Compositions and methods for anti-staphylococcal biologic agents

Information

  • Patent Grant
  • 10781246
  • Patent Number
    10,781,246
  • Date Filed
    Saturday, June 4, 2016
    8 years ago
  • Date Issued
    Tuesday, September 22, 2020
    4 years ago
Abstract
The present disclosure is directed to staphylococcal leukotoxin and hemolysin binding molecules and fusion constructs. The present disclosure is further directed to methods of treating, preventing, and diagnosing staphylococcal infection in a subject using the binding molecules and fusion constructs described herein.
Description
FIELD OF THE INVENTION

The present invention is directed to staphylococcal leukotoxin binding molecules and fusion constructs. The present invention is further directed to methods of treating, preventing, and diagnosing staphylococcal infection in a subject using the binding molecules and fusion constructs described herein.


BACKGROUND

Bacterial infections caused by Staphylococcus bacteria (i.e., a “staph infection”) are very common in the general population. About 25% of individuals commonly carry Staphylococcus bacteria on their skin or in their nose. Most of the time, these bacteria do not cause or problem or may cause a relatively minor skin infection. However, staph infections can turn deadly if the bacteria invade deeper into an individual's body, for example, entering the bloodstream, joints, bones, lungs or heart. In the past, a lethal staph infection might have occurred in a person who was hospitalized or had a chronic illness or weakened immune system. Now, it is increasingly common for an otherwise healthy individual to develop life-threatening staph infections. Importantly, many staph infections have become recalcitrant to antibiotic treatment due to infection with strains that exhibit true antibiotic resistance or reduced susceptibility to existing antibiotics. Such reductions in antibiotic effectiveness are typically more pronounced in patients with weakened immune systems due to immune senescence or immune compromization caused by co-morbidities or co-administered pharmaceutical agents or other medical procedures.



Staphylococcus aureus, often referred to as “staph,” Staph. aureus,” or “S. aureus,” is a major human pathogen, producing a multitude of virulence factors making it able to cause several types of infection, from superficial lesions to toxinoses and life-threatening systemic conditions such as endocarditis, osteomyelitis, pneumonia, meningitis and sepsis (reviewed in Miller and Cho, “Immunity Against Staphylococcus aureus Cutaneous Infections,” Nat. Rev. Immunol. 11:505-518 (2011)). Although most individuals encounter S. aureus shortly after birth (Holtfreter et al., “Towards the Immune Proteome of Staphylococcus aureus—The Anti-S. aureus Antibody Response,” Int. J. Med. Microbiol. 300:176-192 (2010)) and possess both antibodies against S. aureus and the ability to increase anti-S. aureus titers after infection, these antibodies are often not protective against recurrent S. aureus infections (Foster TJ, “Immune Evasion by Staphylococci,” Nat. Rev. Microbiol. 3:948-958 (2005)). In the United States alone, an annual mortality of more than 20,000 is attributed to methicillin-resistant S. aureus (MRSA), exceeding deaths caused by influenza, viral hepatitis, and HIV/AIDS (Foster, TJ., “Immune Evasion by Staphylococci,” Nat. Rev. Microbiol. 3:948-958 (2005); Klevens et al., “The Impact of Antimicrobial-Resistant, Health Care-Associated Infections on Mortality in the United States,” Clin. Infect. Dis. 47:927-930 (2008)).


The pathogen produces a variety of molecules that presumably facilitate survival in or on the human host. Bi-component, pore-forming leukotoxins are among the secreted virulence factors produced by S. aureus. These toxins are secreted as water soluble monomers which oligomerize, and insert pores into the plasma membrane of host cells, most notably polymorphonuclear leukocytes (PMNs) and mononuclear phagocytes (Alonzo F. and Torres V., “Staphylococcus aureus Bi-component leukotoxins,” Microbiol. Mol. Biol. Rev. 78(2): 199-230 (2014)). These pores disrupt cellular osmotic balance and membrane potential leading to death of the targeted cells. In the case of Leukotoxin ED (LukED), the targeting, binding, and killing of host phagocytic cells occurs via the cellular target CCR5, CXCR1 and CXCR2 located on the surface of the phagocytes (Alonzo III et al., “Staphylococcus aureus Leucocidin ED Contributes to Systemic Infection by Targeting Neutrophils and Promoting Bacterial Growth In Vivo,” Mol. Microbiol. 83:423-435 (2012); Alonzo III et al. “CCR5 is a Receptor for Staphylococcus aureus Leukotoxin ED,” Nature 493(7430)51-55 (2012); and Reyes-Robles et al., “Staphylococcus aureus Leukotoxin ED Targets the Chemokine Receptors CXCR1 and CXCR2 to Kill Leukocytes and Promote Infection,” Cell Host & Microbe 14:453-459 (2013)). Indeed, when the cellular target of LukED, CCR5, is not present on host immune cells, the host animal is resistant to the otherwise lethal S. aureus infection (Alonzo III et al. “CCR5 is a Receptor for Staphylococcus aureus Leukotoxin ED,” Nature 493(7430):51-55 (2012)). In recent studies, the Duffy antigen receptor for chemokines (DARC) was also identified as a receptor for LukED and is necessary for LukED-mediated hemolysis of erythrocytes (Spaan et al., “Staphylococcus aureus Targets the Duffy Antigen Receptor for Chemokines (DARC) to Lyse Erythrocytes,” Cell Host & Microbe 18(3): p. 363-370 (2015)).


Leukotoxin AB (LukAB) can also kill host phagocytic cells, and its cytolytic activity can be exerted both from the outside and the inside of the cell, i.e., after the microorganism is phagocytosed into the host cell (Dumont et al., “Staphylococcus aureus LukAB Cytotoxin Kills Human Neutrophils by Targeting the CD11b Subunit of the Integrin Mac-1,” PNAS 110(26):10794-10799 (2013)). Due to the contribution both of these leukotoxins have to pathogenesis, they have been considered critical S. aureus virulence factors (Alonzo III and Torres, “Bacterial Survival Amidst an Immune Onslaught: The Contribution of the Staphylococcus aureus Leukotoxins,” PLOS Path 9(2):e1003143 (2013)).


Another critical factor for the pathogenic success of S. aureus depends on the properties of its surface proteins (Clarke et al., “Surface Adhesins of Staphylococcus aureus,” Adv. Microb. Physiol. 51:187-224 (2006); Patti et al., “MSCRAMM-Mediated Adherence of Microorganisms to Host Tissues,” Annu. Rev. Microbiol. 48:585-617 (1994); and Patti et al., “Microbial Adhesins Recognizing Extracellular Matrix Macromolecules,” Curr. Opin. Cell Biol. 6:752-758 (1994)). S. aureus employs microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) that adhere to and colonize host tissues via recognition of collagen, heparin-related polysaccharides, fibrinogen, and/or fibronectin of host cells. S. aureus expresses a subset of MSCRAMMs containing a serine-aspartate dipeptide repeat (SDR) domain, including clumping factor A (ClfA), clumping factor B (ClfB), SdrC, SdrD, and SdrE (Becherelli et al. “Protective Activity of the CnaBE3 Domain Conserved Among Staphylococcus aureus Sdr Proteins,” PLoS One 8(9): e74718 (2013)). S. epidermidis also expresses three members of this family, SdrF, SdrG, and SdrH (McCrea et al., “The Serine-Aspartate Repeat (Sdr) Protein Family in Staphylococcus Epidermidis,” Microbiology 146:1535-1546 (2000)). These proteins share a similar structure comprising an N-terminal ligand-binding A domain followed by the SDR domain, which contains between 25-275 serine-aspartate dipeptide repeats. The C-terminal portion of these proteins contains the LPXTG-motif, which facilitates cell wall anchoring by the transpeptidase sortase A. The serine-aspartate dipeptide regions in these proteins are modified by the sequential addition of glycans by two glycosyltransferases. First, SdgB appends N-acetylglucosamine (GlcNAc) on serine residues within the serine-aspartate dipeptide regions, followed by SdgA modification of the glycoprotein, resulting in disaccharide moieties. This glycosylation protects SDR-containing staphylococcal proteins from Cathepsin G-mediated degradation (Hazenbos et al., “Novel Staphylococcal Glycosyltransferases SdgA and SdgB Mediate Immunogenicity and Protection of Virulence-Associated Cell Wall Proteins,” PLoS Pathog 9(10):e1003653 (2013)).


Protein A, located on the surface of S. aureus, also contributes to staphylococcal escape from protective host immune responses by capturing the Fc domain of host IgG, as well as the Fab domain of the VH3 clan of IgG and IgM (Sjodahl et al., “Repetitive Sequences in Protein A from Staphylococcus aureus. Arrangement of Five Regions Within the Protein, Four Being Highly Homologous and Fc-Binding,” Eur. J. Biochem. 73:343-351 (1997); and Cary et al., “The Murine Clan V(H) III Related 7183, J606 and S107 and DNA4 Families Commonly Encode for Binding to a Bacterial B cell Superantigen,” Mol. Immunol. 36:769-776 (1999)). In addition, S. aureus expresses a second immunoglobulin binding protein referred to as the second binding protein for immunoglobulins (Sbi) (Zhang et al., “A Second IgG-Binding Protein in Staphylococcus aureus,” Microbiology 144:985-991 (1998) and Atkins et al., “S. aureus IgG-binding Proteins SpA and Sbi: Host Specificity and mechanisms of Immune Complex Formation,” Mol. Immunol. 45:1600-1611 (2008)). Sbi is either secreted or associated with the cell envelope (Smith et al., “The Sbi Protein is a Multifunctional Immune Evasion Factor of Staphylococcus aureus” Infection & Immunity 79:3801-3809 (2011) and Smith et al., “The Immune Evasion Protein Sbi of Staphylococcus aureus Occurs both Extracellularly and Anchored to the Cell Envelope by Binding to Lipotechoic Acid” Mol. Microbiol. 83:789-804 (2012)) and shares a pair of conserved helices with Protein A involved in binding to the Fc region of IgG proteins (Atkins et al., “S. aureus IgG-binding Proteins SpA and Sbi: Host Specificity and mechanisms of Immune Complex Formation,” Mol. Immunol. 45:1600-1611 (2008)). Binding of IgGs to these proteins via the CH3 region of the Fc is thought to sequester antibodies on the cell surface of S. aureus in an orientation that prevents effective Fc-mediated opsonization of bacteria by neutrophils and therein serve as key immune evasion factors.



S. aureus also secretes a number of proteases that have been implicated in immune evasion. Rooijakkers et al. demonstrated that S. aureus secretion of staphylokinase, a plasminogen activator protein, led to the activation of plasmin that cleaved both surface-bound IgG and complement C3b, ultimately reducing immune-mediated S. aureus destruction (Rooijakkers et al., “Anti-Opsonic Properties of Staphylokinase,” Microbes and Infection 7:476-484 (2005)). S. aureus also secretes the serine protease glutamyl endopeptidase V8 (GluV8) that can directly cleave human IgG1 in the lower hinge region between E233 and L234 (EU numbering (Edelman et al., “The Covalent Structure of an Entire GammaG Immunoglobulin Molecule,” PNAS 63:78-85 (1969), Brezski et al., “Human Anti-IgG1 Hinge Autoantibodies Reconstitute the Effector Functions of Proteolytically Inactivated IgGs,” J. Immunol. 181:3183-3192 (2008)). It was also recently demonstrated that human anti-S. aureus IgGs are rapidly cleaved when bound to the surface of S. aureus (Fernandez Falcon et al., “Protease Inhibitors Decrease IgG Shedding From Staphylococcus aureus, Increasing Complement Activation and Phagocytosis Efficiency,” J. Med. Microbiol. 60:1415-1422 (2011)).


Taken together, these studies indicate that S. aureus utilizes a number of mechanisms that could adversely affect standard IgG1-based monoclonal antibody (mAb) therapeutics, either by directly cleaving the mAb, sequestering of the mAb by Protein A or Sbi binding on the Staph cell surface, or by killing off the very effector cells required for therapeutic efficacy. It is therefore not surprising that presently there are no mAb-based therapies targeting S. aureus that have achieved final approval for use in humans. Thus, there remains a need for methods and compositions that can treat staphylococcal infection, which (i) evade protein A and Sbi binding, (ii) escape staph-induced proteolysis, (iii) can neutralize leukotoxins and (iv) are capable of opsonizing and delivering S. aureus to phagocytes. The present application meets these and other needs.


SUMMARY

A first aspect of the present disclosure is directed to a binding molecule comprising one or more modified fibronectin type III (FN3) domains, each modified FN3 domain having one or more loop regions that comprise one or more staphylococcal leukotoxin binding regions.


Another aspect of the present disclosure is directed to a binding molecule comprising one or more modified fibronectin type III (FN3) domains, each modified FN3 domain having one or more loop regions that comprise one or more staphylococcal hemolysin binding regions.


A second aspect of the present disclosure is directed to a fusion construct. The fusion construct comprises a first portion comprising one or more binding molecules described herein, and a second portion coupled to said first portion. The second portion of the fusion construct comprises a second binding molecule, a pharmaceutically active moiety, a prodrug, a pharmaceutically-acceptable carrier, a diagnostic moiety, a cell penetrating enhancer moiety, and/or a half-life extending modulating moiety.


Another aspect of the present disclosure is directed to a pharmaceutical composition comprising the binding molecules and/or fusion constructs as described herein.


Other aspects of the present disclosure are directed to methods of treating, preventing, and diagnosing a staphylococcal infection in a subject using the binding molecules, fusion constructs, and/or pharmaceutical compositions described herein.


Another aspect of the present disclosure is directed to a recombinant Leukocidin B (LukB) polypeptide comprising an amino acid sequence corresponding to amino acid residues 1-109 of SEQ ID NO: 1026 coupled to amino acid residues 152-305 of SEQ ID NO: 1026, where the LukB polypeptide does not comprise one or more amino acid residues corresponding to amino acid residues 110-151 of SEQ ID NO: 1026.


Another aspect of the present disclosure is directed to a recombinant Leukocidin A (LukA) polypeptide comprising an amino acid sequence corresponding to amino acid residues 1-134 of SEQ ID NO: 1018 coupled to amino acid residues 175-324 of SEQ ID NO: 1018, where the LukA polypeptide does not comprise one or more amino acid residues corresponding to amino acid residues 135-174 of SEQ ID NO: 1018.


Another aspect of the present disclosure is directed to a vaccine composition. The vaccine composition comprises a recombinant Leukocidin B (LukB) polypeptide comprising an amino acid sequence corresponding to amino acid residues 1-109 of SEQ ID NO: 1026 coupled to amino acid residues 152-305 of SEQ ID NO: 1026, wherein said LukB polypeptide does not comprise one or more amino acid residues corresponding to amino acid residues 110-151 of SEQ ID NO: 1026. The vaccine composition further comprises a recombinant Leukocidin A (LukA) polypeptide comprising an amino acid sequence corresponding to amino acid residues 1-134 of SEQ ID NO: 1018 coupled to amino acid residues 177-324 of SEQ ID NO: 1018, wherein said LukA polypeptide does not comprise one or more amino acid residues corresponding to amino acid residues 135-174 of SEQ ID NO: 1018.


The staphylococcal leukotoxin binding molecules described herein are small (about 10 kDa), simple, and highly stable single domain proteins that do not contain cysteine, disulfides or glycosylated residues. These molecules have excellent biophysical properties (e.g., greater than 100 mg/mL expression, greater than 170 mg/mL solubility, greater than 82° C. melting temperature, low predicted immunogenicity, and stable in serum for more than one month), and can be engineered for improved stability. Other advantages over conventional therapeutics include the ability to administer locally, orally, or a cross the blood-brain barrier, the ability to express in E. coli allowing for increased expression of protein as a function of resources versus mammalian cell expression, the ability to be engineered into bispecific molecules that bind to multiple targets or multiple epitopes of the same target, the ability to be conjugated to drugs, polymers, and probes, the ability to be formulated to high concentrations, and the ability of such molecules to effectively penetrate diseased tissues. Accordingly, the binding molecules described herein comprising one or more staphylococcal leukotoxin binding domains offer a unique therapeutic, prophylactic, and diagnostic approach to combatting staphylococcal infection.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1F define a minimal epitope target for mAb 5133 and mAb 5133-FN3 fusion proteins. FIGS. 1A, 1B, and 1C show specific binding of mAb 5133 to the SdgB glycosylated form of SdrC4, ClfA, and ClfB, respectively. FIG. 1D shows mAb5133 binding to glycosylated streptavidin-bound SD peptide in a concentration dependent manner. The graph of FIG. 1E serves as a control showing that equivalent amounts of the glycosylated and non-glycosylated forms of the SD peptide are bound to the streptavidin-coated plates. FIG. 1F shows the binding of a series of mAb5133 fusion proteins to the glycosylated SD peptide.



FIGS. 2A-2C depict target antigen engagement by mAb 5133 and mAb 5133-FN3 fusion proteins including simultaneous target engagement (FIG. 2A), target binding stoichiometry (FIG. 2B), and binding affinity (FIG. 2C).



FIGS. 3A-3D show that target engagement by mAb 5133-FN3 fusion proteins can be altered by the length of linker coupling the mAb and FN3 portions of the fusion proteins. FIG. 3A shows variation in LukAB and LukE binding affinity due to changes in linker length. FIG. 3B is a matrix showing linker length mediated variation in fusion construct efficacy in a mouse model of S. aureus kidney infection. FIGS. 3C and 3D show the linker length-mediated variation in in vivo fusion protein binding to LukE (FIG. 3C) and LukAB (FIG. 3D) as well as linker length mediated variation in potential therapeutic efficacy for LukE (FIG. 3C) and LukAB (FIG. 3D) as measured by the number of colony forming units in a mouse model of S. aureus kidney infection.



FIGS. 4A-4C show the correlation of toxin binding and neutralizing activity of a representative set of variants of three FN3 binding molecules containing LukE binding regions, i.e., Luk26 (FIG. 4A), Luk27 (FIG. 4B), and Luk38 (FIG. 4C).



FIG. 5 shows the correlation of toxin binding and neutralizing activity of a representative set of FN3 variants targeting leukotoxin LukAB.



FIG. 6 shows that the potential therapeutic efficacy of mAb 5133-FN3 fusion proteins is improved over mAb-5133 in a mouse kidney infection model. Therapeutic efficacy was determined by measuring the number of colony forming units (CFU) and assessing the presence of kidney abscess lesions.



FIGS. 7A-7B are graphs showing that mAb 5133 and mAb 5133-FN3 fusion proteins exhibit enhanced therapeutic efficacy in a mouse renal abscess infection model over mAbs or mAb-FN3 fusion proteins targeting non-SDR adhesin protein antigens.



FIG. 8 is a graph showing that the efficacy of mAb5133 and mAb 5133-FN3 fusion proteins is enhanced in the presence of sub-therapeutic concentrations of vancomycin in a mouse kidney infection model.



FIG. 9 is a graph showing improved efficacy of mAb 5133-FN3 fusion proteins compared to mAb-5133 alone in a mouse bacteremia model. The top panel of FIG. 9 shows the amount of colony forming units present in blood of mice infected with S. aureus and administered the identified antibody or antibody-FN3 fusion construct. The bottom panel of FIG. 9 is depicts the amount of colony forming units present in the spleen of mice infected with S. aureus and administered the identified antibody or antibody-FN3 fusion construct.



FIG. 10 is a graph showing that the efficacy of mAb 5133-FN3 fusion proteins is improved over the sum of its composite parts in a mouse kidney infection model.



FIGS. 11A-11B are graphs showing that the efficacy of mAb 5133-FN3 fusion proteins is improved over mAb-5133 in a mouse skin infection model as assessed by skin lesion volume (FIG. 11A) and bacterial burden in the skin lesion (FIG. 11B).



FIG. 12 is a graph showing that the mAb5133-FN3 fusion protein affords protection against S. aureus mediated extracellular cytolysis of primary human neutrophils.



FIG. 13 is a graph showing that the mAb5133-FN3 fusion protein affords protection against S. aureus mediated intracellular cytolysis of primary human neutrophils.



FIGS. 14A-14D show that mAb5133-FN3 fusion proteins enhance opsonophagocytotic death of various S. aureus strains including, USA300 LAC (FIG. 14A), USA300 FRP, 18807, 18808, and 18809 (FIG. 14B), BK4645b (MSSA) (FIG. 14C), and USA500 BK2395 (FIG. 14D) in primary human neutrophils.



FIG. 15 shows the binding of a series of monoclonal antibodies to S. aureus protein A to exemplify binding via the Fc (Fragment, crystallizable) and/or Fab (fragment, antigen-binding) regions.



FIG. 16 is a graph showing that mAb5133-FN3 fusion proteins afford improved protection from LukAB-dependent extracellular killing of primary human neutrophils.



FIGS. 17A-17C show that mAb5133-FN3 fusion proteins afford improved protection from extracellular killing of primary human neutrophils by non-cognate leukotoxin pairs LukE/LukF-PV and LukE/HlgB. FIG. 17A is a graph showing cytolytic activity of non-cognate leukotoxins LukE/LukF-PV and LukE/HlgB against primary human neutrophils. The top and bottom graphs of FIG. 17B show the relative activity of CNTO3930 and two mAb5133-FN3 fusion proteins in protecting primary human neutrophils from LukE/LukF-PV mediated cytolysis, as determined by the percent cell death (top graph) and release of LDH (bottom graph). The top and bottom graphs of FIG. 17C show the relative activity of CNTO3930 and two mAb5133-FN3 fusion proteins in protecting primary human neutrophils from LukE/HlgB mediated cytolysis, as determined by percent cell death (top graph) and the release of LDH (bottom graph).



FIGS. 18A-18B demonstrate that mAb 5133-FN3 fusion proteins that bind LukE and neutralize the cytolytic activity that LukED exerts towards hPMNs, also neutralize the hemolytic activity of LukED on human erythrocytes. FIG. 18A shows a dose-dependent decrease in LukED mediated hemolysis with mAb5133-FN3 fusion protein treatment. The data is shown as percent hemolysis observed as compared to the 100% value observed with Triton X-100. FIG. 18B shows a dose-dependent decrease in LukED mediated hemolysis observed with mAb5133-FN3 fusion protein treatment. In this graph, the data is shown as percent hemolysis observed as compared to the 100% value observed with LukED treatment alone.



FIGS. 19A-19B depict the interaction of a LukAB-specific FN3 protein (Luk17 FN3) with LukAB as determined by solution phase hydrogen/deuterium exchange (HDX)-Mass Spectrometry (MS). FIG. 19A is a differential heat map of LukB (SEQ ID NO: 11) resulting from HDX mapping in the presence or absence of the Luk17 FN3 protein. The LukB peptide regions, 260IDWNRHGFWG269 (amino acid residues 260-269 of SEQ ID NO: 11) and 201LTRNGNLWAKDNFTPKDKMPVTVS224 (amino acid residues 201-224 of SEQ ID NO: 11), identified in the map as Protected LukB peptide #1 and Protected LukB peptide #2, respectfully, contain residues of a LukAB neutralizing epitope bound by Luk17 FN3. FIG. 19B shows the localization of these linear sequences on a published, three-dimensional structure of LukAB as determined by X-ray crystallography (PDB entry 4tw1).



FIGS. 20A-20B depict the identification of potential neutralization epitopes on leukocidin LukE by solution phase hydrogen/deuterium exchange (HDX)-Mass Spectrometry (MS). FIG. 20A is a differential heat map of LukE (SEQ ID NO: 1055) resulting from HDX mapping in the presence of absence of Luk26 FN3). The LukE peptide regions, 69TSFSDVKGSGYELT82 (amino acid residues 69-82 of SEQ ID NO: 1055) and 255LFPRTGIYAERKHNAFVNRNF275 (amino acid residues 255-275 of SEQ ID NO: 1055), and 244YGRN247 (amino acid residues 244-247 of SEQ ID NO: 1055) identified in the map as Major protected LukE peptides and Minor protected LukE peptides, respectively, contain residue of a LukE neutralizing epitope that is bound by Luk26 FN3. FIG. 20B shows the localization of these linear sequences on a published, three-dimensional structure of LukE as determined by X-ray crystallography.



FIGS. 21A-21F depict the characterization of the neutralization epitope of the Luk17 FN3 protein on LukAB by x-ray crystallography. FIG. 21A shows the overall structure of the LukAB/S17/214F ternary complex as determined by X-ray crystallography. In this Figure LukA is shown in dark gray, LukB is shown in white, Fab214 is shown in light gray, and S17 is shown in black. FIG. 21B shows the alternate conformation of the pore-forming segments of LukA and LukB as determined for octameric and heterodimeric X-ray structures of LukAB. The left-hand portion of this figure is a structure overlay of LukB (white). The two A and B segments are colored black and dark gray in the dimer and octamer structures. The switch points for the two different conformations are identical. FIG. 21C shows the relative location of the Luk17 FN3 (S17) protein and Fab 214F binding sites on LukAB with respect to the membrane spanning segment in the LukAB octameric form. Shown is a structure of a composite of the LukAB/S17/214F structure and the LukAB octameric structure (PDB ID 4tw1). Binding of S17 and 214F is compatible with both dimer and octamer. The switching segments (dark gray) in the octamer form the inner pore whereas both S17 and 214F bind the exterior of the octamer. FIG. 21D shows minimal components of the LukAB neutralization epitope for the Luk17 FN3 protein as determined from the structure of the LukAB/S17/214F ternary complex, and the corresponding paratope of the Luk17 FN3 protein is shown in FIG. 21E. Black underlined labels indicate residues for which mutations have most impact upon binding and the other black labels indicate residues with intermediate effects. Some epitope residues were not mutated or had minimal effect (gray label). FIG. 21F shows representational electron density at the LukB epitope/Luk17 FN3 paratope interface. The white labels in this Figure depict the S17 paratope residues while the black labels depict the LukB epitope residues.



FIGS. 22A-22B depict the mutational mapping of LukB to confirm the neutralization epitope of the Luk17 FN3 protein. FIG. 22A shows the calculated affinity constant (KD) and values for the Luk17 FN3 protein as determined by Bio-Layer Interferometry (BLI) for a series of site-directed substitution mutant variants of LukB. The amino acid number is per PDB ID#4tw1 (SEQ ID NO: 1026). FIG. 22B shows the calculated dissociation constant (Kdis) values for the Luk17 FN3 protein as determined by BLI for the same series of LukB variants. The amino acid number is per the sequence of PDB entry4tw1 (SEQ ID NO: 1026).



FIGS. 23A-23C depict the mutational mapping of LukE to confirm the neutralization epitope of the Luk26 FN3 protein. FIG. 23A shows the calculated affinity constant (KD) and values for the Luk26 FN3 protein as determined by BLI for a series of site-directed substitution mutant variants of LukE. The amino acid number is per PDB ID#3ROH (SEQ ID NO: 1054). FIG. 23B shows the calculated dissociation constant (Kdis) values for the Luk26 FN3 protein as determined by BLI for the same series of LukE variants. The amino acid number is per PDB ID#3ROH (SEQ ID NO: 1054). FIG. 23C shows the localization of residues that contribute to the LukED neutralization epitope for the Luk26 FN3 protein mapped on to the three-dimensional surface of a published high-resolution crystal structure of LukE. The amino acid number is per the sequence of PDB entry3ROH (SEQ ID NO: 1054). For clarity, an alignment of the LukED neutralization epitope regions within the recombinant LukE sequence used in the HDX mapping (Example 20; SEQ ID No: 1055), the recombinant LukE sequence used in the mutational analysis (Example 23; SEQ ID No: 1056), and the sequence of published LukE structure (PDB entry 3ROH; SEQ ID NO: 1054) is shown in FIG. 23C. Note that the numbering of the SEQ ID NO: 1054 is based on Thr30 being identified as the first residue for which electron density is apparent in the published LukE crystal structure (Nocadello et al., “Crystal structures of the components of the Staphylococcus aureus leukotoxin ED” Acta. Cryst. D72: 113-120 (2016), which is hereby incorporated by reference in its entirety; PDB entry 3roh).



FIGS. 24A-24C define a further minimal epitope for mAb 5133 and characterize the interaction of mAB 5133 with N-acetyl-D-glucosamine as determined by x-ray crystallography. FIG. 24A shows the binding of mAb 5133 to a series of synthetic serine-aspartate (SD) repeat peptides with variable glycosylation characteristics as determined in an ELISA format assay. FIG. 24B shows a ribbon format structure of the complex of SM1B229 and GlcNAc. The SM1B229 heavy chain is shown in gray, the light chain is shown in white, and GlcNac is shown in black. Hydrogen bonding interactions are shown as dashed lines. FIG. 24C shows the electrostatic surface potential of the structure of the complex of SM1B229 and GlcNAc. The positive electrostatic surface potential shaded darker, and negative electrostatic surface potential shaded lighter. GlcNac is shown in white. The variable heavy (VH) region (amino acid residues 1-120 of SEQ ID NO: 1082) and variable light (VL) region (amino acid residues 1-107 of SEQ ID NO: 1083) of the SM1B229 are depicted beneath the structure. The underlined regions are the CDRs of each chain. CDR3 of the VH region (bold and underlined) forms a basic pocket for GlcNac binding.



FIG. 25 shows the binding of fibronectin type III (FN3) domain proteins and controls to S. aureus alpha hemolysin and human serum albumin as determined in an ELISA format assay.



FIGS. 26A-26D depict the characterization of stem domain mutant variants of LukAB that retain the neutralization epitope of the FN3 domain protein Luk17. FIG. 26A shows the binding of a toxoid LukAB to Luk17-His-SA (SEQ ID NO: 1153) and TENCON-His-SA (SEQ ID NO: 1152) FN3 binding domain proteins as determined by Bio-Layer Interferometry (BLI). FIG. 26B shows the binding of the LukABmut1 stem domain mutant variant to Luk17-His-SA and TENCON-His-SA FN3 binding domain proteins as determined by BLI. FIG. 26C shows the binding of the LukABmut2 stem domain mutant variant to Luk17-His-SA and TENCON-His-SA FN3 binding domain proteins as determined by BLI. FIG. 26D shows the binding of the LukABmut3 stem domain mutant variant to Luk17-His-SA and TENCON-His-SA FN3 binding domain proteins as determined by BLI.



FIGS. 27A-27I demonstrate that anti-LukE FN3 domain proteins with extended serum exposure protect mice from lethal doses of leukotoxin LukED. FIG. 27A shows western blot analysis of the relative levels of FN3 domain proteins detected in sera from mice at two and twenty four hours after test article administration. No parental FN3 domain proteins are detected at either time point. In contrast, FN3 domain fusion proteins that exhibit an extended serum residence time (and therein exposure) are detected as full length proteins both two and twenty four hours after test article administration. FIG. 27B shows the relative protection observed with a series of FN3 domain proteins following administration of a lethal dose of LukED toxin to mice. Four hours post dosing, 100% protection is observed for the SAFN3-LukE26 fusion protein that bears an amino-terminal FN3 domain protein that binds serum albumin and a carboxyl terminal FN3 domain protein that binds LukED and neutralizes its cytolytic activity. FIG. 27C shows that this 100% protection is conserved on re-challenge of the SAFN3-LukE26 dosed animals 4.5 hours after the initial lethal intoxication challenge with LukED. FIG. 27D shows the relative protection observed with a series of FN3 domain proteins following administration of a lethal dose of LukED toxin to mice. Four hours post dosing, 100% protection is observed for the SABD-LukE26 fusion protein that bears an amino-terminal serum albumin binding domain and a carboxyl terminal FN3 domain protein that binds LukED and neutralizes its cytolytic activity. FIG. 27E shows that this 100% protection is conserved on re-challenge of the SABD-LukE26 dosed animals 4.5 hours after the initial lethal intoxication challenge with LukED. FIG. 27F shows the relative protection observed with a series of FN3 domain proteins following administration of a lethal dose of LukED toxin to mice. Four hours post dosing, 100% protection is observed for the TFFN3-LukE26 fusion protein that bears an amino-terminal FN3 domain protein that binds transferrin and a carboxyl terminal FN3 domain protein that binds LukED and neutralizes its cytolytic activity. FIGS. 27G and 27H show the relative activity of a series of FN3 domain proteins in neutralizing the ex vivo cytolytic activity of LukED against freshly prepared human PMNs as measure by LDH release (FIG. 27G) and cell death (FIG. 27H). As expected, neutralization of the cytolytic activity of LukED is observed with all FN3 domain proteins that contain the LukE26 entity. Finally, FIG. 27I shows the extent of protection of mice following administration of sequential lethal doses of the LukED leukocidin 5, 24 and 48 hours post dosing of SABD-Luk26 at a 1×, 10× and 100× molar ratio of SABD-Luk26 over LukED.





DETAILED DESCRIPTION

A first aspect of the present disclosure is directed to a binding molecule comprising one or more modified fibronectin type III (FN3) domains, where each modified FN3 domain has one or more loop regions that comprise one or more staphylococcal leukotoxin binding regions.


The FN3 domain is an evolutionary conserved protein domain that is about 100 amino acids in length and possesses a beta sandwich structure. The beta sandwich structure of human FN3 comprises seven beta-strands, referred to as strands A, B, C, D, E, F, G, with six connecting loops, referred to as loops AB, BC, CD, DE, EF, and FG that exhibit structural homology to immunoglobulin binding domains. Three of the six loops, i.e., loops DE, BC, and FG, correspond topologically to the complementarity determining regions of an antibody, i.e., CDR1, CDR2, and CDR3. The remaining three loops are surface exposed in a manner similar to antibody CDR3. In accordance with the present disclosure, one or more of the loop regions of each FN3 domain of the binding molecule are modified to comprise one or more staphylococcal leukotoxin binding regions.


The modified FN3 domain of the binding molecule of the present disclosure can be a FN3 domain derived from any of the wide variety of animal, yeast, plant, and bacterial extracellular proteins containing these domains. In one embodiment, the FN3 domain is derived from a mammalian FN3 domain. Exemplary FN3 domains include, for example and without limitation, any one of the 15 different FN3 domains present in human tenascin C, or the 15 different FN3 domains present in human fibronectin (FN) (e.g., the 10th fibronectin type III domain). Exemplary FN3 domains also include non-natural synthetic FN3 domains, such as those described in U.S. Pat. Publ. No. 2010/0216708 to Jacobs et al., which is hereby incorporated by reference in its entirety. Individual FN3 domains are referred to by domain number and protein name, e.g., the 3rd FN3 domain of tenascin (TN3), or the 10th FN3 domain of fibronectin (FN10).


In one embodiment, the FN3 domain of the binding molecule is derived from the non-naturally occurring FN3 domain of Tencon (SEQ ID NO: 1017). Tencon was designed from a consensus sequence of fifteen FN3 domains from human tenascin-C (Jacobs et al., “Design of Novel FN3 Domains With High Stability by a Consensus Sequence Approach,” Protein Engineering, Design, and Selection 25:107-117 (2012), the disclosure of which is hereby incorporated by reference in its entirety). In another embodiment, the FN3 domain of the binding molecule is derived from the non-naturally occurring FN3 domain of Tencon-25 (SEQ ID NO: 1) as disclosed in Diem et al., “Selection of high-affinity Centyrin FN3 domains from a simple library diversified at a combination of strand and loop positions,” Protein Engineering, Design, and Selection 10:419-429 (2014), which is hereby incorporated by reference in its entirety).


Tencon domains, like other FN3 domains, have a beta-sandwich structure with the seven beta-strands, i.e., A, B, C, D, E, F, and G, linked by six loops, i.e., AB, BC, CD, DE, EF, and FG loops (Bork and Doolittle, Proc. Natl. Acad. Sci. USA 89:8990-8992 (1992) and U.S. Pat. No. 6,673,901 to Koide et al., which are hereby incorporated by reference in their entirety). These loops span at or about amino acid residues 13-16 of SEQ ID NO: 1 (AB loop), amino acid residues 22-28 of SEQ ID NO: 1 (BC loop), amino acid residues 38-43 of SEQ ID NO:1 (CD loop), amino acid residues 51-54 of SEQ ID NO:1 (DE loop), amino acid residues 60-64 of SEQ ID NO: 1 (EF loop), and amino acid residues 75-81 of SEQ ID NO: 1 (FG loop). In accordance with the present disclosure, one or more of these loop regions or selected residues within one or more of these loop regions are modified for staphylococcal leukotoxin binding specificity and affinity. Suitable modifications include amino acid residue substitutions, insertions, and/or deletions. In one aspect, amino acid residues in at least one, at least two, at least three, at least four, at least five, or all six of the loop regions are altered for staphylococcal leukotoxin binding specificity and affinity. In one embodiment, one or more amino acid modifications within the loop regions at or about residues 22-28 (BC loop), 38-43 (CD loop), 51-54 (DE loop), and 75-81 (FG loop) of SEQ ID NO: 1 form the staphylococcal leukotoxin binding region. In another embodiment, one or more amino acid modification within the loop regions at or about residues 38-43 (CD loop) and 75-81 (FG loop) form the staphylococcal leukotoxin binding region. The modified one or more loop regions preferably interact with their target staphylococcal leukotoxin protein similar to an antibody CDR interaction with the protein.


As discussed above, FN3 domains contain two sets of CDR-like loops on the opposite faces of the molecule. The two sets of loops are separated by beta-strands that form the center of the FN3 structure. Like the loops, these beta-strands can be altered to enhance target molecule binding specificity and affinity. Preferably, some or all of the surface exposed residues in the beta strands are randomized without affecting (or minimally affecting) the inherent stability of the FN3 domain. One or more of the beta-strands can interact with a target protein. The beta-strands in a FN3 binding molecule provide a flat binding surface (compared to a curved binding surface found in protein scaffolds containing adjacent loops) that affects the target proteins, or specific epitopes on those target proteins, that can be bound effectively by the domain. In one aspect, at least a portion of one or more beta-strands of the FN3 domain is modified to interact with a staphylococcal leukotoxin protein. Suitable modifications include amino acid substitutions, insertions, and/or deletions. For example, one or more amino acid residues of the A beta strand (i.e., amino acid residues corresponding to residues 1-12 of SEQ ID NO: 1), the B beta strand (i.e., amino acid residues corresponding to residues 17-21 of SEQ ID NO: 1), the C beta strand (i.e., amino acid residues corresponding to residues 29-37 of SEQ ID NO: 1), the D beta strand (i.e., amino acid residues corresponding to residues 44-50 of SEQ ID NO: 1), the E beta strand (i.e., amino acid residues corresponding to residues 55-59 of SEQ ID NO: 1), the F beta strand (i.e., amino acid residues corresponding to residues 65-74 of SEQ ID NO: 1), or the G beta strand (i.e., amino acid residues corresponding to residues 82-89 of SEQ ID NO: 1) may be modified to generate staphylococcal leukotoxin binding domains or to enhance the specificity or affinity of leukotoxin binding. In one embodiment, one or more amino acid residues of the C beta strand and/or the F beta strand are modified for binding to a staphylococcal leukotoxin protein.


In one embodiment, the binding molecules of the present disclosure specifically bind to one or more staphylococcal leukotoxins, also referred to herein as staphylococcal leukocidins. Staphylococcal leukotoxins are a family bi-component toxins released by S. aureus, which damage membranes of host defense cells and erythrocytes by the synergistic action of two non-associated proteins or subunits, i.e., the S-subunit and F-subunit (see Menestrina et al., “Mode of Action of Beta-Barrel Pore-Forming Toxins of the Staphylococcal Alpha-Hemolysin Family,” Toxicol. 39(11):1661-1672 (2001). The binding molecules as described herein bind to one or more staphylococcal leukotoxins selected from leukotoxin A (LukA), leukotoxin B (LukB), leukotoxin AB (LukAB), leukotoxin D (LukD), leukotoxin E (LukE), leukotoxin ED (LukED), Panton-Valentine leukocidin S (LukS-PV), Panton-Valentine leukocidin F (LukF-PV), Panton-Valentine leukocidin (LukSF/PVL), gamma hemolysin A (HlgA), gamma hemolysin C (HlgC), gamma hemolysin B (HlgB), gamma hemolysin AB (HlgAB), and gamma-hemolysin BC (HlgBC). In one embodiment, the binding molecule binds to one or more of the staphylococcal leukotoxins selected from LukAB, LukD or LukE. In another embodiment, the binding molecules hereof are capable of specifically binding to a fragment of the above-mentioned proteins, where the fragment at least comprises a neutralizing epitope of the leukotoxin protein. Binding of the binding molecule of the present disclosure to a neutralizing epitope of the leukotoxin protein substantially or completely eliminates leukotoxin cytolytic and/or hemolytic activity. Neutralizing epitopes generally include regions of the leukotoxin protein involved in binding to a host cell membrane or receptor, regions of the leukotoxin protein involved in interacting with other leukotoxin proteins and oligomer formation, and regions of the leukotoxin protein involved in pore formation. The binding molecules of the present disclosure neutralize leukotoxin activity by at least 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 96%, 98%, 99%, or 100% when compared to leukotoxin activity in the absence of the binding molecule.


As used herein “specifically binds” or “specific binding” refers to the ability of the FN3 containing binding molecule of the disclosure to bind to a predetermined antigen, i.e., a staphylococcal leukotoxin with a dissociation constant (KD) of about 1×10−6 M or less, for example about 1×10−7 M or less, about 1×10−8M or less, about 1×10−9 M or less, about 1×10−10M or less, about 1×10−11M or less, about 1×10−12M or less, or about 1×10−13 M or less. Typically the leukotoxin binding FN3 domain binds to its target leukotoxin(s) with a KD that is at least ten fold less than its KD for a nonspecific antigen (for example BSA or casein) as measured by surface plasmon resonance using for example a Proteon Instrument (BioRad). Thus, a monospecific, bispecific, or multispecific leukotoxin FN3 domain containing molecule as described herein specifically binds to each target leukotoxin with a binding affinity (KD) of at least 1×10−6 M or less. The isolated modified FN3 domain of the disclosure that specifically binds to a staphylococcal leukotoxin may, however, have cross-reactivity to other related bi-component toxins, for example to related S-subunit or F-subunit leukotoxins.


In one aspect, the binding molecule comprises a modified FN3 domain having one or more loop regions that comprise one or more LukE binding regions. This binding molecule is capable of binding a staphylococcal LukE protein having the amino acid sequence of SEQ ID NO: 1055 or fragments or homologs thereof. The LukE protein exemplified by SEQ ID NO: 1055 corresponds to the native mature LukE protein sequence modified to contain an N-terminal histidine tag. Accordingly, the amino acid residue at position 12 of SEQ ID NO: 1055 corresponds to the first amino acid residue of the mature LukE protein.


In one embodiment, binding of the LukE binding molecule to LukE effectively neutralizes LukE cytolytic and/or hemolytic activity, e.g., by inhibiting LukE and LukD interaction, inhibiting LukE binding to the plasma membrane of leukocytes, and/or inhibiting LukED pore formation. In accordance with this embodiment, the LukE binding molecule binds to one or more epitopes of LukE within a region of LukE comprising or consisting of amino acid residues corresponding to residues 22-33 of SEQ ID NO: 1055 (residues involved in LukE-LukD protein interaction), amino acid residues corresponding to residues 123-128 of SEQ ID NO: 1055 (residues involved in LukED membrane penetration), or amino acid residues corresponding to residues 137-142 of SEQ ID NO: 1055 (residues involved in LukED membrane penetration). In another embodiment, the LukE binding molecule binds to one or more epitopes of LukE within a region of LukE involved in LukE cell targeting. These regions comprise amino acid residues corresponding to residues 68-86 of SEQ ID NO: 1055, amino acid residues corresponding to residues 151-161 of SEQ ID NO: 1055, amino acid residues corresponding to residues 175-189 of SEQ ID NO: 1055, amino acid residues corresponding to residues 193-207 of SEQ ID NO: 1055, and amino acid residues corresponding to residues 248-278 of SEQ ID NO: 1055. As demonstrated in the Examples herein, amino acid residues 69-84 of SEQ ID NO: 1055 (corresponding to amino acid residues 86-101 of SEQ ID NO: 1054), and amino acid residues 252-275 of SEQ ID NO: 1055 (corresponding to amino acid residues 269-292 of SEQ ID NO: 1054) contain neutralizing epitopes of LukE.


In one embodiment, a LukE binding molecule as described herein comprises a C strand and a CD loop region having the amino acid sequence


DSFX32IX34YX36EX38X39X40X41X42E (SEQ ID NO: 993), where


X32 is any amino acid residue,


X34 is E or a functionally equivalent amino acid residue,


X36 is any amino acid residue,


X38 is any amino acid residue,


X39 is W or a functionally equivalent amino acid residue,


X40 is any amino acid residue,


X41 is W or a functionally equivalent amino acid residue,


X42 is any amino acid residue;


and an F strand and FG loop region having the amino acid sequence of TX66YX68VX70IX72GVKG X77 X78 X79 SX81 (SEQ ID NO: 994), where


X66 is any amino acid residue,


X68 is any amino acid residue,


X70 is F or a functionally equivalent amino acid residue,


X72 is G or a functionally equivalent amino acid residue,


X77 is any amino acid residue,


X78 is any amino acid residue,


X79 is any amino acid residue,


X81 is any amino acid residue.


In one embodiment, the LukE binding molecule as described herein comprises the a C strand and a CD loop region of SEQ ID NO: 993 and the F strand and FG loop region of SEQ ID NO: 994 as described above and binds to a neutralizing epitope of LukE in one of the regions of LukE noted above, i.e., amino acid residues 22-33, 123-128, 137-142, 68-86, 151-161, 175-189, 193-207, and 248-278 of SEQ ID NO:1055.


In another embodiment, the LukE binding molecule as described herein comprises the amino acid sequence of LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF X32I X34Y X36E X38 X39 X40 X41 X42EAI


X46LTVPGSERSYDLTGLKPGT X66Y X68V X701 X72GVKG X77 X78 X79 S X81 X82L X84A


X86FTT (SEQ ID NO: 989), where


X32 is any amino acid residue,


X34 is E or a functionally equivalent amino acid residue,


X36 is any amino acid residue,


X38 is any amino acid residue,


X39 is W or a functionally equivalent amino acid residue,


X40 is any amino acid residue,


X41 is W or a functionally equivalent amino acid residue,


X42 is any amino acid residue,


X46 is any amino acid residue,


X66 is any amino acid residue,


X68 is any amino acid residue,


X70 is F or a functionally equivalent amino acid residue,


X72 is G or a functionally equivalent amino acid residue,


X77 is any amino acid residue,


X78 is any amino acid residue,


X79 is any amino acid residue,


X81 is any amino acid residue,


X82 is any amino acid residue,


X84 is any amino acid residue, and


X86 is any amino acid residue.


In accordance with this aspect, exemplary LukE binding molecules comprise any one of the amino acid sequences of SEQ ID NOs: 25 (Luk26) and 739-814.


In some embodiments, these LukE binding molecules comprise an initiator methionine residue linked to the N-terminus or a cysteine residue linked to the C-terminus to facilitate expression and/or conjugation to another moiety (e.g., another leukotoxin binding FN3 domain, a half-life extending moiety, or other therapeutic moiety).


In another embodiment, the LukE binding molecule as described herein binds LukE with one or more amino acid residues corresponding to residues E34, W39, W41, F70, and G72 of SEQ ID NO: 25 (Luk26). Accordingly, the FN3 domain binding molecule containing a LukE binding region comprises an amino acid sequence that is at least 70%, 75%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO: 25, where residues E34, W39, W41, F70, and G72 of SEQ ID NO: 25 remain fixed or are substituted with functionally equivalent amino acid residues.


In another embodiment, a LukE binding molecule described herein comprises a C strand and a CD loop region having the amino acid sequence


DSFX32IX34YX36EX38X39X40X41GE (SEQ ID NO: 995) where


X32 is any amino acid residue,


X34 is any amino acid residue,


X36 is any amino acid residue,


X38 is W or a functionally equivalent amino acid residue,


X39 is any amino acid residue,


X40 is any amino acid residue, and


X41 is any amino acid residue;


and an F strand and FG loop region having the amino acid sequence of TEYX68VX70IX72GVKGG X78 X79 SX81 (SEQ ID NO: 996), where


X68 is L or a functionally equivalent amino acid residue,


X70 is D or a functionally equivalent amino acid residue,


X72 is Y or a functionally equivalent amino acid residue,


X78 is any amino acid residue,


X79 is W or a functionally equivalent amino acid residue, and


X81 is Y or a functionally equivalent amino acid residue.


In one embodiment, the LukE binding molecule as described herein comprises the a C strand and a CD loop region of SEQ ID NO: 995 and the F strand and FG loop region of SEQ ID NO: 996 as described above and binds to a neutralizing epitope of LukE in one of the regions of LukE noted above, i.e., amino acid residues 22-33, 123-128, 137-142, 68-86, 151-161, 175-189, 193-207, and 248-278 of SEQ ID NO:1055.


In one embodiment, the LukE binding molecule as described herein comprises the amino acid sequence of LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF X32I X34Y X36E X38 X39 X40 X41 GEAI VLTVPGSERSYDLTGLKPGT EY X68V X701 X72GVKG G X78 X79 S X81 PLSAIFTT (SEQ ID NO: 990) where,


X32 is any amino acid residue,


X34 is any amino acid residue,


X36 is any amino acid residue,


X38 is W or a functionally equivalent amino acid residue,


X39 is any amino acid residue,


X40 is any amino acid residue,


X41 is any amino acid residue,


X68 is L or a functionally equivalent amino acid residue,


X70 is D or a functionally equivalent amino acid residue,


X72 is Y or a functionally equivalent amino acid residue,


X78 is any amino acid residue,


X79 is W or a functionally equivalent amino acid residue, and


X81 is Y or a functionally equivalent amino acid residue.


In accordance with this embodiment, exemplary LukE binding molecules include any one of the amino acid sequences of SEQ ID Nos: 26 (Luk27) and 815-827. In some embodiments, these LukE binding molecules comprise an initiator methionine residue linked to the N-terminus or a cysteine residue linked to the C-terminus to facilitate expression and/or conjugation to another moiety (e.g., another leukotoxin binding FN3 domain, a half-life extending moiety, or other therapeutic moiety).


In one embodiment, the LukE binding molecule as described herein binds LukE with one or more amino acid residues corresponding to residues W38, L68, D70, Y72, W79, and Y81 of SEQ ID NO: 26 (Luk27). Accordingly, the FN3 domain containing a LukE binding region comprises an amino acid sequence that is at least 70%, 75%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO: 26, where residues W38, L68, D70, Y72, W79, and Y81 of SEQ ID NO: 26 remain fixed or are substituted with functionally equivalent amino acid residues.


In another embodiment, the LukE binding molecule described herein comprises a FG loop region having the amino acid sequence X75 X76 X77 X78 X79 X80X81 X82 X83 X84 X85 X86 (SEQ ID NO: 997) where


X75 is any amino acid residue,


X76 is any amino acid residue,


X77 is I or a functionally equivalent amino acid residue,


X78 is any amino acid residue,


X79 is any amino acid residue,


X80 is G or a functionally equivalent amino acid residue,


X81 is W or a functionally equivalent amino acid residue,


X82 is L or a functionally equivalent amino acid residue,


X83 is D or a functionally equivalent amino acid residue,


X84 is F or a functionally equivalent amino acid residue,


X85 is V or a functionally equivalent amino acid residue, and


X86 is F or a functionally equivalent amino acid residue.


In one embodiment, the FG loop region of SEQ ID NO: 997 can contain one or more amino acid insertions. For example, amino acid insertions of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more amino acid residues can be made at or around positions X75 and X76 of SEQ ID NO: 997 or SEQ ID NO: 991. Likewise, amino acid insertions of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more amino acid residues can be made at or around positions X78 and X79 of SEQ ID NO: 997 or SEQ ID NO: 991.


In one embodiment, the LukE binding molecule as described herein comprises the FG loop region of SEQ ID NO: 997 as described above and binds to a neutralizing epitope of LukE in one of the regions of LukE noted above, i.e., amino acid residues 22-33, 123-128, 137-142, 68-86, 151-161, 175-189, 193-207, and 248-278 of SEQ ID NO:1055.


In accordance with this embodiment, the LukE binding molecule as described herein comprises the amino acid sequence of LPAPKNLVVSRVTEDSARLSWTAPDAAFDSFLIQYQESEKVGEAIVLTVPGSERSYDLTG LKPGTEYTVSIYGV X75 X76 X77 X78 X79 X80X81 X82 X83 X84 X85 X86 SNPLSAIFTT (SEQ ID NO: 991), where


X75 is any amino acid residue,


X76 is any amino acid residue,


X77 is I or a functionally equivalent amino acid residue


X78 is any amino acid residue,


X79 is any amino acid residue,


X80 is G or a functionally equivalent amino acid residue


X81 is W or a functionally equivalent amino acid residue


X82 is L or a functionally equivalent amino acid residue,


X83 is D or a functionally equivalent amino acid residue,


X84 is F or a functionally equivalent amino acid residue,


X85 is V or a functionally equivalent amino acid residue, and


X86 is F or a functionally equivalent amino acid residue.


In accordance with this embodiment, exemplary LukE binding molecules comprise any one of the amino acid sequences of SEQ ID Nos: 37 (Luk38) and 828-839. In some embodiments, these LukE binding molecules comprise an initiator methionine residue linked to the N-terminus or a cysteine residue linked to the C-terminus to facilitate expression and/or conjugation to another moiety (e.g., another leukotoxin binding FN3 domain, a half-life extending moiety, or other therapeutic moiety).


In another embodiment, the LukE binding molecule as described herein binds LukE with one or more amino acid residues corresponding to residues 177, G80, W81, L82, D83, F84, V85, and F86 of SEQ ID NO: 37 (Luk38). In one embodiment, the FN3 domain containing a LukE binding region comprises an amino acid sequence that is at least 70%, 75%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO: 37.


Additional exemplary LukE binding molecules are disclosed herein. Accordingly, an exemplary LukE binding molecule of the present disclosure comprises any one of the amino acid sequences of SEQ ID NOs: 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 113, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 155, 363, 364, 366, 367, 368, 369, 375, 376, 388, and 586, or an amino acid sequence that is at least 70%, 75%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to any one of the amino acid sequences of SEQ ID NOs: 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 113, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 155, 363, 364, 366, 367, 368, 369, 375, 376, 388, and 586. In some embodiments, these LukE binding molecules comprise an initiator methionine residue linked to the N-terminus or a cysteine residue linked to the C-terminus to facilitate expression and/or conjugation to another moiety (e.g., another leukotoxin binding FN3 domain, a half-life extending moiety, or other therapeutic moiety).


In another aspect, the binding molecule described herein comprises a FN3 domain having one or more modified loop regions that comprise one or more LukA and/or LukB binding regions. This binding molecule is capable of binding a LukA protein having the amino acid sequence of SEQ ID NO: 671 or a fragment or homolog thereof, and/or a LukB protein having the amino acid sequence of SEQ ID NO: 11 or a fragment or homolog thereof. In one embodiment, the binding molecule neutralizes LukAB activity, e.g., by inhibiting LukA and LukB interaction or by inhibiting LukAB binding to the host immune cells. In accordance with this embodiment, the binding molecule binds to one or more neutralizing epitopes of LukA and/or neutralizing epitopes of LukB. As described in more detail in the Examples herein, amino acid residues 201-224 and 260-269 of SEQ ID NO: 11 comprise regions of LukB that contain neutralizing epitopes.


In one embodiment, a LukAB binding molecule as described herein comprises a C strand and a CD loop region having the amino acid sequence DSFX32IX34YX36EX38X39X40X41X42E (SEQ ID NO: 998), where X32 is W or a functionally equivalent amino acid residue,


X34 is any amino acid residue,


X36 is E or a functionally equivalent amino acid residue,


X38 is K or a functionally equivalent amino acid residue,


X39 is F or a functionally equivalent amino acid residue,


X40 is Y or a functionally equivalent amino acid residue,


X41 is R or a functionally equivalent amino acid residue, and


X42 is any amino acid residue;


and an F strand and FG loop region having the amino acid sequence of TX66YX68VX70IX72GVKG X77 X78 X79 SX81 (SEQ ID NO: 999), where


X66 is any amino acid residue,


X68 is K or a functionally equivalent amino acid residue,


X70 is W or a functionally equivalent amino acid residue,


X72 is any amino acid residue,


X77 is any amino acid residue,


X78 is any amino acid residue,


X79 is any amino acid residue, and


X81 is W or a functionally equivalent amino acid residue.


In one embodiment, the LukAB binding molecule as described herein comprises the C strand and a CD loop region of SEQ ID NO: 998, and the F strand and FG loop region of SEQ ID NO: 999 as described above and binds to a neutralizing epitope of LukB in one of the regions of LukB identified above, i.e., amino acid residues 201-224 and/or 260-269 of SEQ ID NO:11.


In accordance with this embodiment, an exemplary LukAB binding molecule as described herein comprises the amino acid sequence of LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF X32I X34Y X36E X38 X39 X40 X41 X42EAI X46LTVPGSERSYDLTGLKPGTX66Y X68V X701 X72GVKG X77 X78 X79 S X81 X82L X84A X86FTT (SEQ ID NO: 992), where


X32 is W or a functionally equivalent amino acid residue,


X34 is any amino acid residue,


X36 is E or a functionally equivalent amino acid residue,


X38 is K or a functionally equivalent amino acid residue,


X39 is F or a functionally equivalent amino acid residue,


X40 is Y or a functionally equivalent amino acid residue,


X41 is R or a functionally equivalent amino acid residue,


X42 is any amino acid residue,


X42 is any amino acid residue,


X46 is any amino acid residue,


X66 is any amino acid residue,


X68 is K or a functionally equivalent amino acid residue,


X70 is W or a functionally equivalent amino acid residue,


X72 is any amino acid residue,


X77 is any amino acid residue,


X78 is any amino acid residue,


X79 is any amino acid residue,


X81 is W or a functionally equivalent amino acid residue,


X82 is any amino acid residue


X84 is any amino acid residue, and


X86 is any amino acid residue.


In accordance with this embodiment, exemplary LukAB binding molecules comprise any one of the amino acid sequences of SEQ ID Nos: 14 (Luk17) and 672-738. In some embodiments, these LukAB binding molecules comprise an initiator methionine residue linked to the N-terminus or a cysteine residue linked to the C-terminus to facilitate expression and/or conjugation to another moiety (e.g., another leukotoxin binding FN3 domain, a half-life extending moiety, or other therapeutic moiety).


In another embodiment, the LukAB binding molecule as described herein binds LukAB with one or more amino acid residues corresponding to residues W32, T34, E36, K38, F39, Y40, R41, A44, V46, E66, K68, W70, V72, W81, and P82 of SEQ ID NO: 14 (Luk17). In one embodiment, the FN3 domain containing a LukAB binding region comprises an amino acid sequence that is at least 70%, 75%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO: 14, where amino acid residues W32, T34, E36, K38, F39, Y40, R41, A44, V46, E66, K68, W70, V72, W81, and P82 of SEQ ID NO: 14 remain fixed or are substituted with functionally equivalent amino acid residues.


Additional exemplary LukAB binding molecules are disclosed herein. Accordingly, an exemplary LukAB binding molecule of the present disclosure comprises any one of the amino acid sequences of SEQ ID NOs: 15, 16, 17, 145, 156, 158, 167, 214, 226, 247, 282, 286, 316, 370, 386, 388, 392, 446, 454, 462, 530, 540, 568, 574, 584, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666 as well as an amino acid sequence that is at least 70%, 75%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to any one of the amino acid sequences of SEQ ID NOs: 15, 16, 17, 145, 156, 158, 167, 214, 226, 247, 282, 286, 316, 370, 386, 388, 392, 446, 454, 462, 530, 540, 568, 574, 584, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666 In some embodiments, these LukAB binding molecules comprise an initiator methionine residue linked to the N-terminus or a cysteine residue linked to the C-terminus to facilitate expression and/or conjugation to another moiety (e.g., another leukotoxin binding FN3 domain, a half-life extending moiety, or other therapeutic moiety).


Another aspect of the present disclosure is directed to a binding molecule comprising one or more modified fibronectin type III (FN3) domains, where the modified FN3 domain contains one or more loop regions that comprise one or more staphylococcal hemolysin binding regions. In one embodiment, the binding molecule described herein comprises a FN3 domain having one or more modified loop regions that comprise one or more staphylococcal alpha-hemolysin (Hla) binding regions. This binding molecule is capable of binding an Hla protein having the amino acid sequence of SEQ ID NO: 1086 or fragments or homologs thereof. In one embodiment, the binding molecule neutralizes Hla activity, e.g., Hla mediated pore formation and cell death. In accordance with this embodiment, the binding molecule binds to one or more neutralizing epitopes of Hla.


In accordance with this embodiment, exemplary Hla binding molecules comprise any one of the amino acid sequences of SEQ ID Nos: 1097, 1099, 1112, 1142, and 1100, as well as amino acid sequences that are at least 70%, 75%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to any one of the amino acid sequences of SEQ ID NOs: 1097, 1099, 1112, 1142, and 1100. In some embodiments, these Hla binding molecules comprise an initiator methionine residue linked to the N-terminus or a cysteine residue linked to the C-terminus to facilitate expression and/or conjugation to another moiety (e.g., another leukotoxin binding FN3 domain, a half-life extending moiety, or other therapeutic moiety).


In one embodiment, the binding molecule as disclosed herein is a monospecific binding molecule. In another embodiment, the binding molecule as disclosed herein is a bispecific binding molecule. A bispecific binding molecule of the present disclosure is a molecule comprising a first FN3 domain having a first staphylococcal leukotoxin binding region and a second FN3 domain having a second staphylococcal leukotoxin binding region that is distinct from the first staphylococcal leukotoxin binding region. In another embodiment, the binding molecule of the present disclosure is a multispecific binding molecule. A multispecific binding molecule as described herein is a molecule having at least a first, a second, and a third FN3 domain, each FN3 domain having a distinct staphylococcal leukotoxin binding region, i.e., the binding molecule comprises at least first, second, and third staphylococcal leukotoxin binding regions that are each distinct from each other. Bispecific and multispecific binding molecules as disclosed herein can be generated by covalently linking any first staphylococcal leukotoxin binding FN3 domain and any second or third or more staphylococcal leukotoxin binding FN3 domains directly or via a linker. Suitable linkers include peptides composed of repetitive modules of one or more of the amino acids, such as glycine and serine or alanine and proline. Exemplary linker peptides include, e.g., (Gly-Gly)n, (Gly-Ser)n, (Gly3-Ser)n, (Ala-Pro)n whereinn is an integer from 1-25. The length of the linker may be appropriately adjusted as long as it does not affect the function of the binding molecule. The standard 15 amino acid (Gly4-Ser)3 linker peptide has been well-characterized (e.g., within the context of an antibody single-chain Fv (scFv) domain) and has been shown to adopt an unstructured, flexible conformation. In addition, this linker peptide does not interfere with assembly and binding activity of the domains it connects (Freund et al., “Characterization of the Linker Peptide of the Single-Chain Fv Fragment of an Antibody by NMR Spectroscopy,” FEBS 320:97 (1993), the disclosure of which is hereby incorporated by reference in its entirety).


In one embodiment, a bispecific binding molecule of the present disclosure comprises a first FN3 domain having a staphylococcal LukE binding region, e.g., any of the FN3 domain LukE binding regions described supra, coupled to a second FN3 domain having a different leukotoxin binding region. In one embodiment, the second FN3 domain comprises a LukAB binding region, e.g., any of the FN3 domain LukAB binding regions described supra. In one embodiment, the bi-specific binding molecule has a FN3 domain binding LukE that comprises an amino acid sequence of any one of SEQ ID NOs: 989, 990, or 991, and the FN3 domain binding LukAB that comprises an amino acid sequence of SEQ ID NO: 992. In another embodiment, the FN3 domain binding LukE comprises any one of the amino acid sequences selected from SEQ ID NOs: 25-59, 113,116-136, 155, 363, 364, 366-369, 375, 376, 388, 586, and 739-839, and the FN3 domain binding LukAB comprises any one of the amino acid sequences selected from SEQ ID NOs: 14, 15, 16, 17, 145, 156, 158, 167, 214, 226, 247, 282, 286, 316, 370, 386, 388, 392, 446, 454, 462, 530, 540, 568, 574, 584, 587-666 and 672-738.


The FN3 domains specifically binding a staphylococcal leukotoxin as described herein can be modified to improve their properties such as thermal stability and reversibility of thermal folding and unfolding. Several methods have been applied to increase the apparent thermal stability of proteins and enzymes, including rational design based on comparison to highly similar thermostable sequences, design of stabilizing disulfide bridges, mutations to increase alpha-helix propensity, engineering of salt bridges, alteration of the surface charge of the protein, directed evolution, and composition of consensus sequences (Lehmann and Wyss, Curr Opin Biotechnol, 12: 371-375 (2001), which is hereby incorporated by reference in its entirety). High thermal stability may increase the yield of the expressed protein, improve solubility or activity, decrease immunogenicity, and minimize the need of a cold chain in manufacturing. Residues that can be substituted to improve thermal stability of Tencon (SEQ ID NO: 1017) or Tencon 25 (SEQ ID NO: 1) include, without limitation, residues at positions 11, 14, 17, 37, 46, 73, or 86, and are described in U.S. Patent Publication No. 2011/0274623 to Jacobs et al., which is hereby incorporated by reference in its entirety. Substitutions corresponding to these residues can be incorporated to the FN3 domains or the monospecific, bispecific, or multispecific FN3 domain containing binding molecules of the disclosure.


The binding molecule of the present disclosure is preferably an “isolated” binding molecule. “Isolated” when used to describe the binding molecule disclosed herein, means a binding molecule that has been identified, separated and/or recovered from a component of its production environment. Preferably, the isolated binding molecule is free of association with all other components from its production environment. Contaminant components of its production environment, such as that resulting from recombinant transfected cells, are materials that would typically interfere with diagnostic or therapeutic uses for the polypeptide, and may include enzymes, hormones, and other proteinaceous or non-proteinaceous solutes. In preferred embodiments, the binding molecule will be purified (1) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (2) to homogeneity by SDS-PAGE under non-reducing or reducing conditions using Coomassie blue or, preferably, silver stain. Ordinarily, however, an isolated binding molecule will be prepared by at least one purification step.


As described supra, amino acid sequence modifications of the binding molecules described herein are contemplated. For example, it may be desirable to improve the binding affinity and/or other biological properties of the binding molecule. Amino acid sequence variants of the binding molecules are prepared by introducing appropriate nucleotide changes into the binding molecules nucleic acid, or by peptide synthesis. Such modifications include, for example, deletions from, and/or insertions into, and/or substitutions of, residues within the amino acid sequences of the binding molecules. Any combination of deletion, insertion, and substitution is made to arrive at the final construct, provided that the final construct possesses the desired characteristics, such as abolishment of protein A binding and FcγRI binding, or protease-resistance.


Exemplary modifications are for example conservative substitutions or functionally equivalent amino acid residue substitution and include those that will result in variants with similar characteristics to those of the parent binding molecules and fusion constructs described infra. Conservative substitutions are those that take place within a family of amino acids that are related in their side chains. Genetically encoded amino acids can be divided into four families: (1) acidic (aspartate, glutamate); (2) basic (lysine, arginine, histidine); (3) nonpolar (alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan); and (4) uncharged polar (glycine, asparagine, glutamine, cysteine, serine, threonine, tyrosine). Phenylalanine, tryptophan, and tyrosine are sometimes classified jointly as aromatic amino acids. Alternatively, the amino acid repertoire can be grouped as (1) acidic (aspartate, glutamate); (2) basic (lysine, arginine histidine), (3) aliphatic (glycine, alanine, valine, leucine, isoleucine, serine, threonine), with serine and threonine optionally grouped separately as aliphatic-hydroxyl; (4) aromatic (phenylalanine, tyrosine, tryptophan); (5) amide (asparagine, glutamine); and (6) sulfur-containing (cysteine and methionine) (Stryer (ed.), Biochemistry, 2nd ed, WH Freeman and Co., 1981, which is hereby incorporated by reference in its entirety). Non-conservative substitutions can be made to the binding molecules that involve substitutions of amino acid residues between different classes of amino acids to improve properties of the binding molecules and fusion constructs. Whether a change in the amino acid sequence of a polypeptide or fragment thereof results in a functional homolog can be readily determined by assessing the ability of the modified binding molecule to produce a response in a fashion similar to the unmodified binding molecule using assays described herein.


Another aspect of the present disclosure is directed to a fusion construct comprising a first portion comprising one or more binding molecules as described herein, and a second portion coupled to said first portion. The second portion of the fusion construct may comprise a second binding molecule, a pharmaceutically active moiety, a prodrug, a pharmaceutically-acceptable carrier, a diagnostic moiety, a cell penetrating enhancer moiety, a half-life extending modulating moiety, and any combination thereof.


