The present invention relates to a composite charged particle beam device provided with a plurality of charged particle beam devices.
A composite charged particle beam device, which is provided with both a scanning electron microscope (SEM) and a focused ion beam (FIB), has a feature that a region which is processed (or being processed) using a focused ion beam can be observed in situ with a SEM at high resolution. Therefore, it is an essential tool in manufacturing samples for transmission electron microscope observation and also in various industrial fields, such as the field of semiconductor, the field of material sciences, and the field of medicine where nanometer-order micro-processing is required.
Cited literature 1 discloses an objective lens for an electron microscope system having a minimum magnetic field outside the objective lens.
Patent Literature 1: JP-A-2011-222525
The inventors have made intensive studies on a composite charged particle beam device and acquired the following knowledge.
A device provided with only one charged particle beam column such as, for example, a SEM may have a sample positioned on the optical axis of the SEM. Therefore, the distance between the sample and the charged particle beam column can be changed appropriately according to application. For example, when high-resolution observation is desired, observation is performed with a sample positioned closer to a charged particle beam column.
On the other hand, in the case of a device provided with two or more charged particle beam columns such as, for example, a device provided with a SEM and a FIB, a position where SEM observation and FIB processing can be performed without moving a sample is limited to only a single point (a cross point) where the optical axis of the SEM and the optical axis of the FIB intersect. Therefore, it is typical to use a FIB-SEM device at a cross point, and the distance between the sample and the end of each charged particle beam column is fixed.
The device provided with two or more charged particle beam columns can also have a sample disposed at a position other than the cross point, but in such a case only one of the charged particle beam columns is used. For example, where a FIB-SEM device has a sample approached to a SEM column, usage is limited to the SEM only. To perform processing with the FIB, it is necessary to move the sample to the cross point again.
In view of the above problems, the present invention provides a composite charged particle beam device provided with two or more charged particle beam columns that enables high-resolution observation while a sample remains at the position of the cross point.
The present invention has the following configuration. A composite charged particle beam device includes a plurality of charged particle beam columns, in which a sample is disposed at a position of an intersection where optical axes of the plurality of the columns intersect, a plurality of components that form a tip of an objective lens of the charged particle beam column are detachable, and the components are capable of changing a distance between the intersection and the tip of the charged particle beam column.
Other embodiments are described in the column of DESCRIPTION OF EMBODIMENTS.
According to the present invention, a composite charged particle beam device provided with two or more charged particle beam columns can provide high-resolution observation with a sample remaining at the position of the cross point by changing the distances between the point where the optical axes of the respective charged particle beam columns intersect and the ends of the respective charged particle beam columns.
Novel features and effects of the present invention are described by considering the drawings. In the individual drawings, the same reference numerals are given to common constituents.
[Construction of Composite Charged Particle Beam Device]
First, a device construction in the present embodiment is described.
In
The ion beam column 101a is a system including all necessary constituents for a FIB such as an ion source for generating the ion beam, a lens for focusing the ion beam, and a deflection system for scanning and shifting the ion beam. Similarly, the electron beam column 102a is a system including all necessary constituents for a SEM such as an electron source for generating the electron beam, a lens for focusing the electron beam, and a deflection system for scanning and shifting the electron beam. Moreover, a tip of an objective lens of the electron beam column 102a is configured with a detachable component 108.
And, the ion beam column 101a and the electron beam column 102a are mounted on the sample chamber 105, and the ion beam 101b travelling through the ion beam column 101a and the electron beam 102b travelling through the electron beam column 102a are primarily focused on an intersection (a cross point 171) of an optical axis 101c of the ion beam column and an optical axis 102c of the electron beam column. Besides, as for the ion beam 101b, gallium ions are generally used, but ion species do not matter for the purpose of processing the sample. Furthermore, the ion beam is not limited to a focused ion beam and may be a broad ion beam.
Incidentally, in the present embodiment, the ion beam column 101a is vertically arranged and the electron beam column 102a is obliquely arranged; however, they are not restrictive and the ion beam column 101a may be obliquely arranged and the electron beam column 102a may be vertically arranged. Both the ion beam column 101a and the electron beam column 102a may also be obliquely arranged. Moreover, there may be adopted a triple-column configuration having a Ga focused ion beam column, an Ar focused ion beam column, and an electron beam column.
The sample stage 104 can make planar movement and rotational movement. Furthermore, a position necessary for processing with the ion beam or observation can also be moved to an ion beam irradiation position or to an observation position with the electron beam.
