKRKLVIPSELGYGERGHPPKIPGGATLVFEVELLKIERGGSMVSKGAE




LFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLS




YGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVN




RIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQL




ADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMD




ELYKGSGATNFSLLKQAGDVEENPGPLSKGEEDNMAIIKEFMRFKVHMEGSVNGHEFEI




EGEGEGRPYEGTQTAKLKVTKGGPLPFAWDILSPQFMYGSKAYVKHPADIPDYLKLSFPE




GFKWERVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSDGPVMQKKTMGWEASS




ERMYPEDGALKGEIKQRLKLKDGGHYDAEVKTTYKAKKPVQLPGAYNVNIKLDITSHNED




YTIVEQYERAEGRHSTGGMDELYK






FKBP-045


FKBP13 DRD-AcGFP-mCherry AA sequence (SEQ ID NO: 116)



HCPIKSRKGDVLHMHYTGKLEDGTEFDSSLPRNQPFVFSLGTGEVIKGWDQGL




LGVCEGEKRKLVIPSELGYGERGHPPKIPGGATLVFEVELLKIERGGSMVSKGA




ELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTL




SYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLV




NRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQ




LADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGM




DELYKGSGATNFSLLKQAGDVEENPGPLSKGEEDNMAIIKEFMRFKVHMEGSVNGHEF




EIEGEGEGRPYEGTQTAKLKVTKGGPLPFAWDILSPQFMYGSKAYVKHPADIPDYLKLSF




PEGFKWERVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSDGPVMQKKTMGWEA




SSERMYPEDGALKGEIKQRLKLKDGGHYDAEVKTTYKAKKPVQLPGAYNVNIKLDITSHN




EDYTIVEQYERAEGRHSTGGMDELYK











FIG. 1A is a schematic showing the general organization of an exemplary nucleic acid construct comprising (i) a nucleic acid sequence encoding a potential FKBP DRD sequence; (ii) a nucleic acid sequence encoding Aequorea coerulescens GFP (AcGFP); (iii) a nucleic acid sequence encoding an exemplary self-cleaving peptide (porcine teschovirus-1 2A (P2A)); and (iv) a nucleic acid sequence encoding mCherry.


HEK-293T cells were cultured in standard media (Dulbecco's Modified Eagle Medium (DMEM) (Fisher Scientific, Hampton, NH, Cat #11-960-044) with 10% FBS (Fisher Scientific, Cat #10-082-147) and 1% penicillin-streptomycin (Thermo Fisher Scientific, Waltham, MA, Cat #15140122); and transiently transfected with FKBP13-039, FKBP13-040, FKBP13-041, FKBP13-042, FKBP13-043, FKBP13-044 or FKBP13-045 constructs in a six well plate, using Lipofectamine® 2000 (Fisher Scientific, Cat #11-668-027). 24 hours later transfected HEK-293T cells were treated with either 0, 1 or 10 μM FK506 (tacrolimus). After 24 hours of FK506 treatment, cells were harvested by trypsinization, and flow analysis was performed using the Attune NXT flow cytometer (Thermo Fisher Scientific).


The DRD in FKBP13-039 was a wildtype (WT) FKBP13 (i.e., a 98 amino acid fragment of SEQ ID NO: 1). The DRDs in FKBP13-040, FKBP13-041 and FKBP13-042 were designed to comprise DRD-genic mutations D90G, M54A and M96V, respectively, but did not include binding site mutations. The FKBP13-043, FKBP13-044, and FKBP13-045 constructs included DRD-genic mutations D90G, M54A and M96V, respectively, and three binding site mutations (Q72R, Q84E, and A117H).


As shown in FIG. 1B, all DRD-genic mutations were effective in destabilizing AcGFP and reducing AcGFP fluorescence. AcGFP was stabilized and the fluorescence signal was increased more effectively in the presence of the binding site mutations (FKBP13-043, FKBP13-044 or FKBP13-045). This is evidenced by constructs without the binding site mutation having less responsiveness to 1 μM FK506. Interestingly, WT FKBP13 (FKBP13-043) also had DRD activity.


To determine if any of the FKBP13 DRDs had EC50 values below achievable plasma drug concentration in humans, tacrolimus dose response experiments were carried out. The results showed that, overall, the response to tacrolimus was improved in the presence of the binding site mutations (Table 3).









TABLE 3







Tacrolimus response for exemplary FKBP13 DRDs












DRD
Binding site

Fold


Construct
mutant
matched
EC50 (μM)
change














FKBP13-039
WT
No
NA
4.9


FKBP13-040
D90G
No
NA
1


FKBP13-041
M54A
No
NA
7.8


FKBP13-042
M96V
No
NA
1.3


FKBP13-043
D90G
Yes
NA
26.5


FKBP13-044
M54A
Yes
0.23
9.4


FKBP13-045
M96V
Yes
NA
23.2









The regulation of AcGFP, from FKBP13-AcGFP-mCherry constructs, in Jurkat cells, was also studied. Jurkat Clone E6-1 cells were cultured in standard media (RPMI+GlutaMAX Supplement (Life Technologies, Carlsbad, CA Cat #61870127), Fetal Bovine Serum (FBS) (Life Technologies Cat #10-082-147)). Jurkat cells were transduced with lentivirus produced with each of FKBP-039, FKBP-040, FKBP-041, FKBP-042, FKBP-043, FKBP-044, or FKBP-045 constructs. Jurkat cells were transduced until they were 10-25% positive, as determined on day 5 post-transduction, by using mCherry as a transduction marker. On day 5 post-transduction, cells were treated with doses of tacrolimus starting with a top concentration of 10 μM or DMSO. After a 24 hr incubation period, GFP expression was measured in cells treated with tacrolimus or DMSO. The Geometric Mean Fluorescent Intensity (MFI) of GFP expression in mCherry+ cells was plotted and dose response curve fits were performed using Prism Software (San Diego, CA). The dose response curves are provided in FIG. 2. The FKBP-044 construct had the best EC50 and fold-change characteristics and provided a guidepost for further FKBP13 DRD development.


In another experiment, several FKBP13 DRD constructs were transiently transfected into HEK293 cells, as described above, and analyzed using a Celigo Image Cytometer (Nexcelom, Lawrence, MA). FIG. 4 provides tacrolimus dose response FACS data for Jurkat cells stably transduced with FKBP-044, FKBP-052, FKBP-053, FKBP-054, FKBP-055, FKBP-056, FKBP-057, FKBP-058, FKBP-059, FKBP-060, FKBP-061, FKBP-062, FKBP-063, and FKBP-064 constructs.


Two, different Protein Data Bank (PDB) codes (2PBC and 4NNR) exist for crystal structures of FKBP13. Unlike the 98 amino acid sequence in 4NNR, which corresponds to truncated WT (SEQ ID NO: 2), the sequence in PDB ID 2PBC has two mutations, H41G and C42S. Since disulfides are often implicated in protein stabilization, the role of this disulfide bond, in stabilization of FKBP13, was investigated. Constructs FKBP-052, FKBP-062 and FKBP-063 have abrogated disulfides. While the FKBP-052 construct has a wildtype FKBP13 sequence, the FKBP-062 and FKBP-063 constructs have the same DRD-genic mutations as the FKBP-044 construct, with the FKBP-062 construct having two cysteine to serine mutations, while the FKBP-063 construct only has one. Unexpectedly, abrogating the disulfide bonds did not create a significant difference in DRD function, as shown in FIG. 4.









TABLE 4







Changes Associated with Binding Site Mutations












Con-
DRD
Binding site
Disul-

Fold


struct
mutant
Mutations
fide
EC50(μM)
change















FKBP-044
M54A
Q72R, Q84E,
Yes
0.3
12.6




A117H


FKBP-052
WT
Q72R, Q84E,
Abro-
0.14
3.5




A117H
gated


FKBP-053
D90G,
Q72R, Q84E,
Yes
NA
1.0



F66H
A117H


FKBP-054
D90G,
Q72R, Q84E,
Yes
NA
0.9



L127K
A117H


FKBP-055
F78V
Q72R, Q84E,
Yes
43
9.0




A117H


FKBP-056
F129K
Q72R, Q84E,
Yes
NA
1.0




A117H


FKBP-057
I106A
Q72R, Q84E,
Yes
~200
2.7




A117H


FKBP-058
L52A
Q72R, Q84E,
Yes
22
8.1




A117H


FKBP-059
L93A
Q72R, Q84E,
Yes
1.1
27.3




A117H


FKBP-060
L104A
Q72R, Q84E,
Yes
NA
2.7




A117H


FKBP-061
L133A
Q72R, Q84E,
Yes
5.5
16.6




A117H


FKBP-062
M54A,
Q72R, Q84E,
Abro-
0.25
10.4



C42S, C97S
A117H
gated


FKBP-063
M54A,
Q72R, Q84E,
Abro-
0.22
7.3



C42S
A117H
gated


FKBP-064
R102L
Q72R, Q84E,
Yes
4.2
21.6




A117H









To test the effects of other substitutions instead of methionine at residue number 54 and leucine at position 93 FKBP13 DRD constructs were generated and were transiently transfected into HEK293 cells, as described above, and analyzed using a Celigo Image Cytometer (Nexcelom, Lawrence, MA). Tacrolimus dose response curves for FKBP-044 (M54A), FKBP-066 (M54K), FKBP-067 (M54H), FKBP-068 (M54S), FKBP-069 (M54G), FKBP-070 (M54D) and FKBP-071 (M54V). FKBP-072 (L93K) are shown in FIG. 5. FKBP-068 was the closest in performance to the original M54A substitution. Tacrolimus dose response curves for FKBP-044, FKBP-073 (L93H), FKBP-074 (L93S), FKBP-075 (L93G), FKBP-076 (L93D), FKBP-077 (L93V) are shown in FIG. 6. FKBP-077 performed similarly as FKBP-044.


In another experiment, to explore the possibility of further truncating FKBP13, constructs (FKBP-044, FKBP-083, FKBP-084, FKBP-085, and FKBP-086) were transiently transfected into HEK293 cells, as described above, and analyzed using a Celigo Image Cytometer (Nexcelom, Lawrence, MA). Tacrolimus dose response curves are shown in FIG. 7. A combination of DRD-genic M54A with truncation of the N-terminal histidine lowers basal (FKBP-083).


In another experiment, several constructs (FKBP-044, FKBP-087, FKBP-088, FKBP-089, FKBP-090, and FKBP-091), which had alternate binding sites designed to improve sensitivity to tacrolimus, were transiently transfected into HEK293 cells, as described above, and analyzed using a Celigo Image Cytometer (Nexcelom, Lawrence, MA). Tacrolimus dose response curves are shown in FIG. 8. FKBP-091 with the mutation A117W, instead of A117H in FKBP-044 combined with DRD-genic mutation M54A has superior drug responsiveness.


In another experiment, several constructs (FKBP-044, FKBP-092, FKBP-093, FKBP-094, FKBP-095, FKBP-096 and FKBP-097) designed to explore additional DRD-genic mutations were transiently transfected into HEK293 cells, as described above, and analyzed using a Celigo Image Cytometer (Nexcelom, Lawrence, MA). Tacrolimus dose response curves are shown in FIG. 9.



FIG. 10 provides tacrolimus dose response FACS data for Jurkat cells stably transduced with FKBP-044, FKBP-059, FKBP-068, FKBP-077, FKBP-084, FKBP-085, FKBP-091, FKBP-094, FKBP-095, and FKBP-097 constructs. These experiments included a second round of binding site design and some mutants M54S (068), L93V (077), L93A (059) and M54A (044) previously identified as being of interest. The EC50 of FKBP-091, was found to be 30 nM, in this experiment. See Table 5.









TABLE 5







EC 50 Changes Associated with Mutations










Construct
Mutations
EC50
Fold Change













FKBP-044
Q72R, Q84E, A117H, M54A
0.1645
11.805


FKBP-059
Q72R, Q84E, A117H, L93A
0.898
31.085


FKBP-068
Q72R, Q84E, A117H, M54S
0.8948
43.62


FKBP-077
Q72R, Q84E, A117H, L93V
0.1318
10.3


FKBP-084
Q72R, Q84E, A117H, trunc2, M54A
0.1597
12.42


FKBP-085
Q72R, Q84E, A117H, trunc 2, WT
0.277
16.09


FKBP-091
Q72R, Q84E, A117W, M54A
0.03043
12.36


FKBP-094
Q72R, Q84E, A117H, P107S
0.3383
13.5


FKBP-095
Q72R, Q84E, A117H, P122S
0.7926
31.4


FKBP-097
Q72R, Q84E, A117H, E100S
0.8092
36.75









Other constructs (FKBP-091, FKBP-098, FKBP-099, FKBP-100, and FKBP-101) were transiently transfected into HEK293 cells, as described above, and analyzed using a Celigo Image Cytometer (Nexcelom, Lawrence, MA). Tacrolimus dose response curves are shown in FIG. 11.


In another experiment, several constructs (FKBP-091, FKBP-102, FKBP-103, FKBP-104, FKBP-105 and FKBP-106), designed to combine the binding site mutation identified in FKBP-091 with novel DRD-genic mutations, were transiently transfected into HEK293 cells, as described above, and analyzed using a Celigo Image Cytometer (Nexcelom, Lawrence, MA). Tacrolimus dose response curves are shown in FIG. 12. All constructs have a second generation binding site (i.e., the binding site in FKBP-091 (Q72R, Q84E, A117W), except—the FKBP-106 construct, which has a different binding site (Q72R, Q84E, A117Y).


In another experiment, several other constructs (FKBP-091, FKBP-107, FKBP-108, FKBP-109, FKBP-110, and FKBP-111), designed to combine the binding site mutation identified in FKBP-091 with novel DRD-genic mutations, were transiently transfected into HEK293 cells, as described above, and analyzed using a Celigo Image Cytometer (Nexcelom, Lawrence, MA). Tacrolimus dose response curves are shown in FIG. 13. All constructs have a second-generation binding site (i.e., the binding site in FKBP-091 (Q72R, Q84E, A117W)).


In another experiment, several constructs (FKBP-091, FKBP-112, FKBP-113, FKBP-114, FKBP-115 and FKBP-116), designed to combine the binding site mutation identified in FKBP-091 with novel DRD-genic mutations, were transiently transfected into HEK293 cells, as described above, and analyzed using a Celigo Image Cytometer (Nexcelom, Lawrence, MA). Tacrolimus dose response curves are shown in FIG. 14.


Example 2

Additional experiments were performed with constructs FKBP-117 through FKBP-150 to determine sensitivity to tacrolimus. Constructs FKBP-117 through FKBP-150 were stably transduced into Jurkat cells, as described above, and their response to tacrolimus was analyzed using flow cytometry. FKBP-091 was used as a comparative construct. The EC50 value for AcGFP, EC50 value for AcGFP/mCherry and Fold Change for each construct are set forth in Table 6. Tacrolimus dose response curves for constructs FKBP-117 through FKBP-150 are set forth in FIGS. 15A-15J.