In accordance with this aspect of the present disclosure, the first and second portions of the fusion construct are covalently coupled either directly or via a linker as described supra. The first and second portions may be directly fused and generated by standard cloning and expression techniques. Alternatively, well known chemical coupling methods may be used to attach the portions directly or via a peptide or other linker to recombinantly produce fusion constructs as described herein.


In one embodiment, the second portion of the fusion construct of the present disclosure comprises a half-life extending moiety. Exemplary half-life extending moieties include, without limitation, albumin, albumin variants (see e.g., U.S. Pat. No. 8,822,417 to Andersen et al., U.S. Pat. No. 8,314,156 to Desai et al., and U.S. Pat. No. 8,748,380 to Plumridge et al., which are hereby incorporated by reference in their entirety), albumin-binding proteins and/or domains, transferrin and fragments and analogues thereof (see e.g., U.S. Pat. No. 7,176,278 to Prior et al., which are hereby incorporated by reference in their entirety), Fc regions and variant Fc regions (see e.g., U.S. Pat. No. 8,546,543 to Lazar et al., U.S. Patent Publication No. 20150125444 to Tsui, and U.S. Pat. No. 8,722,615 to Seehra et al., which are hereby incorporated by reference in their entirety).


Other second portion half-life extending moieties of the fusion construct include, without limitation, polyethylene glycol (PEG) molecules, such as PEG5000 or PEG20,000, fatty acids and fatty acid esters of different chain lengths, for example laurate, myristate, stearate, arachidate, behenate, oleate, arachidonate, octanedioic acid, tetradecanedioic acid, octadecanedioic acid, docosanedioic acid, and the like, polylysine, octane, carbohydrates (dextran, cellulose, oligo- or polysaccharides) for desired properties. A pegyl moiety may for example be added to the bispecific or monospecific molecules of the disclosure by adding a cysteine residue to the C-terminus of the molecule and attaching a pegyl group to the cysteine using methods well known in the art.


In another embodiment, the second portion of the fusion construct comprises a pharmaceutically active moiety, such as, e.g., a cytokine, a toxin, a chemokine, an antibacterial peptide, an antibiotic, an enzyme, a peptide or protein with specific target binding characteristics, a fluorescent dye, a photosensitizer, a radionuclide, a contrast agent for medical imaging, a toxic compound, a pro-coagulant factor, an enzyme for pro-drug activation, an albumin binder, an albumin, an IgG binder or polyethylene glycol.


In another embodiment, the second portion of the fusion construct comprises a cell penetrating peptide (CPPs). CPPs translocate across the plasma membrane of eukaryotic cells by a seemingly energy-independent pathway and have been used successfully for intracellular delivery of macromolecules, including antibodies, peptides, proteins, and nucleic acids, with molecular weights several times greater than their own. Several commonly used CPPs, including polyarginines, transportant, protamine, maurocalcine, and M918 are known in the art (see Stewart et al., “Cell-Penetrating Peptides as Delivery Vehicles for Biology and Medicine,” Organic Biomolecular Chem 6:2242-2255 (2008), which is hereby incorporated by reference in its entirety). In another embodiment, the second portion of the fusion construct comprises a cell penetrating enhancer moiety. Suitable cell penetrating enhancer moieties include, without limitation, oligo-arginyl derivatives (Bersani et al., Bioconjug. Chem. 23(7):1415-25 (2012), which is hereby incorporated by reference in its entirety), and corona-like (guanidyl)-oligosaccharidic derivatives (see WO2012/097876 To Caliceti et al., which is hereby incorporated by reference in its entirety).


In another embodiment, the second portion of the fusion construct comprises a diagnostic moiety. Suitable diagnostic moieties are those that facilitate the detection, quantitation, separation, and/or purification of the fusion construct. Suitable diagnostic moieties include, without limitation, purification tags (e.g., poly-histidine (His6), glutathione-S-transferase (GST-), or maltose-binding protein (MBP-)), fluorescent tags (e.g., chelates (europium chelates), fluorescein and its derivatives, rhodamine and its derivatives, dansyl, Lissamine, phycoerythrin and Texas Red), an enzymatic tag, a radioisotope or radioactive label, a contrast agent suitable for imaging, or a photosensitize.


In another embodiment, the second portion of the fusion construct comprises a second binding molecule. In one aspect, the second binding molecule is an antibody or antibody binding domain thereof. As used herein, an “antibody” includes any protein or peptide containing molecule that comprises at least a portion of an immunoglobulin molecule, such as but not limited to, at least one, at least two, or at least three complementarity determining region (CDR) of a heavy or light chain, a heavy chain or light chain variable region, a heavy chain or light chain constant region, a framework region, or any portion thereof. Antibodies encompass full antibodies, digestion fragments, specified portions and variants thereof, including, without limitation, portions of antibodies that mimic the structure and/or function of an antibody or specified fragment or portion thereof, including, without limitation, single chain antibodies, single domain antibodies (i.e., antibody fragments comprising merely one variable domain, which might be VHH, VH or VL, that specifically bind an antigen or epitope independently of other V regions or domains). Functional fragments include antigen-binding fragments that bind to a particular target. For example, antibody fragments capable of binding to a particular target or portions thereof, include, but are not limited to, Fab (e.g., by papain digestion), Fab′ (e.g., by pepsin digestion and partial reduction) and F(ab′)2 (e.g., by pepsin digestion), facb (e.g., by plasmin digestion), pFc′ (e.g., by pepsin or plasmin digestion), Fd (e.g., by pepsin digestion, partial reduction and reaggregation), Fv or scFv (e.g., by molecular biology techniques) fragments.


Such fragments can be produced by enzymatic cleavage, synthetic or recombinant techniques, as known in the art and/or as described herein. Antibodies can also be produced in a variety of truncated forms using antibody genes in which one or more stop codons have been introduced upstream of the natural stop site. For example, a combination gene encoding a F(ab′)2 heavy chain portion can be designed to include DNA sequences encoding the CH1 domain and/or hinge region of the heavy chain. The various portions of antibodies can be joined together chemically by conventional techniques, or can be prepared as a contiguous protein using genetic engineering techniques.


Furthermore, the term “antibody” encompasses monoclonal and polyclonal antibodies, as well as human, humanized, or chimeric antibodies, and derivatives or variants of the antibodies described herein which display the same specificity as the described antibodies. Examples of “antibody variants” include humanized variants of non-human antibodies, “affinity matured” antibodies (see e.g., Hawkins et al., “Selection of Phage Antibodies by Binding Affinity. Mimicking Affinity Maturation,” J. Mol. Biol. 254:889-896 (1992) and Lowman et al., “Selecting High-Affinity Binding Proteins by Monovalent Phage Display,” Biochemistry 30:10832-10837 (1991), each of which is hereby incorporated by reference in its entirety) and antibody mutants with altered effector function(s) (see, e.g., U.S. Pat. No. 5,648,260 to Winter et al., Kontermann and DUbel, ANTIBODY ENGINEERING, Springer, 2nd ed. 2010, and Little, RECOMBINANT ANTIBODIES FOR IMMUNOTHERAPY, Cambridge University Press, 2009, each of which is hereby incorporated by reference in its entirety).


In another embodiment, the second binding molecule comprises an antibody mimetic, i.e., an organic compound, often a peptide, polypeptide, or protein that binds specifically to an antigen, but is structurally unrelated to an antibody. Exemplary antibody mimetics include, without limitation, affibodies (scaffold based on the Z domain of Protein A), affilins (scaffold based on the structure of gamma crystallin or ubiquitin), affimers (scaffold based on the structure of cystatins), affitins (scaffold derived from the DNA binding protein Sac7d), alphabodies (scaffold based on a coiled coil structure), anticalins (scaffold derived from lipocalins), avimers (scaffold derived from A domains of various membrane receptors), DARPins (scaffold derived from ankyrin repeat motif), fynomers (scaffold derived from SH3 domain of Fyn), and Kunitz domain (scaffold derived from Kunitz domains of various protease inhibitors).


The second binding molecule may be a monospecific, bispecific, or multi-specific binding molecule, i.e., the second binding molecule has one, two, or multiple distinct binding sites for binding one or more distinct protein targets. The second binding molecule may be a monovalent, bivalent, or multi-valent, i.e., the second binding molecule has one, two, or multiple binding sites for a particular target molecule. For example, the second binding molecule may comprise an antibody that is monospecific, bispecific, or tri-specific, and the antibody may be monovalent, bivalent, or multi-valent. In one embodiment, the antibody is a mono-specific, bivalent antibody.


In one embodiment, the carboxy terminus of the second binding molecule is coupled to the amino terminus of the binding molecule of the present disclosure. In another embodiment the carboxy terminus of the second binding molecule is coupled to the carboxy terminus of the binding molecule of the present disclosure. When the second binding molecule comprises an antibody, one or more of the same or distinct binding molecules may be coupled to the light chain and/or the heavy chain of the antibody, or binding fragments thereof. In one embodiment, one or more of the same or distinct binding molecules are coupled to one or more of the heavy chains of an antibody. In another embodiment, one or more of the same or distinct binding molecules are coupled to one or more of the light chains of an antibody. In another embodiment, one or more distinct binding molecules are coupled to one or more of the light chains and the heavy chains of an antibody.


In one aspect, the second binding molecule is resistant to proteolytic degradation by a staphylococcal protease that cleaves wild-type IgG1 (such as the staphylococcal protease, Staphylococcus aureus V8 protease, that cleaves wild-type IgG1 between or at residues 222-237 (EU numbering) within SEQ ID NO: 60) (see U.S. Pat. No. 8,871,204 to Strohl et al., which is hereby incorporated by reference in its entirety).


In one aspect, the second binding molecule is not capable of specific binding to human FcγRI, is not capable of specific binding to Protein A, and is not capable of specific binding to Sbi. In one aspect, the second binding molecule is capable of specific binding to FcRn.


In one embodiment, the second binding molecule of the fusion construct has binding specificity for a staphylococcal protein. In one embodiment, the second binding molecule has binding specificity for a staphylococcal virulence factor. As used herein a “virulence factor” refers to a molecule expressed by staphylococcal protein that enables the bacteria to achieve colonization of a niche in the host (including adhesion to cells), immunoevasion (i.e., evasion of the host's immune response), immunosuppression (i.e., inhibition of the host's immune response), entry into and exit out of cells (if the pathogen is an intracellular one), and/or obtain nutrition from the host. The virulence factor may be encoded on mobile genetic elements, such as bacteriophages, and can easily be spread through horizontal gene transfer. Non-limiting examples of Staphylococcus aureus virulence factors include hyaluronidase, protease, coagulase, lipases, deoxyribonucleases, enterotoxins and other toxins. For purposes of this disclosure, staphylococcal surface proteins, such as SDR-containing proteins, e.g., ClfA, ClfB, SdrC, SdrD, SdrE, SdrF, SdrG and SdrH, are also considered virulence factors.


In one embodiment, the second binding molecule of the fusion construct of the present disclosure is capable of binding to a glycosylated staphylococcal surface protein. Exemplary second binding molecules that bind a glycosylated staphylococcal surface protein include the antibodies and antibody binding domain fragments disclosed in U.S. Pat. Nos. 8,460,666 and 8,211,431 to Throsby et al., which is hereby incorporated by reference in its entirety. In one embodiment, the antibody or antibody binding domain that binds a glycosylated staphylococcal surface protein has an immunoglobulin heavy chain comprising an amino acid sequence selected from SEQ ID NOs: 60, 62, 64 or 66. In another embodiment, the antibody or antibody binding domain that binds a glycosylated staphylococcal surface protein has an immunoglobulin light chain comprising an amino acid sequence of SEQ ID NOs: 61, 63, 65 or 67. Alternatively, the second binding molecule comprises an antibody having (a) a heavy chain having the amino acid sequence of SEQ ID NOs:60, 62, 64 or 66; and (b) a light chain having the amino acid sequence of SEQ ID NOs:61, 63, 65 or 67. In another embodiment, the second binding molecule comprises an antibody having (1) a heavy chain having the amino acid sequence of SEQ ID NO:60, and a light chain having the amino acid sequence of SEQ ID NO:61; (2) a heavy chain having the amino acid sequence of SEQ ID NO:62, and a light chain having the amino acid sequence of SEQ ID NO:63; (3) a heavy chain having the amino acid sequence of SEQ ID NO:64, and a light chain having the amino acid sequence of SEQ ID NO:65; (4) a heavy chain having the amino acid sequence of SEQ ID NO:66, and a light chain having the amino acid sequence of SEQ ID NO:67; (5) a heavy chain having the amino acid sequence of SEQ ID NO:68, and a light chain having the amino acid sequence of SEQ ID NO:69; (6) a heavy chain having the amino acid sequence of SEQ ID NO:70, and a light chain having the amino acid sequence of SEQ ID NO:71; (7) a heavy chain having the amino acid sequence of SEQ ID NO:72, and a light chain having the amino acid sequence of SEQ ID NO:73; (8) a heavy chain having the amino acid sequence of SEQ ID NO:74, and a light chain having the amino acid sequence of SEQ ID NO:75; (9) a heavy chain having the amino acid sequence of SEQ ID NO:76, and a light chain having the amino acid sequence of SEQ ID NO:77; or (10) a heavy chain having the amino acid sequence of SEQ ID NO:78, and a light chain having the amino acid sequence of SEQ ID NO:79.


In one embodiment, the fusion construct of the present disclosure comprises a binding molecule having a LukE binding region coupled to an immunoglobulin heavy chain, where the heavy chain comprises a variable region that binds to a glycosylated staphylococcal surface protein. Exemplary fusion constructs according to this aspect of the present disclosure comprise an amino acid sequence of any one of SEQ ID NOs: 848-851, 900, or 903. In one embodiment, these exemplary fusion constructs further comprise an immunoglobulin light chain variable region. Suitable light chains include, without limitation, light chains having an amino acid sequence of any one of SEQ ID NO: 61, 63, 65 or 67.


In another embodiment, the fusion construct of the present disclosure comprises a binding molecule having a LukE binding region coupled to an immunoglobulin light chain, where the light chain comprises a variable region that binds to a glycosylated staphylococcal surface protein. An exemplary fusion construct according to this aspect comprises an amino acid sequence of SEQ ID NO: 980. In one embodiment, these exemplary fusion constructs further comprise an immunoglobulin heavy chain variable region or heavy chain. Suitable heavy chains include, without limitation, heavy chains having an amino acid sequence of any one of SEQ ID NOs: 60, 62, 64 or 66.


In one embodiment, the fusion construct of the present disclosure comprises a binding molecule having a LukAB binding region coupled to an immunoglobulin heavy chain, where the heavy chain comprises a variable region that binds to a glycosylated staphylococcal surface protein. Exemplary fusion constructs according to this aspect of the present disclosure comprise an amino acid sequence of any one of SEQ ID NOs: 70 and 72. In one embodiment, these exemplary fusion constructs further comprise an immunoglobulin light chain. Suitable light chains include, without limitation, light chains having an amino acid sequence of any one of SEQ ID NO: 61, 63, 65 or 67.


In another embodiment, the fusion construct of the present disclosure comprises a binding molecule having a LukAB binding region coupled to an immunoglobulin light chain, where the light chain comprises a variable region that binds to a glycosylated staphylococcal surface protein. Exemplary fusion constructs according to this aspect of the present disclosure comprise an amino acid sequence of SEQ ID NO: 979. In one embodiment, these exemplary fusion constructs further comprise an immunoglobulin heavy chain variable region or heavy chain. Suitable heavy chains include, without limitation, heavy chains having an amino acid sequence of any one of SEQ ID NO: 60, 62, 64 or 66.


In another embodiment, the fusion construct of the present disclosure comprises a binding molecule having a LukE binding region and a LukAB binding region coupled to an immunoglobulin heavy chain, where the heavy chain comprises a variable region that binds to a glycosylated staphylococcal surface protein. Exemplary fusion constructs according to this aspect of the disclosure comprise an amino acid sequence of any one of SEQ ID NOs: 852-859, 887, 888, 893, 894, 906, 920, 931-956, 961, 976, and 984-988. In one embodiment, these exemplary fusion constructs further comprise an immunoglobulin light chain variable region or light chain comprising a glycosylated staphylococcal surface protein binding domain. Suitable immunoglobulin light chains include, without limitation, light chains having an amino acid sequence of any one of SEQ ID NO: 61, 63, 65 or 67.


Another aspect of the present disclosure is directed to nucleic acid molecules encoding the binding molecules and fusion constructs described herein. The nucleic acid molecules of the present disclosure include isolated polynucleotides, portions of expression vectors or portions of linear DNA sequences, including linear DNA sequences used for in vitro transcription/translation, vectors compatible with prokaryotic, eukaryotic or filamentous phage expression, secretion and/or display of the compositions or directed mutagens thereof.


In one embodiment isolated polynucleotides of the present disclosure include those encoding the binding molecules described supra. Exemplary isolated polynucleotide molecules include those encoding a FN3 domain that comprises a LukE binding region having any one of the amino acid sequences of SEQ ID NOs: 25-59, 113,116-136, 155, 363, 364, 366-369, 375, 376, 388, 586, and 739-839. In another embodiment, exemplary polynucleotides include those encoding a FN3 domain that comprises a LukAB binding region having any one of the amino acid sequences of SEQ ID NOs: 14, 15, 16, 17, 145, 156, 158, 167, 214, 226, 247, 282, 286, 316, 370, 386, 388, 392, 446, 454, 462, 530, 540, 568, 574, 584, 587-666 and 672-738. In another embodiment, exemplary polynucleotides include those encoding a FN3 domain that comprises an Hla binding region having any one of the amino acid sequences of SEQ ID Nos: 1097, 1099, 1112, 1142, and 1100.


In other embodiment, exemplary polynucleotides include isolated polynucleotides encoding the antibody-binding molecule fusion constructs described herein. For example, exemplary isolated polynucleotides include those encoding a fusion construct comprising a binding molecule having a LukE binding domain coupled to an immunoglobulin heavy chain comprising a glycosylated staphylococcal surface protein binding domain (e.g., polynucleotides encoding amino acid sequences of SEQ ID NOs: 848-851, 900 or 903), and a LukE binding domain coupled to an immunoglobulin light chain comprising a glycosylated staphylococcal surface protein binding domain (e.g., a polynucleotide encoding an amino acid sequence of SEQ ID NO: 980). Exemplary isolated polynucleotides also include those encoding a fusion construct comprising a binding molecule having a LukAB binding domain coupled to an immunoglobulin heavy chain comprising a glycosylated staphylococcal surface protein binding domain (e.g., polynucleotides encoding amino acid sequences of SEQ ID NOs: 70 and 72), and a LukAB binding domain coupled to an immunoglobulin light chain comprising a glycosylated staphylococcal surface protein binding domain (e.g., a polynucleotide encoding an amino acid sequence of SEQ ID NO: 979). Exemplary isolated polynucleotides also include those encoding a fusion construct comprising a binding molecule having LukE and LukAB binding domains coupled to a immunoglobulin heavy chain comprising a glycosylated staphylococcal surface protein binding region (e.g., polynucleotides encoding amino acid sequences of SEQ ID NOs: 852-859, 887, 888, 893, 894, 906, 920, 931-956, 961, 976, and 984-988).


The polynucleotides of the disclosure may be produced by chemical synthesis such as solid phase polynucleotide synthesis on an automated polynucleotide synthesizer and assembled into complete single or double stranded molecules. Alternatively, the polynucleotides of the disclosure may be produced by other techniques such a PCR followed by routine cloning. Techniques for producing or obtaining polynucleotides of a given known sequence are well known in the art.


The polynucleotides described herein may comprise at least one non-coding sequence, such as a promoter or enhancer sequence, intron, polyadenylation signal, a cis sequence facilitating RepA binding, and the like. The polynucleotide sequences may also comprise additional sequences encoding additional amino acids that encode for example a marker or a tag sequence such as a histidine tag or an HA tag to facilitate purification or detection of the protein, a signal sequence, a fusion protein partner such as RepA, Fc or bacteriophage coat protein such as pIX or pIII.


Another embodiment of the disclosure is a vector comprising at least one polynucleotides as described herein. Such vectors may be plasmid vectors, viral vectors, vectors for baculovirus expression, transposon based vectors or any other vector suitable for introduction of the polynucleotides of the invention into a given organism or genetic background by any means. Such vectors may be expression vectors comprising nucleic acid sequence elements that can control, regulate, cause or permit expression of a polypeptide encoded by such a vector. Such elements may comprise transcriptional enhancer binding sites, RNA polymerase initiation sites, ribosome binding sites, and other sites that facilitate the expression of encoded polypeptides in a given expression system. Such expression systems may be cell-based, or cell-free systems well known in the art.


Another embodiment of the present disclosure is a host cell comprising the above described vectors. The binding molecules and/or fusion constructs disclosed herein can be optionally produced by a cell line, a mixed cell line, an immortalized cell or clonal population of immortalized cells, as well known in the art (see e.g., Ausubel et al., ed., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., NY, N.Y. (1987-2001); Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor, N.Y. (1989); Harlow and Lane, Antibodies, a Laboratory Manual, Cold Spring Harbor, N.Y. (1989); Colligan et al., eds., Current Protocols in Immunology, John Wiley & Sons, Inc., NY (1994-2001); Colligan et al., Current Protocols in Protein Science, John Wiley & Sons, NY, N.Y., (1997-2001), which are hereby incorporated by reference in their entirety).


The host cell chosen for expression may be of mammalian origin or may be selected from COS-1, COS-7, HEK293, BHK21, CHO, BSC-1, He G2, SP2/0, HeLa, myeloma, lymphoma, yeast, insect or plant cells, or any derivative, immortalized or transformed cell thereof. Alternatively, the host cell may be selected from a species or organism incapable of glycosylating polypeptides, e.g. a prokaryotic cell or organism, such as BL21, BL21(DE3), BL21-GOLD(DE3), XL1-Blue, JM109, HMS174, HMS174(DE3), and any of the natural or engineered E. coli spp, Klebsiellaspp., or Pseudomonas spp strains.


Another aspect of the disclosure is directed to a method of producing and isolating the binding molecules and fusion constructs as described herein. This method involves culturing the isolated host cell of the disclosure under conditions such that the binding molecules or fusion constructs are expressed, and purifying the expressed binding molecules or fusion constructs from the host cell culture.


The binding molecules and fusion constructs described herein can be purified from recombinant cell cultures by well-known methods, for example by protein A purification, ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography, or high performance liquid chromatography (HPLC).


Purified or isolated binding molecules and fusion constructs as described herein may be linked to one of a variety of non-proteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, polyoxyalkylenes, or copolymers of polyethylene glycol and polypropylene glycol. The binding molecules and/or fusion constructs may also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization (for example, hydroxymethylcellulose or gelatine-microcapsules and poly (methylmethacylate) microcapsules, respectively), in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nanoparticles and nanocapsules), or in macroemulsions. Such techniques are disclosed in REMINGTON'S PHARMACEUTICAL SCIENCES, 16th edition, Oslo, A., Ed., (1980), which is hereby incorporated by reference in its entirety.


For therapeutic use, the binding molecules and fusion constructs as described herein may be prepared as pharmaceutical compositions containing an effective amount of the binding molecules as an active ingredient in a pharmaceutically acceptable carrier. The term “carrier” refers to a diluent, adjuvant, excipient, or vehicle with which the active compound is administered. Such vehicles can be liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. For example, 0.4% saline and 0.3% glycine can be used. These solutions are sterile and generally free of particulate matter. They may be sterilized by conventional, well-known sterilization techniques (e.g., filtration). The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, stabilizing, thickening, lubricating and coloring agents, etc. The concentration of binding molecule or fusion construct as described herein in such pharmaceutical formulation can vary widely, i.e., from less than about 0.5%, usually at or at least about 1% to as much as 15 or 20% by weight and will be selected primarily based on required dose, fluid volumes, viscosities, etc., according to the particular mode of administration selected. Suitable vehicles and formulations, inclusive of other human proteins, e.g., human serum albumin, are described, for example, in e.g. REMINGTON: THE SCIENCE AND PRACTICE OF PHARMACY, 21st Edition, Troy, D. B. ed., Lipincott Williams and Wilkins, 2006, Part 5, Pharmaceutical Manufacturing pp 691-1092, see especially pp. 958-989, which is hereby incorporated by reference in its entirety.


The binding molecules and fusion constructs described herein can be used in non-isolated or isolated form. Furthermore, the binding molecules and fusion constructs hereof can be used alone or in a mixture comprising at least one other binding molecule or fusion construct hereof. In other words, the binding molecules and fusion constructs can be used in combination, e.g., as a pharmaceutical composition comprising two or more binding molecules hereof, two or more fusion constructs, a binding molecule and fusion construct, and variants or fragments thereof. For example, binding molecules and/or fusion constructs having different, but complementary activities can be combined in a single therapy to achieve a desired therapeutic effect, but alternatively, binding molecules and fusion constructs having identical activities can also be combined in a single therapy to achieve a desired prophylactic, therapeutic or diagnostic effect. Optionally, the mixture further comprises at least one other therapeutic agent. In one aspect, the other therapeutic agent may be an anti-infective agent, an antibiotic agent, and/or an antimicrobial agent that is useful in the prophylaxis and/or treatment of a staphylococcal infection. In another aspect, the other therapeutic agent may be any agent that is useful in the prophylaxis and/or treatment of a condition associated with a staphylococcal infection.


The binding molecules, fusion constructs, or pharmaceutical compositions containing the same can be used for the treatment, prevention or amelioration of a staphylococcal infection. The staphylococcal infection may be caused by any Staphylococcus spp. In one aspect, the staphylococcal infection is caused by Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA) and methicillin-sensitive S. aureus (MSSA). Accordingly, the present disclosure provides a method for the treatment, prevention or amelioration of a staphylococcal infection that involves administering to a subject in need thereof a binding molecule, fusion construct, or compositions containing the same as described herein.


In accordance with this aspect, the target “subject” encompasses any animal, for example, a mammal, such as a human. In the context of administering a composition of the disclosure for purposes of preventing a staphylococcal infection in a subject, the target subject encompasses any subject that is at risk of becoming infected with Staphylococcus or developing a staphylococcal infection. Susceptible subjects include infants and juveniles, as well as immunocompromised juvenile, adults, and elderly adults. However, any infant, juvenile, adult, or elderly adult or immunocompromised individual at risk for developing a staphylococcal infection can be treated in accordance with the methods described herein. In the context of administering a composition of the disclosure for purposes of treating a staphylococcal infection in a subject, the target subject encompasses any subject infected with Staphylococcus. Particularly suitable subjects include those at risk of infection, susceptible to infection, or those infected with methicillin-resistant S. aureus (MRSA) or methicillin sensitive S. aureus (MSSA). Other suitable subjects include those subjects which may have or are at risk for developing a condition resulting from a Staphylococcus infection, i.e., a staphylococcal associated condition, such as, for example, skin wounds and infections, tissue abscesses, folliculitis, osteomyelitis, pneumonia, scalded skin syndrome, septicemia, septic arthritis, myocarditis, endocarditis, and toxic shock syndrome.


In one embodiment, the binding molecules, fusion constructs, or pharmaceutical compositions containing the same are administered prophylactically to prevent, delay, or inhibit the development of staphylococcal infection in a subject at risk of developing a staphylococcal infection or associated condition. In one aspect, prophylactic administration of one or more binding molecules described herein is effective to fully prevent S. aureus infection in an individual. In other embodiments, prophylactic administration is effective to prevent the full extent of infection that would otherwise develop in the absence of such administration, i.e., substantially prevent, inhibit, or minimize staphylococcal infection in an individual.


In another embodiment, the binding molecules, fusion constructs, or pharmaceutical compositions as described herein are administered therapeutically to an individual having a staphylococcal infection to inhibit the progression and further development of the infection, i.e., to inhibit and/or prevent the spread of the infection to other cells in an individual, decrease infection, and to treat or alleviate one or more symptoms of infection.


Therapeutically effective amounts of the binding molecules and fusion constructs described herein are determined in accordance with standard procedures, which take numerous factors into account, including, for example, the concentrations of the binding molecules or fusion constructs in a pharmaceutical composition, the mode and frequency of administration, the severity of the Staphylococcus infection to be treated (or prevented), and subject details, such as age, weight and overall health and immune condition. General guidance can be found, for example, in the publications of the International Conference on Harmonization and in REMINGTON'S PHARMACEUTICAL SCIENCES (Mack Publishing Company 1990), which is hereby incorporated by reference in its entirety. A clinician may administer a composition comprising the binding molecules or fusion constructs described herein in a single dose or in accordance with a multi-dosing protocol until a dosage is reached that provides the desired or required prophylactic or therapeutic effect. The progress of this therapy can be easily monitored by conventional assays. In prophylactic applications, a relatively low dosage is administered at relatively infrequent intervals over a long period of time. In therapeutic applications, a relatively high dosage at relatively short intervals (e.g., as little as 15 minutes, 30 minutes, 60 minutes, 90 minutes or even 2 or 3 hours) is sometimes required until progression of the disease is reduced or terminated, and preferably until the subject shows partial or complete amelioration of symptoms of disease.


The therapeutically effective amount, i.e., the dosage sufficient for a subject having a staphylococcal infection that is sufficient to slow or prevent the spread or severity of staphylococcal infection, and/or the dosage sufficient to prevent, alleviate (either partially or completely) a staphylococcal infection associated condition. Such therapeutically effective amounts vary by individual, but may range from 0.1 to 10 mg/kg body weight, for example 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 mg/kg, but may even higher, for example 15, 20, 30, 40, 50, 60, 70, 80, 90 or 100 mg/kg. A fixed unit dose may also be given, for example, 50, 100, 200, 500 or 1000 mg, or the dose may be based on the patient's surface area, e.g., 400, 300, 250, 200, or 100 mg/m2. Usually between 1 and 8 doses, (e.g., 1, 2, 3, 4, 5, 6, 7 or 8) may be administered to treat infection, but 10, 12, 20 or more doses may be given depending on the severity of infection. Administration of binding molecules or fusion constructs of the present disclosure may be repeated after one day, two days, three days, four days, five days, six days, one week, two weeks, three weeks, one month, five weeks, six weeks, seven weeks, two months, three months, four months, five months, six months or longer. Repeated courses of treatment are also possible, as is chronic administration. The repeated administration may be at the same dose or at a different dose.


The therapeutic compositions of the present disclosure can be administered alone or as part of a combination therapy in conjunction with one or more other active agents, depending upon the nature of the Staphylococcus infection that is being treated. Such additional active agents include anti-infective agents, antibiotic agents, and antimicrobial agents that are readily known in the art.


The mode of administration of the binding molecules, fusion constructs, and pharmaceutical compositions described herein may be any suitable route that delivers the binding molecule(s) or fusion construct(s) to the host, such as parenteral administration, e.g., intradermal, intramuscular, intraperitoneal, intravenous or subcutaneous, pulmonary; transmucosal (oral, intranasal, intravaginal, rectal); using a formulation in a tablet, capsule, solution, powder, gel, particle; and contained in a syringe, an implanted device, osmotic pump, cartridge, micropump; or other means appreciated by the skilled artisan, as well known in the art. Site specific administration may be achieved by, for example, intrarticular, intrabronchial, intraabdominal, intracapsular, intracartilaginous, intracavitary, intracelial, intracerebellar, intracerebroventricular, intracolic, intracervical, intragastric, intrahepatic, intracardial, intraosteal, intrapelvic, intrapericardiac, intraperitoneal, intrapleural, intraprostatic, intrapulmonary, intrarectal, intrarenal, intraretinal, intraspinal, intrasynovial, intrathoracic, intrauterine, intravascular, intravesical, intralesional, vaginal, rectal, buccal, sublingual, intranasal, or transdermal delivery.


The binding molecules and fusion constructs provided herein can also be used in methods for diagnosing a staphylococcal infection in a subject. In one aspect, the method for diagnosing a staphylococcal infection involves contacting a binding molecule or fusion construct as described herein with a sample from the subject to be diagnosed, and detecting at least the presence or the absence of one or more staphylococcal leukotoxins in the sample. In another aspect, the method for diagnosing a staphylococcal infection involves contacting a binding molecule or fusion construct as described herein with a sample from the subject to be diagnosed, and detecting the presence or the absence of one or more staphylococcal leukotoxins in the sample and the presence or absence of one or more other staphylococcal proteins, such as, e.g., a glycosylated staphylococcal surface protein. A staphylococcal infection is diagnosed in the subject based on this detection. In other words, the detection of the one or more staphylococcal leukotoxins alone or in combination with another staphylococcal protein indicates a positive diagnosis of a staphylococcal infection.


In accordance with this aspect, the sample from the subject may comprise a blood, tissue, cell, serum, or any other biological sample.


Another aspect relates to a method for the detection of a staphylococcal infection in a sample. This method involves contacting the binding molecule or fusion construct as described herein with a sample, and detecting the presence or the absence of a at least one or more staphylococcal leukotoxins. Optionally, the presence or absence of one or more staphylococcal leukotoxins and one or more additional staphylococcal proteins, e.g., glycosylated staphylococcal surface proteins, can be detected using one or more of the fusion constructs described herein. Detection of the one or more staphylococcal leukotoxins alone or in combination with another staphylococcal protein indicates the presence of Staphylococcus in the sample. In accordance with this aspect, the sample may be any biological sample obtained from the environment, an animal, or a human.


Methods described herein involving the detection of a staphylococcal leukotoxin alone or in combination with another staphylococcal protein in a sample from a subject or elsewhere involve the use of a detectably labeled binding molecule or fusion construct. Accordingly, in one aspect the binding molecule or fusion construct as described herein may be coupled to a detectable label. Suitable detectable labels are well known in the art and include detectable tags (e.g., a poly-histidine (His6) tag, a glutathione-S-transferase (GST-) tag, or a maltose-binding protein (MBP-) tag); radioactive labels (e.g., carbon (14C) or phosphorous (32P)); fluorescent labels (e.g., fluorescein and derivatives thereof, fluorescein isothiocyanate, rhodamine and derivatives thereof, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin); luminescent labels (e.g., luminol); bioluminescent labels (e.g., luciferase, luciferin, and aequorin); or enzymatic labels (e.g., luciferin, 2,3-dihydrophthalazinediones, malate dehydrogenase, urease, peroxidases (e.g., horseradish peroxidase), alkaline phosphatase, β-galactosidase, glucoamylase, lysozyme, saccharide oxidases (e.g., glucose oxidase, galactose oxidase, and glucose-6-phosphate dehydrogenase), heterocyclic oxidases (e.g., uricase and xanthine oxidase), lactoperoxidase, microperoxidase). Alternatively, the binding molecule can be bound by a detectable label, for example, bound by a secondary antibody that contains a detectable label.


Detection assays for detecting the labeled binding molecule or fusion construct bound to a staphylococcal leukotoxin and/or another staphylococcal protein in a sample are well known in the art and include, for example, immunoprecipitation, enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), or fluorescent activated cell sorting (FACS).


Furthermore, the binding molecules and fusion constructs of the present disclosure can be used for the prevention of a staphylococcal infection. This method involves contacting the binding molecule or fusion construct as described herein with a sample from a subject, and detecting a staphylococcal leukotoxin and/or another staphylococcal protein, e.g., a glycosylated staphylococcal surface protein as a result of the contacting. If a staphylococcal leukotoxin and/or another staphylococcal protein is detected in the subject sample, then an agent suitable for preventing staphylococcal infection is administered to the subject. Exemplary prophylactic agents include, but are not limited to, the binding molecules described herein, one or more antibiotics (e.g., mupirocin, nafcillin, cefazolin, dicloxacillin, clindamycin, vancomycin, linezolid, rifampin, sulfamethoxazole-trimethoprim), and/or other anti-infective agents that are effective against staphylococcal infection.


Another aspect of the present disclosure is directed to Leukocidin B (LukB) and Leukocidin A (LukA) polypeptides comprising stem domain mutations and/or deletions. The stem domains of the bi-component leukocidins are structural domains involved in the formation of the active oligomeric, pore forms of the toxins that pierce the host cell membrane and cause cell death via osmotic lysis. As demonstrated in the Examples herein, the stem domain variants of LukA and LukB retain the neutralizing epitope recognized by the LukAB binding molecule (Luk17) described herein. Accordingly, since the stem domain variants do not exhibit cytolytic activity, yet present a neutralizing epitope, they make ideal components of a S. aureus vaccine composition.


In one embodiment, the recombinant LukB polypeptide stem domain variant comprises an amino acid sequence corresponding to amino acid residues 1-109 of SEQ ID NO: 1026 coupled to amino acid residues 152-305 of SEQ ID NO: 1026. The LukB polypeptide does not comprise one or more amino acid residues corresponding to amino acid residues 110-151 of SEQ ID NO: 1026. In other words, one or more amino acid residues corresponding to amino acid residues 110-151 of SEQ ID NO: 1026 is deleted or mutated, thereby rendering the stem domain of the LukB polypeptide inactive or non-functional. When two or more amino acid residues are deleted or mutated, the two or more amino acid residues may be contiguous or non-contiguous. For example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, or 42 contiguous or non-contiguous amino acid residues within the stretch of amino acid residues corresponding to 110-151 of SEQ ID NO: 1026 are deleted or mutated in the LukB polypeptide as described herein. In one embodiment, the LukB polypeptide comprises a deletion of amino acid residues corresponding to amino acid residues 122-126 of SEQ ID NO: 1026. In another embodiment, the LukB polypeptide comprises a deletion of amino acid residues corresponding to amino acid residues 130-134 of SEQ ID NO: 1026. In another embodiment, the LukB polypeptide comprises a deletion of amino acid residues corresponding to amino acid residues 108-150 of SEQ ID NO: 1026. In another embodiment, the LukB polypeptide comprises a deletion of amino acid residues corresponding to amino acid residues 110-150 of SEQ ID NO: 1026. In another embodiment, the LukB polypeptide comprises a deletion of amino acid residues corresponding to amino acid residues 110-151 of SEQ ID NO: 1026. The remaining portions of the LukB polypeptide, e.g., amino acid residues corresponding to and comprising residues 1-109 of SEQ ID NO: 1026 and 152-305 of SEQ ID NO: 1026 can be coupled directly or via a short linker. Suitable linkers include, without limitation, glycine-rich (e.g. G3-5) or glycine/serine-rich (e.g. GSG, GSGS, (SGG)2, GSNG) linker sequences.


Exemplary LukB polypeptides in accordance with this aspect of the disclosure include, without limitation, LukB polypeptides comprising an amino acid sequence of SEQ ID NO: 1029, SEQ ID NO: 1030, SEQ ID NO: 1031, SEQ ID NO: 1032, SEQ ID NO: 1150, or SEQ ID NO: 1151.


The recombinant Leukocidin A (LukA) polypeptide stem domain variant comprises an amino acid sequence corresponding to amino acid residues 1-134 of SEQ ID NO: 1018 coupled to amino acid residues 175-324 of SEQ ID NO: 1018. The LukA polypeptide does not comprise one or more amino acid residues corresponding to amino acid residues 135-174 of SEQ ID NO: 1018. In other words, one or more amino acid residues corresponding to amino acid residues 135-174 of SEQ ID NO: 1018 is deleted or mutated, thereby rendering the stem domain of the LukA polypeptide inactive or non-functional. When two or more amino acid residues are mutated or deleted, the two or more amino acid residues may be contiguous or non-contiguous. For example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40 contiguous or non-contiguous amino acid residues within the stretch of amino acid residues corresponding to 135-174 of SEQ ID NO: 1018 are deleted or mutated in the LukA polypeptide as described herein. In one embodiment, the LukA polypeptide comprises a deletion of amino acid residues corresponding to amino acid residues 144-149 of SEQ ID NO: 1018. In another embodiment, the LukA polypeptide comprises a deletion of amino acid residues corresponding to amino acid residues 135-174 of SEQ ID NO: 1018. The remaining portions of the LukA polypeptide, i.e., amino acid residues corresponding to residues 1-134 or SEQ ID NO: 1018 and 175-324 of SEQ ID NO: 1018 can be coupled directly or via a suitable linker. Suitable linkers include, without limitation, glycine-rich (e.g. G3-5) or glycine/serine-rich (e.g. GSG, GSGS, (SGG)2, GSNG) linker sequences.


The recombinant LukA polypeptide as described herein may further comprise a glutamic acid to alanine substitution at the amino acid residue corresponding to amino acid residue 323 of SEQ ID NO: 1018 (DuMont et al., “Identification of a Crucial Residue Required for Staphylococcus aureus LukAB Cytotoxicity and Receptor Recognition,” Infect Immun. 82(3):1268-76 (2014), which is hereby incorporated by reference in its entirety).


Exemplary LukA polypeptides in accordance with this aspect of the disclosure include, without limitation, LukA polypeptides comprising an amino acid sequence of SEQ ID NO: 1022, SEQ ID NO: 1023, SEQ ID NO: 1024, SEQ ID NO: 1025, or SEQ ID NO: 1149.


Another aspect of the present disclosure is directed to a vaccine composition comprising the LukB and LukA stem domain variants as described supra. In other words, the vaccine composition comprises a recombinant Leukocidin B (LukB) polypeptide comprising an amino acid sequence corresponding to amino acid residues 1-109 of SEQ ID NO: 1026 coupled to amino acid residues 152-305 of SEQ ID NO: 1026, wherein said LukB polypeptide does not comprise one or more amino acid residues corresponding to amino acid residues 110-151 of SEQ ID NO: 1026. The vaccine composition further comprises a recombinant Leukocidin A (LukA) polypeptide comprising an amino acid sequence corresponding to amino acid residues 1-134 of SEQ ID NO: 1018 coupled to amino acid residues 177-324 of SEQ ID NO: 1018, wherein said LukA polypeptide does not comprise one or more amino acid residues corresponding to amino acid residues 135-174 of SEQ ID NO: 1018. Exemplary LukB and LukA stem domain variants are described supra.


The vaccine composition may further comprise one or more adjuvants. Suitable adjuvants are known in the art and include, without limitation, flagellin, Freund's complete or incomplete adjuvant, aluminum hydroxide, lysolecithin, pluronic polyols, polyanions, peptides, oil emulsion, dinitrophenol, iscomatrix, and liposome polycation DNA particles.


The vaccine composition as described herein may be prepared by formulating the recombinantly produced LukA and LukB stem domain variants with a pharmaceutically acceptable carrier and optionally a pharmaceutically acceptable excipient. As used herein, the terms “pharmaceutically acceptable carrier” and “pharmaceutically acceptable excipient” (e.g., additives such as diluents, immunostimulants, adjuvants, antioxidants, preservatives and solubilizing agents) are nontoxic to the cell or mammal being exposed thereto at the dosages and concentrations employed. Examples of pharmaceutically acceptable carriers include water, e.g., buffered with phosphate, citrate and another organic acid. Representative examples of pharmaceutically acceptable excipients that may be useful include antioxidants such as ascorbic acid; low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; adjuvants; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt forming counterions such as sodium; and/or nonionic surfactants such as TWEEN®, polyethylene glycol (PEG), and PLURONICS®.


Another aspect of the present disclosure relates to a method of immunizing a subject against a Staphylococcus aureus infection. This method involves administering the vaccine composition comprising the LukA and LukB stem domain variants, in an amount effective to immunize against S. aureus infection in the subject. A suitable subject for treatment in accordance with this aspect of the present invention is a subject at risk of developing a S. aureus infection.


In accordance with this aspect, a therapeutically effective amount of the vaccine composition for administration to a subject to immunize against S. aureus infection is the amount necessary to generate a humoral (i.e., antibody mediated) immune response. The generated humoral response is sufficient to prevent or at least reduce the extent of S. aureus infection that would otherwise develop in the absence of such response. Preferably, administration of a therapeutically effective amount of the vaccine composition described herein induces a neutralizing immune response against S. aureus in the subject. To effectuate an effective immune response in a subject, the composition may further contain one or more additional S. aureus antigens or an adjuvant as described supra. In an alternative embodiment, the adjuvant is administered separately from the composition to the subject, either before, after, or concurrent with administration of the composition of the present invention.


For purposes of this aspect the disclosure, the target “subject” encompasses any animal, preferably a mammal, more preferably a human. In the context of administering a vaccine composition for purposes of preventing a S. aureus infection in a subject, the target subject encompasses any subject that is at risk of being infected by S. aureus. Particularly susceptible subjects include infants and juveniles, as well as immunocompromised juvenile, adults, and elderly adults. However, any infant, juvenile, adult, or elderly adult or immunocompromised individual at risk for S. aureus infection can be treated in accordance with the methods and vaccine composition described herein. Particularly suitable subjects include those at risk of infection with methicillin-resistant S. aureus (MRSA) or methicillin sensitive S. aureus (MSSA).


Therapeutically effective amounts of the vaccine composition comprising LukA and LukB for immunization will depend on whether an adjuvant is co-administered, with higher dosages being required in the absence of adjuvant. The amount of LukAB for administration sometimes varies from 1 μg-500 μg per patient and more usually from 5-500 μg per injection for human administration. Occasionally, a higher dose of 1-2 mg per injection is used. Typically about 10, 20, 50 or 100 μg is used for each human injection. The timing of injections can vary significantly from once a day, to once a year, to once a decade. Generally an effective dosage can be monitored by obtaining a fluid sample from the subject, generally a blood serum sample, and determining the titer of antibody developed against LukAB, using methods well known in the art and readily adaptable to the specific antigen to be measured. Ideally, a sample is taken prior to initial dosing and subsequent samples are taken and titered after each immunization. Generally, a dose or dosing schedule which provides a detectable titer at least four times greater than control or “background” levels at a serum dilution of 1:100 is desirable, where background is defined relative to a control serum or relative to a plate background in ELISA assays.


EXAMPLES

Examples are provided below to illustrate the present disclosure. These examples are not meant to constrain the present disclosure to any particular application or theory of operation.


Example 1: Definition of a Minimal Epitope Target for mAb 5133 and mAb 5133-Based Fusion Proteins

The specificity of mAb 5133 for glycosylated forms of recombinant variants of the S. aureus SdrC protein, a member of the Serine-Aspartate Repeat (SDR) family, was previously demonstrated in a series of western blot analyses (PCT Application Publication No. WO2015089073 to Torres et al., which is hereby incorporated by reference in its entirety). Specifically, following incubation of purified, recombinant SdrC proteins with whole cell lysates prepared from S. aureus strain JE2 (Fey et al., “A Genetic Resource for Rapid and Comprehensive Phenotype Screening of Nonessential Staphylococcus aureus Genes,” mBio 4(1):e00537-12 (2013), which is hereby incorporated by reference in its entirety), specific protein bands were detected via western blot in contrast to those detected following incubation with lysates prepared from S. aureus NE105, an otherwise-isogenic derivative of JE2 that lacks expression of the SdgB glycosyltransferase (PCT Application Publication No. WO2015089073 to Torres et al., which is hereby incorporated by reference). Further, incubation of purified, recombinant SdrC proteins with a recombinant form of the SdgB glycosyltransferase similarly yielded the mAb 5133 specific epitope in a manner that was dependent on the presence of uridine diphosphate N-acetylglucosamine (UDP-GlcNac) (PCT Application Publication No. WO2015089073 to Torres et al., which is hereby incorporated by reference). In order to further define a minimal epitope for mAb 5133, a synthetic peptide was employed as an in vitro substrate for the SdgB glycosyltransferase that contains ten (10) copies of the Serine-Aspartate dipeptide sequence but lacks any additional protein sequence derived from any of the five members of the SDR family of proteins of S. aureus (Cheng et al., “Variation of Serine-Aspartate Repeats in Membrane Proteins Possibly Contributes to Staphylococcal Microevolution,” PLoS ONE 7(4): e34756 (2012); Becherelli et al., “Protective Activity of the CnaBE3 Domain Conserved Among Staphylococcus aureus Sdr Proteins,” PLoS One 8(9): e74718 (2013), which are hereby incorporated by reference in their entirety).


Procedure. Recombinant variants of the S. aureus SDR family members Clumping Factor A (ClfA) and Clumping Factor B (ClfB) were engineered in vector pET29a(+) such that each bears an amino-terminal S-tag (Merck KGaA; Raines et al., “The S-Tag Fusion System for Protein Purification,” Methods Enzymol. 326:362-367 (2000), which is hereby incorporated by reference in its entirety), thrombin cleavage site, a carboxyl-terminal poly-histidine affinity tag, and correspond to SEQ ID NOs: 668 and 669, respectively. These recombinant proteins were purified to apparent homogeneity following inducible over-expression in Escherichia coli and purification via Ni-NTA agarose resin (Qiagen 1018244) plus S•Tag™ Thrombin Purification Kit (EMD Millipore 69232). A recombinant form of the S. aureus SdgB glycosyltransferase bearing a C-terminal poly-histidine (His)6 affinity tag (SEQ ID NO: 99) was similarly expressed in E. coli and purified via Ni-NTA affinity chromatography. For in vitro glycosylation reactions, 100 g of recombinant SDR proteins [SdrC4/SEQ ID NO: 100, ClfA/SEQ ID NO: 668 and ClfB/SEQ ID NO: 669) were incubated +/−30 μg of Uridine diphosphate N-acetylglucosamine (UDP-GlcNac), +/−4 μg of recombinant SdgB/SEQ ID NO:99 in a final volume of 100 μl 100 mM Tris pH 7.5 or 100 μl 100 mM Tris pH 7.5 plus 10% glycerol at 37 C.° for 1 hour. High binding 96-well ELISA plates (Nunc) were coated with recombinant proteins SDR proteins +/− SdgB-mediated glycosylation at 5 μg/mL in PBS and incubated overnight at 4° C. Plates were washed three times with ELISA wash buffer (0.15M NaCl, 0.02% Tween-20) and blocked with blocking buffer (Superblock Thermo 37515) for one hour at ambient temperature. In separate dilution plates, test articles were serially diluted three-fold in blocking buffer starting at 1 μM or 10 μM. ELISA plates were washed three times with ELISA wash buffer and antibody dilutions were transferred from the dilution plates to the ELISA plates and incubated for one hour at ambient temperature. ELISA plates were washed three times with ELISA wash buffer and a secondary goat anti-human Fc gamma-specific-HRP (Jackson Immunoresearch 109-035-098) was diluted 1:10,000 in blocking buffer and added to the plates. Plates were incubated with secondary antibody for one hour at ambient temperature then washed four times with ELISA wash buffer. POD Chemiluminescence substrate (Roche-cat#11582950001) was then added to the plates and absorbance was read immediately on the Perkin Elmer EnVision Multilabel Reader at 405 nm. The data were analyzed using GraphPad Prism. Values were transformed to a log scale and fit using a non-linear regression sigmoidal dose-response equation resulting in an eleven point binding curve for each antibody against each antigen.


For peptide studies, a twenty eight (28) residue peptide of the amino acid sequence: (N-terminus)-SDSDSDSDSDSDSDSDSDSDHHHHHHHH-(C-terminus) (SEQ ID NO: 670) was synthesized (New England Peptide, Inc., Gardner, Mass.). The peptide contains ten copies of the SD dipeptide repeat element followed by an eight residue poly-Histidine sequence and was additionally modified such as to bear an amino-terminal biotin moiety. This peptide is herein referred to as the “SD peptide” and has a measured molecular weight of 3475 Daltons. For in vitro glycosylation reactions, 100 g of the SD peptide was incubated with 4 μg of recombinant SdgB protein in 100 μl of 100 mM Tris pH 7.5 containing 10% glycerol and 30 μg of uridine diphosphate N-acetylglucosamine (UDP-GlcNac) at 37 C.° for 1 hour. Analysis of the extent of in vitro glycosylation was determined by matrix-assisted laser desorption/ionization (MALDI) analysis. The binding of mAb 5133 and mAb 5133-based fusion proteins to the SD peptide (+/− glycosylation) was determined using a plate-based ELISA format wherein the SD peptide (+/− glycosylation) was captured on high binding 96-well ELISA plates (Nunc) coated with streptavidin at 5 μg/mL in PBS and incubated overnight at 4° C. Detection of bound test articles was performed using an HRP-conjugated F(ab′)2 fragment donkey anti-human IgG (H+L) (Jackson Immunoresearch 709-006-149 lot 112932) and detection of streptavidin plate-bound SD peptide (+/− glycosylation) by use of an HRP-conjugated anti-polyhistidine antibody (R&D Systems MAB050H polyhistidine HRP MAb Clone AD1.1.10). POD Chemiluminescence substrate (Roche-cat#11582950001) was then added to the plates and absorbance was read immediately on the Perkin Elmer EnVision Multilabel Reader at 405 nm. The data were analyzed using GraphPad Prism. Values were transformed to a log scale and fit using a non-linear regression sigmoidal dose-response equation resulting in an eleven point binding curve for each antibody against the SD peptide (+/− glycosylation) antigen.


Results.



FIG. 1 shows the binding of mAb 5133 (Table 1: Construct 1) to recombinant S. aureus SDR proteins +/− SdgB-mediated glycosylation as determined by ELISA assay. FIG. 1A shows specific binding of mAb 5133 to the SdgB glycosylated form of SdrC4 (SEQ ID NO: 100) as previously reported based on western blot analyses (PCT Application Publication No. WO2015089073 to Torres et al., which is hereby incorporated by reference). Similarly, FIGS. 1B and 1C show specific binding of mAb 5133 to the SdgB glycosylated forms of two additional S. aureus SDR proteins, ClfA (SEQ ID NO: 668) (FIG. 1B) and ClfB (SEQ ID NO: 669) (FIG. 1C) with no apparent binding to the purified, recombinant proteins as prepared from E. coli. These data further substantiate that the antigen epitope recognized by mAb 5133 is a specifically glycosylated form of the SDR proteins as generated by incubation of the proteins in the presence of SdgB and UDP-GlcNac.


MALDI analysis of in vitro SdgB-mediated glycosylation of the SD peptide revealed a series of discrete species that differ by ˜203 Daltons indicative of the addition of individual GlcNac units to Serine residues with up to ten apparent sites of glycosylation per monomer peptide. As shown in FIG. 1D, mAb 5133 recognizes streptavidin-bound SD peptide in a concentration-dependent manner that is wholly dependent on prior glycosylation by the SdgB enzyme. FIG. 1E serves as a control to show that equivalent amounts of the glycosylated and non-glycosylated forms of the SD peptide are bound to the streptavidin-coated plates when detected using a HRP-conjugated anti-polyhistidine antibody. FIG. 1F shows the binding of a series of mAb 5133-based fusion proteins to the SdgB glycosylated SD peptide immobilized on plates via streptavidin capture. Importantly, these data indicate that the fusion of dual, tandem FN3 domains (Table 1: Constructs 11, 12, 13 & 14) to the carboxyl-terminus of the heavy chain portion of the parental mAb sequences does not have any detectable impact on the affinity of the test articles for the glycosylated SD peptide antigen as mediated by the mAb 5133 derived V-region. Further, elimination of Protein-A binding of mAb-FN3 fusion proteins (as conferred by introduction of CH3 mutations H435R/Y436F) has no detectable impact on the affinity of the test articles for the glycosylated SD peptide antigen (Table 1: Constructs 11 & 12).


Summary.


These data indicate (i) that the epitope target of mAb 5133 and mAb 5133-FN3 fusion proteins can be defined minimally as a peptide sequence containing as few as ten copies of the SD repeat sequence that has been modified by the S. aureus SdgB glycosyltransferase in the presence of UDP-GlcNac, and (ii) that no other sequences from the SdrC protein, or other S. aureus SDR family members [Clumping Factor A (ClfA), Clumping Factor B (ClfB), SdrD or SdrE], are necessary components of the minimal antigen epitope recognized by mAb 5133.









TABLE 1







Characteristics of Antibody and Antibody-FN3 Fusion Constructs



















Light Chain


Construct
SEQ ID



Heavy Chain
FN3


No.
NO:
Description
V-region
Heavy Chain
FN3 domains
domains
















1
60 HC
CR5133
anti-
IgG1 wt
none
none



61 LC

glycosylated








SDR-








containing








proteins





2
62 HC
CR5133
anti-
E223P/
none
none



63 LC
PRASA
glycosylated
L234V/







SDR-
L235A (G236-







containing
deleted)







proteins
S239D/








K326A/








E333A




3
64 HC
CR5133 A6
anti-
H435R/
none
none



65 LC

glycosylated
Y436F







SDR-








containing








proteins





4
66 HC
CR5133
anti-
E223P/
none
none



67 LC
PRASA A6
glycosylated
L234V/







SDR-
L235A (G236-







containing
deleted)







proteins
S239D/








K326A/








E333A/








H435R/








Y436F




5
68 HC
CR5133
anti-
E223P/
none
anti-LukD



69 LC
PRASA A6
glycosylated
L234V/






LC-L4-D
SDR-
L235A (G236-







containing
deleted)







proteins
S239D/








K326A/








E333A/








H435R/








Y436F




6
70 HC
CR5133
anti-
E223P/
anti-LukAB
none



71 LC
PRASA A6
glycosylated
L234V/






HC-L4-AB
SDR-
L235A (G236-







containing
deleted)







proteins
S239D/








K326A/








E333A/








H435R/








Y436F




7
72 HC
CR5133
anti-
E223P/
anti-LukAB
anti-LukD



73 LC
PRASA A6
glycosylated
L234V/






LC-L4-D
SDR-
L235A (G236-






HC-L4-AB
containing
deleted)







proteins
S239D/








K326A/








E333A/








H435R/








Y436F




8
74 HC
CR5133
anti-
E223P/
anti-LukD
none



75 LC
PRASA A6
glycosylated
L234V/






HC-L4-D
SDR-
L235A (G236-







containing
deleted)







proteins
S239D/








K326A/








E333A/








H435R/








Y436F




9
76 HC
CR5133
anti-
E223P/
anti-LukAB
none



77 LC
PRASA A6
glycosylated
L234V/
anti-LukD





HC L4-AB-
SDR-
L235A (G236-






L4-D
containing
deleted)







proteins
S239D/








K326A/








E333A/








H435R/








Y436F




10
78 HC
CR5133
anti-
E223P/
anti-LukD
none



79 LC
PRASA A6
glycosylated
L234V/
anti-LukAB





HC L4-D-
SDR-
L235A (G236-






L4-AB
containing
deleted)







proteins
S239D/








K326A/








E333A/








H435R/








Y436F




11
856 HC
CR5133
anti-
E223P/
anti-LukE
none



67 LC
PRASA A6
glycosylated
L234V/
anti-LukAB





HC-L4-E-
SDR-
L235A (G236-






L4-AB
containing
deleted)







proteins
S239D/








K326A/








E333A/








H435R/








Y436F




12
952 HC
CR5133
anti-
E223P/
anti-LukE
none



67 LC
PRASA A6
glycosylated
L234V/
anti-LukAB





HC-L4-E-
SDR-
L235A (G236-






L1-AB
containing
deleted)







proteins
S239D/








K326A/








E333A/








H435R/








Y436F




13
965 HC
CR5133
anti-
E223P/
anti-LukE
none



63 LC
PRASA HC-
glycosylated
L234V/
anti-LukAB





L4-E-L1-
SDR-
L235A (G236-






AB-FLAG
containing
deleted)







proteins
S239D/








K326A/








E333A/








H435R/








Y436F




14
970 HC
CR5133
anti-
E223P/
anti-LukE
none



63 LC
PRASA HC-
glycosylated
L234V/
anti-LukAB





L4-E-L4-
SDR-
L235A (G236-






AB-FLAG
containing
deleted)







proteins
S239D/








K326A/








E333A/








H435R/








Y436F




15
848 HC
CR5133
anti-
E223P/
anti-LukE
none



71 LC
PRASA A6
glycosylated
L234V/






HC-L4-E
SDR-
L235A (G236-







containing
deleted)







proteins
S239D/








K326A/








E333A/








H435R/








Y436F




16
868 HC
ProA3
anti-Protein A
E223P/
anti-LukE
none



841 LC
PRASA A6

L234V/
anti-LukAB





HC-L4-E-

L235A (G236-






L4-AB

deleted)








S239D/








K326A/








E333A/








H435R/








Y436F




17
880 HC
ProA9
anti-Protein A
E223P/
anti-LukE
none



842 LC
PRASA A6

L234V/
anti-LukAB





HC-L4-E-

L235A (G236-






L4-AB

deleted)








S239D/








K326A/








E333A/








H435R/








Y436F




18
921 HC
IsdB
anti-IsdB
E223P/
anti-LukE
none



844 LC
PRASA A6
(CSD7)
L234V/
anti-LukAB





HC-L4-E-

L235A (G236-






L4-AB

deleted)








S239D/








K326A/








E333A/








H435R/








Y436F




19
925 HC
LTA
anti-LTA
E223P/
anti-LukE
none



846 LC
PRASA A6
(Pagibaximab)
L234V/
anti-LukAB





HC-L4-E-

L235A (G236-






L4-AB

deleted)








S239D/








K326A/








E333A/








H435R/








Y436F




20
927 HC
RSV
anti-RSV
E223P/
anti-LukE
none



843 LC
PRASA A6
(CNTO3930)
L234V/
anti-LukAB





HC-L4-E-

L235A (G236-






L4-AB

deleted)








S239D/








K326A/








E333A/








H435R/








Y436F




21
104 HC
CNTO3930
anti-RSV
IgG1 wt
none
none



105 LC

(CNTO3930)





22
887 HC
CR5133
anti-
E223P/
anti-LukE
none



71 LC
PRASA HC-
glycosylated
L234V/
anti-LukAB





L4-E-L4-AB
SDR-
L235A (G236-







containing
deleted)







proteins
S239D/








K326A/








E333A




23
923 HC
CR6526
Unknown
E223P/
anti-LukE
none



845 LC
PRASA A6

L234V/
anti-LukAB





HC-L4-E-

L235A (G236-






L4-AB

deleted)








S239D/








K326A/








E333A/








H435R/








Y436F




24
918 HC
CR5133
anti-
E223P/
anti-LukE
none



67 LC
PRASA A6
glycosylated
L234V/
anti-LukAB





HC-L4-E-
SDR-
L235A (G236-






L4-AB
containing
deleted)






FLAG
proteins
S239D/








K326A/








E333A/








H435R/








Y436F




25
919 HC
cMyc
anti-
E223P/
anti-LukE
none



67 LC
CR5133
glycosylated
L234V/
anti-LukAB





PRASA A6
SDR-
L235A (G236-






HC-L4-E-
containing
deleted)






L4-AB
proteins
S239D/








K326A/








E333A/








H435R/








Y436F




26
920 HC
cMyc
anti-
E223P/
anti-LukE
none



67 LC
CR5133
glycosylated
L234V/
anti-LukAB





PRASA A6
SDR-
L235A (G236-






HC-L4-E-
containing
deleted)






L4-AB
proteins
S239D/






FLAG

K326A/








E333A/








H435R/








Y436F




27
977 HC
RSV
anti-RSV
E223P/
wt-TENCON
none



843 LC
PRASA A6
(CNTO3930)
L234V/






HC-L4-

L235A (G236-






wtTENCON

deleted)








S239D/








K326A/








E333A/








H435R/








Y436F




28
858 HC
CR5133
anti-
E223P/
anti-LukE
none



67 LC
PRASA A6
glycosylated
L234V/
anti-LukAB





HC-L4-E-
SDR-
L235A (G236-






L4-AB
containing
deleted)







proteins
S239D/








K326A/








E333A/








H435R/








Y436F




29
1000 HC
ProA3
Anti-Protein A
E223P/
None
None



841 LC
PRASA A6

L234V/








L235A (G236-








deleted)








S239D/








K326A/








E333A/








H435R/








Y436F




30
1001 HC
ProA3 IgG1
Anti-Protein A
IgG1 WT
None
None



841 LC







31
1002 HC
ProA3
Anti-Protein A
E223P/
None
None



841 LC
PRASA

L234V/








L235A (G236-








deleted)








S239D/








K326A/








E333A/




32
1003 HC
LTA IgG1
Anti-LTA
IgG1 WT
None
None



846 LC

(Pagibaximab)





33
1004 HC
LTA
Anti-LTA
E223P/
None
None



846 LC
PRASA A6
(Pagibaximab)
L234V/








L235A (G236-








deleted)








S239D/








K326A/








E333A/








H435R/








Y436F




34
1078 HC
anti-LukAB
anti-LukAB
mIgG1 WT
None
None



1079 LC
mIgG1






35
1080 HC
anti-LukAB
anti-LukAB
hIgG1 Fab
None
None



1081 LC
Fab






36
1082 HC
anti-gSDR
anti-gSDR
hIgG1 Fab
None
None



1083 LC
Fab






37
848 HC
CR5133
anti-
E223P/
anti-LukE
anti-LukAB



979 LC
PRASA A6
glycosylated
L234V/






LC-L4-AB
SDR-
L235A (G236-






HC-L4-E
containing
deleted)







proteins
S239D/








K326A/








E333A/








H435R/








Y436F




38
70 HC
CR5133
anti-
E223P/
anti-LukAB
anti-LukE



980 LC
PRASA A6
glycosylated
L234V/






LC-L4-E
SDR-
L235A (G236-






HC-L4-AB
containing
deleted)







proteins
S239D/








K326A/








E333A/








H435R/








Y436F





Abbreviations:


PRASA - heavy chain mutations that eliminate GluV8-mediated protease cleavage in the hinge region;


A6 - Fc region mutations that that eliminate protein-A binding;


HC - heavy chain;


LC - light chain.






Example 2: Target Antigen Engagement by mAb 5133 and mAb 5133-FN3 Fusion Proteins; Simultaneous Target Engagement, Target Binding Stoichiometry and Binding Affinity

The roles that individual SDR proteins and the leukotoxins LukAB and LukED play in establishing and/or maintaining S. aureus infections in different tissue sites is predicted to vary. In some settings, glycosylated forms of the SDR proteins may be important in serving as adhesins to host tissues or soluble factors in the systemic blood circulation or other fluids in either the host extracellular environment or sub-cellular bodies in the host intracellular environment via specific host surface receptors (Hazenbos et al., “Novel Staphylococcal Glycosyltransferases SdgA and SdgB Mediate Immunogenicity and Protection of Virulence-Associated Cell Wall Proteins,” PLoS Pathog. 9(10):e1003653 (2013); Thomer et al., “N-Acetylglucosaminylation of Serine-Aspartate Repeat Proteins Promotes Staphylococcus aureus Bloodstream Infection,” J. Biol. Chem. 289(6):3478-86 (2014), which are hereby incorporated by reference in their entirety). In contrast, the leukotoxins LukAB and LukED likely play distinct roles in mediating invasive disease through their targeted cytolytic activity against specific classes of immune cells (Yoong & Torres, “The Effects of Staphylococcus aureus Leukotoxins on the Host: Cell Lysis and Beyond,” Curr. Opin. Microbiol. 16(1):63-9 (2013), which is hereby incorporated by reference in its entirety). Similarly, the roles of these different virulence factors in facilitating S. aureus survival in, or escape from, the intracellular environment of host cells (e.g., the phagolysosome) is not fully characterized although it has been established that LukAB facilitates the escape of bacteria engulfed within human polymorphonuclear leukocytes (PMNs) (Dumont et al., “Staphylococcus aureus Elaborates Leukocidin AB to Mediate Escape From Within Human Neutrophils,” Infect. Immun. 81(5):1830-41 (2013), which is hereby incorporated by reference in its entirety). Considering the possibility that both SDR family proteins and the leukotoxins LukAB and LukED are important common virulence factors in some infection settings, it was important to demonstrate that mAb 5133-FN3 fusion proteins can engage multiple protein targets simultaneously. Herein, the interaction of mAb 5133-FN3 fusion proteins with purified target antigen proteins is described as determined using the Biacore surface plasmon resonance (SPR) methodology.


Procedure.