The component 108 which forms the tip of the objective lens desirably has an overall length of 35 mm or less considering the electron beam column 102a, the ion beam column 101a, and the sample stage 104.
The detectors 106, 107 are respectively mounted on the electron beam column 102a and the sample chamber 105. Moreover, each of the detector controllers 136, 137 has a circuit or an arithmetic processing unit to perform arithmetic processing of a detection signal and to form an image. It is noted that, for the detectors 106, 107, composite charged particle detectors capable of detecting ions in addition to electrons may be used. Also, in addition to the detector 107, the sample chamber 105 may be equipped with detectors such as a tertiary electron detector, a STEM detector, a backscattered electron detector, and a low energy loss electron detector as second, third, fourth, and fifth detectors. Furthermore, a mass spectrometer or the like may be mounted in addition to the X-ray detector 109.
In addition to the above, the sample chamber 105 is also equipped with a gas deposition unit, a micro sampling unit, and the like. The individual drive mechanisms such as the deposition unit and the micro sampling unit are also provided with controllers respectively. The gas deposition unit used for manufacturing of a protective film and/or for marking stores a deposition gas which forms a deposit film by irradiation of a charged particle beam and can supply it from a tip of a nozzle when necessary. The micro sampling unit that picks up a specific portion of a sample while being used together with processing and cutting of the sample with the FIB includes a probe which can be moved by a probe driving unit within the sample chamber 105. The probe is used to remove a minute sample piece which is formed in the sample and/or to supply an electric potential to the sample by contacting to the sample surface. In addition, the sample chamber 105 may also be equipped with a cold trap, an optical microscope, and the like. Incidentally, as for the sample 103, steel, light metals, and polymer-based macromolecule substances may also be conceived other than a semiconductor sample. Besides, the integrated computer 130 and the respective controllers can communicate with each other.
[Fixing Method of Tip of Objective Lens]
Fixing methods of the component 108 of the tip of the objective lens are variously considered, such as a fixing method with a screw, a method that the component itself is threaded, and a fixing method by compression bonding. Their examples are described below.
a) shows a fixing example with a screw. Fixing can be made using one screw, but using two or more screws is desirable in view of stability. In addition, fixing using three to four screws is desirable when adjustment of the component position during assembly is considered. It is because use of three to four screws provides an advantage that the position of a component 308a can be adjusted according to tightening degrees of the mutual screws.
b) shows an example that a component 308b itself is threaded. It is advantageous that the number of components does not increase by fixing.
c) shows an example of fixing by matching a groove and a projection. In
In addition to the above, there may be conceived various methods such as a method of fixing by catching a component 308d (
Effects of constructing the tip of the objective lens of the electron beam column 102a with the detachable component 108 are described.
By constructing the tip of the objective lens with a detachable component, the tip of the objective lens having a different structure can be attached according to usage. As a result, there can be attained effects, for example, (1) being capable of changing the distance (Working Distance: WD) between the sample and the lower surface of the objective lens, (2) facilitating repair when the tip of the objective lens is damaged or contaminated, and (3) being capable of coping with a system peak by preparing a plurality of tips of the objective lens of different materials. The individual effects are described below in detail.
[(1) Effects Regarding Capability of Changing WD]
Generally, resolution of the SEM is improved when the WD is shortened. On the other hand, when the WD is shorted, detection efficiency of the detector 107 and/or the X-ray detector 109 which are mounted on the sample chamber lowers. Therefore, it is desired that the WD is changed according to usage. A general-purpose SEM device which is equipped with a single charged particle beam column can comply with it by moving the sample stage, and it is carried out on a daily basis. But, for a FIB-SEM device, which is equipped with two or more charged particle beam columns, the sample stage 104 is adjusted to position the sample 103 at the cross point 171. Therefore, the position of the sample stage 104 in the optical axis direction is basically fixed. Namely, the WD is basically determined according to mounting positions of the ion beam column and the electron beam column. However, the WD can be changed by constructing the tip of the objective lens of the electron beam column 102a with the detachable component 108. That is, the WD is changed by changing the lower surface of the objective lens without moving the position of the sample stage 104. For example, as shown in
Furthermore, when the component 408b for the tip of the objective lens is made short, the driving ranges of the deposition unit and the micro sampling unit can also be increased. In addition, the cold trap and the like can also be made closer to the sample. Namely, the versatility of the composite charged particle beam device can be improved.