TABLE 6







EC50 Values for Constructs FKBP-117 through FKBP-150










Construct Name
Ec50 AcGFP
Ec50 AcGFP/mCherry
Fold Change













FKBP-091
0.0208
0.0196
11.29


FKBP-117
0.0055
0.005082
15.75


FKBP-118
0.02488
0.02124
12.95


FKBP-119
0.08649
0.09446
31.91


FKBP-120
0.5578
0.4971
30.53


FKBP-121
0.07026
0.07177
28.35


FKBP-122
0.5581
0.4584
22.51


FKBP-123
0.1616
0.1451
48.38


FKBP-124
0.9797
0.9361
40.13


FKBP-125
0.07903
0.08004
29.07


FKBP-126
0.5836
0.5538
25.70


FKBP-127
4.497
9.253
10.25


FKBP-128
0.08399
0.08937
31.75


FKBP-129
0.05061
0.03872
17.11


FKBP-130
0.04522
0.05776
14.40


FKBP-131
0.05978
0.05128
21.30


FKBP-132
0.05827
0.05606
16.27


FKBP-133
0.02618
0.02875
19.11


FKBP-134
0.02787
0.02542
15.64


FKBP-135
0.04373
0.03843
25.52


FKBP-136
0.05329
0.05134
22.46


FKBP-137
0.09312
0.09171
45.79


FKBP-138
0.02692
0.0291
10.43


FKBP-139
0.2447
0.2239
52.24


FKBP-140
0.04851
0.0498
28.70


FKBP-141
9.262
0.00205
1.00


FKBP-142
0.1067
0.1127
33.42


FKBP-143
0.2829
0.2332
14.97


FKBP-144
15.33
Unstable
1.24


FKBP-145
0.2016
0.1488
11.05


FKBP-146
5.075
Unstable
1.19


FKBP-147
9.419
7.233
26.65


FKBP-148
Unstable
Unstable
1.09


FKBP-149
0.9762
1.032
39.28


FKBP-150
7.124
7.356
21.15









Constructs FKBP-151-FKBP-159 were analyzed for differences in tacrolimus and sirolimus (rapamycin) sensitivity. These constructs have mutations in the periphery of the binding site for FKBP13, which were designed to enable differential sensitivity to tacrolimus and sirolimus. Differences in the shape and size of rapamycin and tacrolimus (FIG. 3) were used to design these mutants. Constructs FKBP-151 through FKBP-159, along with controls FKBP-044 and FKBP-117 were stably transduced into Jurkat cells, as described above, and their response to tacrolimus or sirolimus was analyzed using flow cytometry. The EC50 value, Norm EC50 value and Fold Change for each construct, for tacrolimus and rapamycin, are set forth in Tables 7 and 8, respectively. Normalized EC50 values were calculated from the mCherry normalized GFP MFI values, which accounted for any differences in mCherry intensity between samples. Tacrolimus vs. Rapamycin dose response curves for constructs FKBP-151, FKBP-152 and FKBP-153 are shown in FIGS. 16A and 16B. Tacrolimus vs. Rapamycin dose response curves for constructs FKBP-153, FKBP-155 and FKBP-157 are shown in FIGS. 17A and 17B. Tacrolimus vs. rapamycin dose response curves for constructs Tacrolimus vs. rapamycin dose response curves for constructs FKBP-154, FKBP-155 and FKBP-156 are shown in FIGS. 18A and 18B. Tacrolimus vs. Rapamycin dose response curves for constructs FKBP-157, FKBP-158 and FKBP-159 are shown in FIGS. 19A and 19B. Tacrolimus vs. Rapamycin dose response curves for comparative constructs FKBP-044 and FKBP-117 are shown in FIGS. 20A and 20B. Constructs 153, 155 and 157 show the largest difference between rapamycin and tacrolimus as shown in Table 9.









TABLE 7







Tacrolimus Response Values for Constructs FKBP-151-FKBP-159












Construct
EC50
Norm EC50
Fold Change
















FKBP-44
0.09165
0.0893
12.98



FKBP-117
0.004257
0.004386
18.6



FKBP-151
0.04744
0.05103
42.03



FKBP-152
0.114
0.1169
30.34



FKBP-153
0.05422
0.05714
30.07



FKBP-154
0.5824
0.6682
14



FKBP-155
0.1315
0.1481
41.68



FKBP-156
0.4549
0.5122
18.36



FKBP-157
0.2135
0.214
51.33



FKBP-158
613.6

1.25



FKBP-159
4.474
1.153
1.06

















TABLE 8







Rapamycin Response Values for Constructs FKBP-151-FKBP-159












Construct
EC50
Norm EC50
Fold Change
















FKBP-44
0.185
0.1704
4.4



FKBP-117
0.02165
0.02117
6.9



FKBP-151
0.052
0.0482
10.15



FKBP-152
0.2076
0.2194
23.17



FKBP-153
0.265
0.2512
4.8



FKBP-154
1.659
1.624
3.9



FKBP-155
0.1832
0.1662
5.6



FKBP-156
0.816
0.7944
8.77



FKBP-157
0.2198
0.2132
7.92



FKBP-158
3.541
6.749
0.84



FKBP-159
3.669
4.851
0.81

















TABLE 9







Ratio of EC50 and fold change reported


for Tacrolimus and Rapamycin












EC50 (tacrolimus)/
Fold change (tacrolimus)/




EC50
Fold change



Construct
(rapamycin)
(rapamycin)















FKBP-44
0.50
2.95



FKBP-117
0.20
2.70



FKBP-151
0.91
4.14



FKBP-152
0.55
1.31



FKBP-153
0.20
6.26



FKBP-154
0.35
3.59



FKBP-155
0.72
7.44



FKBP-156
0.56
2.09



FKBP-157
0.97
6.48



FKBP-158
NA
1.49



FKBP-159
1.22
1.31










Example 3

Additional experiments were performed to compare constitutively expressed AcGFP abundance with FKBP13/tacrolimus regulated AcGFP abundance levels. FKBP13 was fused to a protein of interest (i.e., AcGFP) to examine the effects on the maximal abundance of AcGFP. Constructs FKBP-044, FKBP-059 and FKBP-091 and AcGFP-001 were stably transduced into Jurkat cells as previously described and dose response experiments were performed. MFI was read by flow cytometry (FIG. 21). Regulated FKBP13 reached approximately 70% of constitutive AcGFP MFI values.


Example 4

Additional experiments were performed for constructs FKBP-160-292. The constructs are shown in Table 10 and the top 30 drug responsive domains for Cas9 screening are shown in Table 11.









TABLE 10







FKBP-160-292 Construct Sequences










Construct





Name
Mutation
Nucleic Acid Sequence
Amino Acid Sequence





FKBP-160
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



M54A
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 120)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 119)






FKBP-161
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHSHYTGKL



Q84E,
GCACagtCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



DRD
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



M54S
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



V85R
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 122)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 121)






FKBP-162
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



DRD
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



M54A,
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIE



del
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 124)



c-term
GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC




R
TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC




V85R
TGAAGATCGAG (SEQ ID NO: 123)






FKBP-163
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGVCEGE



DRD
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



M54A,
AGGCTGGGATCAAGGCCTGCTGGGAgttTGCGAAG
IPGGATLVFEVELLKIER



M96V
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 126)



V85R
GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 125)






FKBP-164
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



DRD
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWVPK



M54A,
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



P118V
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 128)



V85R
GGCTACGGCGAAAGAGGCtgggttCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 127)






FKBP-165
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



DRD
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPVK



M54A,
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



P119V
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 130)



V85R
GGCTACGGCGAAAGAGGCtggCCTgttAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 129)






FKBP-166
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



S79W,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFWL



Q84E,
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



A117W
TTCGTGTTTtggCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



M54A
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 132)



V85R
GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 131)






FKBP-167
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



S79W,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFWL



Q84R,
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGRRIKGWDQGLLGMCEGE



A117W
TTCGTGTTTtggCTCGGCACCGGCagacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



M54A
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 134)



V85R
GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 133)






FKBP-168
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



T82W,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



Q84R,
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GWGRRIKGWDQGLLGMCEGE



A117W
TTCGTGTTTAGCCTCGGCtggGGCagacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



M54A
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 136)



V85R
GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 135)






FKBP-169
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



T82W,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



Q84E,
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GWGEVIKGWDQGLLGMCEGE



A117W
TTCGTGTTTAGCCTCGGCtggGGCgaaGTGATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



M54A
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 138)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





GTGGCGGACCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 137)






FKBP-170
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



T82W,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



Q84E,
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GWGERIKGWDQGLLGMCEGE



A117W
TTCGTGTTTAGCCTCGGCtggGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



M54A
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 140)



V85R
GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 139)






FKBP-171
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCcttGTGCT
HCPIKSRKGLVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGEVIKGWDQGLLGMCEGE



DRD
TTCGTGTTTAGCCTCGGCACCGGCgaaGTGATCAA
KRKLVIPSELGYGERGWPPK



M54A
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



D50L
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 142)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 141)






FKBP-172
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGEVIKGWDQGLLGWCEGE



DRD
TTCGTGTTTAGCCTCGGCACCGGCgaaGTGATCAA
KRKLVIPSELGYGERGWPPK



M54A
AGGCTGGGATCAAGGCCTGCTGGGAtggTGCGAAG
IPGGATLVFEVELLKIER



M96W
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 144)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 143)






FKBP-173
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGEVIKGWDQGLLGMCEGE



DRD
TTCGTGTTTAGCCTCGGCACCGGCgaaGTGATCAA
KRKLVIPSELGYGERGWPPK



M54A
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVEGLKIER



L133G
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 146)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAAgggC





TGAAGATCGAGCGA (SEQ ID NO: 145)






FKBP-174
Q72R,
CACTGCCCAATCAAGgggAGAAAAGGCGACGTGCT
HCPIKGRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGEVIKGWDQGLLGMCEGE



DRD
TTCGTGTTTAGCCTCGGCACCGGCgaaGTGATCAA
KRKLVIPSELGYGERGWPPK



M54A
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEGELLKIER



S36G,
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 148)



V131G
GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAgggGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 147)






FKBP-175
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCgcgGTGCT
HCPIKSRKGAVLHAHYIGKL



Q84E,
GCACgctCACTACatcGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGEVIKGWDQGLLGMCEGE



DRD
TTCGTGTTTAGCCTCGGCACCGGCgaaGTGATCAA
KRKLVIPSELGYGERGWPPK



M54A
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKLER



D50L,
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 150)



T57I,
GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC




I136L
TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGctgGAGCGA (SEQ ID NO: 149)






FKBP-176
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGEVIKGWDQGLLGMCEGE



DRD
TTCGTGTTTAGCCTCGGCACCGGCgaaGTGATCAA
KRKLVIPSELGYGEREWPPK



M54A
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



G116E
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 152)




GGCTACGGCGAAAGAgagtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 151)






FKBP-177
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSG



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGEVIKGWDQGLLGMCEGE



DRD
TTCGTGTTTAGCgggGGCACCGGCgaaGTGATCAA
KRKLVIPSELGYGERGWPPK



M54A
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



L80G
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 154)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 153)






FKBP-178
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVSSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGEVIKGWDQGLLGMCEGE



DRD
TTCGTGtcgAGCCTCGGCACCGGCgaaGTGATCAA
KRKLVIPSELGYGERGWPPK



M54A
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



F78S
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 156)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 155)






FKBP-179
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLGAHYTGKL



Q84E,
GggggctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPLNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTcttAACCAGCCT
GTGEVIKGWDQGLLGMCEGE



DRD
TTCGTGTTTAGCCTCGGCACCGGCgaaGTGATCAA
KRKLVIPSELGYGERGWPPK



M54A
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



H53G,
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 158)



R72L
GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 157)






FKBP-180
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGEVIKGWDQGLLGMCEGE



DRD
TTCGTGTTTAGCCTCGGCACCGGCgaaGTGATCAA
KRKLVIPSELGYGERGWPPK



M54A
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVTEVELLKIER



F129T
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 160)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGacgGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 159)






FKBP-181
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCcttGTGCT
HCPIKSRKGLVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



M54A
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 162)



D50L
GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 161)






FKBP-182
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGWCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAtggTGCGAAG
IPGGATLVFEVELLKIER



M54A
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 164)



M96W
GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 163)






FKBP-183
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVEGLKIER



M54A
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 166)



L133G
GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAAgggC





TGAAGATCGAGCGA (SEQ ID NO: 165)






FKBP-184
Q72R,
CACTGCCCAATCAAGgggAGAAAAGGCGACGTGCT
HCPIKGRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEGELLKIER



M54A
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 168)



S36G,
GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC




V131G
TGGCGGAGCCACACTGGTGTTCGAAgggGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 167)






FKBP-185
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCgcgGTGCT
HCPIKSRKGAVLHAHYIGKL



Q84E,
GCACgctCACTACatcGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKLER



M54A
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 170)



D50L,
GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC




T57I,
TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC




I136L
TGAAGctgGAGCGA (SEQ ID NO: 169)






FKBP-186
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGEREWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



M54A
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 172)



G116E
GGCTACGGCGAAAGAgagtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 171)






FKBP-187
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSG



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCgggGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



M54A
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 174)



L80G
GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 173)






FKBP-188
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVSSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGtcgAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



M54A
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 176)



F78S
GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 175)






FKBP-189
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLGAHYTGKL



Q84E,
GggggctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPLNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTcttAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



M54A
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 178)



H53G,
GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC




R72L
TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 177)



















FKBP-190
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVTEVELLKIER



M54A
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 180)



F129T
GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGacgGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 179)






FKBP-191
Q72R,
CACTGCCCAATCAAGAGCAGAAAAtccGACGTGCT
HCPIKSRKSDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTAGAAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCGAAcggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



G49S
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 182)




GGCTACGGCGAAAGAGGCTGGCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 181)






FKBP-192
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQLFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTAGAAACCAGctg
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCGAAcggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



P75L
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 184)




GGCTACGGCGAAAGAGGCTGGCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 183)






FKBP-193
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWAQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGgctCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



D90A
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 186)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 185)






FKBP-194
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKVVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



L104V
GCGAGAAGAGAAAGgttGTCATCCCTAGCGAACTC
(SEQ ID NO: 188)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 187)






FKBP-195
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTAGAAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCGAAcggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLYIER



K135Y
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 190)




GGCTACGGCGAAAGAGGCTGGCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGtacATCGAGCGA (SEQ ID NO: 189)






FKBP-196
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTAGAAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCGAAcggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKVER



I136V
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 192)




GGCTACGGCGAAAGAGGCTGGCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGgtgGAGCGA (SEQ ID NO: 191)






FKBP-197
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTAGAAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCGAAcggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFRVELLKIER



E130R
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 194)




GGCTACGGCGAAAGAGGCTGGCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCagaGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 193)






FKBP-198
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTAGAAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCGAAcggATCAA
WRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



K101W
GCGAGtggAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 196)




GGCTACGGCGAAAGAGGCTGGCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 195)






FKBP-199
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTAGAAACCAGCCT
GTGERIKGWDQGLLGMCLGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCGAAcggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCttgG
IPGGATLVFEVELLKIER



E98L
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 198)




GGCTACGGCGAAAGAGGCTGGCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 197)






FKBP-200
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAtctGGCA
ESGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTAGAAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCGAAcggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



D62S
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 200)




GGCTACGGCGAAAGAGGCTGGCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 199)






FKBP-201
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLLMHYTGKL



Q84E,
GttgATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTAGAAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCGAAcggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



H53L
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 202)




GGCTACGGCGAAAGAGGCTGGCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 201)






FKBP-202
Q72R,
CACTGCCCAATCAAGAGCAGAAAAtccGACGTGCT
HCPIKSRKSDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTAGAAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCGAAcggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



M54A
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 204)



G49S
GGCTACGGCGAAAGAGGCTGGCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 203)






FKBP-203
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQLFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTAGAAACCAGctg
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCGAAcggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



M54A
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 206)



P75L
GGCTACGGCGAAAGAGGCTGGCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 205)






FKBP-204
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWAQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGgctCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



M54A
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 208)



D90A
GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 207)






FKBP-205
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKVVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



M54A
GCGAGAAGAGAAAGgttGTCATCCCTAGCGAACTC
(SEQ ID NO: 210)



L104V
GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 209)






FKBP-206
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTAGAAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCGAAcggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLYIER



M54A
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 212)



K135Y
GGCTACGGCGAAAGAGGCTGGCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGtacATCGAGCGA (SEQ ID NO: 211)






FKBP-207
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTAGAAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCGAAcggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKVER



M54A
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 214)



I136V
GGCTACGGCGAAAGAGGCTGGCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGgtgGAGCGA (SEQ ID NO: 213)






FKBP-208
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTAGAAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCGAAcggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFRVELLKIER



M54A
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 216)



E130R
GGCTACGGCGAAAGAGGCTGGCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCagaGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 215)






FKBP-209
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTAGAAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCGAAcggATCAA
WRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



M54A
GCGAGtggAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 218)



K101W
GGCTACGGCGAAAGAGGCTGGCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 217)






FKBP-210
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTAGAAACCAGCCT
GTGERIKGWDQGLLGMCLGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCGAAcggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCttgG
IPGGATLVFEVELLKIER



M54A
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 220)



E98L
GGCTACGGCGAAAGAGGCTGGCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 219)






FKBP-211
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAtctGGCA
ESGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTAGAAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCGAAcggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



M54A
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 222)



D62S
GGCTACGGCGAAAGAGGCTGGCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 221)






FKBP-212
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLLAHYTGKL



Q84E,
GttggctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTAGAAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCGAAcggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



M54A
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 224)



H53L
GGCTACGGCGAAAGAGGCTGGCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 223)






FKBP-213
Q72R,
CACTGCagaATCAAGAGCAGAAAAGGCGACGTGCT
HCRIKSRKGDVLHAHYTGKL



Q84G,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTAGAAACCAGCCT
GTGGVIKGWDQGLLGMCEGE