The leukotoxin binding FN3 domains of the mAb5133-FN3 fusion proteins used in this and in other Examples described herein were developed as described in PCT Application Publication No. WO2015089073 to Torres et al., which is hereby incorporated by reference in its entirety. Characteristics of the mAB5133-FN3 fusion constructs utilized herein are provided in Table 1. In these studies mAb 5133-based mAbs and mAb-5133-FN3 fusion proteins were captured as ligands on goat anti-human Fc antibody (Jackson ImmunoResearch product #109-005-098) modified CM4 sensor chips (Biacore Life Sciences product BR-1005-34) using the Biacore T200 instrument. Binding studies employed as target analytes (i) a single SdgB glycosylated preparation of the SdrC4 protein (SEQ ID NO: 100) as the V-region target antigen referred to herein as SdrC4GlcNac, (ii) a recombinant polyhistidine-tagged variant of LukE (SEQ ID NO: 13) prepared from S. aureus, and (iii) a recombinant polyhistidine-tagged, toxoid variant of LukAB (LukA variant of SEQ ID NO: 10 and LukB of SEQ ID NO: 11) prepared from S. aureus that bears an E323A mutation (DuMont et al., “Identification of a Crucial Residue Required for Staphylococcus aureus LukAB Cytotoxicity and Receptor Recognition,” Infect Immun. 82(3): 1268-76 (2014), which is hereby incorporated by reference in its entirety). Binding studies employed 0. μM filtered, de-gassed PBS/Tween/EDTA, pH7.4 buffer (Bio-Rad Phosphate buffered saline, pH 7.4, 0.005% Tween 20 (GE Healthcare product BR100054), 3 mM EDTA) as both the ligand immobilization running buffer (IRB) and the Biacore running buffer (BRB). The kinetic binding data was obtained using the “single cycle kinetics” mode on the Biacore T200 instrument at an analyte flow rate of 60 μL/minute and dissociation monitored for 900 seconds. In summary, data analysis was performed by (i) subtracting the curves generated by buffer injection (average) from the reference-subtracted curves for analyte injections to correct for buffer contribution to the signal and instrument noise (Myszka, “Improving Biosensor Analysis,” J. Mol. Recognition. 12:279-284 (1999), which is hereby incorporated by reference in its entirety) and (ii) the resulting processed data generated for kinetic and affinity determinations analyzed using the T200 BIAevaluation software with kinetic data analyzed using a simple 1:1 binding model for LukAB and LukE and a two-state model for SdrC4GlcNac (Jonsson & Malmqvist, “Real Time Biospecific Interaction Analysis: The Integration of Surface Plasmon Resonance Detection, General Biospecific Interface Chemistry and Microfluidics Into One Analytical System,” Advances in Biosensor, 2:291-336 (1992); Morton & Myszka, “Kinetic Analysis of Macromolecular Interactions Using Surface Plasmon Resonance Biosensors,” Methods in Enzymol. 295:268-294 (1998); Svitel et al., “Probing the Functional Heterogeneity of Surface Binding Sites by Analysis of Experimental Binding Traces and the Effect of Mass Transport Limitation,” Biophysical Journal, 92:1742-1758 (2007); Drake et al., “Characterizing High-Affinity Antigen/Antibody Complexes by Kinetic- and Equilibrium-Based Methods,” Anal Biochem 328(1):35-43 (2004), which are hereby incorporated by reference in their entirety).


Results.


Test article ligands captured on CM4 sensor chips via the goat anti-human Fc antibody were mAb 5133 PRASA A6 (Table 1: construct 4/SEQ ID NO: 66 HC plus SEQ ID NO:67 LC), mAb 5133 PRASA A6 HC-L4-AB (Table 1: construct 6/SEQ ID NO: 70 HC plus SEQ ID NO:71 LC), mAb 5133 PRASA A6 HC-L4-E (Table 1: construct 15/SEQ ID NO: 848 HC plus SEQ ID NO:71 LC) and mAb 5133 PRASA A6 HC-L4-E-L4-AB (Table 1: construct 11/SEQ ID NO:856 HC plus SEQ ID NO:67 LC). In an initial phase of target binding (Phase A), SdrC4GlcNac (glycosylated SdrC4 protein at 450 nM) was bound to the immobilized ligands until apparent saturation. As shown in the Phase A of binding in FIG. 2A, all CM4 sensor bound ligands bound the glycosylated SdrC4 protein as reflected in the increase in Response Units (RUs) from baseline. As shown in Phase B in FIG. 2A, addition of LukE (at 1 μM) to the flow solution resulted in further increases in RUs for test article ligands constructs 15 and 11 that bear LukE-targeted FN3 domains. Finally, as shown in the Phase C in FIG. 2A, addition of LukAB (at 100 nM) to the flow solution resulted in further increases in the observed RUs for test article construct 6 (mAb 5133 PRASA A6 HC-L4-AB) and construct 11 (mAb 5133 PRASA A6 HC-L4-E-L4-AB); again, this was expected as they each bear LukAB-targeted FN3 domains. In contrast, no apparent binding of LukAB by construct 4 (mAb 5133 PRASA A6) or construct 15 (mAb 5133 PRASA A6 HC-L4-E) was detected, consistent with the absence of LukAB-targeted FN3 domains in these proteins.


Analysis of these binding data allows for the quantitative assessment of the binding stoichiometry of each target antigen and these data are shown in FIG. 2B. In all cases wherein the test articles contained a FN3 domain specific for LukE, a binding stoichiometry of >1 (range of 1.2-1.5) was observed indicating that some portion of the total immobilized ligands engaged two copies of the LukE antigen simultaneously. Similarly, in all cases wherein the test articles contained a FN3 domain specific for LukAB, a binding stoichiometry of >1 (range of 1.4-1.8) was observed indicating that some portion of the total immobilized ligands engaged two copies of the LukAB antigen simultaneously.


Finally, analysis of these binding data also allows for the determination of the binding affinity of each target antigen and these data are shown in FIG. 2C. For test articles bearing the mAb5133-derived V-region, the affinity of binding to the glycosylated SdrC4 protein was observed to be fairly consistent with KD values in the 0.63-0.99 nM range. Similarly, for test articles containing a FN3 domain specific for LukE, the affinity of binding to LukE was observed to be fairly consistent with KD values in the 0.88-1.01 nM range. In contrast, for test articles containing a FN3 domain specific for LukAB, the binding affinity of Construct 11 (12 pM) was determined to be approximately six-fold higher than that observed for Construct 6 (70 pM). These data indicate that local sequence context can impact the affinity of FN3 domains for target antigens. Specifically, the affinity of the Luk17 FN3 domain appears to be enhanced when appended downstream of Luk26 in Construct 11 (mAb 5133 PRASA A6 HC-L4-E-L4-AB) when compared to its appendage to the carboxyl-terminus of mAb 5133 in Construct 6 (mAb 5133 PRASA A6 HC-L4-AB). Changes in the affinity of FN3 binding domains for their target antigens based on their local sequence context in mAb-FN3 fusion proteins are non-obvious and cannot be predicted a priori.


Summary.


These data provide evidence that mAb 5133-FN3 fusion proteins targeting LukAB and LukE can engage both toxin targets simultaneously while engaged via the V-region of the antibody portion with the SD-GlcNac antigen. This feature of mAb 5133-FN3 fusion proteins may be of significance in host tissues and/or organelles in some disease states mediated by S. aureus wherein roles for the glycosylated forms of the SDR family of adhesin proteins plus leukotoxins AB and/or ED are important in establishing and/or maintaining infection. Similarly, the apparent ability of mAb 5133-FN3 fusion proteins to bind both LukAB and LukE simultaneously may also be important in S. aureus disease states where both leukotoxins are expressed. The apparent binding stoichiometry of >1 for each toxin target antigen would presumably enable higher neutralization than afforded if the binding of a single LukAB molecule precluded binding of a second LukAB molecule or the binding of a single LukE molecule precluded binding of a second LukE molecule. Finally, the observation that the context of a FN3 domain in mAb-FN3 fusion proteins can have a significant impact on target affinity suggests that target engagement of mAb-FN3 fusion proteins may be optimized through modulating sequence context through exploring appendage at different positions to the light and/or heavy chains of the mAb and through exploring FN3 domain order in mAb-FN3 fusion proteins bearing tandem FN3 domains. Each of these findings was unexpected and could not be predicted a priori.


Example 3: Target Engagement by mAb 5133-FN3 Fusion Proteins: The Affinity of the FN3 Components for Leukotoxin Targets and In Vivo Efficacy can be Modulated by Alteration of Linker Lengths

The length and nature of the linker sequences used in multi-specific fusion proteins can affect the activity and/or in vivo efficacy of the individual components, presumably by altering target (antigen) interactions and/or factors that influence in vivo pharmacokinetics-pharmacodynamics (PK-PD). Described herein is the synthesis and characterization of a series of 24 derivatives of a single mAb 5133-FN3 fusion protein (Construct 11 in Table 1; SEQ ID NO: 856 HC plus SEQ ID NO:67 LC), where the linker length between the carboxyl-terminus of the mAb heavy chain and the first FN3 domain (targeting LukE) is varied from zero to four copies of the G4S linker (hereinafter referred to as ‘Linker 1’), and similarly, the linker length between the carboxyl-terminus of the first FN3 domain (targeting LukE) and the amino-terminus of the second FN3 domain (targeting LukAB) is varied from zero to four copies of the G4S linker (hereinafter referred to as ‘Linker 2’).


Procedure.


Derivatives of the mAb 5133-FN3 fusion protein Construct 11 (CR5133 PRASA A6 HC-L4-E-L4-AB; SEQ ID NO:856 HC plus SEQ ID NO:67 LC) with variable linker lengths were synthesized by standard molecular methods and purified proteins prepared from transiently transfected Human Embryonic Kidney (HEK) 293 cells. The binding affinity of each leukotoxin target, i.e., LukE (SEQ ID NO: 13), and a LukAB toxoid variant (SEQ ID NOs: 10 and 11) that bears a mutation corresponding to E323A in the wild-type toxin (DuMont et al., “Identification of a Crucial Residue Required for Staphylococcus aureus LukAB Cytotoxicity and Receptor Recognition,” Infect Immun. 82(3): 1268-76 (2014), which is hereby incorporated by reference in its entirety), was determined by ELISA. Briefly, 100 μl of a 5 μg/mL solution of streptavidin (in PBS) was added per well of a 96 well White Maxisorp plate (Nunc-cat#436110) and incubated overnight at 4° C. Wells were washed 3× with TBST (50 mM Tris HCl, pH 7.4, 150 mM NaCl, 0.1% Tween 20) and blocked with 300 μL/well with StartingBlock T20 (Pierce cat#37543) and incubated 45-60 minutes at room temperature (RT). The plate was washed 3 times with TBST and 0.2 μg of biotinylated versions of the leukotoxin target antigens (in 100 μL) added to each test well and the plate incubated 45-60 minutes at RT with gentle shaking. The plate was washed 3 times with TBST. In separate dilution plates, test articles were serially diluted three-fold in blocking buffer starting at 10 μM. ELISA plates were washed three times with ELISA wash buffer and antibody dilutions were transferred from the dilution plates to the ELISA plates and incubated for one hour at ambient temperature with gentle shaking. ELISA plates were washed three times with ELISA wash buffer and a secondary goat anti-human Fc gamma-specific-HRP (Jackson Immunoresearch 109-035-098) was diluted 1:10,000 in blocking buffer and added to the plates. Plates were incubated with secondary antibody for one hour at ambient temperature then washed four times with ELISA wash buffer. POD Chemiluminescence substrate (Roche-cat#11582950001) was then added to the plates and absorbance was read immediately on the Perkin Elmer EnVision Multilabel Reader at 405 nm. The data were analyzed using GraphPad Prism. Values were transformed to a log scale and fit using a non-linear regression sigmoidal dose-response equation resulting in an eleven point binding curve for each antibody against each antigen.


A mouse model of S. aureus kidney infections was used to assess the relative in vivo efficacy of the mAb-FN3 fusion linker variants. Briefly, female 5-6 week old Swiss Webster ND4 mice (Harlan Laboratories, Indianapolis, Ind.) were administered test articles (8 per group) via intra-peritoneal (IP injection) 24 hours prior to infection. Mice were subsequently infected with a pre-determined fixed concentration (˜10{circumflex over ( )}6 Log 10 CFU per mouse) of S. aureus Newman injected in a 100 μL volume retro-orbitally (under isoflurane anesthesia) using a 28 G, ½ inch needle. This concentration corresponded to the lowest bacterial inoculum that typically yields a robust kidney infection as defined by the resulting bacterial burden based on determinations of colony forming units (CFUs) measured from homogenates of explanted kidneys and the visual observation and enumeration of kidney surface abscess lesions. In all cases, test articles were administered 24 hours prior to infection. Mice were euthanized, and kidneys harvested 96 hour post infection. Kidneys were scored for severity of infection via visual lesion count. The kidneys were explanted, weighed, homogenized, and the resulting homogenates serially diluted and plated on bacterial growth media (Tryptic Soy Agar (TSA)) to determine terminal viable bacterial burdens per individual kidneys via the CFU endpoint. Mice were monitored daily for health observations. The kidney severity abscess score was recorded as: 1-2 visible lesions=severity score 1, 3-9 visible lesions=severity score 2, and >=10 visible lesions=severity score 3.


Results.


The influence of varying linker lengths on leukotoxin binding affinity could not be predicted a priori and the data in FIG. 3A exemplifies the nonobvious impact that such variations of Linker 1 and Linker 2 have on the binding affinity for both toxin antigens. For instance, with regard to Linker position 1, variants with no copies of the G4S linker (0×0, 0×1, 0×2, 0×3 and 0×4) between the carboxyl-terminus of the mAb heavy chain and the first FN3 domain (targeting LukE) exhibit near equivalent binding affinities for LukE and LukAB as the 4×4 variant with the exception that the 0×0 variant exhibits somewhat weaker binding to LukAB. In contrast, with regard to Linker position 2, variants with no copies of the G4S linker (0×0, 1×0, 2×0, 3×0 and 4×0) between the carboxyl-terminus of the first FN3 domain (targeting LukE) and the amino-terminus of the second FN3 domain (targeting LukAB) all exhibit significantly reduced binding to LukAB when compared to the 4×4 variant, and variable reductions in affinity for binding to LukE compared to the 4×4 variant with the exception of the 0×0 variant. Overall, the lack of discernible trends between toxin binding affinities and the lengths of Linker 1 and Linker 2 highlights the impact that each linker can have on the binding to each of the toxin targets, and therefore, the need to neutrally assess a broad panel of linker variants in optimizing these mAb-FN3 fusion proteins with regard to their binding affinities for the toxin targets.


Similarly, the influence of varying linker lengths on in vivo efficacy could not be predicted a priori and the data in FIGS. 3B, 3C, and 3D exemplifies the nonobvious impact that such variations of Linker 1 and/or Linker 2 have on the efficacy in a mouse model of S. aureus kidney infections. For instance, the 1×4 and 4×4 variants exhibit equivalent (high) efficacy and retain potent binding to both LukE and LukAB (FIGS. 3C and 3D, respectively). In contrast, while the 3×2, 3×3 and 3×4 variants exhibit potent binding to both LukE and LukAB, they exhibit weak or no in vivo efficacy (FIGS. 3C and 3D, respectively). Hence, the relationship between linker length and efficacy cannot simply be explained by changes in toxin binding affinity as differences in linker composition will likely impact factors that influence in vivo pharmacokinetics-pharmacodynamics (PK-PD). Again, these data highlight the need to neutrally assess a broad panel of linker variants in optimizing these mAb-FN3 fusion proteins with regard to in vivo efficacy.


Summary.


The influence of varying linker lengths of mAb 5133-FN3 fusion proteins on in vitro and in vivo activities could not be predicted a priori. As exemplified herein through studies of leukotoxin target binding, toxin neutralization and in vivo efficacy of a broad panel of linker variants of a single mAb 5133-FN3 fusion protein, the nonobvious impact that such variations of Linker 1 and/or Linker 2 have on in vitro, ex vivo and in vivo activity was borne out. These studies highlight the potential for optimizing the activity of mAb 5133-FN3 fusion proteins through varying the G4S linker length employed between the carboxyl-terminus of the mAb heavy chain and the first FN3 domain and, where relevant, the linker length between the carboxyl-terminus of the first FN3 domain and the amino-terminus of the second FN3 domain.


Example 4: Correlation of Toxin Binding and Neutralizing Activity of FN3 Variants Targeting the LukE Component of Leukotoxin LukED

The specificity in leukotoxin binding and neutralization observed for some FN3 variants implies that they interact in a highly specific manner. In an effort to define key molecular interactions between the FN3 protein and the LukE subunit, mutant derivatives of a series of three LukE-specific FN3 variants, specifically Luk26 (SEQ ID NO: 25), Luk27 (SEQ ID NO: 26) and Luk38 (SEQ ID NO: 37) were prepared in which residues that differ from the parental, wild-type TENCON FN3 protein (SEQ ID NO: 1) were each individually changed to Alanine to create a so-called ‘Alanine Scan’ set of variants across the putative LukE binding surface. Each variant was then assessed for (i) retention of binding to purified, recombinant LukE protein as determined in an ELISA format assay, and (ii) for LukED toxin neutralization activity in assays employing isolated primary human neutrophils.


Procedure.


Binding of the FN3 variants to purified, recombinant LukE protein (SEQ ID NO: 13) was determined by ELISA. Briefly, 100 μl of a 5 μg/mL solution of streptavidin (in PBS) was added per well of a 96 well White Maxisorp plate (Nunc-cat#436110) and incubated overnight at 4° C. Wells were then washed 3× with TBST (50 mM Tris HCl, pH 7.4, 150 mM NaCl, 0.1% Tween 20) and blocked with 300 μL/well with StartingBlock T20 (Pierce cat#37543) and incubated 45-60 minutes at room temperature (RT). The plate was then washed 3 times with TBST and 0.2 μg of a biotinylated preparation of LukE protein (in 100 μL) was added to each test well and the plate incubated 45-60 minutes at RT with gentle shaking. The plate was then washed 3 times with TBST. In separate dilution plates, test articles were serially diluted three-fold in blocking buffer starting at 1 μM. 100 μL of titrated test articles were added to test wells and the plate incubated 45-60 minutes at RT with gentle shaking. The plate was then washed 3 times with TBST. For detection of bound test articles, 100 μL/well of a polyclonal anti-FN3-HRP antibody diluted 1:5000 in Starting block T20 was added and the plate incubated for 45-60 min at RT with gentle shaking. The plate was then washed 3 times with TBST. To detect bound anti-FN3-HRP antibody, 100 μL/well of the POD Chemiluminescence substrate (Roche-cat#11582950001) was added immediately prior to reading plates and the plates read using a Paradigm or Envision reader within 15 minutes of the substrate addition. The data were analyzed using GraphPad Prism. Values were transformed to a log scale and fit using a non-linear regression sigmoidal dose-response equation resulting in an eleven point binding curve for each antibody against each antigen.


For LukED neutralization studies, the FN3 domain test articles (10 μg/mL in 100 μL reactions were incubated with purified, recombinant LukED (SEQ ID NOs: 12 & 13) for 30 mins at 4° C. Freshly isolated human primary polymorphonuclear leukocytes (hPMNs, 200,000 cells in RPMI+10 mM HEPES+0.1% HSA) were added to the mixture of toxin and FN3 domain protein to a final volume of 100 μl. Ethidium bromide was then added to the cells at 1:2000 final dilution and plates were read 30 and 60 mins post toxin addition. Following 1 hour intoxication in a 37° C. CO2 incubator, 25 μl of supernatant was carefully transferred to a new plate after spinning the plate down at 1500 RPM for 10 mins. Cell Titer reagent (Promega) was added to the remaining cells and incubated for 1.5 hours. The 25 μl of supernatant were mixed with equal amounts of CytoTox-ONE™ Assay reagent (Promega) that rapidly measures the release of lactate dehydrogenase (LDH) from cells with a damaged membrane. LDH released into the culture medium was measured with a 10-minute coupled enzymatic assay that results in the conversion of resazurin into a fluorescent resorufin product. For the neutralization experiments, LukED was used at a concentration of 72.5 nM (2.5 μg/mL per subunit).


Results.


As shown in FIG. 4A, there appears to be a reasonable correlation between LukE binding affinity and LukED toxin neutralization activity (as represented via the Cell Titer endpoint) in the ‘Alanine scan’ set of derivatives of the Luk26 FN3 protein. In no instance was LukE binding retained and neutralization lost. In contrast, two variants (W39A and W41A) exhibited a near total loss of LukE binding and LukED neutralization while other variants (e.g., E34A, F70A and G72A) exhibited reduced binding affinity and partial loss of LukED neutralization activity. These data identify key residues that appear to mediate highly specific LukE binding by Luk26 and therein define components of the FN3 paratope.


Similarly, as shown in FIG. 4B, there appears to be a reasonable correlation between LukE binding affinity and LukED toxin neutralization activity (as represented via the Cell Titer endpoint) in the ‘Alanine scan’ set of derivatives of the Luk27 FN3 protein. Again, in no instance was LukE binding retained and neutralization lost. In contrast, one variant (D70A) exhibited a near total loss of LukE binding and LukED neutralization while other variants (e.g., W38A, L68A, Y72A, W79A and Y81A) exhibited reduced binding affinity and partial loss of LukED neutralization activity. These data identify key residues that appear to mediate highly specific LukE binding by Luk27 and therein define components of the FN3 paratope.


Finally, as shown in FIG. 4C, there appears to be a reasonable correlation between LukE binding affinity and LukED toxin neutralization activity (as represented via the Cell Titer endpoint) in the ‘Alanine scan’ set of derivatives of the Luk38 FN3 protein. Two variants (W81A and D83A) exhibited a near total loss of LukE binding and LukED neutralization while another variant (F86A) exhibited reduced binding affinity and partial loss of LukED neutralization activity. In other variants (e.g., I77A, G80A, F84A, V85A and F86A), LukE binding appeared to be significantly retained while LukED neutralization activity was significantly reduced. These data identify key residues that appear to mediate highly specific LukE binding by Luk38 and therein define components of the FN3 paratope.


Summary.


These data show that the Luk26, Luk27 and Luk38 FN3 domain proteins bind and neutralize LukED through a series of specific molecular interactions at their respective paratope-epitope surfaces. Further, the identification of residues in these LukE-specific FN3 proteins that when mutated to Alanine have no apparent impact on either LukE binding or LukED neutralization provides opportunities to further enhance the potency of LukE binding and LukED neutralization by changing these residues to alternate amino acids.


Example 5: Correlation of Toxin Binding and Neutralizing Activity of an FN3 Variant Targeting Leukotoxin LukAB

The specificity in leukotoxin binding and neutralization observed for some FN3 variants implies that they interact in a highly specific manner. In an effort to define key molecular interactions between the FN3 protein and the LukAB toxin, mutant derivatives of Luk17 (SEQ ID NO: 14) were prepared in which residues that differ from the parental, wild-type TENCON FN3 protein (SEQ ID NO: 1) were each individually changed to Alanine to create a so-called ‘Alanine Scan’ set of variants across the putative LukAB binding surface. Each variant was then assessed for (i) retention of binding to purified, recombinant LukAB protein as determined in an ELISA format assay, and (ii) for LukAB toxin neutralization activity in assays employing isolated primary human neutrophils.


Procedure.


Binding of the FN3 variants to a purified, recombinant polyhistidine-tagged, toxoid variant of LukAB (SEQ ID NOs: 10 and 11) prepared from S. aureus that bears a mutation corresponding to E323A in the wild-type toxin sequence (DuMont et al., “Identification of a Crucial Residue Required for Staphylococcus aureus LukAB Cytotoxicity and Receptor Recognition,” Infect. Immun. 82(3): 1268-76 (2014), which is hereby incorporated by reference in its entirety) was determined by ELISA. Briefly, 100 μl of a 5 μg/mL solution of streptavidin (in PBS) was added per well of a 96 well White Maxisorp plate (Nunc-cat#436110) and incubated overnight at 4° C. Wells were then washed 3× with TBST (50 mM Tris HCl, pH 7.4, 150 mM NaCl, 0.1% Tween 20) and blocked with 300 μL/well with StartingBlock T20 (Pierce cat#37543) and incubated 45-60 minutes at room temperature (RT). The plate was then washed 3 times with TBST and 0.2 μg of a biotinylated preparation of LukAB (E323A) protein (in 100 μL) was added to each test well and the plate incubated 45-60 minutes at RT with gentle shaking. The plate was then washed 3 times with TBST. In separate dilution plates, test articles were serially diluted three-fold in blocking buffer starting at 10 μM. 100 μL of titrated test articles were added to test wells and the plate incubated 45-60 minutes at RT with gentle shaking. The plate was then washed 3 times with TBST. For detection of bound test articles, 100 μL/well of a polyclonal anti-FN3-HRP antibody diluted 1:5000 in Starting block T20 was added and the plate incubated for 45-60 min at RT with gentle shaking. The plate was then washed 3 times with TBST. To detect bound anti-FN3-HRP antibody, 100 μL/well of the POD Chemiluminescence substrate (Roche-cat#11582950001) was added immediately prior to reading plates and the plates read using a Paradigm or Envision reader within 15 minutes of the substrate addition. The data were analyzed using GraphPad Prism. Values were transformed to a log scale and fit using a non-linear regression sigmoidal dose-response equation resulting in an eleven point binding curve for each antibody against each antigen.


For LukAB toxin neutralization studies, the FN3 domain test articles (40 μg per mL in a 100 μL reaction volume were incubated with purified, recombinant LukAB (SEQ ID NOs: 671 & 11) for 30 mins at 4° C. Freshly isolated human polymorphonuclear neutrophils (hPMNs, 200,000 cells in RPMI+10 mM HEPES+0.1% HSA) were added to the mixture of toxin and FN3 domain protein to a final volume of 100 μl. Ethidium bromide was then added to the cells at 1:2000 final dilution and plates were read 30 and 60 mins post toxin addition. Following 1 hour intoxication in a 37° C. CO2 incubator, 25 μl of supernatant was carefully transferred to a new plate after spinning the plate down 1500 RPM for 10 mins. Cell Titer reagent (Promega) was added to the remaining cells and incubated for 1.5 hours. The 25 μl of supernatant were mixed with equal amounts of CytoTox-ONE™ Assay reagent (Promega) that rapidly measures the release of lactate dehydrogenase (LDH) from cells with a damaged membrane. LDH released into the culture medium was measured with a 10-minute coupled enzymatic assay that results in the conversion of resazurin into a fluorescent resorufin product. For the neutralization experiments, LukAB was used at a final concentration of 33.75 nM (1.25 μg/mL of each subunit).


Results.


As shown in FIG. 5, there appears to be a good correlation between LukAB binding affinity and LukAB toxin neutralization activity (as represented by the ethidium bromide uptake endpoint) in the ‘Alanine scan’ set of derivatives of the Luk17 FN3 protein. In no instance was significant LukAB binding retained and toxin neutralization lost. In contrast, a series of variants (E36A, K38A, F39A, R41A and W70A) exhibited a near total loss of LukAB binding and LukAB neutralization while other variants (W32A, Y40A, K68A and W81A) exhibited reduced binding affinity and partial loss of LukED neutralization activity. These data identify key residues that appear to mediate highly specific LukAB binding by Luk17 and therein define components of the FN3 paratope.


Summary.


These data show that the Luk17 FN3 domain protein binds and neutralizes LukAB through a series of specific molecular interactions at the paratope-epitope surface. Further, the identification of residues in Luk17 that when mutated to Alanine have no apparent impact on either LukAB binding or neutralization provides opportunities to further enhance the potency of LukAB binding and neutralization by changing these residues to alternate amino acids.


Example 6: mAb 5133-FN3 Fusion Proteins have Improved Efficacy Compared to mAb-5133 in a Mouse Kidney Infection Model

In understanding the relative contributions of the variable (V) region and/or the anti-toxin FN3 components of mAb 5133-based FN3 fusion proteins with regard to efficacy in animal models of human S. aureus infections, a series of test articles were compared with regard to their relative efficacy in a mouse renal (kidney) infection model of disease. Specifically, a series of test articles were evaluated “head-to-head” that bear the same mAb 5133-derived V-region (targeting glycosylated forms of the SDR family of adhesins) but differ in their FN3 domain composition with regard to targeting of LukE alone or LukE and LukAB in combination. As an isotype IgG1 control, non-antistaphylococcal antibody, CNTO3930 (Construct 21 in Table 1; SEQ ID NO:104 HC plus SEQ ID NO:105 LC) was employed that targets the respiratory syncytial virus F (RSV-F) protein.


Procedure.


Female 5-6 week old Swiss Webster ND4 mice (Harlan Laboratories, Indianapolis, Ind.) were administered test articles (8 per group) via intra-peritoneal (IP) injection in a fixed dose volume of 200 μL/mouse 24 hours prior to infection. Mice were subsequently infected with a pre-determined fixed concentration (˜6.7×10{circumflex over ( )}6 Log10 CFU per mouse) of S. aureus Newman (Baba et al., “Genome Sequence of Staphylococcus aureus Strain Newman and Comparative Analysis of Staphylococcal Genomes: Polymorphism and Evolution of Two Major Pathogenicity Islands,” J Bacteriol. 190(1):300-310 (2008), which is hereby incorporated by reference in its entirety) injected in a 100 μL volume retro-orbitally (under isoflurane anesthesia) using a 28 G, ½ inch needle. This infectious dose corresponds to the lowest bacterial inoculum that typically yields a robust kidney infection as defined by the resulting bacterial burden. Bacterial burden is determined by colony forming units (CFUs) measured from homogenates of explanted kidneys and the visual observation and enumeration of kidney surface lesions. In all cases, test articles were administered 24 hours prior to infection and mice euthanized and kidneys harvested 96 hour post infection. Mice were monitored daily for health observations. Kidneys were scored for severity of infection via visual lesion (abscess) count with the aid of a dissecting microscope, and then explanted, weighed, homogenized, and the resulting homogenates serially diluted and plated on bacterial growth media (Tryptic Soy Agar (TSA)) to determine terminal viable bacterial burdens per individual kidneys via the CFU endpoint. Mice were monitored daily for health observations. Statistical analysis of both the lesion data and bacterial burden (CFU) data was performed by calculating p-values using the Dunn's Method. Test articles evaluated were CNTO3930 (Construct 21 in Table 1; SEQ ID NO:104 HC plus SEQ ID NO:105 LC), mAb 5133 PRASA A6 (Construct 4 in Table 1; SEQ ID NO:66 HC plus SEQ ID NO:67 LC), mAb 5133 PRASA A6 HC-L4-E (Construct 15 in Table 1; SEQ ID NO:848 HC plus SEQ ID NO:71 LC) and mAb 5133 PRASA A6 HC-L4-E-L4-AB (Construct 11 in Table 1; SEQ ID NO:856 HC plus SEQ ID NO:67 LC). All test articles were administered IP at a dose of 500 μg per animal 24 hours prior to infection.


Results.



FIG. 6 shows the reductions in kidney severity scores, the total kidney surface lesions per group and the viable bacterial burdens per individual kidneys recovered for each dosed animal. As expected, treatment with the isotype control anti-RSV antibody (CNTO3930, Lane 1) resulted in the highest mean bacterial burden in the kidneys with a mean log 10 CFU/g kidney of 7.0 and with the highest visual evidence of lesions on each kidney harvested from the group of eight animals (16/16). Treatment with mAb 5133 PRASA A6 (Lane 2), reduced the bacterial burden in the kidney by minus 0.8 log 10 CFU/g compared to CNTO3930 and lowered kidney lesion incidence to 50% (8/16). Treatment with mAb 5133 PRASA A6 HC-L4-E (Lane 3) further reduced the bacterial burden in the kidney, specifically minus 1.8 log10 CFU/g compared to CNTO3930 and lowered the kidney lesion incidence further to 25% (4/16). However, treatment with mAb 5133 PRASA A6 HC-L4-E-L4-AB (Lane 4) resulted in the highest overall efficacy as determined by either the bacterial burden in the kidney or lesion incidence. Specifically, treatment with mAb 5133 PRASA A6 HC-L4-E-L4-AB further reduced the bacterial burden in the kidney by minus 2.6 log10 CFU/g compared to CNTO3930 and reduced kidney lesion incidence beyond the limit of detection (0/16).


Summary.


These data show that both the V-region and anti-toxin FN3 components of mAb5133-based FN3 fusion proteins are important contributors towards the overall efficacy observed in this mouse model of kidney infection. Treatment with mAb 5133 PRASA A6 resulted in efficacy improved over the non-antistaphylococcal mAb (CNTO3930) with a reduction in kidney lesion incidence of 50% and a reduced bacterial burden in the kidney of minus 0.8 log10 CFU/g tissue. However, addition of a single FN3 fusion protein targeting LukE as exemplified in mAb 5133 PRASA A6 HC-L4-E resulted in a further reduction in kidney lesion incidence (25%) and a further reduction in bacterial burden in the kidney of minus 1.8 log10 CFU/g tissue. However, addition of dual, tandem FN3 fusion proteins targeting LukE and LukAB as exemplified in mAb 5133 PRASA A6 HC-L4-E-L4-AB resulted in the highest overall reduction in bacterial burden in the kidney (minus 2.6 log10 CFU/g tissue compared to CNTO3930) and a reduction in kidney lesion incidence beyond the limit of detection (0/16). In toto, these data suggest that both the V-region and anti-toxin FN3 components of mAb5133-based FN3 fusion proteins contribute towards efficacy in this mouse kidney infection model and further that mAb5133-based FN3 fusion proteins targeting both LukE and LukAB exhibit the best overall efficacy. Finally, these data suggest that the antigenic target of mAb 5133 (glycosylated forms of the SDR family of adhesins) and leukotoxins ED and AB are all contributory virulence factors in this mouse kidney infection model.


Example 7: mAb 5133 and mAb 5133-FN3 Fusion Proteins Exhibit Improved Efficacy in a Murine Renal Abscess Infection Model Compared to mAbs or mAb-FN3 Fusion Proteins Targeting Non-SDR S. aureus Protein Antigens

In understanding the relative contributions of the V-region and/or the anti-leukotoxin FN3 components of mAb 5133-based FN3 fusion proteins with regard to efficacy in animal models of human S. aureus infections, a series of test articles were compared for their relative efficacy in a mouse renal (kidney) infection model of disease. Specifically, a series of test articles were evaluated “head-to-head” which differ only in their V-region component but are otherwise identical in their anti-toxin FN3 components as fused to the heavy chain of the mAb entity of the mAb-FN3 fusion protein. These included anti-staphylococcal antibodies targeting the iron regulated surface determinant B (IsdB) protein, (Ebert et al., “A Fully Human Monoclonal Antibody to Staphylococcus aureus Iron Regulated Surface Determinant B (IsdB) With Functional Activity In Vitro and In Vivo,” Human Antibodies 19(4): 113-28 (2010); Pancari et al., “Characterization of the Mechanism of Protection Mediated by CS-D7, a Monoclonal Antibody to Staphylococcus aureus Iron Regulated Surface Determinant B (IsdB),” Frontiers in Cellular and Infection Microbiology 2(36): 1-13 (2012), which are hereby incorporated by reference in their entirety), the immunoglobulin-G binding protein Protein-A, lipoteichoic acid (Weisman et al., “Phase 1/2 Double-Blind, Placebo-Controlled, Dose Escalation, Safety, and Pharmacokinetic Study of Pagibaximab (BSYX-A110), an Antistaphylococcal Monoclonal Antibody for the Prevention of Staphylococcal Bloodstream Infections, in Very-Low-Birth-Weight Neonates,” Antimicrob Agents & Chemotherapy 53(7):2879-86 (2009), which is hereby incorporated by reference in its entirety) or an uncharacterized S. aureus cell surface antigen (mAb CR6526-based FN3 fusion protein). As controls, the anti-RSV V-region derived from CNTO3930 that targets the respiratory syncytial virus F (RSV-F) protein was included in the context of both a mAb-FN3 fusion protein and as an isotype IgG1 control antibody, CNTO3930.


Procedure.


Female 5-6 week old Swiss Webster ND4 mice (Harlan Laboratories, Indianapolis, Ind.) were administered test articles (8 per group) via intra-peritoneal (IP injection) 24 hours prior to infection. Mice were subsequently infected with a pre-determined fixed concentration (˜10{circumflex over ( )}6 Log 10 CFU per mouse) of S. aureus Newman (Baba et al., “Genome Sequence of Staphylococcus aureus Strain Newman and Comparative Analysis of Staphylococcal Genomes: Polymorphism and Evolution of Two Major Pathogenicity Islands,” J Bacteriol. 190(1):300-310 (2008), which is hereby incorporated by reference in its entirety) injected in a 100 μL volume retro-orbitally (under isoflurane anesthesia) using a 28 G, ½ inch needle. The administered concentration corresponds to the lowest bacterial inoculum that typically yields a robust kidney infection as defined by the resulting bacterial burden. Bacterial burden is determined by colony forming units (CFUs) measured from homogenates of explanted kidneys and the visual observation and enumeration of kidney surface lesions. In all cases, test articles were administered 24 hours prior to infection and mice euthanized and kidneys harvested 96 hour post infection. Kidneys were scored for severity of infection via visual lesion count. The kidneys were then explanted, weighed, homogenized, and the resulting homogenates serially diluted and plated on bacterial growth media (Tryptic Soy Agar (TSA)) to determine terminal viable bacterial burdens per individual kidneys via the CFU endpoint. Mice were monitored daily for health observations. The kidney severity abscess score was recorded as: 1-2 visible lesions=severity score 1, 3-9 visible lesions=severity score 2, and >=10 visible lesions=severity score 3. Statistical analysis of both the lesion data and bacterial burden (CFU) data was performed by calculating p-values using the Dunn's Method. Test articles evaluated were CNTO3930 (Construct 21 in Table 1; SEQ ID NO:104 HC plus SEQ ID NO:105 LC), mAb 5133 PRASA A6 (Construct 4 in Table 1; SEQ ID NO:66 HC plus SEQ ID NO:67 LC), ProA3 PRASA A6 HC-L4-E-L4-AB (Construct 16 in Table 1; SEQ ID NO:HC 868 plus SEQ ID NO:841 LC), ProA9 PRASA A6 HC-L4-E-L4-AB (Construct 17 in Table 1; SEQ ID NO:HC 880 plus SEQ ID NO:842 LC), IsdB PRASA A6 HC-L4-E-L4-AB (Construct 18 in Table 1; SEQ ID NO:HC 921 plus SEQ ID NO:844 LC), mAb 6526 PRASA A6 HC-L4E-L4-AB (Construct 23 in Table 1; SEQ ID NO:HC 923 plus SEQ ID NO: 845 LC), RSV PRASA A6 HC-L4-E (Construct 20 in Table 1; SEQ ID NO:927 HC plus SEQ ID NO:843 LC), LTA PRASA A6 HC-L4E-L4-AB (Construct 19 in Table 1; SEQ ID NO:HC 925 plus SEQ ID NO:846 LC) and mAb 5133 PRASA A6 HC-L4-E-L4-AB (Construct 11 in Table 1; SEQ ID NO:856 HC plus SEQ ID NO:67 LC). All test articles were administered IP at a dose of 500 μg per animal 24-hours prior to infection.


Results.



FIG. 7 shows the reductions in kidney severity scores, the total kidney surface lesions per group and the viable bacterial burdens per individual kidneys recovered for each dosed animal. As expected, treatment with the isotype control anti-RSV antibody (CNTO3930, Lane 1 in FIGS. 7A and 7B) resulted in the highest mean bacterial burden in the kidneys with a mean log 10 CFU/g kidney of 8.2 (FIG. 7A) or 7.0 (FIG. 7B) and with visual evidence of lesions on each kidney harvested from the group of eight animals (16/16). Treatment with mAb 5133 PRASA A6 (Lane 2 in FIGS. 7A and 7B), reduced the bacterial burden in the kidney by minus 0.5-0.7 log 10 CFU/g compared to CNTO3930 and lowered kidney abscess lesion incidence to 87.5% (14/16). Treatment with mAb-FN3 fusion proteins which differ only in their V-region component but are otherwise identical in their anti-toxin FN3 components as fused to the heavy chain of the mAb entity resulted in efficacy enhanced over mAb 5133 PRASA A6 only in some specific cases. Specifically, treatment with mAb-FN3 fusion targeting staphylococcal antigens Protein-A (Lanes 3 & 4 in FIG. 7A) or LTA (Lane 3 in FIG. 7B) resulted in minimal if any enhancement in efficacy as evidenced by kidney surface lesions per group and the viable bacterial burdens per individual kidneys recovered for each dosed animal. In contrast, mAb-FN3 fusion proteins targeting either IsdB (Lane 5 in FIG. 7A), the unknown surface antigen of mAb 6526 (Lane 6 in FIG. 7A) or glycosylated forms of the SDR family of adhesin proteins (Lane 8 in FIG. 7A and Lane 4 of FIG. 7B) exhibited efficacy significantly improved over the other mAb-FN3 fusion proteins and mAb 5133 PRASA A6. Of these, the mAb 5133-based mAb-FN3 fusion protein targeting the SDR family of adhesin proteins (mAb 5133 PRASA A6 HC-L4-E-L4-AB; Construct 11 in Table 1) was the most efficacious of all reducing the bacterial burden in the kidney by minus 1.9 to 2.5 log10 CFU/g compared to CNTO3930 and reducing kidney lesion incidence by 50 to 62.5% (8/16 to 6/16).


Summary.


These data support show that the V-region target of mAb 5133 and mAb 5133-based FN3 fusion proteins affords efficacy improved over other anti-staphylococcal mAbs and mAb-FN3 fusion proteins targeting different S. aureus surface-expressed antigens including Protein-A, lipoteichoic acid, Iron Sulfur Determinant B (IsdB) and that targeted by mAb CR-6526.


Example 8: The Efficacy of mAb5133 and mAb 5133-FN3 Fusion Proteins is Enhanced in the Presence of Sub-Therapeutic Concentrations of Vancomycin in a Mouse Kidney Infection Model

Patients with serious, diagnosed S. aureus infections that may benefit clinically from administration of an anti-staphylococcal biologic agent will likely be receiving antibiotic therapy. Hence, it is of interest to understand whether the co-administration of an anti-staphylococcal biologic agent either interferes with antibiotic activity, has no impact, or possibly enhances antibiotic effectiveness. To address this, a series of biologic test articles were administered to mice in the context of sub-therapeutic doses of the commonly used, first-line anti-MRSA antibiotic, vancomycin, and efficacy assessed in a mouse renal (kidney) infection model of disease. As an isotype IgG1 control, non-antistaphylococcal antibody, CNTO3930 (SEQ ID NO: 104 HC plus SEQ ID NO: 105 LC) was employed that targets the respiratory syncytial virus F (RSV-F) protein.


Procedure.


Female 5-6 week old Swiss Webster ND4 mice (Harlan Laboratories, Indianapolis, Ind.) were administered test articles (8 per group) via intra-peritoneal (IP injection) 24 hours prior to infection. Mice were subsequently infected with a pre-determined fixed concentration (˜10{circumflex over ( )}6 Log 10 CFU per mouse) of S. aureus Newman (Baba et al., “Genome Sequence of Staphylococcus aureus Strain Newman and Comparative Analysis of Staphylococcal Genomes: Polymorphism and Evolution of Two Major Pathogenicity Islands,” J. Bacteriol. 190(1):300-310 (2008), which is hereby incorporated by reference in its entirety), injected in a 100 μL volume retro-orbitally (under isoflurane anesthesia) using a 28 G, ½ inch needle. The administered concentration corresponds to the lowest bacterial inoculum that typically yields a robust kidney infection as defined by the resulting bacterial burden. Bacterial burden is reflected by determinations of colony forming units (CFUs) measured from homogenates of explanted kidneys and the visual observation and enumeration of kidney surface (abscess) lesions. In all cases, test articles were administered 24 hours prior to infection and mice euthanized and kidneys harvested 96 hour post infection. Kidneys were scored for severity of infection via visual lesion count. The kidneys were then explanted, weighed, homogenized, and the resulting homogenates serially diluted and plated on bacterial growth media (Tryptic Soy Agar (TSA)) to determine terminal viable bacterial burdens per individual kidneys via the CFU endpoint. Mice were monitored daily for health observations. Statistical analysis of both the lesion data and bacterial burden (CFU) data was performed by calculating p-values using the Dunn's Method. Test articles evaluated were CNTO3930 (Construct 21 in Table 1; SEQ ID NO:104 HC plus SEQ ID NO:105 LC), mAb 5133 PRASA (Construct 2 in Table 1; SEQ ID NO: 62 HC plus SEQ ID NO:63 LC), mAb 5133 PRASA A6 HC-L4-E (Construct 15 in Table 1; SEQ ID NO:848 plus SEQ ID NO:71 LC) and mAb 5133 PRASA A6 HC-L4-E-L4-AB (Construct 11 in Table 1; SEQ ID NO:856 HC plus SEQ ID NO:67 LC). All test articles were administered IP at a dose of 500 μg per animal 24-hours prior to infection. Where administered, vancomycin was dosed at 3.125 mgs/kg IP one and three hours post-infection.


Results.



FIG. 8 shows the reduction in total kidney surface lesions per group and the viable bacterial burdens per individual kidneys recovered for each dosed animal. As expected, treatment with the isotype control anti-RSV antibody (CNTO3930, FIG. 8, Lane 1) resulted in the highest mean bacterial burden in the kidneys with a mean log 10 CFU/g kidney of 7.0 and with visual evidence of lesions on each kidney harvested from the group of eight animals (16/16). Combination of a sub-therapeutic dose of vancomycin (3.125 mgs/kg one and three hours post-infection) with CNTO3930 resulted in enhanced efficacy with lesion score reduced to 75% (12/16) and mean bacterial burden reduced by minus 0.9 log 10 CFU/g kidney (FIG. 8, Lane 2). Treatment with mAb 5133 PRASA (FIG. 8, Lane 3) resulted in a reduction in bacterial burden in the kidneys with a mean log 10 CFU/g kidney of minus 1.3 compared to CNTO3930 and a reduction in kidney lesions to 37.5% (6/16) compared to CNTO3930. Combination of a sub-therapeutic dose of vancomycin (3.125 mgs/kg one and three hours post-infection) with mAb513 PRASA resulted in enhanced efficacy with lesion score reduced to 18.75% (3/16) and mean bacterial burden reduced by minus 1.8 or 2.7 log 10 CFU/g kidney (FIG. 8, Lane 4) compared to CNTO3930 and CNTO3930 plus vancomycin, respectively. Treatment with the mAb-FN3 fusion protein mAb 5133 PRASA A6 HC-L4-LukE protein (FIG. 8, Lane 5) resulted in a reduction in bacterial burden in the kidneys with a mean log 10 CFU/g kidney of minus 1.2 compared to CNTO3930 and a reduction in kidney lesions to 50% (8/16) compared to CNTO3930. Combination of a sub-therapeutic dose of vancomycin (3.125 mgs/kg one and three hours post-infection) with mAb 5133 PRASA A6 HC-L4-LukE resulted in further enhanced efficacy with no apparent kidney lesions (0/16) and mean bacterial burden reduced by minus 1.7 or 2.6 log 10 CFU/g kidney (FIG. 8, Lane 6) compared to CNTO3930 and CNTO3930 plus vancomycin, respectively. Treatment with the mAb-FN3 fusion protein mAb 5133 PRASA A6 HC-L4-LukE-L4-LukAB protein (FIG. 8, Lane 7) resulted in a reduction in bacterial burden in the kidneys with a mean log 10 CFU/g kidney of minus 1.6 compared to CNTO3930 and a reduction in kidney lesions to 12.5% (2/16) compared to CNTO3930. Finally, combination of a sub-therapeutic dose of vancomycin (3.125 mgs/kg one and three hours post-infection) with mAb 5133 PRASA A6 HC-L4-LukE-L4-LukAB resulted in further enhanced efficacy with no apparent kidney lesions (0/16) and mean bacterial burden reduced by minus 1.8 or 2.7 log 10 CFU/g kidney (FIG. 8, Lane 8) compared to CNTO3930 and CNTO3930 plus vancomycin, respectively.


Summary.


These data show that biologic agents that target glycosylated forms of the SDR family of adhesin proteins and neutralize leukotoxins LukAB and LukED may be used in combination with standard-of-care antibiotic agents like vancomycin to afford enhanced therapeutic benefit for patients diagnosed with serious S. aureus infections.


Example 9: Improved Efficacy of mAb 5133-FN3 Fusion Proteins Compared to mAb-5133 in a Mouse Bacteremia Model

In understanding the relative contributions of the V-region and/or the anti-leukotoxin FN3 components of mAb 5133-based FN3 fusion proteins with regard to efficacy in animal models of human S. aureus infections, a series of test articles were compared for their relative efficacy in a mouse model of bacteremia disease. Specifically, a series of test articles were evaluated “head-to-head” that bear the same mAb 5133-derived V-region (targeting glycosylated forms of the SDR family of adhesins) but differ in their FN3 domain composition. As an isotype IgG1 control, non-antistaphylococcal antibody, CNTO3930 (SEQ ID NO: 104 HC plus SEQ ID NO: 105 LC) was employed that targets the respiratory syncytial virus F (RSV-F) protein.


Procedure.


Female 5-6 week old Swiss Webster ND4 mice (Harlan Laboratories, Indianapolis, Ind.) were administered test articles (4-8 per group) via the retro-orbital (RO) route in a fixed dose volume of 100 μL/mouse 4 hours prior to infection. Mice were subsequently infected with a fixed concentration (1×105.4 Log10 CFU per mouse) of S. aureus Newman injected in a 200 μL volume via the intra-peritoneal (IP) route using a 27 G, ½ inch needle. Two hours later, mice were euthanized by CO2 asphyxiation and immediately bled by cardiac puncture into lithium heparin tubes and neat blood plus serial dilutions in phosphate buffered saline (PBS) immediately plated on Tryptic Soy Agar (TSA) plates. Then 2-5 mLs of sterile saline was injected via the intra-peritoneal (IP) route, gently mixed by inverting the mouse several times, and the peritoneal fluid collected by opening the peritoneum and withdrawing the fluid using a 1 cc syringe. After collecting the peritoneal fluid, the spleen was collected, weighed, and homogenized. Spleen homogenates and the peritoneal fluid were serially diluted with sterile saline and plated on bacterial growth media (TSA) to determine the terminal viable bacterial burdens in both peritoneal fluid and spleens. Statistical analysis was performed by unpaired t-test using GraphPad Prism, version 5.0. Test articles evaluated were CNTO3930 (Construct 21 in Table 1; SEQ ID NO:104 HC plus SEQ ID NO:105 LC), mAb 5133 PRASA A6 (Construct 4 in Table 1; SEQ ID NO:66 HC plus SEQ ID NO:67 LC), mAb 5133 PRASA A6 HC-L4-E-L1-AB (Construct 12 in Table 1; SEQ ID NO: 952 HC plus SEQ ID NO:67 LC), mAb 5133 PRASA A6 HC-L4-E-L1-AB-FLAG (Construct 13 in Table 1; SEQ ID NO:965 HC plus SEQ ID NO:63 LC), mAb 5133 PRASA A6 HC-L4-E-L4-AB-FLAG (Construct 14 in Table 1; SEQ ID NO:970 HC plus SEQ ID NO:63 LC) and mAb 5133 PRASA A6 HC-L4-E-L4-AB (Construct 11 in Table 1; SEQ ID NO:856 HC plus SEQ ID NO:67 LC). All test articles were administered RO at a dose of 500 μg per animal.


Results.



FIG. 9 shows the reduction in viable bacterial burden in the blood and spleen per individual animal. As expected, treatment with the isotype control anti-RSV antibody (CNTO3930, FIG. 9, Lane 1) resulted in the highest mean bacterial burden in both the blood (FIG. 9, top panel) and spleen (FIG. 9, bottom panel). Treatment with mAb 5133 PRASA A6 (FIG. 9, Lane 2), reduced the bacterial burden in both the blood and spleen, but this reduction was not significant relative to CNTO3930 treatment with calculated p values of 0.23 and 0.08 for blood and spleen, respectively. In contrast, treatment with all mAb 5133-based FN3 fusion proteins targeting LukE and LukAB (FIG. 9, Lanes 3, 4, 5 and 6) resulted in reductions in bacterial burden in both the blood (top panel) and spleen (bottom panel) compared to CNTO3930 with calculated p values in the 0.006 to 0.0001 range.


Summary.


These data show that mAb 5133-FN3 fusion proteins that target glycosylated forms of the SDR family of adhesin proteins and neutralize leukotoxins LukAB and LukED may have therapeutic utility in the treatment of S. aureus mediated bacteremia.


Example 10: Improved Efficacy of mAb 5133-FN3 Fusion Proteins Compared to the Sum of its Composite Parts

In understanding the relative contributions of the V-region and/or the anti-toxin FN3 components of mAb 5133-based FN3 fusion proteins with regard to efficacy in animal models of human S. aureus infections, a series of test articles were compared for their relative efficacy in a mouse renal (kidney) infection model of disease. Specifically, a series of test articles were evaluated “head-to-head” that bear the same mAb 5133-derived V-region (targeting glycosylated forms of the SDR family of adhesins) but differ in their FN3 domain composition. As an isotype IgG1 control, non-antistaphylococcal antibody, CNTO3930 (SEQ ID NO: 104 HC plus SEQ ID NO: 105 LC) was employed that targets the respiratory syncytial virus F (RSV-F) protein.


Procedure.


Female 5-6 week old Swiss Webster ND4 mice (Harlan Laboratories, Indianapolis, Ind.) were administered test articles (8 per group) via intra-peritoneal (IP) injection in a fixed dose volume of 200 μL/mouse 24 hours prior to infection. Mice were subsequently infected with a pre-determined fixed concentration (˜6.8×10{circumflex over ( )}6 Log10 CFU per mouse) of S. aureus Newman (Baba et al., “Genome Sequence of Staphylococcus aureus Strain Newman and Comparative Analysis of Staphylococcal Genomes: Polymorphism and Evolution of Two Major Pathogenicity Islands,” J. Bacteriol. 190(1):300-310 (2008), which is hereby incorporated by reference in its entirety) injected in a 100 μL volume retro-orbitally (under isoflurane anesthesia) using a 28 G, ½ inch needle. This infectious dose corresponds to the lowest bacterial inoculum that typically yields a robust kidney infection as defined by the resulting bacterial burden. In all cases, test articles were administered 24 hours prior to infection and mice euthanized and kidneys harvested 96 hour post infection. Mice were monitored daily for health observations. Kidneys were scored for severity of infection via visual lesion (abscess) count with the aid of a dissecting microscope, and then explanted, weighed, homogenized, and the resulting homogenates serially diluted and plated on bacterial growth media (Tryptic Soy Agar (TSA)) to determine terminal viable bacterial burdens per individual kidney via the CFU endpoint. The kidney severity abscess score was recorded as: 1-2 visible lesions=severity score 1, 3-9 visible lesions=severity score 2, and >=10 visible lesions=severity score 3. Mice were monitored daily for health observations. Statistical analysis of both the lesion data and bacterial burden (CFU) data was performed by calculating p-values using the Dunn's Method. Test articles evaluated were CNTO3930 (Construct 21 in Table 1; SEQ ID NO:104 HC plus SEQ ID NO:105 LC), mAb 5133 PRASA A6 (Construct 4 in Table 1; SEQ ID NO:66 HC plus SEQ ID NO:67 LC), mAb 5133 PRASA A6 HC-L4-AB (Construct 6 in Table 1; SEQ ID NO:70 HC plus SEQ ID NO:71 LC), mAb 5133 PRASA A6 HC-L4-E (Construct 15 in Table 1; SEQ ID NO: 848 HC plus SEQ ID NO:71 LC) and mAb 5133 PRASA A6 HC-L4-E-L4-AB (Construct 11 in Table 1; SEQ ID NO:856 HC plus SEQ ID NO:67 LC). All test articles were administered IP at a dose of 250 μg per animal, alone or in combination, 24 hours prior to infection.


Results.



FIG. 10 shows the reductions in kidney severity scores, the total visible kidney surface lesions per group and the viable bacterial burdens per individual kidney recovered for each dosed animal. As expected, treatment with the isotype control anti-RSV antibody (CNTO3930, FIG. 10, Lane 1) resulted in the highest mean bacterial burden in the kidneys with a mean log 10 CFU/g kidney of 6.9 and with the highest visual evidence of lesions on each kidney harvested from the group of eight animals (16/16). Treatment with mAb 5133 PRASA A6 (FIG. 10, Lane 2), reduced the bacterial burden in the kidney by minus 0.2 log 10 CFU/g compared to CNTO3930 and lowered kidney lesion incidence to 87.5% (14/16). Treatment with mAb 5133 PRASA A6 HC-L4-AB (FIG. 10, Lane 3) reduced the bacterial burden in the kidney by minus 0.2 log10 CFU/g compared to CNTO3930 and lowered the kidney lesion incidence further to 62.5% (10/16). Treatment with mAb 5133 PRASA A6 HC-L4-E (FIG. 10, Lane 4) reduced the bacterial burden in the kidney by minus 1.3 log10 CFU/g compared to CNTO3930 and lowered the kidney lesion incidence further to 56.25% (9/16). Combination of mAb 5133 PRASA A6 HC-L4-AB with mAb 5133 PRASA A6 HC-L4-E (FIG. 10, Lane 5), each dosed at 250 μg/animal (500 μg total per animal), further reduced the bacterial burden in the kidney by minus 1.7 log10 CFU/g compared to CNTO3930 and lowered the kidney lesion incidence further to 50% (8/16). However, treatment with mAb 5133 PRASA A6 HC-L4-E-L4-AB (Lane 6) afforded maximal efficacy dosed at 250 μg/animal with the bacterial burden in the kidney reduced by minus 2.6 log10 CFU/g compared to CNTO3930 and lowering of the kidney lesion incidence to 37.5% (6/16).


Summary.


These data show that mAb 5133-FN3 fusion proteins bearing a tandem appendage of FN3 domains targeting both the leukotoxins ED and AB confer efficacy in this mouse model of kidney infection that is enhanced over mAb 5133-FN3 fusion proteins individually targeting leukotoxins ED and AB. Further, the efficacy of mAb 5133 PRASA A6 HC-L4-E-L4-AB dosed at 250 μg/animal is enhanced over the efficacy of mAb 5133 PRASA A6 HC-L4-AB dosed in combination with mAb 5133 PRASA A6 HC-L4-E (each dosed at 250 μg/animal) in support of the notion that the efficacy of mAb 5133 PRASA A6 HC-L4-E-L4-AB is improved over the sum of its composite parts (mAb 5133 PRASA A6 HC-L4-AB and mAb 5133 PRASA A6 HC-L4-E).


Example 11: Improved Efficacy of mAb 5133-FN3 Fusion Proteins Compared to mAb5133 in a Mouse Skin Infection Model

In understanding the relative contributions of the V-region and/or the anti-toxin FN3 components of mAb 5133-based FN3 fusion proteins with regard to efficacy in animal models of human S. aureus infections, a series of test articles were compared for their relative efficacy in a mouse model of skin infection. Specifically, a series of test articles were evaluated “head-to-head” that bear the same mAb 5133-derived V-region (targeting glycosylated forms of the SDR family of adhesins) but differ in their FN3 domain composition. As an isotype IgG1 control, non-antistaphylococcal antibody, CNTO3930 (SEQ ID NO: 104 HC plus SEQ ID NO: 105 LC) was employed that targets the respiratory syncytial virus F (RSV-F) protein.


Procedure.


These studies employed SKH-1 Elite mice (Charles River Laboratories, Wilmington, Mass.) which are an outbred hairless, immunocompetent strain. Female 8-10 weeks old mice were administered test articles (8 per group) via intra-peritoneal (IP) injection in a fixed dose volume of 200 μL/mouse 4 hours before or after infection. Mice were subsequently infected under isoflurane anesthesia with a pre-determined fixed concentration (˜6.6×106 Log 10 CFU per mouse) of S. aureus MRSA strain JE2 (Fey et al., “A Genetic Resource for Rapid and Comprehensive Phenotype Screening of Nonessential Staphylococcus aureus Genes,” mBio 4(1):e00537-12 (2013), which is hereby incorporated by reference in its entirety) as a 0.1% suspension of dextrin microcarrier beads (Cytodex 1®, Sigma-Aldrich Chemical Company, St. Louis, Mo.) in a 200 μL volume by subcutaneous (SC) injection with a 27 G, ½ inch needle. Three days after infection, animals were euthanized by CO2 asphyxiation. Skin lesions were measured (length and width) by electronic digital caliper (Mitutoyo Corporation, Aurora, Ill.) and the corresponding skin was aseptically collected, serially diluted in sterile saline, and plated on TSA plates to determine bacterial burden. A lesion volume score was calculated from the following equation: LV=(π/6)(L×W2), where LV=lesion volume, L=length of the lesion in mm, and W=width of the lesion in mm (Bunce et al., Infect and Immunity, 60:2636-2640 (1992), which is hereby incorporated by reference in its entirety). Statistical analysis performed by unpaired t-test using GraphPad Prism, version 5.0. Test articles evaluated were CNTO3930 (Construct 21 in Table 1; SEQ ID NO: 104 HC plus SEQ ID NO: 105 LC), mAb 5133 PRASA A6 (Construct 4 in Table 1; SEQ ID NO:66 HC plus SEQ ID NO:67 LC), mAb 5133 PRASA A6 HC-L4-E-L1-AB (Construct 12 in Table 1; SEQ ID NO:952 HC plus SEQ ID NO:67 LC) and mAb 5133 PRASA A6 HC-L4-E-L4-AB (Construct 11 in Table 1; SEQ ID NO:856 HC plus SEQ ID NO:67 LC). All test articles were administered IP at a dose of 500 μg per animal.


Results.



FIG. 11 shows the efficacy of the evaluated test articles in this mouse model of human S. aureus skin infections as assessed by skin lesion volume (FIG. 11A) or bacterial burden in skin lesions (FIG. 11B) when dose either 4 hours prior to or 4 hours after infection. As expected, treatment with the isotype control anti-RSV antibody (CNTO3930, Lane 1) resulted in the largest mean skin lesion volumes (FIG. 11A) and highest bacterial burden in skin lesions (FIG. 11B) corresponding to 6.0 to 6.2×log10 CFU/g of skin. Treatment with mAb 5133 PRASA A6 (Lane 2), significantly reduced the mean skin lesion volume compared to CNTO3930 with a calculated p values of 0.004 to 0.005 (FIG. 11A, lanes 3 and 4) but while the bacterial burden in skin lesions (FIG. 11B, lanes 3 and 4) was reduced by minus 0.8 and 0.1 log10 CFU/g when dosed pre- and post-infection, respectively, the efficacy observed was not considered statistically significant when compared to the efficacy observed with CNTO3930 (p values 0.26 and 0.96). In contrast, treatment with both mAb5133-based FN3 fusion proteins resulted in statistically significant reductions in both skin lesion volumes (FIG. 11A) and bacterial burden in skin lesions (FIG. 11B) compared to CNTO3930 when dosed either 4 hour pre- or 4 hours post-infection with calculated p values in the range 0.003 to 0.0001.


Summary.


These data indicate that mAb 5133-FN3 fusion proteins that target glycosylated forms of the SDR family of adhesin proteins and neutralize leukotoxins LukAB and LukED in exposed skin tissue, indicating therapeutic utility in the treatment of S. aureus mediated skin infections.


Example 12: mAb5133-FN3 Fusion Proteins Provide Improved Protection from Staphylococcal Mediated Extracellular Killing of Primary Human Neutrophils

Leukotoxins are capable of killing key classes of human immune cells, including neutrophils both from the outside of the cell via a process triggered by engagement with specific receptors on the immune cell surface and are also capable of killing from the inside of the cell through leukotoxin-mediated escape from the phagolysosome (Alonzo and Torres, “The Bicomponent Pore-forming Leucocidins of Staphylococcus aureus,” Microbiol Mol Biol Rev. 78(2):199-230 (2014), which is hereby incorporated by reference in its entirety). The studies described herein exemplify the ability of mAb5133-FN3 fusion proteins that bind and neutralize leukotoxins LukED and LukAB to afford protection of primary human neutrophils from extracellular killing mediated by a S. aureus USA 300 CA-MRSA strain BK18807 (Kennedy et al., “Epidemic Community-associated Methicillin-resistant Staphylococcus aureus: Recent Clonal Expansion and Diversification,” Proc. Natl. Acad. Sci. U.S.A 105:1327-1332 (2008), which is hereby incorporated by reference in its entirety). As an isotype IgG1 control, non-antistaphylococcal antibody, CNTO3930 (SEQ ID No: 104 HC plus SEQ DI NO: 105 LC) was employed that targets the respiratory syncytial virus F (RSV-F) protein


Procedure.



S. aureus BK18807 was grown overnight in RPMI+CAS medium and then sub-cultured 1:100 in RPMI+CAS and grown for a further 5 hours. The culture was thereafter normalized to 1×109 CFU/mL with RPMI+CAS. The bacterial suspension (85 μL) (˜8.5×107 CFU) was then mixed with 180 μL of a 2.5 mg/mL stock concentration of each test article (450 μg each) and 455 μL of RPMI+10 mM HEPES added to yield a final volume of 720 μL. 96-well plates were coated with 20% human serum for 20 mins at 37 C.°+5% CO2 and then washed twice with RPMI plus 10 mM HEPES and 0.1% HSA (RPMI-HH). 80 μl of a freshly purified human primary polymorphonuclear leukocytes (PMNs) were then added to each test well corresponding to ˜250,000 cells per well and the plate incubated at room temperature (RT) for 30 mins. 20 μl of the opsonized suspension of bacteria were then added to each PMN containing well to yield a multiplicity of infection (MOI) of ˜10, and the plate incubated for 120 mins at 37 C ° in 5% CO2. Plates were then centrifuged for 5 mins at 1,500 RPM. For assessment of cytolysis by lactate dehydrogenase (LDH) release, 25 μL of the supernatants from each test well were transferred into a new black, clear bottom 96-well plate. 25 μL of CytoTox-ONE™ Assay reagent (Promega) was added and the plate incubated in the dark for 15 mins. CytoTox-ONE™ Assay reagent measures the release of LDH from cells with a damaged membrane via a coupled enzymatic assay that results in the conversion of resazurin into a fluorescent resorufin product detected via plate reading in a spectrometer. These experiments were performed with purified human primary polymorphonuclear leukocytes (PMNs) from six independent donors. Test articles evaluated were CNTO3930 (Construct 21 in Table 1; SEQ ID NO: 104 HC plus SEQ ID NO: 105 LC), mAb 5133 PRASA A6 (Construct 4 in Table 1; SEQ ID NO: 66 HC plus SEQ ID NO: 67 LC), mAb 5133 PRASA A6 HC-L4-E-L4-AB (Construct 11 in Table 1; SEQ ID NO: 856 HC plus SEQ ID NO: 67 LC), mAb 5133 PRASA A6 HC-L4-E-L4-AB-FLAG (Construct 24 in Table 1; SEQ ID NO: 918 HC plus SEQ ID NO: 67 LC), c-Myc-mAb 5133 PRASA A6 HC-L4-E-L4-AB (Construct 25 in Table 1; SEQ ID NO: 919 HC plus SEQ ID NO: 67 LC) and c-Myc-mAb 5133 PRASA A6 HC-L4-E-L4-AB-FLAG (Construct 26 in Table 1; SEQ ID NO: 920 HC plus SEQ ID NO: 67 LC).


Results.



FIG. 12 shows the relative impact of pre-incubation of the test articles with S. aureus BK18807 in protecting primary human neutrophils from cytolysis as determined by release of LDH. As expected, CNTO3930 (Lane 1) afforded the least protection as it bears a V-region specific for the RSV-F protein and has no appended FN3 domains capable of binding and neutralizing the cytolytic leukotoxins. Similarly, mAb 5133 (Lane 2) afforded minimal PMN protection indicating that V-region surface engagement of the glycosylated forms of SDR proteins is not significantly protective in this assay. In contrast, all of the four tested mAb5133-FN3 fusion proteins that bear FN3 domains that bind and neutralize LukED and LukAB exhibit maximal PMN protection (Lanes 3 to 6).


Summary.


These data indicate that mAb 5133-FN3 fusion proteins that bind and neutralize the cytolytic activity of leukotoxins LukAB and LukED are capable of protecting human primary neutrophils from leukotoxin-mediated killing. This activity of mAb 5133-FN3 fusion protein targeting LukED and/or LukAB may be of therapeutic utility in the context of S. aureus mediated human infections.


Example 13: mAb5133-FN3 Fusion Proteins Provide Improved Protection from Staphylococcal Mediated Intracellular Killing of Primary Human Neutrophils

Leukotoxins are capable of killing key classes of human immune cells, including neutrophils both from the outside of the cell via a process triggered by engagement with specific receptors on the immune cell surface and are also capable of killing from the inside of the cell through leukotoxin-mediated escape from the phagolysosome (Alonzo and Torres, “The Bicomponent Pore-forming Leucocidins of Staphylococcus aureus,” Microbiol Mol Biol Rev. 78(2):199-230 (2014), which is hereby incorporated by reference in its entirety). The studies described herein exemplify the ability of mAb5133-FN3 fusion proteins that bind and neutralize leukotoxins LukED and LukAB to afford protection to primary human neutrophils from intracellular killing mediated by S. aureus USA 300 MRSA strain LAC (Chambers, H. F., “Community-associated MRSA-resistance and Virulence Converge,” N. Engl. J. Med. 352:1485-1487 (2005), which is hereby incorporated by reference in its entirety). As an isotype IgG1 control, non-antistaphylococcal antibody, CNTO3930 (SEQ ID NO: 104 HC plus SEQ ID NO: 105 LC) was employed that targets the respiratory syncytial virus F (RSV-F) protein.


Procedure.