In addition, it is convenient if the display of the GUI screen 153 is changed for each position of the tip of the objective lens. It is convenient if there are functions, for example, to clearly indicate types of attached objective lenses (
[(2) Regarding Easiness of Repair in Case of Damage or Contamination of Tip of Objective Lens]
A gas discharged from the sample, sputtered particles due to ion beam, and the like adhere to a component near the sample. The performance of the charged particle beam device is occasionally deteriorated by the adhered substance. For example, there might be occurrence of bending of a primary beam or bending of electrons discharged from the sample due to an insulating material adhered to the tip of the objective lens. In such a case, works such as cleaning of the objective lens and, additionally, an exchange of a set of objective lenses become necessary. Moreover, the cleaning works have risk that the objective lens may be damaged during the works.
However, by constructing the tip of the objective lens of the electron beam column 102a with the detachable component 108, a measure of replacement can be taken against contamination and/or damage of the tip of the objective lens. Thus, much easier repair against contamination and/or damage of the tip of the objective lens with lower risk than before becomes possible.
[(3) Regarding Effects of Being Capable of Corresponding to System Peak By Preparing Plural Tips of Different Materials of Objective Lens]
A material of a component which exists near the sample has great influences on the composition analysis of the sample. For example, if the same substance as an element to be detected is used for the component 108 of the tip of the objective lens when X-ray analysis is performed, it cannot be distinguished whether it is a signal from the sample or a signal from the tip of the objective lens. As countermeasures, there is a method such as applying plating of a material not containing the element to be analyzed to the tip of the objective lens. But, when samples to be analyzed widely vary, it becomes difficult to cope with by plating.
However, the components of the tip of the objective lens which are plated with different types of plating can be prepared by constructing the tip of the objective lens of the electron beam column 102a with the detachable component 108. Namely, it becomes possible to exchange the component of the tip of the objective lens according to an analysis object. Thus, a range of element analysis can be drastically improved.
Besides, it is convenient if the display of the GUI screen 153 is changed for every attached component of the tip of the objective lens (
Incidentally, although the objective lens on the SEM side is described in this embodiment, it is also the same on the FIB side. Furthermore, the component which forms the tip of the objective lens may be a unit which is constructed from a plurality of parts (
In addition, although a composite charged particle beam device provided with an ion beam column and an electron beam column is described in this embodiment, combinations of charged particle beam columns do not matter. For example, it may be applied to a device provided with two or more electron beam columns or a device provided with two or more ion beam columns. It may also be applied to a combination of a charged particle beam column and an optical device such as a laser.
According to the present embodiment, similar effects to “Effects regarding capability of changing WD” described for the first embodiment can be obtained. In addition, the present embodiment has an advantage that the WD can be changed while performing the
SEM observation or during the FIB processing. Furthermore, it is also convenient in this embodiment if the display of the GUI screen is changed for each position of the tip of the objective lens, similar to the first embodiment.
Incidentally, even though a mechanism which drives the entire electron beam column is adopted in the present embodiment, only the objective lens may be driven in order to change the position of the tip of the objective lens; a part of the objective lens or a part of the column which includes the objective lens may be driven, either.
Moreover, a combination of the charged particle beam columns does not matter even in this embodiment, similar to the first embodiment.
Furthermore, a combination of the charged particle beam columns does not matter even in this embodiment, similar to the first embodiment.
According to the present invention, in a composite charged particle beam device having two or more charged particle beam columns, which is represented by a FIB-SEM device, a shape of the tip of the objective lens can be changed according to application. As a result, a range of sample selections which a single composite charged particle beam device can deal with is expanded. Namely, the convenience of the device is drastically improved.
101
a: Ion beam column
101
b: Ion beam
101
c: Optical axis of ion beam column
102
a,
902
a,
002
a: Electron beam column
102
b: Electron beam
102
c: Optical axis of electron beam column
103: Sample
104: Sample stage
105: Sample chamber
106, 107: Detector
108, 308a, 308b, 308c, 308d, 308e, 408a, 408b, 808: Detachable component
109: X-ray detector
130: Integrated computer
131: Ion beam column controller
132: Electron beam column controller
134: Sample stage controller
136, 137: Detector controller
139: X-ray detector controller
151: Controller (such as keyboard or mouse)
152: Display
153: GUI screen
171: Cross point
010: Flange
Number | Date | Country | Kind |
---|---|---|---|
2012-182833 | Aug 2012 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2013/067965 | 7/1/2013 | WO | 00 |