DRD
TTCGTGTTTAGCCTCGGCACCGGCggaGTGATCAA
KRKLVIPSELGYGERGWPPK



P43R
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



M54A
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 226)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 225)






FKBP-214
Q72R,
CACTGCagaATCAAGAGCAGAAAAGGCGACGTGCT
HCRIKSRKGDVLHAHYTGKL



Q84G,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTAGAAACCAGCCT
GTGGRIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCggacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



P43R
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 228)



M54A
GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 227)






FKBP-215
Q72R,
CACTGCagaATCAAGAGCAGAAAAGGCGACGTGCT
HCRIKSRKGDVLHAHYTGKL



Q84G,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTAGAAACCAGCCT
GTGGRIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCggacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLYIER



P43R
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 230)



M54A
GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC




K135Y
TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGtacATCGAGCGA (SEQ ID NO: 229)






FKBP-216
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGtatGATGGCA
YDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGEVIKGWDQGLLGMCEGE



DRD
TTCGTGTTTAGCCTCGGCACCGGCgaaGTGATCAA
WRKLVIPSELGYGERGWPPK



M54A
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLYIER



E61Y,
GCGAGtggAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 232)



K101W,
GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC




K135Y
TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGtacATCGAGCGA (SEQ ID NO: 231)






FKBP-217
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGtatGATGGCA
YDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
WRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLYIER



M54A
GCGAGtggAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 234)



E61Y,
GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC




K101W,
TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC




K135Y
TGtacATCGAGCGA (SEQ ID NO: 233)






FKBP-218
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGggcGATGGCA
GDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGEVIKGWDQGLLGMCEGE



DRD
TTCGTGTTTAGCCTCGGCACCGGCgaaGTGATCAA
GRKLVIPSELGYGERGWPPK



M54A
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLEIER



E61G,
GCGAGggcAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 236)



K101G,
GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC




K135E
TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGgagATCGAGCGA (SEQ ID NO: 235)






FKBP-219
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGggcGATGGCA
GDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
GRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLEIER



M54A
GCGAGggcAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 238)



E61G,
GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC




K101G,
TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC




K135E
TGgagATCGAGCGA (SEQ ID NO: 237)






FKBP-220
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCg
EDGGEFDSSLPRNQPFVFSL



A117W
ggGAGTTCGATAGCAGCCTGCCTAGAAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCGAAcggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



T25G
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 240)




GGCTACGGCGAAAGAGGCTGGCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 239)






FKBP-221
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCg
EDGGEFDSSLPRNQPFVFSL



A117W
ggGAGTTCGATAGCAGCCTGCCTAGAAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCGAAcggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



M54A
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 242)



T25G
GGCTACGGCGAAAGAGGCTGGCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 241)






FKBP-222
Q72R,
CACTGCtggATCAAGAGCAGAAAAGGCGACGTGCT
HCWIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCc
EDGREFDSSLPRNQPFVFSL



A117W
ggGAGTTCGATAGCAGCCTGCCTAGAAACCAGCCT
GTGEVIKGWDQGLLGMCEGE



DRD
TTCGTGTTTAGCCTCGGCACCGGCGAAGTGATCAA
KRKLVIPSELGYGERGWPPK



P4W
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



T25R
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 244)




GGCTACGGCGAAAGAGGCTGGCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 243)






FKBP-223
Q72R,
CACTGCtggATCAAGAGCAGAAAAGGCGACGTGCT
HCWIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCc
EDGREFDSSLPRNQPFVFSL



A117W
ggGAGTTCGATAGCAGCCTGCCTAGAAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCGAAcggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



M54A
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 246)



P4W
GGCTACGGCGAAAGAGGCTGGCCTCCAAAGATTCC




T25R
TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 245)






FKBP-224
Q72R,
CACTGCagaATCAAGAGCAGAAAAGGCGACGTGCT
HCRIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTAGAAACCAGCCT
GTGEVIKGWDQGLLGMCEGE



DRD
TTCGTGTTTAGCCTCGGCACCGGCgaaGTGATCAA
KRKLVIPSELGYGERGWPPK



P43R
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER




GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 248)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 247)






FKBP-225
Q72R,
CACTGCagaATCAAGAGCAGAAAAGGCGACGTGCT
HCRIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTAGAAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



P43R
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 250)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 249)






FKBP-226
Q72R,
CACTGCagaATCAAGAGCAGAAAAGGCGACGTGCT
HCRIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTAGAAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



P43R
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 252)



M54A
GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 251)






FKBP-227
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGEVIKGWDQGLLGMCEGE



DRD
TTCGTGTTTAGCCTCGGCACCGGCgaaGTGATCAA
KRKLVIPSELGYGERGWPPK



E137R
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIRR




GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 254)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCaggCGA (SEQ ID NO: 253)






FKBP-228
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIRR



E137R
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 256)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCaggCGA (SEQ ID NO: 255)






FKBP-229
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIRR



E137R
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 258)



M54A
GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCaggCGA (SEQ ID NO: 257)






FKBP-230
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATATGA
EDMTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGEVIKGWDQGLLGMCEGE



DRD
TTCGTGTTTAGCCTCGGCACCGGCgaaGTGATCAA
KRKLVIPSELGYGERGWPPK



G63M
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER




GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 260)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 259)






FKBP-231
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATATGA
EDMTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



G63M
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 262)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 261)






FKBP-232
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATATGA
EDMTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



G63M
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 264)



M54A
GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 263)






FKBP-233
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGEVIKGWTQGLLGMCEGE



DRD
TTCGTGTTTAGCCTCGGCACCGGCgaaGTGATCAA
KRKLVIPSELGYGERGWPPK



D90T
AGGCTGGacgCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER




GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 266)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 265)






FKBP-234
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWTQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGacgCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



D90T
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 268)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 267)






FKBP-235
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWTQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGacgCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



D90T
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 270)



M54A
GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 269)






FKBP-236
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGEVIKGWDQGLLGMCEGE



DRD
TTCGTGTTTAGCCTCGGCACCGGCgaaGTGATCAA
KRKLVIPSELGYNERGWPPK



G113N
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER




GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 272)




GGCTACaatGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 271)






FKBP-237
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYNERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



G113N
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 274)




GGCTACaatGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 273)






FKBP-238
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYNERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



G113N
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 276)



M54A
GGCTACaatGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 275)






FKBP-239
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGtatGATGGCA
YDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGEVIKGWDQGLLGMCEGE



DRD
TTCGTGTTTAGCCTCGGCACCGGCgaaGTGATCAA
KRKLVIPSELGYGERGWPPK



E61Y
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER




GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 278)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 277)






FKBP-240
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGtatGATGGCA
YDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



E61Y
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 280)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 279)






FKBP-241
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGtatGATGGCA
YDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



E61Y
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 282)



M54A
GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 281)






FKBP-242
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGEVIKGWDQGLLGMCEGE



DRD
TTCGTGTTTAGCCTCGGCACCGGCgaaGTGATCAA
KRKLVIPSELGYGERGWSPK



P118S
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER




GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 284)




GGCTACGGCGAAAGAGGCtggtcgCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 283)






FKBP-243
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWSPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



P118S
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 286)




GGCTACGGCGAAAGAGGCtggtcgCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 285)






FKBP-244
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWSPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



P118S
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 288)



M54A
GGCTACGGCGAAAGAGGCtggtcgCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 287)






FKBP-245
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSHLPRNQPFVFSL



A117W
CCGAGTTCGATAGCcatCTGCCTagaAACCAGCCT
GTGEVIKGWDQGLLGMCEGE



DRD
TTCGTGTTTAGCCTCGGCACCGGCgaaGTGATCAA
KRKLVIPSELGYGERGWPPK



S69H
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER




GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 290)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 289)






FKBP-246
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSHLPRNQPFVFSL



A117W
CCGAGTTCGATAGCcatCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



S69H
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 292)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 291)






FKBP-247
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSHLPRNQPFVFSL



A117W
CCGAGTTCGATAGCcatCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



S69H
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 294)



M54A
GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 293)






FKBP-248
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDDSLPRNQPFVFSL



A117W
CCGAGTTCGATgacAGCCTGCCTagaAACCAGCCT
GTGEVIKGWDQGLLGMCEGE



DRD
TTCGTGTTTAGCCTCGGCACCGGCgaaGTGATCAA
KRKLVIPSELGYGERGWPPK



S68D
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER




GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 296)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 295)






FKBP-249
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDDSLPRNQPFVFSL



A117W
CCGAGTTCGATgacAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



S68D
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 298)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 297)






FKBP-250
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGEVIKGWDQGLLGMCEGE



DRD
TTCGTGTTTAGCCTCGGCACCGGCgaaGTGATCAA
KRKLVIPSELGYGERGWPPK



E130F
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFFVELLKIER




GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 300)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCtttGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 299)






FKBP-251
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFFVELLKIER



E130F
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 302)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCtttGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 301)






FKBP-252
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGEVIKGWDQGLLGMCEGE



DRD
TTCGTGTTTAGCCTCGGCACCGGCgaaGTGATCAA
KRKLVIPSELGYGERGWPPK



I136P
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKPER




GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 304)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGccaGAGCGA (SEQ ID NO: 303)






FKBP-253
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKPER



I136P
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 306)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGccaGAGCGA (SEQ ID NO: 305)






FKBP-254
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGEVIKGWDQGLLGMCERE



DRD
TTCGTGTTTAGCCTCGGCACCGGCgaaGTGATCAA
KRKLVIPSELGYGERGWPPK



G99R
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAc
IPGGATLVFEVELLKIER




ggGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 308)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 307)






FKBP-255
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCERE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAc
IPGGATLVFEVELLKIER



G99R
ggGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 310)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 309)






FKBP-256
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIMR



E137M
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 312)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCatgCGA (SEQ ID NO: 311)






FKBP-257
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIFR



E137F
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 314)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCtttCGA (SEQ ID NO: 313)






FKBP-258
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFFVELLKIER



E130F
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 316)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCtttGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 315)






FKBP-259
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFKVELLKIER



E130K
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 318)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCaaaGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 317)






FKBP-260
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTAGAAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCGAAcggATCAA
NRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



K101N
GCGAGaatAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 320)




GGCTACGGCGAAAGAGGCTGGCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 319)






FKBP-261
Q72R,
CACTGCagaATCAAGAGCAGAAAAGGCGACGTGCT
HCRIKSRKGDVLHAHYTGKL



Q84E,
GCACgctCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTAGAAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLYIER



P43R
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 322)



M54A
GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC




K135Y
TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGtacATCGAGCGA (SEQ ID NO: 321)






FKBP-262
Q72R,
CACTGCagaATCAAGAGCAGAAAAGGCGACGTGCT
HCRIKSRKGDVLHMHYTGKL



Q84E,
GCACatgCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTAGAAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLYIER



P43R
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 324)



K135Y
GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGtacATCGAGCGA (SEQ ID NO: 323)






FKBP-263
Q72R,
CACTGCagaATCAAGAGCAGAAAAGGCGACGTGCT
HCRIKSRKGDVLHMHYTGKL



Q84G,
GCACatgCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTAGAAACCAGCCT
GTGGRIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCggacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLYIER



P43R
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 326)



K135Y
GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGtacATCGAGCGA (SEQ ID NO: 325)






FKBP-264
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



S79W,
GCACatgCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFWL



Q84R,
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGRRIKGWDQGLLGMCEGE



A117W
TTCGTGTTTtggCTCGGCACCGGCagacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



V85R
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 328)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 327)






FKBP-265
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



T82W,
GCACatgCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



Q84R,
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GWGRRIKGWDQGLLGMCEGE



A117W
TTCGTGTTTAGCCTCGGCtggGGCagacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



V85R
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 330)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 329)






FKBP-266
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCcttGTGCT
HCPIKSRKGLVLHMHYTGKL



Q84E,
GCACatgCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



D50L
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 332)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 331)






FKBP-267
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACatgCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGWCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAtggTGCGAAG
IPGGATLVFEVELLKIER



M96W
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 334)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 333)






FKBP-268
Q72R,
CACcgtCCAATCAAGAGCAGAAAAGGCGACGTGCT
HRPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
GIPGATLVFEVELLKIER



C42R
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 336)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 335)






FKBP-269
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLQMHYTGKL



Q84E,
GcagATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



H53Q
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 338)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 337)






FKBP-270
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGat
HCPIKSRKGDVMHMHYTGKL



Q84E,
gCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



L52M
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 340)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 339)






FKBP-271
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRRLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



K103R
GCGAGAAGAGAcgtCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 342)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 341)






FKBP-272
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTAGAAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCGAAcggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLLIER



K135L
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 344)




GGCTACGGCGAAAGAGGCTGGCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGttgATCGAGCGA (SEQ ID NO: 343)






FKBP-273
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGGRGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



E114G
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 346)




GGCTACGGCggtAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 345)






FKBP-274
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSKLGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



E109K
GCGAGAAGAGAAAGCTGGTCATCCCTAGCaaaCTC
(SEQ ID NO: 348)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 347)






FKBP-275
Q72R,
CACTGCCCAATCAAGAGCAGAAAAgacGACGTGCT
HCPIKSRKDDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



DRD
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



G49D
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 350)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 349)






FKBP-276
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q74R,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNRPFVFSL



Q84E,
CCGAGTTCGATAGCAGCCTGCCTagaAACagaCCT
GTGERIKGWDQGLLGMCEGE



A117W
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



V85R
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER




GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 352)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 351)






FKBP-277
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q74R,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNRPFVFSL



Q84E,
CCGAGTTCGATAGCAGCCTGCCTagaAACagaCCT
GTGERIKGWDQGLLGMCEGE



A117W
TTCGTGTTTAGCCTCGGCACCGGCGAAcggATCAA
KRKLVIPSELGYGERGWPPK



V85R,
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLYIER



K135Y
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 354)




GGCTACGGCGAAAGAGGCTGGCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGtacATCGAGCGA (SEQ ID NO: 353)






FKBP-278
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q74R,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNRPFVFSL



Q84E,
CCGAGTTCGATAGCAGCCTGCCTagaAACagaCCT
GTGERIKGWDQGLLGMCEGE



A117W
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



V85R,
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFFVELLKIER



E130F
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 356)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCtttGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 355)






FKBP-279
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q74R,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNRPFVFSL



Q84E,
CCGAGTTCGATAGCAGCCTGCCTagaAACagaCCT
GTGERIKGWDQGLLGMCEGE



A117W
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPI



V85R,
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



K120I
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 358)




GGCTACGGCGAAAGAGGCtggCCTCCAatcATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 357)






FKBP-280
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q74R,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNRPFVFSL



Q84E,
CCGAGTTCGATAGCAGCCTGCCTagaAACagaCCT
GTGERIKGWDQGLLGMCEGE



A117W
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPI



V85R,
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLYIER



K135Y,
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 360)



K120I
GGCTACGGCGAAAGAGGCtggCCTCCAatcATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGtacATCGAGCGA (SEQ ID NO: 359)






FKBP-281
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q74R,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNRPFVFSL



Q84E,
CCGAGTTCGATAGCAGCCTGCCTagaAACagaCCT
GTGERIKGWDQGLLGMCEGE



A117W
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPI



V85R,
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFFVELLKIER



E130F,
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 362)



K120I
GGCTACGGCGAAAGAGGCtggCCTCCAatcATTCC





TGGCGGAGCCACACTGGTGTTCtttGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 361)






FKBP-282
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q74W,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNWPFVFSL



Q84E,
CCGAGTTCGATAGCAGCCTGCCTagaAACtggCCT
GTGERIKGWDQGLLGMCEGE



A117W
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



V85R
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER




GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 364)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 363)






FKBP-283
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q74W,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNWPFVFSL



Q84E,
CCGAGTTCGATAGCAGCCTGCCTagaAACtggCCT
GTGERIKGWDQGLLGMCEGE



A117W
TTCGTGTTTAGCCTCGGCACCGGCGAAcggATCAA
KRKLVIPSELGYGERGWPPK



V85R,
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLYIER



K135Y
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 366)




GGCTACGGCGAAAGAGGCTGGCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGtacATCGAGCGA (SEQ ID NO: 365)






FKBP-284
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q74W,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNWPFVFSL



Q84E,
CCGAGTTCGATAGCAGCCTGCCTagaAACtggCCT
GTGERIKGWDQGLLGMCEGE



A117W
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



V85R,
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFFVELLKIER



E130F
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 368)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCtttGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 367)






FKBP-285
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q74W,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNWPFVFSL



Q84E,
CCGAGTTCGATAGCAGCCTGCCTagaAACtggCCT
GTGERIKGWDQGLLGMCEGE



A117W
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPI



V85R,
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER



K120I
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 370)




GGCTACGGCGAAAGAGGCtggCCTCCAatcATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 369)






FKBP-286
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q74W,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNWPFVFSL



Q84E,
CCGAGTTCGATAGCAGCCTGCCTagaAACtggCCT
GTGERIKGWDQGLLGMCEGE



A117W
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPI



V85R,
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLYIER



K135Y,
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 372)



K120I
GGCTACGGCGAAAGAGGCtggCCTCCAatcATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGtacATCGAGCGA (SEQ ID NO: 371)






FKBP-287
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q74W,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNWPFVFSL



Q84E,
CCGAGTTCGATAGCAGCCTGCCTagaAACtggCCT
GTGERIKGWDQGLLGMCEGE



A117W
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPI



V85R,
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFFVELLKIER



E130F,
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 374)



K120I
GGCTACGGCGAAAGAGGCtggCCTCCAatcATTCC





TGGCGGAGCCACACTGGTGTTCtttGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 373)






FKBP-288
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W,
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R,
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPI



K120I
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLKIER




GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 376)




GGCTACGGCGAAAGAGGCtggCCTCCAatcATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 375)






FKBP-289
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W,
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R,
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPI



K120I,
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLYIER



K135Y
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 378)




GGCTACGGCGAAAGAGGCtggCCTCCAatcATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGtacATCGAGCGA (SEQ ID NO: 377)






FKBP-290
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W,
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R,
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPI



K120I,
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFFVELLKIER



E130F
GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 380)




GGCTACGGCGAAAGAGGCtggCCTCCAatcATTCC





TGGCGGAGCCACACTGGTGTTCtttGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 379)






FKBP-291
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W,
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R,
TTCGTGTTTAGCCTCGGCACCGGCgaacggATCAA
KRKLVIPSELGYGERGWPPK



E130N
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFNVELLKIER




GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 382)




GGCTACGGCGAAAGAGGCtggCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCaatGTGGAACTGC





TGAAGATCGAGCGA (SEQ ID NO: 381)






FKBP-292
Q72R,
CACTGCCCAATCAAGAGCAGAAAAGGCGACGTGCT
HCPIKSRKGDVLHMHYTGKL



Q84E,
GCACATGCACTACACCGGCAAGCTGGAAGATGGCA
EDGTEFDSSLPRNQPFVFSL



A117W,
CCGAGTTCGATAGCAGCCTGCCTagaAACCAGCCT
GTGERIKGWDQGLLGMCEGE



V85R,
TTCGTGTTTAGCCTCGGCACCGGCGAAcggATCAA
KRKLVIPSELGYGERGWPPK



K135Q
AGGCTGGGATCAAGGCCTGCTGGGAATGTGCGAAG
IPGGATLVFEVELLQIER




GCGAGAAGAGAAAGCTGGTCATCCCTAGCGAACTC
(SEQ ID NO: 384)




GGCTACGGCGAAAGAGGCTGGCCTCCAAAGATTCC





TGGCGGAGCCACACTGGTGTTCGAAGTGGAACTGC





TGcagATCGAGCGA (SEQ ID NO: 383)
















TABLE 11







Top 30 Drug Responsive Domains (DRDs) for Cas9 Screen










Construct





#
Mutation
Nucleic Acid Sequence
Amino Acid Sequence





FKBP-166
Q72R,
CACTGCCCAATCAAGAGCAGAAAAG
HCPIKSRKGDVLHAHYTGKLEDGTE



S79W,
GCGACGTGCTGCACgctCACTACAC
FDSSLPRNQPFVFWLGTGERIKGWD



Q84E,
CGGCAAGCTGGAAGATGGCACCGAG
QGLLGMCEGEKRKLVIPSELGYGER



A117W
TTCGATAGCAGCCTGCCTagaAACC
GWPPKIPGGATLVFEVELLKIER



DRD
AGCCTTTCGTGTTTtggCTCGGCAC
(SEQ ID NO: 132)



M54A
CGGCgaacggATCAAAGGCTGGGAT




V85R
CAAGGCCTGCTGGGAATGTGCGAAG





GCGAGAAGAGAAAGCTGGTCATCCC





TAGCGAACTCGGCTACGGCGAAAGA





GGCtggCCTCCAAAGATTCCTGGCG





GAGCCACACTGGTGTTCGAAGTGGA





ACTGCTGAAGATCGAGCGA





(SEQ ID NO: 131)






FKBP-167
Q72R,
CACTGCCCAATCAAGAGCAGAAAAG
HCPIKSRKGDVLHAHYTGKLEDGTE



S79W,
GCGACGTGCTGCACgctCACTACAC
FDSSLPRNQPFVFWLGTGRRIKGWD



Q84R,
CGGCAAGCTGGAAGATGGCACCGAG
QGLLGMCEGEKRKLVIPSELGYGER



A117W
TTCGATAGCAGCCTGCCTagaAACC
GWPPKIPGGATLVFEVELLKIER



DRD
AGCCTTTCGTGTTTtggCTCGGCAC
(SEQ ID NO: 134)



M54A
CGGCagacggATCAAAGGCTGGGAT




V85R
CAAGGCCTGCTGGGAATGTGCGAAG





GCGAGAAGAGAAAGCTGGTCATCCC





TAGCGAACTCGGCTACGGCGAAAGA





GGCtggCCTCCAAAGATTCCTGGCG





GAGCCACACTGGTGTTCGAAGTGGA





ACTGCTGAAGATCGAGCGA





(SEQ ID NO: 133)






FKBP-168
Q72R,
CACTGCCCAATCAAGAGCAGAAAAG
HCPIKSRKGDVLHAHYTGKLEDGTE



T82W,
GCGACGTGCTGCACgctCACTACAC
FDSSLPRNQPFVFSLGWGRRIKGWD



Q84R,
CGGCAAGCTGGAAGATGGCACCGAG
QGLLGMCEGEKRKLVIPSELGYGER



A117W
TTCGATAGCAGCCTGCCTagaAACC
GWPPKIPGGATLVFEVELLKIER



DRD
AGCCTTTCGTGTTTAGCCTCGGCtg
(SEQ ID NO: 136)



M54A
gGGCagacggATCAAAGGCTGGGAT




V85R
CAAGGCCTGCTGGGAATGTGCGAAG





GCGAGAAGAGAAAGCTGGTCATCCC





TAGCGAACTCGGCTACGGCGAAAGA





GGCtggCCTCCAAAGATTCCTGGCG





GAGCCACACTGGTGTTCGAAGTGGA





ACTGCTGAAGATCGAGCGA





(SEQ ID NO: 135)






FKBP-170
Q72R,
CACTGCCCAATCAAGAGCAGAAAAG
HCPIKSRKGDVLHAHYTGKLEDGTE



T82W,
GCGACGTGCTGCACgctCACTACAC
FDSSLPRNQPFVFSLGWGERIKGWD



Q84E,
CGGCAAGCTGGAAGATGGCACCGAG
QGLLGMCEGEKRKLVIPSELGYGER



A117W
TTCGATAGCAGCCTGCCTagaAACC
GWPPKIPGGATLVFEVELLKIER



DRD
AGCCTTTCGTGTTTAGCCTCGGCtg
(SEQ ID NO: 140)



M54A
gGGCgaacggATCAAAGGCTGGGAT




V85R
CAAGGCCTGCTGGGAATGTGCGAAG





GCGAGAAGAGAAAGCTGGTCATCCC





TAGCGAACTCGGCTACGGCGAAAGA





GGCtggCCTCCAAAGATTCCTGGCG





GAGCCACACTGGTGTTCGAAGTGGA





ACTGCTGAAGATCGAGCGA





(SEQ ID NO: 139)






FKBP-181
Q72R,
CACTGCCCAATCAAGAGCAGAAAAG
HCPIKSRKGLVLHAHYTGKLEDGTE



Q84E,
GCcttGTGCTGCACgctCACTACAC
FDSSLPRNQPFVFSLGTGERIKGWD



A117W
CGGCAAGCTGGAAGATGGCACCGAG
QGLLGMCEGEKRKLVIPSELGYGER



V85R
TTCGATAGCAGCCTGCCTagaAACC
GWPPKIPGGATLVFEVELLKIER



DRD
AGCCTTTCGTGTTTAGCCTCGGCAC
(SEQ ID NO: 162)



M54A
CGGCgaacggATCAAAGGCTGGGAT




D50L
CAAGGCCTGCTGGGAATGTGCGAAG





GCGAGAAGAGAAAGCTGGTCATCCC





TAGCGAACTCGGCTACGGCGAAAGA





GGCtggCCTCCAAAGATTCCTGGCG





GAGCCACACTGGTGTTCGAAGTGGA





ACTGCTGAAGATCGAGCGA





(SEQ ID NO: 161)






FKBP-182
Q72R,
CACTGCCCAATCAAGAGCAGAAAAG
HCPIKSRKGDVLHAHYTGKLEDGTE



Q84E,
GCGACGTGCTGCACgctCACTACAC
FDSSLPRNQPFVFSLGTGERIKGWD



A117W
CGGCAAGCTGGAAGATGGCACCGAG
QGLLGWCEGEKRKLVIPSELGYGER



V85R
TTCGATAGCAGCCTGCCTagaAACC
GWPPKIPGGATLVFEVELLKIER



DRD
AGCCTTTCGTGTTTAGCCTCGGCAC
(SEQ ID NO: 164)



M54A
CGGCgaacggATCAAAGGCTGGGAT




M96W
CAAGGCCTGCTGGGAtggTGCGAAG





GCGAGAAGAGAAAGCTGGTCATCCC





TAGCGAACTCGGCTACGGCGAAAGA





GGCtggCCTCCAAAGATTCCTGGCG





GAGCCACACTGGTGTTCGAAGTGGA





ACTGCTGAAGATCGAGCGA





(SEQ ID NO: 163)






FKBP-191
Q72R,
CACTGCCCAATCAAGAGCAGAAAAt
HCPIKSRKSDVLHMHYTGKLEDGTE



Q84E,
ccGACGTGCTGCACATGCACTACAC
FDSSLPRNQPFVFSLGTGERIKGWD



A117W
CGGCAAGCTGGAAGATGGCACCGAG
QGLLGMCEGEKRKLVIPSELGYGER



V85R
TTCGATAGCAGCCTGCCTAGAAACC
GWPPKIPGGATLVFEVELLKIER



DRD
AGCCTTTCGTGTTTAGCCTCGGCAC
(SEQ ID NO: 182)



G49S
CGGCGAAcggATCAAAGGCTGGGAT





CAAGGCCTGCTGGGAATGTGCGAAG





GCGAGAAGAGAAAGCTGGTCATCCC





TAGCGAACTCGGCTACGGCGAAAGA





GGCTGGCCTCCAAAGATTCCTGGCG





GAGCCACACTGGTGTTCGAAGTGGA





ACTGCTGAAGATCGAGCGA





(SEQ ID NO: 181)






FKBP-192
Q72R,
CACTGCCCAATCAAGAGCAGAAAAG
HCPIKSRKGDVLHMHYTGKLEDGTE



Q84E,
GCGACGTGCTGCACATGCACTACAC
FDSSLPRNQLFVFSLGTGERIKGWD



A117W
CGGCAAGCTGGAAGATGGCACCGAG
QGLLGMCEGEKRKLVIPSELGYGER



V85R
TTCGATAGCAGCCTGCCTAGAAACC
GWPPKIPGGATLVFEVELLKIER



DRD
AGctgTTCGTGTTTAGCCTCGGCAC
(SEQ ID NO: 184)



P75L
CGGCGAAcggATCAAAGGCTGGGAT





CAAGGCCTGCTGGGAATGTGCGAAG





GCGAGAAGAGAAAGCTGGTCATCCC





TAGCGAACTCGGCTACGGCGAAAGA





GGCTGGCCTCCAAAGATTCCTGGCG





GAGCCACACTGGTGTTCGAAGTGGA





ACTGCTGAAGATCGAGCGA





(SEQ ID NO: 183)






FKBP-195
Q72R,
CACTGCCCAATCAAGAGCAGAAAAG
HCPIKSRKGDVLHMHYTGKLEDGTE



Q84E,
GCGACGTGCTGCACATGCACTACAC
FDSSLPRNQPFVFSLGTGERIKGWD



A117W
CGGCAAGCTGGAAGATGGCACCGAG
QGLLGMCEGEKRKLVIPSELGYGER



V85R
TTCGATAGCAGCCTGCCTAGAAACC
GWPPKIPGGATLVFEVELLYIER



DRD
AGCCTTTCGTGTTTAGCCTCGGCAC
(SEQ ID NO: 190)



K135Y
CGGCGAAcggATCAAAGGCTGGGAT





CAAGGCCTGCTGGGAATGTGCGAAG





GCGAGAAGAGAAAGCTGGTCATCCC





TAGCGAACTCGGCTACGGCGAAAGA





GGCTGGCCTCCAAAGATTCCTGGCG





GAGCCACACTGGTGTTCGAAGTGGA





ACTGCTGtacATCGAGCGA





(SEQ ID NO: 189)






FKBP-197
Q72R,
CACTGCCCAATCAAGAGCAGAAAAG
HCPIKSRKGDVLHMHYTGKLEDGTE



Q84E,
GCGACGTGCTGCACATGCACTACAC
FDSSLPRNQPFVFSLGTGERIKGWD



A117W
CGGCAAGCTGGAAGATGGCACCGAG
QGLLGMCEGEKRKLVIPSELGYGER



V85R
TTCGATAGCAGCCTGCCTAGAAACC
GWPPKIPGGATLVFRVELLKIER



DRD
AGCCTTTCGTGTTTAGCCTCGGCAC
(SEQ ID NO: 194)



E130R
CGGCGAAcggATCAAAGGCTGGGAT





CAAGGCCTGCTGGGAATGTGCGAAG





GCGAGAAGAGAAAGCTGGTCATCCC





TAGCGAACTCGGCTACGGCGAAAGA





GGCTGGCCTCCAAAGATTCCTGGCG





GAGCCACACTGGTGTTCagaGTGGA





ACTGCTGAAGATCGAGCGA





(SEQ ID NO: 193)



FKBP-198
Q72R,
CACTGCCCAATCAAGAGCAGAAAAG
HCPIKSRKGDVLHMHYTGKLEDGTE



Q84E,
GCGACGTGCTGCACATGCACTACAC
FDSSLPRNQPFVFSLGTGERIKGWD



A117W
CGGCAAGCTGGAAGATGGCACCGAG
QGLLGMCEGEWRKLVIPSELGYGER



V85R
TTCGATAGCAGCCTGCCTAGAAACC
GWPPKIPGGATLVFEVELLKIER



DRD
AGCCTTTCGTGTTTAGCCTCGGCAC
(SEQ ID NO: 196)



K101W
CGGCGAACggATCAAAGGCTGGGAT





CAAGGCCTGCTGGGAATGTGCGAAG





GCGAGtggAGAAAGCTGGTCATCCC





TAGCGAACTCGGCTACGGCGAAAGA





GGCTGGCCTCCAAAGATTCCTGGCG





GAGCCACACTGGTGTTCGAAGTGGA





ACTGCTGAAGATCGAGCGA





(SEQ ID NO: 195)






FKBP-199
Q72R,
CACTGCCCAATCAAGAGCAGAAAAG
HCPIKSRKGDVLHMHYTGKLEDGTE



Q84E,
GCGACGTGCTGCACATGCACTACAC
FDSSLPRNQPFVFSLGTGERIKGWD



A117W
CGGCAAGCTGGAAGATGGCACCGAG
QGLLGMCLGEKRKLVIPSELGYGER



V85R
TTCGATAGCAGCCTGCCTAGAAACC
GWPPKIPGGATLVFEVELLKIER



DRD
AGCCTTTCGTGTTTAGCCTCGGCAC
(SEQ ID NO: 198)



E98L
CGGCGAAcggATCAAAGGCTGGGAT





CAAGGCCTGCTGGGAATGTGCttgG





GCGAGAAGAGAAAGCTGGTCATCCC





TAGCGAACTCGGCTACGGCGAAAGA





GGCTGGCCTCCAAAGATTCCTGGCG





GAGCCACACTGGTGTTCGAAGTGGA





ACTGCTGAAGATCGAGCGA





(SEQ ID NO: 197)