S. aureus LAC and a variant deleted for the lukAB genes (LAC ALukAB) were grown overnight in RPMI+CAS medium and then sub-cultured 1:100 in RPMI+CAS and grown for a further 5 hours. The cultures were thereafter normalized to 1×109 CFU/mL with phosphate buffered saline (PBS) and further diluted in PBS in accord with the target multiplicity of infection (MOI). 96-well plates were coated with 20% human serum at 37° C. in 5% CO2 and then washed twice with RPMI+10 mM HEPES. Freshly purified human primary polymorphonuclear leukocytes (PMNs) were re-suspended in RPMI plus 10 mM HEPES and 0.1% HSA (RPMI-HH), was added to each test well corresponding to ˜250,000 per well. The plate was incubated at room temperature (RT) for 30 mins. Leukotoxin containing supernatants were prepared as a filtrate of culture supernatant from cultures of S. aureus LAC WT and AlukAB grown for 5 hours at 37° C. in RPMI+CAS following a 1:100 dilution of an overnight culture. Opsonization of S. aureus LAC was initiated by combining bacteria at a target MOI of 1.0 (5×106 CFU/mL in 23.6 μL), 47.25 μL of filtered S. aureus LAC culture supernatant (as an exogenous source of leukotoxins), 945 μL of 2.5 mg/mL stocks of test article plus 3709.15 mL of RPMI plus 10 mM HEPES to yield a final volume of 4725 μL. Per well, 50 μL of the opsonized bacteria mixture was combined with 50 μL of the fresh PMN suspension and synchronization effected by centrifuging the plates for 1,500 RPM for 7 minutes. Plates were incubated for 120 minutes at 37° C. in 5% CO2. Following incubation, plates were then spun at 1,400 RPM for 7 minutes. For assessment of cytolysis by lactate dehydrogenase (LDH) release, 25 μL of the supernatants from each test well were transferred into a new black, clear bottom 96-well plate. 25 μL of CytoTox-ONE™ Assay reagent (Promega) was added and the plate was incubated in the dark for 15 mins. CytoTox-ONE™ Assay reagent measures the release of LDH from cells with a damaged membrane via a coupled enzymatic assay that results in the conversion of resazurin into a fluorescent resorufin product detected via plate reading in a spectrometer. These experiments were performed with purified human primary polymorphonuclear leukocytes (PMNs) from six independent donors. Test articles evaluated were CNTO3930 (Construct 21 in Table 1; SEQ ID NO: 104 HC plus SEQ ID NO: 105 LC), mAb 5133 PRASA A6 (Construct 4 in Table 1; SEQ ID NO: 66 HC plus SEQ ID NO: 67 LC) and mAb 5133 PRASA A6 HC-L4-E-L4-AB (Construct 11 in Table 1; SEQ ID NO: 856 HC plus SEQ ID NO: 67 LC).


Results.



FIG. 13 shows the relative activity of the test articles in protecting primary human neutrophils from cytolysis mediated by S. aureus LAC and LACALukAB strains as determined by release of LDH. As expected, CNTO3930 (Lane 2) afforded the least protection from S. aureus LAC mediated killing compared to the buffer-alone control (Lane 1) as it bears a V-region specific for the RSV-F protein and has no appended FN3 domain capable of binding and neutralizing the cytolytic leukotoxins. However, note that genetic inactivation of the LukAB leukotoxin eliminates PMN killing in this assay (Lanes 1 to 4). Similarly, mAB 5133 PRASA A6 (Lane 3) afforded little protection indicating that V-region surface engagement of the glycosylated forms of SDR proteins is not a protective mechanism in this intracellular killing assay. In contrast, mAb 5133 PRASA A6 HC-L4-E-L4-AB (Lane 4) afforded complete protection from S. aureus LAC mediated killing with an overall reduction equivalent to that seen with the S. aureus LACALukAB strain.


Summary.


These data indicate that mAb 5133-FN3 fusion proteins that bind and neutralize the cytolytic activity of leukotoxins LukAB are capable of protecting human primary neutrophils from leukotoxin-mediated killing following engulfment into the intracellular environment. This activity of mAb 5133-FN3 fusion protein targeting LukAB may be of therapeutic utility in the context of S. aureus mediated human infections.


Example 14: mAb5133-FN3 Fusion Proteins Improve Opsonophagocytotic Killing of Staphylococcus aureus by Primary Human Neutrophils

Key classes of human immune cells including neutrophils kill S. aureus through opsonophagocytosis, a process where bacteria are engulfed into phagolysosome bodies and killed through the action of lytic and digestive enzymes. In counteracting this, S. aureus senses the acidic pH and the content of the phagolysosome environment, up-regulates the expression of key virulence determinants including leukotoxin AB, and kills the phagocyte from within following LukAB-mediated escape from the phagolysosome (Alonzo and Torres, “The Bicomponent Pore-forming Leucocidins of Staphylococcus aureus,” Microbiol Mol Biol Rev. 78(2): 199-230 (2014), which is hereby incorporated by reference in its entirety). The studies described herein exemplify the ability of mAb5133-FN3 fusion proteins that bind and neutralize leukotoxins LukED and LukAB to enhance opsonophagocytotic killing by primary human neutrophils. As a negative control, RSV PRASA A6 HC-L4-wtTENCON fusion protein (Construct 27 in Table 1; SEQ ID NO: 977 HC plus SEQ ID NO: 843 LC) was used. This construct targets the respiratory syncytial virus F (RSV-F) protein via its V-region and bears a parental (wild-type consensus) FN3 domain that exhibits no leukotoxin binding or neutralization activities.


Procedure.


These studies employed a variety of MRSA of the USA300 lineage (LAC, FPR, 18807, 18808 and 18809), a USA500 lineage strain (BK2395), and a MSSA strain (BK4645b). S. aureus strains were grown overnight in RPMI+CAS medium and then sub-cultured 1:100 in RPMI+CAS and grown for a further 5 hours. The cultures were thereafter normalized to 1×109 CFU/mL with RPMI+CAS. Leukotoxin containing supernatants were prepared as filtrates of culture supernatants from cultures of S. aureus μgrown for 5 hours at 37° C. in RPMI+CAS following a 1:100 dilution of an overnight culture. To effect opsonization, pre-determined aliquots of bacteria necessary to achieve the desired MOI were combined with test articles plus or minus the addition of culture supernatant (11 μL) and RPMI-HEPES added to bring the volume to 440 μL (with each test article at a final concentration of 1.25 mg/mL). 96-well plates were coated with 20% human serum at 37° C. in 5% CO2 and then washed twice with RPMI plus 10 mM HEPES and 0.1% HSA (RPMI-HH). A fresh preparation of purified human primary polymorphonuclear leukocytes (PMNs), re-suspended in RPMI plus 10 mM HEPES and 0.1% HSA (RPMI-HH) was added to each test well corresponding to ˜250,000 per well. The plate was incubated at room temperature (RT) for 30 mins. 20 μL of the opsonized S. aureus mixture was added per well and synchronization effected by centrifuging the plates for 1,500 RPM for 7 minutes. Plates were incubated for 120 minutes at 37° C. in 5% CO2. Following incubation, 11 μL of 1% saponin was added to each well and the plate incubated on ice for 20 mins. Thereafter, an aliquot from each well was serially diluted in phosphate buffered saline and aliquots plated on TSA plates to determine the remaining viable S. aureus cells through determination of colony forming units (CFUs). These experiments were performed with purified human primary polymorphonuclear leukocytes (PMNs) from six independent donors. Test articles evaluated were RSV PRASA A6 HC-L4-wtTENCON (Construct 27 in Table 1; SEQ ID NO: 977 HC plus SEQ ID NO: 843 LC), mAb 5133 PRASA A6 (Construct 4 in Table 1; SEQ ID NO: 66 HC plus SEQ ID NO: 67 LC), mAb 5133 PRASA A6 HC-L4-E (Construct 15 in Table 1; SEQ ID NO: 848 HC plus SEQ ID NO: 71 LC), mAb 5133 PRASA A6 HC-L4-E-L4-AB (Construct 28 in Table 1; SEQ ID NO: 858 HC plus SEQ ID NO: 67 LC) and mAb 5133 PRASA A6 HC-L4-E-L4-AB (Construct 11 in Table 1; SEQ ID NO: 856 HC plus SEQ ID NO: 67 LC).


Results.



FIGS. 14A-14D shows the relative activity of the different test articles in enhancing opsonophagocytotic killing of a number of different S. aureus strains by primary human neutrophils. In FIG. 14A, data is shown for an opsonophagocytotic killing (OPK) assay undertaken with the MRSA LAC strain at a MOI of 1+/−0.5% LAC culture supernatant (as an exogenous source secreted leukotoxins). As expected, RSV PRASA A6 HC-L4-wtTENCON (Lanes 1 and 6 in FIG. 14A) afforded the least protection from opsonophagocytotic killing of the CA-MRSA LAC strain as it bears a V-region specific for the RSV-F protein and has no appended FN3 domain capable of binding and neutralizing the cytolytic leukotoxins. In contrast, mAB 5133 PRASA A6 (Lane 2 in FIG. 14A) afforded marked OPK enhancement in the absence of adding culture supernatant indicating that V-region surface engagement of the glycosylated forms of SDR proteins is protective. However, this protection is eliminated when the assay is performed in the presence of culture supernatant (Lane 7 in FIG. 14A). In contrast, a series of mAb5133-FN3 fusion proteins that bind and neutralize the cytolytic activity of LukAB and/or LukED exhibited enhanced opsonophagocytotic killing in the presence or absence of culture supernatant (Lanes 3-5 and 8-10 in FIG. 14A) with the best overall protection observed with mAb5133-FN3 fusion proteins that bind and neutralize the cytolytic activity of both LukAB and LukED. Similar observations are seen in OPK assays employing a variety of S. aureus strains including additional USA300 lineage MRSA strains FPR, 18807, 18808 and 18809 (FIG. 14B), a MSSA strain BK4645b (FIG. 14C) an a USA500 lineage MRSA strain BK2395 (FIG. 14D).


Summary.


These data indicate that mAb 5133-FN3 fusion proteins that bind and neutralize the cytolytic activity of both leukotoxins LukED and LukAB afford the best enhancement of opsonophagocytotic killing mediated by human neutrophils. This activity of mAb 5133-FN3 fusion protein targeting both leukotoxins LukED and LukAB may be of therapeutic utility in the context of S. aureus mediated human infections.


Example 15: Identification and Characterization of Monoclonal Antibodies Targeting S. aureus Protein-A


S. aureus protein A (SpA) is a key immune evasion factor which is either expressed and assembled on the cell surface or is secreted by the bacteria. Protein A binds the Fc (Fragment, crystallizable) domain of immunoglobulins as well as the fragment antigen-binding (Fab) domains of VH3 class IgGs and IgM (Forsgren A., “Protein A from Staphylococcus aureus VI. Reaction with Subunits from Guinea Pig γ1- and γ2-globulin”, J. Immunol. 100: 927-30 (1968); Silverman G. J. and Goodyear, C. S., “Confounding B-cell Defences: Lessons from a Staphylococcal Superantigen”, Nat. Rev. Immunol. 6: 465-75 (2006), which are hereby incorporated by reference in their entirety). This Fc binding activity of Protein A enables S. aureus to escape opsonophagocytic killing, whereas crosslinking of VH3-type IgM B cell receptors disrupts the development of adaptive immune responses (Falugi F., et al. “The Role of Protein A in the Evasion of Host Adaptive Immune Responses by Staphylococcus aureus”, mBio 4: e00575-613 (2013), which is hereby incorporated by reference in its entirety). In exploring the relative contribution(s) of Fc-mediated binding by Protein A in limiting opsonophagocytic killing mediated by antibodies that target other cell surface localized S. aureus antigens, a series of monoclonal antibodies were identified that bind Protein A specifically via their Fab domains and these were subsequently engineered to remove Protein A binding mediated by Fc interactions.


Procedure.


Fab domains with high affinity for recombinant Protein A (ProSpec-TanyTechnoGene Ltd.) were identified via phage display and converted to human IgG1 mAbs. In the screening process, VH3 class Fabs were de-selected by selective restriction digestion. Three Protein A specific mAbs were selected for further characterization: ProA3 (SEQ ID NO: 1001 HC plus SEQ ID NO: 841 LC), SM1F5 (SEQ ID NO: 1007 HC plus SEQ ID NO: 1016 LC) and SM1F9 (SEQ ID NO: 1012 HC plus SEQ ID NO: 842 LC) and these were subsequently engineered to exhibit GluV8 protease resistance via introduction of the PRASA hinge region mutations (see Table 1) and/or Protein A binding via their Fc region via introduction of the A6 mutations (see Table 1). Characterization of Protein A binding was determined by ELISA. Briefly, plates were coated with streptavidin (5 μg/mL in PBS, 50 μL per well) and incubated overnight at 4° C. Plates were washed three times with ELISA wash buffer (0.15M NaCl, 0.02% Tween-20) and then coated with biotinylated Protein A at 2 μg/mL (50 L per well) in PBS for one hour at room temperature. Plates were then washed three times with ELISA wash buffer and then blocked with ELISA blocking buffer (3% BSA in PBS, 200 μL per well). Test articles were then added in a 3-fold dilution series starting at 10 μg/mL and the plates incubated at room temperature for one hour. Plates were then washed three times with ELISA wash buffer and 50 mL per well of HRP-conjugated goat anti-human kappa light chain (Millipore AP502P) added at a 1:15,000 dilution in 3% BSA in PBS and the plates incubated for one hour at room temperature. Plates were then washed five times with ELISA wash buffer and bound HRP detected using the 3,3′,5,5′-Tetramethylbenzidine (TMB; Fitzgerald) as a chromogenic substrate. Test Articles used were ProA3 PRASA A6 (Construct 29 in Table 1), ProA3 IgG1 (Construct 30 in Table 1), ProA3 PRASA (Construct 31 in Table 1), anti-LTA (Pagibaximab) IgG1 (Construct 32 in Table 1) and anti-LTA (Pagibaximab) PRASA A6 (Construct 33 in Table 1).


Results.


The binding of a monoclonal antibody to Protein A solely via Fc interaction is exemplified in FIG. 15 by comparison of the ELISA binding curves for IgG1 wild-type pagibaximab and an engineered PRASA A6 variant that both target lipoteichoic acid via their Fab domains. As expected, no detectable binding to Protein A is observed in the case of the PRASA A6 variant. By way of example, the enhanced binding of monoclonal antibodies that target Protein A via their Fab domains is exemplified in FIG. 15 in studies of a series of ProA3 related test articles. For these molecules, equivalent binding is observed for the IgG1 and PRASA variants with apparent tighter binding to plate-immobilized Protein A observed for the PRASA A6 variant.


Summary.


While the reasons underlying the apparent higher binding affinity for plate-immobilized Protein A exhibited by the PRASA A6 variant of the anti-Protein A antibody ProA3 are unclear, these data exemplify the identification of IgG antibodies capable of binding S. aureus protein A via the Fab region that is distinct from normal Fc-mediated interactions.


Example 16: mAb5133-FN3 Fusion Proteins Provide Improved Protection from LukAB-Dependent Extracellular Killing of Primary Human Neutrophils

Leukotoxins are capable of killing key classes of human immune cells, including neutrophils both from the outside of the cell via a process triggered by engagement with specific receptors on the immune cell surface and are also capable of killing from the inside of the cell through leukotoxin-mediated escape from the phagolysosome (Alonzo and Torres, “The bicomponent pore-forming leucocidins of Staphylococcus aureus,” Microbiol. Mol. Biol. Rev. 78(2):199-230 (2014), which is hereby incorporated by reference in its entirety). The studies described herein exemplify the ability of mAb5133-FN3 fusion proteins that bind and neutralize leukotoxins LukED and LukAB to afford protection of primary human neutrophils from extracellular killing mediated by a number of S. aureus strains and the dependence of this phenomenon on the expression of LukAB. These studies employed otherwise-isogenic pairs of strains that either produce LukAB or fail to do so due to an engineered deletion of the lukAB operon; specifically (i) S. aureus strain Newman (Baba et al., “Genome Sequence of Staphylococcus aureus Strain Newman and Comparative Analysis of Staphylococcal Genomes: Polymorphism and Evolution of Two Major Pathogenicity Islands,” J. Bacteriol. 190(1):300-310 (2008), which is hereby incorporated by reference in its entirety) labeled ‘Newman-WT’ and a lukAB deletion derivative thereof (‘Newman−ΔAB’), (ii) S. aureus USA 300 MRSA strain LAC (Chambers, H. F., “Community-associated MRSA-resistance and virulence converge,” N. Engl. J. Med. 352:1485-1487 (2005), which is hereby incorporated by reference in its entirety) labeled ‘LAC-WT’ and a lukAB deletion derivative thereof (‘LAC-ΔAB’), (iii) S. aureus USA 300 MRSA strain BK18807, a 2005 isolate from a bacteremia patient (Kennedy et al., “Epidemic community-associated methicillin-resistant Staphylococcus aureus: recent clonal expansion and diversification,” Proc. Natl. Acad. Sci. U.S.A 105:1327-1332 (2008), which is hereby incorporated by reference in its entirety) labeled ‘18807-WT’ and a lukAB deletion derivative thereof (‘18807-ΔAB’), (iv) S. aureus USA 300 MRSA strain BK18808, a 2005 isolate from a patient with endocarditis (Kennedy et al., “Epidemic community-associated methicillin-resistant Staphylococcus aureus: recent clonal expansion and diversification,” Proc. Natl. Acad. Sci. U.S.A 105:1327-1332 (2008), which is hereby incorporated by reference in its entirety) labeled ‘18808-WT’ and a lukAB deletion derivative thereof (‘18808-ΔAB’), and (v) S. aureus USA 300 MRSA strain BK18809, a 2005 isolate from a bacteremia patient (Kennedy et al., “Epidemic community-associated methicillin-resistant Staphylococcus aureus: recent clonal expansion and diversification,” Proc. Natl. Acad. Sci. U.S.A 105:1327-1332 (2008), which is hereby incorporated by reference in its entirety) labeled ‘18809-WT’ and a lukAB deletion derivative thereof (‘18809-ΔAB’).


Procedure.



S. aureus strains were grown overnight in RPMI+CAS medium and then sub-cultured 1:100 in RPMI+CAS and grown for a further 5 hours. The culture was thereafter normalized to 1×109 CFU/mL with PBS. 96-well plates were coated with 20% human serum for 20 mins at 37° C.+5% CO2 and then washed twice with RPMI plus 10 mM HEPES (RPMI-H). 75 μl of a freshly prepared preparation of purified human primary polymorphonuclear leukocytes (PMNs) was then added to each test well corresponding to ˜200,000 cells per well and the plate incubated at room temperature (RT) for 30 mins. 10 μL of Test Articles (at 1.25 mg/mL) were added to appropriate wells to achieve a final concentration of 125 μg/mL. 20 μL of pre-diluted bacteria were then added per well to yield a multiplicity of infection (MOI) of ˜25. Following a two hour incubation at 37° C. in 5% CO2, the plates were centrifuged for 5 mins at 1,500 RPM at 4° C. and assessment of cytolysis determined by lactate dehydrogenase (LDH) release. For this, 25 μL of the supernatants from each test well were transferred into a new black, clear bottom 96-well plate and 25 μL of CytoTox-ONE™ Assay reagent (Promega) was added and the plate incubated in the dark for 15 mins. CytoTox-ONE™ Assay reagent measures the release of LDH from cells with a damaged membrane via a coupled enzymatic assay that results in the conversion of resazurin into a fluorescent resorufin product detected via plate reading in a spectrometer. Test articles evaluated were CNTO3930 (Construct 21 in Table 1; SEQ ID NO: 104 HC plus SEQ ID NO: 105 LC), mAb 5133 PRASA A6 (Construct 4 in Table 1; SEQ ID NO: 66 HC plus SEQ ID NO: 67 LC), mAb 5133 PRASA A6 HC-L4-E-L4-AB (Construct 11 in Table 1; SEQ ID NO: 856 HC plus SEQ ID NO: 67 LC) and mAb 5133 PRASA A6 HC-L4-E-L1-AB (Construct 12 in Table 1; SEQ ID NO: 952 HC plus SEQ ID NO: 67 LC).


Results.



FIG. 16 shows the relative activity of the test articles in protecting primary human neutrophils from cytolysis following incubation with a series of pairs of otherwise-isogenic strains that differ only in the expression of the LukAB leukotoxin—as determined by release of LDH.


In these studies, CNTO3930 and mAb 5133 PRASA A6 afforded the least protection of primary human neutrophils from killing mediated by all LukAB producing strains as indicated by the maximal LDH release observed. That this killing is dependent on LukAB production is supported by the observation that no LDH release is observed in the presence of either CNTO3930 or mAb 5133 PRASA A6 when strains lacking LukAB expression are employed. In contrast, both mAb5133-FN3 fusion proteins studied that bind and neutralize LukAB, i.e., mAb 5133 PRASA A6 HC-L4-E-L4-AB and mAb 5133 PRASA A6 HC-L4-E-L1-AB, afforded protection of primary human neutrophils from killing mediated by all LukAB producing strains as indicated by reduced LDH release with mAb 5133 PRASA A6 HC-L4-E-L4-AB typically affording somewhat enhanced protection over mAb 5133 PRASA A6 HC-L4-E-L1-AB. As expected, killing in the presence of mAb 5133 PRASA A6 HC-L4-E-L4-AB and mAb 5133 PRASA A6 HC-L4-E-L1-AB was observed to be dependent on the production of LukAB.


Summary.


These data indicate that mAb 5133-FN3 fusion proteins that bind and neutralize the cytolytic activity of leukotoxins LukAB are capable of protecting human primary neutrophils from leukotoxin-mediated killing. This activity of mAb 5133-FN3 fusion proteins targeting LukAB may be of therapeutic utility in the context of S. aureus mediated human infections.


Example 17: mAb5133-FN3 Fusion Proteins Protect Primary Human Neutrophils from Extracellular Killing by Non-Cognate Leukotoxin Pairs LukE/LukF-PV and LukE/HlgB

Based on the genetic arrangements of genes encoding leukocidins and the co-regulation of loci encoding S and F subunits and the purification and characterization of native proteins, five cognate leukocidins have been identified in S. aureus: LukAB, LukS-PV/LukF-PV, LukED, HlgAB and HlgCB (Alonzo and Torres, “The bicomponent pore-forming leucocidins of Staphylococcus aureus,” Microbiol. Mol. Biol. Rev. 78(2): 199-230 (2014), which is hereby incorporated by reference in its entirety). However, with the exception of LukAB that is produced as a native heterodimer, a number of studies have reported that active leukocidins can be prepared through combination of non-cognate pairs of recombinant S and F subunits (Gravet et al., “Characterization of a novel structural member, LukE-LukD, of the bi-component staphylococcal leukotoxins family,” FEBS Letters 436: 202-208 (1998); Morinaga et al., “Purification, Cloning and Characterization of Variant LukE-LukD with Strong Leukocidal Activity of Staphylococcal Bi-Component Leukotoxin Family,” Microbiol. Immunol. 47(1): 81-90 (2003); Rouha et al., “Five birds, one stone: Neutralization of alpha-hemolysin and four bi-component leukocidins of Staphylococcus aureus with a single monoclonal antibody,” MAbs. 7(1): 243-54 (2015), which are hereby incorporated by reference in their entirety) and include the non-cognate pairs LukE/LukF-PV and LukE/HlgB. The studies described herein exemplify the ability of mAb5133-FN3 fusion proteins that bind and neutralize leukotoxins LukED (and LukAB) to afford protection of primary human neutrophils from extracellular killing mediated by LukE/LukF-PV and LukE/HlgB.


Procedure.


Recombinant variants of LukE, LukF-PV and HlgB subunits were individually prepared from S. aureus. To demonstrate the leukocidal activity of the non-cognate leukocidins LukE/LukF-PV and LukE/HlgB, individual subunits were combined on an equal weight basis with 200,000 freshly purified human primary polymorphonuclear leukocytes (PMNs) in RPMI+10 mM HEPES in a total volume of 100 μL and incubated for one hour at 37° C. in a CO2 incubator. 25 μl of supernatant was then carefully transferred to a new plate after spinning the plate down at 1500 RPM for 10 mins and cell lysis determined using the Cell Titer reagent (Promega) based on quantitation of the ATP present, an indicator of metabolically active cells. To determine the relative activity of mAb5133-FN3 fusion proteins in neutralizing the cytolytic activity of LukE/LukF-PV and LukE/HlgB leukotoxins against human PBMCs, 2.5 μg of LukE and 2.5 μg of HlgB, or 5 μg of LukE plus 5 μg of HlgLukF-PV, were combined with increasing concentrations of each test article and incubated on ice for 20 minutes. Freshly isolated primary human neutrophils (hPMNs, 200,000 cells in 70 μl of RPMI+10 mM HEPES+0.1% HSA) were then added and the mixtures incubated for 1-hour at 37° C. in a 5% CO2 incubator. The reaction plates were then centrifuged for 5 mins at 1,500 RPM at 4° C. and assessment of cytolysis determined by lactate dehydrogenase (LDH) release. For this, 25 μL of the supernatants from each test well were transferred into a new black, clear bottom 96-well plate, 25 μL of CytoTox-ONE™ Assay reagent (Promega) was added, and the plate incubated in the dark for 15 mins. CytoTox-ONE™ Assay reagent measures the release of LDH from cells with a damaged membrane via a coupled enzymatic assay that results in the conversion of resazurin into a fluorescent resorufin product detected via plate reading in a spectrometer. Test articles evaluated were CNTO3930 (Construct 21 in Table 1; SEQ ID NO: 104 HC plus SEQ ID NO: 105 LC), mAb 5133 PRASA A6 HC-L4-E-L4-AB (Construct 11 in Table 1; SEQ ID NO: 856 HC plus SEQ ID NO: 67 LC) and mAb 5133 PRASA A6 HC-L4-E-L1-AB (Construct 12 in Table 1; SEQ ID NO: 952 HC plus SEQ ID NO: 67 LC). As additional controls, purified LukED toxin (at a final concentration of 2.5 μg/mL) was added to reactions containing either CNTO3930 or mAb 5133 PRASA A6 HC-L4-E-L1-AB.


Results. FIG. 17A shows the relative cytolytic activity of the cognate LukED and non-cognate LukE/LukF-PV and LukE/HlgB leukotoxins for primary human neutrophils with concentration-dependent lysis observed for all test articles with the apparent potency under these conditions LukE/HlgB>LukED>LukE/LukF-PV. FIG. 17B shows the relative activity of CNTO3930 and two mAb5133-FN3 fusion proteins in protecting primary human neutrophils from LukE/LukF-PV mediated cytolysis, as determined by the release of LDH. As expected, the anti-RSV CNTO3930 antibody affords no apparent protection from LukE/LukF-PV cytolysis and overall cell killing was not impacted by addition of LukED. In contrast, both mAb 5133 PRASA A6 HC-L4-E-L4-AB and mAb 5133 PRASA A6 HC-L4-E-L1-AB afforded concentration-dependent protection from LukE/LukF-PV mediated cytolysis with the addition of LukED to mAb 5133 PRASA A6 HC-L4-E-L1-AB exhibiting somewhat reduced overall neutralization activity. Similarly, as shown in FIG. 17C (top and bottom panels), the anti-RSV CNTO3930 antibody affords no apparent protection from LukE/HlgB mediated cytolysis, and overall cell killing was not impacted by addition of LukED. In contrast, both mAb 5133 PRASA A6 HC-L4-E-L4-AB and mAb 5133 PRASA A6 HC-L4-E-L1-AB afforded concentration-dependent protection from LukE/HlgB mediated cytolysis with the addition of LukED to mAb 5133 PRASA A6 HC-L4-E-L1-AB exhibiting somewhat reduced overall neutralization activity.


Summary.


These data indicate that mAb 5133-FN3 fusion proteins that bind LukE and neutralize the cytolytic activity of the LukED leukocidin are also capable of protecting human primary neutrophils from cytolytic killing mediated by two non-cognate leukocidins bearing the LukE subunit—namely, LukE/LukF-PV and LukE/HlgB. This broader leukocidin-neutralizing activity of mAb 5133-FN3 fusion proteins targeting LukE may be of therapeutic utility in the context of S. aureus mediated human infections.


Example 18: Neutralization of LukED Mediated Hemolysis of Human Red Blood Cells by mAb5133-FN3 Fusion Proteins

A key feature of the pathogenesis of S. aureus in the bloodstream is the scavenging of iron through the production of toxins that lyse erythrocytes, releasing hemoglobin, the most abundant iron source in mammals. In recent studies the Duffy antigen receptor for chemokines (DARC) was identified as the receptor for the S. aureus hemolytic leukocidins LukED and HlgAB (Spaan et al., “Staphylococcus aureus Targets the Duffy Antigen Receptor for Chemokines (DARC) to Lyse Erythrocytes,” Cell Host &Microbe 18(3): p. 363-370 (2015), which is hereby incorporated by reference in its entirety). Herein it is demonstrated that a mAb5133-FN3 fusion protein that exhibits LukED toxin neutralization activity as determined in assays employing freshly isolated hPMNs (see EXAMPLE 4), also protects human erythrocytes (red blood cells) from LukED-mediated hemolysis.


Procedure.


A constant concentration of 4.8 μg/mL per subunit of recombinant LukED (corresponding to the mouse LD90 concentration) in a volume of 40 μL was incubated with increasing concentrations of either mAb 5133 PRASA A6 (Construct 4 in Table 1; SEQ IDs #66 HC plus 67 LC) or mAb 5133 PRASA A6 HC-L4-E-L4-AB (Construct 11 in Table 1; SEQ IDs #856 HC plus 67 LC) in a total volume of 80 μL for 30 mins on ice. Blood from fresh human leukopaks was washed three times in 0.9% saline and red blood cells (RBCs) at 8×107 cells in 0.9% saline in a volume of 80 μL were added to the toxin-test article mixture in a 96-well plate. Two control reactions were also run in parallel: (i) LukED and RBCs alone with no test articles, and (ii) RBCs alone with 0.2% Triton-X100 with no test articles or LukED. After 30 mins of intoxication/incubation at 37° C. in the presence of 5% CO2, plates were spun down for 10 minutes at 1780 g at 4° C. 100 μL of the cell free lysates were then transferred to a new 96-well plate and the OD405 nm was measured as a measure of hemolysis. The data shown in FIGS. 18A and 18B is compiled from the results of studies using three individual blood donors. The extent of hemolysis (expressed as a %) was determined using the following formulation:






(

(




OD

405





n





m


-

Cells





only





average


)



Triton





or





Toxin





average

-

Cells





only





average



)

)




Results.



FIG. 18B shows the % hemolysis observed with LukED in the presence of mAb 5133 PRASA A6 or mAb 5133 PRASA A6 HC-L4-E-L4-AB as compared to the 100% value observed with LukED alone. As expected, only the mAb 5133 PRASA A6 HC-L4-E-L4-AB test article that bears a LukED neutralizing FN3 domain is observed to protect erythrocytes from LukED mediated hemolysis. FIG. 18A shows the % hemolysis observed with LukED in the presence of mAb 5133 PRASA A6 or mAb 5133 PRASA A6 HC-L4-E-L4-AB as compared to the 100% value observed with Triton-X100 alone. Similarly, only the mAb 5133 PRASA A6 HC-L4-E-L4-AB test article that bears a LukED neutralizing FN3 domain is observed to protect erythrocytes from LukED mediated hemolysis.


Summary.


These data indicate that mAb 5133-FN3 fusion proteins that bind LukE and neutralize the cytolytic activity of the LukED leucocidin versus hPMNs also neutralize the hemolytic activity of the LukED leucocidin versus human erythrocytes. LukED cytolysis of hPMNs is thought to be mediated following target cell engagement via the CXCR1/CXCR2 receptors whereas the hemolysis of erythrocytes is mediated following target cell engagement via the DARC receptor. Hence, these data support the notion that neutralization of the cytolytic activities of LukED mediated by mAb 5133-FN3 fusion proteins can be independent of the nature of target cell engagement as conferred by specific target cell receptors.


Example 19: Identification of Potential Neutralization Epitopes on Leukocidin LukAB by Solution Phase Hydrogen/Deuterium Exchange (HDX)-Mass Spectrometry (MS)

For higher order structural studies, hydrogen-deuterium exchange coupled with mass spectrometry analysis, referred to herein as HDX-MS, has proven a valid method in the identification of binding surfaces between interacting proteins (Hamuro et al., “Rapid Analysis of Protein Structure and Dynamics by Hydrogen/Deuterium Exchange Mass Spectrometry,” J. of Biomolecular Techniques 14: 171-182 (2003) and Hom et al., “The Role of Protein Dynamics in Increasing Binding Affinity for an Engineered Protein-Protein Interaction Established by H/D Exchange Mass Spectrometry,” Biochemistry 45: 8488-8498 (2006), which are hereby incorporated by reference in their entirety). Herein are described studies to identify the potential binding epitope(s) for the Luk17 FN3 protein (SEQ ID NO: 14) on the LukAB heterodimer by solution phase HDX-MS methods using a recombinant toxoid variant (LukA E323A) of LukAB protein produced from Staphylococcus aureus (SEQ ID NOs: 10 & 11). Recombinant LukAB heterodimer in the absence or presence of Luk17 FN3 was incubated in a deuterated water solution for predetermined times resulting in deuterium incorporation at exchangeable hydrogen atoms. Regions bound to the Luk17 FN3 protein were inferred to be those sites relatively protected from hydrogen-deuterium exchange and thus contain a lower fraction of deuterium than the reference LukAB protein in studies in which more than 99% of the LukAB protein was mapped to specific peptides.


Procedures.


Pepsin/protease type XIII digestion and LC-MS: for pepsin/protease type XIII digestion, 5 μg of LukAB in 125 μL control buffer (50 mM phosphate, 100 mM sodium chloride at pH 7.4) was denatured by adding 63 μL of 5 M guanidine hydrochloride (final pH 2.5) and incubating the mixture for 3 min. The mixture was then subjected to on-column pepsin/protease type XIII digestion and the resultant peptides were analyzed using an Ultra Performance Liquid Chromatography Mass Spectrometry (UPLC-MS) system comprised of a Waters Acquity UPLC coupled to a Q Exactive™ Hybrid Quadrupole-Orbitrap Mass Spectrometer (Thermo). The peptides were separated on a 50 mm×1 mm C8 column with a 16.5 min gradient from 2-32% solvent B (0.1% formic acid in acetonitrile). Solvent A was 0.02% trifluoroacetic acid and 0.08% formic acid in water. The injection valve and pepsin/protease type XIII column and their related connecting tubes were housed inside a cooling box maintained at 11° C. And the second switching valve, C8 column and their related connecting stainless steel tubes were housed inside a chilled circulating box maintained at 0° C. Peptide identification was done through searching MS/MS data against the LukAB sequence using the Mascot software package (Koenig et al., “Robust prediction of the MASCOT score for an improved quality assessment in mass spectrometric proteomics,” J. Proteome Res. 7 (9): 3708-17 (2008), which is hereby incorporated by reference in its entirety). The mass tolerance for the precursor and product ions was 20 ppm and 0.05 Da, respectively.


H/D Exchange: 5 μL LukAB (10 μg) or 5 μL of the complex of LukAB and Luk17 FN3 protein (10 & 7.35 rig, respectively) were incubated with 120 μL deuterium oxide labeling buffer (50 mM phosphate, 100 mM sodium chloride at pH 7.4) for 0 sec, 60 sec, 300 sec, 1800 sec, 7200 sec, and 14400 sec. Deuterium exchange was quenched by adding 63 μL of 5 M guanidine hydrochloride (final pH is 2.5) and the quenched sample was then subjected to on-column pepsin/protease type XIII digestion and LC-MS analysis as described above. The mass spectra were recorded in MS only mode. Raw MS data was processed using HDX WorkBench software for the analysis of H/D exchange MS data (Pascal et al., “Software for the Analysis of H/D Exchange MS Data,” J Am. Soc. Mass Spectrometry 23 (9), 1512-1521 (2012), which is hereby incorporated by reference in its entirety). The deuterium levels were calculated using the average mass difference between the deuterated peptide and its native form (to).


Results.


To establish at the peptide level interaction site(s) on LukAB targeted by the Luk17 FN3 protein, LukAB was incubated in deuterium oxide either alone or in complex with the Luk17 FN3 protein. The deuterium exchange was carried at room temperature for 0 s, 60 sec, 300 sec, 1800 sec, 7200 sec, and 14400 sec. The deuterium levels of the identified peptides were monitored from the mass shift on LC/MS. LukA did not show any significant reduction in deuterium uptakes upon binding to the Luk17 FN3 protein. In contrast, while most of the LukB peptides displayed identical or similar deuterium levels with and without the Luk17 FN3 protein molecule, two discrete peptides of LukB had significant decreased deuterium incorporation upon Luk17 FN3 protein binding. Specifically, the LukB peptide region 260IDWNRHGFWG269 (amino acid residue 260-269 of SEQ ID NO: 11) experienced strong deuterium protection. This strongly protected region is thus assigned as a potential component of the epitope for the Luk17 FN3 protein. In addition, the HDX-MS analysis also showed one marginally protected segment, 201LTRNGNLWAKDNFTPKDKMPVTVS224 (amino acid residues 201-224 of SEQ ID NO: 11). These two regions protected by solution phase interaction of the Luk17 FN3 protein with LukB (SEQ ID NO: 11) are highlighted in black (260IDWNRHGFWG269; peptide #1) and dark grey (201LTRNGNLWAKDNFTPKDKMPVTVS224; peptide #2) in the differential LukB heat map schematic shown in FIG. 19 A.


These two putative LukAB/Luk17 FN3 protein interaction sites were mapped onto the published octameric crystal structure of the bi-component toxin LukAB (aka, LukGH) (Badarau et al., “Structure-Function Analysis of Heterodimer Formation, Oligomerization, and Receptor Binding of the Staphylococcus aureus Bi-component Toxin LukGH,” J. Biol. Chem. 290, 142-156 (2015), which is hereby incorporated by reference in its entirety) and are shown in FIG. 19 B. Interestingly, the two identified linear peptides of LukB lie in close proximity to each other in the three dimensional crystal structure. This conclusion is further substantiated by mapping of the same peptides on a heterodimeric LukAB structure described herein (see EXAMPLE 21). These data suggest that the LukAB neutralization epitope of the Luk17 FN3 protein is defined by residues encompassed within the LukB peptide sequences 260IDWNRHGFWG269 and 201LTRNGNLWAKDNFTPKDKMPVTVS224 (of SEQ ID NO: 11).


Summary.


These data indicate that the Luk17 FN3 protein binds LukAB via specific interaction(s) with the LukB subunit. Based on models for the association of LukAB with the target cell receptor CD11b (Badarau et al., “Structure-Function Analysis of Heterodimer Formation, Oligomerization, and Receptor Binding of the Staphylococcus aureus Bi-component Toxin LukGH,” J. Biol. Chem. 290, 142-156 (2015), which is hereby incorporated by reference in its entirety) (see EXAMPLE 21) and subsequent association at the target cell membrane in forming an octameric pore, it is assumed that Luk17 FN3 protein mediated neutralization of the cytolytic activity of LukAB occurs through perturbation of LukAB binding to target cells and/or the conformational transitions of LukAB associated with octameric pore formation in target cell membranes.


Example 20: Identification of Potential LukED Neutralization Epitopes on the Leukocidin LukE Subunit by Solution Phase Hydrogen/Deuterium Exchange (HDX)-Mass Spectrometry (MS)

Herein are described studies to identify the potential binding epitope(s) for the Luk26 FN3 protein (SEQ ID NO: 25) on the LukE subunit structure by solution phase HDX-MS methods using recombinant LukE protein produced from Staphylococcus aureus (SEQ ID NO: 1055). In these studies, recombinant LukE protein in the absence or presence of the Luk26 FN3 protein was incubated in a deuterated water solution for predetermined times resulting in deuterium incorporation at exchangeable hydrogen atoms. Regions bound to the Luk26 FN3 protein were inferred to be those sites relatively protected from exchange and thus contain a lower fraction of deuterium than the reference LukE protein in studies in which more than 99% of the LukE protein was mapped to specific peptides.


Procedures.


Pepsin/protease type XIII digestion and LC-MS: for pepsin/protease type XIII digestion, 5 μg of LukE protein in 125 μL control buffer (50 mM phosphate, 100 mM sodium chloride at pH 7.4) was denatured by adding 63 μL of 5 M guanidine hydrochloride (final pH 2.5) and incubating the mixture for 3 min. The mixture was then subjected to on-column pepsin/protease type XIII digestion and the resultant peptides were analyzed using an Ultra Performance Liquid Chromatography Mass Spectrometry (UPLC-MS) system comprised of a Waters Acquity UPLC coupled to a Q Exactive™ Hybrid Quadrupole-Orbitrap Mass Spectrometer (Thermo). The peptides were separated on a 50 mm×1 mm C8 column with a 16.5 min gradient from 2-32% solvent B (0.1% formic acid in acetonitrile). Solvent A was 0.02% trifluoroacetic acid and 0.08% formic acid in water. The injection valve and pepsin/protease type XIII column and their related connecting tubes were housed inside a cooling box maintained at 11° C. And the second switching valve, C8 column and their related connecting stainless steel tubes were housed inside a chilled circulating box maintained at 0° C. Peptide identification was done through searching MS/MS data against the LukAB sequence using the Mascot software package (Koenig et al., “Robust prediction of the MASCOT score for an improved quality assessment in mass spectrometric proteomics,”, J. Proteome Res. 7 (9): 3708-17 (2008), which is hereby incorporated by reference in its entirety). The mass tolerance for the precursor and product ions was 20 ppm and 0.05 Da, respectively.


H/D Exchange: 5 μL of LukE (5 μg) protein alone or 5 μL of LukE plus the Luk26 FN3 protein (5 and 3.93 μg, respectively) were incubated with 120 μL deuterium oxide labeling buffer (50 mM phosphate, 100 mM sodium chloride at pH 7.4) for 0 sec, 60 sec, 300 sec, 1800 sec, 7200 sec, and 14400 sec. Deuterium exchange was quenched by adding 63 μL of 5 M guanidine hydrochloride (final pH is 2.5) and the quenched sample was then subjected to on-column pepsin/protease type XIII digestion and LC-MS analysis as described above. The mass spectra were recorded in MS only mode. Raw MS data was processed using HDX WorkBench software for the analysis of H/D exchange MS data (Pascal et al., “Software for the Analysis of H/D Exchange MS Data,” J. Am. Soc. Mass Spectrometry 23 (9), 1512-1521 (2012), which is hereby incorporated by reference in its entirety). The deuterium levels were calculated using the average mass difference between the deuterated peptide and its native form (to).


Results.


To establish at the peptide level interaction site(s) on LukE targeted by the Luk26 FN3 protein, LukE was incubated in deuterium oxide either alone or in complex with the Luk26 FN3 protein. The deuterium exchange was carried at room temperature for 0 s, 60 sec, 300 sec, 1800 sec, 7200 sec, and 14400 sec. The deuterium levels of the identified peptides were monitored from the mass shift on LC/MS. While most of the LukE peptides displayed identical or similar deuterium levels with and without Luk26 Fn3 protein, two peptide segments showed significantly decreased deuterium incorporation upon binding. Specifically, LukE shows significant reduction in deuterium uptake upon binding to Luk26 Fn3 protein at peptide regions, 69TSFSDVKGSGYELT82 and 255LFPRTGIYAERKHNAFVNRNF275—as per the amino acid numbering used in SEQ ID No: 1055 (these regions correspond to amino acid residues 86-99 of SEQ ID NO: 1054 and 272-292 of SEQ ID NO: 1054, respectively). These two regions protected by the Luk26 FN3 protein are highlighted in black in the differential heat map schematic shown in FIG. 20 A. These regions are thus assigned as the major interaction sites for the Luk26 Fn3 protein on LukE. In addition, the HDX-MS analysis also showed one marginally protected segment, 244YGRN247 (of SEQ ID NO: 1055) and is highlighted in dark grey in the differential heat map schematic shown in FIG. 20 A. This region corresponds to amino acid residues 261-264 of SEQ ID NO: 1054)


These putative LukE/Luk26 FN3 protein interaction sites were mapped on the published high-resolution crystal structure of Luk E (Nocadello et al., “Crystal structures of the components of the Staphylococcus aureus leukotoxin ED” Acta. Cryst. D72: 113-120 (2016) PDB entry 3roh, which is hereby incorporated by reference in its entirety). These interaction sites were found to lie in close proximity to each other in the three dimensional structure (see highlighted regions of FIG. 20B) and comprise elements of the so-called ‘rim’ domain of LukE. Subsequent mutational mapping of LukE indicated that residues of each of the putative LukE/Luk26 FN3 protein interaction site impacted binding to the Luk26 FN3 protein (see EXAMPLE 23 infra).


Summary.


These data indicate that the Luk26 FN3 protein binds LukE via specific interaction(s) in the rim domain region and this binding is sufficient to neutralize the cytolytic (EXAMPLE 4) and hemolytic activity (EXAMPLE 19) of LukED. As the rim domains of leukotoxins are thought to be important for interaction with the lipid bilayer of target cell membranes and for interaction with specific target cell membrane-bound receptors, it is possible that the binding of the Luk26 FN3 protein to LukE perturbs either receptor engagement, membrane binding and/or the formation of LukED heterodimers and/or higher oligomers at the surface of the membrane. In the case of LukED, Luk26 FN3 protein mediate blocking of receptor engagement could occur via perturbation of interaction with the Duffy antigen receptor for chemokines (DARC) on red blood and endothelial cells (Spaan et al., “Staphylococcus aureus Targets the Duffy Antigen Receptor for Chemokines (DARC) to Lyse Erythrocytes,” Cell Host Microbe 18(3):363-70 (2015), which is hereby incorporated by reference in its entirety) or via perturbation of interactions with the chemokine receptors CXCR1 and CXCR2 on neutrophils (Spaan et al., “Staphylococcus aureus Leukotoxin ED Targets the Chemokine Receptors CXCR1 and CXCR2 to Kill Leukocytes and Promote Infection,”, Cell Host Microbe 14(4): 453-459 (2013), which is hereby incorporated by reference in its entirety).


Example 21: Characterization of the Neutralization Epitope of the Luk17 FN3 Protein on LukAB by X-Ray Crystallography

Herein are described studies to identify the binding epitope for the Luk17 FN3 protein on leukotoxin LukAB by determination of a high resolution X-ray crystal structure of a ternary complex (1:1:1) comprised of the Luk17 FN3 protein, LukAB and a LukAB-specific Fab (fragment, antigen-binding).


Procedures.


Proteins. The proteins used for the structural studies described herein are (i) a recombinant toxoid variant (LukA E323A) of LukAB protein produced from Staphylococcus aureus (SEQ ID NOs: 10 & 11) referred to herein as ‘LukAB’, (ii) a poly-histidine tagged variants of the Luk17 FN3 protein (SEQ ID NO: 1053) referred to herein as ‘S17’, and (iii) a recombinant Fab (SEQ ID NOs: 1078 HC plus 1079 LC; construct 34 in Table 1) derived from a LukAB-specific mAb (SEQ ID NOs: 1080 HC plus 1081 LC; construct 35 in Table 1) and herein referred to as ‘214F’. LukAB was purified at a final concentration of 5 mg/mL in 10 mM Na acetate, pH 5.5. The Luk17 FN3 protein purified at a final concentration of 8.4 mg/mL in 25 mM Tris, pH 7.4, 50 mM NaCl. 214F was purified at a final concentration of 1.91 mg/mL in 20 mM MES, 200 mM NaCl, pH 6.0.


Complex Formation, Crystallization and X-Ray Data Collection.


A ternary complex consisting of LukAB, the Luk17 FN3 protein and 214F was prepared by incubation of LukAB with excess Luk17 FN3 and 214F. The complex was purified by cation exchange chromatography on a Mono S5/50 GL column (GE Healthcare) pre-equilibrated in 20 mM HEPES pH 7.5, 10% glycerol. After loading the sample on the column, the ternary complex was eluted with a linear gradient of 20 mM HEPES pH 7.5, 10% glycerol, 1 M NaCl. Fractions were analyzed by SDS-PAGE to confirm the presence of the ternary complex. Fractions containing the purified LukAB/Luk17 FN3/214F complex were pooled and concentrated to 13.42 mg/mL in 20 mM HEPES pH 7.5, 100 mM NaCl, 10% glycerol. Crystallization screening and optimization was performed using a Mosquito crystallization robot (TTP Labtech) with seeding using seeds of the ternary complex. A crystal was harvested from 0.1 M MES pH 6.5, 26% PEG 3350, 0.2M diammonium tartrate and mixed with cryoprotectant solution composed of 0.1 M MES pH 6.5, 25% PEG 3350, 0.2 M diammonium tartrate, 20% glycerol. The crystal was flash-cooled in liquid nitrogen. The diffraction data were collected at Advanced Photo Source (beamline 17-ID) at the Argonne National Laboratory. The X-ray data were processed with “XDS” (Kabsch, W., Acta. Crystallogr. D. Biol. Crystallogr. 66(2): 125-132 (2010), which is hereby incorporated by reference in its entirety) to a resolution of 3 Å. The details of the X-ray data are summarized in Table 2 below.


Structure Determination.


The structure of the ternary complex was solved by molecular replacement with Phaser (Read, “Pushing the boundaries of molecular replacement with maximum likelihood,” Acta. Crystallogr. D. Biol. Crystallogr. 57(10): 1373-1382 (2001), which is hereby incorporated by reference in its entirety) in several steps. The LukAB dimer from pdb ID 4tw1 (Badarau et al., “Structure-Function Analysis of Heterodimer Formation, Oligomerization, and Receptor Binding of the Staphylococcus aureus Bi-component Toxin LukGH,” J. Biol. Chem. 290, 142-156 (2015), which is hereby incorporated by reference in its entirety) was used as a template after the pore forming segments were manually removed. The 214F Fab was located using a homology model of the Fv generated in MOE (CCG, Montreal) and the two constant domains from 3na9 (Luo et al., “Coevolution of antibody stability and Vkappa CDR-L3 canonical structure,” J. Mol. Biol. 402(4): 708-719 (2010), which is hereby incorporated by reference in its entirety). Finally, the S17 was located using a homology model based upon a monomer from pdb id 3tes (Jacobs et al., “Design of novel FN3 domains with high stability by a consensus sequence approach,” Protein Eng. Des. Sel. 25(3): 107-117 (2012), which is hereby incorporated by reference in its entirety). Refinement was carried out with Phenix (Adams et al., “Recent developments in the PHENIX software for automated crystallographic structure determination,” J. Synchrotron Radiat. 11(1): 53-55 (2004), which is hereby incorporated by reference in its entirety) and model fitting with COOT (Emsley et al., “Coot: model-building tools for molecular graphics,” Acta. Crystallogr. D. Biol. Crystallogr. 60(12 Pt 1): 2126-2132 (2004), which is hereby incorporated by reference in its entirety). The refinement statistics are summarized in Table 2. All graphics was generated with Pymol (Schrodinger LLC., www.pymol.org) and all other calculations were carried out in CCP4 (Collaborative Computational Project 1994).









TABLE 2





X-ray data statistics and refinement statistics for high


resolution X-ray crystal structure of a ternary complex


(1:1:1) comprised of the Luk17 FN3 protein,


LukAB and a LukAB-specific







Data collection











Wavelength (Å)
1.000
(APS)










Temperature (K)
95



Space group
C 2221



Unit cell axes (Å)
92.98, 173.74, 174.31



Unit cell angles (°)
90, 90, 90



Molecules/asymmetric unit
1 LukAB/S17/214F complex











Resolution (Å)
50-3.00
(3.08-2.80)*



No. measured reflections
106,449
(7,215)



No. unique reflections
27,208
(1,888)



Completeness (%)
95.0
(90.5)



Redundancy
3.9
(3.8)



Rmerge
0.150
(1.000)



Rp.i.m.
0.079
(0.515)



CC1/2
0.99
(0.62)



<I/σ>
10.5
(1.9)










B-factor (Wilson) (Å2)
63.8







Structure Refinement











Resolution (Å)
49.16-3.00
(3.11-3.00)



No. reflections in refinement
27,197
(2,604)










Number of atoms
8,641



Number of solvent atoms
0











Rcryst (%)
19.6
(32.4)



Rfree (5% data) (%)
24.7
(38.8)










RMSD bond lengths (Å)
0.003



RMSD bond angles (°)
0.53



RMS B-factor bonded (Å2)
9.2



Mean B factors (Å2)
63.6



Ramachadran plot




Favored (%)
94.2



Allowed (%)
5.6



Outliers (%)
0.2







*Values for highest resolution shell are in ( )'s.



Fab (fragment, antigen-binding) designated ‘214F’






Results.


The overall structure of the LukAB/S17/214F ternary complex is shown in FIG. 21A. The structural model includes one LukAB heterodimer (residues of 16-305 of LukA, residues 41-323 of LukB—numbering as per PDB ID 4tw1), one 214F molecule (residues 1-213 of the light chain, residues 1-224 of the heavy chain) and one S17 molecule (residues 1-94 of centyrin S17 including the initiation methionine (Ml) and two His residues of the C-terminal 6×-His Tag)).


The LukAB in the ternary complex is a heterodimer with the LukA/LukB interface corresponding to interface 2 of the previously determined LukAB structure and is consistent with a published mutational analysis of the subunit interface (Badarau et al., “Structure-Function Analysis of Heterodimer Formation, Oligomerization, and Receptor Binding of the Staphylococcus aureus Bi-component Toxin LukGH,” J. Biol. Chem. 290, 142-156 (2015, which is hereby incorporated by reference in its entirety). The LukA and LukB monomer structures are very similar to those in the octamer structure (rmsds of 0.36 Å for 223 LukA Ca atoms and 0.34 Å for 224 LukB Ca atoms, respectively) except for the loop segments involved in the octamer formation. As is shown in FIG. 21B, the pore-forming segments (residues 132-175 and 106-153 of LukA and LukB, respectively) adopt very different conformations in the isolated dimer. Interestingly, the switch points for the two conformations in LukA and LukB are identical in sequence as well as structure.


The binding sites for S17 and Fab 214F on LukAB are distant from the switching segments; FIG. 21C. Thus, both molecules should be capable of binding the LukAB octamer as well as the LukAB heterodimer. The parental mAb of Fab 214F is known not to exhibit neutralizing activity against LukAB. In contrast, S17 exhibits LukAB neutralizing activity (EXAMPLE 5). Based on the localization of the S17 epitope on the octameric structure (FIG. 21C), it seems likely that S17 perturbs interaction with host cells either by blocking interaction with host cell receptors or sterically preventing insertion of the octameric pore into the membrane.


S17 binds the so-called rim domain of the LukB subunit (FIGS. 21A-21B) and does not make any apparent contact with the LukA subunit. Based on S17/LukB crystal contacts, the S17 binding epitope on LukAB is minimally composed of LukB residues: Y73, W74, N191, N192, R193, K195, N206, L207, W208, W262, N263, R264, H265, G266, F267, Y270 of SEQ ID NO: 11 (FIG. 21D). These epitope residues are largely consistent with the epitope segments identified by HDX mapping (EXAMPLE 19) and are also consistent with mutational analysis results (EXAMPLE 22). FIG. 21F shows representational electron density at the LukB epitope/Luk17 FN3 paratope interface.


S17 binds LukB via amino acid residues exposed on its concave surface corresponding to residues that are variant with respect to the parental FN3 binding protein (SEQ ID NO: 1). Based on S17/LukB crystal contacts, the residues that define the S17 paratope for binding LukB are Ml, W33, T35, E37, K39, F40, Y41, R42, A45, V47, E67, K69, W71, V73, W82 & P83 and are highlighted in FIG. 21E. These structural paratope residues are also consistent with mutational studies (EXAMPLE 5 & FIG. 5; note that the S17 numbering is shifted herein by one residue from EXAMPLE 5 as the amino-terminal methionine is included). Of note, key Luk17 FN3 paratope residues identified via the analysis on the LukAB binding and neutralization of site-directed variants of the Luk17 FN3 protein (see EXAMPLE 5 & FIG. 5) align with Luk17 FN3 paratope residues identified in the crystal structure. For example, Arg42, Glu37 and Lys39 in Luk17 FN3 (SEQ ID No: 1053; corresponding to Arg41, Glu36 and Lys38 in SEQ ID No: 14 and EXAMPLE 5) make specific crystal contacts with residues of the identified LukAB neutralization epitope for Luk17 FN3.


Summary.


The structure of the LukAB/S17/214F ternary complex reveals a complete LukAB heterodimer with the octamer-forming segments in very different conformations from those observed in a previously published octameric LukAB structure (Badarau et al., “Structure-Function Analysis of Heterodimer Formation, Oligomerization, and Receptor Binding of the Staphylococcus aureus Bi-component Toxin LukGH,” J. Biol. Chem. 290: 142-156 (2015), which is hereby incorporated by reference in its entirety). The structurally defined epitope for the S17 (Luk17 FN3) protein on LukB is consistent with data from solution phase HDX mapping studies of LukAB (EXAMPLE 19) and the characterization of site-directed variants of LukB (EXAMPLE 22). Finally, the structure may also indicate an interesting neutralization mechanism for S17 wherein the interaction of LukAB with the target cell receptor (CD11b) and/or cell membrane is sterically blocked. In addition, it is possible that S17 binding prevents the normal conformational changes LukAB undergoes in transitioning from a heterodimer to an octameric, membrane embedded pore.


Example 22: Mutational Mapping of LukB to Confirm the LukAB Neutralization Epitope of the Luk17 FN3 Protein

Further to the characterization of site-directed mutants of the Luk17 FN3 protein in terms of LukAB binding and neutralization characteristics (EXAMPLE 5), herein are described equivalent studies to confirm specific Luk17 FN3/LukB interactions at the paratope/epitope interface as identified by determination of a high resolution X-ray crystal structure of a ternary complex (1:1:1) comprised of the Luk17 FN3 protein, LukAB and the ‘214F’ LukAB-specific Fab (see EXAMPLE 21).


Procedures.


The proteins used for the studies described herein are (i) site-directed LukB mutant variants of a recombinant toxoid variant of the LukAB protein (LukA E323A) that bear poly-histidine and streptavidin binding sequences at the amino-terminus of the LukA sequence and correspond to SEQ ID NOs: 1033-1052 (LukB variants) combined with SEQ ID NO: 1021 (LukA), and (ii) a variant of the Luk17 FN3 protein that bears a carboxyl-terminal poly-histidine sequence (SEQ ID NO: 1053). Recombinant LukAB variants were purified by nickel affinity chromatography as soluble heterodimers from an E. coli strain expressing biotin ligase. The Luk17 FN3 protein was purified from E. coli by nickel affinity chromatography.


Determination of Affinity (KD) and Dissociation (Kdis) Constants.


KD and Kdis values for the LukAB variants bearing site-directed mutations in LukB were determined by Bio-Layer Interferometry (BLI) using an OctetRED 384 instrument (forteBIO Inc.) running the basic kinetics protocol (“Biomolecular Binding Kinetics Assays on the Octet Platform”, at outlined in Application Note 14 from Pall forteBIO Corp. accessible via the ForteBIO websiste, which is hereby incorporated by reference in its entirety). Briefly, biotinylated LukAB mutant proteins were loaded onto Dip and Read™ Streptavidin (SA) Biosensor pins at a 10 μg/mL concentration in PBS pH7.2 for 10 minutes. A baseline was then set by washing with phosphate buffered saline (PBS, pH 7.2) for 1 minute. The association rate for the Luk17 FN3 protein was then measured by addition of a 10 ug/mL concentration in PBS (pH7.2) over a period of 10 minutes. The Luk17 FN3 protein dissociation rate was then measured following washing with PBS (pH7.2) for 5 minutes. Curve fitting to determine KD values used the initial 60 seconds of association and dissociation steps to analyze on and off rates.


Results.


Based on Luk17 FN3/LukB crystal contacts, the Luk17 FN3 binding epitope on LukAB is minimally composed of LukB residues: Y73, W74, N191, N192, R193, K195, N206, L207, W208, W262, N263, R264, H265, G266, F267, Y270 of SEQ ID NO: 11 (FIG. 21D). FIGS. 22A and 22B, respectively, show the calculated affinity (KD) and dissociation (Kdis) constants for a series of LukAB variants in which LukB epitope residues were mutated to either X or Y with residue numbering consistent with the LukAB structure from pdb ID 4tw1 (Badarau et al., “Structure-Function Analysis of Heterodimer Formation, Oligomerization, and Receptor Binding of the Staphylococcus aureus Bi-component Toxin LukGH,” J. Biol. Chem. 290, 142-156 (2015), which is hereby incorporated by reference in its entirety).


Considering the extent of the of the Luk17 FN3/LukB interaction surface as identified in the LukAB/Luk17 FN3 (S17)/214F crystal structure (EXAMPLE 21), it was not anticipated that individual site-directed (substitution) mutants of either the LukB epitope or the Luk17 FN3 protein paratope would negate binding in total. However, it was anticipated that mutations that disrupt key paratope-epitope interactions would have a significant impact on the affinity of the interaction between LukAB and the Luk17 FN3 protein. Of the LukB site-directed mutants evaluated, Tyr73Ala, Trp74Ala, Arg264Glu and Trp268Ala were observed to have the most significant impact on Luk17 FN3 affinity (as reflected in KD values; FIG. 22A) with Tyr73Ala and Arg264Glu exhibiting the most significant impact on dissociation characteristics (as reflected in Kdis values; FIG. 22B).


Summary.


Mutational analysis of the Luk17 FN3 (S17) protein binding characteristics of LukAB variants described herein substantiate the importance of LukB residues identified via X-ray crystallization studies of the LukAB/S17/214F ternary complex as key components of the LukAB neutralization epitope of the Luk17 FN3 (S17) protein (EXAMPLE 21). Of the LukB site-directed mutants evaluated, Tyr73Ala, Trp74Ala, Arg264Glu and Trp268Ala were observed to have the most significant impact on Luk17 FN3 affinity (as reflected in KD values) with Tyr73Ala and Arg264Glu exhibiting the most significant impact on dissociation characteristics (as reflected in Kdis values).


Example 23: Mutational Mapping of LukE to Confirm the LukED Neutralization Epitope of the Luk26 FN3 Protein

Further to the characterization of site-directed mutants of the Luk26 FN3 protein in terms of LukE binding and LukED neutralization characteristics (EXAMPLE 4, FIG. 4A), herein are described equivalent studies to confirm specific Luk26 FN3/LukE interactions at the apparent paratope/epitope interface as identified by solution phase hydrogen/deuterium exchange (HDX)-Mass Spectrometry (MS) mapping (EXAMPLE 20).


Procedures.


The proteins used for the studies described herein are (i) site-directed mutant variants of a recombinant form of LukE that bears poly-histidine and streptavidin binding sequences at the amino-terminus of the LukE sequence (SEQ ID NO: 1056) and correspond to SEQ ID NOs: 1057-1076, and (ii) a variant of the Luk26 FN3 protein that bears a carboxyl-terminal poly-histidine sequence (SEQ ID NO: 1077). Recombinant LukE variants were purified by nickel affinity chromatography as soluble proteins from an E. coli strain expressing biotin ligase. The Luk26 FN3 protein was purified from E. coli by nickel affinity chromatography.


Determination of Affinity (KD) and Dissociation (Kdis) Constants.


KD and Kdis values for the LukED variants bearing site-directed mutations in LukE were determined by Bio-Layer Interferometry (BLI) using an OctetRED 384 instrument (forteBIO Inc.) running the basic kinetics protocol (“Biomolecular Binding Kinetics Assays on the Octet Platform”, at outlined in Application Note 14 from Pall forteBIO Corp. accessible via the ForteBIO website, which is hereby incorporated by reference in its entirety). Briefly, biotinylated LukE mutant proteins were loaded onto Dip and Read™ Streptavidin (SA) Biosensor pins at a 10 μg/mL concentration in PBS pH7.2 for 10 minutes. A baseline was then set by washing with phosphate buffered saline (PBS, pH 7.2) for 1 minute. The association rate for the Luk26 FN3 protein was then measured by addition of a 10 ug/mL concentration in PBS (pH7.2) over a period of 10 minutes. The Luk26 FN3 protein dissociation rate was then measured following washing with PBS (pH7.2) for 5 minutes. Curve fitting to determine KD values used the initial 60 seconds of association and dissociation steps to analyze on and off rates.


Results.


Based on the LukE residues identified as potential components of the Luk26 FN3 binding epitope by HDX mapping (FIG. 20A) and mapping of putative LukED neutralization epitopes onto the published crystal structure of LukE (FIG. 20B), a series of site-directed (substitution) mutants of LukE were prepared and characterized in terms of their binding to the Luk26 FN3 protein. Specifically, LukE variants were made in the LukE peptide regions 86TSFSDVKGSGYELT99 and 272LFPRTGIYAERKHNAFVNRNF292 (as per the amino acid numbering used in PDB entry 3ROH; SEQ ID No: 1054). Considering the extent of the apparent Luk26 FN3/LukE interaction surface, it was not anticipated that individual site-directed (substitution) mutants of either the LukE epitope or the Luk26 FN3 protein paratope would negate binding in total. However, it was anticipated that mutations that disrupt key paratope-epitope interactions would have a significant impact on the affinity of the interaction between LukE and the Luk26 FN3 protein. Of the LukE site-directed mutants evaluated, mutations of residues corresponding to the peptide region 86TSFSDVKGSGYELT99 (as per SEQ ID NO: 1054) had the most consistent impact on Luk26 FN3 binding affinity (as reflected in lower KD values (FIG. 23A) and higher Kdis values (FIG. 23B)) with the Ser89Ala, Val91Ala, Lys92Ala, Gly93Arg, Tyr96Ala, Leu98Ala and Thr99Ala mutant variants (numbering per SEQ ID NO: 1054) all exhibiting weaker binding compared to the wild-type (parental) LukE protein (FIGS. 23A-23B). In addition, this apparent epitope component may be extended beyond the linear LukE region identified by HDX mapping as an Arg101Ala variant of LukE was also found to exhibit significantly weaker Luk26 FN3 binding and enhanced dissociation characteristics. In contrast, mutation of residues in the 272LFPRTGIYAERKHNAFVNRNF292 peptide region in general had a less significant impact on Luk26 FN3 binding (FIGS. 23A-23B). However, the contribution of residues from this linear LukE sequence to the Luk26 FN3 epitope is apparent through the lower binding affinity and higher dissociation rate observed for the Tyr269Ala, Phe287Ala and Arg290Ala variants of LukE.


Localization of the specific residues inferred from these data to represent components of the LukE binding and LukED neutralization epitope for the Luk26 FN3 were mapped on the published crystal structure of LukE (Nocadello et al., “Crystal structures of the components of the Staphylococcus aureus leukotoxin ED,” Acta. Cryst. D72: 113-120 (2016) which is hereby incorporated by reference in its entirety; PDB entry 3ROH) and are highlighted in schematic from in FIG. 23C. Of note, the identified epitope residues are localized to structural elements of the so-called rim domain of LukE. For clarity, alignment of the recombinant LukE sequences SEQ ID NOs: 1055 and 1056 with the sequence of the LukE protein of the published LukE structure (PDB entry 3ROH; SEQ ID NO: 1054) are included in FIG. 23C.


Summary.


Analysis of the Luk26 FN3 protein binding characteristics of the LukE variants described herein substantiate the importance of key residues in the rim domain of LukE in forming the LukE binding and LukED neutralization epitope for the Luk26 FN3 protein. Specifically, residues Ser89, Val91, Lys92, Gly93Arg, Tyr96, Leu98 and Thr99, Tyr269, Phe287 and Arg290 of SEQ ID NO: 1054 define a minimal epitope for the Luk26 FN3 protein. As the rim domains of leukotoxins are thought to be important for interaction with the lipid bilayer of target cell membranes and for interaction with specific target cell membrane-bound receptors, it is possible that the binding of the Luk26 FN3 protein to LukE perturbs either receptor engagement, membrane binding and/or the formation of LukED heterodimers and/or higher oligomers at the surface of the membrane. In the case of LukED, Luk26 FN3 protein mediate blocking of receptor engagement could occur via perturbation of interaction with the Duffy antigen receptor for chemokines (DARC) on red blood and endothelial cells (Spaan et al., “Staphylococcus aureus Targets the Duffy Antigen Receptor for Chemokines (DARC) to Lyse Erythrocytes,” Cell Host Microbe 18(3):363-70 (2015), which is hereby incorporated by reference in its entirety) or via perturbation of interactions with the chemokine receptors CXCR1 and CXCR2 on neutrophils (Spaan et al., “Staphylococcus aureus Leukotoxin ED Targets the Chemokine Receptors CXCR1 and CXCR2 to Kill Leukocytes and Promote Infection,” Cell Host Microbe 14(4): 453-459 (2013), which is hereby incorporated by reference in its entirety).