FKBP-200
Q72R,
CACTGCCCAATCAAGAGCAGAAAAG
HCPIKSRKGDVLHMHYTGKLESGTE



Q84E,
GCGACGTGCTGCACATGCACTACAC
FDSSLPRNQPFVFSLGTGERIKGWD



A117W
CGGCAAGCTGGAAtctGGCACCGAG
QGLLGMCEGEKRKLVIPSELGYGER



V85R
TTCGATAGCAGCCTGCCTAGAAACC
GWPPKIPGGATLVFEVELLKIER



DRD
AGCCTTTCGTGTTTAGCCTCGGCAC
(SEQ ID NO: 200)



D62S
CGGCGAAcggATCAAAGGCTGGGAT





CAAGGCCTGCTGGGAATGTGCGAAG





GCGAGAAGAGAAAGCTGGTCATCCC





TAGCGAACTCGGCTACGGCGAAAGA





GGCTGGCCTCCAAAGATTCCTGGCG





GAGCCACACTGGTGTTCGAAGTGGA





ACTGCTGAAGATCGAGCGA





(SEQ ID NO: 199)






FKBP-201
Q72R,
CACTGCCCAATCAAGAGCAGAAAAG
HCPIKSRKGDVLLMHYTGKLEDGTE



Q84E,
GCGACGTGCTGttgATGCACTACAC
FDSSLPRNQPFVFSLGTGERIKGWD



A117W
CGGCAAGCTGGAAGATGGCACCGAG
QGLLGMCEGEKRKLVIPSELGYGER



V85R
TTCGATAGCAGCCTGCCTAGAAACC
GWPPKIPGGATLVFEVELLKIER



DRD
AGCCTTTCGTGTTTAGCCTCGGCAC
(SEQ ID NO: 202)



H53L
CGGCGAAcggATCAAAGGCTGGGAT





CAAGGCCTGCTGGGAATGTGCGAAG





GCGAGAAGAGAAAGCTGGTCATCCC





TAGCGAACTCGGCTACGGCGAAAGA





GGCTGGCCTCCAAAGATTCCTGGCG





GAGCCACACTGGTGTTCGAAGTGGA





ACTGCTGAAGATCGAGCGA





(SEQ ID NO: 201)






FKBP-203
Q72R,
CACTGCCCAATCAAGAGCAGAAAAG
HCPIKSRKGDVLHAHYTGKLEDGTE



Q84E,
GCGACGTGCTGCACgctCACTACAC
FDSSLPRNQLFVFSLGTGERIKGWD



A117W
CGGCAAGCTGGAAGATGGCACCGAG
QGLLGMCEGEKRKLVIPSELGYGER



V85R
TTCGATAGCAGCCTGCCTAGAAACC
GWPPKIPGGATLVFEVELLKIER



DRD
AGctgTTCGTGTTTAGCCTCGGCAC
(SEQ ID NO: 206)



M54A
CGGCGAAcggATCAAAGGCTGGGAT




P75L
CAAGGCCTGCTGGGAATGTGCGAAG





GCGAGAAGAGAAAGCTGGTCATCCC





TAGCGAACTCGGCTACGGCGAAAGA





GGCTGGCCTCCAAAGATTCCTGGCG





GAGCCACACTGGTGTTCGAAGTGGA





ACTGCTGAAGATCGAGCGA





(SEQ ID NO: 205)






FKBP-209
Q72R,
CACTGCCCAATCAAGAGCAGAAAAG
HCPIKSRKGDVLHAHYTGKLEDGTE



Q84E,
GCGACGTGCTGCACgctCACTACAC
FDSSLPRNQPFVFSLGTGERIKGWD



A117W
CGGCAAGCTGGAAGATGGCACCGAG
QGLLGMCEGEWRKLVIPSELGYGER



V85R
TTCGATAGCAGCCTGCCTAGAAACC
GWPPKIPGGATLVFEVELLKIER



DRD
AGCCTTTCGTGTTTAGCCTCGGCAC
(SEQ ID NO: 218)



M54A
CGGCGAAcggATCAAAGGCTGGGAT




K101W
CAAGGCCTGCTGGGAATGTGCGAAG





GCGAGtggAGAAAGCTGGTCATCCC





TAGCGAACTCGGCTACGGCGAAAGA





GGCTGGCCTCCAAAGATTCCTGGCG





GAGCCACACTGGTGTTCGAAGTGGA





ACTGCTGAAGATCGAGCGA





(SEQ ID NO: 217)






FKBP-214
Q72R,
CACTGCagaATCAAGAGCAGAAAAG
HCRIKSRKGDVLHAHYTGKLEDGTE



Q84G,
GCGACGTGCTGCACgctCACTACAC
FDSSLPRNQPFVFSLGTGGRIKGWD



A117W
CGGCAAGCTGGAAGATGGCACCGAG
QGLLGMCEGEKRKLVIPSELGYGER



V85R
TTCGATAGCAGCCTGCCTAGAAACC
GWPPKIPGGATLVFEVELLKIER



DRD
AGCCTTTCGTGTTTAGCCTCGGCAC
(SEQ ID NO: 228)



P43R
CGGCggacggATCAAAGGCTGGGAT




M54A
CAAGGCCTGCTGGGAATGTGCGAAG





GCGAGAAGAGAAAGCTGGTCATCCC





TAGCGAACTCGGCTACGGCGAAAGA





GGCtggCCTCCAAAGATTCCTGGCG





GAGCCACACTGGTGTTCGAAGTGGA





ACTGCTGAAGATCGAGCGA





(SEQ ID NO: 227)






FKBP-215
Q72R,
CACTGCagaATCAAGAGCAGAAAAG
HCRIKSRKGDVLHAHYTGKLEDGTE



Q84G,
GCGACGTGCTGCACgctCACTACAC
FDSSLPRNQPFVFSLGTGGRIKGWD



A117W
CGGCAAGCTGGAAGATGGCACCGAG
QGLLGMCEGEKRKLVIPSELGYGER



V85R
TTCGATAGCAGCCTGCCTAGAAACC
GWPPKIPGGATLVFEVELLYIER



DRD
AGCCTTTCGTGTTTAGCCTCGGCAC
(SEQ ID NO: 230)



P43R
CGGCggacggATCAAAGGCTGGGAT




M54A
CAAGGCCTGCTGGGAATGTGCGAAG




K135Y
GCGAGAAGAGAAAGCTGGTCATCCC





TAGCGAACTCGGCTACGGCGAAAGA





GGCtggCCTCCAAAGATTCCTGGCG





GAGCCACACTGGTGTTCGAAGTGGA





ACTGCTGtacATCGAGCGA





(SEQ ID NO: 229)






FKBP-220
Q72R,
CACTGCCCAATCAAGAGCAGAAAAG
HCPIKSRKGDVLHMHYTGKLEDGGE



Q84E,
GCGACGTGCTGCACATGCACTACAC
FDSSLPRNQPFVFSLGTGERIKGWD



A117W
CGGCAAGCTGGAAGATGGCgggGAG
QGLLGMCEGEKRKLVIPSELGYGER



V85R
TTCGATAGCAGCCTGCCTAGAAACC
GWPPKIPGGATLVFEVELLKIER



DRD
AGCCTTTCGTGTTTAGCCTCGGCAC
(SEQ ID NO: 240)



T25G
CGGCGAAcggATCAAAGGCTGGGAT





CAAGGCCTGCTGGGAATGTGCGAAG





GCGAGAAGAGAAAGCTGGTCATCCC





TAGCGAACTCGGCTACGGCGAAAGA





GGCTGGCCTCCAAAGATTCCTGGCG





GAGCCACACTGGTGTTCGAAGTGGA





ACTGCTGAAGATCGAGCGA





(SEQ ID NO: 239)






FKBP-223
Q72R,
CACTGCtggATCAAGAGCAGAAAAG
HCWIKSRKGDVLHAHYTGKLEDGRE



Q84E,
GCGACGTGCTGCACgctCACTACAC
FDSSLPRNQPFVFSLGTGERIKGWD



A117W
CGGCAAGCTGGAAGATGGCcggGAG
QGLLGMCEGEKRKLVIPSELGYGER



V85R
TTCGATAGCAGCCTGCCTAGAAACC
GWPPKIPGGATLVFEVELLKIER



DRD
AGCCTTTCGTGTTTAGCCTCGGCAC
(SEQ ID NO: 246)



M54A
CGGCGAAcggATCAAAGGCTGGGAT




P4W
CAAGGCCTGCTGGGAATGTGCGAAG




T25R
GCGAGAAGAGAAAGCTGGTCATCCC





TAGCGAACTCGGCTACGGCGAAAGA





GGCTGGCCTCCAAAGATTCCTGGCG





GAGCCACACTGGTGTTCGAAGTGGA





ACTGCTGAAGATCGAGCGA





(SEQ ID NO: 245)






FKBP-226
Q72R,
CACTGCagaATCAAGAGCAGAAAAG
HCRIKSRKGDVLHAHYTGKLEDGTE



Q84E,
GCGACGTGCTGCACgctCACTACAC
FDSSLPRNQPFVFSLGTGERIKGWD



A117W
CGGCAAGCTGGAAGATGGCACCGAG
QGLLGMCEGEKRKLVIPSELGYGER



V85R
TTCGATAGCAGCCTGCCTAGAAACC
GWPPKIPGGATLVFEVELLKIER



DRD
AGCCTTTCGTGTTTAGCCTCGGCAC
(SEQ ID NO: 252)



P43R
CGGCgaacggATCAAAGGCTGGGAT




M54A
CAAGGCCTGCTGGGAATGTGCGAAG





GCGAGAAGAGAAAGCTGGTCATCCC





TAGCGAACTCGGCTACGGCGAAAGA





GGCtggCCTCCAAAGATTCCTGGCG





GAGCCACACTGGTGTTCGAAGTGGA





ACTGCTGAAGATCGAGCGA





(SEQ ID NO: 251)






FKBP-228
Q72R,
CACTGCCCAATCAAGAGCAGAAAAG
HCPIKSRKGDVLHMHYTGKLEDGTE



Q84E,
GCGACGTGCTGCACATGCACTACAC
FDSSLPRNQPFVFSLGTGERIKGWD



A117W
CGGCAAGCTGGAAGATGGCACCGAG
QGLLGMCEGEKRKLVIPSELGYGER



V85R
TTCGATAGCAGCCTGCCTagaAACC
GWPPKIPGGATLVFEVELLKIRR



DRD
AGCCTTTCGTGTTTAGCCTCGGCAC
(SEQ ID NO: 256)



E137R
CGGCgaacggATCAAAGGCTGGGAT





CAAGGCCTGCTGGGAATGTGCGAAG





GCGAGAAGAGAAAGCTGGTCATCCC





TAGCGAACTCGGCTACGGCGAAAGA





GGCtggCCTCCAAAGATTCCTGGCG





GAGCCACACTGGTGTTCGAAGTGGA





ACTGCTGAAGATCaggCGA





(SEQ ID NO: 255)






FKBP-229
Q72R,
CACTGCCCAATCAAGAGCAGAAAAG
HCPIKSRKGDVLHAHYTGKLEDGTE



Q84E,
GCGACGTGCTGCACgctCACTACAC
FDSSLPRNQPFVFSLGTGERIKGWD



A117W
CGGCAAGCTGGAAGATGGCACCGAG
QGLLGMCEGEKRKLVIPSELGYGER



V85R
TTCGATAGCAGCCTGCCTagaAACC
GWPPKIPGGATLVFEVELLKIRR



DRD
AGCCTTTCGTGTTTAGCCTCGGCAC
(SEQ ID NO: 258)



E137R
CGGCgaacggATCAAAGGCTGGGAT




M54A
CAAGGCCTGCTGGGAATGTGCGAAG





GCGAGAAGAGAAAGCTGGTCATCCC





TAGCGAACTCGGCTACGGCGAAAGA





GGCtggCCTCCAAAGATTCCTGGCG





GAGCCACACTGGTGTTCGAAGTGGA





ACTGCTGAAGATCaggCGA





(SEQ ID NO: 257)






FKBP-230
Q72R,
CACTGCCCAATCAAGAGCAGAAAAG
HCPIKSRKGDVLHMHYTGKLEDMTE



Q84E,
GCGACGTGCTGCACATGCACTACAC
FDSSLPRNQPFVFSLGTGEVIKGWD



A117W
CGGCAAGCTGGAAGATATGACCGAG
QGLLGMCEGEKRKLVIPSELGYGER



DRD
TTCGATAGCAGCCTGCCTagaAACC
GWPPKIPGGATLVFEVELLKIER



G63M
AGCCTTTCGTGTTTAGCCTCGGCAC
(SEQ ID NO: 260)




CGGCgaaGTGATCAAAGGCTGGGAT





CAAGGCCTGCTGGGAATGTGCGAAG





GCGAGAAGAGAAAGCTGGTCATCCC





TAGCGAACTCGGCTACGGCGAAAGA





GGCtggCCTCCAAAGATTCCTGGCG





GAGCCACACTGGTGTTCGAAGTGGA





ACTGCTGAAGATCGAGCGA





(SEQ ID NO: 259)






FKBP-233
Q72R,
CACTGCCCAATCAAGAGCAGAAAAG
HCPIKSRKGDVLHMHYTGKLEDGTE



Q84E,
GCGACGTGCTGCACATGCACTACAC
FDSSLPRNQPFVFSLGTGEVIKGWT



A117W
CGGCAAGCTGGAAGATGGCACCGAG
QGLLGMCEGEKRKLVIPSELGYGER



DRD
TTCGATAGCAGCCTGCCTagaAACC
GWPPKIPGGATLVFEVELLKIER



D90T
AGCCTTTCGTGTTTAGCCTCGGCAC
(SEQ ID NO: 266)




CGGCgaaGTGATCAAAGGCTGGacg





CAAGGCCTGCTGGGAATGTGCGAAG





GCGAGAAGAGAAAGCTGGTCATCCC





TAGCGAACTCGGCTACGGCGAAAGA





GGCtggCCTCCAAAGATTCCTGGCG





GAGCCACACTGGTGTTCGAAGTGGA





ACTGCTGAAGATCGAGCGA





(SEQ ID NO: 265)






FKBP-240
Q72R,
CACTGCCCAATCAAGAGCAGAAAAG
HCPIKSRKGDVLHMHYTGKLYDGTE



Q84E,
GCGACGTGCTGCACATGCACTACAC
FDSSLPRNQPFVFSLGTGERIKGWD



A117W
CGGCAAGCTGtatGATGGCACCGAG
QGLLGMCEGEKRKLVIPSELGYGER



V85R
TTCGATAGCAGCCTGCCTagaAACC
GWPPKIPGGATLVFEVELLKIER



DRD
AGCCTTTCGTGTTTAGCCTCGGCAC
(SEQ ID NO: 280)



E61Y
CGGCgaacggATCAAAGGCTGGGAT





CAAGGCCTGCTGGGAATGTGCGAAG





GCGAGAAGAGAAAGCTGGTCATCCC





TAGCGAACTCGGCTACGGCGAAAGA





GGCtggCCTCCAAAGATTCCTGGCG





GAGCCACACTGGTGTTCGAAGTGGA





ACTGCTGAAGATCGAGCGA





(SEQ ID NO: 279)






FKBP-243
Q72R,
CACTGCCCAATCAAGAGCAGAAAAG
HCPIKSRKGDVLHMHYTGKLEDGTE



Q84E,
GCGACGTGCTGCACATGCACTACAC
FDSSLPRNQPFVFSLGTGERIKGWD



A117W
CGGCAAGCTGGAAGATGGCACCGAG
QGLLGMCEGEKRKLVIPSELGYGER



V85R
TTCGATAGCAGCCTGCCTagaAACC
GWSPKIPGGATLVFEVELLKIER



DRD
AGCCTTTCGTGTTTAGCCTCGGCAC
(SEQ ID NO: 286)



P118S
CGGCgaacggATCAAAGGCTGGGAT





CAAGGCCTGCTGGGAATGTGCGAAG





GCGAGAAGAGAAAGCTGGTCATCCC





TAGCGAACTCGGCTACGGCGAAAGA





GGCtggtcgCCAAAGATTCCTGGCG





GAGCCACACTGGTGTTCGAAGTGGA





ACTGCTGAAGATCGAGCGA





(SEQ ID NO: 285)






FKBP-244
Q72R,
CACTGCCCAATCAAGAGCAGAAAAG
HCPIKSRKGDVLHAHYTGKLEDGTE



Q84E,
GCGACGTGCTGCACgctCACTACAC
FDSSLPRNQPFVFSLGTGERIKGWD



A117W
CGGCAAGCTGGAAGATGGCACCGAG
QGLLGMCEGEKRKLVIPSELGYGER



V85R
TTCGATAGCAGCCTGCCTagaAACC
GWSPKIPGGATLVFEVELLKIER



DRD
AGCCTTTCGTGTTTAGCCTCGGCAC
(SEQ ID NO: 288)



P118S
CGGCgaacggATCAAAGGCTGGGAT




M54A
CAAGGCCTGCTGGGAATGTGCGAAG





GCGAGAAGAGAAAGCTGGTCATCCC





TAGCGAACTCGGCTACGGCGAAAGA





GGCtggtcgCCAAAGATTCCTGGCG





GAGCCACACTGGTGTTCGAAGTGGA





ACTGCTGAAGATCGAGCGA





(SEQ ID NO: 287)






FKBP-251
Q72R,
CACTGCCCAATCAAGAGCAGAAAAG
HCPIKSRKGDVLHMHYTGKLEDGTE



Q84E,
GCGACGTGCTGCACATGCACTACAC
FDSSLPRNQPFVFSLGTGERIKGWD



A117W
CGGCAAGCTGGAAGATGGCACCGAG
QGLLGMCEGEKRKLVIPSELGYGER



V85R
TTCGATAGCAGCCTGCCTagaAACC
GWPPKIPGGATLVFFVELLKIER



DRD
AGCCTTTCGTGTTTAGCCTCGGCAC
(SEQ ID NO: 302)



E130F
CGGCgaacggATCAAAGGCTGGGAT





CAAGGCCTGCTGGGAATGTGCGAAG





GCGAGAAGAGAAAGCTGGTCATCCC





TAGCGAACTCGGCTACGGCGAAAGA





GGCtggCCTCCAAAGATTCCTGGCG





GAGCCACACTGGTGTTCtttGTGGA





ACTGCTGAAGATCGAGCGA





(SEQ ID NO: 301)






FKBP-255
Q72R,
CACTGCCCAATCAAGAGCAGAAAAG
HCPIKSRKGDVLHMHYTGKLEDGTE



Q84E,
GCGACGTGCTGCACATGCACTACAC
FDSSLPRNQPFVFSLGTGERIKGWD



A117W
CGGCAAGCTGGAAGATGGCACCGAG
QGLLGMCEREKRKLVIPSELGYGER



V85R
TTCGATAGCAGCCTGCCTagaAACC
GWPPKIPGGATLVFEVELLKIER



DRD
AGCCTTTCGTGTTTAGCCTCGGCAC
(SEQ ID NO: 310)



G99R
CGGCgaacggATCAAAGGCTGGGAT





CAAGGCCTGCTGGGAATGTGCGAAc





ggGAGAAGAGAAAGCTGGTCATCCC





TAGCGAACTCGGCTACGGCGAAAGA





GGCtggCCTCCAAAGATTCCTGGCG





GAGCCACACTGGTGTTCGAAGTGGA





ACTGCTGAAGATCGAGCGA





(SEQ ID NO: 309)
















TABLE 12







Ec50 and Ec90 Values for FKBP Constructs 160-255
















EC50

EC90



Construct
Mutation
EC50
(Norm)
EC90
(Norm)
FC
















FKBP-160
Q72R, Q84E, A117W
0.0108
0.0111
0.04223
0.04824
25.7



V85R DRD M54A


FKBP-161
Q72R, Q84E, A117W
0.0688
0.0694
0.512
0.5411
32.3



DRD M54S V85R


FKBP-162
Q72R, Q84E, A117W
0.2282
0.2293
1.796
1.874
46.6



DRD M54A, del c-term R



V85R


FKBP-163
Q72R, Q84E, A117W
0.1345
0.1459
0.7563
1.008
29.4



DRD M54A, M96V V85R


FKBP-164
Q72R, Q84E, A117W
0.1370
0.1377
0.5804
0.621
42.7



DRD M54A, P118V V85R


FKBP-165
Q72R, Q84E, A117W
0.2582
0.2606
0.9695
0.9835
47.6



DRD M54A, P119V V85R


FKBP-166
Q72R, S79W, Q84E,
0.0434
0.0439
0.2197
0.2226
46.0



A117W DRD M54A



V85R


FKBP-167
Q72R, S79W, Q84R,
0.0706
0.0694
0.3478
0.3345
46.8



A117W DRD M54A



V85R


FKBP-168
Q72R, T82W, Q84R,
0.0637
0.0646
0.3419
0.3511
60.2



A117W DRD M54A



V85R


FKBP-169
Q72R, T82W, Q84E,
0.0990
0.1031
0.4484
0.4929
50.1



A117W DRD M54A


FKBP-170
Q72R, T82W, Q84E,
0.0304
0.0307
0.1333
0.1384
47.6



A117W DRD M54A



V85R


FKBP-171
Q72R, Q84E, A117W
1.7340
1.9160
8.161
10.14
60.3



DRD M54A D50L


FKBP-172
Q72R, Q84E, A117W
0.1556
0.1633
1.046
1.306
63.1



DRD M54A M96W


FKBP-173
Q72R, Q84E, A117W
ND
ND
ND
ND
4



DRD M54A L133G


FKBP-174
Q72R, Q84E, A117W
ND
ND
ND
ND
0.9



DRD M54A S36G, V131G


FKBP-175
Q72R, Q84E, A117W
ND
ND
ND
ND
7.25



DRD M54A D50L, T57I,



I136L


FKBP-176
Q72R, Q84E, A117W
ND
ND
ND
ND
6.8



DRD M54A G116E


FKBP-177
Q72R, Q84E, A117W
4.3770
5.0700
18.68
23.86
22.3



DRD M54A L80G


FKBP-178
Q72R, Q84E, A117W
4.2870
4.9830
22.34
28.45
36.4



DRD M54A F78S


FKBP-179
Q72R, Q84E, A117W
ND
ND
ND
ND
3.1



DRD M54A H53G, R72L


FKBP-180
Q72R, Q84E, A117W
ND
ND
ND
ND
1.2



DRD M54A F129T


FKBP-181
Q72R, Q84E, A117W
0.5021
0.7223
14.08
5.057
52.0



V85R DRD M54A D50L


FKBP-182
Q72R, Q84E, A117W
0.1341
0.1386
0.8185
0.9284
64.9



V85R DRD M54A M96W


FKBP-183
Q72R, Q84E, A117W
ND
ND
ND
ND
4



V85R DRD M54A L133G


FKBP-184
Q72R, Q84E, A117W
ND
ND
ND
ND
1



V85R DRD M54A S36G,



V131G


FKBP-185
Q72R, Q84E, A117W
4.9530
5.1490
22.09
23.43
40.2



V85R DRD M54A D50L,



T57I, I136L


FKBP-186
Q72R, Q84E, A117W
4.3280
4.8370
17.92
20.96
19.0



V85R DRD M54A G116E


FKBP-187
Q72R, Q84E, A117W
3.2900
4.1920
14.51
21.3
24.0



V85R DRD M54A L80G


FKBP-188
Q72R, Q84E, A117W
3.6930
4.2970
16.58
20.82
20.5



V85R DRD M54A F78S


FKBP-189
Q72R, Q84E, A117W
6.0780
6.7900
25.83
30.11
23.0



V85R DRD M54A H53G,



R72L


FKBP-190
Q72R, Q84E, A117W
ND
ND
ND
ND
0.9



V85R DRD M54A F129T


FKBP-191
Q72R, Q84E, A117W
0.0624
0.0637
0.3666
0.3909
50.6



V85R DRD G49S


FKBP-192
Q72R, Q84E, A117W
0.0430
0.0421
0.2295
0.2278
55.0



V85R DRD P75L


FKBP-193
Q72R, Q84E, A117W
2.7020
2.9430
13.03
14.95
37.8



V85R DRD D90A


FKBP-194
Q72R, Q84E, A117W
0.0200
0.0218
0.1021
0.1216
24.8



V85R DRD L104V


FKBP-195
Q72R, Q84E, A117W
0.0342
0.0325
0.1648
0.1397
50.1



V85R DRD K135Y


FKBP-196
Q72R, Q84E, A117W
0.0239
0.0236
0.1147
0.113
34.7



V85R DRD I136V


FKBP-197
Q72R, Q84E, A117W
0.2129
0.2174
1.089
1.192
101.1



V85R DRD E130R


FKBP-198
Q72R, Q84E, A117W
0.0441
0.0445
0.2529
0.2739
54.3



V85R DRD K101W


FKBP-199
Q72R, Q84E, A117W
0.0187
0.0189
0.07171
0.06753
27.1



V85R DRD E98L


FKBP-200
Q72R, Q84E, A117W
0.0313
0.0304
0.1605
0.1502
33.9



V85R DRD D62S


FKBP-201
Q72R, Q84E, A117W
0.0382
0.0386
0.1438
0.1534
33.1



V85R DRD H53L


FKBP-202
Q72R, Q84E, A117W
0.1723
0.1715
1.01
1.064
46.2



V85R DRD M54A G49S


FKBP-203
Q72R, Q84E, A117W
0.1195
0.1237
0.6571
0.7471
66.0



V85R DRD M54A P75L


FKBP-204
Q72R, Q84E, A117W
4.1050
4.1760
15.17
15.46
37.9



V85R DRD M54A D90A


FKBP-205
Q72R, Q84E, A117W
0.0360
0.0363
0.1829
0.1837
30.1



V85R DRD M54A L104V


FKBP-206
Q72R, Q84E, A117W
0.1123
0.1066
0.5731
0.55
50.1



V85R DRD M54A K135Y


FKBP-207
Q72R, Q84E, A117W
0.0520
0.0513
0.3107
0.3019
35.4



V85R DRD M54A I136V


FKBP-208
Q72R, Q84E, A117W
0.6309
0.6251
4.225
4.118
87.2



V85R DRD M54A E130R


FKBP-209
Q72R, Q84E, A117W
0.0904
0.0923
0.6816
0.7774
56.0



V85R DRD M54A



K101W


FKBP-210
Q72R, Q84E, A117W
0.0449
0.0466
0.1908
0.2076
32.8



V85R DRD M54A E98L


FKBP-211
Q72R, Q84E, A117W
0.0781
0.0799
0.4518
0.4813
35.7



V85R DRD M54A D62S


FKBP-212
Q72R, Q84E, A117W
0.0704
0.0726
0.2987
0.317
40.2



V85R DRD M54A H53L


FKBP-213
Q72R, Q84G, A117W
0.0124
0.0123
0.0474
0.04697
28.8



V85R DRD P43R M54A


FKBP-214
Q72R, Q84G, A117W
0.0908
0.0900
0.3885
0.3896
51.0



V85R DRD P43R M54A



K135Y


FKBP-215
Q72R, Q84G, A117W
0.0908
0.0900
0.3885
0.3896
51.0



V85R DRD P43R M54A



K135Y


FKBP-216
Q72R, Q84E, A117W
3.0360
3.0740
14.1
14.51
27.6



DRD M54A E61Y,



K101W, K135Y


FKBP-217
Q72R, Q84E, A117W
3.0730
3.2400
16.13
17.46
36.8



V85R DRD M54A E61Y,



K101W, K135Y


FKBP-218
Q72R, Q84E, A117W
ND
ND
ND
ND
4.46



DRD M54A, E61G,



K101G, K135E


FKBP-219
Q72R, Q84E, A117W
ND
ND
ND
ND
5.4



V85R DRD M54A E61G,



K101G, K135E


FKBP-220
Q72R, Q84E, A117W
0.0309
0.0312
0.1564
0.1652
34.2



V85R DRD T25G


FKBP-221
Q72R, Q84E, A117W
0.0854
0.0890
0.4948
0.5667
41.8



V85R DRD M54A T25G


FKBP-222
Q72R, Q84E, A117W
0.1279
0.1260
0.6124
0.6017
40.6



DRD P4W T25R


FKBP-223
Q72R, Q84E, A117W
0.1103
0.1129
0.6741
0.7131
52.5



V85R DRD M54A P4W



T25R


FKBP-224
Q72R, Q84E, A117W
0.0184
0.0192
0.07859
0.08874
5.2



DRD P43R


FKBP-225
Q72R, Q84E, A117W
0.0078
0.0078
0.02535
0.02601
20.6



V85R DRD P43R


FKBP-226
Q72R, Q84E, A117W
0.0132
0.0133
0.04459
0.04697
31.5



V85R DRD P43R M54A


FKBP-227
Q72R, Q84E, A117W
0.0563
0.0553
0.2928
0.2782
29.0



DRD E137R


FKBP-228
Q72R, Q84E, A117W
0.0186
0.0188
0.1163
0.1242
55.1



V85R DRD E137R


FKBP-229
Q72R, Q84E, A117W
0.0525
0.0510
0.4842
0.4551
54.0



V85R DRD E137R M54A


FKBP-230
Q72R, Q84E, A117W
0.1664
0.1571
0.9966
0.8896
49.0



DRD G63M


FKBP-231
Q72R, Q84E, A117W
0.0582
0.0570
0.3964
0.3988
39.9



V85R DRD G63M


FKBP-232
Q72R, Q84E, A117W
0.1425
0.1514
0.9383
1.094
35.0



V85R DRD G63M M54A


FKBP-233
Q72R, Q84E, A117W
0.0608
0.0649
0.2724
0.335
47.2



DRD D90T


FKBP-234
Q72R, Q84E, A117W
1.7010
1.9900
8.756
12.08
23.5



V85R DRD D90T


FKBP-235
Q72R, Q84E, A117W
2.3440
2.4820
9.975
11.1
23.5



V85R DRD D90T M54A


FKBP-236
Q72R, Q84E, A117W
0.2931
0.3021
1.809
1.965
39.1



DRD G113N


FKBP-237
Q72R, Q84E, A117W
0.0829
0.0798
0.5498
0.4842
24.1



V85R DRD G113N


FKBP-238
Q72R, Q84E, A117W
0.1534
0.1533
0.8465
0.8626
26.8



V85R DRD G113N M54A


FKBP-239
Q72R, Q84E, A117W
0.0497
0.0513
0.2234
0.243
31.1



DRD E61Y


FKBP-240
Q72R, Q84E, A117W
0.0221
0.0219
0.1106
0.1107
43.7



V85R DRD E61Y


FKBP-241
Q72R, Q84E, A117W
0.0382
0.0385
0.2213
0.2224
43.9



V85R DRD E61Y M54A


FKBP-242
Q72R, Q84E, A117W
0.0962
0.1024
0.4658
0.5388
24.4



DRD P118S


FKBP-243
Q72R, Q84E, A117W
0.0336
0.0337
0.125
0.1272
37.1



V85R DRD P118S


FKBP-244
Q72R, Q84E, A117W
0.0731
0.0744
0.3066
0.3284
51.2



V85R DRD P118S M54A


FKBP-245
Q72R, Q84E, A117W
1.2220
1.2320
5.832
5.869
40.6



DRD S69H


FKBP-246
Q72R, Q84E, A117W
0.3351
0.3284
1.529
1.515
30.4



V85R DRD S69H


FKBP-247
Q72R, Q84E, A117W
0.6194
0.6235
2.806
2.954
35.0



V85R DRD S69H M54A


FKBP-248
Q72R, Q84E, A117W
0.3378
0.3417
1.805
1.884
50.1



DRD S68D


FKBP-249
Q72R, Q84E, A117W
0.0825
0.0835
0.4721
0.4937
33.7



V85R DRD S68D


FKBP-250
Q72R, Q84E, A117W
0.0305
0.0320
0.1009
0.1139
22.0



DRD E130F


FKBP-251
Q72R, Q84E, A117W
0.0302
0.0311
0.1037
0.1132
97.5



V85R DRD E130F


FKBP-252
Q72R, Q84E, A117W
ND
ND
ND
ND
1.3



DRD I136P


FKBP-253
Q72R, Q84E, A117W
ND
ND
ND
ND
2.3



V85R DRD I136P


FKBP-254
Q72R, Q84E, A117W
0.0735
0.0726
0.3693
0.3729
35.6



DRD G99R


FKBP-255
Q72R, Q84E, A117W
0.0212
0.0211
0.1007
0.1011
33.0



V85R DRD G99R





Norm is normalized to mCherry; Ec50 and Ec90 are in uM; ND = Not Determined; Only Constructs that had >10 fold change during initial analysis were assayed for Ec50