Example 24: Definition of a Further Minimal Epitope for mAb 5133 and Characterization of the Interaction of mAb 5133 with N-Acetyl-D-Glucosamine as Determined by X-Ray Crystallography

The specificity of mAb 5133 for glycosylated forms of recombinant variants of the S. aureus SdrC protein, a member of the Serine-Aspartate Repeat (SDR) family, was demonstrated in WO2015089073 to Torres et al., which is hereby incorporated by reference in its entirety. Specifically, following incubation of purified, recombinant SdrC proteins with whole cell lysates prepared from S. aureus strain JE2 (Fey et al., “A Genetic Resource for Rapid and Comprehensive Phenotype Screening of Nonessential Staphylococcus aureus Genes”, mBio Volume 4 Issue 1 e00537-12 (2013), which is hereby incorporated by reference in its entirety), specific protein bands were detected via western blot in contrast to those detected following incubation with lysates prepared from S. aureus NE105, an otherwise-isogenic derivative of JE2 that lacks expression of the SdgB glycosyltransferase (see WO2015089073 at EXAMPLE 14, which is hereby incorporate by reference in its entirety). Further, incubation of purified, recombinant SdrC proteins with a recombinant form of the SdgB glycosyltransferase similarly yielded the mAb 5133 specific epitope in a manner that was dependent on the presence of uridine diphosphate N-acetylglucosamine (UDP-GlcNac) (PCT/US2014/069347; EXAMPLE 15).


In EXAMPLE 1 herein, the minimal epitope for mAb 5133 was further defined through studies of mAb5133 binding to a synthetic peptide in the presence or absence of in vitro glycosylation with recombinant S. aureus SdgB glycosyltransferase which indicated that (i) that the epitope target of mAb 5133 and mAb 5133-FN3 fusion proteins can be defined minimally as a peptide sequence containing as few as ten copies of the SD repeat sequence that has been modified by the S. aureus SdgB glycosyltransferase in the presence of UDP-GlcNac, and (ii) that no other sequences from the SdrC protein, or other S. aureus SDR family members [Clumping Factor A (ClfA), Clumping Factor B (ClfB), SdrD or SdrE], are necessary components of the minimal antigen epitope recognized by mAb 5133.


As demonstrated herein, that a minimal epitope for mAb 5133 can be further defined as a single GlcNac modified Serine residue in the context of a peptide comprised often SD repeat units. Further, specifics of the interaction of mAb 5133 with the GlcNac moiety are apparent from a high-resolution structure of the variable region of mAb 5133 determined in the presence of GlcNac.


Procedures.


Peptides, Proteins & Reagents.


For peptide studies, a series of twenty eight (28) residue peptides were synthesized and purified (New England Peptide, Inc., Gardner, Mass.) with the following sequences:









(i)


(SEQ ID NO: 670)


(N)-LC-Biotin-SDSDSDSDSDSDSDSDSDSDHHHHHHHH-(C)





referred to herein as the ‘SD peptide’;





(ii)


(SEQ ID NO: 1084)


(N)-LC-Biotin-TDTDTDTDTDTDTDTDTDTDHHHHHHHH-(C)





referred to herein as the ‘TD peptide’;





(iii)


(SEQ ID NO: 1085)


(N)-LC-Biotin-SDSDSDSDSDSDSDSDSDSGlcNacDHHHHHHHH-





(C) referred to herein as the ‘SD-GlcNac peptide’.






Each peptide bears an eight residue poly-Histidine sequence and is additionally modified with an amino-terminal biotin moiety attached via a long chain (LC) linker. The ‘SD-GlcNac peptide’ was synthesized with a single GlcNac introduced on the carboxyl-terminal serine residue.


For in vitro glycosylation reactions, 100 g of either peptide was incubated with 4 μg of recombinant SdgB protein in 100 μL of 100 mM Tris pH 7.5 containing 10% glycerol and 30 μg of uridine diphosphate N-acetylglucosamine (UDP-GlcNac) at 37 C° for 1 hour. Analysis of the extent of in vitro glycosylation was determined by matrix-assisted laser desorption/ionization (MALDI) analysis. The binding of mAb 5133 to the SD, TD and SD-GlcNAc peptides (+/− in vitro SdgB mediated glycosylation) was determined using a plate-based ELISA format wherein the biotinylated peptides were captured on high binding 96-well ELISA plates (Nunc) coated with streptavidin at 5 μg/mL in PBS and incubated overnight at 4° C. Detection of bound test articles was performed using an HRP-conjugated F(ab′)2 fragment donkey anti-human IgG (H+L) (Jackson Immunoresearch 709-006-149 lot 112932) and detection of streptavidin plate-bound SD peptide (+/− glycosylation) by use of an HRP-conjugated anti-polyhistidine antibody (R&D Systems MAB050H polyhistidine HRP MAb Clone AD1.1.10). POD Chemiluminescence substrate (Roche-cat#11582950001) was then added to the plates and absorbance was read immediately on the Perkin Elmer EnVision Multilabel Reader at 405 nm. The data were analyzed using GraphPad Prism. Values were transformed to a log scale and fit using a non-linear regression sigmoidal dose-response equation resulting in an eleven point binding curve for each antibody against the SD peptides (+/− glycosylation) antigen.


A recombinant form of the SdgB glycosyltransferase (SEQ ID NO: 99) was purified as described in EXAMPLE 1. SM1B229 (SEQ ID NOs: 1082 HC and 1083 LC; construct 36 in Table 1), a Fab variant of mAb 5133, was produced by transient expression in HEK 293 cells, and purified by Ni-affinity chromatography, SEC, and ion exchange in a final buffer of 20 mM MES pH 6.5, 0.15 M NaCl. N-Acetylglucosamine (GlcNAc) was purchased from Sigma-Aldrich (Catalog number A8625). For co-crystallization, the SM1B229 Fab was mixed with concentrated GlcNAc to a final concentration of 100 mM. The final sample was 16 mg/mL SM1B229 Fab in 20 mM MES pH 6.5, 0.15 M NaCl, 100 mM GlcNAc.


Crystallization.


Crystallization screening was performed with seeding using crystal seeds of SM1B229 Fab in 20% PEG 3350, 0.1 M ammonium nitrate, 0.1 M potassium formate.


Data Collection and Processing.


A crystal was harvested from 20.2% PEG3350, 0.2 M sodium fluoride and mixed with cryo-protectant solution composed of 21.6% PEG 3350, 0.2 M sodium fluoride, 20% glycerol. The crystal was flash-cooled in liquid nitrogen. The SM1B229+GlcNAc X-ray diffraction data were collected at the Advanced Photon Source (APS, Argonne National Laboratory on beamline IMCA-CAT and detected with a Pilatus 6M detector. Diffraction intensities were processed with the X-ray Detector Software (XDS) software package.


Structure Determination and Analysis.


Molecular replacement was performed using Phaser (Read, “Pushing the boundaries of molecular replacement with maximum likelihood,” Acta. Crystallogr. D. Biol. Crystallogr. 57(10): 1373-1382 (2001), which is hereby incorporated by reference in its entirety) with a search model composed of the free SM1B229 Fab structure. Refinement was carried out with Phenix (Adams et al., “Recent developments in the PHENIX software for automated crystallographic structure determination”, J. Synchrotron Radiat. 11(1): 53-55 (2004), which is hereby incorporated by reference in its entirety) and model fitting with COOT (Emsley et al., “Coot: model-building tools for molecular graphics,” Acta. Crystallogr. D. Biol. Crystallogr. 60(12 Pt 1): 2126-2132 (2004), which is hereby incorporated by reference in its entirety). The refinement statistics are summarized in Table 3. All graphics was generated with Pymol (Schrodinger LLC., www.pymol.org) and all other calculations were carried out in CCP4 (Collaborative Computational project 1994). The SM1B229 Fab/GlcNac co-crystal structure was solved to 2.50 Å resolution.









TABLE 3





shows X-ray data statistics and refinement


statistics for a structure determined for


SM1B229 (a Fab variant of mAb 5133)


in the presence of GlcNac







Data collection








Content
SM1B229 + GlcNAc


Mother Liquor
20.2% PEG3350, 0.2M NaF


Cryo
21.6% PEG 3350, 0.2M NaF, 20% glycerol


Source/Detector
APS IMCA-CAT/Pilatus 6M


Wavelength (Å)
1.000


Temperature (K)
100


Distance (mm)
300


Total rotation (°)
180


Exp (sec)/0.5°
0.50


Space group
P1


Unit cell axes (Å)
78.19, 81.42, 89.82


Unit cell angles (°)
84.422, 66.391, 69.181


Molecules/asym. unit
4


Vm (Å3/Da)/solv. (%)
2.45/50









Resolution (Å)
50-2.47
(2.53-2.47)


No. measured reflections
76613
(2518)


No. unique reflections
49804
(1746)


Completeness (%)
72.9
(34.5)


Redundancy
1.54
(1.44)


R-merge
7.6
59.6








Rp.i.m.
0.076









<I/σ> (avg)
7.05
(1.10)








B-factor (Wilson) (Å2)
39.05







Structure Refinement









Resolution (Å)
41.10-2.50
(2.56-2.50)


No. reflections in refinement
47751
(4651)








Number of atoms
13353


Number of solvent atoms
331









Recryst (%)
21.49
(31.17)


Rfree (%)
28.40
(37.08)








RMSD bond lengths (Å)
0.01


RMSD bond angles (°)
1.318


Mean B factors (Å2)
41.61


Ramachandran plot



Favored (%)
96.8


Allowed (%)
2.9


Outliers (%)
0.3









Results.


To further define a minimal epitope for mAb 5133, a series of synthetic peptides with or without in vitro glycosylation with the SdgB glycosyltransferase were employed. As is shown in FIG. 24A, no mAb 5133 binding is apparent with the SD peptide in the absence of glycosylation. In contrast, potent binding is observed following in vitro modification with the SdgB glycosyltransferase in the presence of UDP-GlcNac. As expected, no binding of mAb 5133 is apparent with either the TD peptide with or without prior treatment with SdgB and no glycosylation of the TD peptide was apparent via MALDI analysis. These data substantiate the specificity of the SdgB glycosyltransferase in appending GlcNac specifically to the serine residues of SD repeat peptides or proteins. Finally, the chemical introduction of a single GlcNac moiety on the carboxyl-terminal Serine residue of the ‘SD-GlcNac’ peptide was observed to create a binding epitope for mAb 5133 with an apparent binding affinity approximately ˜400-fold weaker than that observed with the SdgB-modified SD peptide.


The X-ray crystal structure of SM1B229 (a Fab variant of mAb 5133) in complex with N-Acetylglucosamine (GlcNAc) was determined at 2.50 Å resolution. Table 3 shows the X-ray data statistics and refinement statistics for a structure determined for SM1B229 (a Fab variant of mAb 5133) in the presence of GlcNac. There are four molecules per asymmetric unit (heavy chain ID's: H, A, C, E; light chain ID's: L, B, D, F). GlcNAc was found only in two copies: HL and AB, where the GlcNAc molecule binds to chain H and chain A. The variable regions of HL and AB superimpose with rmsd=0.27 and GlcNAc is in the same orientation for both copies. Structural analysis was performed with copy AB. As is shown in FIG. 24B, GlcNAc is positioned in the binding pocket formed by residues R98-H109 of the H3-CDR (F). Binding to GlcNAc is mediated by hydrogen bonding interactions from side-chain hydroxyl groups of T103 and Y106 and main-chain hydrogen bonding from G100, Y105, and Y106. There is also a stacking interaction between Y106 and the glucopyranosyl ring of GlcNAc (FIG. 24B-24C). The light chain is not involved in the interaction.


GlcNAc modification of serine residues creates an antigen that is predicted to be highly polar and acidic. The electrostatic surface potential of SM1B229 reveals a basic pocket that is formed by CDR-H3, composed of the amino acids indicated in the variable heavy region sequence shown in FIG. 24C (see bold and underlined sequence). Tyr32(VH) and Tyr91(VL) line and complete the pocket. In addition to the identified binding site for GlcNAc, the surrounding basic CDR-H3 (Arg and/or His) residues that line the pocket likely interact with the acidic aspartate residue(s) of the SDR protein.


Summary.


The studies described herein further define a minimal binding epitope for mAb 5133 as a single GlcNac modified serine residue in the context of an SD repeat sequence. The structure of SM1B229 (a Fab variant of mAb 5133) in complex with GlcNAc reveals unique interactions with features of the GlcNac moiety. Finally, inspection of the antigen binding pocket reveals residues that are predicted to engage the acidic aspartate residues of the antigen and implies that multiple SerGlcNaCAsp units may be accommodated.


Example 25: Characterization of Fibronectin Type III (FN3) Domains that Bind Alpha Hemolysin (Hla) of Staphylococcus aureus

Herein is described the characterization of fibronectin type III (FN3) domain variants which bind the alpha hemolysin (Hla) protein of Staphylococcus aureus.


Procedures.


Protein Reagents.


Test articles included in these studies included recombinant, purified polyhistidine-tagged versions of Luk967 (SEQ ID NO: 1097), Luk969 (SEQ ID NO: 1099), Luk982 (SEQ ID NO: 1112), Luk1012 (SEQ ID NO: 1142), Luk970 (SEQ ID NO: 1100) that were selected as Hla binders and the parental control FN3 binding domain protein TENCON parent (SEQ ID NO: 1241); all were purified from E coli using standard methods by nickel affinity chromatography. A poly-histidine tagged variant of a toxoid (H35L) form of Hla (Menzies et al., “Site-directed mutagenesis of the alpha-toxin gene of Staphylococcus aureus: role of histidines in toxin activity in vitro and in a murine model,” Infect. Immun. 62:1843-47 (1994), which is hereby incorporated by reference in its entirety) was purified from E. coli by nickel affinity chromatography and corresponds to SED ID NO: 1086. For ELISA assays, HlaH35L was biotinylated in vitro using the SureLINK™ Chromophoric Biotin Labeling Kit (KPL, Inc.). Human serum albumin (HSA) conjugated with biotin (10-20 moles Biotin per mole of albumin) was purchased from Rockland Immunochemicals Inc. (Product #009-0633). A mouse monoclonal [8B7] specific to alpha-hemolysin was purchased from IBT Bioservices (Product #0210-001). Finally, an HRP-conjugated monoclonal antibody specific for the detection of poly-histidine sequences was purchased from R&D Systems (Product #MAB050H).


ELISA assays. The relative binding of the FN3 domain proteins and control test articles to purified, recombinant HlaH35L protein and HSA was determined by ELISA. Briefly, 100l of a 5 μg/mL solution of streptavidin (in PBS) was added per well of a 96 well White Maxisorp plate (Nunc-cat#436110) and incubated overnight at 4° C. Wells were then washed 3× with TBST (50 mM Tris.HCl, pH 7.4, 150 mM NaCl, 0.1% Tween 20) and blocked with 300 μL/well with StartingBlock T20 (Pierce cat#37543) and incubated 45-60 minutes at room temperature (RT). The plate was then washed 3 times with TBST and 0.2 μg of biotinylated versions of the target antigens (HSA or HlaH35L in 100 μL) were added to each test well and the plate incubated 45-60 minutes at RT with gentle shaking. The plate was then washed 3 times with TBST. Test articles were diluted to 1 μM in StartingBlock T20 and 100 μL added to test wells and the plate incubated 45-60 minutes at RT with gentle shaking. The plate was then washed 3 times with TBST. For detection of bound FN3 domain test articles, 100 μL/well of a polyclonal anti-FN3-HRP antibody diluted 1:5000 in Starting block T20 was added and the plate incubated for 45-60 min at RT with gentle shaking. The plate was then washed 3 times with TBST. For detection of bound test articles, 100 μL/well of a peroxidase-conjugated, F(ab′)2 fragment of a goat anti-mouse IgG, FC-γ fragment specific antibody (Jackson Immuno Research product 115-036-071) diluted 1:5000 in Starting block T20 was added and the plate incubated for 45-60 min at RT with gentle shaking. The plate was then washed 3 times with TBST. To detect bound F(ab′)2 fragment of the goat anti-mouse antibody, 100 μL/well of the POD Chemiluminescence substrate (Roche-cat#11582950001) was added immediately prior to reading plates and the plates read using an Envision reader within 15 minutes of the substrate addition.


Results.



FIG. 25A shows the relative ELISA signal detected for each of the test articles for both HSA and the HlaH35L proteins. As expected, the FN3 domain proteins exhibit a range of apparent potency in binding the HlaH35L protein but show minimal if any detectable binding to HSA. Specific binding of the ‘8B7’ mouse monoclonal antibody to the HlaH35L protein is also apparent although the signal is weaker than some of the FN3 domain proteins under the conditions tested. Finally, as a control, detection of the plate-bound HlaH35L protein is shown through detection using the anti-His monoclonal antibody.


Summary.


These data indicate that FN3 domain variants can be identified that exhibit specific binding to the S. aureus Hla (alpha hemolysin) protein. Based on the past characterization of related FN3 domain variants that selectively bind other toxin proteins of S. aureus (see WO2015089073 to Torres, which is hereby incorporated by reference in its entirety), it is anticipated that a subset of the FN3 domain variants described herein will neutralize the cytolytic activity of Hla.


Example 26: Characterization of Stem Domain Mutant Variants of LukAB that Retain the Neutralization Epitope of the FN3 Domain Protein Luk17

The so-called stem domains of the bi-component leukocidins of S. aureus are a key structural element necessary for the formation of the active oligomeric, pore forms of the toxins that pierce the host cell membrane and trigger cell death via osmotic lysis. Examination of the amino acid sequences of the S. aureus LukE and LukD sequences previously revealed glycine-rich motifs that localize to the stem domains of the monomer subunits of each leukocidin and leukocidin variants bearing in-frame deletions in these sequences and those of related leukocidins were found to be both inactive as toxins and exhibited a dominant-negative phenotype (Reyes-Robles et al., “Exploiting dominant-negative toxins to combat Staphylococcus aureus pathogenesis,” EMBO Reports 17(3): 428-40 (2016), which is hereby incorporated by reference in its entirety). Determination of a heterodimeric structure of LukAB in a pre-pore conformation (see EXAMPLE 21) led to the design of more extensive stem loop deletion variants and their characterization is described herein. Critically it is demonstrated herein that such mutants retain the LukAB neutralization epitope recognized by the Luk17 FN3 domain protein (see EXAMPLES 21 and 22) and therein have potential utility as protein antigens in vaccine compositions.


Procedures.


Proteins & Reagents.


Variants of LukA and LukB that bear in-frame deletions+/− insertions in the stem domain were designed and are described in Table 4. In each case, these stem mutants were created in the context of a toxoid variant of the LukAB protein (LukA E323A) (DuMont et al., “Identification of a Crucial Residue Required for Staphylococcus aureus LukAB Cytotoxicity and Receptor Recognition,” Infect Immun. 82(3):1268-76 (2014), which is hereby incorporated by reference in its entirety) and were further engineered to bear poly-histidine sequences at the amino-terminus of the LukA subunit. Recombinant LukAB stem mutant proteins were purified from E. coli cells co-expressing each subunit and purified by nickel affinity chromatography as soluble heterodimers from E. coli. For these studies, variants of the anti-LukAB Luk17 FN3 domain protein and the parental TENCON control FN3 domain protein were engineered that bear carboxyl-terminal extensions including both poly-histidine and streptavidin binding sequences and correspond to SEQ ID NOs: 1153 and 1152, respectively, and are herein referred to as Luk17-His-SA and TENCON-His-SA. Both proteins were purified by nickel affinity chromatography from an E. coli strain expressing biotin ligase.









TABLE 4







LukA and LukB Stem Domain Mutants











SEQ ID






NO:
Subunit
Stem Deletion*
Insertion
Construct Name





1149
LukA
Ser144-Gly149
None
LukABmut1


1150
LukB
Gly122-Ser126
None



1149
LukA
Ser144-Gly149
None
LukABmut2


1151
LukB
Gly130-Gly134
None



1022
LukA
Ser135-Gln174
(-SerGlyGly)2
LukABmut3


1029
LukB
Ser110-Pro151
(-SerGlyGly)2





*Amino acid numbering as per PDB file 4TW1






Luk17 FN3 Domain Binding Studies.


Binding of the biotinylated variants of the Luk17-His-SA and TENCON-His-SA FN3 domain proteins to LukAB and the LukAB stem mutant variants was determined by Bio-Layer Interferometry (BLI) using an OctetRED 384 instrument (forteBIO Inc.). Briefly, the Luk17-His-SA and TENCON-His-SA proteins were loaded onto Dip and Read™ Streptavidin (SA) Biosensor pins at a 10 μg/mL concentration in PBS pH7.2 for 5 minutes. A baseline was then set by washing with phosphate buffered saline (PBS, pH 7.2) for 1 minute. Thereafter, either LukAB or stem domain LukAB variants were loaded at a 10 ug/mL concentration in PBS (pH7.2) and association measured over a period of 5 minutes. The baseline was then reset by washing with phosphate buffered saline (PBS, pH 7.2) for 1 minute.


Results.



FIG. 26A shows the association between the Luk17-His-SA and TENCON-His-SA proteins for the LukAB toxoid protein (LukA E323A). As expected, in contrast to Luk17-His-SA, no binding is detected with the parental control FN3 domain protein TENCON-His-SA. FIGS. 26B-26C show the association between the Luk17-His-SA and TENCON-His-SA proteins for the LukABmut1 and LukABmut2 stem domain variants (DuMont et al., Infect Immun. 82(3): 1268-76 (2014), which is hereby incorporated by reference in its entirety) that bear targeted in-frame deletions of short glycine rich sequences in the stem domains of both LukA and LukB (Table 4). In each case, binding of the Luk17-His-SA protein is observed with no apparent binding of the TENCON-His-SA protein indicating that the LukAB neutralization epitope for the Luk17 FN3 protein is preserved in the LukABmut1 and LukABmut2 stem domain variants.


Similarly, FIG. 26D shows the association between the Luk17-His-SA and TENCON-His-SA proteins for the LukABmut3 variant in which entire stem domains of LukA and LukB have been replaced with a short, flexible peptide insertion sequence, i.e., (SerGlyGly)2. This stem mutant variant and related variants (see SEQ IDs 1023, 1024, 1025, 1030, 1031 and 1032) were designed through analysis of the heterodimeric structure of LukAB in a pre-pore conformation (see EXAMPLE 21). Again, binding of the Luk17-His-SA protein is observed with no apparent binding of the TENCON-His-SA protein indicating that the LukAB neutralization epitope for the Luk17 FN3 protein is preserved in the LukABmut3 stem domain variants.


Summary.


The studies described herein establish the potential of structure-based, designed variants of the LukAB leukotoxin as vaccine antigens. Specifically, LukAB variants that possess in-frame deletions in the loop sequences important for the formation of the active oligomeric pore forms necessary for localization in or at the host cell membrane retain a LukAB neutralization epitope for the Luk17 FN3 protein. Use of such LukAB variants as protein antigens in vaccine compositions is therein expected to elicit the generation antibodies that similarly bind and neutralize the cytolytic activity of LukAB.


Example 27: Anti-LukE FN3 Domain Proteins with Extended Serum Exposure Protect Mice from Lethal Doses of Leukotoxin LukED

FN3 domain proteins have molecular weights in the 10-11 kDa range and are rapidly cleared from the bloodstream via renal clearance as they are significantly below the glomerular filtration molecular weight cut-off of ˜70 kDa. Hence, the measured half-lives of FN3 domain proteins in serum are short (<1 hour). Herein, is described the characterization of designed fusion proteins wherein the parental FN3 domain proteins are genetically fused with partner protein domains that confer the property of extending the serum exposure of the fusion proteins. In one example, the anti-LukE FN3 domain protein Luk26 is fused with an FN3 domain protein that binds serum albumin. In a second example, the anti-LukE FN3 domain protein Luk26 is fused with an FN3 domain protein that binds transferrin. In a third example, the anti-LukE FN3 domain protein Luk26 is fused with a serum albumin binding domain protein. For each example, equivalent fusion proteins were also made to the parental FN3 domain protein, TENCON. In all cases, four copies of a G4S linker were employed at the fusion juncture and poly-histidine sequences were added at the carboxyl terminus to facilitate purification. Serum albumin and transferrin are two of the most highly abundant proteins in the blood and it was assumed that fusion of FN3 domain proteins to high affinity binding domains for each of these serum proteins would result in extension of the residence time (and therein exposure) in the serum of the fusion proteins when compared to the parental FN3 domain proteins.


Procedures.


Test Articles.


Table 5 provides details of the test articles employed in the studies described herein. In all cases, proteins were purified from E. coli by nickel affinity chromatography using standard methods and endotoxin contaminants removed using a commercial kit (Acrodisc® Units with Mustang® E Membrane, Pall Corp.).









TABLE 5







Test Articles Deployed.










SEQ ID


MW


NO:
Description
Abbreviation
(Da)













1177
Parental FN3 domain protein
TENCON
10,670


1077
Anti-LukE FN3 domain protein
LukE26
10,660


1171
Anti-serum albumin FN3 domain-
SAFN3-
21,876



TENCON fusion protein
TENCON



1172
Serum albumin binding domain-
SABD-TENCON
17,842



TENCON fusion protein




1173
Anti-transferrin FN3 domain-
TFFN3-
21,636



TENCON fusion protein
TENCON



1174
Anti-serum albumin FN3 domain-
SAFN3-LukE26
21,866



LukE26 fusion protein




1175
Serum albumin binding domain-
SABD-LukE26
17,832



LukE26 fusion protein




1176
Anti-transferrin FN3 domain-
TFFN3-
21,626



LukE26 fusion protein
LukE26









Detection of Test Articles in Serum.


Test articles were formulated in phosphate buffered saline (pH 7.2) and 500 μs of each (in a volume of 100 μL) was administered to female, 5-6 week old Swiss Webster ND4 mice via the retro-orbital (RO) route with a group of three animals employed per test article. 50 μL of blood was collected from each animal two hours post-dosing via the tail and +24 hour blood samples obtained via terminal cardiac puncture. At each time-point, the blood was collected into serum separator tubes, allowed to sit for at least 30 minutes, and then centrifuged for 5 minutes at 4500 rpm. Serum samples were then collected and frozen at −80° C. for subsequent analysis. For analysis by western blot, an aliquot of each serum sample was thawed on ice and the serum pooled for each test article for the +2 and +24 hour samples by combination of sera from each of the three animals per group. Each sample was diluted 1:10 in PBS and 2 μL loaded per lane on an SDS-PAGE gel. Separated proteins were transferred to a nitrocellulose membrane and the test articles detected by use of a fluorescently conjugated (IRDye® 680LT Infrared Dye (LICOR)) preparation of a rabbit monoclonal antibody specific for the framework of the TENCON FN3 binding domain protein and that is cross-reactive with the Luk26 FN3 domain protein.


LukED Neutralization Studies.


The FN3 domain test articles, starting at 7.2 μM, were titrated against a constant dose (LD90) of purified LukED on freshly isolated human PMNs. Freshly isolated human PMNs (hPMNs, 200,000) from healthy donors were intoxicated for 1 hour in a final volume of 100 μl in RPMI+10 mM HEPES+0.1% human serum albumin. Following a 1 hour intoxication in a 37° C. CO2 incubator, 25 μl of supernatant was carefully transferred to a new plate after spinning the plate down at 1500 RPM for 10 mins. Cell Titer reagent (Promega) was added to the remaining cells and incubated for 1.5 hours. The 25 μl of supernatant were mixed with equal amounts of CytoTox-ONE™ Assay reagent (Promega) that rapidly measures the amount of released of lactate dehydrogenase (LDH) from cells with a damaged membrane. LDH released into the culture medium was measured with a 10-minute coupled enzymatic assay that results in the conversion of resazurin into a fluorescent resorufin product. For these ex vivo neutralization experiments, purified LukED was used at a final concentration of 72.5 nM (2.5 μg/mL per subunit).


LukED Intoxication Studies.


5 week old ND4 mice were treated with 130 μl of a 138. μM normalized stock of each test article via intravenous (IV) retroorbital administration in groups of 3 mice. After an hour, mice were intoxicated with purified toxin at 6 μg per subunit of LukED (lethal dose) IV and then monitored for signs of imminent death: labored breathing, ruffled fur, and paralysis/lack of movement. Mice that survived the first intoxication were then given a second lethal dose of LukED IV approximately 4.5 hours after the first lethal dose of LukED (for a total of 24 μg in 5 hrs). Mice were monitored for the same signs of imminent death as previously described. In a further study, mice were treated with SABD-LukE26 at doses corresponding to a 1×, 10× and 100× molar ratio to the administered LukED toxin and then challenged 5, 24 and 48 hours post-dosing.


Results.



FIG. 27A shows the analysis of serum samples from mice dosed with each of the test articles. As expected, neither the TENCON (Lanes 1) nor the LukE26 FN3 binding domain (Lanes 2) proteins were detected either +2 hours or +24 hours post administration. In contrast, each of the FN3 domain fusion proteins was detected both+2 hours and +24 hours post administration with the LukE26 fusion proteins exhibiting somewhat lower overall levels+24 hours post administration. These data indicate that fusion of either the TENCON or LukE26 FN3 binding domain proteins to either of the three protein fusion partners results in the expected increased residence time (and therein exposure) in the blood.



FIG. 27B shows the relative protection of mice following administration of a lethal dose of the LukED leukocidin one hour post dosing of SAFN3-TENCON, SAFN3-LukE26 and parental FN3 domain proteins. As expected based on the test article composition and serum exposure, only protection was observed with the SAFN3-LukE26 protein. Mice protected by administration of the SAFN3-LukE26 protein were then re-challenged approximately 4.5 hours after the first LukED challenge (for a total of 24 μg in 5 hrs) and FIG. 27C shows the relative protection of mice observed. Again, 100% protection was observed in the SAFN3-LukE26 μgroup.



FIG. 27D shows the relative protection of mice following administration of a lethal dose of the LukED leukocidin one hour post dosing of SABD-TENCON, SABD-LukE26 and parental FN3 domain proteins. As expected based on the test article composition and serum exposure, only protection was observed with the SABD-LukE26 protein. Mice protected by administration of the SABD-LukE26 protein were then re-challenged approximately 4.5 hours after the first LukED challenge (for a total of 24 μg in 5 hrs) and FIG. 27E shows the relative protection of mice observed. Again, 100% protection was observed in the SABD-LukE26 μgroup.



FIG. 27F shows the relative protection of mice following administration of a lethal dose of the LukED leukocidin one hour post dosing of TFFN3-LukE26, TFFN3-TENCON and parental FN3 domain proteins. As expected based on the test article composition and serum exposure, only protection is observed with the TFFN3-LukE26 protein.



FIGS. 27G-27H shows the extent of protection of LukED-mediated hPMN cytolysis observed in the presence of the test articles as determined by LDH release (FIG. 27G) and ATP quantitation as a measure of viable cells (FIG. 27H). As expected, only protection from of LukED-mediated hPMN cytolysis is observed with the four LukE26 bearing test articles.


Finally, FIG. 27I shows the extent of protection of mice following administration of sequential lethal doses of the LukED leukocidin 5, 24 and 48 hours post dosing of SABD-Luk26 at a 1×, 10× and 100× molar ratio of SABD-Luk26 over LukED. In this study, no protection is observed on challenge with LukED 5-hours post-dosing at a 1:1 molar ratio of SABD-Luk26 and LukED. In contrast, 100% protection is observed at both 5- and 24-hours post-dosing at 10:1 and 100:1 molar ratios of SABD-Luk26:LukED and for the 100:1 dose, 100% protection is observed to extend beyond 48 hours.


Summary.


The studies described herein establish that FN3 domain proteins that bind LukE and neutralize the cytolytic activity of LukED ex vivo are able to protect mice from lethal intoxication mediated by LukED toxin if they are fused to protein domains that bind serum proteins such as to extend their serum residence time and therein exposure. In the context of the design and development of protein biologics that neutralize the cytolytic activity of bacterial toxins, a number of fusion partners can be envisaged for toxin-targeting FN3 domain proteins that should extend serum residence time and exposure including appendage to immunoglobulins via the light and/or heavy chain sequences as exemplified elsewhere in this application.









TABLE 6







Nucleic Acid and Amino Acid Sequences of the Disclosure











SEQ ID






NO:
Type
Species
Description
Sequence














1
PRT
Artificial
Tencon-25
LPAPKNLVVSEVTEDSARLSWTAPDAAFDSFLI






QYQESEKVGEAIVLTVPGSERSYDLTGLKPGTE






YTVSIYGVKGGHRSNPLSAIFTT





2
PRT
Artificial
Linker
GGGGSGGGGSGGGGSGGGGS





3
PRT
Artificial
Tencon BC loop
TAPDAA





4
PRT
Artificial
Tencon FG loop
KGGHRSN





5
DNA
Artificial
POP2222
CGGCGGTTAGAACGCGGCTAC





6
DNA
Artificial
POP2250
CGGCGGTTAGAACGCGGCTACAATTAATAC





7
DNA
Artificial
DidLigRev
CATGATTACGCCAAGCTCAGAA





8
DNA
Artificial
MDD40
AGCCGCCGCCACCGGTTAATGGTGATGGTG






ATGGTGACCACCGGTGGTGAAGATCGCAGA






CAG





9
DNA
Artificial
MDD62
AAGAAGGAGAACCGGTATGCTGCCGGCGCC






GAAAAACCTGGTTGTTTCTCGTGTTACC





10
PRT

S. aureus

LukA
HHHHHHNSAHKDSQDQNKKEHVDKSQQKD






KRNVTNKDKNSTAPDDIGKNGKITKRTETVY






DEKTNILQNLQFDFIDDPTYDKNVLLVKKQGS






IHSNLKFESHKEEKNSNWLKYPSEYHVDFQV






KRNRKTEILDQLPKNKISTAKVDSTFSYSSGG






KFDSTKGIGRTSSNSYSKTISYNQQNYDTIASG






KNNNWHVHWSVIANDLKYGGEVKNRNDELL






FYRNTRIATVENPELSFASKYRYPALVRSGFN






PEFLTYLSNEKSNEKTQFEVTYTRNQDILKNR






PGIHYAPPILEKNKDGQRLIVTYEVDWKNKTV






KVVDKYSDDNKPYKAG





11
PRT

S. aureus

LukB
KINSEIKQVSEKNLDGDTKMYTRTATTSDSQK






NITQSLQFNFLTEPNYDKETVFIKAKGTIGSGL






RILDPNGYWNSTLRWPGSYSVSIQNVDDNNN






TNVTDFAPKNQDESREVKYTYGYKTGGDFSI






NRGGLTGNITKESNYSETISYQQPSYRTLLDQS






TSHKGVGWKVEAHLINNMGHDHTRQLTNDS






DNRTKSEIFSLTRNGNLWAKDNFTPKDKMPV






TVSEGFNPEFLAVMSHDKKDKGKSQFVVHYK






RSMDEFKIDWNRHGFWGYWSGENHVDKKEE






KLSALYEVDWKTHNVKFVKVLNDNEKK





12
PRT

S. aureus

LukD
MGSSHHHHHHSSGLVPAGSHMLAQHITPVSE






KKVDDKITLYKTTATSDNDKLNISQILTFNFIK






DKSYDKDTLVLKAAGNINSGYKKPNPKDYN






YSQFYWGGKYNVSVSSESNDAVNVVDYAPK






NQNEEFQVQQTLGYSYGGDINISNGLSGGLN






GSKSFSETINYKQESYRTTIDRKTNHKSIGWG






VEAHKIMNNGWGPYGRDSYDPTYGNELFLG






GRQSSSNAGQNFLPTHQMPLLARGNFNPEFIS






VLSHKQNDTKKSKIKVTYQREMDRYTNQWN






RLHWVGNNYKNQNTVTFTSTYEVDWQNHTV






KLIGTDSKETNPGV





13
PRT

S. aureus

LukE
MGSSHHHHHHSSGLVPAGSHMLNTNIENIGD






GAEVIKRTEDVSSKKWGVTQNVQFDFVKDK






KYNKDALIVKMQGFINSRTSFSDVKGSGYELT






KRMIWPFQYNIGLTTKDPNVSLINYLPKNKIE






TTDVGQTLGYNIGGNFQSAPSIGGNGSFNYSK






TISYTQKSYVSEVDKQNSKSVKWGVKANEFV






TPDGKKSAHDRYLFVQSPNGPTGSAREYFAP






DNQLPPLVQSGFNPSFITTLSHEKGSSDTSEFEI






SYGRNLDITYATLFPRTGIYAERKHNAFVNRN






FVVRYEVNWKTHEIKVKGHN





14
PRT
Artificial
Luk17 LukAB
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
WITYEEKFYRGEAIVLTVPGSERSYDLTGLKP





domain
GTEYKVWIVGVKGGQGSWPLSAIFTT





15
PRT
Artificial
Luk19 LukAB
LPAPKNLVVSRVTEDSARLSWYHAIHRLNHF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLAG





domain
LKPGTEYTVSIYGVLPDAFVSSNPLSAIFTT





16
PRT
Artificial
Luk20 LukAB
LPAPKNLVVSRVTEDSARLSWYHAIHRLNHF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGVLPDAFVSSNPLSAIFTT





17
PRT
Artificial
Luk24 LukAB
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
QIGYFELWPNGEAIVLTVPGSERSYDLTGLKP





domain
GTEYEVFIRGVKGGLYSYPLSAIFTT





18
PRT
Artificial
Luk8 LukD
LPAPKNLVVSRVTEDSARLSWKRKPWAPIFDS





binding FN3
FLIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVWDHAGPKYEIESNPLSAIFTT





19
PRT
Artificial
Luk9 LukD
LPAPKNLVVSRVTEDSARLSWDRTYSLLNYF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGVGGQHPTYESNPLSAIFTT





20
PRT
Artificial
Luk10 LukD
LPAPKNLVVSRVTEDSARLSWAASENAFVFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVGGKLHNQFEWLSNPLSAIFTT





21
PRT
Artificial
Luk11 LukD
LPAPKNLVVSRVTEDSARLSWRAKPWAPKFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVSAIKPGHTSNPLSAIFTT





22
PRT
Artificial
Luk12 LukD
LPAPKNLVVSRVTEDSARLSWRAKPWAPKFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVKASEKFIESNPLSAIFTT





23
PRT
Artificial
Luk21 LukD
LPAPKNLVVSRVTEDSARLSWVTKPWAEYFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVWDHAGPKYEIESNPLSAIFTT





24
PRT
Artificial
Luk22 LukD
LPAPKNLVVSRVTEDSARLSWRAKPWAPKFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYAVSIYGVKASEKFIESNPLSAIFTT





25
PRT
Artificial
Luk26 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
HIEYAEPWVWGEAIVLTVPGSERSYDLTGLKP





domain
GTEYVVFIGGVKGGHNSTPLSAIFTT





26
PRT
Artificial
Luk27 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSFP





binding FN3
IVYQEWQFYGEAIVLTVPGSERSYDLTGLKPG





domain
TEYLVDIYGVKGGSWSYPLSAIFTT





27
PRT
Artificial
Luk28 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
AIQYWEWWPPGEAIVLTVPGSERSYDLTGLK





domain
PGTEYGVIILGVKGGWYSNPLSAIFTT





28
PRT
Artificial
Luk29 LukE
LPAPKNLVVSRVTEDSARLSWDEQFVSNFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVFVPWDGFSEINYSNPLSAIFTT





29
PRT
Artificial
Luk30 LukE
LPAPKNLVVSRVTEDSARLSWAFNWNYFAFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVVALNTGNKKSNPLSAIFTT





30
PRT
Artificial
Luk31 LukE
LPAPNNLVVSRVTEDSARLSWDWDKYYTNR





binding FN3
FDSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVLVRDYIRAAEWYSNPLSA






IFTT





31
PRT
Artificial
Luk32 LukE
LPAPKNLVVSRVTEDSARLSWYHENAYLLFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVVYDLTPEKRSSNPLSAIFTT





32
PRT
Artificial
Luk33 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSFL





binding FN3
IQYQESEKVGEAIVLTVPGSERSYDLTGLKPG





domain
TEYTVSIYGVAFIPDEIEFSNPLSAIFTT





33
PRT
Artificial
Luk34 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSFL





binding FN3
IQYQESEKVGEAIVLTVPGSERSYDLTGPKPG





domain
TEYTVSIYGVVVVPHEFEFSNPLSAIFTT





34
PRT
Artificial
Luk35 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSFL





binding FN3
IQYQESEKVGEAIVLTVPGSERSYDLTGLKPG





domain
TEYTVSIYGVAHIPWEFEWSKPLSAIFTT





35
PRT
Artificial
Luk36 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSFL





binding FN3
IQYQESEKVGEAIVLTVPGSERSYDLTGLKPG





domain
TEYTVSIYGVADVPDEYEFSNPLSAIFTT





36
PRT
Artificial
Luk37 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSFL





binding FN3
IQYQESEKVGEAIVLTVPGSERSYDLTGLKPG





domain
TEYTVSIYGVVGWPLFIQSNPLSAIFTT





37
PRT
Artificial
Luk38 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSFL





binding FN3
IQYQESEKVGEAIVLTVPGSERSYDLTGLKPG





domain
TEYTVSIYGVELIYHGWLDFVFSNPLSAIFTT





38
PRT
Artificial
Luk39 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSFL





binding FN3
IQYQESEKVGEAIVLTVPGSERSYDLTGLKPG





domain
TEYTVSIYGVRVFYFSVEPTWFSNPLSAIFTT





39
PRT
Artificial
Luk40 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSFL





binding FN3
IQYQESEKVGEAIVLTVPGSERSYDLTGLKPG





domain
TEYTVSIYGVSYAGEPLLWIYSNPLSAIFTT





40
PRT
Artificial
Luk41 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSFL





binding FN3
IQYQESEKVGEAIVLTVPGSERSYDLTGLKPG





domain
TEYTVSIYGVSEVPYSEYWFSNPLSAIFTT





41
PRT
Artificial
Luk42 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSFL





binding FN3
IQYQESEKVGEAIVLTVPGSERSYDLTGLKPG





domain
TEYTVSIYGVVWGYRLTTEHSNPLSAIFTT





42
PRT
Artificial
Luk43 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSFL





binding FN3
IQYQESEKVGEAIVLTVPGSERSYDLTGLKPG





domain
TEYTVSIYGVNSFGRPTLNLFSNPLSAIFTT





43
PRT
Artificial
Luk44 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSFL





binding FN3
IQYQESEKVGEAIVLTVPGSERSYDLTGLKPG





domain
TEYTVSIYGVEWLQYYGETLFSNPLSAIFTT





44
PRT
Artificial
Luk45 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSFL





binding FN3
IQYQESEKVGEAIVLTVPGSERSYDLTGLKPG





domain
TEYTVSIYGVAWLTNAYEWEFSNPLSAIFTT





45
PRT
Artificial
Luk46 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
WIHYEESTWAGEAIVLTVPGSERSYDLTGLKP





domain
GTEYGVVIVGVKGGLKSHPLSAIFTT





46
PRT
Artificial
Luk47 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
GIQYFETTESGEAIVLTVPGSERSYDLTGLKPG





domain
TEYVVFISGVKGGPLSWPLSAIFTT





47
PRT
Artificial
Luk48 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
HIEYGEWWPTGEAIVLTVPGSERSYDLTGLKP





domain
GTEYGVLIVGVKGGFRSSPLSAIFTT





48
PRT
Artificial
Luk49 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
AIVYAEHWPAGEAIVLTVPGSERSYDLTGLKP





domain
GTEYNVTIPGVKGGKYSDPLSAIFTT





49
PRT
Artificial
Luk50 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
VIPYSEWWPVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYGVYIVGVKGGTWSAPLSAIFTT





50
PRT
Artificial
Luk51 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
QIHYFESEPGGEAIVLTVPGSERSYDLTGLKPG





domain
TEYVVFIIGVKGGWSSLPLSAIFTT





51
PRT
Artificial
Luk52 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
WIQYGEAQEFGEAIVLTVPGSERSYDLTGLKP





domain
GTEYIVFITGVKGGNKSYPLSAIFTT





52
PRT
Artificial
Luk53 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSFT





binding FN3
IQYFEAEANGEAIVLTVPGSERSYDLTGLKPG





domain
TEYLVFIVGVKGGHSSLPLSAIFTT





53
PRT
Artificial
Luk54 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAVFDSF





binding FN3
RIEYSEWWPIGEAIVLTVPGSERSYDLTGLKP





domain
GTEYGVVIAGVKGGGYSVPLSAIFTT





54
PRT
Artificial
Luk55 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
WIQYFESAGEGEAIVLTVPGSERSYDLTGLKP





domain
GTEYLVFIVGVKGGVPSYPLSAIFTT





55
PRT
Artificial
Luk56 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
YIQYIELEIGEAIVLTVPGSERSYDLTGLKPGTE





domain
YGVFISGVKGGWNSYPLSAIFTT





56
PRT
Artificial
Luk57 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFNSF





binding FN3
YIEYFEWFPAGEAIVLTVPGSERSYDLTGLKP





domain
GTEYAVIIHGVKGGQRSTPLSAIFTT





57
PRT
Artificial
Luk58 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
DIEYDESAHFGEAIVLTVPGSERSYDLTGLKP





domain
GTEYIVFIYGVKGGYASIPLSAIFTT





58
PRT
Artificial
Luk59 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
DISYNEFAWSGEAIVLTVPGSERSYDLTGLKP





domain
GTEYVVYIHGVKGGPTSYPLSAIFTT





59
PRT
Artificial
Luk60 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
DIQYWEWWPFGEAIVLTVPGSERSYDLTGLK





domain
PGTEYGVIILGVKGGFRSTPLSAIFTT





60
PRT
Human
CR5133 Heavy
EVQLVETGGGLVKPGGSLRLSCSASRFSFRDY





Chain
YMTWIRQAPGKGPEWVSHISGSGSTIYYADS






VRGRFTISRDNAKSSLYLQMDSLQADDTAVY






YCARGGRATSYYWVHWGPGTLVTVSSASTK






GPSVFPLAPSSKSTSGGTAALGCLVKDYFPEP






VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV






VTVPSSSLGTQTYICNVNHKPSNTKVDKKVEP






KSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDT






LMISRTPEVTCVVVDVSHEDPEVKFNWYVDG






VEVHNAKTKPREEQYNSTYRVVSVLTVLHQD






WLNGKEYKCKVSNKALPAPIEKTISKAKGQP






REPQVYTLPPSRDELTKNQVSLTCLVKGFYPS






DIAVEWESNGQPENNYKTTPPVLDSDGSFFLY






SKLTVDKSRWQQGNVFSCSVMHEALHNHYT






QKSLSLSPGK





61
PRT
Human
CR5133 Light
EIVLTQSPATLSLSPGERATLSCRASQSVSGYL





Chain
GWYQQKPGQAPRLLIYGASSRATGIPDRFSGS






GSGTDFTLTISRLEPEDFAVYYCQQYGSSPLTF






GGGTKLEIKRTVAAPSVFIFPPSDEQLKSGTAS






VVCLLNNFYPREAKVQWKVDNALQSGNSQE






SVTEQDSKDSTYSLSSTLTLSKADYEKHKVYA






CEVTHQGLSSPVTKSFNRGEC





62
PRT
Human
CR5133 PRASA
EVQLVETGGGLVKPGGSLRLSCSASRFSFRDY





Heavy Chain
YMTWIRQAPGKGPEWVSHISGSGSTIYYADS






VRGRFTISRDNAKSSLYLQMDSLQADDTAVY






YCARGGRATSYYWVHWGPGTLVTVSSASTK






GPSVFPLAPSSKSTSGGTAALGCLVKDYFPEP






VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV






VTVPSSSLGTQTYICNVNHKPSNTKVDKKVEP






KSCDKTHTCPPCPAPPVAGPDVFLFPPKPKDT






LMISRTPEVTCVVVDVSHEDPEVKFNWYVDG






VEVHNAKTKPREEQYNSTYRVVSVLTVLHQD






WLNGKEYKCKVSNAALPAPIAKTISKAKGQP






REPQVYTLPPSRDELTKNQVSLTCLVKGFYPS






DIAVEWESNGQPENNYKTTPPVLDSDGSFFLY






SKLTVDKSRWQQGNVFSCSVMHEALHNHYT






QKSLSLSPGK





63
PRT
Human
CR5133 PRASA
EIVLTQSPATLSLSPGERATLSCRASQSVSGYL





Light Chain
GWYQQKPGQAPRLLIYGASSRATGIPDRFSGS






GSGTDFTLTISRLEPEDFAVYYCQQYGSSPLTF






GGGTKLEIKRTVAAPSVFIFPPSDEQLKSGTAS






VVCLLNNFYPREAKVQWKVDNALQSGNSQE






SVTEQDSKDSTYSLSSTLTLSKADYEKHKVYA






CEVTHQGLSSPVTKSFNRGEC





64
PRT
Human
CR5133 A6
EVQLVETGGGLVKPGGSLRLSCSASRFSFRDY





Heavy Chain
YMTWIRQAPGKGPEWVSHISGSGSTIYYADS






VRGRFTISRDNAKSSLYLQMDSLQADDTAVY






YCARGGRATSYYWVHWGPGTLVTVSSASTK






GPSVFPLAPSSKSTSGGTAALGCLVKDYFPEP






VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV






VTVPSSSLGTQTYICNVNHKPSNTKVDKKVEP






KSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDT






LMISRTPEVTCVVVDVSHEDPEVKFNWYVDG






VEVHNAKTKPREEQYNSTYRVVSVLTVLHQD






WLNGKEYKCKVSNKALPAPIEKTISKAKGQP






REPQVYTLPPSRDELTKNQVSLTCLVKGFYPS






DIAVEWESNGQPENNYKTTPPVLDSDGSFFLY






SKLTVDKSRWQQGNVFSCSVMHEALHNRFT






QKSLSLSPGK





65
PRT
Human
CR5133 A6 Light
EIVLTQSPATLSLSPGERATLSCRASQSVSGYL





Chain
GWYQQKPGQAPRLLIYGASSRATGIPDRFSGS






GSGTDFTLTISRLEPEDFAVYYCQQYGSSPLTF






GGGTKLEIKRTVAAPSVFIFPPSDEQLKSGTAS






VVCLLNNFYPREAKVQWKVDNALQSGNSQE






SVTEQDSKDSTYSLSSTLTLSKADYEKHKVYA






CEVTHQGLSSPVTKSFNRGEC





66
PRT
Human
CR5133 PRASA
EVQLVETGGGLVKPGGSLRLSCSASRFSFRDY





A6 Heavy Chain
YMTWIRQAPGKGPEWVSHISGSGSTIYYADS






VRGRFTISRDNAKSSLYLQMDSLQADDTAVY






YCARGGRATSYYWVHWGPGTLVTVSSASTK






GPSVFPLAPSSKSTSGGTAALGCLVKDYFPEP






VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV






VTVPSSSLGTQTYICNVNHKPSNTKVDKKVEP






KSCDKTHTCPPCPAPPVAGPDVFLFPPKPKDT






LMISRTPEVTCVVVDVSHEDPEVKFNWYVDG






VEVHNAKTKPREEQYNSTYRVVSVLTVLHQD






WLNGKEYKCKVSNAALPAPIAKTISKAKGQP






REPQVYTLPPSRDELTKNQVSLTCLVKGFYPS






DIAVEWESNGQPENNYKTTPPVLDSDGSFFLY






SKLTVDKSRWQQGNVFSCSVMHEALHNRFT






QKSLSLSPGK





67
PRT
Human
CR5133 PRASA
EIVLTQSPATLSLSPGERATLSCRASQSVSGYL





A6 Light Chain
GWYQQKPGQAPRLLIYGASSRATGIPDRFSGS






GSGTDFTLTISRLEPEDFAVYYCQQYGSSPLTF






GGGTKLEIKRTVAAPSVFIFPPSDEQLKSGTAS






VVCLLNNFYPREAKVQWKVDNALQSGNSQE






SVTEQDSKDSTYSLSSTLTLSKADYEKHKVYA






CEVTHQGLSSPVTKSFNRGEC





68
PRT
Artificial
CR5133 PRASA
EVQLVETGGGLVKPGGSLRLSCSASRFSFRDY





A6 LC-D Heavy
YMTWIRQAPGKGPEWVSHISGSGSTIYYADS





Chain
VRGRFTISRDNAKSSLYLQMDSLQADDTAVY






YCARGGRATSYYWVHWGPGTLVTVSSASTK






GPSVFPLAPSSKSTSGGTAALGCLVKDYFPEP






VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV






VTVPSSSLGTQTYICNVNHKPSNTKVDKKVEP






KSCDKTHTCPPCPAPPVAGPDVFLFPPKPKDT






LMISRTPEVTCVVVDVSHEDPEVKFNWYVDG






VEVHNAKTKPREEQYNSTYRVVSVLTVLHQD






WLNGKEYKCKVSNAALPAPIAKTISKAKGQP






REPQVYTLPPSRDELTKNQVSLTCLVKGFYPS






DIAVEWESNGQPENNYKTTPPVLDSDGSFFLY






SKLTVDKSRWQQGNVFSCSVMHEALHNRFT






QKSLSLSPGK





69
PRT
Artificial
CR5133 PRASA
EIVLTQSPATLSLSPGERATLSCRASQSVSGYL





A6 LC-D Light
GWYQQKPGQAPRLLIYGASSRATGIPDRFSGS





Chain
GSGTDFTLTISRLEPEDFAVYYCQQYGSSPLTF






GGGTKLEIKRTVAAPSVFIFPPSDEQLKSGTAS






VVCLLNNFYPREAKVQWKVDNALQSGNSQE






SVTEQDSKDSTYSLSSTLTLSKADYEKHKVYA






CEVTHQGLSSPVTKSFNRGECGGGGSGGGGS






GGGGSGGGGSLPAPKNLVVSRVTEDSARLSW






RAKPWAPKFDSFLIQYQESEKVGEAIVLTVPG






SERSYDLTGLKPGTEYTVSIYGVKASEKFIESN






PLSAIFTT





70
PRT
Artificial
CR5133 PRASA
EVQLVETGGGLVKPGGSLRLSCSASRFSFRDY





A6 HC-AB
YMTWIRQAPGKGPEWVSHISGSGSTIYYADS





Heavy Chain
VRGRFTISRDNAKSSLYLQMDSLQADDTAVY






YCARGGRATSYYWVHWGPGTLVTVSSASTK






GPSVFPLAPSSKSTSGGTAALGCLVKDYFPEP






VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV






VTVPSSSLGTQTYICNVNHKPSNTKVDKKVEP






KSCDKTHTCPPCPAPPVAGPDVFLFPPKPKDT






LMISRTPEVTCVVVDVSHEDPEVKFNWYVDG






VEVHNAKTKPREEQYNSTYRVVSVLTVLHQD






WLNGKEYKCKVSNAALPAPIAKTISKAKGQP






REPQVYTLPPSRDELTKNQVSLTCLVKGFYPS






DIAVEWESNGQPENNYKTTPPVLDSDGSFFLY






SKLTVDKSRWQQGNVFSCSVMHEALHNRFT






QKSLSLSPGKGGGGSGGGGSGGGGSGGGGS






MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FWITYEEKFYRGEAIVLTVPGSERSYDLTGLK






PGTEYKVWIVGVKGGQGSWPLSAIFTT





71
PRT
Artificial
CR5133 PRASA
EIVLTQSPATLSLSPGERATLSCRASQSVSGYL





A6 HC-AB Light
GWYQQKPGQAPRLLIYGASSRATGIPDRFSGS





Chain
GSGTDFTLTISRLEPEDFAVYYCQQYGSSPLTF






GGGTKLEIKRTVAAPSVFIFPPSDEQLKSGTAS






VVCLLNNFYPREAKVQWKVDNALQSGNSQE






SVTEQDSKDSTYSLSSTLTLSKADYEKHKVYA






CEVTHQGLSSPVTKSFNRGEC





72
PRT
Artificial
CR5133 PRASA
EVQLVETGGGLVKPGGSLRLSCSASRFSFRDY





A6 LC-D HC-AB
YMTWIRQAPGKGPEWVSHISGSGSTIYYADS





Heavy Chain
VRGRFTISRDNAKSSLYLQMDSLQADDTAVY






YCARGGRATSYYWVHWGPGTLVTVSSASTK






GPSVFPLAPSSKSTSGGTAALGCLVKDYFPEP






VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV






VTVPSSSLGTQTYICNVNHKPSNTKVDKKVEP






KSCDKTHTCPPCPAPPVAGPDVFLFPPKPKDT






LMISRTPEVTCVVVDVSHEDPEVKFNWYVDG






VEVHNAKTKPREEQYNSTYRVVSVLTVLHQD






WLNGKEYKCKVSNAALPAPIAKTISKAKGQP






REPQVYTLPPSRDELTKNQVSLTCLVKGFYPS






DIAVEWESNGQPENNYKTTPPVLDSDGSFFLY






SKLTVDKSRWQQGNVFSCSVMHEALHNRFT






QKSLSLSPGKGGGGSGGGGSGGGGSGGGGS






MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FWITYEEKFYRGEAIVLTVPGSERSYDLTGLK






PGTEYKVWIVGVKGGQGSWPLSAIFTT





73
PRT
Artificial
CR5133 PRASA
EIVLTQSPATLSLSPGERATLSCRASQSVSGYL





A6 LC-D HC-AB
GWYQQKPGQAPRLLIYGASSRATGIPDRFSGS





Light Chain
GSGTDFTLTISRLEPEDFAVYYCQQYGSSPLTF






GGGTKLEIKRTVAAPSVFIFPPSDEQLKSGTAS






VVCLLNNFYPREAKVQWKVDNALQSGNSQE






SVTEQDSKDSTYSLSSTLTLSKADYEKHKVYA






CEVTHQGLSSPVTKSFNRGECGGGGSGGGGS






GGGGSGGGGSLPAPKNLVVSRVTEDSARLSW






RAKPWAPKFDSFLIQYQESEKVGEAIVLTVPG






SERSYDLTGLKPGTEYTVSIYGVKASEKFIESN






PLSAIFTT





74
PRT
Artificial
CR5133 PRASA
EVQLVETGGGLVKPGGSLRLSCSASRFSFRDY





A6 HC-D Heavy
YMTWIRQAPGKGPEWVSHISGSGSTIYYADS





Chain
VRGRFTISRDNAKSSLYLQMDSLQADDTAVY






YCARGGRATSYYWVHWGPGTLVTVSSASTK






GPSVFPLAPSSKSTSGGTAALGCLVKDYFPEP






VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV






VTVPSSSLGTQTYICNVNHKPSNTKVDKKVEP






KSCDKTHTCPPCPAPPVAGPDVFLFPPKPKDT






LMISRTPEVTCVVVDVSHEDPEVKFNWYVDG






VEVHNAKTKPREEQYNSTYRVVSVLTVLHQD






WLNGKEYKCKVSNAALPAPIAKTISKAKGQP






REPQVYTLPPSRDELTKNQVSLTCLVKGFYPS






DIAVEWESNGQPENNYKTTPPVLDSDGSFFLY






SKLTVDKSRWQQGNVFSCSVMHEALHNRFT






QKSLSLSPGKGGGGSGGGGSGGGGSGGGGSL






PAPKNLVVSRVTEDSARLSWRAKPWAPKFDS






FLIQYQESEKVGEAIVLTVPGSERSYDLTGLKP






GTEYTVSIYGVKASEKFIESNPLSAIFTT





75
PRT
Artificial
CR5133 PRASA
EIVLTQSPATLSLSPGERATLSCRASQSVSGYL





A6 HC-D Light
GWYQQKPGQAPRLLIYGASSRATGIPDRFSGS





Chain
GSGTDFTLTISRLEPEDFAVYYCQQYGSSPLTF






GGGTKLEIKRTVAAPSVFIFPPSDEQLKSGTAS






VVCLLNNFYPREAKVQWKVDNALQSGNSQE






SVTEQDSKDSTYSLSSTLTLSKADYEKHKVYA






CEVTHQGLSSPVTKSFNRGEC





76
PRT
Artificial
CR5133 PRASA
EVQLVETGGGLVKPGGSLRLSCSASRFSFRDY





A6 HC AB-D
YMTWIRQAPGKGPEWVSHISGSGSTIYYADS





Heavy Chain
VRGRFTISRDNAKSSLYLQMDSLQADDTAVY






YCARGGRATSYYWVHWGPGTLVTVSSASTK






GPSVFPLAPSSKSTSGGTAALGCLVKDYFPEP






VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV






VTVPSSSLGTQTYICNVNHKPSNTKVDKKVEP






KSCDKTHTCPPCPAPPVAGPDVFLFPPKPKDT






LMISRTPEVTCVVVDVSHEDPEVKFNWYVDG






VEVHNAKTKPREEQYNSTYRVVSVLTVLHQD






WLNGKEYKCKVSNAALPAPIAKTISKAKGQP






REPQVYTLPPSRDELTKNQVSLTCLVKGFYPS






DIAVEWESNGQPENNYKTTPPVLDSDGSFFLY






SKLTVDKSRWQQGNVFSCSVMHEALHNRFT






QKSLSLSPGKGGGGSGGGGSGGGGSGGGGS






MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FWITYEEKFYRGEAIVLTVPGSERSYDLTGLK






PGTEYKVWIVGVKGGQGSWPLSAIFTTGGGG






SGGGGSGGGGSGGGGSLPAPKNLVVSRVTED






SARLSWRAKPWAPKFDSFLIQYQESEKVGEAI






VLTVPGSERSYDLTGLKPGTEYTVSIYGVKAS






EKFIESNPLSAIFTT





77
PRT
Artificial
CR5133 PRASA
EIVLTQSPATLSLSPGERATLSCRASQSVSGYL





A6 HC AB-D
GWYQQKPGQAPRLLIYGASSRATGIPDRFSGS





Light Chain
GSGTDFTLTISRLEPEDFAVYYCQQYGSSPLTF






GGGTKLEIKRTVAAPSVFIFPPSDEQLKSGTAS






VVCLLNNFYPREAKVQWKVDNALQSGNSQE






SVTEQDSKDSTYSLSSTLTLSKADYEKHKVYA






CEVTHQGLSSPVTKSFNRGEC





78
PRT
Artificial
CR5133 PRASA
EVQLVETGGGLVKPGGSLRLSCSASRFSFRDY





A6 HC D-AB
YMTWIRQAPGKGPEWVSHISGSGSTIYYADS





Heavy Chain
VRGRFTISRDNAKSSLYLQMDSLQADDTAVY






YCARGGRATSYYWVHWGPGTLVTVSSASTK






GPSVFPLAPSSKSTSGGTAALGCLVKDYFPEP






VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV






VTVPSSSLGTQTYICNVNHKPSNTKVDKKVEP






KSCDKTHTCPPCPAPPVAGPDVFLFPPKPKDT






LMISRTPEVTCVVVDVSHEDPEVKFNWYVDG






VEVHNAKTKPREEQYNSTYRVVSVLTVLHQD






WLNGKEYKCKVSNAALPAPIAKTISKAKGQP






REPQVYTLPPSRDELTKNQVSLTCLVKGFYPS






DIAVEWESNGQPENNYKTTPPVLDSDGSFFLY






SKLTVDKSRWQQGNVFSCSVMHEALHNRFT






QKSLSLSPGKGGGGSGGGGSGGGGSGGGGSL






PAPKNLVVSRVTEDSARLSWRAKPWAPKFDS






FLIQYQESEKVGEAIVLTVPGSERSYDLTGLKP






GTEYTVSIYGVKASEKFIESNPLSAIFTTGGGG






SGGGGSGGGGSGGGGSMLPAPKNLVVSRVTE






DSARLSWTAPDAAFDSFWITYEEKFYRGEAIV






LTVPGSERSYDLTGLKPGTEYKVWIVGVKGG






QGSWPLSAIFTT





79
PRT
Artificial
CR5133 PRASA
EIVLTQSPATLSLSPGERATLSCRASQSVSGYL





A6 HC D-AB
GWYQQKPGQAPRLLIYGASSRATGIPDRFSGS





Light Chain
GSGTDFTLTISRLEPEDFAVYYCQQYGSSPLTF






GGGTKLEIKRTVAAPSVFIFPPSDEQLKSGTAS






VVCLLNNFYPREAKVQWKVDNALQSGNSQE






SVTEQDSKDSTYSLSSTLTLSKADYEKHKVYA






CEVTHQGLSSPVTKSFNRGEC





80
DNA
Artificial
BC6
GTGACACGGCGGTTAGAACGCGGCTACAAT






TAATACATAACCCCATCCCCCTGTTGACAAT






TAATCATCGGCTCGTATAATGTGTGGAATTG






TGAGCGGATAACAATTTCACACAGGAAACA






GGATCTACCATGCTGCCGGCGCCGAAAAAC






CTGGTTGTTTCTGAAGTTACCGAAGACTCTC






TGCGTCTGTCTTGGNNNNNNNNNNNNNNNN






NNTTYGACTCTTTCCTGATCCAGTACCAGGA






ATCTGAAAAAGTTGGTGAAGCGATCAACCT






GACCGTTCCGGGTTCTGAACGTTCTTACGAC






CTGACCGGTCTGAAACCGGGTACCGAATAC






ACCGTTTCTATCTACGGTGTTCTTAGAAGCT






TCCCAAAGGC





81
DNA
Artificial
BC7
GTGACACGGCGGTTAGAACGCGGCTACAAT






TAATACATAACCCCATCCCCCTGTTGACAAT






TAATCATCGGCTCGTATAATGTGTGGAATTG






TGAGCGGATAACAATTTCACACAGGAAACA






GGATCTACCATGCTGCCGGCGCCGAAAAAC






CTGGTTGTTTCTGAAGTTACCGAAGACTCTC






TGCGTCTGTCTTGGNNNNNNNNNNNNNNNN






NNNNNTTYGACTCTTTCCTGATCCAGTACCA






GGAATCTGAAAAAGTTGGTGAAGCGATCAA






CCTGACCGTTCCGGGTTCTGAACGTTCTTAC






GACCTGACCGGTCTGAAACCGGGTACCGAA






TACACCGTTTCTATCTACGGTGTTCTTAGAA






GCTTCCCAAAGGC





82
DNA
Artificial
BC8
GTGACACGGCGGTTAGAACGCGGCTACAAT






TAATACATAACCCCATCCCCCTGTTGACAAT






TAATCATCGGCTCGTATAATGTGTGGAATTG






TGAGCGGATAACAATTTCACACAGGAAACA






GGATCTACCATGCTGCCGGCGCCGAAAAAC






CTGGTTGTTTCTGAAGTTACCGAAGACTCTC






TGCGTCTGTCTTGGNNNNNNNNNNNNNNNN






NNNNNNNNTTYGACTCTTTCCTGATCCAGT






ACCAGGAATCTGAAAAAGTTGGTGAAGCGA






TCAACCTGACCGTTCCGGGTTCTGAACGTTC






TTACGACCTGACCGGTCTGAAACCGGGTAC






CGAATACACCGTTTCTATCTACGGTGTTCTT






AGAAGCTTCCCAAAGGC





83
DNA
Artificial
BC9
GTGACACGGCGGTTAGAACGCGGCTACAAT






TAATACATAACCCCATCCCCCTGTTGACAAT






TAATCATCGGCTCGTATAATGTGTGGAATTG






TGAGCGGATAACAATTTCACACAGGAAACA






GGATCTACCATGCTGCCGGCGCCGAAAAAC






CTGGTTGTTTCTGAAGTTACCGAAGACTCTC






TGCGTCTGTCTTGGNNNNNNNNNNNNNNNN






NNNNNNNNNNNTTYGACTCTTTCCTGATCC






AGTACCAGGAATCTGAAAAAGTTGGTGAAG






CGATCAACCTGACCGTTCCGGGTTCTGAAC






GTTCTTACGACCTGACCGGTCTGAAACCGG






GTACCGAATACACCGTTTCTATCTACGGTGT






TCTTAGAAGCTTCCCAAAGGC





84
DNA
Artificial
130mer-L17A
CGGCGGTTAGAACGCGGCTACAATTAATAC






ATAACCCCATCCCCCTGTTGACAATTAATCA






TCGGCTCGTATAATGTGTGGAATTGTGAGC






GGATAACAATTTCACACAGGAAACAGGATC






TACCATGCTG





85
DNA
Artificial
POP2222ext
CGG CGG TTA GAA CGC GGC TAC AAT TAA






TAC





86
DNA
Artificial
LS1114
CCA AGA CAG ACG GGC AGA GTC TTC GGT






AAC GCG AGA AAC AAC CAG GTT TTT CGG






CGC CGG CAG CAT GGT AGA TCC TGT TTC





87
DNA
Artificial
LS1115
CCG AAG ACT CTG CCC GTC TGT CTT GG





88
DNA
Artificial
LS1117
CAG TGG TCT CAC GGA TTC CTG GTA CTG






GAT CAG GAA AGA GTC GAA





89
DNA
Artificial
SDG10
CATGCGGTCTCTTCCGAAAAAGTTGGTGAA






GCGATCGTCCTGACCGTTCCGGGT





90
DNA
Artificial
SDG24
GGTGGTGAAGATCGCAGACAGCGGGTTAG





91
DNA
Artificial
SDG28
AAGATCAGTTGCGGCCGCTAGACTAGAACC






GCTGCCACCGCCGGTGGTGAAGATCGCAGAC





92
PRT
Artificial
TCL19
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSFXI







XYXEXXXXGEAIVLTVPGSERSYDLTGLKPGTE







YXVXIXGVKGGXXSXPLSAIFTT;






wherein “X” is an equal mixture of 18 amino acids (no






cysteine or methionine)





93
PRT
Artificial
TCL19 C strand
DSFXIXYXE, wherein “X” is an equal mixture of 18






acids (no cysteine or methionine)





94
PRT
Artificial
TCL19 F strand
TEYXVXIXGV, wherein “X” is an equal mixture






of 18 amino acids (no cysteine or methionine)





95
PRT
Artificial
TCL19 C strand +
DSFXIXYXEXXXXGE, wherein “X” is an equal





CD loop
mixture of 18 amino acids (no cysteine or






methionine)





96
PRT
Artificial
TCL19 F strand +
TEYXVXIXGVKGGXXSX, wherein “X” is an





FG loop
equal mixture of 18 amino acids (no cysteine or






methionine)





97
PRT
Artificial
TCL19 A strand +
LPAPKXLXVXXVXXXXAXLXWXAPDAAF,





AB loop + B
wherein “X” is an equal mixture of 18 amino acids





strand + BC loop
(no cysteine or methionine)





98
PRT
Artificial
TCL19 E strand
XYXLT, wherein “X” is an equal mixture of 18






amino acids (no cysteine or methionine)





99
PRT

S. aureus

SdgB
MKETAAAKFERQHMDSPDLGTLVPRGSMA





glycosyltransferase
MNYFVGNSLGVNLTGIEKAIINRLNLFKEMG






RPAQCVFLSWNRYLYRNAQNYITSSDYINMY






DFFQEATYLERNEPFDWLSYWTDECHYTLK






HVENSHDFRIYDQERFLMYAHFQDPKYRILD






YVNHFDSQRRKVKRDFYDVRGFLSCSRILVD






KQQTLCEFFYNPEDDTKLEKYFSYKDGKPEV






QKIIVYYANKQYFFNNETELGAFFIKQLYQH






GDLFFSDRNVYTAPIFNLTPESIPVVAVLHST






HIKNIDALDSSPFKNVYKAMFENLSRYRAIIV






STEQQKLDVEKRINHTIPVVNIPVGYSETIDTP






VQTLDQRSVKLISVARYSPEKQLHQQIELIKR






LVSYVPKIELHMYGFGSESKKLNELIQKYGLE






NHVYLRGFLSNLDQEYSDAYLSLITSNMEGF






SLALLESLAHGVPVISYDIKYGPNELITSDFNG






YLITKNDEDALFDKVKYVIDHPEVQQRLSKG






SLAKAQQYSKASLIKQWDQFVRLILEHHHHHH





100
PRT

S. aureus

SdrC4
MAEHTNGELNQSKNETTAPSENKTTKKVDS






RQLKDNTQTATADQPKVTMSDSATVKETSS






NMQSPQNATANQSTTKTSNVTTNDKSSTTYS






NETDKSNLTQAKDVSTTPKTTTIKPRTLNRM






AVNTVAAPQQGTNVNDKVHFSNIDIAIDKGH






VNQTTGKTEFWATSSDVLKLKANYTIDDSVK






EGDTFTFKYGQYFRPGSVRLPSQTQNLYNAQ






GNIIAKGIYDSTTNTTTYTFTNYVDQYTNVRG






SFEQVAFAKRKNATTDKTAYKMEVTLGNDT






YSEEIIVDYGNKKAQPLISSTNYINNEDLSRN






MTAYVNQPKNTYTKQTFVTNLTGYKFNPNA






KNFKIYEVTDQNQFVDSFTPDTSKLKDVTDQ






FDVIYSNDNKTATVDLMKGQTSSNKQYIIQQ






VAYPDNSSTDNGKIDYTLDTDKTKYSWSNSY






SNVNGSSTANGDQKKYNLGDYVWEDTNKD






GKQDANEKGIKGVYVILKDSNGKELDRTTTD






ENGKYQFTGLSNGTYSVEFSTPAGYTPTTAN






VGTDDAVDSDGLTTTGVIKDADNMTLDSGF






YKTPKYSLGDYVWYDSNKDGKQDSTEKGIK






GVKVTLQNEKGEVIGTTETDENGKYRFDNLD






SGKYKVIFEKPAGLTQTGTNTTEDDKDADGG






EVDVTITDHDDFTLDNGYYEEETSDSDSDSD






SDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSD






SDSDSDSDSNSDSDSDSDSDSDSDSDSDSDSD






SDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSD






SDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSD






SDSDSDSDSDSDSDSDSDSDSDNDSDSDSDSD






SDAGKHTPAKPMSTVKDQHKTAKALEHHHH






HH





101
PRT

S. aureus

SdrC5
MTPKYSLGDYVWYDSNKDGKQDSTEKGIKG






VKVTLQNEKGEVIGTTETDENGKYRFDNLDS






GKYKVIFEKPAGLTQTGTNTTEDDKDADGGE






VDVTITDHDDFTLDNGYYEEETSDSDSDSDS






DSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDS






DSDSDSDSNSDSDSDSDSDSDSDSDSDSDSDS






DSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDS






DSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDS






DSDSDSDSDSDSDSDSDSDSDNDSDSDSDSDS






DAGKHTPAKPMSTVKDQHKTAKALPETGLE






HHHHHH





102
PRT
Human
Pagibaximab
EVMLVESGGGLVQPKGSLKLSCAASGFTFNN





Heavy Chain
YAMNWVRQAPGKGLEWVARIRSKSNNYAT






FYADSVKDRFTISRDDSQSMLYLQMNNLKTE






DTAMYYCVRRGASGIDYAMDYWGQGTSLT






VSSASTKGPSVFPLAPSSKSTSGGTAALGCLV






KDYFPEPVTVSWNSGALTSGVHTFPAVLQSS






GLYSLSSVVTVPSSSLGTQTYICNVNHKPSNT






KVDKKVEPKSCDKTHTCPPCPAPELLGGPSV






FLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE






VKFNWYVDGVEVHNAKTKPREEQYNSTYR






VVSVLTVLHQDWLNGKEYKCKVSNKALPAP






IEKTISKAKGQPREPQVYTLPPSRDELTKNQV






SLTCLVKGFYPSDIAVEWESNGQPENNYKTT






PPVLDSDGSFFLYSKLTVDKSRWQQGNVFSC






SVMHEALHNHYTQKSLSLSPGK





103
PRT
Human
Pagibaximab
DIVLSQSPAILSASPGEKVTMTCRASSSVNYM





Light Chain
HWYQQKPGSSPKPWISATSNLASGVPARFSG






SGSGTSYSLTISRVEAEDAATYYCQQWSSNPP






TFGGGTMLEIKRTVAAPSVFIFPPSDEQLKSG






TASVVCLLNNFYPREAKVQWKVDNALQSGN






SQESVTEQDSKDSTYSLSSTLTLSKADYEKHK






VYACEVTHQGLSSPVTKSFNRGEC





104
PRT
Human
CNTO3930
QITLKESGPTLVKPTQTLTLTCTFSGFSLSTSG





Heavy Chain
MGVSWIRQPPGKALEWLAHIYWDDDKRYNP






SLKSRLTITKDTSKNQVVLTMTNMDPVDTAT






YYCARLYGFTYGFAYWGQGTLVTVSSASTK






GPSVFPLAPSSKSTSGGTAALGCLVKDYFPEP






VTVSWNSGALTSGVHTFPAVLQSSGLYSLSS






VVTVPSSSLGTQTYICNVNHKPSNTKVDKKV






EPKSCDKTHTCPPCPAPELLGGPSVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNKALPAPIEKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNHYTQKSLSLSPGK





105
PRT
Human
CNTO3930
DIVMTQSPDSLAVSLGERATINCRASQSVDY





Light Chain
NGISYMHWYQQKPGQPPKLLIYAASNPESGV






PDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQ






IIEDPWTFGQGTKVEIKRTVAAPSVFIFPPSDE






QLKSGTASVVCLLNNFYPREAKVQWKVDNA






LQSGNSQESVTEQDSKDSTYSLSSTLTLSKAD






YEKHKVYACEVTHQGLSSPVTKSFNRGEC





106
PRT
Human
CNTO3929
QITLKESGPTLVKPTQTLTLTCTFSGFSLSTSG





Heavy Chain
MGVSWIRQPPGKALEWLAHIYWDDDKRYNP






SLKSRLTITKDTSKNQVVLTMTNMDPVDTAT






YYCARLYGFTYGFAYWGQGTLVTVSSASTK






GPSVFPLAPSSKSTSGGTAALGCLVKDYFPEP






VTVSWNSGALTSGVHTFPAVLQSSGLYSLSS






VVTVPSSSLGTQTYICNVNHKPSNTKVDKKA






EPKSCDKTHTCPPCPAPELLGGPSVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNKALPAPIEKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNHYTQKSLSLSPGK





107
PRT
Human
CNTO3929
DIVMTQSPDSLAVSLGERATINCRASQSVDY





Light Chain
NGISYMHWYQQKPGQPPKLLIYAASNPESGV






PDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQ






IIEDPWTFGQGTKVEIKRTVAAPSVFIFPPSDE






QLKSGTASVVCLLNNFYPREAKVQWKVDNA






LQSGNSQESVTEQDSKDSTYSLSSTLTLSKAD






YEKHKVYACEVTHQGLSLPVTKSFNRGEC





108
PRT

S. aureus

HlgA
NSAHHHHHHGSENKIEDIGQGAEIIKRTQDIT






SKRLAITQNIQFDFVKDKKYNKDALVVKMQ






GFISSRTTYSDLKKYPYIKRMIWPFQYNISLKT






KDSNVDLINYLPKNKIDSADVSQKLGYNIGG






NFQSAPSIGGSGSFNYSKTISYNQKNYVTEVE






SQNSKGVKWGVKANSFVTPNGQVSAYDQYL






FAQDPTGPAARDYFVPDNQLPPLIQSGFNPSFI






TTLSHERGKGDKSEFEITYGRNMDATYAYVT






RHRLAVDRKHDAFKNRNVTVKYEVNWKTH






EVKIKSITPK





109
PRT

S. aureus

HlgB
NSAHHHHHHGSEGKITPVSVKKVDDKVTLY






KTTATADSDKFKISQILTFNFIKDKSYDKDTL






VLKATGNINSGFVKPNPNDYDFSKLYWGAK






YNVSISSQSNDSVNVVDYAPKNQNEEFQVQN






TLGYTFGGDISISNGLSGGLNGNTAFSETINY






KQESYRTTLSRNTNYKNVGWGVEAHKIMNN






GWGPYGRDSFHPTYGNELFLAGRQSSAYAG






QNFIAQHQMPLLSRSNFNPEFLSVLSHRQDG






AKKSKITVTYQREMDLYQIRWNGFYWAGAN






YKNFKTRTFKSTYEIDWENHKVKLLDTKETE






NNK





110
PRT

S. aureus

HlgC
NSAHHHHHHGSANDTEDIGKGSDIEIIKRTED






KTSNKWGVTQNIQFDFVKDKKYNKDALILK






MQGFISSRTTYYNYKKTNHVKAMRWPFQYN






IGLKTNDKYVSLINYLPKNKIESTNVSQTLGY






NIGGNFQSAPSLGGNGSFNYSKSISYTQQNYV






SEVEQQNSKSVLWGVKANSFATESGQKSAF






DSDLFVGYKPHSKDPRDYFVPDSELPPLVQS






GFNPSFIATVSHEKGSSDTSEFEITYGRNMDV






THAIKRSTHYGNSYLDGHRVHNAFVNRNYT






VKYEVNWKTHEIKVKGQN





111
PRT

S. aureus

LukF-PV
NSAHHHHHHGSAQHITPVSEKKVDDKITLYK






TTATSDSDKLKISQILTFNFIKDKSYDKDTLIL






KAAGNIYSGYTKPNPKDTISSQFYWGSKYNIS






INSDSNDSVNVVDYAPKNQNEEFQVQQTVG






YSYGGDINISNGLSGGGNGSKSFSETINYKQE






SYRTSLDKRTNFKKIGWDVEAHKIMNNGWG






PYGRDSYHSTYGNEMFLGSRQSNLNAGQNF






LEYHKMPVLSRGNFNPEFIGVLSRKQNAAKK






SKITVTYQREMDRYTNFWNQLHWIGNNYKD






ENRATHTSIYEVDWENHTVKLIDTQSKEKNP






MS





112
PRT

S. aureus

LukS-PV
NSAHHHHHHGSDNNIENIGDGAEVVKRTEDT






SSDKWGVTQNIQFDFVKDKKYNKDALILKM






QGFINSKTTYYNYKNTDHIKAMRWPFQYNIG






LKTNDPNVDLINYLPKNKIDSVNVSQTLGYNI






GGNFNSGPSTGGNGSFNYSKTISYNQQNYISE






VERQNSKSVQWGIKANSFITSLGKMSGHDPN






LFVGYKPYSQNPRDYFVPDNELPPLVHSGFN






PSFIATVSHEKGSGDTSEFEITYGRNMDVTHA






TRRTTHYGNSYLEGSRIHNAFVNRNYTVKYE






VNWKTHEIKVKGHN





113
PRT
Artificial
Luk82 LukE,
LPAPKNLVVSRVTEDSARLSWSNRAITTFDSF





LukF binding
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYTVSIYGVEYRFRPKYTGSNPLSAIFTT





114
PRT
Artificial
Luk83 LukF
LPAPKNLVVSRVTEDSARLSWFRPSEDISSFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGVAFPTDAKSNPLSAIFTT





115
PRT
Artificial
Luk85 LukF
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
HINYNEEALVGEAIVLTVPGSERSCDLTGLKP





domain
GTEYGVEIEGVKGGPWSWPLSAIFTT





116
PRT
Artificial
Luk86 LukE,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukF binding
YIRYNEIDLHGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYQVPIAGVKVCIISKPLSAIFTT





117
PRT
Artificial
Luk87 LukE
LPAPKNLVVSRVTEDSARLSWANTEPSYFAF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVVWVTWGKSNPLSAIFTT





118
PRT
Artificial
Luk88 LukE
LPAPKNLVVSRVTEDSARLSWTLEWSLIFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVQRSVAWYFLLLASNPLSAIFTT





119
PRT
Artificial
Luk90 LukE
LPAPKNLVVSRVTEDSARLSWRTYPTLFDSFL





binding FN3
IQYQESEKVGEAIVLTVPGSERSYDLTGLKPG





domain
TEYTVSIYGVWPRNIQPWSNPLSAIFTT





120
PRT
Artificial
Luk92 LukE
LPAPKNLVVSRVTEDSARLSWKRVKWVSYQ





binding FN3
FDSFLIQYQESEKVGEAIVLTVPGSERSYDLT





domain
GLKPGTEYTVSIYGVASIDETVGVSNPLSAIFTT





121
PRT
Artificial
Luk93 LukE,
LPAPKNLVVSRVTEDSARLSWWRRISRFDSF





LukS binding
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYTVSIYGVDREVYDEWSSNPLSAIFTT





122
PRT
Artificial
Luk94 LukE
LPAPKNLVVSRVTEDSARLSWYRRFLLFIFFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGVGEQWGEASDLSNPLSAIFTT





123
PRT
Artificial
Luk95 LukE
LPAPKNLVVSRVTEDSARLSWQHSQYFVLFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGVLYRQWRDSNPLSAIFTT





124
PRT
Artificial
Luk96 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVEHWPSWWHLNFSNPLSAIFTT





125
PRT
Artificial
Luk97 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVIDIIHINSWNDHSNPLSAIFTT





126
PRT
Artificial
Luk98 LukE
LPAPKNLVVSRVTEDSARLSWNRHSHEFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVRIWVLKLNESNPLSAIFTT





127
PRT
Artificial
Luk99 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
EIIYYERHDNGEAIVLTVPGSERSYDLTGLKP





domain
GTEYLVWIPGVKGGLTSWPLSAIFTT





128
PRT
Artificial
Luk100 LukE,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
PITYGEYRSVGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYIVDIYGVKGGLFSYPLSAIFTT





129
PRT
Artificial
Luk101 LukE
LPAPKNLVVSRVTEDSARLSWDTEPEWFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVQRVEIRALYRSYSNPLSAIFTT





130
PRT
Artificial
Luk102 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVSHRFWKHVYFYSNPLSAIFTT





131
PRT
Artificial
Luk103 LukE
LPAPKNLVVSRVTEDSARLSWIIGLSRFDSFLI





binding FN3
QYQESEKVGEAIVLTVPGSERSYDLTGLKPG





domain
TEYTVSIYGVDFAHQDFFRGYASNPLSAIFTT





132
PRT
Artificial
Luk104 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVQWWVVAFHHAPSNPLSAIFTT





133
PRT
Artificial
Luk106 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVVAWIFTKVLNASNPLSAIFTT





134
PRT
Artificial
Luk107 LukE
LPAPKNLVVSRVTEDSARLSWKGPNSPPSQF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVWKWRTRAHSNPLSAIFTT





135
PRT
Artificial
Luk108 LukE
LPAPKNLVVSRVTEDSARLSWFYYYLGKFGF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVVNWRWWPDDSNPLSAIF






TT





136
PRT
Artificial
Luk109 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVIINRFWAWYLASSNPLSAIFTT





137
PRT
Artificial
Luk110 LukS,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukF binding
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYTVSIYGVGFPTFLNYWQFGSNPLSAIFTT





138
PRT
Artificial
Luk112 HlgA
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
EIHYYEFRHHGEAIVLTVPGSERSYDLTGLKP





domain
GTEYAFWIYGVKGGGSSWPLSAIFTT





139
PRT
Artificial
Luk113 HlgA
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
WIEYHEEYETGEAIVLTVPGSERSYDLTGLKP





domain
GTEYWVWIAGVKGGKWSWPLSAIFTT





140
PRT
Artificial
Luk114 HlgA
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
EIHYQELPQKGEAIVLTVPGSERSYDLTGLKP





domain
GTEYVVWIWGVKGGLTSDPLSAIFTT





141
PRT
Artificial
Luk116 HlgA
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
EIHYQEYPAFGEAIVLTVPGSERSYDLTGLKP





domain
GTEYIVWIWGVKGGWTSWPLSAIFTT





142
PRT
Artificial
Luk117 HlgA
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
EIHYQETISVGEAIVLTVPGSERSYDLTGLKPG





domain
TEYWVLIWGVKGGAASDPLSAIFTT





143
PRT
Artificial
Luk119 HlgA
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
SIDYFEEYQKGEAIVLTVPGSERSYDLTGLKP





domain
GTEYWVWIFGVKGGIRSWPLSAIFTT





144
PRT
Artificial
Luk120 HlgA
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
EINYWEAYIHGEAIVLTVPGSERSYDLTGLKP





domain
GTEYWVWIHGVKGGGNSYPLSAIFTT





145
PRT
Artificial
Luk122 HlgA,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukAB binding
EIHYYEFAIKGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYAVWIYGVKGGNSSWPLSAIFTT





146
PRT
Artificial
Luk123 HlgA
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
EIDYFEEYSHGEAIVLTVPGSERSYDLTGLKP





domain
GTEYWVWINGVKGGIYSYPLSAIFTT





147
PRT
Artificial
Luk124 HlgA,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukD binding
TIDYVESYALGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYWVWIWGVKGGSLSYPMSAIFTT





148
PRT
Artificial
Luk125 HlgA
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
PIIYYEHHNFGEAIVLTVPGSERSYDLTGLKP





domain
GTEYAVPIPGVKGGWQSLPLSAIFTT





149
PRT
Artificial
Luk126 HlgA
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
YIDYQEWPSVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYSVFIHGVKGGWLSKPLSAIFTT





150
PRT
Artificial
Luk128 HlgA,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukD binding
DIQYFEEYAIGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYWVWISGVKGGNFSKPLSAIFTT





151
PRT
Artificial
Luk129 HlgA
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
NINYPEEFHGGEAIVLTVPGSERSYDLTGLKP





domain
GTEYEVWIWGVKGGSSSNPLSAIFTT





152
PRT
Artificial
Luk130 HlgA
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
NIHYLEWEVNGEAIVLTVPGSERSYDLTGLK





domain
PGTEYIVEIWGVKGGYSSWPLSAIFTT





153
PRT
Artificial
Luk132 HlgA
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
YIEYWEWDPVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYPVFISGVKGGYPSVPLSAIFTT





154
PRT
Artificial
Luk133 HlgA
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSFI





binding FN3
IHYGEGPEFGEAIVLTVPGSERSYDLTGLKPG





domain
TEYSVHIPGVKGGWLSWPLSAIFTT





155
PRT
Artificial
Luk134 HlgA,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukE binding
TIVYLEWVVLGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYIVDIYGVKGGWTSRPLSAIFTT





156
PRT
Artificial
Luk136
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukAB, LukD
TIDYFEEYVVGEAIVLTVPGSERSYDLTGLKP





binding FN3
GTEYWVCIVGVKGGTPSPPLSAIFTT





domain






157
PRT
Artificial
Luk138 HlgA
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
HIWYQEFEVRGEAIVLTVPGSERSYDLTGLKP





domain
GTEYDVEIWGVKGGSHSWTLSAIFTT





158
PRT
Artificial
Luk139 HlgA,
LPAPKNLVVSRVTEDSARLSWTAPDAAFNSF





LukAB
EIHYGEWEYGGEAIVLTVPGSERSYDLTGLK





binding FN3
PGTEYTVWIYGVKGGDSSWPLSAIFTT





domain






159
PRT
Artificial
Luk140 HlgA
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
EIHYQETKKSGEAIVLTVPGSERSYDLTGLKP





domain
GTEYWVLIWGVKGGTASNPLSAIFTT





160
PRT
Artificial
Luk143 HlgA
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
DIQYDERTEEGEAIVLTVPGSERSYDLTGLKP





domain
GTEYFVTIPGVKGGWYSWPLSAIFTT





161
PRT
Artificial
Luk144 HlgA
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
WIDYFEEWVNGEAIVLTVPGSERSYDLTGLK





domain
PGTEYWVWIQGVKGGVHSPPLSAIFTT





162
PRT
Artificial
Luk148 HlgA
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
EIHYQELNRVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYWVLIWGVKGGDSSEPLSAIFTT





163
PRT
Artificial
Luk151 HlgA
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
GITYTEVYWWGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVTIPGVKGGWISAPLSAIFTT





164
PRT
Artificial
Luk155 HlgA
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
SIRYFEFIKPGEAIWLGVPGSERSYDLTGLKPG





domain
TEYHVQIRGVKGGRESYPLWADFTT





165
PRT
Artificial
Luk156 HlgA
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
EIQYHETRYSGEAIWLWVPGSERSYDLTGLK





domain
PGTEYSVYIPGVKGGNVSFPLKAHFTT





166
PRT
Artificial
Luk158 HlgA
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
AISYKESGRIGEAISLIVPGSERSYDLTGLKPG





domain
TEYWVYINGVKGGITSFPLNAWFTT





167
PRT
Artificial
Luk159 HlgA,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukAB binding
GIDYKETGYTGEAIELEVPGSEHSYDLTGLKP





FN3 domain
GTEYFVTIGGVKGGYSSWPLVALFTT





168
PRT
Artificial
Luk160 HlgA
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
VIWYTENPSLGEAIKLSVPGSERSYDLTGLKP





domain
GTEYVVEIWGVKGGRGSVPLFAIFTT





169
PRT
Artificial
Luk163 HlgA
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
YIEYWEPTSDGEAIALNVPGSERSYDLTGLKP





domain
GTEYFVEIWGVKGGPRSPPLSAWFTT





170
PRT
Artificial
Luk164 HlgA
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
DIEYGEPEKIGEAIWLTVPGSERSYDLTGLKP





domain
GTEYWVFIYGVKGGALSRPLTATSTT





171
PRT
Artificial
Luk166 HlgA
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
WIQYFEIQPWGEAILLDVPGSERSYDLTGLKP





domain
GTEYSVIIWGVKGGPKSQPLYAWFTT





172
PRT
Artificial
Luk167 LukD
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
VIIYSEDTIPGEAIVLWVPGSERSYDLTGLKPG





domain
TEYYVQIEGVKGGHESFPLVANFTT





173
PRT
Artificial
Luk174 HlgA
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
DIEYGEPEKIGEAIWLTVPGSERSYDLTGLKP





domain
GTEYWVFIYGVKGGALSRPLTATFTT





174
PRT
Artificial
Luk176 HlgA
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
VIYYHEFPYGGEAIVLTVPGSERSYDLTGLKP





domain
GTEYYVRILGVKGGGLSYPLSAIFTT





175
PRT
Artificial
Luk177 LukD
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
AIYYREWGSGEAIVLTVPGSERSYDLTGLKP





domain
GTEYLVITGVKGGNPSYPLSAIFTT





176
PRT
Artificial
Luk178 HlgA
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
AIHYFEAYAGGEAIVLTVPGSERSYDLTGLKP





domain
GTEYWVWIFGVKGGLYSYPLSAIFTT





177
PRT
Artificial
Luk179 HlgA
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
EINYFEAWDGGEAIVLTVPGSERSYDLTGLKP





domain
GTEYWVWISGVKGGRYSYPLSAIFTT





178
PRT
Artificial
Luk180 HlgA
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
EIHYYEPIYVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYIVWIYGVKGGYSSWPLSAIFTT





179
PRT
Artificial
Luk182 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
YILYIENDWQGEAIVLTVPGSERSYDLTGLKP





domain
GTEYFVVIHGVKGGWISPPLSAIFTT





180
PRT
Artificial
Luk183 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
TIWYWEFLHNGEAIVLTVPGSERSYDLTGLK





domain
PGTEYFVEIYGVKGGSVSVPLSAIFTT





181
PRT
Artificial
Luk184 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
TIIYHELNTAGEAIVLTVPGSERSYDLTGLKP





domain
GTEYLVIIHGVKGGPISSPLSAIFTT





182
PRT
Artificial
Luk185 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
RIVYREWFHYGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYYVVIHGVKGGYISKPLSAIFTT





183
PRT
Artificial
Luk186 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
HITYTEYSFVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYFVEIYGVKGGFISSPLSAIFTT





184
PRT
Artificial
Luk187 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
RILYFEYKRLGEAIVLTVPGSERSYDLTGLKP





domain
GTEYFVGIHGVKGGYISRPLSAIFTT





185
PRT
Artificial
Luk188 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
HIHYWEFNPAGEAIVLTVPGSERSYDLTGLKP





domain
GTEYFVGIHGVKGGGISWPLSAIFTT





186
PRT
Artificial
Luk189 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSL





binding FN3
KIFYFEFIYLGEAIVLTVPGSERSYDLTGLKPG





domain
TEYHVTIHGVKGGTISLPLSAIFTT





187
PRT
Artificial
Luk190 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
HIFYYEFSNYGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVIIHGVKGGQISVPLSAIFTT





188
PRT
Artificial
Luk191 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TIFYWEWYHGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYNVVIHGVKGGYISLPLSAIFTT





189
PRT
Artificial
Luk192 HlgC
LPAPKNLDVSRVTEDSARLSWTAPDAAFDSF





binding FN3
VIFYYEEKPIGEAIVLTVPGSERSYDLTGLKPG





domain
TEYFVEIYGVKGGYISNPLSAIFTT





190
PRT
Artificial
Luk193 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
NIFYHETRPLGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYLVAIYGVKGGYISLPLSAIFTT





191
PRT
Artificial
Luk194 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
TIHYWEFSDNGEAIVLTVPGSERSYDLTGLKP





domain
GTEYLVGIYGVKGGQISQPLSAIFTT





192
PRT
Artificial
Luk195 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukD binding
HIIYYEYPAGGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYHVIIHGVKGGFVSVPLSAIFTT





193
PRT
Artificial
Luk196 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
NIIYIENPYWGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVIIHGVKGGYISEPLSAIFTT





194
PRT
Artificial
Luk197 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TILYWEVQANGEAIVLTVPGSERSYDLTGLK





FN3 domain
PGTEYVVGIYGVKGGYISLPLSAIFTT





195
PRT
Artificial
Luk198 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
QIFYTEEKTWGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVWIHGVKGGWISAPLSAIFTT





196
PRT
Artificial
Luk199 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TILYAEHSNKGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVGIYGVKGGFISWPLSAIFTT





197
PRT
Artificial
Luk201 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TIFYLEHNDEGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYWVAIHGVKGGYISQPLSAIFTT





198
PRT
Artificial
Luk202 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
RIWYHETWRGEAIVLTVPGSERSYDLTGLKP





domain
GTEYPVVIHGVKGGFISTPLSAIFTT





199
PRT
Artificial
Luk203 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
TIIYVEYETWGEAIVLTVPGSERSYDLTGLKP





domain
GTEYIVAIHGVKGGYISIPLSAIFTT





200
PRT
Artificial
Luk204 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
PIIYWELWSIGEAIVLTVPGSERSYDLTGLKPG





domain
TEYFVEIYGVKGGTISTPLSAIFTT





201
PRT
Artificial
Luk205 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
SILYWEWVANGEAIVLTVPGSERSYDLTGLK





domain
PGTEYFVEIYGVKGGWLSLPLSAIFTT





202
PRT
Artificial
Luk206 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
AIFYFEQFSRGEAIVLTVPGSERSYDLTGLKP





domain
GTEYFVAIHGVKGGFVSRPLSAIFTT





203
PRT
Artificial
Luk208 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
TIWYWEWYHLGEAIVLTVPGSELSYDLTGLK





domain
PGTEYWVEIYGVKGGFISQPLSAIFTT





204
PRT
Artificial
Luk210 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
PIFYFEYLGNGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVGIHGVKGGVISTPLSAIFTT





205
PRT
Artificial
Luk211 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
TIIYFEWKRLGEAIVPTVPGSERSYDLTGLKP





domain
GTEYWVGIYGVKGGPISVPLSAIFTT





206
PRT
Artificial
Luk212 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
TILYTEREFYGEAIVLTVPGSERSYDLTGLKP





domain
GTEYWVGIYGVKGGNISEPLSAIFTT





207
PRT
Artificial
Luk213 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
HIFYHETDAYGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVVIHGVKGGFISSPLSAIFTT





208
PRT
Artificial
Luk214 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
AIHYWEYDANGEAIVLTVPGSERSYDLTGLK





domain
PGTEYLVAIYGVKGGLISVPLSAIFTT





209
PRT
Artificial
Luk215 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TILYHESVTNGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYLVGIYGVKGGYISDPLSAIFTT





210
PRT
Artificial
Luk216 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
RIHYFEESITGEAIVLTVPGSERSYDLTGLKPG





FN3 domain
TEYFVAIYGVKGGSISDPLSAIFTT





211
PRT
Artificial
Luk218 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
SIIYWEYRWQGEAIVLTVPGSERSYDLTGLKP





domain
GTEYIVPIHGVKGGEISPPLSAIFTT





212
PRT
Artificial
Luk219 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
TIWYWVYRTSGEAIVLTVPGSERSYDLTGLK





domain
PGTEYFVAIHGVKGGEISVPLSAIFTT





213
PRT
Artificial
Luk220 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
AIFYWEESPPGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYLVAIYGVKGGYISLPLSAIFTT





214
PRT
Artificial
Luk221 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS, LukD,
AIFYHELEHHGEAIVLTVPGSERSYDLTGLKP





LukAB binding
GTEYFVAIHGVKGGQISWPLSAIFTT





FN3 domain






215
PRT
Artificial
Luk222 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
SILYWEEEFGEAIVLTVPGSERSYDLTGLKPG





FN3 domain
TEYFVAIHGVKGGYISRPLSAIFTT





216
PRT
Artificial
Luk223 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
VILYWEEENQGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVAIHGVKGGHISEPLSAIFTT





217
PRT
Artificial
Luk224 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TIFYTEHGVSGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYWVPIHGVKGGTISQPLSAIFTT





218
PRT
Artificial
Luk225 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
QIFYHEFLTIGEAIVLTVPGSERSYDLTGLKPG





domain
TEYIVAIYGVKGGQISDPLSAIFTT





219
PRT
Artificial
Luk226 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
TIHYAEWHLDGEAIVLTVPGSERSYDLTGLK





domain
PGTEYFVAIHGVKGGYISEPLSAIFTT





220
PRT
Artificial
Luk227 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
RIYYHEWQATGEAIVLTVPGSERSYDLTGLK





domain
PGTEYLVVIHGVKGGWISSPLSAIFTT





221
PRT
Artificial
Luk228 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TIPYYEYAVFGEATVLTVPGSERSYDLTGLKP





FN3 domain
GTEYHVIIHGVKGGYISLPLSAIFTT





222
PRT
Artificial
Luk229 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
YIFYLEWNQIGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVAIYGVKGGFISDPLSAIFTT





223
PRT
Artificial
Luk230 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSFI





binding FN3
IFYTESHFYGEAIVLTVPGSERSYDLTGLKPG





domain
TEYWVAIYGVKGGEFSFPLSAIFTT





224
PRT
Artificial
Luk231 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
RILYWEYVTAGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVVIHGVKGGYISIPLSAIFTT





225
PRT
Artificial
Luk233 HlgC
LPAPKNLVVSRVTEDSACLSWTAPDAAFDSF





binding FN3
AIQYWEYSGIGEAIVLTVPGSERSYGLTGLKP





domain
GTEYFVGIAGVKGGWISLPLSAIFTT





226
PRT
Artificial
Luk235 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukAB binding
SIIYHEWDKNGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVAIYGVKGGYISRPLSAIFTT





227
PRT
Artificial
Luk236 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
NIFYWEYILPGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYWVIIHGVKGGHISDPLSAIFTT





228
PRT
Artificial
Luk237 HlgC
MLPPPKNLVVSRVTEDSARLSWTAPDAAFDS





binding FN3
FQIIYWEYAETGEAIVLTVPGSERSYDLTGLK





domain
PGTEYIVIIHGVKGGEISRPLSAIFTT





229
PRT
Artificial
Luk238 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
AIFYHETVKSGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVVIHGVKRGQISEPLSAIFTT





230
PRT
Artificial
Luk239 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
HISYWEYAVYGEAIVLTVPGSERSYDLTGLK





domain
PGTEYFVGIYGVKGGWISSPLSAIFTT





231
PRT
Artificial
Luk240 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
PIFYDEEAHNGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVVIHGVKGGTISIPLSAIFTT





232
PRT
Artificial
Luk241 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TIYYFESYAVGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVAIYGVKGGWISWPLSAIFTT





233
PRT
Artificial
Luk242 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
VIFYHETEVDGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYVVIIHGVKGGFISYPLSAIFTT





234
PRT
Artificial
Luk243 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
QIMYFEFQALGEAIVLTVPGSERSYDLTGLKP





domain
GTEYLVLIHGVKGGLISPPLSAIFTT





235
PRT
Artificial
Luk244 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
NIYYWEFLENGEAIVLTVPGSERSYDLTGLKP





domain
GTEYFVAIHGVKGGFISWPLSAIFTT





236
PRT
Artificial
Luk245 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
TIHYWEFRPGGEAIVLTVPGSERSYDLTGLKP





domain
GTEYFVAIFGVKGGSISVPLSAIFTT





237
PRT
Artificial
Luk246 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
VIHYFEASPPGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYYVVIYGVKGGYISPPLSAIFTT





238
PRT
Artificial
Luk247 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TIFYHEYVQVGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVAIYGVKGGQISDPLSAIFTT





239
PRT
Artificial
Luk248 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
NIIYWEYVDVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYLVPIYGVKGGLISEPLSAIFTT





240
PRT
Artificial
Luk249 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
AIVYWEQKFYGEAIVLTVPGSERSYDLTGLK





domain
PGTEYFVGIYGVKGGFISLPLSAIFTT





241
PRT
Artificial
Luk250 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
VIFYDEWRGVGEAIVLTVPGSERSYDLTGLK





FN3 domain
PGTEYFVPIQGVKGGYVSDPLSAIFTT





242
PRT
Artificial
Luk251 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
AIHYHEYQQIGEAIVLTVPGSERSYDLIGLKP





FN3 domain
GTEYFVAIYGVKGGFISQPLSAIFTT





243
PRT
Artificial
Luk252 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
AIFYLEWPAKGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVVIHGVKGGWISPPLSAIFTT





244
PRT
Artificial
Luk253 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
NIVYWEYNPVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYFVGIYGVKGGNISKPLSAIFTT





245
PRT
Artificial
Luk254 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
GIFYLEHDWRGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYLVIIHGVKGGSISVPLSAIFTT





246
PRT
Artificial
Luk255 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TILYWEYEQQGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVAIHGVKGGEISQPLSAIFTT





247
PRT
Artificial
Luk257 LukD,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukAB binding
TIIYIEHVDWGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVEIYGVKGGKISAPLSAIFTT





248
PRT
Artificial
Luk258 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
TIYYFESVDWGEAIVLTVPGSERSYDLTGLKP





domain
GTEYYVYIYGVKGGWISVPLSAIFTT





249
PRT
Artificial
Luk259 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
QIIYWESQYWGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYIVVIHGVKGGGISDPLSAIFTT





250
PRT
Artificial
Luk260 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
RIIYYEWESAGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVAIHGVKGGFISFPLSAIFTT





251
PRT
Artificial
Luk261 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
NIFYWEFQKKGEAIVLTVPGSERSYDLTGLKP





domain
GTEYIVIIYGVKGGFISPPLSAIFTT





252
PRT
Artificial
Luk262 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
HIFYLEKTNYGEAIVLTVPGSERSYDLTGLKP





domain
GTEYLVIIHGVKGGPISGPLSAIFTT





253
PRT
Artificial
Luk263 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
GIWYWEYVRNGEAIVLTVPGSERSYDLTGLK





domain
PGTEYFVPIYGVKGGDTSPPLSAIFTT





254
PRT
Artificial
Luk264 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
VIFYHEYFTVGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVAIHGVKGGLISAPLSAIFTT





255
PRT
Artificial
Luk265 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
QIIYFENEYGGEAIVLTVPGSERSYDLTGLKP





domain
GTEYFVAIYGVKGGYLSVPLSAIFTT





256
PRT
Artificial
Luk266 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
RIGYLENPWDGEAIVLTVPGSERSYDLTGLKP





domain
GTEYFVFIYGVKGGHISNPLSAIFTT





257
PRT
Artificial
Luk267 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSFI





binding FN3
IHYFEYEPPGEAIVLTVPGSERSYDLTGLKPG





domain
TEYFVGIYGVKGGWVSEPLSAIFTT





258
PRT
Artificial
Luk268 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TIFYPEYSARGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVVIHGVKGGFVSEPLSAIFTT





259
PRT
Artificial
Luk269 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
NIIYWEYEVAGEAIVLTVPGSERSYDLTGLKP





domain
GTEYFVSIQGVKGGAISPPLSAIFTT





260
PRT
Artificial
Luk270 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
QIVYFEHPSYGEAIVLTVPGSERSYDLTGLKP





domain
GTEYFVGIYGVKGGEISAPLSAIFTT





261
PRT
Artificial
Luk271 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
NIVYFEWAANGEAIVLTVPGSERSYDLTGLK





domain
PGTEYFVGIYGVKGGAISLPLSAIFTT





262
PRT
Artificial
Luk272 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
NIFYWEDTLKGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYVVAIHGVKGGTISHPLSAIFTT





263
PRT
Artificial
Luk273 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
VINYWEFQPAGEAIVLTVPGSERSYDLTGLKP





domain
GTEYFVAIHGVKGGQISKPLSAIFTT





264
PRT
Artificial
Luk274 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TIIYWELVWNGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYCVPIHGVKGGLISPPLSAIFTT





265
PRT
Artificial
Luk275 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS, LukD
VIFYEEWQVGGEAIVLTVPGSERSYDLTGLKP





binding FN3
GTEYFVAIYGVKGGAISQPLSAIFTT





domain






266
PRT
Artificial
Luk276 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
YIHYFEYEIRGEAIVLTVPGSERSYDLTGLKP





domain
GTEYFVSIYGVKGGLISSPLSAIFTT





267
PRT
Artificial
Luk277 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TIFYLEYDQGGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYLVTIHGVKGGYISEPLSAIFTT





268
PRT
Artificial
Luk278 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
PIFYWEFAVSGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYSVVIHGVKGGVISEPLSAIFTT





269
PRT
Artificial
Luk279 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
QIIYFEFFIGGEAIVLTVPGSERSYDLTGLKPG





FN3 domain
TEYFVVIHGVKGGDLSAPLSAIFTT





270
PRT
Artificial
Luk280 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
SIIYWEFASNGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVAIYGVKGGEISNPLSAIFTT





271
PRT
Artificial
Luk281 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TIFYFEFQTHGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVPITGVKGGWYSDPLSAIFTT





272
PRT
Artificial
Luk282 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSFI





binding FN3
IIYWEYRTCGEAIVLTVPGSERSYDLTGLKPG





domain
TEYFVEIYGVKGGNTSPPLSAIFTT





273
PRT
Artificial
Luk283 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSI





LukS binding
TIHYFEPHTGGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVPIYGVKGGYISQPLSAIFTT





274
PRT
Artificial
Luk285 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
PILYWENITTGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVVIHGVKGGFISGPLSAIFTT





275
PRT
Artificial
Luk286 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
PIFYWEFQAAGEAIVLTVPGSERSYDLTGLKP





domain
GTEYFVEIYGVKGGWTSFPLSAIFTT





276
PRT
Artificial
Luk287 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
VIVYWEWQCNGEAIVLTVPGSERSYDLTGLK





domain
PGTEYFVFIHGVKGGITSAPLSAIFTT





277
PRT
Artificial
Luk288 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
AIHYWEPQGIGEAIVLTVPGSERSYDLTGLKP





domain
GTEYFVGIHGVKGGWISFPLSAIFTT





278
PRT
Artificial
Luk289 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSFI





binding FN3
IPYWEYQYAGEAIVLTVPGSERSYDLTGLKP





domain
GTEYWVGIYGVKGGSISEPLSAIFTT





279
PRT
Artificial
Luk290 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TIFYIEPQFEGEAIVLTVPGSERSYDLTGLKPG





FN3 domain
TEYIVVIHGVKGGYISKPLSAIFTT





280
PRT
Artificial
Luk291 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
NIIYWEYDPHGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYIVSIYGVKGGYISPPLSAIFTT





281
PRT
Artificial
Luk292 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
AIEYWEWIDKGEAIVLTVPGSERSYDLTGLKP





domain
GTEYFVGIYGVKGGYISWPLSAIFTT





282
PRT
Artificial
Luk293 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS, LukD,
SILYHEWSGWGEAIVLTVPGSERSYDLTGLK





LukAB binding
PGTEYFVFIHGVKGGYISPPLSAIFTT





FN3 domain






283
PRT
Artificial
Luk294 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
QILYWETAKSGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVEIYGVKGGWISWPLSAIFTT





284
PRT
Artificial
Luk296 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
TIHYYEFKYQGEAIVLTVPGSERSYDLTGLKP





domain
GTEYFVVIHGVKGGFISPPLSAIFTT





285
PRT
Artificial
Luk298 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TIIYLEGNWSGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVSIYGVKGGFISEPLSAIFTT





286
PRT
Artificial
Luk299 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS, LukAB
KIFYWEWPHSGEAIVLTVPGSERSYDLTGLKP





binding FN3
GTEYFVAIHGVKGGWISKPLSAIFTT





domain






287
PRT
Artificial
Luk300 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
TISYWEYAGYGEAIVLTVPGSERSYDLTGLKP





domain
GTEYFVGIHGVKGGWISKPLSAIFTT





288
PRT
Artificial
Luk301 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
HISYWEYYARGEAIVLTVPGSERSYDLTGLK





domain
PGTEYFVGIYGVKGGVISPPLSAIFTT





289
PRT
Artificial
Luk302 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
KIWYLETGFRGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVPIYGVKGGYISQPLSAIFTT





290
PRT
Artificial
Luk303 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
NIQYWEWNLGGEAIVLTVPGSERSYDLTGLK





domain
PGTEYFVAIYGVKGGAISDPLSAIFTT





291
PRT
Artificial
Luk304 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
WIGYTELYEFGEAISLLVPGSERSYDLTGLKP





domain
GTEYSVAIAGVKGGAYSHPLHALFTT





292
PRT
Artificial
Luk305 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
YIKYAEHVVWGEAIDLLVPGSERSYDLTGLK





domain
PGTEYEVGIAGVKGGTVSVPLSARFTT





293
PRT
Artificial
Luk306 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSFI





LukS binding
ILYDEIWPSGEAISLGVPGSERSYDLTGLKPGT





FN3 domain
EYFVAIHGVKGGNISDPLDAKFTT





294
PRT
Artificial
Luk307 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
WIGYTESRYYGEAIDLLVPGSERSYDLTGLKP





FN3 domain
GTEYHVRISGVKGGAFSTPLWAAATT





295
PRT
Artificial
Luk308 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
WIGYGERLRFGEAIDLLVPGSERSYDLTGLKP





domain
GTEYHVGISGVKGGWFSNPLRAIFTT





296
PRT
Artificial
Luk309 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
KIFYLESDWEGEAIALWVPGSERSYDLTGLK





domain
PGTEYFVFIHGVKGGYISIPLHANFTT





297
PRT
Artificial
Luk310 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
WIGYTETAKWGEAITLLVPGSERSYDLTGLK





FN3 domain
PGTEYRVGIGGVKGGGWSWPLDAIFTT





298
PRT
Artificial
Luk311 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
WISYVEPDDGEAIELLVPGSERSYDLTGLKPG





domain
TEYIVQIDGVKGGTTSVPLNARFTT





299
PRT
Artificial
Luk312 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
WIGYSEYPEYGEAIDLVVPGSERSYDLTGLKP





domain
GTEYRVGITGVKGGWISKPLNATFTT





300
PRT
Artificial
Luk313 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
WIGYNEIGKWGEAIDLIVPGSERSYDLTGLKP





FN3 domain
GTEYAVGIDGVKGGSISEPLPASFTT





301
PRT
Artificial
Luk314 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
AIFYTEFNFKGEAIPLDVPGSERSYDLTGLKP





domain
GTEYFVSIHGVKGGEISPPLEALFTT





302
PRT
Artificial
Luk315 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
WISYQEPDEIGEAIELIVPGSERSYDLTGLKPG





domain
TEYFVQIDGVKGGTWSIPLNAYFTT





303
PRT
Artificial
Luk317 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
WIGYHEFPTWGEAIDLLVPGSERSYDLTGLK





FN3 domain
PGTEYQVRISGVKGGTTSQPLQAAAT





304
PRT
Artificial
Luk318 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS, HlgA
WIGYHETVGFGEAIALLVPGSERSYDLTGLKP





binding FN3
GTEYAVAIDGVKGGWFSHPLVAYFTT





domain






305
PRT
Artificial
Luk319 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
WIGYFERFNWGEAIDLLVPGSERSYDLTGLK





FN3 domain
PGTEYQVQIDGVKGGDISIPLSARFTT





306
PRT
Artificial
Luk320 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
WIGYSEWEQLGEAIDLIVPGSERSYDLTGLKP





FN3 domain
GTEYQVGIAGVKGGSSSFPLGAEFTT





307
PRT
Artificial
Luk321 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
WIGYQEAATWGEAIDLSVPGSERSYDLTGLK





domain
PGTEYHVGIVGVKGGGVSTPLVAPFTT





308
PRT
Artificial
Luk322 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
WIGYYESHRGGEAIDLLVPGSERSYDLTGLK





FN3 domain
PGTEYTVGITGVKGGTISYPLHAIFTT





309
PRT
Artificial
Luk323 HlgC
LPAPKNLVVSRVTEDSARLSWTEPDAAFDSF





binding FN3
WIAYPEPGFQGEAISLLVPGSERSYDLTGLKP





domain
GTEYEVQIAGVKGGHVSWPLVATFTT





310
PRT
Artificial
Luk324 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
WIAYEEVRAEGEAIELLVPGSERSYDLTGLKP





FN3 domain
GTEYVVGIDGVKGGGFSSPLVAHFTT





311
PRT
Artificial
Luk326 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
WIAYYERTQQGEAIELLVPGSERSYDLTGLKP





domain
GTEYWVGIDGVKGGEVSQPLKAHFTT





312
PRT
Artificial
Luk327 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
AIFYLEWLYHGEAIKLYVPGSERSYDLTGLKP





domain
GTEYYVVIHGVKGGFVSTPLFATFTT





313
PRT
Artificial
Luk329 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukF binding
WIGYWEGIGYGEAITLLVPGSERSYDLTGLKP





FN3 domain
GTEYNVGIDGVKGGDFSTPLWARFTT





314
PRT
Artificial
Luk330 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
WIGYHEFSTYGEAIDLLVPGSERSYDLTGLKP





FN3 domain
GTEYTVKIAGVKGGATSVPLVATFTT





315
PRT
Artificial
Luk331 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS, LukD
AIFYFEDDERGEAIVLNVPGSERSYDLTGLKP





binding FN3
GTEYHVIIHGVKGGQISSPLYATFTT





domain






316
PRT
Artificial
Luk332 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS, LukAB
WIAYGEWEYPGEAIELLVPGSERSYDLTGLK





binding FN3
PGTEYHVGIDGVKGGRVSYPLRAQFTT





domain






317
PRT
Artificial
Luk333 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
RIHYWEGLFVGEAIVLSVPGSERSYDLTGLKP





domain
GTEYAVPIYGVKGGSISKPLYALFTT





318
PRT
Artificial
Luk334 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
HIGYHEAEGFGEAIALLVPGSERSYDLTGLKP





domain
GTEYPVGISGVKGGFVSFPLWARFTT





319
PRT
Artificial
Luk335 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
WIGYNEIVNHGEAIDLVVPGSERSYDLTGLKP





FN3 domain
GTEYRVSIGGVKGGHWSVPLWARFTT





320
PRT
Artificial
Luk336 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
WIGYHEWIGPGEAISLLVPGSERSYDLTGLKP





FN3 domain
GTEYWVGIAGVKGGWSSRPLSATFTT





321
PRT
Artificial
Luk337 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
WIGYEEPLYFGEAIDLLVPGSERSYDLTGLKP





FN3 domain
GTEYRVHIGGVKGGRVSIPLEAEFTT





322
PRT
Artificial
Luk338 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
WIAYEEDNAQGEAIELLVPGSERSYDLTGLK





FN3 domain
PGTEYDVKIDGVKGGRVSTPLVARFTT





323
PRT
Artificial
Luk339 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
VIFYWEGQWNGEAILLDVPGSERSYDLTGLK





domain
PGTEYIVPIHGVKGGWISLPLVATFTT





324
PRT
Artificial
Luk340 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
WIGYHESPYAGEAIDLVVPGSERSYDLTGLK





FN3 domain
PGTEYAVGIAGVKGGGYSIPLRAIFTT





325
PRT
Artificial
Luk342 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
WIGYSEPTIYGEAIDLLVPGSERSYDLTGLKP





FN3 domain
GTEYFVGITGVKGGWNSRPLSAIFTT





326
PRT
Artificial
Luk343 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
AIFYTETHWFGEAINLPVPGSERSYDLTGLKP





domain
GTEYGVIIHGVKGGYISDPLWAAFTT





327
PRT
Artificial
Luk344 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
WISYVEPVFSGEAIELLVPGSERSYDLTGLKP





FN3 domain
GTEYIVGIGGVKGGGWSIPLEAHFTT





328
PRT
Artificial
Luk345 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
SIFYIEAKFRGEAIRLGVPGSERSYDLTGLKPG





domain
TEYFVWIHGVKGGEISDPLEAPFTT





329
PRT
Artificial
Luk346 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
WIAYYEIVGWGEAITLLVPGSERSYDLTGLKP





FN3 domain
GTKYVVLIDGVKGGLLSQPLHAEFAT





330
PRT
Artificial
Luk347 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
WIGYHETTRFGEAIDLLVPGSERSYDLTGLKP





FN3 domain
GTEYVVAIQGVKGGHVSQPLRAPFTT





331
PRT
Artificial
Luk348 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
SIIYLEASFRGEAIVLTVPGSERSYDLTGLKPG





domain
TEYFVSIYGVKGGHFSPPLDAIFTT





332
PRT
Artificial
Luk349 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
WIGYREWIQWGEAISLLVPGSERSYDLTGLK





domain
PGTEYRVGITGVNGGVTSVPLHAKFTT





333
PRT
Artificial
Luk350 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukF binding
WIAYHEGLSWGEAIDLLVPGSERSYDLTGLK





FN3 domain
PGTEYTVSIDGVKGGYTSEPLRASFTT





334
PRT
Artificial
Luk351 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
WIGYDETLTYGEAITLLVPGSERSYDLTGLKP





FN3 domain
GTEYTVGIDGVKGGRNSVPLKATFTT





335
PRT
Artificial
Luk353 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
WIGYHEPRAWGEAIDLLVPGSERSYDLTGLK





FN3 domain
PGTEYLVGIGGVKGGKQSKPLVAKFTT





336
PRT
Artificial
Luk354 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
WIGYTEQKNHGEAIDLLVPGSERSYDLTGLK





FN3 domain
PGTEYEVNIAGVKGGGWSIPLNAWFTT





337
PRT
Artificial
Luk355 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
KIVYVEIHYRGEAIHLSVPGSERSYDLTGLKP





domain
GTEYHVVIHGVKGGGISLPLDAPFTT





338
PRT
Artificial
Luk356 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDATFDSF





LukS binding
WIGYSEDQRTGEAIDLVVPGSERSYDLTGLK





FN3 domain
PGTEYRVAIAGVKGGYISQPLSANFTT





339
PRT
Artificial
Luk357 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
TIHYFESLLTGEAISLVVPGSERSYDLTGLKPG





domain
TEYLVPIYGVKGGFISQPLIAIFTT





340
PRT
Artificial
Luk358 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
AINYYEYYPAGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVAIYGVKGGYISPPLSAIFTT





341
PRT
Artificial
Luk361 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
SIYYYEYYANGEAIVLTVPGSERSYDLTGLKP





domain
GTEYFVAIYGVKGGYVSDPLSAIFTT





342
PRT
Artificial
Luk362 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
PIYYLEYSFTGEAIVLTVPGSERSYDLTGLKP





domain
GTEYAVYIYGVKGGWISDPLSAIFTT





343
PRT
Artificial
Luk363 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
RIYYYEWASYGEAIVLTVPGSERSYDLTGLK





domain
PGTEYFVGIYGVKGGHISRPLSAIFTT





344
PRT
Artificial
Luk364 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
RIFYHEYSYRGEAIVLTVPGSERSYDLTGLKP





domain
GTEYLVIIHSVKGGSVSSPLSAIFTT





345
PRT
Artificial
Luk365 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TIYYYEYWYGGEAIVLTVPGSERSYDLTGLK





FN3 domain
PGTEYWVGIYGVKGGYISSPLSAIFTT





346
PRT
Artificial
Luk366 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
AIFYYEFNWGGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYWVGIYGVKGGYISYPLSAIFTT





347
PRT
Artificial
Luk368 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
AIYYFESINLGDAIVLTVPGSERSYDLTGLKP





domain
GTEYYVYIYGVKGGYISYPLSAIFTT





348
PRT
Artificial
Luk369 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
RIFYYEYGGGGEAIVLTVPGSERSYDLTGLKP





domain
GTEYHVGIYGVKGGYISPPLSAIFTT





349
PRT
Artificial
Luk370 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
SIYYFEYWTYGEAIVLTVPGSERSYDLTGLKP





domain
GTEYYVYIYGVKGGYISDPLSAIFTT





350
PRT
Artificial
Luk371 HlgC
LPAPKNLVVSRVIEDSARLSWTAPDAAFDSFT





binding FN3
IFYYEYDSGEAIVLTVPGSERSYDLTGLKPGT





domain
EYTVAIFGVKGGYISAPLSAIFTT





351
PRT
Artificial
Luk372 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
LIGYEEYANAGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYLVFIYGVKGGYYSYPLSAIFTT





352
PRT
Artificial
Luk373 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
HIYYFEYINLGEAIVLTVPGSERSYDLTGLKP





domain
GTEYFVYIHGVKGGFVSDPLSAIFTT





353
PRT
Artificial
Luk374 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
VIEYWEYRLAGEAIVLTVPGSERSYDLTGLKP





domain
GTEYFVGIYGVKGGAVSLPLSAIFTT





354
PRT
Artificial
Luk375 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
HIDYWEYVFLGEAIVLTVPGSERSYDLTGLKP





domain
GTEYFVSITGVKGGRYSYPLSAIFTT





355
PRT
Artificial
Luk376 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TIPYYEYWWSGEAIVLTVPGSERSYDLTGLK





FN3 domain
PGTEYWVGIYGVKGGYISSPLSAIFTT





356
PRT
Artificial
Luk377 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
WINYWEYYPHGEAIVLTVPGSERSYDLTGLK





domain
PGTEYFVGIYGVKGGSYSHPLSAIFTT





357
PRT
Artificial
Luk378 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
AIFYHEDAYTGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVVIHGVKGGFLSRPLSAIFTT





358
PRT
Artificial
Luk379 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
YILYHEYEYSGEAIVLTVPGSERSYDLTGLKP





domain
GTEYFVAIYGVKGGLYSAPLSAIFTT





359
PRT
Artificial
Luk380 HlgC,
LPAPKNLVVSRVNEDSARLSWTAPDAAFDSF





LukS binding
DIVYGVGEAIVLTVPGSERSYDLTGLKPGTEY





FN3 domain
YVPIAGVKGGGVSWPLSAIFTT





360
PRT
Artificial
Luk381 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
RIYYYEYYKYGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVAIYGVKGGEISDPLSAIFTT





361
PRT
Artificial
Luk382 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
GIIYDETAQYGEAIVLTVPGSERSYDLTGLKP





domain
GTEYLVPIHGVKGGTISYPLSAIFTT





362
PRT
Artificial
Luk390 LukD
LPAPKNLVVSRVTEDSARLSWTYIHHGFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVVWGYWNPTQYSNPLSAIFTT





363
PRT
Artificial
Luk394 LukE
LPAPKNLVVSRVTEDSARLSWDQYRLNFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVNWGYFLAPEISNPLSAIFTT





364
PRT
Artificial
Luk399 LukE
LPAPKNLVVSRVTEDSARLSWPGQTRKFNIF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVVGIFLTFGSNPLSAIFTT





365
PRT
Artificial
Luk409 LukD
LPAPKNLVVSRVTEDSARLSWKYTLYQHYF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVLAWWSFGSNPLSAIFTT





366
PRT
Artificial
Luk412 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
GIGYLEYPWYGEAIVLTVPGSERSYDLTGLKP





domain
GTEYFVDIYGVKGGWWSYPLSAIFTT





367
PRT
Artificial
Luk414 LukE
LPAPNLLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
WIDYIETYYYGEAIVLTVPGSERSYDLTGLKP





domain
GTEYLVDIYGVKGGWYSLPLSAIFTT





368
PRT
Artificial
Luk415 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
EISYTEYGISGEAIVLTVPGSERSYDLTGLKPG





domain
TEYFVDIYGVKGGYLSYPLSAIFTT





369
PRT
Artificial
Luk417 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
NIDYFEYYEFGEAIVLTVPGSERSYDLTGLKP





domain
GTEYFVDIYGVKGGSWSLPLSAIFTT





370
PRT
Artificial
Luk420 LukAB
LPAPKNLVVSRVTEDSARLSWWLGRFNFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVKQWIISEESLSNPLSAIFTT





371
PRT
Artificial
Luk428 LukF
LPAPKNLVVSRVTEDSARLSWGIKEETIIFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVNIIELHLWSNPLSAIFTT





372
PRT
Artificial
Luk438 HlgC
LPAPKNLVVSRVTEDSARLSWWRKPKRWRH





binding FN3
FDSFLIQYQESEKVGEAIVLTVPGSERSYDLT





domain
GLKPGTEYTVSIYGVAPDTPTPVIISNPLSAIFTT





373
PRT
Artificial
Luk445 HlgA
LPAPKNLVVSRVTEDSARLSWEVNTKTSNKF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVGYWLTNVVLASNPLSAIF






TT





374
PRT
Artificial
Luk447 LukD
LPAPKNLVVSRVTEDSARLSWGIDDYFVHFF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVSIHFEFTTYSRSNPLSAIFTT





375
PRT
Artificial
Luk449 LukE,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





HlgA binding
DISYDEYPEFGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYLVDIIGVKGGEISLPLSAIFTT





376
PRT
Artificial
Luk452 LukE,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





HlgA binding
NIHYAEYPDFGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYIVDIWGVKGGLGSWPLSAIFTT





377
PRT
Artificial
Luk460 LukF
LPAPKNLVVSRVTEDSARLSWIWGGESFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVGQIGFIYRPEGSNPLSAIFTT





378
PRT
Artificial
Luk461 LukF
LPAPKNLVVSRVTEDSARLSWLGPTATVFDS





binding FN3
FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVWSLLHHRFSNPLSAIFTT





379
PRT
Artificial
Luk462 LukF
LPAPKNLVVSRVTEDSARLSWHPIWVDFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVRGDGFEVILHSNPLSAIFTT





380
PRT
Artificial
Luk463 LukF
LPAPKNLVVSRVTEDSARLSWKWFKTTAFDS





binding FN3
FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVLHASEIHQWESSNPLSAIFTT





381
PRT
Artificial
Luk464 LukF
LPAPKNLVVSRVTEDSARLSWWWPVAPFDS





binding FN3
FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVGAINYVYFPTWSNPLSAIFTT





382
PRT
Artificial
Luk465 LukF
LPAPKNLVVSRVTEDSARLSWVTDPGTNFDS





binding FN3
FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVWSWVHSRYSNPLSAIFTT





383
PRT
Artificial
Luk467 LukF
LPAPKNLVVSRVTEDSARLSWPWLQYPFFDS





binding FN3
FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVGYLDWHIFQLASNPLSAIFTT





384
PRT
Artificial
Luk468 LukF
LPAPKNLVVSRVTEDSARLSWQPSHGEFANF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVQPWYRGGHIYDFSNPLS






AIFTT





385
PRT
Artificial
Luk470 LukF
LPAPKNLVVSRVTEDSARLSWINYSDPDFFDS





binding FN3
FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVYHWWYRGTPVVSNPLSAIF






TT





386
PRT
Artificial
Luk473 LukF,
LPAPKNLVVSRVTEDSARLSWLEGFFPQPLFD





LukD, LukAB
SFLIQYLESEKVGEAIVLTVPGSERSYDLTGL





binding FN3
KPGTEYTVSIYGVPWYHHRWWFASNPLSAIF





domain
TT





387
PRT
Artificial
Luk475 LukF
LPAPKNLVVSRVTEDSARLSWKQHTNTHYQ





binding FN3
FDSFLIQYQESEKVGEAIVLTVPVSERSYDLT





domain
GLKPGTEYTVSIYGVRWIDNHLKFNVHSNPL






SAIFTT





388
PRT
Artificial
Luk476 LukF,
LPAPKNLVVSRVTEDSARLSWLEGFFPQPLFD





LukS, LukD,
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





LukE, LukAB,
KPGTEYTVSIYGVPWYHHRWWFASNPLSAIF





HlgB, HlgC
TT





binding FN3






domain






389
PRT
Artificial
Luk478 HlgC
LPAPKNLVVSRVTEDSARLSWLEGFFPQPLFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGVASRWHSFPVTTSNPLSAIF






TT





390
PRT
Artificial
Luk479 LukF,
LPAPKNLVVSRVTEDSARLSWLEGFFPQPLFD





LukD binding
SFLIQYQESEKVGEAIVLTVPGSERSYGLTGL





FN3 domain
KPGTEYTVSIYGVPWYHHRWWFASNPLSAIF






TT





391
PRT
Artificial
Luk483 LukF
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
RIFYYERFTWGEAIVLTVPGSERSYDLTGLKP





domain
GTEYPVHIWGVKGGIDSRPLSAIFTT





392
PRT
Artificial
Luk486 LukD,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukAB binding
AIRYGEETVHGEAIALIVPGSERSYDLTGLKP





FN3 domain
GTEYPVAIAGVKGGTWSIPLSAIFTT





393
PRT
Artificial
Luk487 LukF
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
AIHYLEFHYAGEAIVLTVPGSERSYDLTGLKP





domain
GTEYWVVIYGVKGDLISGPLSAIFTT





394
PRT
Artificial
Luk498 LukD
LPAPKNLVVSRVTEDSARLSWLPGPFRRFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVVNHEWYHAFSNPLSAIFTT





395
PRT
Artificial
Luk499 LukS
LPAPKNLVVSRVTEDSARLSWIGRELIWFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVVTHEWRSEFSNPLSAIFTT





396
PRT
Artificial
Luk500 LukS
LPAPKNLVVSRVTEDSARLSWKKPSYYIFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVVNHEWYHAFSNPLSAIFTT





397
PRT
Artificial
Luk505 LukS
LPAPKNLVVSRVTEDSARLSWQQAARWFDS





binding FN3
FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVVTREWFHSFSNPLSAIFTT





398
PRT
Artificial
Luk507 LukS
LPAPKNLVVSRVTEDSARLSWQHHGFRLFDS





binding FN3
FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVFTHEWFHEFSNPLSAIFTT





399
PRT
Artificial
Luk510 LukS
LPAPKNLVVSRVTEDSARLSWDEYSVTTWW





binding FN3
FDSFLIQYQESEKVGEAIVLTVPGSERSYDLT





domain
GLKPGTEYTVSIYGVNELYRPWVASNPLSAIF






TT





400
PRT
Artificial
Luk513 LukS
LPAPKNLVVSRVTEDSARLSWWTGGWRRNP





binding FN3
FDSFLIQYQESEKVGEAIVLTVPGSERSYDLT





domain
GLKPGTEYTVSIYGVQLHRTIIAGESNPLSAIF






TT





401
PRT
Artificial
Luk516 LukS
LPAPKNLVVSRVTEDSARLSWVGANSRHWF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVAVSEWFHSFSNPLSAIFTT





402
PRT
Artificial
Luk517 LukS
LPAPKNLVVSRVTEDSARLSWVNHLEGEAW





binding FN3
FDSFLIQYQESEKVGEAIVLTVPGSERSYDLT





domain
GLKPGTEYTVSIYGVQTHEWWHKFSNPLSAI






FTT





403
PRT
Artificial
Luk519 LukS
LPAPKNLVVSRVTEDSARLSWDLEHHNYHY





binding FN3
FDSFLIQYQESEKVGEAIVLTVPGSERSYDLT





domain
GLKPGTEYTVSIYGVWFLQPAIHPPSNPLSAIF






TT





404
PRT
Artificial
Luk520 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
AIFYYEYWSNGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYWVGIHGVKGGLISHPLSAIFTT





405
PRT
Artificial
Luk521 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSFI





LukS binding
ITYEEATLNGEAIVLTVPGSERSYDLTGLKPG





FN3 domain
TEYTVGITGVKGGLGSYPLSAIFTT





406
PRT
Artificial
Luk522 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TIFYLEQRFQGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYAVIIHGVKGGWISFPLSAIFTT





407
PRT
Artificial
Luk523 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
NIPYLERQLYGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYTVTIGGVKGGAPSRPLSAIFTT





408
PRT
Artificial
Luk524 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
FIFYLEYAHPGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYHVIIHGVKGGLISEPLSAIFTT





409
PRT
Artificial
Luk525 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
YIFYWESVTGGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYIVIIHGVKGGLISDPLSAIFTT





410
PRT
Artificial
Luk526 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
PIFYDEHHQWGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYWVAIYGVKGGYYSSPLSAIFTT





411
PRT
Artificial
Luk527 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
HIFYWEPNEVGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVEIYGVKGGEISYPLSAIFTT





412
PRT
Artificial
Luk528 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TIDYREETPKGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYWVIILGVKGGGDSFPLSAIFTT





413
PRT
Artificial
Luk529 LukS
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
GIYYGEWNPKGEAIVLTVPGSERSYDLTGLK





domain
PGTEYWVIISGVKGGPQSIPLSAIFTT





414
PRT
Artificial
Luk530 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukD binding
GIFYHEIEENGEAIVLTVPGSERSYDLTGLKPG





FN3 domain
TEYFVAIHGVKGGVISTPLSAIFTT





415
PRT
Artificial
Luk531 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
RIFYYELYHAGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVIIHGVKGGQISLPLSAIFTT





416
PRT
Artificial
Luk532 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TIFYLELESSGEAIVLTVPGSERSYDLTGLKPG





FN3 domain
TEYNVIIHGVKGGFISSPLSAIFTT





417
PRT
Artificial
Luk533 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
PIFYVELRNPGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYHVVIHGVKGGFISHPLSAIFTT