TABLE 13







Ec50 and Ec90 Values for FKBP Constructs 160-255













Fold


Construct
Mutation
EC50
Change













FKBP-256
Q72R, Q84E, A117W V85R DRD E137M
0.02029
78


FKBP-257
Q72R, Q84E, A117W V85R DRD E137F
0.02213
65


FKBP-258
Q72R, Q84E, A117W V85R DRD E130F
0.02514
104


FKBP-259
Q72R, Q84E, A117W V85R DRD E130K
0.1275
103


FKBP-260
Q72R, Q84E, A117W V85R DRD K101N
0.1581
51


FKBP-261
Q72R, Q84E, A117W V85R DRD P43R M54A
ND
ND



K135Y


FKBP-262
Q72R, Q84E, A117W V85R DRD P43R K135Y
0.03231
73


FKBP-263
Q72R, Q84G, A117W V85R DRD P43R
0.0306
56



K135Y


FKBP-264
Q72R, S79W, Q84R, A117W DRD V85R
0.03089
37.08


FKBP-265
Q72R, T82W, Q84R, A117W DRD V85R
0.01861
53.72


FKBP-266
Q72R, Q84E, A117W V85R DRD D50L
0.3732
60


FKBP-267
Q72R, Q84E, A117W V85R DRD M96W
0.1545
67


FKBP-268
Q72R, Q84E, A117W V85R DRD C42R
0.007083
18


FKBP-269
Q72R, Q84E, A117W V85R DRD H53Q
0.032
44


FKBP-270
Q72R, Q84E, A117W V85R DRD L52M
0.01543
38


FKBP-271
Q72R, Q84E, A117W V85R DRD K103R
0.006167
19


FKBP-272
Q72R, Q84E, A117W V85R DRD K135L
0.03532
105.86


FKBP-273
Q72R, Q84E, A117W V85R DRD E114G
0.02087
36


FKBP-274
Q72R, Q84E, A117W V85R DRD E109K
0.0124
34


FKBP-275
Q72R, Q84E, A117W V85R DRD G49D
0.0393
56


FKBP-276
Q72R, Q74R, Q84E, A117W V85R
0.00788
7.54


FKBP-277
Q72R, Q74R, Q84E, A117W V85R, K135Y
0.05523
61.04


FKBP-278
Q72R, Q74R, Q84E, A117W V85R, E130F
0.036
92.73


FKBP-279
Q72R, Q74R, Q84E, A117W V85R, K120I
0.01345
31.33


FKBP-280
Q72R, Q74R, Q84E, A117W V85R, K135Y,
0.04953
68.34



K120I


FKBP-281
Q72R, Q74R, Q84E, A117W V85R, E130F,
0.03657
77.66



K120I


FKBP-282
Q72R, Q74W, Q84E, A117W V85R
0.04489
39.54


FKBP-283
Q72R, Q74W, Q84E, A117W V85R, K135Y
0.4043
39.79


FKBP-284
Q72R, Q74W, Q84E, A117W V85R, E130F
0.3045
58.23


FKBP-285
Q72R, Q74W, Q84E, A117W V85R, K120I
0.04238
36.71


FKBP-286
Q72R, Q74W, Q84E, A117W V85R, K135Y,
0.3815
25.96



K120I


FKBP-287
Q72R, Q74W, Q84E, A117W V85R, E130F,
0.311
47.09



K120I


FKBP-288
Q72R, Q84E, A117W, V85R, K120I
0.0074
30.1


FKBP-289
Q72R, Q84E, A117W, V85R, K120I, K135Y
0.04788
73.38


FKBP-290
Q72R, Q84E, A117W, V85R, K120I, E130F
0.03021
92.89


FKBP-291
Q72R, Q84E, A117W, V85R, E130N
0.03457
53.37


FKBP-292
Q72R, Q84E, A117W, V85R, K135Q
0.02232
50.68





Ec50 and Ec90 are in μM.


ND: Not determined.













TABLE 14







Rapamycin and Tacrolimus Response Values for FKBP Constructs










Tacrolimus
Rapamycin





















EC50

EC90


EC50

EC90



Construct
Mutation
EC50
(Norm)
EC90
(Norm)
FC
EC50
(Norm)
EC90
(Norm)
FC





















FKBP-91
Q72R, Q84E,
0.0260
0.0268
0.111
0.1173
12.4
0.1009
0.0935
0.398
0.4141
3.2



A117W DRD



M54A


FKBP-117
Q72R, Q84E,
0.0075
0.0077
0.025
0.02716
21.2
0.0455
0.0440
0.17
0.1712
7.6



A117W DRD



V85R


FKBP-153
Q72R, S79W,
0.0908
0.0951
0.341
0.3829
39.7
0.4874
0.4857
1.518
1.538
6.1



Q84E, A117W



DRD M54A


FKBP-155
Q72R, S79W,
0.2137
0.2264
0.808
0.947
61.3
0.3377
0.3289
1.145
1.181
7.5



Q84R, A117W



DRD M54A


FKBP-157
Q72R, T82W,
0.2948
0.3130
1.145
1.321
63.5
0.2823
0.2877
1.012
1.077
11.2



Q84E, A117W



DRD M54A


FKBP-166
Q72R, S79W,
0.043
0.0439
0.22
0.2226
46
0.508
0.4997
1.635
1.582
15.7



Q84E, A117W



DRD M54A



V85R


FKBP-167
Q72R, S79W,
0.071
0.0694
0.348
0.3345
46.8
0.597
0.5891
1.72
1.711
11.3



Q84R, A117W



DRD M54A



V85R


FKBP-168
Q72R, T82W,
0.064
0.0646
0.342
0.3511
60.2
0.336
0.3221
1.385
1.333
18



Q84R, A117W



DRD M54A



V85R


FKBP-169
Q72R, T82W,
0.099
0.1031
0.448
0.4929
50.1
0.405
0.4007
1.391
1.416
10.8



Q84E, A117W



DRD M54A


FKBP-170
Q72R, T82W,
0.03
0.0307
0.133
0.1384
47.6
0.224
0.2226
0.785
0.818
16.1



Q84E, A117W



DRD M54A



V85R


FKBP-171
Q72R, Q84E,
1.734
1.916
8.161
10.14
60.3
6.116
6.508
15.98
18.01
14.1



A117W DRD



M54A D50L


FKBP-172
Q72R Q84E,
0.156
0.1633
1.046
1.306
63.1
0.572
0.5717
2.136
2.293
21.3



A117W DRD



M54A M96W


FKBP-177
Q72R, Q84E,
4.377
5.07
18.68
23.86
22.3
4.138
4.223
5.281
6.331
2.3



A117W DRD



M54A L80G


FKBP-178
Q72R, Q84E,
4.287
4.983
22.34
28.45
36.4
7.477
46.4
16.82
151
2.9



A117W DRD



M54A F78S


FKBP-181
Q72R, Q84E,
0.502
0.7223
14.08
5.057
52
4.413
4.235
11.84
11.48
15.5



A117W V85R



DRD M54A



D50L


FKBP-182
Q72R, Q84E,
0.134
0.1386
0.819
0.9284
64.9
1.187
1.217
3.84
4.112
21.5



A117W V85R



DRD M54A



M96W


FKBP-185
Q72R, Q84E,
4.953
5.149
22.09
23.43
40.2
4.105
8.368
5.338
22.03
2



A117W V85R



DRD M54A



D50L, T57I,



I136L


FKBP-186
Q72R, Q84E,
4.328
4.837
17.92
20.96
19
4.265
4.14
5.868
5.224
1.7



A117W V85R



DRD M54A



G116E


FKBP-187
Q72R, Q84E,
3.29
4.192
14.51
21.3
24
4.173
4.086
5.311
5.661
2.3



A117W V85R



DRD M54A



L80G


FKBP-188
Q72R, Q84E,
3.693
4.297
16.58
20.82
20.5
4.228
4.124
5.41
5.831
2.6



A117W V85R



DRD M54A



F78S


FKBP-189
Q72R, Q84E,
6.078
6.79
25.83
30.11
23
4.384
4.157
5.467
5.526
2.5



A117W V85R



DRD M54A



H53G, R72L





Constructs engineered to be less responsive to Rapamycin more specific for Tacrolimus.


FKBP-91 and FKBP-117 are controls in this experiment. Ec50 and Ec90 are in μM.







FIGS. 22-38 show the results of characterization of FKBP-160-292. Constructs were stably transduced into Jurkat cells and their response to tacrolimus was analyzed using flow cytometry. FKBP-091 and FKBP-117 was used as a comparative control for FKBP-160-FKBP-255. FKBP-195 was used as a comparative control for FKBP-256-FKBP-275. FKBP-117, FPBP-195 and FKBP-251 were used as a comparative control for FKBP-276-FKBP-292.









TABLE 15







Ec50 values for the graphs in FIGS. 29 and 30










Ec50 uM
FC
















FKBP-256
Q72R, Q84E,
0.020
78




A117W, V85R,




DRD E137M



FKBP-257
Q72R, Q84E,
0.022
65




A117W, V85R,




DRD E137F



FKBP-258
Q72R, Q84E,
0.025
104




A117W, V85R,




DRD E130F



FKBP-259
Q72R, Q84E,
0.128
103




A117W, V85R,




DRD E130K



FKBP-195
Q72R, Q84E,
0.034
66




A117W, V85R,




DRD K135Y

















TABLE 16







Ec50 values for the graphs in FIGS. 31 and 32










Ec50 uM
FC
















FKBP-260
Q72R, Q84E,
0.1581
51




A117W, V85R,




DRD K101N



FKBP-262
Q72R, Q84E,
0.03231
73




A117W, V85R,




DRD P43R, K135Y



FKBP-263
Q72R, Q84G,
0.0306
56




A117W, V85R,




DRD P43R, K135Y



FKBP-265
Q72R, T82W,
0.01861
58




Q84R, A117W,




DRD V85R



FKBP-268
Q72R, Q84E,
0.007083
18




A117W, V85R,




DRD C42R



FKBP-195
Q72R, Q84E,
0.034
66




A117W, V85R,




DRD K135Y

















TABLE 17







Ec50 values for the graphs in FIGS. 33 and 34










Ec50 uM
FC
















FKBP-270
Q72R, Q84E,
0.01543
38




A117W, V85R,




DRD L52M



FKBP-271
Q72R, Q84E,
0.006167
19




A117W, V85R,




DRD K103R



FKBP-273
Q72R, Q84E,
0.02087
36




A117W, V85R,




DRD E114G



FKBP-274
Q72R, Q84E,
0.0124
34




A117W, V85R,




DRD E109K



FKBP-275
Q72R, Q84E,
0.0393
56




A117W, V85R,




DRD G49D



FKBP-195
Q72R, Q84E,
0.034
66




A117W, V85R,




DRD K135Y

















TABLE 18







Ec50, FC and Peak values for the graph in FIG. 35













Construct
Mutation
Ec50 uM
FC
Peak

















FKBP-276
Q72R, Q74R,
0.00288
7.54
2859




Q84E, A117W,




V85R



FKBP-277
Q72R, Q74R,
0.05523
61.04
2581




Q84E, A117W,




V85R, K135Y



FKBP-278
Q72R, Q74R,
0.03600
92.73
3425




Q84E, A117W,




V85R, E130F



FKBP-279
Q72R, Q74R,
0.01345
31.33
3302




Q84E, A117W,




V85R, K120I



FKBP-117
Q72R, Q84E,
0.00532
24.07
5193




A117W, V85R



FKBP-195
Q72R, Q84E,
0.03903
89.61
4362




A117W, V85R,




K135Y



FKBP-251
Q72R, Q84E,
0.03706
92.03
5078




A117W, V85R,




E130F

















TABLE 19







Ec50, FC and Peak values for the graph in FIG. 36













Construct
Mutation
Ec50 uM
FC
Peak

















FKBP-280
Q72R, Q74R,
0.04953
68.34
2468




Q84E, A117W,




V85R, K135Y,




K120I



FKBP-281
Q72R, Q74R,
0.03657
77.66
2905




Q84E, A117W,




V85R, E130F,




K120I



FKBP-282
Q72R, Q74R,
0.04489
39.54
2473




Q84E, A117W,




V85R



FKBP-283
Q72R, Q74R,
0.40430
39.79
1328




Q84E, A117W,




V85R, K135Y



FKBP-117
Q72R, Q84E,
0.00532
24.07
5193




A117W, V85R



FKBP-195
Q72R, Q84E,
0.03903
89.61
4362




A117W, V85R,




K135Y



FKBP-251
Q72R, Q84E,
0.03706
92.03
5078




A117W, V85R,




E130F

















TABLE 20







Ec50, FC and Peak values for the graph in FIG. 37













Construct
Mutation
Ec50 uM
FC
Peak

















FKBP-284
Q72R, Q74R,
0.30450
58.23
2441




Q84E, A117W,




V85R, E130F



FKBP-285
Q72R, Q74R,
0.04238
36.71
2161




Q84E, A117W,




V85R, K120I



FKBP-286
Q72R, Q74R,
0.38150
25.96
1089




Q84E, A117W,




V85R, K135Y,




K120I



FKBP-287
Q72R, Q74R,
0.3110
47.09
1747




Q84E, A117W,




V85R, E130F,




K120I



FKBP-117
Q72R, Q84E,
0.00532
24.07
5193




A117W, V85R



FKBP-195
Q72R, Q84E,
0.03903
89.61
4362




A117W, V85R,




K135Y



FKBP-251
Q72R, Q84E,
0.03706
92.03
5078




A117W, V85R,




E130F

















TABLE 21







Ec50, FC and Peak values for the graph in FIG. 38













Construct
Mutation
Ec50 uM
FC
Peak

















FKBP-288
Q72R, Q84E,
0.00740
30.10
3718




A117W, V85R,




K120I



FKBP-289
Q72R, Q84E,
0.04788
73.38
2659




A117W, V85R,




K120I, K135Y



FKBP-290
Q72R, Q84E,
0.03021
92.89
3191




A117W, V85R,




K120I, E130F



FKBP-291
Q72R, Q84E,
0.03457
53.37
3859




A117W, V85R,




E130N



FKBP-292
Q72R, Q84E,
0.02232
50.68
3797




A117W, V85R,




K135Q



FKBP-117
Q72R, Q84E,
0.00532
24.07
5193




A117W, V85R



FKBP-195
Q72R, Q84E,
0.03903
89.61
4362




A117W, V85R,




K135Y



FKBP-251
Q72R, Q84E,
0.03706
92.03
5078




A117W, V85R,




E130F











FIGS. 39-50 show the results from further engineering of Top DRDs from the Cas9 screen, particularly, providing a direct comparison of constructs either mutating to other amino acids or subtracting the M54A mutation.