418
PRT
Artificial
Luk534 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TIFYTEWNEFGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVIIHGVKGGQISVPLSAIFTT





419
PRT
Artificial
Luk535 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
VIFYLEPTTQGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVIIHGVKGGPVSGPLSAIFTT





420
PRT
Artificial
Luk536 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
WIAYIETDGWGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVPIHGVKGGYISQPLSAIFTT





421
PRT
Artificial
Luk537 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
AIFYHEHKIRGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYLVIIHGVKGGYISLPLSAIFTT





422
PRT
Artificial
Luk538 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
PIFYLERANRGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVIIHGVKGGTISDPLSAIFTT





423
PRT
Artificial
Luk539 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
AIFYLETLYHGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYLVVIHGVKGGHSSPLSAIFTT





424
PRT
Artificial
Luk540 LukS
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
HIEYPEDTEQGEAIVLTVPGSERSYDLTGLKP





domain
GTEYNVHITGVKGGSKSAPLSAIFTT





425
PRT
Artificial
Luk541 LukS,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukD binding
NILYTETEQSGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYIVIIHGVKGGFISGPLSAIFTT





426
PRT
Artificial
Luk542 LukS
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
TIFYPEFRGDGEAIVLTVPGSERSYDLTGLKP





domain
GTEYGVIIHGVKGGGDSNPLSAIFTT





427
PRT
Artificial
Luk543 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
AIFYTETFHYGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYLVVIHGVKGGDISAPLSAIFTT





428
PRT
Artificial
Luk544 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TIHYLEEFWLGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVAIYGVKGGFISVPLSAIFTT





429
PRT
Artificial
Luk545 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
VIAYIEERWSGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVLIHGVKGGFISNPLSAIFTT





430
PRT
Artificial
Luk546 LukS
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
SIYYGEWPHGGEAIVLTVPGSERSYDLTSLKP





domain
GTEYFVLIIGVKGGQLSHPLSAIFTT





431
PRT
Artificial
Luk547 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TIFYLESSGTGEAIVLTVPGSERSYDLTGLKPG





FN3 domain
TEYLVIIHGVKGGRISNPLSAIFTT





432
PRT
Artificial
Luk548 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS, LukD
AIYYGEWHPDGEAIVLTVPGSERSYDLTGLK





binding FN3
PGTEYWVFILGVKGGQNSQPLSAIFTT





domain






433
PRT
Artificial
Luk549 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TIFYAESGNWGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVFIWGVKGGHESHPLSAIFTT





434
PRT
Artificial
Luk550 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
AIFYAETDTKGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYLVIIHGVKGGSISVPLSAIFTT





435
PRT
Artificial
Luk551 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
RIFYQEYSNHGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVPIYGVKGGFISRPLSAIFTT





436
PRT
Artificial
Luk552 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
QIFYDENLWLGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVAIHGVKGGFISQPLSAIFTT





437
PRT
Artificial
Luk553 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
HIFYAEHEKWGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYWVAIHGVKGGHISRPLSAIFTT





438
PRT
Artificial
Luk554 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
SIFYLETFRRGEAIVLTVPGSERSYDLTGLKPG





FN3 domain
TEYLVIIHGVKGGYVSDPLSAIFTT





439
PRT
Artificial
Luk555 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
SIFYPETNYQGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYLVVIHGVKGGYISDPLSAIFTT





440
PRT
Artificial
Luk556 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
AIFYIEEETNGEAIVLTVPGSERSYDLTGLKPG





FN3 domain
TEYQVIIHGVKGGFISLPLSAIFTT





441
PRT
Artificial
Luk557 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
VIFYPEVNFRGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYLVIIHGVKGGYISTPLSAIFTT





442
PRT
Artificial
Luk558 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
AIFYHEWWKSGEAIVLTVPGSERSYDLTGLK





FN3 domain
PGTEYHVVIHGVKGGHISTPLSAIFTT





443
PRT
Artificial
Luk559 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TIHYPETRPTGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVVIYGVKGGWISPPLSAIFTT





444
PRT
Artificial
Luk560 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
HIFYIEHVQVGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVIIHGVKGGIISPPLSAIFTT





445
PRT
Artificial
Luk561 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TIFYYPELYFHGEAIVLTVPGSERSYDLTGLK





FN3 domain
PGTEYLVVIHGVKGGFISPPLSAIFTT





446
PRT
Artificial
Luk562 LukS,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukAB binding
AIFYKEYTHGGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYWVIIHSVKGGSISYPLSAIFTT





447
PRT
Artificial
Luk563 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
QIFYPEHYQDGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYLVVIHGVKGGWISSPLSAIFTT





448
PRT
Artificial
Luk564 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TIFYIEFRYPGEAIVLTVPGSERSYDLTGLKPG





FN3 domain
TEYFVAIHGVKGGYISDPLSAIFTT





449
PRT
Artificial
Luk565 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
HIFYLETWGSGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVVIHGVKGGLISSPLSAIFTT





450
PRT
Artificial
Luk566 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
AIFYYEHADAGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVIIHGVKGGYISKPLSAIFTT





451
PRT
Artificial
Luk567 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
AIFYQEDSDHGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVAIHGVKGGTISKPLSAIFTT





452
PRT
Artificial
Luk568 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
RIFYIEEHDVGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYIVIIHGVKGGYISDPLSAIFTT





453
PRT
Artificial
Luk569 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TILYPETQTIGEAIVLTVPGSERSYDLTGLKPG





FN3 domain
TEYFVGIHGVKGGIISDPLSAIFTT





454
PRT
Artificial
Luk570 LukS,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSFI





LukD, LukAB
IYYGEWREHGEAIVLTVPGSERSYDLTGLKP





binding FN3
GTEYFVLIQGVKGGQTSGPLSAIFTT





domain






455
PRT
Artificial
Luk571 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
KIFYLEPKENGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVIITGVKGGFISEPLSAIFTT





456
PRT
Artificial
Luk572 LukS
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
LIHYDEWENGGEAIVLTVPGSERSYDLTGLK





domain
PGTEYWVIIIGVKGGVRSNPLSAIFTT





457
PRT
Artificial
Luk575 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
PIFYVEIPQPGEAIVLTVPGSERSYDLTGLKPG





FN3 domain
TEYFVIIHGVKGGGISDPLSAIFTT





458
PRT
Artificial
Luk576 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
VILYHEYWASGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVVIHGVKGGFLSDPLSAIFTT





459
PRT
Artificial
Luk577 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
HIFYCEHWTSGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVAIHGVKGGEISAPLSAIFTT





460
PRT
Artificial
Luk578 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TIFYQEHLGYGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYVVVIHGVKGGWISSPLSAIFTT





461
PRT
Artificial
Luk579 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TIIYEETANGGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVVIHGVKGGHISSPLSAIFTT





462
PRT
Artificial
Luk580 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS, LukAB
QIFYPETQKYGEAIVLTVPGSERSYDLTGLKP





binding FN3
GTEYFVVIHGVKGGFISSPLSAIFTT





domain






463
PRT
Artificial
Luk581 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
VIFYGEYENGGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVIIVGVKGGFDSKPLSAIFTT





464
PRT
Artificial
Luk582 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
NIFYHETVDKGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVVVSGVKGGYISDPLSAIFTT





465
PRT
Artificial
Luk583 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
QIFYREESKYGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVPIHGVKGGEISDPLSAIFTT





466
PRT
Artificial
Luk584 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
QIFYQEVVEWGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVVIHGVKGGWISDPLSAIFTT





467
PRT
Artificial
Luk585 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TIFYPETWIAGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYLVVIHGVKGGIISWPLSAIFTT





468
PRT
Artificial
Luk587 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
VIPYQEYLGWGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYWVGIYGVKGGFISPPLSAIFTT





469
PRT
Artificial
Luk588 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
AIFYYEHQVAGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVAIHGVKGGWISSPLSAIFTT





470
PRT
Artificial
Luk589 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TIIYAEEQRNGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVIIHGVKGGFISPPLSAIFTT





471
PRT
Artificial
Luk590 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
SIFYLEERLTGEAIVLTVPGSERSYDLTGLKPG





FN3 domain
TEYLVVIHGVKGGVISDPLSAIFTT





472
PRT
Artificial
Luk592 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TIFYYEAVHQGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVVIHGVKGGNISVPLSAIFTT





473
PRT
Artificial
Luk593 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
AIFYVELVWKGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVVIHGVKGGYISDPLSAIFTT





474
PRT
Artificial
Luk594 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
VIHYGEYENGGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVAIHGVKGGFISDPLSAIFTT





475
PRT
Artificial
Luk595 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TIIYFETKAYGEAIVLTVPGSERSYDLTGLKPG





FN3 domain
TEYWVIIHGVKGGYISVPLSAIFTT





476
PRT
Artificial
Luk596 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
VIFYDEEWSKGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYAVFIYGVKGGAISEPLSAIFTT





477
PRT
Artificial
Luk597 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
YIHYLETDPGGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVSIYGVKGGWISPPLSAIFTT





478
PRT
Artificial
Luk598 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
VIFYDEDRPQGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVVIHGVKGGYLSIPLSAIFTT





479
PRT
Artificial
Luk599 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
YIFYREETPHGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYWVLILGVKGGGISEPLSAIFTT





480
PRT
Artificial
Luk601 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TIFYIEDNKVGEAIVLTVPGSVRSYDLTGLKP





FN3 domain
GTEYFVVIHGVKGGIISEPLSAIFTT





481
PRT
Artificial
Luk602 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
VIFYQELNRDGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYLVIIHGVKGGFISPPLSAIFTT





482
PRT
Artificial
Luk603 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
HIFYLEFWYRGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYNVIIHGVKGGWISEPLSAIFTT





483
PRT
Artificial
Luk604 LukS
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
QIFYGEWPQEGEAIVLTVPGSERSYDLTGLKP





domain
GTEYWVVILGVKGGQASPPLSAIFTT





484
PRT
Artificial
Luk605 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS, LukD
RIHYLEHAARGEAIVLTVPGSERSYDLTGLKP





binding FN3
GTEYFVAIYGVKGGYISFPLSAIFTT





domain






485
PRT
Artificial
Luk606 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TIHYLESYPRGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVAIYGVKGGYLSPPLSAIFTT





486
PRT
Artificial
Luk607 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
QIFYHEWVPWGEAIVLTVPGSERSYDLTGLK





FN3 domain
PGTEYFVVIHGVKGGTISFPLSAIFTT





487
PRT
Artificial
Luk608 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
NIFYGEYENGGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVFIIGVKGGPDSLPLSAIFTT





488
PRT
Artificial
Luk609 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
DIRYWEGPGYGEAIVLTVPGSERSYDLTGLK





FN3 domain
PGTEYRVRIVGVKGGKRSEPLSAIFTT





489
PRT
Artificial
Luk610 LukS
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
FIYYGEYDPVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYFVIIQGVKGGQASGPLSAIFTT





490
PRT
Artificial
Luk611 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
HIAYAEFWRYGEAIVLTVPGSERSYDLTGLK





FN3 domain
PGTEYWVNIAGVKGGEWSKPLSAIFTT





491
PRT
Artificial
Luk612 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TIFYQEESKYGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVVIHGVKGGAISQPLSAIFTT





492
PRT
Artificial
Luk613 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
NIFYIETDKPGEAIVLTVPGSERSYDLTGLKPG





FN3 domain
TEYFVAIHGVKGGFISEPLSAIFTT





493
PRT
Artificial
Luk614 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





HlgA, LukS
QIFYTEPVGHGEAIVLTVPGSERSYDLTGLKP





binding FN3
GTEYFVAIHGVKGGTISPPLSAIFTT





domain






494
PRT
Artificial
Luk615 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
HIFYIEHRLQGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYLVLIHGVKGGFISPPLSAIFTT





495
PRT
Artificial
Luk616 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
HIFYHEGLKSGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYLVVIHGVKGGTISNPLSAIFTT





496
PRT
Artificial
Luk617 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
VIFYHETRVTGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYLVVIHGVKGGYISEPLSAIFTT





497
PRT
Artificial
Luk618 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
SIFYQEAVEGGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVPIHGVKGGWISQPLSAIFTT





498
PRT
Artificial
Luk619 LukS
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
QILYVEEFTRGEAIVLTVPGSERSYDLTGLKP





domain
GTEYVVIIHGVKGGYISKPLSAIFTT





499
PRT
Artificial
Luk620 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TYIEALGFGEAIVLTVPGSERSYDLTGLKPGT





FN3 domain
EYFVAIYGVKGGYISEPLSAIFTT





500
PRT
Artificial
Luk621 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
VIFYLEHWNPGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYLVPIHGVKGGSISPPLSAIFTT





501
PRT
Artificial
Luk622 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TIFYVEWEVVGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVVIHGVKGGVISNPLSAIFTT





502
PRT
Artificial
Luk623 LukS
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
RIFYLEESKNGEAIVLTVPGSERSYDLTGLKP





domain
GTEYQVVIHGVKGGVISPPLSAIFTT





503
PRT
Artificial
Luk624 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
AIFYNEDHKSGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYLVVIHGVKGGYISKPLSAIFTT





504
PRT
Artificial
Luk625 HlgC,
LPAPKNLVVSRVPEDSARLSWTAPDAAFDSF





LukS binding
LIDYQEWHEGEAIHLLVPGSERSYDLTGLKP





FN3 domain
GTEYAVIIVGVKGGKGSHPLSAIFTT





505
PRT
Artificial
Luk626 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPYAAFDSF





LukS binding
WIGYYETTIPGEAIDLVVPGSERSYDLTGLKP





FN3 domain
GTEYGVGIDGVKGGRYSHPLSAIFTT





506
PRT
Artificial
Luk627 LukS
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
AIFYKEEAIPGEAIALIVPGSERSYDLTGLKPG





domain
TEYFVPIHGVKGGYISTPLSAIFTT





507
PRT
Artificial
Luk628 LukS
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
LIDYTELHNWGEAIHLFVPGSERSYDLTGLKP





domain
GTEYTVLIVGVKGGTGSIPLSAIFTT





508
PRT
Artificial
Luk629 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
YITYEEEWWTGEAIFLDVPGSERSYDLTGLKP





FN3 domain
GTEYLVTIKGVKGGPWSQPLSAIFTT





509
PRT
Artificial
Luk630 LukS
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
AIWYHEWGPVGEAILLYVPGSERSYDLTGLK





domain
PGTEYPVAIHGVKGGGTSHPLSAIFTT





510
PRT
Artificial
Luk631 LukS
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
RIFYEELRYKGEAIWLFVPGSERSYDLTGLKP





domain
GTEYHVHIWGVKGGYFSRPLSAIFTT





511
PRT
Artificial
Luk632 LukS
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSFI





binding FN3
IDYWEQWNTGEAIHLYVPGSERSYDLTGLKP





domain
GTEYSVYIVGVKGGYASWPLSAIFTT





512
PRT
Artificial
Luk633 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
WIGYDENHLYGEAIDLVVPGSERSYDLTGLK





FN3 domain
PGTEYTVSIAGVKGGLESFPLSAIFTT





513
PRT
Artificial
Luk634 LukS
LPAPKNLVVSRVTEDSARLSWTAPEAAFDSF





binding FN3
HISYWEFPLGGEAIGLWVPGSERSYDLTGLKP





domain
GTEYFVIIAGVKGGEFSNPLSAIFTT





514
PRT
Artificial
Luk635 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSFI





LukS binding
IEYHEWFAKGEAIGLVVPGSERSYDLTGLKP





FN3 domain
GTEYSVIIVGVKGGAYSFPLSAIFTT





515
PRT
Artificial
Luk636 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
LIDYWEGEFDGEAIHLFVPGSERSYDLTGLKP





FN3 domain
GTEYDVFIVGVKGGHGSDPLSAIFTT





516
PRT
Artificial
Luk637 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
QIPYYELDSVGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVGIYGVKGGYISPPLSAIFTT





517
PRT
Artificial
Luk638 LukS
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
YIGYGEYDPTGEAIVLTVPGSERSYDLTGLKP





domain
GTEYWVLISGVKGGYYSDPLSAIFTT





518
PRT
Artificial
Luk639 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
VIYYLESVARGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVPIYGVKGGYISYPLSAIFTT





519
PRT
Artificial
Luk640 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TIPYWESYYSGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYVVAIYGVKGGYISSPLSAIFTT





520
PRT
Artificial
Luk641 LukS
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
GIYYGEYHSGGEAIVLTVPGSERSYDLTGLKP





domain
GTEYFVLIDGVKGGLYSGPLSAIFTT





521
PRT
Artificial
Luk642 LukS
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
YIVYAEYYWYGEAIVLTVPGSERSYDLTGLK





domain
PGTEYYVYIAGVKGGYGSDPLSAIFTT





522
PRT
Artificial
Luk643 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TIPYYESNLGGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYWVGIYGVKGGHISSPLSAIFTT





523
PRT
Artificial
Luk644 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TILYYELIDSGEAIVLTVPGSERSYDLTGLKPG





FN3 domain
TEYFVGIYGVKGGYISLPLSAIFTT





524
PRT
Artificial
Luk645 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
WISYGEYWPSGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYFVLIRGVKGGDYSNPLSAIFTT





525
PRT
Artificial
Luk646 LukD
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
RIFYGEYDGGGEAIVLTVPGSERSYDLTGLKP





domain
GTEYGVYIYGVKGGYISQPLSAIFTT





526
PRT
Artificial
Luk647 LukS
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
SIYYGEWDPTGEAIVLTVPGSERSYDLTGLKP





domain
GTEYWVLIVGVKGGSTSAPLSAIFTT





527
PRT
Artificial
Luk648 LukS
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
WIGYEEYYLVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYLVWIKGVKGGYVGRPLSAIFTT





528
PRT
Artificial
Luk649 LukS
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
GIAYSERVRYGEAIVLTVPGSERSYDLTGLKP





domain
GTEYWVGISGVKGGPYSEPLSAIFTT





529
PRT
Artificial
Luk650 HlgC,
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





LukS binding
TIHYYESYTVGEAIVLTVPGSERSYDLTGLKP





FN3 domain
GTEYWVGIYGVKGGYISEPLSAIFTT





530
PRT
Artificial
Luk651 HlgA,
LPAPKNLVLSRVTEDSARLSWAQATYYQFDS





LukD, LukAB
FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





binding FN3
PGTEYTVSIYGVLEVIPKLRYKVYSNPLSAIFTT





domain






531
PRT
Artificial
Luk652 HlgA
LPAPKNLVVSRVTEDSARLSWSEVEDIPFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVLHYNRGQHPWHSNPLSAIFTT





532
PRT
Artificial
Luk653 HlgA
LPAPKNLVVSRVTEDSARLSWNLEVAFYFDS





binding FN3
FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVEHLDEVWWTANLSNPLSAI






FTT





533
PRT
Artificial
Luk654 HlgA,
LPAPKNLVVSRVTEDSARLSWSHFPNDWFDS





LukD binding
FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





FN3 domain
PGTEYTVSIYGVHYWQFDIQSNPLSAIFTT





534
PRT
Artificial
Luk655 HlgA
LPAPKNLVVCRVTEDSARLSWRTYTSDAGFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGVHEHAHIQYWHWSNPLSAI






FTT





535
PRT
Artificial
Luk656 HlgA
LPAPKNLVVSRVTEDSARLSWKREQWANYF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVWEHLYKELWSYTSNPLS






AIFTT





536
PRT
Artificial
Luk657 LukF
LPAPKNLVVSRVTEDSARLSWSELEARTHFD





binding FN3
SFLIQYQESEKVSEAIVLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGVAQQLVAWRGSNPLSAIFTT





537
PRT
Artificial
Luk658 LukD
LPAPKNLVVSRVTEDSARLSWKRARLDLPFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGVDAWIPTVGSNPLSAIFTT





538
PRT
Artificial
Luk659 HlgA
LPAPKNLVVSRVTEDSARLSWINYWVLNYFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGVEVWPQDHEWIDSNPLSAIF






TT





539
PRT
Artificial
Luk660 HlgA
LPAPKNLVVSRVTEDSARLSWYREVDFTTFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGVSSYYILHSNPLSAIFTT





540
PRT
Artificial
Luk661 LukAB
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
LITYREQIFAGEVIVLTVPGSERSYDLTGLKPG





domain
TEYPVCIYGVKGGPISDPLSAIFTT





541
PRT
Artificial
Luk662 LukS
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
VINYREVINEGEAIILHVPGSERSYRPERSETG





domain
YRIHRHHSWC





542
PRT
Artificial
Luk663 LukD
LPAPKNLVVSRVTEDSARLSWVVHNHLAFDS





binding FN3
FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVEPYVYAQYESNPLSAIFTT





543
PRT
Artificial
Luk664 HlgC
LPAPKNLVVSRVTEDSARLSWKRKSGAPFDS





binding FN3
FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVHGWDPGSDSNPLSAIFTT





544
PRT
Artificial
Luk665 HlgC
LPAPKNLVVSRVTEDSARLSWWHVRGHDFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGVVWLPTTDSNPLSAIFTT





545
PRT
Artificial
Luk666 HlgC
LPAPKNLVVSRVTEDSARLSWSPDRARFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVWSWDNDDASNPLSAIFTT





546
PRT
Artificial
Luk667 HlgC
LPAPKNLVVSRVTEDSARLSWFAGLQLFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVDWTVEEQSYHLWSNPLSAIF






TT





547
PRT
Artificial
Luk668 HlgC
LPAPKNLVVSRVTEDSARLSWTIPHYTFDSFL





binding FN3
IQYQESEKVGEAIVLTVPGSERSYDLTGLKPG





domain
TEYTVSIYGVPGKYIEPRWHFSNPLSAIFTT





548
PRT
Artificial
Luk669 HlgC
LPAPKNLVVSRVTEDSARLSWKRYSWLFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVLTWDPNDPSNPLSAIFTT





549
PRT
Artificial
Luk670 HlgC
LPAPKNLVVSRVTEDSARLSWKTIVTTIFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVDHRGFPFWQYWSSNPLSAIFTT





550
PRT
Artificial
Luk671 LukS
LPAPKNLVVSRVTEDSARLSWYARRIYFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVETPNPYYDSNPLSAIFTT





551
PRT
Artificial
Luk672 HlgC
LPAPKNLVVSRVTEDSARLSWNLEQSTFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVTTYRITVPVRDHSNPLSAIFTT





552
PRT
Artificial
Luk673 LukS
LPAPKNLVVSRVTEDSARLSWRAAGTGFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVNWQPDYWTWPSNPLSAIFTT





553
PRT
Artificial
Luk674 HlgC
LPAPKNLVVSRVTEDSARLSWPISHLSFDSFLI





binding FN3
QYQESEKVGEAIVLTVPGSERSYDLTGLKPG





domain
TEYTVSIYGVWHQTVGRWFSNPLSAIFTT





554
PRT
Artificial
Luk675 HlgC
LPAPKNLVVSRVTEDSARLSWVRKKVNRFDS





binding FN3
FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVRNWKPNDPSNPLSAIFTT





555
PRT
Artificial
Luk676 HlgC
LPAPKNLVVSRVTEDSARLSWVSATQHPFDS





binding FN3
FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVDNWDPTDPSNPLSAIFTT





556
PRT
Artificial
Luk677 HlgC
LPAPKNLVVSRVTEDSARLSWPIALRDFDSFL





binding FN3
IQYQESEKVGEAIVLTVPGSERSYDLTGLKPG





domain
TEYTVSIYGVISWDPTDPSNPLSAIFTT





557
PRT
Artificial
Luk678 HlgC
LPAPKNLVVSRVTEDSARLSWWDAEWFAPH





binding FN3
FDSFLIQYQESEKVGEAIVLTVPGSERSYDLT





domain
GLKPGTEYTVSIYGVGLLKWPNYAVLSNPLS






AIFTT





558
PRT
Artificial
Luk679 HlgC
LPAPKNLVVSRVTEDSARLSWPNNQRYYQPF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVLSWNPHHWSNPLSAIFTT





559
PRT
Artificial
Luk680 HlgC
LPAPKNLVVSRVTEDSARLSWYDARVTDEFF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVDDLLTNHLLAISNPLSAIF






TT





560
PRT
Artificial
Luk681 HlgC
LPAPKNLVVSRVTEDSARLSWKKRNTLKIFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGVETWDPNDWSNPLSAIFTT





561
PRT
Artificial
Luk682 HlgC
LPAPKNLVVSRVTEDSARLSWLNRVKPNDFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGVITWHPGHWSNPLSAIFTT





562
PRT
Artificial
Luk683 LukD
LPAPKNLVVSRVTEDSARLSWLTVRFTKFEF





binding FN3
DSFLIQYQESEKVGEAIVLIVPGSERSYDLTGL





domain
KPGTEYTVSIYGVRSSKPRASNPLSAIFTT





563
PRT
Artificial
Luk684 HlgC
LPAPKNLVVSRVTEDSARLSWPNYRKVVSVF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVHTWHPGHYSNPLSAIFTT





564
PRT
Artificial
Luk685 HlgC
LPAPKNLVVSRVTEDSARLSWGNRQQVRSAF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVVGWHPNHPSNPLSAIFTT





565
PRT
Artificial
Luk686 HlgC
LPARKTWLFLVLPKTLRVCLGPRRTRRSTLF





binding FN3
GLRTQRLLSGGKRLACWCRVLNVLTT





domain






566
PRT
Artificial
Luk687 HlgC,
LPARKTWLFLVLPKTLRVCLGPRRTRRSTLS





LukS binding
GLHTQRRHPGVKRSA





FN3 domain






567
PRT
Artificial
Luk688 HlgC
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
GIEGGEYYYVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYGVPIGGVKGGPNSHPLSAIFTT





568
PRT
Artificial
Luk689 LukD,
LPAPKNLVVSRVTEDSARLSWWFYLTSWFAF





LukAB binding
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





FN3 domain
LKPGTEYTVSIYGVLKVDPHVRSNPLSAIFTT





569
PRT
Artificial
Luk690 HlgB
LPAPKNLVVSRVTEDSARLSWYHVNFGFFDS





binding FN3
FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVYEDYPVIIFNNRSNPLSAIFTT





570
PRT
Artificial
Luk691 LukF
LPAPKNLVVSRVTEDSARLSWEDIKNKRFDS





binding FN3
FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVRGLANPFRVSNPLSAIFTT





571
PRT
Artificial
Luk692 HlgB,
LPAPKNLVVSRVTEDSARLSWWRYGPWFHF





LukD binding
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





FN3 domain
LKPGTEYTVSIYGVRTHVRPPQWVSNPLSAIF






TT





572
PRT
Artificial
Luk693 HlgB,
LPAPKAAVVSRVTEDSARLSWWRYGPWFHF





LukD binding
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





FN3 domain
LKPGTEYTVSIYGVRTHVRPPQWVSNPLSAIF






TT





573
PRT
Artificial
Luk694 HlgB
LPAPKNLVVSRVTEDSARLSWTNYYLESRHF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVRGQFGWYIEASNPLSAIF






TT





574
PRT
Artificial
Luk695 LukD,
LPAPKNLVVSRVTEDSARLSWLNWEQYITFD





LukAB binding
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





FN3 domain
KPGTEYTVSIYGVWIIRDRSHWLNPSNPLSAI






FTT





575
PRT
Artificial
Luk696 HlgB
LPAPKNLWLFLVLPKTLPVCLGGVMARGSTS





binding FN3
TLS





domain






576
PRT
Artificial
Luk697 HlgB
LPAPKNLVVSRVTEDSARLSWERFGPWFHFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGVKTQPEQEFKSNPLSAIFTT





577
PRT
Artificial
Luk698 HlgB
LPAPKNLVVSRVTEDSARLSWWRYGPWFHF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVRTHVRPPQWISYPLSAIFTT





578
PRT
Artificial
Luk699 HlgB
LPAPKNLVVSRVTEDSARLSWWRYGPWFHF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVKQHHSLFHSNPLSAIFTT





579
PRT
Artificial
Luk700 LukD
LPAPKNLVVSRVTEDSARLSWNQQLNYQYF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVWYRWWSGSNPLSAIFTT





580
PRT
Artificial
Luk701 HlgB
LPAPKNLVVSRVTEDSARLSWWRYGPWFHF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVRTHNNQPGHYTSNPLSAI






FTT





581
PRT
Artificial
Luk702 HlgB
LPAPKNLVVSRVTEDSARLSWWRYGPWFHF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVRTHVRPPQWVSNPLSAIF






TT





582
PRT
Artificial
Luk703 HlgB,
LPAPKALVVSRVTEDSARLSWWRYGPWFHF





LukD binding
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





FN3 domain
LKPGTEYTVSIYGVRTHVRPPQWVSNPLSAIF






TT





583
PRT
Artificial
Luk704 LukD
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
PILYQERWWKGEAIVLTVPGSERSYDLTGLK





domain
PGTEYGVPITGVKGGGVSFPLSAIFTT





584
PRT
Artificial
Luk705 LukAB
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
HIWYRESWYFGEAIVLTVPGSERSYDLTGLK





domain
PGTEYYVVIRGVKGGSLSWPLSAIFTT





585
PRT
Artificial
Luk706 HlgB
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
PISYYEQPRRGEAIWLFVPGSERSYDLTGLKP





domain
GTEYTVYITGVKGGTWSFPLTATFTT





586
PRT
Artificial
Luk707 LukE
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
GIEYYETKTKGEAINLFVPGSERSYDLTGLKP





domain
GTEYYVIILGVKGGEPSSPLVAPFTT





587
PRT
Artificial
Luk708 LukAB
LPAPKNLVVSRVTEDSARLSWKDVGEWKFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGVHQLTITYSPTSNPLSAIFTT





588
PRT
Artificial
Luk709 LukAB
LPAPKNLVVSRVTEDSARLSWKRSYHPNFDS





binding FN3
FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVIDVPTVYHPGRSNPLSAIFTT





589
PRT
Artificial
Luk710 LukAB
LPAPKNLVVSRVTEDSARLSWLKKVSKFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVGEFPDRIYWGASNPLSAIFTT





590
PRT
Artificial
Luk711 LukAB
LPAPKNLVVSRVTEDSARLSWYYWVQTIFDS





binding FN3
FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVGNLPDIFYKLPSNPLSAIFTT





591
PRT
Artificial
Luk712 LukAB
LPAPKNLVVSRVTEDSARLSWSKKLENFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVYHTHLIFSNPLSAIFTT





592
PRT
Artificial
Luk713 LukAB
LPAPKNLVVSRVTEDSARLSWHDLTIWPFDS





binding FN3
FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVVIEFEAWSNPLSAIFTT





593
PRT
Artificial
Luk714 LukAB
LPAPKNLVVSRVTEDSARLSWFPWTEWSAFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGVENWLVLATATWSNPLSAI






FTT





594
PRT
Artificial
Luk715 LukAB
LPAPKNLVVSRVTEDSARLSWVEWWIRPIEF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVWQQLYVEILISNPLSAIFTT





595
PRT
Artificial
Luk716 LukAB
LPAPKNLVVSRVTEDSARLSWSSQRTLPREF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVHVIIHSGSSNPLSAIFTT





596
PRT
Artificial
Luk717 LukAB
LPAPKNLVVSRVTEDSARLSWTSRLEDFWFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGVGSEVYFRYYEHWSNPLSAI






FTT





597
PRT
Artificial
Luk718 LukAB
LPAPKNLVVSRVTEDSARLSWQVNRNAQFH





binding FN3
FDSFLIQYQESEKVGEAIVLTVPGSERSYDLT





domain
GLKPGTEYTVSIYGVAHPKLVWFAPPSNPLS






AIFTT





598
PRT
Artificial
Luk719 LukAB
LPAPKNLVVSRVTEDSARLSWTFLEKWFIFDS





binding FN3
FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVVKHHDHDPEYPSNPLSAIFTT





599
PRT
Artificial
Luk720 LukAB
LPAPKNLVVSRVTEDSARLSWRHPRIQGGHF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVIHPFWWSPSNPLSAIFTT





600
PRT
Artificial
Luk721 LukAB
LPAPKNLVVSRVTEDSARLSWYNAKKITPFF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVYPEVQHTTSNPLSAIFTT





601
PRT
Artificial
Luk722 LukAB
LPAPKNLVVSRVTEDSARLSWTEPWQEFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVILPTLHKSNPLSAIFTT





602
PRT
Artificial
Luk723 LukAB
LPAPKNLVVSRVTEDSARLSWYRFPRIHFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVHTNIDLHNYNYLSNPLSAIFTT





603
PRT
Artificial
Luk724 LukAB
LPAPKNLVVSRVTEDSARLSWAERHPWFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVLRQNINIQDTNYSNPLSAIFTT





604
PRT
Artificial
Luk725 LukAB
LPAPKNLVVSRVTEDSARLSWPWWEGWTFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGVKIRTLKASRSNPLSAIFTT





605
PRT
Artificial
Luk726 LukAB
LPAPKNLVVSRVTEDSARLSWAANFIDFDSFL





binding FN3
IQYQESEKVGEAIVLTVPGSERSYDLTGLKPG





domain
TEYTVSIYGVYSPKLRWDLLNYSNPLSAIFTT





606
PRT
Artificial
Luk727 LukAB
LPAPKNLVVSRVTEDSARLSWFKQEFEFDSFL





binding FN3
IQYQESEKVGEAIVLTVPGSERSYDLTGLKPG





domain
TEYTVSIYGVYYPEYYPREPWPSNPLSAIFTT





607
PRT
Artificial
Luk728 LukAB
LPAPKNLVVSRVTEDSARLSWEDEGTQFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVHWYWYWQRSNPLSAIFTT





608
PRT
Artificial
Luk729 LukAB
LPAPKNLVVSRVTEDSARLSWFGNQTGARSF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVYYQFRRTVRNSNPLSAIF






TT





609
PRT
Artificial
Luk730 LukAB
LPAPKNLVVSRVTEDSARLSWGENRFVLSFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGVLYHARHTWWLQQSNPLS






AIFTT





610
PRT
Artificial
Luk731 LukAB
LPAPKNLVVSRVTEDSARLSWEKQQLKKWS





binding FN3
FDSFLIQYQESEKVGEAIVLTVPGSERSYDLT





domain
GLKPGTGYTVSIYGVEHSNTRKRHSNPLSAIF






TT





611
PRT
Artificial
Luk732 LukAB
LPAPKNLVVSRVTEDSARLSWKINDNSGYFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGVAHRYENNPTLWSNPLSAIF






TT





612
PRT
Artificial
Luk733 LukAB
LPAPKNLVVSRVTEDSARLSWPAFRWQPPGF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVGGFLYPWNYPTSNPLSAI






FTT





613
PRT
Artificial
Luk734 LukAB
LPAPKNLVVSRVTEDSARLSWISEKPTTSLFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGVWPRAIHYAYWFNSNPLSA






IFTT





614
PRT
Artificial
Luk735 LukAB
LPAPKNLVVSRVTEDSARLSWQKSFQLTPFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGVVVEYKWAATNPSNPLSAI






FTT





615
PRT
Artificial
Luk736 LukAB
LPAPKNLVVSRVTEDSARLSWNASLNANHFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGVVTSESNYGSNPLSAIFTT





616
PRT
Artificial
Luk737 LukAB
LPAPKNLVVSRVTEDSARLSWTNTARLNKFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGVAITHSHHHHSSNPLSAIFTT





617
PRT
Artificial
Luk738 LukAB
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
HILYWEPTPIGEAILLNVPGSERSYDLTGLKP





domain
GTEYNVEIDGVKGGNPSDPLSAIFTT





618
PRT
Artificial
Luk739 LukAB
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
SISYREGGQHGEAIVLTVPGSERSYDLTGLKP





domain
GTEYSVYILGVKGGDESEPLSAIFTT





619
PRT
Artificial
Luk740 LukAB
LPAPKNLVVSRVTEDSARLSWPWWNKHFDS





binding FN3
FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVIQWKKKPFSNPLSAIFTT





620
PRT
Artificial
Luk741 LukAB
LPAPKNLVVSRVTEDSARLSWPWWNKHFDS





binding FN3
FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVGEHDWYLLNYAESNPLSAIF






TT





621
PRT
Artificial
Luk742 LukAB
LPAPKNLVVSRVTEDSARLSWWAFSYLQFDS





binding FN3
FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVVEVRENSWNHSSNPLSAIFTT





622
PRT
Artificial
Luk743 LukAB
LPAPKNLVVSRVTEDSARLSWRETHNPQFDS





binding FN3
FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVIQWKKKPFSNPLSAIFTT





623
PRT
Artificial
Luk744 LukAB
LPAPKNLVVSRVTEDSARLSWTTRVDEFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVKWYNWKKNVNTESNPLSAIF






TT





624
PRT
Artificial
Luk745 LukAB
LPAPKNLVVSRVTEDSARLSWSQKDINFFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVLWYNWKKNWDNSNPLSAIF






TT





625
PRT
Artificial
Luk746 LukAB
LPAPKNLVVSRVTEDSARLSWFTTNNHWFDS





binding FN3
FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVIQWKKKPFSNPLSAIFTT





626
PRT
Artificial
Luk747 LukAB
LPAPKNLVVSRVTEDSARLSWGRAREPASFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGVLTVLFIDSSNPLSAIFTT





627
PRT
Artificial
Luk748 LukAB
LPAPKNLVVSRVTEDSVRLSWYNWKKKRLK





binding FN3
FDSFLIQYQESEKVGEAIVLTVPGSERSYDLT





domain
GLKPGTEYTVSIYGVPNLWDIWNWVLSNPLS






AIFTT





628
PRT
Artificial
Luk749 LukAB
LPAPKNLVVSRVTEDSARLSWGTFNLEVYIF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVVSANWHGHSNPLSAIFTT





629
PRT
Artificial
Luk750 LukAB
LPAPKNLVVSRVTEDSARLSWPQIFNELWEF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVWWYNRKKKRQSNPLSAI






FTT





630
PRT
Artificial
Luk751 LukAB
LPAPKNLVVSRVTEDSARLSWYNEQKKPINF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVWWYNRKKKRQSNPLSAI






FTT





631
PRT
Artificial
Luk752 LukAB
LPAPKNLVVSRVTEDSARLSWRGKYSVVDF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVPWYNWKKKYVISNPLSA






IFTT





632
PRT
Artificial
Luk753 LukAB
LPAPKNLVVSRVTEDSARLSWYNTKKNPVFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGVWLIKSLNAWFSNPLSAIFTT





633
PRT
Artificial
Luk754 LukAB
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
VIIYEEVQWRGEAIRLFVPGSERSYDLTGLKP





domain
GTEYDVNIRGVKGGGSSAPLSAIFTT





634
PRT
Artificial
Luk755 LukAB
LPAPKNLVVSRVTEDSARLSWYNWKKKPGY





binding FN3
FDSFLIQYQESEKVGEAIVLTVPGSERSYDLT





domain
GLKPGTEYTVSIYGVVHYHEWLASNPLSAIFTT





635
PRT
Artificial
Luk756 LukAB
LPAPKNLVVSRVTEDSARLSWYTVKKKPQKF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVLDAYPIAEWPAQSNPLSA






IFTT





636
PRT
Artificial
Luk757 LukAB
LPAPKNLVVSRVTEDSARLSWYNTKKKPQFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGVNEFILRWEGSNPLSAIFTT





637
PRT
Artificial
Luk758 LukAB
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
YIGYYELIGAGEAIVLTVPGSERSYDLTGLKP





domain
GTEYGVGIQGVKGGSYSAPLSAIFTT





638
PRT
Artificial
Luk759 LukAB
LPAPKNLVVSRVTEDSARLSWYDRKVEFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVGVDGWGYLLLVSNPLSAIFTT





639
PRT
Artificial
Luk760 LukAB
LPAPKNLVVSRVTEDSARLSWIVPRTFHFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVWSQYITHWLPKSNPLSAIFTT





640
PRT
Artificial
Luk761 LukAB
LPAPKNLVVSRVTEDSARLSWNYRVATFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVSVELLSSNPLSAIFTT





641
PRT
Artificial
Luk762 LukAB
LPAPKNLVVSRVTEDSARLSWQPHRYEFYQF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVADFEFELHSNPLSAIFTT





642
PRT
Artificial
Luk763 LukAB
LPAPKNLVVSRVTEDSARLSWIPSYHLFAFDS





binding FN3
FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVNDAEQRYHHSNPLSAIFTT





643
PRT
Artificial
Luk764 LukAB
LPAPKNLVVSRVTEDSARLSWPINKTTSPFDS





binding FN3
FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVVEAHYDAFISNPLSAIFTT





644
PRT
Artificial
Luk765 LukAB
LPAPKNLVVSRVTEDSARLSWRKKLWEAEF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVILPDSFHVHHCNPLSAIFTT





645
PRT
Artificial
Luk766 LukAB
LPAPKNLVVSRVTEDSARLSWKRPQWRRLF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVGVNWPASVSSNPLSAIFTT





646
PRT
Artificial
Luk767 LukAB
LPAPKNLVVSRVTEDSARLSWIWDAIGPHFF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVSWFIRITASNPLSAIFTT





647
PRT
Artificial
Luk768 LukAB
LPAPKNLVVSRVTEDSARLSWRGLEPRWGFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGVPWYEHLRILNATSNPLSAI






FTT





648
PRT
Artificial
Luk769 LukAB
LPAPKNLVVSRVTEDSARLSWDWWSNPIKFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGVINWHWYQTHRTSNPLSAIF






TT





649
PRT
Artificial
Luk770 LukAB
LPAPKNLVVSRVTEDSARLSWEQWHAGVNP





binding FN3
FDSFLIQYQESEKVGEAIVLTVPGSERSYDLT





domain
GLKPGTEYTVSIYGVSYYVRVLQFALFSNPLS






AIFTT





650
PRT
Artificial
Luk771 LukAB
LPAPKNLVVSRVTEDSARLSWAQVETQIHFD





binding FN3
SFLIQYQESEKVGESDLLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGVSHYRRHVPRHSNPLSAIFTT





651
PRT
Artificial
Luk772 LukAB
LPAPKNLVVSRVTEDSARLSWIAYYYGQTFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGVWHENYAKWPDPSNPLSAI






FTT





652
PRT
Artificial
Luk773 LukAB
LPAPKNLVVSRVTEDSARLSWWHWLTHHFF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVFFRWQDPLHDLISNPLSA






IFTT





653
PRT
Artificial
Luk774 LukAB
LPAPKNLVVSRVTEDSARLSWKYKEHFQIFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGVERIWWQYRSNPLSAIFTT





654
PRT
Artificial
Luk775 LukAB
LPAPKNLVVSRVTEDSARLSWVGDAYFNHLF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVEARPKPRLSNPLSAIFTT





655
PRT
Artificial
Luk776 LukAB
LPAPKNLVVSRVTEDSARLSWNKRVPNFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVIQWKKKPFSNPLSAIFTT





656
PRT
Artificial
Luk777 LukAB
LPAPKNLVVSRVTEDSARLSWYNEQKKRSFF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVPIRRSGWDVRSNPLSAIF






TT





657
PRT
Artificial
Luk778 LukAB
LPAPKNLVVSRVTEDSARLSWYNTKKKPVFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGVKVDDWPDYWQSNPLSAIF






TT





658
PRT
Artificial
Luk779 LukAB
LPAPKNLVVSRVTEDSARLSWYNVKKTFQFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGVAAVWYTPNTQSNPLSAIFTT





659
PRT
Artificial
Luk780 LukAB
LPAPKNLVVSRVTEDSARLSWYNSKKKVQF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVIESHWWQLKWPSNPLSAI






FTT





660
PRT
Artificial
Luk781 LukAB
LPAPKNLVVSRVTEDSARLSWYNTKKKTAFF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVDEVGYLHIETSNPLSAIFTT





661
PRT
Artificial
Luk782 LukAB
LPAPKNLVVSRVTEDSARLSWYNEKKIFQFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGAKGPNFPSQNDPSSNPLSAIF






TT





662
PRT
Artificial
Luk783 LukAB
LPAPKNLVVSRVTEDSARLSWYNWKKKRLK





binding FN3
FDSFLIQYQESEKVGEAIVLTVPGSERSYDLT





domain
GLKPGTEYTVSIYGVASPVYTGLYLGSNPLSA






IFTT





663
PRT
Artificial
Luk784 LukAB
LPAPKNLVVSRVTEDSARLSWYTVKKKPQKF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVGDQLLEIGRTGSNPLSAIF






TT





664
PRT
Artificial
Luk785 LukAB
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
FIGYREVPFLGEAIVLTVPGSERSYDLTGLKP





domain
GTEYIVLIWGVKGGIPSQPLSAIFTT





665
PRT
Artificial
Luk786 LukAB
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
FIPYREEAPLGEAIVLTVPGSERSYDLTGLKPG





domain
TEYDVIIVGVKGGYPSKPLSAIFTT





666
PRT
Artificial
Luk787 LukAB
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
WIVYHELVHSGEAIVLTVPGSERSYDLTGLKP





domain
GTEYPVFIVGVKGGWYSPPLSAIFTT





667
PRT
Artificial
TCL24
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






XIXYXEXXXXGEAIXLXVPGSERSYDLTGLK






PGTEYXVXIXGVKGGXXSXPLXAXFTT





668
PRT

S. aureus

ClfA
GSMASENSVTQSDSASNESKSNDSSSVSAAP






KTDDTNVSDTKTSSNTNNGETSVAQNPAQQE






TTQSSSTNATTEETPVTGEATTTTTNQANTPA






TTQSSNTNAEELVNQTSNETTFNDTNTVSSV






NSPQNSTNAENVSTTQDTSTEATPSNNESAPQ






STDASNKDVVNQAVNTSAPRMRAFSLAAVA






ADAPAAGTDITNQLTNVTVGIDSGTTVYPHQ






AGYVKLNYGFSVPNSAVKGDTFKITVPKELN






LNGVTSTAKVPPIMAGDQVLANGVIDSDGNV






IYTFTDYVNTKDDVKATLTMPAYIDPENVKK






TGNVTLATGIGSTTANKTVLVDYEKYGKFYN






LSIKGTIDQIDKTNNTYRQTIYVNPSGDNVIAP






VLTGNLKPNTDSNALIDQQNTSIKVYKVDNA






ADLSESYFVNPENFEDVTNSVNITFPNPNQYK






VEFNTPDDQITTPYIVVVNGHIDPNSKGDLAL






RSTLYGYNSNIIWRSMSWDNEVAFNNGSGSG






DGIDKPVVPEQPDEPGEIEPIPEDSDSDPGSDS






GSDSNSDSGSDSGSDSTSDSGSDSASDSDSAS






DSDSASDSDSASDSDSASDSDSDNDSDSDSDS






DSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDS






DSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDS






DSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDS






DSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDS






DSDSDSASDSDSDSDSDSDSDSDSDSDSDSDS






DSDSDSDSDSDSDSESDSDSESDSDSDSDSDS






DSDSDSDSDSDSASDSDSGSDSDSSSDSDSES






DSNSDSESGSNNNVVPPNSPKNGTNASNKNE






AKDSKEPLPDTLEHHHHHH





669
PRT

S. aureus

ClfB
GSMASEQSNDTTQSSKNNASADSEKNNMIET






PQLNTTANDTSDISANTNSANVDSTTKPMST






QTSNTTTTEPASTNETPQPTAIKNQATAAKM






QDQTVPQEANSQVDNKTTNDANSIATNSELK






NSQTLDLPQSSPQTISNAQGTSKPSVRTRAVR






SLAVAEPVVNAADAKGTNVNDKVTASNFKL






EKTTFDPNQSGNTFMAANFTVTDKVKSGDY






FTAKLPDSLTGNGDVDYSNSNNTMPIADIKST






NGDVVAKATYDILTKTYTFVFTDYVNNKENI






NGQFSLPLFTDRAKAPKSGTYDANINIADEM






FNNKITYNYSSPIAGIDKPNGANISSQIIGVDT






ASGQNTYKQTVFVNPKQRVLGNTWVYIKGY






QDKIEESSGKVSATDTKLRIFEVNDTSKLSDS






YYADPNDSNLKEVTDQFKNRIYYEHPNVASI






KFGDITKTYVVLVEGHYDNTGKNLKTQVIQE






NVDPVTNRDYSIFGWNNENVVRYGGGSADG






DSAVNPKDPTPGPPVDPEPSPDPEPEPTPDPEP






SPDPEPEPSPDPDPDSDSDSDSGSDSDSGSDSD






SESDSDSDSDSDSDSDSDSESDSDSESDSDSDS






DSDSDSDSDSDSDSDSDSDSDSDSDSDSESDS






DSESDSESDSDSDSDSDSDSDSDSDSDSDSDS






DSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDS






DSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDS






DSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDS






DSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDS






DSDSDSDSDSDSRVTPPNNEQKAPSNPKGEV






NHSNKVSKQHKTDALPETLEHHHHHH





670
PRT
Artificial
SD peptide
BIOTIN-






SDSDSDSDSDSDSDSDSDSDHHHHHHHH





671
PRT

S. aureus

LukA wt
NSAHHHHHHGSHKDSQDQNKKEHVDKSQQ






KDKRNVTNKDKNSTAPDDIGKNGKITKRTET






VYDEKTNILQNLQFDFIDDPTYDKNVLLVKK






QGSIHSNLKFESHKEEKNSNWLKYPSEYHVD






FQVKRNRKTEILDQLPKNKISTAKVDSTFSYS






SGGKFDSTKGIGRTSSNSYSKTISYNQQNYDT






IASGKNNNWHVHWSVIANDLKYGGEVKNR






NDELLFYRNTRIATVENPELSFASKYRYPALV






RSGFNPEFLTYLSNEKSNEKTQFEVTYTRNQ






DILKNRPGIHYAPPILEKNKDGQRLIVTYEVD






WKNKTVKVVDKYSDDNKPYKEG





672
PRT
Artificial
Luk17W32A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






AITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSWPLSAIFTT





673
PRT
Artificial
Luk17T34A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WIAYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSWPLSAIFTT





674
PRT
Artificial
Luk17E36A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYAEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSWPLSAIFTT





675
PRT
Artificial
Luk17K38A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEAFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSWPLSAIFTT





676
PRT
Artificial
Luk17F39A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKAYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSWPLSAIFTT





677
PRT
Artificial
Luk17Y40A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFARGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSWPLSAIFTT





678
PRT
Artificial
Luk17R41A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYAGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSWPLSAIFTT





679
PRT
Artificial
Luk17K68A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYAVWIVGVKGGQGSWPLSAIFTT





680
PRT
Artificial
Luk17W70A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVAIVGVKGGQGSWPLSAIFTT





681
PRT
Artificial
Luk17V72A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIAGVKGGQGSWPLSAIFTT





682
PRT
Artificial
Luk17Q78A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGAGSWPLSAIFTT





683
PRT
Artificial
Luk17G79A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQASWPLSAIFTT





684
PRT
Artificial
Luk17W81A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSAPLSAIFTT





685
PRT
Artificial
Luk17G42A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYRAEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSWPLSAIFTT





686
PRT
Artificial
Luk17V46A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYRGEAIALTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSWPLSAIFTT





687
PRT
Artificial
Luk17E66A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTAYKVWIVGVKGGQGSWPLSAIFTT





688
PRT
Artificial
Luk17G77A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGAQGSWPLSAIFTT





689
PRT
Artificial
Luk17P82A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSWALSAIFTT





690
PRT
Artificial
Luk17S84A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSWPLAAIFTT





691
PRT
Artificial
Luk17I86A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSWPLSAAFTT





692
PRT
Artificial
Luk17W32S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






SITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSWPLSAIFTT





693
PRT
Artificial
Luk17T34S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WISYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSWPLSAIFTT





694
PRT
Artificial
Luk17E36S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYSEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSWPLSAIFTT





695
PRT
Artificial
Luk17K38S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEESFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSWPLSAIFTT





696
PRT
Artificial
Luk17F39S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKSYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSWPLSAIFTT





697
PRT
Artificial
Luk17Y40S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFSRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSWPLSAIFTT





698
PRT
Artificial
Luk17R41S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYSGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSWPLSAIFTT





699
PRT
Artificial
Luk17K68S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYSVWIVGVKGGQGSWPLSAIFTT





700
PRT
Artificial
Luk17W70S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVSIVGVKGGQGSWPLSAIFTT





701
PRT
Artificial
Luk17V72S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWISGVKGGQGSWPLSAIFTT





702
PRT
Artificial
Luk17Q78S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGSGSWPLSAIFTT





703
PRT
Artificial
Luk17G79S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQSSWPLSAIFTT





704
PRT
Artificial
Luk17W81S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSSPLSAIFTT





705
PRT
Artificial
Luk17G42S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYRSEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSWPLSAIFTT





706
PRT
Artificial
Luk17A44S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYRGESIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSWPLSAIFTT





707
PRT
Artificial
Luk17V46S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYRGEAISLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSWPLSAIFTT





708
PRT
Artificial
Luk17E66S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTSYKVWIVGVKGGQGSWPLSAIFTT





709
PRT
Artificial
Luk17G77S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGSQGSWPLSAIFTT





710
PRT
Artificial
Luk17P82S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSWSLSAIFTT





711
PRT
Artificial
Luk17S84S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSWPLSAIFTT





712
PRT
Artificial
Luk17I86S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSWPLSASFTT





713
PRT
Artificial
Luk17W32L
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






LITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSWPLSAIFTT





714
PRT
Artificial
Luk17T34Q
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WIQYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSWPLSAIFTT





715
PRT
Artificial
Luk17E36Q
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYQEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSWPLSAIFTT





716
PRT
Artificial
Luk17F39E
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKEYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSWPLSAIFTT





717
PRT
Artificial
Luk17Y40K
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFKRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSWPLSAIFTT





718
PRT
Artificial
Luk17R41V
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYVGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSWPLSAIFTT





719
PRT
Artificial
Luk17K68T
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYTVWIVGVKGGQGSWPLSAIFTT





720
PRT
Artificial
Luk17V72Y
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIYGVKGGQGSWPLSAIFTT





721
PRT
Artificial
Luk17Q78H
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGHGSWPLSAIFTT





722
PRT
Artificial
Luk17G79R
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQRSWPLSAIFTT





723
PRT
Artificial
Luk17W81N
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSNPLSAIFTT





724
PRT
Artificial
Luk17wtFG
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGHRSNPLSAIFTT





725
PRT
Artificial
Luk17S38FG
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVELIYHGWLDFVFSNPLSAIFTT





726
PRT
Artificial
Luk17W32D
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






DITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSWPLSAIFTT





727
PRT
Artificial
Luk17W32T
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






TITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSWPLSAIFTT





728
PRT
Artificial
Luk17W32Q
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






QITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSWPLSAIFTT





729
PRT
Artificial
Luk17W81D
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSDPLSAIFTT





730
PRT
Artificial
Luk17W81L
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSLPLSAIFTT





731
PRT
Artificial
Luk17W81T
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSTPLSAIFTT





732
PRT
Artificial
Luk17W81Q
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






WITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSQPLSAIFTT





733
PRT
Artificial
Luk17W32LW81S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






LITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSSPLSAIFTT





734
PRT
Artificial
Luk17W32TW81S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






TITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSSPLSAIFTT





735
PRT
Artificial
Luk17W32SW81S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






SITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSSPLSAIFTT





736
PRT
Artificial
Luk17W32DW81D
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






DITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSDPLSAIFTT





737
PRT
Artificial
Luk17W32TW81T
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






TITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSTPLSAIFTT





738
PRT
Artificial
Luk17W32QW81Q
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






QITYEEKFYRGEAIVLTVPGSERSYDLTGLKP






GTEYKVWIVGVKGGQGSQPLSAIFTT





739
PRT
Artificial
Luk26H32A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






AIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYVVFIGGVKGGHNSTPLSAIFTT





740
PRT
Artificial
Luk26E34A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIAYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYVVFIGGVKGGHNSTPLSAIFTT





741
PRT
Artificial
Luk26A36S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYSEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYVVFIGGVKGGHNSTPLSAIFTT





742
PRT
Artificial
Luk26P38A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEAWVWGEAIVLTVPGSERSYDLTGLK






PGTEYVVFIGGVKGGHNSTPLSAIFTT





743
PRT
Artificial
Luk26W39A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPAVWGEAIVLTVPGSERSYDLTGLKP






GTEYVVFIGGVKGGHNSTPLSAIFTT





744
PRT
Artificial
Luk26V40A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWAWGEAIVLTVPGSERSYDLTGLK






PGTEYVVFIGGVKGGHNSTPLSAIFTT





745
PRT
Artificial
Luk26W41A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVAGEAIVLTVPGSERSYDLTGLKP






GTEYVVFIGGVKGGHNSTPLSAIFTT





746
PRT
Artificial
Luk26V68A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYAVFIGGVKGGHNSTPLSAIFTT





747
PRT
Artificial
Luk26F70A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYVVAIGGVKGGHNSTPLSAIFTT





748
PRT
Artificial
Luk26G72A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYVVFIAGVKGGHNSTPLSAIFTT





749
PRT
Artificial
Luk26H78A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYVVFIGGVKGGANSTPLSAIFTT





750
PRT
Artificial
Luk26N79A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYVVFIGGVKGGHASTPLSAIFTT





751
PRT
Artificial
Luk26T81A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYVVFIGGVKGGHNSAPLSAIFTT





752
PRT
Artificial
Luk26G42A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWAEAIVLTVPGSERSYDLTGLK






PGTEYVVFIGGVKGGHNSTPLSAIFTT





753
PRT
Artificial
Luk26V46A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIALTVPGSERSYDLTGLK






PGTEYVVFIGGVKGGHNSTPLSAIFTT





754
PRT
Artificial
Luk26E66A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTAYVVFIGGVKGGHNSTPLSAIFTT





755
PRT
Artificial
Luk26G77A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYVVFIGGVKGAHNSTPLSAIFTT





756
PRT
Artificial
Luk26P82A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYVVFIGGVKGGHNSTALSAIFTT





757
PRT
Artificial
Luk26S84A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYVVFIGGVKGGHNSTPLAAIFTT





758
PRT
Artificial
Luk26I86A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYVVFIGGVKGGHNSTPLSAAFTT





759
PRT
Artificial
Luk26H32S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






SIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYVVFIGGVKGGHNSTPLSAIFTT





760
PRT
Artificial
Luk26E34S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HISYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYVVFIGGVKGGHNSTPLSAIFTT





761
PRT
Artificial
Luk26A36S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYSEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYVVFIGGVKGGHNSTPLSAIFTT





762
PRT
Artificial
Luk26P38S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAESWVWGEAIVLTVPGSERSYDLTGLK






PGTEYVVFIGGVKGGHNSTPLSAIFTT





763
PRT
Artificial
Luk26W39S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPSVWGEAIVLTVPGSERSYDLTGLKP






GTEYVVFIGGVKGGHNSTPLSAIFTT





764
PRT
Artificial
Luk26V40S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWSWGEAIVLTVPGSERSYDLTGLK






PGTEYVVFIGGVKGGHNSTPLSAIFTT





765
PRT
Artificial
Luk26W41S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVSGEAIVLTVPGSERSYDLTGLKP






GTEYVVFIGGVKGGHNSTPLSAIFTT





766
PRT
Artificial
Luk26V68S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYSVFIGGVKGGHNSTPLSAIFTT





767
PRT
Artificial
Luk26F70S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYVVSIGGVKGGHNSTPLSAIFTT





768
PRT
Artificial
Luk26G72S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYVVFISGVKGGHNSTPLSAIFTT





769
PRT
Artificial
Luk26H78S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYVVFIGGVKGGSNSTPLSAIFTT





770
PRT
Artificial
Luk26N79S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYVVFIGGVKGGHSSTPLSAIFTT





771
PRT
Artificial
Luk26T81S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYVVFIGGVKGGHNSSPLSAIFTT





772
PRT
Artificial
Luk26G42S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWSEAIVLTVPGSERSYDLTGLK






PGTEYVVFIGGVKGGHNSTPLSAIFTT





773
PRT
Artificial
Luk26A44S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGESIVLTVPGSERSYDLTGLK






PGTEYVVFIGGVKGGHNSTPLSAIFTT





774
PRT
Artificial
Luk26V46S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAISLTVPGSERSYDLTGLK






PGTEYVVFIGGVKGGHNSTPLSAIFTT





775
PRT
Artificial
Luk26E66S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTSYVVFIGGVKGGHNSTPLSAIFTT





776
PRT
Artificial
Luk26G77S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYVVFIGGVKGSHNSTPLSAIFTT





777
PRT
Artificial
Luk26P82S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYVVFIGGVKGGHNSTSLSAIFTT





778
PRT
Artificial
Luk26S84S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYVVFIGGVKGGHNSTPLSAIFTT





779
PRT
Artificial
Luk26I86S
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYVVFIGGVKGGHNSTPLSASFTT





780
PRT
Artificial
Luk26H32L
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






LIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYVVFIGGVKGGHNSTPLSAIFTT





781
PRT
Artificial
Luk26E34Q
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIQYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYVVFIGGVKGGHNSTPLSAIFTT





782
PRT
Artificial
Luk26A36Q
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYQEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYVVFIGGVKGGHNSTPLSAIFTT





783
PRT
Artificial
Luk26W39E
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPEVWGEAIVLTVPGSERSYDLTGLKP






GTEYVVFIGGVKGGHNSTPLSAIFTT





784
PRT
Artificial
Luk26V40K
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWKWGEAIVLTVPGSERSYDLTGLK






PGTEYVVFIGGVKGGHNSTPLSAIFTT





785
PRT
Artificial
Luk26W41V
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVVGEAIVLTVPGSERSYDLTGLKP






GTEYVVFIGGVKGGHNSTPLSAIFTT





786
PRT
Artificial
Luk26V68T
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYTVFIGGVKGGHNSTPLSAIFTT





787
PRT
Artificial
Luk26G72Y
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYVVFIYGVKGGHNSTPLSAIFTT





788
PRT
Artificial
Luk26N79R
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYVVFIGGVKGGHRSTPLSAIFTT





789
PRT
Artificial
Luk26T81N
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYVVFIGGVKGGHNSNPLSAIFTT





790
PRT
Artificial
Luk26wtFG
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYVVFIGGVKGGHRSNPLSAIFTT





791
PRT
Artificial
Luk26S38FG
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYVVFIGGVELIYHGWLDFVFSNPLSAIF






TT





792
PRT
Artificial
Luk26V68D
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYDVFIGGVKGGHNSTPLSAIFTT





793
PRT
Artificial
Luk26V68T
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYTVFIGGVKGGHNSTPLSAIFTT





794
PRT
Artificial
Luk26V68Q
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYQVFIGGVKGGHNSTPLSAIFTT





795
PRT
Artificial
Luk26W39Q
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPQVWGEAIVLTVPGSERSYDLTGLKP






GTEYVVFIGGVKGGHNSTPLSAIFTT





796
PRT
Artificial
Luk26W39T
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPTVWGEAIVLTVPGSERSYDLTGLKP






GTEYVVFIGGVKGGHNSTPLSAIFTT





797
PRT
Artificial
Luk26S84D
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYVVFIGGVKGGHNSTPLDAIFTT





798
PRT
Artificial
Luk26S84T
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYVVFIGGVKGGHNSTPLTAIFTT





799
PRT
Artificial
Luk26S84Q
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYVVFIGGVKGGHNSTPLQAIFTT





800
PRT
Artificial
Luk26W41Q
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVQGEAIVLTVPGSERSYDLTGLKP






GTEYVVFIGGVKGGHNSTPLSAIFTT





801
PRT
Artificial
Luk26W41T
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVTGEAIVLTVPGSERSYDLTGLKP






GTEYVVFIGGVKGGHNSTPLSAIFTT





802
PRT
Artificial
Luk26V68DS84D
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYDVFIGGVKGGHNSTPLDAIFTT





803
PRT
Artificial
Luk26V68DS84T
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYDVFIGGVKGGHNSTPLTAIFTT





804
PRT
Artificial
Luk26V68TS84D
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYTVFIGGVKGGHNSTPLDAIFTT





805
PRT
Artificial
Luk26V68TS84T
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYTVFIGGVKGGHNSTPLTAIFTT





806
PRT
Artificial
Luk26V68QS84Q
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYQVFIGGVKGGHNSTPLQAIFTT





807
PRT
Artificial
Luk26V68QS84D
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYQVFIGGVKGGHNSTPLDAIFTT





808
PRT
Artificial
Luk26V68QS84T
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYQVFIGGVKGGHNSTPLTAIFTT





809
PRT
Artificial
Luk26V68DS84Q
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYDVFIGGVKGGHNSTPLQAIFTT





810
PRT
Artificial
Luk26V68TS84Q
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPWVWGEAIVLTVPGSERSYDLTGLK






PGTEYTVFIGGVKGGHNSTPLQAIFTT





811
PRT
Artificial
Luk26W39QW41Q
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPQVQGEAIVLTVPGSERSYDLTGLKP






GTEYVVFIGGVKGGHNSTPLSAIFTT





812
PRT
Artificial
Luk26W39QW41T
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPQVTGEAIVLTVPGSERSYDLTGLKP






GTEYVVFIGGVKGGHNSTPLSAIFTT





813
PRT
Artificial
Luk26W39TW41Q
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPTVQGEAIVLTVPGSERSYDLTGLKP






GTEYVVFIGGVKGGHNSTPLSAIFTT





814
PRT
Artificial
Luk26W39TW41T
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






HIEYAEPTVTGEAIVLTVPGSERSYDLTGLKP






GTEYVVFIGGVKGGHNSTPLSAIFTT





815
PRT
Artificial
Luk27P32A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






AIVYQEWQFYGEAIVLTVPGSERSYDLTGLK






PGTEYLVDIYGVKGGSWSYPLSAIFTT





816
PRT
Artificial
Luk27V34A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






PIAYQEWQFYGEAIVLTVPGSERSYDLTGLKP






GTEYLVDIYGVKGGSWSYPLSAIFTT





817
PRT
Artificial
Luk27Q36A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






PIVYAEWQFYGEAIVLTVPGSERSYDLTGLKP






GTEYLVDIYGVKGGSWSYPLSAIFTT





818
PRT
Artificial
Luk27W38A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






PIVYQEAQFYGEAIVLTVPGSERSYDLTGLKP






GTEYLVDIYGVKGGSWSYPLSAIFTT





819
PRT
Artificial
Luk27Q39A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






PIVYQEWAFYGEAIVLTVPGSERSYDLTGLKP






GTEYLVDIYGVKGGSWSYPLSAIFTT





820
PRT
Artificial
Luk27F40A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






PIVYQEWQAYGEAIVLTVPGSERSYDLTGLK






PGTEYLVDIYGVKGGSWSYPLSAIFTT





821
PRT
Artificial
Luk27Y41A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






PIVYQEWQFAGEAIVLTVPGSERSYDLTGLKP






GTEYLVDIYGVKGGSWSYPLSAIFTT





822
PRT
Artificial
Luk27L68A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






PIVYQEWQFYGEAIVLTVPGSERSYDLTGLKP






GTEYAVDIYGVKGGSWSYPLSAIFTT





823
PRT
Artificial
Luk27D70A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






PIVYQEWQFYGEAIVLTVPGSERSYDLTGLKP






GTEYLVAIYGVKGGSWSYPLSAIFTT





824
PRT
Artificial
Luk27Y72A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






PIVYQEWQFYGEAIVLTVPGSERSYDLTGLKP






GTEYLVDIAGVKGGSWSYPLSAIFTT





825
PRT
Artificial
Luk27S78A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






PIVYQEWQFYGEAIVLTVPGSERSYDLTGLKP






GTEYLVDIYGVKGGAWSYPLSAIFTT





826
PRT
Artificial
Luk27W79A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






PIVYQEWQFYGEAIVLTVPGSERSYDLTGLKP






GTEYLVDIYGVKGGSASYPLSAIFTT





827
PRT
Artificial
Luk27Y81A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






PIVYQEWQFYGEAIVLTVPGSERSYDLTGLKP






GTEYLVDIYGVKGGSWSAPLSAIFTT





828
PRT
Artificial
Luk38E75A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP






GTEYTVSIYGVALIYHGWLDFVFSNPLSAIFTT





829
PRT
Artificial
Luk38L76A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP






GTEYTVSIYGVEAIYHGWLDFVFSNPLSAIFTT





830
PRT
Artificial
Luk38I77A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP






GTEYTVSIYGVELAYHGWLDFVFSNPLSAIFTT





831
PRT
Artificial
Luk38Y78A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP






GTEYTVSIYGVELIAHGWLDFVFSNPLSAIFTT





832
PRT
Artificial
Luk38H79A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP






GTEYTVSIYGVELIYAGWLDFVFSNPLSAIFTT





833
PRT
Artificial
Luk38G80A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP






GTEYTVSIYGVELIYHAWLDFVFSNPLSAIFTT





834
PRT
Artificial
Luk38W81A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP






GTEYTVSIYGVELIYHGALDFVFSNPLSAIFTT





835
PRT
Artificial
Luk38L82A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP






GTEYTVSIYGVELIYHGWADFVFSNPLSAIFTT





836
PRT
Artificial
Luk38D83A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP






GTEYTVSIYGVELIYHGWLAFVFSNPLSAIFTT





837
PRT
Artificial
Luk38F84A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP






GTEYTVSIYGVELIYHGWLDAVFSNPLSAIFTT





838
PRT
Artificial
Luk38V85A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP






GTEYTVSIYGVELIYHGWLDFAFSNPLSAIFTT





839
PRT
Artificial
Luk38F86A
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF






LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP






GTEYTVSIYGVELIYHGWLDFVASNPLSAIFTT





840
PRT
Human
CR-5133LC
EIVLTQSPATLSLSPGERATLSCRASQSVSGYL






GWYQQKPGQAPRLLIYGASSRATGIPDRFSG






SGSGTDFTLTISRLEPEDFAVYYCQQYGSSPL






TFGGGTKLEIKRTVAAPSVFIFPPSDEQLKSGT






ASVVCLLNNFYPREAKVQWKVDNALQSGNS






QESVTEQDSKDSTYSLSSTLTLSKADYEKHK






VYACEVTHQGLSSPVTKSFNRGEC





841
PRT
Human
ProteinA3LC
EIVLTQSPATLSLSPGERATLSCRASQSVADD






LAWYQQKPGQAPRLLIYFASNRATGIPARFS






GSGSGTDFTLTISSLEPEDFAVYYCQQRYGW






PWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLK






SGTASVVCLLNNFYPREAKVQWKVDNALQS






GNSQESVTEQDSKDSTYSLSSTLTLSKADYEK






HKVYACEVTHQGLSSPVTKSFNRGEC





842
PRT
Human
ProteinA9LC
EIVLTQSPATLSLSPGERATLSCRASQSVSNAL






AWYQQKPGQAPRLLIYGAGNRATGIPARFSG






SGSGTDFTLTISSLEPEDFAVYYCQQRHNWPR






TFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSG






TASVVCLLNNFYPREAKVQWKVDNALQSGN






SQESVTEQDSKDSTYSLSSTLTLSKADYEKHK






VYACEVTHQGLSSPVTKSFNRGEC





843
PRT
Human
RSVLC
DIVMTQSPDSLAVSLGERATINCRASQSVDY






NGISYMHWYQQKPGQPPKLLIYAASNPESGV






PDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQ






IIEDPWTFGQGTKVEIKRTVAAPSVFIFPPSDE






QLKSGTASVVCLLNNFYPREAKVQWKVDNA






LQSGNSQESVTEQDSKDSTYSLSSTLTLSKAD






YEKHKVYACEVTHQGLSSPVTKSFNRGEC





844
PRT
Human
CSD7LC
EIVMTQSPATLSVSPGERATLSCRASQYVSDN






LAWYQQKPGQAPRLLIYGASTRATGVPARFS






GSGSGTEFTLTISSLQSEDFAVYYCQQYNNW






RPVTFGQGTRLEIKRTVAAPSVFIFPPSDEQLK






SGTASVVCLLNNFYPREAKVQWKVDNALQS






GNSQESVTEQDSKDSTYSLSSTLTLSKADYEK






HKVYACEVTHQGLSSPVTKSFNRGEC





845
PRT
Human
CR-6526LC
QSALTQPPSASGSPGQSVTISCTGTSSDVGGY






NYVSWYQQRPGKAPKLMIYDVSNRPSGVSD






RFSGSKSGNTASLTISGLQAEDEADYYCSSYT






TGSTLVVFGGGTKLTVLGQPKAAPSVTLFPPS






SEELQANKATLVCLISDFYPGAVTVAWKADS






SPVKAGVETTTPSKQSNNKYAASSYLSLTPE






QWKSHRSYSCQVTHEGSTVEKTVAPTECS





846
PRT
Human
PagibaximabLC
DIVLSQSPAILSASPGEKVTMTCRASSSVNYM






HWYQQKPGSSPKPWISATSNLASGVPARFSG






SGSGTSYSLTISRVEAEDAATYYCQQWSSNPP






TFGGGTMLEIKRTVAAPSVFIFPPSDEQLKSG






TASVVCLLNNFYPREAKVQWKVDNALQSGN






SQESVTEQDSKDSTYSLSSTLTLSKADYEKHK






VYACEVTHQGLSSPVTKSFNRGEC





847
PRT
Human
CR-6171LC
QSVLTQPPSLSVSPGQTASISCSGDKLGDKYV






SWYQQRPGQSPVLVIYHDTKRPSGIPERFSGT






NSGNTATLTISGTQILDEADYYCQVWDRSTV






VFGGGTQLTVLGQPKAAPSVTLFPPSSEELQA






NKATLVCLISDFYPGAVTVAWKADSSPVKA






GVETTTPSKQSNNKYAASSYLSLTPEQWKSH






RSYSCQVTHEGSTVEKTVAPTECS





848
PRT
Human
CR-5133HC66
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD






YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSGGGGS






GGGGSMLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFHIEYAEPWVWGEAIVLTVPGSERS