TABLE 22







Ec50, FC and Peak values for the graph in FIG. 39












Construct
Mutation
Ec50 uM
FC
Basal
Peak















FKBP-195
Q72R, Q84E,
0.0407
90
68.4
5808



A117W,



V85R,



K135Y


FKBP-272
Q72R, Q84E,
0.0531
85
71.5
5857



A117W,



V85R, K135L
















TABLE 23







Ec50, FC and Peak values for the graph in FIG. 40












Construct
Mutation
Ec50 uM
FC
Basal
Peak















FKBP-258
Q72R, Q84E,
0.0276
99
60.2
5533



A117W,



V85R, DRD



E130F


FKBP-259
Q72R, Q84E,
0.1428
90
72.3
6232



A117W,



V85R, DRD



E130K


FKBP-251
Q72R, Q84E,
0.0300
100
76
7406



A117W,



V85R, DRD



E130F
















TABLE 24







Ec50, FC and Peak values for the graph in FIG. 41












Construct
Mutation
Ec50 uM
FC
Basal
Peak















FKBP-256
Q72R, Q84E,
0.0181
65
111
6851



A117W,



V85R, DRD



E137M


FKBP-257
Q72R, Q84E,
0.0186
59
98
5501



A117W,



V85R, DRD



E137F


FKBP-228
Q72R, Q84E,
0.0293
85
112
8896



A117W,



V85R, DRD



E137R
















TABLE 25







Ec50, FC and Peak values for the graph in FIG. 42



















At



Construct
Mutation
Ec50 uM
FC
Basal
10 uM

















BR1
FKBP-228
Q72R,
0.01856
55.15
103
5680


(Biorep 1)

Q84E,




A117W,




V85R, DRD




E137R


BR2
FKBP-228
Q72R,
0.02313
60.71
99.6
6047


(Biorep 2)

Q84E,




A117W,




V85R, DRD




E137R
















TABLE 26







Ec50, FC and Peak values for the graph in FIG. 43














Construct
Mutation
Ec50 uM
FC
Basal
At 10 uM

















BR1
FKBP-256
Q72R, Q84E,
0.02029
71.46
110
7861


(Biorep 1)

A117W, V85R,




DRD E137M


BR2
FKBP-256
Q72R, Q84E,
0.02207
59.04
125
7380


(Biorep 2)

A117W, V85R,




DRD E137M


BR1
FKBP-257
Q72R, Q84E,
0.02213
59.79
107
6397


(Biorep 1)

A117W, V85R,




DRD E137F


BR2
FKBP-257
Q72R, Q84E,
0.02557
50.39
118
5946


(Biorep 2)

A117W, V85R,




DRD E137F
















TABLE 27







Ec50, FC and Peak values for the graph in FIG. 44












Construct
Mutation
Ec50 uM
FC
Basal
At 10 uM















FKBP-167
Q72R, S79W,
0.0706
47.22
96
4533



Q84R,



A117W,



V85R, DRD



M54A, V85R


FKBP-168
Q72R, T82W,
0.0637
60.19
72.7
4376



Q84R,



A117W,



V85R, DRD



M54A, V85R
















TABLE 28







Ec50, FC and Peak values for the graph in FIG. 45














Construct
Mutation
Ec50 uM
FC
Basal
At 10 uM

















BR1
FKBP-265
Q72R, T82W,
0.01861
53.72
78
4190


(Biorep 1)

Q84R, A117W,




DRD V85R


BR2
FKBP-265
Q72R, T82W,
0.01514
41.58
102
4241


(Biorep 2)

Q84R, A117W,




DRD V85R


BR1
FKBP-264
Q72R, S79W,
0.03089
37.06
127
4706


(Biorep 1)

Q84R, A117W,




DRD V85R
















TABLE 29







Ec50, FC and Peak values for the graph in FIG. 46














Construct
Mutation
Ec50 uM
FC
Basal
At 10 uM

















BR1
FKBP-251
Q72R, Q84E,
0.03015
97.61
64
6247


(Biorep 1)

A117W, V85R,




DRD E130F


BR2
FKBP-251
Q72R, Q84E,
0.023
76.79
46.1
3540


(Biorep 2)

A117W, V85R,




DRD E130F


BR1
FKBP-197
Q72R, Q84E,
0.2129
101.12
70.7
7149


(Biorep 1)

A117W, V85R,




DRD E130R


BR2
FKBP-197
Q72R, Q84E,
0.2447
72.21
55.2
3986


(Biorep 2)

A117W, V85R,




DRD E130R
















TABLE 30







Ec50, FC and Peak values for the graph in FIG. 47














Construct
Mutation
Ec50 uM
FC
Basal
At 10 uM

















BR1
FKBP-258
Q72R, Q84E,
0.02514
96.50
66.6
6427


(Biorep 1)

A117W, V85R,




DRD E130F


BR2
FKBP-258
Q72R, Q84E,
0.03022
88.49
69.4
6141


(Biorep 2)

A117W, V85R,




DRD E130F


BR1
FKBP-259
Q72R, Q84E,
0.1275
95.97
70.7
6785


(Biorep 1)

A117W, V85R,




DRD E130K


BR2
FKBP-259
Q72R, Q84E,
0.1458
84.76
77.3
6552


(Biorep 2)

A117W, V85R,




DRD E130K
















TABLE 31







Ec50, FC and Peak values for the graph in FIG. 48














Construct
Mutation
Ec50 uM
FC
Basal
At 10 uM

















BR1
FKBP-215
Q72R, Q84G,
0.09082
51.05
65
3318


(Biorep 1)

A117W, V85R,




DRD P43R,




M54A, K135Y


BR2
FKBP-215
Q72R, Q84G,
0.09453
53.30
59.4
3166


(Biorep 2)

A117W, V85R,




DRD P43R,




M54A, K135Y
















TABLE 32







Ec50, FC and Peak values for the graph in FIG. 49














Construct
Mutation
Ec50 uM
FC
Basal
At 10 uM

















BR1
FKBP-262
Q72R, Q84E,
0.03231
66.64
59.5
3965


(Biorep 1)

A117W, V85R,




DRD P43R,




K135Y


BR2
FKBP-262
Q72R, Q84E,
0.0298
52.21
73.7
3848


(Biorep 2)

A117W, V85R,




DRD P43R,




K135Y


BR1
FKBP-263
Q72R, Q84G,
0.0306
49.02
56
2745


(Biorep 1)

A117W, V85R,




DRD P43R,




K135Y


BR2
FKBP-263
Q72R, Q84G,
0.02582
45.75
63.3
2896


(Biorep 2)

A117W, V85R,




DRD P43R,




K135Y
















TABLE 33







Ec50, FC and Peak values for the graph in FIG. 50












Construct
Mutation
Ec50 uM
FC
Basal
At 10 uM















FKBP-195
Q72R, Q84E,
0.03448
61.07
75.5
4611



A117W,



V85R, DRD



K135Y


FKBP-272
Q72R, Q84E,
0.03532
105.86
55.6
5886



A117W,



V85R, DRD



K135L










FIGS. 51-54 show the results of Tacrolimus serum experiments. Tacrolimus dilutions were made in each % FBS as shown in FIGS. 51-54. Incubation with increasing FBS results in 2 fold increase in Ec50 with 80% FBS.









TABLE 34







Ec50 values for FIG. 51, construct FKBP-195










% Serum
Ec50 uM














10%
0.04047



20%
0.05282



30%
0.06241



40%
0.07271



50%
0.07901



60%
0.08572



70%
0.1098



80%
0.07797

















TABLE 35







Ec50 values for FIG. 52, construct FKBP-251










% Serum
Ec50 uM














10%
0.02879



20%
0.03741



30%
0.04127



40%
0.04616



50%
0.05231



60%
0.06087



70%
0.0633



80%
0.05531

















TABLE 36







Ec50 values for FIG. 53, construct FKBP-195









Ec50 uM














TC Media
0.135



 10% Serum
0.073



100% Serum
0.082

















TABLE 37







Ec50 values for FIG. 54, construct FKBP-251









Ec50 uM














TC Media
0.091



 10% Serum
0.052



100% Serum
0.038










To summarize the results of the examples, initial characterization of FKBP mutants discovered from a pooled saturation mutagenesis library screen identified the V85R mutation (FKBP-117) which when combined with the original binding site mutations (Q72R, Q84E, A117W) significantly decreased the FKBP/tacrolimus Ec50 to 5 nM. To further improve the properties yielded from construct FKBP-117, a series of combinatorial mutants (FKBP-160-FKBP-255) were made to identify FKBP constructs that yielded favorable DRD properties for protein regulation-<50 nM Ec50 and a low basal off state in the absence of tacrolimus. FKBP mutants were cloned in a manner to make a fusion protein with AcGFP in order to assess FKBP mutant regulation by using AcGFP expression as a readout. Constructs were stably transduced into Jurkat cells and their response to tacrolimus was analyzed using flow cytometry. FKBP mutants that had a >10 fold change in AcGFP expression in response to dosing with 10 uM Tacrolimus were then further screened with a Tacrolimus dose response to determine the Ec50 for those constructs. FKBP-195, FKBP-228, and FKBP-251 emerged as the top FKBP constructs yielding the lowest basal expression with Ec50 values 35 nm, 19 nM and 30 nm, respectively. FKBP-215 did exhibit the lowest basal AcGFP expression with an Ec50 of 90 nM. Further iterative FKBP mutants (FKBP-256-FKBP-292) were constructed from these initial combinatorial mutants to see if we could further improve FKBP DRD properties. FKBP-272 was constructed from FKBP-195 by changing the K135Y mutation to K135L which resulted in a similar Ec50 but lower basal AcGFP expression. FKBP-263 was based on FKBP-215 removing the M54A mutation which retained the low basal AcGFP expression while improving the Ec50 to 30 nM.

Claims
  • 1. A nucleic acid encoding (a) an FKBP13 or a variant thereof responsive to a ligand and(b) a payload having a biological activity,wherein, upon expression of the nucleic acid, the FKBP13 is operably linked to the payload.
  • 2. The nucleic acid of claim 1, wherein, upon expression of the nucleic acid, the FKBP13 interacts with an effective amount of the ligand to modulate the biological activity of the payload.
  • 3. The nucleic acid of claim 1, wherein the encoded FKBP13 is a variant of SEQ ID NO: 1.
  • 4. The nucleic acid of claim 1, wherein the encoded FKBP13 variant comprises one or more mutations in a ligand binding site.
  • 5. The nucleic acid of claim 1, wherein the ligand is FK506, rapamycin, or both FK506 and rapamycin.
  • 6. The nucleic acid of claim 5, wherein the encoded FKBP13 variant modulates the biological activity of the payload in response to FK506 more than in response to rapamycin.
  • 7. The nucleic acid of claim 3, wherein the encoded FKBP13 variant is a fragment of FKBP13.
  • 8. The nucleic acid of claim 7, wherein the encoded FKBP13 variant is a C-terminal fragment of FKBP13.
  • 9. The nucleic acid of claim 1, further encoding a promoter sequence.
  • 10. The nucleic acid of claim 1, wherein the payload comprises an RNA-guided endonuclease.
  • 11. The nucleic acid of claim 10, wherein the endonuclease is a Cas9 endonuclease.
  • 12. The nucleic acid of claim 11, wherein the Cas9 endonuclease is a Staphylococcus aureus Cas9 (SaCas9) or Staphylococcus lugdunensis Cas9 (SluCas9).
  • 13. The nucleic acid of claim 10, further encoding at least one a guide RNA.
  • 14. The nucleic acid of claim 13, wherein the nucleic acid is configured for packaging as a single nucleotide sequence in an AAV vector with a promoter sequence, a guide RNA, and a sequence that encodes a Cas9 endonuclease payload, and wherein the promoter sequence, the guide RNA, and the sequence encoding the Cas9 comprise at least 3000 base pairs.
  • 15. The nucleic acid of claim 1, wherein the encoded FKBP13 fragment is less than 100 amino acids.
  • 16. The nucleic acid of claim 15, wherein the encoded FKBP fragment is 90-99 amino acids.
  • 17. The nucleic acid of claim 16, wherein the encoded FKBP13 fragment has an amino acid sequence with at least 85% identity to SEQ ID NO: 2.
  • 18. The nucleic acid of claim 17, wherein the encoded FKBP13 comprises an amino acid sequence selected from SEQ ID NO: 3-109.
  • 19. A genetically modified FKBP13, comprising one or more mutations in a binding site for FK506.
  • 20. The genetically modified FKBP13 of claim 19, wherein the FKBP13 is a C-terminal fragment of SEQ ID NO:1.
  • 21. The genetically modified FKBP13 of claim 20, comprising an amino acid sequence selected from SEQ ID NO:3-66.
  • 22. The genetically modified FKBP13 of claim 19, wherein the FKBP13 fragment has a lower binding affinity for rapamycin than a control FKBP13 fragment without mutations in the ligand binding site.
  • 23. The genetically modified FKBP13 of claim 19, wherein the FKBP13 has a higher binding affinity for FK506 than a control FKBP13 fragment without mutations in the ligand binding site.
  • 24. A recombinant polypeptide encoded by the nucleic acid of claim 1, wherein the payload is operably linked to the FKBP13 or variant thereof and wherein activity of the payload in a biological system is regulatable by the concentration of the ligand contacting the FKBP13.
  • 25. The recombinant polypeptide of claim 24, wherein the EC50 of FK506 for the FKBP13 or variant thereof in the biological system is about 2-fold to about 20-fold lower than the Cmax of FK506 in the biological system.
  • 26. The recombinant polypeptide of claim 24, wherein the biological system is a tissue or cell.
  • 27. The recombinant polypeptide of claim 26, wherein the biological system is mammalian blood.
  • 28. A vector comprising the nucleic acid of claim 1.
  • 29. The vector of claim 28, wherein the vector is a viral vector.
  • 30. The vector of claim 28, wherein the encoded payload is an RNA-guided endonuclease and wherein the vector further comprises one or more guide RNA sequences comprising a first nucleotide sequence that hybridizes to a target DNA in the genome of a cell and a second nucleotide sequence configured to interact with the RNA-guided endonuclease.
  • 31. The vector of claim 30, wherein the vector further comprises one or more inverted terminal repeat sequences.
  • 32. A cell comprising the vector of claim 28.
  • 33. The cell of claim 32, wherein the cell is a mammalian cell.
  • 34. The cell of claim 33, wherein the mammalian cell is a human cell.
  • 35. The cell of claim 32, wherein the cell is a muscle cell, a stem cell, or a lymphocyte.
  • 36. A method of producing a recombinant cell, comprising introducing the vector of claim 28 into a cell.
  • 37. The method of claim 36, wherein the cell is a mammalian cell.
  • 38. The method of claim 37, wherein the mammalian cell is a human cell.
  • 39. The method of claim 36, wherein the cell is a muscle cell, a stem cell, or a lymphocyte.
  • 40. A cell produced by the method of claim 36.
  • 41. A method of regulating a payload in a cell, comprising (a) introducing into a cell a vector comprising a nucleic acid encoding an FKBP13 or variant thereof responsive to a ligand, wherein the nucleic acid further comprises a promoter sequence and a sequence that encodes the payload, and(b) contacting the cell with an effective amount of the ligand.
  • 42. A method of modifying target DNA in a cell, comprising (a) introducing into the cell a vector comprising (1) an RNA-guided endonuclease-encoding nucleic acid comprising a sequence that encodes an FKBP13 or variant thereof responsive to a ligand, a promoter sequence, and a sequence that encodes an RNA-guided endonuclease, and(2) one or more guide RNAs comprising a nucleotide sequence that hybridizes to a target DNA in the genome of a cell and a nucleotide sequence configured to interact with the RNA-guided endonuclease;(b) contacting the vector-containing cell with an effective amount of ligand to induce activity of the RNA-guided endonuclease, wherein the RNA-guided endonuclease interacts with the guide RNA and wherein the RNA-guided endonuclease specifically binds and cleaves the target DNA in the cell.
  • 43. The method of claim 41, wherein the vector is an AAV vector
  • 44. The method of claim 41, wherein the cell is a mammalian cell.
  • 45. The method of claim 44, wherein the mammalian cell is a human cell.
  • 46. The method of claim 41, wherein the cell is a muscle cell, a stem cell, or a lymphocyte.
  • 47. A genetically modified cell produced by the method of claim 42.
  • 48. A method of treating a disease or disorder responsive to genetic modification in a subject in need thereof, comprising (a) introducing into one or more cells of the subject a vector comprising (1) an RNA-guided endonuclease encoding nucleic acid comprising a sequence that encodes an FKBP13 or variant thereof responsive to a ligand, a promoter sequence and a sequence that encodes an RNA-guided endonuclease, and(2) at least one guide RNA comprising a nucleotide sequence that hybridizes to a target DNA in the genome of a cell and a nucleotide sequence configured to interact with the RNA-guided endonuclease;(b) contacting the vector-containing one or more cells with an effective amount of ligand to induce activity of the RNA-guided endonuclease, wherein the RNA-guided endonuclease interacts with the guide RNA and wherein the RNA-guided endonuclease specifically binds and cleaves the target DNA one or more cells of the subject.
  • 49. A method of treating a disease or disorder responsive to genetic modification in a subject in need thereof, comprising (a) administering to the subject one or more cells comprising a vector, wherein the vector comprises (1) an RNA-guided endonuclease encoding nucleic acid comprising a sequence that encodes an FKBP13 or variant thereof responsive to a ligand, a promoter sequence and a sequence that encodes an RNA-guided endonuclease, and(2) a guide RNA comprising a nucleotide sequence that hybridizes to a target DNA in the genome of the one or more cells and a nucleotide sequence configured to interact with the RNA-guided endonuclease;(b) administering to the subject an effective amount of ligand to induce activity of the RNA-guided endonuclease, wherein the RNA-guided endonuclease interacts with the guide RNA and wherein the RNA-guided endonuclease specifically modifies the genome of one or more cells.
  • 50. A method of treating a disease or disorder in a subject, comprising administering to the subject one or more genetically modified cells of claim 47.
  • 51. The method of claim 48, wherein the disease or disorder is Duchenne muscular dystrophy, myotonic dystrophy, cystic fibrosis, sickle cell, beta thalassemia, alpha-1 antitrypsin deficiency, APOL1-mediated kidney disease, or Type 1 diabetes.
CROSS REFERENCE TO RELATED APPLICATION

This application claims priority to U.S. Provisional Application No. 63/269,582, filed Mar. 18, 2022, which is incorporated by reference herein in its entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2023/064612 3/17/2023 WO
Provisional Applications (1)
Number Date Country
63269582 Mar 2022 US