YDLTGLKPGTEYVVFIGGVKGGHNSTPLSAIF






TT





849
PRT
Human
CR-5133HC67
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD






YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSGGGGS






GGGGSLPAPKNLVVSRVTEDSARLSWTAPDA






AFDSFHIEYAEPWVWGEAIVLTVPGSERSYD






LTGLKPGTEYVVFIGGVKGGHNSTPLSAIFTT





850
PRT
Human
CR-5133HC68
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD






YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSGGGGS






GGGGSMLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFPIVYQEWQFYGEAIVLTVPGSERSY






DLTGLKPGTEYLVDIYGVKGGSWSYPLSAIFTT





851
PRT
Human
CR-5133HC69
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD






YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSGGGGS






GGGGSLPAPKNLVVSRVTEDSARLSWTAPDA






AFDSFPIVYQEWQFYGEAIVLTVPGSERSYDL






TGLKPGTEYLVDIYGVKGGSWSYPLSAIFTT





852
PRT
Human
CR-5133HC70
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD






YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSGGGGS






GGGGSMLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFWITYEEKFYRGEAIVLTVPGSERSY






DLTGLKPGTEYKVWIVGVKGGQGSWPLSAIF






TTGGGGSGGGGSGGGGSGGGGSMLPAPKNL






VVSRVTEDSARLSWTAPDAAFDSFHIEYAEP






WVWGEAIVLTVPGSERSYDLTGLKPGTEYV






VFIGGVKGGHNSTPLSAIFTT





853
PRT
Human
CR-5133HC71
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD






YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSGGGGS






GGGGSMLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFWITYEEKFYRGEAIVLTVPGSERSY






DLTGLKPGTEYKVWIVGVKGGQGSWPLSAIF






TTGGGGSGGGGSGGGGSGGGGSLPAPKNLV






VSRVTEDSARLSWTAPDAAFDSFHIEYAEPW






VWGEAIVLTVPGSERSYDLTGLKPGTEYVVFI






GGVKGGHNSTPLSAIFTT





854
PRT
Human
CR-5133HC72
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD






YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSGGGGS






GGGGSMLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFWITYEEKFYRGEAIVLTVPGSERSY






DLTGLKPGTEYKVWIVGVKGGQGSWPLSAIF






TTGGGGSGGGGSGGGGSGGGGSMLPAPKNL






VVSRVTEDSARLSWTAPDAAFDSFPIVYQEW






QFYGEAIVLTVPGSERSYDLTGLKPGTEYLV






DIYGVKGGSWSYPLSAIFTT





855
PRT
Human
CR-5133HC73
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD






YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSGGGGS






GGGGSMLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFWITYEEKFYRGEAIVLTVPGSERSY






DLTGLKPGTEYKVWIVGVKGGQGSWPLSAIF






TTGGGGSGGGGSGGGGSGGGGSLPAPKNLV






VSRVTEDSARLSWTAPDAAFDSFPIVYQEWQ






FYGEAIVLTVPGSERSYDLTGLKPGTEYLVDI






YGVKGGSWSYPLSAIFTT





856
PRT
Human
CR-5133HC74
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD






YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSGGGGS






GGGGSMLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFHIEYAEPWVWGEAIVLTVPGSERS






YDLTGLKPGTEYVVFIGGVKGGHNSTPLSAIF






TTGGGGSGGGGSGGGGSGGGGSMLPAPKNL






VVSRVTEDSARLSWTAPDAAFDSFWITYEEK






FYRGEAIVLTVPGSERSYDLTGLKPGTEYKV






WIVGVKGGQGSWPLSAIFTT





857
PRT
Human
CR-5133HC75
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD






YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSGGGGS






GGGGSLPAPKNLVVSRVTEDSARLSWTAPDA






AFDSFHIEYAEPWVWGEAIVLTVPGSERSYD






LTGLKPGTEYVVFIGGVKGGHNSTPLSAIFTT






GGGGSGGGGSGGGGSGGGGSMLPAPKNLVV






SRVTEDSARLSWTAPDAAFDSFWITYEEKFY






RGEAIVLTVPGSERSYDLTGLKPGTEYKVWI






VGVKGGQGSWPLSAIFTT





858
PRT
Human
CR-5133HC76
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD






YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSGGGGS






GGGGSMLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFPIVYQEWQFYGEAIVLTVPGSERSY






DLTGLKPGTEYLVDIYGVKGGSWSYPLSAIFT






TGGGGSGGGGSGGGGSGGGGSMLPAPKNLV






VSRVTEDSARLSWTAPDAAFDSFWITYEEKF






YRGEAIVLTVPGSERSYDLTGLKPGTEYKVW






IVGVKGGQGSWPLSAIFTT





859
PRT
Human
CR-5133HC77
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD






YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSGGGGS






GGGGSLPAPKNLVVSRVTEDSARLSWTAPDA






AFDSFPIVYQEWQFYGEAIVLTVPGSERSYDL






TGLKPGTEYLVDIYGVKGGSWSYPLSAIFTTG






GGGSGGGGSGGGGSGGGGSMLPAPKNLVVS






RVTEDSARLSWTAPDAAFDSFWITYEEKFYR






GEAIVLTVPGSERSYDLTGLKPGTEYKVWIV






GVKGGQGSWPLSAIFTT





860
PRT
Human
ProteinA3HC78
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS






YAISWVRQAPGQGLEWMGWISAINGNTNYA






QKFQGRVTITADESTSTAYMELSSLRSEDTAV






YYCARIWNFLLDYWGQGTLVTVSSASTKGPS






VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTV






SWNSGALTSGVHTFPAVLQSSGLYSLSSVVT






VPSSSLGTQTYICNVNHKPSNTKVDKKVEPK






SCDKTHTCPPCPAPPVAGPDVFLFPPKPKDTL






MISRTPEVTCVVVDVSHEDPEVKFNWYVDG






VEVHNAKTKPREEQYNSTYRVVSVLTVLHQ






DWLNGKEYKCKVSNAALPAPIAKTISKAKGQ






PREPQVYTLPPSRDELTKNQVSLTCLVKGFYP






SDIAVEWESNGQPENNYKTTPPVLDSDGSFFL






YSKLTVDKSRWQQGNVFSCSVMHEALHNRF






TQKSLSLSPGKGGGGSGGGGSGGGGSGGGG






SMLPAPKNLVVSRVTEDSARLSWTAPDAAFD






SFHIEYAEPWVWGEAIVLTVPGSERSYDLTG






LKPGTEYVVFIGGVKGGHNSTPLSAIFTT





861
PRT
Human
ProteinA3HC79
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS






YAISWVRQAPGQGLEWMGWISAINGNTNYA






QKFQGRVTITADESTSTAYMELSSLRSEDTAV






YYCARIWNFLLDYWGQGTLVTVSSASTKGPS






VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTV






SWNSGALTSGVHTFPAVLQSSGLYSLSSVVT






VPSSSLGTQTYICNVNHKPSNTKVDKKVEPK






SCDKTHTCPPCPAPPVAGPDVFLFPPKPKDTL






MISRTPEVTCVVVDVSHEDPEVKFNWYVDG






VEVHNAKTKPREEQYNSTYRVVSVLTVLHQ






DWLNGKEYKCKVSNAALPAPIAKTISKAKGQ






PREPQVYTLPPSRDELTKNQVSLTCLVKGFYP






SDIAVEWESNGQPENNYKTTPPVLDSDGSFFL






YSKLTVDKSRWQQGNVFSCSVMHEALHNRF






TQKSLSLSPGKGGGGSGGGGSGGGGSGGGG






SLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FHIEYAEPWVWGEAIVLTVPGSERSYDLTGL






KPGTEYVVFIGGVKGGHNSTPLSAIFTT





862
PRT
Human
ProteinA3HC80
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS






YAISWVRQAPGQGLEWMGWISAINGNTNYA






QKFQGRVTITADESTSTAYMELSSLRSEDTAV






YYCARIWNFLLDYWGQGTLVTVSSASTKGPS






VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTV






SWNSGALTSGVHTFPAVLQSSGLYSLSSVVT






VPSSSLGTQTYICNVNHKPSNTKVDKKVEPK






SCDKTHTCPPCPAPPVAGPDVFLFPPKPKDTL






MISRTPEVTCVVVDVSHEDPEVKFNWYVDG






VEVHNAKTKPREEQYNSTYRVVSVLTVLHQ






DWLNGKEYKCKVSNAALPAPIAKTISKAKGQ






PREPQVYTLPPSRDELTKNQVSLTCLVKGFYP






SDIAVEWESNGQPENNYKTTPPVLDSDGSFFL






YSKLTVDKSRWQQGNVFSCSVMHEALHNRF






TQKSLSLSPGKGGGGSGGGGSGGGGSGGGG






SMLPAPKNLVVSRVTEDSARLSWTAPDAAFD






SFPIVYQEWQFYGEAIVLTVPGSERSYDLTGL






KPGTEYLVDIYGVKGGSWSYPLSAIFTT





863
PRT
Human
ProteinA3HC81
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS






YAISWVRQAPGQGLEWMGWISAINGNTNYA






QKFQGRVTITADESTSTAYMELSSLRSEDTAV






YYCARIWNFLLDYWGQGTLVTVSSASTKGPS






VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTV






SWNSGALTSGVHTFPAVLQSSGLYSLSSVVT






VPSSSLGTQTYICNVNHKPSNTKVDKKVEPK






SCDKTHTCPPCPAPPVAGPDVFLFPPKPKDTL






MISRTPEVTCVVVDVSHEDPEVKFNWYVDG






VEVHNAKTKPREEQYNSTYRVVSVLTVLHQ






DWLNGKEYKCKVSNAALPAPIAKTISKAKGQ






PREPQVYTLPPSRDELTKNQVSLTCLVKGFYP






SDIAVEWESNGQPENNYKTTPPVLDSDGSFFL






YSKLTVDKSRWQQGNVFSCSVMHEALHNRF






TQKSLSLSPGKGGGGSGGGGSGGGGSGGGG






SLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FPIVYQEWQFYGEAIVLTVPGSERSYDLTGLK






PGTEYLVDIYGVKGGSWSYPLSAIFTT





864
PRT
Human
ProteinA3HC82
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS






YAISWVRQAPGQGLEWMGWISAINGNTNYA






QKFQGRVTITADESTSTAYMELSSLRSEDTAV






YYCARIWNFLLDYWGQGTLVTVSSASTKGPS






VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTV






SWNSGALTSGVHTFPAVLQSSGLYSLSSVVT






VPSSSLGTQTYICNVNHKPSNTKVDKKVEPK






SCDKTHTCPPCPAPPVAGPDVFLFPPKPKDTL






MISRTPEVTCVVVDVSHEDPEVKFNWYVDG






VEVHNAKTKPREEQYNSTYRVVSVLTVLHQ






DWLNGKEYKCKVSNAALPAPIAKTISKAKGQ






PREPQVYTLPPSRDELTKNQVSLTCLVKGFYP






SDIAVEWESNGQPENNYKTTPPVLDSDGSFFL






YSKLTVDKSRWQQGNVFSCSVMHEALHNRF






TQKSLSLSPGKGGGGSGGGGSGGGGSGGGG






SMLPAPKNLVVSRVTEDSARLSWTAPDAAFD






SFWITYEEKFYRGEAIVLTVPGSERSYDLTGL






KPGTEYKVWIVGVKGGQGSWPLSAIFTTGGG






GSGGGGSGGGGSGGGGSMLPAPKNLVVSRV






TEDSARLSWTAPDAAFDSFHIEYAEPWVWGE






AIVLTVPGSERSYDLTGLKPGTEYVVFIGGVK






GGHNSTPLSAIFTT





865
PRT
Human
ProteinA3HC83
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS






YAISWVRQAPGQGLEWMGWISAINGNTNYA






QKFQGRVTITADESTSTAYMELSSLRSEDTAV






YYCARIWNFLLDYWGQGTLVTVSSASTKGPS






VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTV






SWNSGALTSGVHTFPAVLQSSGLYSLSSVVT






VPSSSLGTQTYICNVNHKPSNTKVDKKVEPK






SCDKTHTCPPCPAPPVAGPDVFLFPPKPKDTL






MISRTPEVTCVVVDVSHEDPEVKFNWYVDG






VEVHNAKTKPREEQYNSTYRVVSVLTVLHQ






DWLNGKEYKCKVSNAALPAPIAKTISKAKGQ






PREPQVYTLPPSRDELTKNQVSLTCLVKGFYP






SDIAVEWESNGQPENNYKTTPPVLDSDGSFFL






YSKLTVDKSRWQQGNVFSCSVMHEALHNRF






TQKSLSLSPGKGGGGSGGGGSGGGGSGGGG






SMLPAPKNLVVSRVTEDSARLSWTAPDAAFD






SFWITYEEKFYRGEAIVLTVPGSERSYDLTGL






KPGTEYKVWIVGVKGGQGSWPLSAIFTTGGG






GSGGGGSGGGGSGGGGSLPAPKNLVVSRVT






EDSARLSWTAPDAAFDSFHIEYAEPWVWGE






AIVLTVPGSERSYDLTGLKPGTEYVVFIGGVK






GGHNSTPLSAIFTT





866
PRT
Human
ProteinA3HC84
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS






YAISWVRQAPGQGLEWMGWISAINGNTNYA






QKFQGRVTITADESTSTAYMELSSLRSEDTAV






YYCARIWNFLLDYWGQGTLVTVSSASTKGPS






VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTV






SWNSGALTSGVHTFPAVLQSSGLYSLSSVVT






VPSSSLGTQTYICNVNHKPSNTKVDKKVEPK






SCDKTHTCPPCPAPPVAGPDVFLFPPKPKDTL






MISRTPEVTCVVVDVSHEDPEVKFNWYVDG






VEVHNAKTKPREEQYNSTYRVVSVLTVLHQ






DWLNGKEYKCKVSNAALPAPIAKTISKAKGQ






PREPQVYTLPPSRDELTKNQVSLTCLVKGFYP






SDIAVEWESNGQPENNYKTTPPVLDSDGSFFL






YSKLTVDKSRWQQGNVFSCSVMHEALHNRF






TQKSLSLSPGKGGGGSGGGGSGGGGSGGGG






SMLPAPKNLVVSRVTEDSARLSWTAPDAAFD






SFWITYEEKFYRGEAIVLTVPGSERSYDLTGL






KPGTEYKVWIVGVKGGQGSWPLSAIFTTGGG






GSGGGGSGGGGSGGGGSMLPAPKNLVVSRV






TEDSARLSWTAPDAAFDSFPIVYQEWQFYGE






AIVLTVPGSERSYDLTGLKPGTEYLVDIYGVK






GGSWSYPLSAIFTT





867
PRT
Human
ProteinA3HC85
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS






YAISWVRQAPGQGLEWMGWISAINGNTNYA






QKFQGRVTITADESTSTAYMELSSLRSEDTAV






YYCARIWNFLLDYWGQGTLVTVSSASTKGPS






VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTV






SWNSGALTSGVHTFPAVLQSSGLYSLSSVVT






VPSSSLGTQTYICNVNHKPSNTKVDKKVEPK






SCDKTHTCPPCPAPPVAGPDVFLFPPKPKDTL






MISRTPEVTCVVVDVSHEDPEVKFNWYVDG






VEVHNAKTKPREEQYNSTYRVVSVLTVLHQ






DWLNGKEYKCKVSNAALPAPIAKTISKAKGQ






PREPQVYTLPPSRDELTKNQVSLTCLVKGFYP






SDIAVEWESNGQPENNYKTTPPVLDSDGSFFL






YSKLTVDKSRWQQGNVFSCSVMHEALHNRF






TQKSLSLSPGKGGGGSGGGGSGGGGSGGGG






SMLPAPKNLVVSRVTEDSARLSWTAPDAAFD






SFWITYEEKFYRGEAIVLTVPGSERSYDLTGL






KPGTEYKVWIVGVKGGQGSWPLSAIFTTGGG






GSGGGGSGGGGSGGGGSLPAPKNLVVSRVT






EDSARLSWTAPDAAFDSFPIVYQEWQFYGEA






IVLTVPGSERSYDLTGLKPGTEYLVDIYGVKG






GSWSYPLSAIFTT





868
PRT
Human
ProteinA3HC86
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS






YAISWVRQAPGQGLEWMGWISAINGNTNYA






QKFQGRVTITADESTSTAYMELSSLRSEDTAV






YYCARIWNFLLDYWGQGTLVTVSSASTKGPS






VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTV






SWNSGALTSGVHTFPAVLQSSGLYSLSSVVT






VPSSSLGTQTYICNVNHKPSNTKVDKKVEPK






SCDKTHTCPPCPAPPVAGPDVFLFPPKPKDTL






MISRTPEVTCVVVDVSHEDPEVKFNWYVDG






VEVHNAKTKPREEQYNSTYRVVSVLTVLHQ






DWLNGKEYKCKVSNAALPAPIAKTISKAKGQ






PREPQVYTLPPSRDELTKNQVSLTCLVKGFYP






SDIAVEWESNGQPENNYKTTPPVLDSDGSFFL






YSKLTVDKSRWQQGNVFSCSVMHEALHNRF






TQKSLSLSPGKGGGGSGGGGSGGGGSGGGG






SMLPAPKNLVVSRVTEDSARLSWTAPDAAFD






SFHIEYAEPWVWGEAIVLTVPGSERSYDLTG






LKPGTEYVVFIGGVKGGHNSTPLSAIFTTGGG






GSGGGGSGGGGSGGGGSMLPAPKNLVVSRV






TEDSARLSWTAPDAAFDSFWITYEEKFYRGE






AIVLTVPGSERSYDLTGLKPGTEYKVWIVGV






KGGQGSWPLSAIFTT





869
PRT
Human
ProteinA3HC87
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS






YAISWVRQAPGQGLEWMGWISAINGNTNYA






QKFQGRVTITADESTSTAYMELSSLRSEDTAV






YYCARIWNFLLDYWGQGTLVTVSSASTKGPS






VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTV






SWNSGALTSGVHTFPAVLQSSGLYSLSSVVT






VPSSSLGTQTYICNVNHKPSNTKVDKKVEPK






SCDKTHTCPPCPAPPVAGPDVFLFPPKPKDTL






MISRTPEVTCVVVDVSHEDPEVKFNWYVDG






VEVHNAKTKPREEQYNSTYRVVSVLTVLHQ






DWLNGKEYKCKVSNAALPAPIAKTISKAKGQ






PREPQVYTLPPSRDELTKNQVSLTCLVKGFYP






SDIAVEWESNGQPENNYKTTPPVLDSDGSFFL






YSKLTVDKSRWQQGNVFSCSVMHEALHNRF






TQKSLSLSPGKGGGGSGGGGSGGGGSGGGG






SLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FHIEYAEPWVWGEAIVLTVPGSERSYDLTGL






KPGTEYVVFIGGVKGGHNSTPLSAIFTTGGGG






SGGGGSGGGGSGGGGSMLPAPKNLVVSRVT






EDSARLSWTAPDAAFDSFWITYEEKFYRGEA






IVLTVPGSERSYDLTGLKPGTEYKVWIVGVK






GGQGSWPLSAIFTT





870
PRT
Human
ProteinA3HC88
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS






YAISWVRQAPGQGLEWMGWISAINGNTNYA






QKFQGRVTITADESTSTAYMELSSLRSEDTAV






YYCARIWNFLLDYWGQGTLVTVSSASTKGPS






VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTV






SWNSGALTSGVHTFPAVLQSSGLYSLSSVVT






VPSSSLGTQTYICNVNHKPSNTKVDKKVEPK






SCDKTHTCPPCPAPPVAGPDVFLFPPKPKDTL






MISRTPEVTCVVVDVSHEDPEVKFNWYVDG






VEVHNAKTKPREEQYNSTYRVVSVLTVLHQ






DWLNGKEYKCKVSNAALPAPIAKTISKAKGQ






PREPQVYTLPPSRDELTKNQVSLTCLVKGFYP






SDIAVEWESNGQPENNYKTTPPVLDSDGSFFL






YSKLTVDKSRWQQGNVFSCSVMHEALHNRF






TQKSLSLSPGKGGGGSGGGGSGGGGSGGGG






SMLPAPKNLVVSRVTEDSARLSWTAPDAAFD






SFPIVYQEWQFYGEAIVLTVPGSERSYDLTGL






KPGTEYLVDIYGVKGGSWSYPLSAIFTTGGG






GSGGGGSGGGGSGGGGSMLPAPKNLVVSRV






TEDSARLSWTAPDAAFDSFWITYEEKFYRGE






AIVLTVPGSERSYDLTGLKPGTEYKVWIVGV






KGGQGSWPLSAIFTT





871
PRT
Human
ProteinA3HC89
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS






YAISWVRQAPGQGLEWMGWISAINGNTNYA






QKFQGRVTITADESTSTAYMELSSLRSEDTAV






YYCARIWNFLLDYWGQGTLVTVSSASTKGPS






VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTV






SWNSGALTSGVHTFPAVLQSSGLYSLSSVVT






VPSSSLGTQTYICNVNHKPSNTKVDKKVEPK






SCDKTHTCPPCPAPPVAGPDVFLFPPKPKDTL






MISRTPEVTCVVVDVSHEDPEVKFNWYVDG






VEVHNAKTKPREEQYNSTYRVVSVLTVLHQ






DWLNGKEYKCKVSNAALPAPIAKTISKAKGQ






PREPQVYTLPPSRDELTKNQVSLTCLVKGFYP






SDIAVEWESNGQPENNYKTTPPVLDSDGSFFL






YSKLTVDKSRWQQGNVFSCSVMHEALHNRF






TQKSLSLSPGKGGGGSGGGGSGGGGSGGGG






SLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FPIVYQEWQFYGEAIVLTVPGSERSYDLTGLK






PGTEYLVDIYGVKGGSWSYPLSAIFTTGGGG






SGGGGSGGGGSGGGGSMLPAPKNLVVSRVT






EDSARLSWTAPDAAFDSFWITYEEKFYRGEA






IVLTVPGSERSYDLTGLKPGTEYKVWIVGVK






GGQGSWPLSAIFTT





872
PRT
Human
ProteinA9HC90
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSY






WIGWVRQMPGKGLEWMGIIYPGDSDTRYSP






SFQGQVTISADKSISTAYLQWSSLKASDTAM






YYCARWSYSQYSGWLDYWGQGTLVTVSSA






STKGPSVFPLAPSSKSTSGGTAALGCLVKDYF






PEPVTVSWNSGALTSGVHTFPAVLQSSGLYS






LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK






KVEPKSCDKTHTCPPCPAPPVAGPDVFLFPPK






PKDTLMISRTPEVTCVVVDVSHEDPEVKFNW






YVDGVEVHNAKTKPREEQYNSTYRVVSVLT






VLHQDWLNGKEYKCKVSNAALPAPIAKTISK






AKGQPREPQVYTLPPSRDELTKNQVSLTCLV






KGFYPSDIAVEWESNGQPENNYKTTPPVLDS






DGSFFLYSKLTVDKSRWQQGNVFSCSVMHE






ALHNRFTQKSLSLSPGKGGGGSGGGGSGGG






GSGGGGSMLPAPKNLVVSRVTEDSARLSWT






APDAAFDSFHIEYAEPWVWGEAIVLTVPGSE






RSYDLTGLKPGTEYVVFIGGVKGGHNSTPLS






AIFTT





873
PRT
Human
ProteinA9HC91
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSY






WIGWVRQMPGKGLEWMGIIYPGDSDTRYSP






SFQGQVTISADKSISTAYLQWSSLKASDTAM






YYCARWSYSQYSGWLDYWGQGTLVTVSSA






STKGPSVFPLAPSSKSTSGGTAALGCLVKDYF






PEPVTVSWNSGALTSGVHTFPAVLQSSGLYS






LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK






KVEPKSCDKTHTCPPCPAPPVAGPDVFLFPPK






PKDTLMISRTPEVTCVVVDVSHEDPEVKFNW






YVDGVEVHNAKTKPREEQYNSTYRVVSVLT






VLHQDWLNGKEYKCKVSNAALPAPIAKTISK






AKGQPREPQVYTLPPSRDELTKNQVSLTCLV






KGFYPSDIAVEWESNGQPENNYKTTPPVLDS






DGSFFLYSKLTVDKSRWQQGNVFSCSVMHE






ALHNRFTQKSLSLSPGKGGGGSGGGGSGGG






GSGGGGSLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFHIEYAEPWVWGEAIVLTVPGSERS






YDLTGLKPGTEYVVFIGGVKGGHNSTPLSAIF






TT





874
PRT
Human
ProteinA9HC92
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSY






WIGWVRQMPGKGLEWMGIIYPGDSDTRYSP






SFQGQVTISADKSISTAYLQWSSLKASDTAM






YYCARWSYSQYSGWLDYWGQGTLVTVSSA






STKGPSVFPLAPSSKSTSGGTAALGCLVKDYF






PEPVTVSWNSGALTSGVHTFPAVLQSSGLYS






LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK






KVEPKSCDKTHTCPPCPAPPVAGPDVFLFPPK






PKDTLMISRTPEVTCVVVDVSHEDPEVKFNW






YVDGVEVHNAKTKPREEQYNSTYRVVSVLT






VLHQDWLNGKEYKCKVSNAALPAPIAKTISK






AKGQPREPQVYTLPPSRDELTKNQVSLTCLV






KGFYPSDIAVEWESNGQPENNYKTTPPVLDS






DGSFFLYSKLTVDKSRWQQGNVFSCSVMHE






ALHNRFTQKSLSLSPGKGGGGSGGGGSGGG






GSGGGGSMLPAPKNLVVSRVTEDSARLSWT






APDAAFDSFPIVYQEWQFYGEAIVLTVPGSER






SYDLTGLKPGTEYLVDIYGVKGGSWSYPLSA






IFTT





875
PRT
Human
ProteinA9HC93
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSY






WIGWVRQMPGKGLEWMGIIYPGDSDTRYSP






SFQGQVTISADKSISTAYLQWSSLKASDTAM






YYCARWSYSQYSGWLDYWGQGTLVTVSSA






STKGPSVFPLAPSSKSTSGGTAALGCLVKDYF






PEPVTVSWNSGALTSGVHTFPAVLQSSGLYS






LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK






KVEPKSCDKTHTCPPCPAPPVAGPDVFLFPPK






PKDTLMISRTPEVTCVVVDVSHEDPEVKFNW






YVDGVEVHNAKTKPREEQYNSTYRVVSVLT






VLHQDWLNGKEYKCKVSNAALPAPIAKTISK






AKGQPREPQVYTLPPSRDELTKNQVSLTCLV






KGFYPSDIAVEWESNGQPENNYKTTPPVLDS






DGSFFLYSKLTVDKSRWQQGNVFSCSVMHE






ALHNRFTQKSLSLSPGKGGGGSGGGGSGGG






GSGGGGSLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFPIVYQEWQFYGEAIVLTVPGSERSY






DLTGLKPGTEYLVDIYGVKGGSWSYPLSAIFTT





876
PRT
Human
ProteinA9HC94
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSY






WIGWVRQMPGKGLEWMGIIYPGDSDTRYSP






SFQGQVTISADKSISTAYLQWSSLKASDTAM






YYCARWSYSQYSGWLDYWGQGTLVTVSSA






STKGPSVFPLAPSSKSTSGGTAALGCLVKDYF






PEPVTVSWNSGALTSGVHTFPAVLQSSGLYS






LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK






KVEPKSCDKTHTCPPCPAPPVAGPDVFLFPPK






PKDTLMISRTPEVTCVVVDVSHEDPEVKFNW






YVDGVEVHNAKTKPREEQYNSTYRVVSVLT






VLHQDWLNGKEYKCKVSNAALPAPIAKTISK






AKGQPREPQVYTLPPSRDELTKNQVSLTCLV






KGFYPSDIAVEWESNGQPENNYKTTPPVLDS






DGSFFLYSKLTVDKSRWQQGNVFSCSVMHE






ALHNRFTQKSLSLSPGKGGGGSGGGGSGGG






GSGGGGSMLPAPKNLVVSRVTEDSARLSWT






APDAAFDSFWITYEEKFYRGEAIVLTVPGSER






SYDLTGLKPGTEYKVWIVGVKGGQGSWPLS






AIFTTGGGGSGGGGSGGGGSGGGGSMLPAPK






NLVVSRVTEDSARLSWTAPDAAFDSFHIEYA






EPWVWGEAIVLTVPGSERSYDLTGLKPGTEY






VVFIGGVKGGHNSTPLSAIFTT





877
PRT
Human
ProteinA9HC95
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSY






WIGWVRQMPGKGLEWMGIIYPGDSDTRYSP






SFQGQVTISADKSISTAYLQWSSLKASDTAM






YYCARWSYSQYSGWLDYWGQGTLVTVSSA






STKGPSVFPLAPSSKSTSGGTAALGCLVKDYF






PEPVTVSWNSGALTSGVHTFPAVLQSSGLYS






LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK






KVEPKSCDKTHTCPPCPAPPVAGPDVFLFPPK






PKDTLMISRTPEVTCVVVDVSHEDPEVKFNW






YVDGVEVHNAKTKPREEQYNSTYRVVSVLT






VLHQDWLNGKEYKCKVSNAALPAPIAKTISK






AKGQPREPQVYTLPPSRDELTKNQVSLTCLV






KGFYPSDIAVEWESNGQPENNYKTTPPVLDS






DGSFFLYSKLTVDKSRWQQGNVFSCSVMHE






ALHNRFTQKSLSLSPGKGGGGSGGGGSGGG






GSGGGGSMLPAPKNLVVSRVTEDSARLSWT






APDAAFDSFWITYEEKFYRGEAIVLTVPGSER






SYDLTGLKPGTEYKVWIVGVKGGQGSWPLS






AIFTTGGGGSGGGGSGGGGSGGGGSLPAPKN






LVVSRVTEDSARLSWTAPDAAFDSFHIEYAE






PWVWGEAIVLTVPGSERSYDLTGLKPGTEYV






VFIGGVKGGHNSTPLSAIFTT





878
PRT
Human
ProteinA9HC96
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSY






WIGWVRQMPGKGLEWMGIIYPGDSDTRYSP






SFQGQVTISADKSISTAYLQWSSLKASDTAM






YYCARWSYSQYSGWLDYWGQGTLVTVSSA






STKGPSVFPLAPSSKSTSGGTAALGCLVKDYF






PEPVTVSWNSGALTSGVHTFPAVLQSSGLYS






LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK






KVEPKSCDKTHTCPPCPAPPVAGPDVFLFPPK






PKDTLMISRTPEVTCVVVDVSHEDPEVKFNW






YVDGVEVHNAKTKPREEQYNSTYRVVSVLT






VLHQDWLNGKEYKCKVSNAALPAPIAKTISK






AKGQPREPQVYTLPPSRDELTKNQVSLTCLV






KGFYPSDIAVEWESNGQPENNYKTTPPVLDS






DGSFFLYSKLTVDKSRWQQGNVFSCSVMHE






ALHNRFTQKSLSLSPGKGGGGSGGGGSGGG






GSGGGGSMLPAPKNLVVSRVTEDSARLSWT






APDAAFDSFWITYEEKFYRGEAIVLTVPGSER






SYDLTGLKPGTEYKVWIVGVKGGQGSWPLS






AIFTTGGGGSGGGGSGGGGSGGGGSMLPAPK






NLVVSRVTEDSARLSWTAPDAAFDSFPIVYQ






EWQFYGEAIVLTVPGSERSYDLTGLKPGTEY






LVDIYGVKGGSWSYPLSAIFTT





879
PRT
Human
ProteinA9HC97
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSY






WIGWVRQMPGKGLEWMGIIYPGDSDTRYSP






SFQGQVTISADKSISTAYLQWSSLKASDTAM






YYCARWSYSQYSGWLDYWGQGTLVTVSSA






STKGPSVFPLAPSSKSTSGGTAALGCLVKDYF






PEPVTVSWNSGALTSGVHTFPAVLQSSGLYS






LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK






KVEPKSCDKTHTCPPCPAPPVAGPDVFLFPPK






PKDTLMISRTPEVTCVVVDVSHEDPEVKFNW






YVDGVEVHNAKTKPREEQYNSTYRVVSVLT






VLHQDWLNGKEYKCKVSNAALPAPIAKTISK






AKGQPREPQVYTLPPSRDELTKNQVSLTCLV






KGFYPSDIAVEWESNGQPENNYKTTPPVLDS






DGSFFLYSKLTVDKSRWQQGNVFSCSVMHE






ALHNRFTQKSLSLSPGKGGGGSGGGGSGGG






GSGGGGSMLPAPKNLVVSRVTEDSARLSWT






APDAAFDSFWITYEEKFYRGEAIVLTVPGSER






SYDLTGLKPGTEYKVWIVGVKGGQGSWPLS






AIFTTGGGGSGGGGSGGGGSGGGGSLPAPKN






LVVSRVTEDSARLSWTAPDAAFDSFPIVYQE






WQFYGEAIVLTVPGSERSYDLTGLKPGTEYL






VDIYGVKGGSWSYPLSAIFTT





880
PRT
Human
ProteinA9HC98
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSY






WIGWVRQMPGKGLEWMGIIYPGDSDTRYSP






SFQGQVTISADKSISTAYLQWSSLKASDTAM






YYCARWSYSQYSGWLDYWGQGTLVTVSSA






STKGPSVFPLAPSSKSTSGGTAALGCLVKDYF






PEPVTVSWNSGALTSGVHTFPAVLQSSGLYS






LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK






KVEPKSCDKTHTCPPCPAPPVAGPDVFLFPPK






PKDTLMISRTPEVTCVVVDVSHEDPEVKFNW






YVDGVEVHNAKTKPREEQYNSTYRVVSVLT






VLHQDWLNGKEYKCKVSNAALPAPIAKTISK






AKGQPREPQVYTLPPSRDELTKNQVSLTCLV






KGFYPSDIAVEWESNGQPENNYKTTPPVLDS






DGSFFLYSKLTVDKSRWQQGNVFSCSVMHE






ALHNRFTQKSLSLSPGKGGGGSGGGGSGGG






GSGGGGSMLPAPKNLVVSRVTEDSARLSWT






APDAAFDSFHIEYAEPWVWGEAIVLTVPGSE






RSYDLTGLKPGTEYVVFIGGVKGGHNSTPLS






AIFTTGGGGSGGGGSGGGGSGGGGSMLPAPK






NLVVSRVTEDSARLSWTAPDAAFDSFWITYE






EKFYRGEAIVLTVPGSERSYDLTGLKPGTEYK






VWIVGVKGGQGSWPLSAIFTT





881
PRT
Human
ProteinA9HC99
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSY






WIGWVRQMPGKGLEWMGIIYPGDSDTRYSP






SFQGQVTISADKSISTAYLQWSSLKASDTAM






YYCARWSYSQYSGWLDYWGQGTLVTVSSA






STKGPSVFPLAPSSKSTSGGTAALGCLVKDYF






PEPVTVSWNSGALTSGVHTFPAVLQSSGLYS






LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK






KVEPKSCDKTHTCPPCPAPPVAGPDVFLFPPK






PKDTLMISRTPEVTCVVVDVSHEDPEVKFNW






YVDGVEVHNAKTKPREEQYNSTYRVVSVLT






VLHQDWLNGKEYKCKVSNAALPAPIAKTISK






AKGQPREPQVYTLPPSRDELTKNQVSLTCLV






KGFYPSDIAVEWESNGQPENNYKTTPPVLDS






DGSFFLYSKLTVDKSRWQQGNVFSCSVMHE






ALHNRFTQKSLSLSPGKGGGGSGGGGSGGG






GSGGGGSLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFHIEYAEPWVWGEAIVLTVPGSERS






YDLTGLKPGTEYVVFIGGVKGGHNSTPLSAIF






TTGGGGSGGGGSGGGGSGGGGSMLPAPKNL






VVSRVTEDSARLSWTAPDAAFDSFWITYEEK






FYRGEAIVLTVPGSERSYDLTGLKPGTEYKV






WIVGVKGGQGSWPLSAIFTT





882
PRT
Human
ProteinA9HC100
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSY






WIGWVRQMPGKGLEWMGIIYPGDSDTRYSP






SFQGQVTISADKSISTAYLQWSSLKASDTAM






YYCARWSYSQYSGWLDYWGQGTLVTVSSA






STKGPSVFPLAPSSKSTSGGTAALGCLVKDYF






PEPVTVSWNSGALTSGVHTFPAVLQSSGLYS






LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK






KVEPKSCDKTHTCPPCPAPPVAGPDVFLFPPK






PKDTLMISRTPEVTCVVVDVSHEDPEVKFNW






YVDGVEVHNAKTKPREEQYNSTYRVVSVLT






VLHQDWLNGKEYKCKVSNAALPAPIAKTISK






AKGQPREPQVYTLPPSRDELTKNQVSLTCLV






KGFYPSDIAVEWESNGQPENNYKTTPPVLDS






DGSFFLYSKLTVDKSRWQQGNVFSCSVMHE






ALHNRFTQKSLSLSPGKGGGGSGGGGSGGG






GSGGGGSMLPAPKNLVVSRVTEDSARLSWT






APDAAFDSFPIVYQEWQFYGEAIVLTVPGSER






SYDLTGLKPGTEYLVDIYGVKGGSWSYPLSA






IFTTGGGGSGGGGSGGGGSGGGGSMLPAPKN






LVVSRVTEDSARLSWTAPDAAFDSFWITYEE






KFYRGEAIVLTVPGSERSYDLTGLKPGTEYK






VWIVGVKGGQGSWPLSAIFTT





883
PRT
Human
ProteinA9HC101
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSY






WIGWVRQMPGKGLEWMGIIYPGDSDTRYSP






SFQGQVTISADKSISTAYLQWSSLKASDTAM






YYCARWSYSQYSGWLDYWGQGTLVTVSSA






STKGPSVFPLAPSSKSTSGGTAALGCLVKDYF






PEPVTVSWNSGALTSGVHTFPAVLQSSGLYS






LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK






KVEPKSCDKTHTCPPCPAPPVAGPDVFLFPPK






PKDTLMISRTPEVTCVVVDVSHEDPEVKFNW






YVDGVEVHNAKTKPREEQYNSTYRVVSVLT






VLHQDWLNGKEYKCKVSNAALPAPIAKTISK






AKGQPREPQVYTLPPSRDELTKNQVSLTCLV






KGFYPSDIAVEWESNGQPENNYKTTPPVLDS






DGSFFLYSKLTVDKSRWQQGNVFSCSVMHE






ALHNRFTQKSLSLSPGKGGGGSGGGGSGGG






GSGGGGSLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFPIVYQEWQFYGEAIVLTVPGSERSY






DLTGLKPGTEYLVDIYGVKGGSWSYPLSAIFT






TGGGGSGGGGSGGGGSGGGGSMLPAPKNLV






VSRVTEDSARLSWTAPDAAFDSFWITYEEKF






YRGEAIVLTVPGSERSYDLTGLKPGTEYKVW






IVGVKGGQGSWPLSAIFTT





884
PRT
Human
RSVHC102
QITLKESGPTLVKPTQTLTLTCTFSGFSLSTSG






MGVSWIRQPPGKALEWLAHIYWDDDKRYNP






SLKSRLTITKDTSKNQVVLTMTNMDPVDTAT






YYCARLYGFTYGFAYWGQGTLVTVSSASTK






GPSVFPLAPSSKSTSGGTAALGCLVKDYFPEP






VTVSWNSGALTSGVHTFPAVLQSSGLYSLSS






VVTVPSSSLGTQTYICNVNHKPSNTKVDKKV






EPKSCDKTHTCPPCPAPELLGGPSVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNKALPAPIEKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNHYTQKSLSLSPGKGGGGSGGGGSGGGG






SGGGGSLPAPKNLVVSRVTEDSARLSWTAPD






AAFDSFLIQYQESEKVGEAIVLTVPGSERSYD






LTGLKPGTEYTVSIYGVKGGHRSNPLSAIFTT





885
PRT
Human
RSVHC103
QITLKESGPTLVKPTQTLTLTCTFSGFSLSTSG






MGVSWIRQPPGKALEWLAHIYWDDDKRYNP






SLKSRLTITKDTSKNQVVLTMTNMDPVDTAT






YYCARLYGFTYGFAYWGQGTLVTVSSASTK






GPSVFPLAPSSKSTSGGTAALGCLVKDYFPEP






VTVSWNSGALTSGVHTFPAVLQSSGLYSLSS






VVTVPSSSLGTQTYICNVNHKPSNTKVDKKV






EPKSCDKTHTCPPCPAPELLGGPSVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNKALPAPIEKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSGGGGS






GGGGSLPAPKNLVVSRVTEDSARLSWTAPDA






AFDSFLIQYQESEKVGEAIVLTVPGSERSYDL






TGLKPGTEYTVSIYGVKGGHRSNPLSAIFTT





886
PRT
Human
RSVHC104
QITLKESGPTLVKPTQTLTLTCTFSGFSLSTSG






MGVSWIRQPPGKALEWLAHIYWDDDKRYNP






SLKSRLTITKDTSKNQVVLTMTNMDPVDTAT






YYCARLYGFTYGFAYWGQGTLVTVSSASTK






GPSVFPLAPSSKSTSGGTAALGCLVKDYFPEP






VTVSWNSGALTSGVHTFPAVLQSSGLYSLSS






VVTVPSSSLGTQTYICNVNHKPSNTKVDKKV






EPKSCDKTHTCPPCPAPPVAGPDVFLFPPKPK






DTLMISRTPEVTCVVVDVSHEDPEVKFNWYV






DGVEVHNAKTKPREEQYNSTYRVVSVLTVL






HQDWLNGKEYKCKVSNAALPAPIAKTISKAK






GQPREPQVYTLPPSRDELTKNQVSLTCLVKG






FYPSDIAVEWESNGQPENNYKTTPPVLDSDG






SFFLYSKLTVDKSRWQQGNVFSCSVMHEAL






HNHYTQKSLSLSPGKGGGGSGGGGSGGGGS






GGGGSLPAPKNLVVSRVTEDSARLSWTAPDA






AFDSFLIQYQESEKVGEAIVLTVPGSERSYDL






TGLKPGTEYTVSIYGVKGGHRSNPLSAIFTT





887
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC113
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNHYTQKSLSLSPGKGGGGSGGGGSGGGG






SGGGGSMLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFHIEYAEPWVWGEAIVLTVPGSERS






YDLTGLKPGTEYVVFIGGVKGGHNSTPLSAIF






TTGGGGSGGGGSGGGGSGGGGSMLPAPKNL






VVSRVTEDSARLSWTAPDAAFDSFWITYEEK






FYRGEAIVLTVPGSERSYDLTGLKPGTEYKV






WIVGVKGGQGSWPLSAIFTT





888
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC114
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNHYTQKSLSLSPGKGGGGSGGGGSGGGG






SGGGGSLPAPKNLVVSRVTEDSARLSWTAPD






AAFDSFHIEYAEPWVWGEAIVLTVPGSERSY






DLTGLKPGTEYVVFIGGVKGGHNSTPLSAIFT






TGGGGSGGGGSGGGGSGGGGSMLPAPKNLV






VSRVTEDSARLSWTAPDAAFDSFWITYEEKF






YRGEAIVLTVPGSERSYDLTGLKPGTEYKVW






IVGVKGGQGSWPLSAIFTT





889
PRT
Human
ProteinA3HC115
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS






YAISWVRQAPGQGLEWMGWISAINGNTNYA






QKFQGRVTITADESTSTAYMELSSLRSEDTAV






YYCARIWNFLLDYWGQGTLVTVSSASTKGPS






VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTV






SWNSGALTSGVHTFPAVLQSSGLYSLSSVVT






VPSSSLGTQTYICNVNHKPSNTKVDKKVEPK






SCDKTHTCPPCPAPPVAGPDVFLFPPKPKDTL






MISRTPEVTCVVVDVSHEDPEVKFNWYVDG






VEVHNAKTKPREEQYNSTYRVVSVLTVLHQ






DWLNGKEYKCKVSNAALPAPIAKTISKAKGQ






PREPQVYTLPPSRDELTKNQVSLTCLVKGFYP






SDIAVEWESNGQPENNYKTTPPVLDSDGSFFL






YSKLTVDKSRWQQGNVFSCSVMHEALHNHY






TQKSLSLSPGKGGGGSGGGGSGGGGSGGGG






SMLPAPKNLVVSRVTEDSARLSWTAPDAAFD






SFHIEYAEPWVWGEAIVLTVPGSERSYDLTG






LKPGTEYVVFIGGVKGGHNSTPLSAIFTTGGG






GSGGGGSGGGGSGGGGSMLPAPKNLVVSRV






TEDSARLSWTAPDAAFDSFWITYEEKFYRGE






AIVLTVPGSERSYDLTGLKPGTEYKVWIVGV






KGGQGSWPLSAIFTT





890
PRT
Human
ProteinA3HC116
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS






YAISWVRQAPGQGLEWMGWISAINGNTNYA






QKFQGRVTITADESTSTAYMELSSLRSEDTAV






YYCARIWNFLLDYWGQGTLVTVSSASTKGPS






VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTV






SWNSGALTSGVHTFPAVLQSSGLYSLSSVVT






VPSSSLGTQTYICNVNHKPSNTKVDKKVEPK






SCDKTHTCPPCPAPPVAGPDVFLFPPKPKDTL






MISRTPEVTCVVVDVSHEDPEVKFNWYVDG






VEVHNAKTKPREEQYNSTYRVVSVLTVLHQ






DWLNGKEYKCKVSNAALPAPIAKTISKAKGQ






PREPQVYTLPPSRDELTKNQVSLTCLVKGFYP






SDIAVEWESNGQPENNYKTTPPVLDSDGSFFL






YSKLTVDKSRWQQGNVFSCSVMHEALHNHY






TQKSLSLSPGKGGGGSGGGGSGGGGSGGGG






SLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FHIEYAEPWVWGEAIVLTVPGSERSYDLTGL






KPGTEYVVFIGGVKGGHNSTPLSAIFTTGGGG






SGGGGSGGGGSGGGGSMLPAPKNLVVSRVT






EDSARLSWTAPDAAFDSFWITYEEKFYRGEA






IVLTVPGSERSYDLTGLKPGTEYKVWIVGVK






GGQGSWPLSAIFTT





891
PRT
Human
ProteinA9HC117
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSY






WIGWVRQMPGKGLEWMGIIYPGDSDTRYSP






SFQGQVTISADKSISTAYLQWSSLKASDTAM






YYCARWSYSQYSGWLDYWGQGTLVTVSSA






STKGPSVFPLAPSSKSTSGGTAALGCLVKDYF






PEPVTVSWNSGALTSGVHTFPAVLQSSGLYS






LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK






KVEPKSCDKTHTCPPCPAPPVAGPDVFLFPPK






PKDTLMISRTPEVTCVVVDVSHEDPEVKFNW






YVDGVEVHNAKTKPREEQYNSTYRVVSVLT






VLHQDWLNGKEYKCKVSNAALPAPIAKTISK






AKGQPREPQVYTLPPSRDELTKNQVSLTCLV






KGFYPSDIAVEWESNGQPENNYKTTPPVLDS






DGSFFLYSKLTVDKSRWQQGNVFSCSVMHE






ALHNHYTQKSLSLSPGKGGGGSGGGGSGGG






GSGGGGSMLPAPKNLVVSRVTEDSARLSWT






APDAAFDSFHIEYAEPWVWGEAIVLTVPGSE






RSYDLTGLKPGTEYVVFIGGVKGGHNSTPLS






AIFTTGGGGSGGGGSGGGGSGGGGSMLPAPK






NLVVSRVTEDSARLSWTAPDAAFDSFWITYE






EKFYRGEAIVLTVPGSERSYDLTGLKPGTEYK






VWIVGVKGGQGSWPLSAIFTT





892
PRT
Human
ProteinA9HC118
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSY






WIGWVRQMPGKGLEWMGIIYPGDSDTRYSP






SFQGQVTISADKSISTAYLQWSSLKASDTAM






YYCARWSYSQYSGWLDYWGQGTLVTVSSA






STKGPSVFPLAPSSKSTSGGTAALGCLVKDYF






PEPVTVSWNSGALTSGVHTFPAVLQSSGLYS






LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK






KVEPKSCDKTHTCPPCPAPPVAGPDVFLFPPK






PKDTLMISRTPEVTCVVVDVSHEDPEVKFNW






YVDGVEVHNAKTKPREEQYNSTYRVVSVLT






VLHQDWLNGKEYKCKVSNAALPAPIAKTISK






AKGQPREPQVYTLPPSRDELTKNQVSLTCLV






KGFYPSDIAVEWESNGQPENNYKTTPPVLDS






DGSFFLYSKLTVDKSRWQQGNVFSCSVMHE






ALHNHYTQKSLSLSPGKGGGGSGGGGSGGG






GSGGGGSLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFHIEYAEPWVWGEAIVLTVPGSERS






YDLTGLKPGTEYVVFIGGVKGGHNSTPLSAIF






TTGGGGSGGGGSGGGGSGGGGSMLPAPKNL






VVSRVTEDSARLSWTAPDAAFDSFWITYEEK






FYRGEAIVLTVPGSERSYDLTGLKPGTEYKV






WIVGVKGGQGSWPLSAIFTT





893
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC119
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGGGGGSGGGGSGGGGSG






GGGSMLPAPKNLVVSRVTEDSARLSWTAPD






AAFDSFHIEYAEPWVWGEAIVLTVPGSERSY






DLTGLKPGTEYVVFIGGVKGGHNSTPLSAIFT






TGGGGSGGGGSGGGGSGGGGSMLPAPKNLV






VSRVTEDSARLSWTAPDAAFDSFWITYEEKF






YRGEAIVLTVPGSERSYDLTGLKPGTEYKVW






IVGVKGGQGSWPLSAIFTT





894
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC120
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNHYTQKSLSLSPGGGGGSGGGGSGGGGS






GGGGSMLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFHIEYAEPWVWGEAIVLTVPGSERS






YDLTGLKPGTEYVVFIGGVKGGHNSTPLSAIF






TTGGGGSGGGGSGGGGSGGGGSMLPAPKNL






VVSRVTEDSARLSWTAPDAAFDSFWITYEEK






FYRGEAIVLTVPGSERSYDLTGLKPGTEYKV






WIVGVKGGQGSWPLSAIFTT





895
PRT
Human
RSVHC121
QITLKESGPTLVKPTQTLTLTCTFSGFSLSTSG






MGVSWIRQPPGKALEWLAHIYWDDDKRYNP






SLKSRLTITKDTSKNQVVLTMTNMDPVDTAT






YYCARLYGFTYGFAYWGQGTLVTVSSASTK






GPSVFPLAPSSKSTSGGTAALGCLVKDYFPEP






VTVSWNSGALTSGVHTFPAVLQSSGLYSLSS






VVTVPSSSLGTQTYICNVNHKPSNTKVDKKV






EPKSCDKTHTCPPCPAPPVAGPDVFLFPPKPK






DTLMISRTPEVTCVVVDVSHEDPEVKFNWYV






DGVEVHNAKTKPREEQYNSTYRVVSVLTVL






HQDWLNGKEYKCKVSNAALPAPIAKTISKAK






GQPREPQVYTLPPSRDELTKNQVSLTCLVKG






FYPSDIAVEWESNGQPENNYKTTPPVLDSDG






SFFLYSKLTVDKSRWQQGNVFSCSVMHEAL






HNRFTQKSLSLSPGKGGGGSGGGGSGGGGSG






GGGSMLPAPKNLVVSRVTEDSARLSWTAPD






AAFDSFLIQYQESEKVGEAIVLTVPGSERSYD






LTGLKPGTEYTVSIYGVKGGHRSNPLSAIFTT





896
PRT
Human
RSVHC122
QITLKESGPTLVKPTQTLTLTCTFSGFSLSTSG






MGVSWIRQPPGKALEWLAHIYWDDDKRYNP






SLKSRLTITKDTSKNQVVLTMTNMDPVDTAT






YYCARLYGFTYGFAYWGQGTLVTVSSASTK






GPSVFPLAPSSKSTSGGTAALGCLVKDYFPEP






VTVSWNSGALTSGVHTFPAVLQSSGLYSLSS






VVTVPSSSLGTQTYICNVNHKPSNTKVDKKV






EPKSCDKTHTCPPCPAPPVAGPDVFLFPPKPK






DTLMISRTPEVTCVVVDVSHEDPEVKFNWYV






DGVEVHNAKTKPREEQYNSTYRVVSVLTVL






HQDWLNGKEYKCKVSNAALPAPIAKTISKAK






GQPREPQVYTLPPSRDELTKNQVSLTCLVKG






FYPSDIAVEWESNGQPENNYKTTPPVLDSDG






SFFLYSKLTVDKSRWQQGNVFSCSVMHEAL






HNRFTQKSLSLSPGKGGGGSGGGGSGGGGSG






GGGSLPAPKNLVVSRVTEDSARLSWTAPDAA






FDSFLIQYQESEKVGEAIVLTVPGSERSYDLT






GLKPGTEYTVSIYGVKGGHRSNPLSAIFTTGG






GGSGGGGSGGGGSGGGGSLPAPKNLVVSRV






TEDSARLSWTAPDAAFDSFLIQYQESEKVGE






AIVLTVPGSERSYDLTGLKPGTEYTVSIYGVK






GGHRSNPLSAIFTT





897
PRT
Human
RSVHC123
QITLKESGPTLVKPTQTLTLTCTFSGFSLSTSG






MGVSWIRQPPGKALEWLAHIYWDDDKRYNP






SLKSRLTITKDTSKNQVVLTMTNMDPVDTAT






YYCARLYGFTYGFAYWGQGTLVTVSSASTK






GPSVFPLAPSSKSTSGGTAALGCLVKDYFPEP






VTVSWNSGALTSGVHTFPAVLQSSGLYSLSS






VVTVPSSSLGTQTYICNVNHKPSNTKVDKKV






EPKSCDKTHTCPPCPAPPVAGPDVFLFPPKPK






DTLMISRTPEVTCVVVDVSHEDPEVKFNWYV






DGVEVHNAKTKPREEQYNSTYRVVSVLTVL






HQDWLNGKEYKCKVSNAALPAPIAKTISKAK






GQPREPQVYTLPPSRDELTKNQVSLTCLVKG






FYPSDIAVEWESNGQPENNYKTTPPVLDSDG






SFFLYSKLTVDKSRWQQGNVFSCSVMHEAL






HNRFTQKSLSLSPGKGGGGSGGGGSGGGGSG






GGGSMLPAPKNLVVSRVTEDSARLSWTAPD






AAFDSFLIQYQESEKVGEAIVLTVPGSERSYD






LTGLKPGTEYTVSIYGVKGGHRSNPLSAIFTT






GGGGSGGGGSGGGGSGGGGSMLPAPKNLVV






SRVTEDSARLSWTAPDAAFDSFLIQYQESEK






VGEAIVLTVPGSERSYDLTGLKPGTEYTVSIY






GVKGGHRSNPLSAIFTT





898
PRT
Human
ProteinA3HC124
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS






YAISWVRQAPGQGLEWMGWISAINGNTNYA






QKFQGRVTITADESTSTAYMELSSLRSEDTAV






YYCARIWNFLLDYWGQGTLVTVSSASTKGPS






VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTV






SWNSGALTSGVHTFPAVLQSSGLYSLSSVVT






VPSSSLGTQTYICNVNHKPSNTKVDKKVEPK






SCDKTHTCPPCPAPPVAGPDVFLFPPKPKDTL






MISRTPEVTCVVVDVSHEDPEVKFNWYVDG






VEVHNAKTKPREEQYNSTYRVVSVLTVLHQ






DWLNGKEYKCKVSNAALPAPIAKTISKAKGQ






PREPQVYTLPPSRDELTKNQVSLTCLVKGFYP






SDIAVEWESNGQPENNYKTTPPVLDSDGSFFL






YSKLTVDKSRWQQGNVFSCSVMHEALHNRF






TQKSLSLSPGKGGGGSGGGGSGGGGSGGGG






SMLPAPKNLVVSRVTEDSARLSWTAPDAAFD






SFWITYEEKFYRGEAIVLTVPGSERSYDLTGL






KPGTEYKVWIVGVKGGQGSWPLSAIFTT





899
PRT
Human
ProteinA9HC125
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSY






WIGWVRQMPGKGLEWMGIIYPGDSDTRYSP






SFQGQVTISADKSISTAYLQWSSLKASDTAM






YYCARWSYSQYSGWLDYWGQGTLVTVSSA






STKGPSVFPLAPSSKSTSGGTAALGCLVKDYF






PEPVTVSWNSGALTSGVHTFPAVLQSSGLYS






LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK






KVEPKSCDKTHTCPPCPAPPVAGPDVFLFPPK






PKDTLMISRTPEVTCVVVDVSHEDPEVKFNW






YVDGVEVHNAKTKPREEQYNSTYRVVSVLT






VLHQDWLNGKEYKCKVSNAALPAPIAKTISK






AKGQPREPQVYTLPPSRDELTKNQVSLTCLV






KGFYPSDIAVEWESNGQPENNYKTTPPVLDS






DGSFFLYSKLTVDKSRWQQGNVFSCSVMHE






ALHNRFTQKSLSLSPGKGGGGSGGGGSGGG






GSGGGGSMLPAPKNLVVSRVTEDSARLSWT






APDAAFDSFWITYEEKFYRGEAIVLTVPGSER






SYDLTGLKPGTEYKVWIVGVKGGQGSWPLS






AIFTT





900
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC126
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSGGGGS






GGGGSMLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFLIQYQESEKVGEAIVLTVPGSERSY






DLTGLKPGTEYTVSIYGVELIYHGWLDFVFS






NPLSAIFTT





901
PRT
Human
ProteinA3HC127
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS






YAISWVRQAPGQGLEWMGWISAINGNTNYA






QKFQGRVTITADESTSTAYMELSSLRSEDTAV






YYCARIWNFLLDYWGQGTLVTVSSASTKGPS






VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTV






SWNSGALTSGVHTFPAVLQSSGLYSLSSVVT






VPSSSLGTQTYICNVNHKPSNTKVDKKVEPK






SCDKTHTCPPCPAPPVAGPDVFLFPPKPKDTL






MISRTPEVTCVVVDVSHEDPEVKFNWYVDG






VEVHNAKTKPREEQYNSTYRVVSVLTVLHQ






DWLNGKEYKCKVSNAALPAPIAKTISKAKGQ






PREPQVYTLPPSRDELTKNQVSLTCLVKGFYP






SDIAVEWESNGQPENNYKTTPPVLDSDGSFFL






YSKLTVDKSRWQQGNVFSCSVMHEALHNRF






TQKSLSLSPGKGGGGSGGGGSGGGGSGGGG






SMLPAPKNLVVSRVTEDSARLSWTAPDAAFD






SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL






KPGTEYTVSIYGVELIYHGWLDFVFSNPLSAI






FTT





902
PRT
Human
ProteinA9HC128
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSY






WIGWVRQMPGKGLEWMGIIYPGDSDTRYSP






SFQGQVTISADKSISTAYLQWSSLKASDTAM






YYCARWSYSQYSGWLDYWGQGTLVTVSSA






STKGPSVFPLAPSSKSTSGGTAALGCLVKDYF






PEPVTVSWNSGALTSGVHTFPAVLQSSGLYS






LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK






KVEPKSCDKTHTCPPCPAPPVAGPDVFLFPPK






PKDTLMISRTPEVTCVVVDVSHEDPEVKFNW






YVDGVEVHNAKTKPREEQYNSTYRVVSVLT






VLHQDWLNGKEYKCKVSNAALPAPIAKTISK






AKGQPREPQVYTLPPSRDELTKNQVSLTCLV






KGFYPSDIAVEWESNGQPENNYKTTPPVLDS






DGSFFLYSKLTVDKSRWQQGNVFSCSVMHE






ALHNRFTQKSLSLSPGKGGGGSGGGGSGGG






GSGGGGSMLPAPKNLVVSRVTEDSARLSWT






APDAAFDSFLIQYQESEKVGEAIVLTVPGSER






SYDLTGLKPGTEYTVSIYGVELIYHGWLDFV






FSNPLSAIFTT





903
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC129
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSGGGGS






GGGGSLPAPKNLVVSRVTEDSARLSWTAPDA






AFDSFLIQYQESEKVGEAIVLTVPGSERSYDL






TGLKPGTEYTVSIYGVELIYHGWLDFVFSNPL






SAIFTT





904
PRT
Human
ProteinA3HC130
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS






YAISWVRQAPGQGLEWMGWISAINGNTNYA






QKFQGRVTITADESTSTAYMELSSLRSEDTAV






YYCARIWNFLLDYWGQGTLVTVSSASTKGPS






VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTV






SWNSGALTSGVHTFPAVLQSSGLYSLSSVVT






VPSSSLGTQTYICNVNHKPSNTKVDKKVEPK






SCDKTHTCPPCPAPPVAGPDVFLFPPKPKDTL






MISRTPEVTCVVVDVSHEDPEVKFNWYVDG






VEVHNAKTKPREEQYNSTYRVVSVLTVLHQ






DWLNGKEYKCKVSNAALPAPIAKTISKAKGQ






PREPQVYTLPPSRDELTKNQVSLTCLVKGFYP






SDIAVEWESNGQPENNYKTTPPVLDSDGSFFL






YSKLTVDKSRWQQGNVFSCSVMHEALHNRF






TQKSLSLSPGKGGGGSGGGGSGGGGSGGGG






SLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK






PGTEYTVSIYGVELIYHGWLDFVFSNPLSAIFTT





905
PRT
Human
ProteinA9HC131
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSY






WIGWVRQMPGKGLEWMGIIYPGDSDTRYSP






SFQGQVTISADKSISTAYLQWSSLKASDTAM






YYCARWSYSQYSGWLDYWGQGTLVTVSSA






STKGPSVFPLAPSSKSTSGGTAALGCLVKDYF






PEPVTVSWNSGALTSGVHTFPAVLQSSGLYS






LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK






KVEPKSCDKTHTCPPCPAPPVAGPDVFLFPPK






PKDTLMISRTPEVTCVVVDVSHEDPEVKFNW






YVDGVEVHNAKTKPREEQYNSTYRVVSVLT






VLHQDWLNGKEYKCKVSNAALPAPIAKTISK






AKGQPREPQVYTLPPSRDELTKNQVSLTCLV






KGFYPSDIAVEWESNGQPENNYKTTPPVLDS






DGSFFLYSKLTVDKSRWQQGNVFSCSVMHE






ALHNRFTQKSLSLSPGKGGGGSGGGGSGGG






GSGGGGSLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFLIQYQESEKVGEAIVLTVPGSERSY






DLTGLKPGTEYTVSIYGVELIYHGWLDFVFS






NPLSAIFTT





906
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC132
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSGGGGS






GGGGSMLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFWITYEEKFYRGEAIVLTVPGSERSY






DLTGLKPGTEYKVWIVGVKGGQGSWPLSAIF






TTGGGGSGGGGSGGGGSGGGGSMLPAPKNL






VVSRVTEDSARLSWTAPDAAFDSFLIQYQES






EKVGEAIVLTVPGSERSYDLTGLKPGTEYTVS






IYGVELIYHGWLDFVFSNPLSAIFTT





907
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC133
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSGGGGS






GGGGSMLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFWITYEEKFYRGEAIVLTVPGSERSY






DLTGLKPGTEYKVWIVGVKGGQGSWPLSAIF






TTGGGGSGGGGSGGGGSGGGGSLPAPKNLV






VSRVTEDSARLSWTAPDAAFDSFLIQYQESE






KVGEAIVLTVPGSERSYDLTGLKPGTEYTVSI






YGVELIYHGWLDFVFSNPLSAIFTT





908
PRT
Human
ProteinA3HC134
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS






YAISWVRQAPGQGLEWMGWISAINGNTNYA






QKFQGRVTITADESTSTAYMELSSLRSEDTAV






YYCARIWNFLLDYWGQGTLVTVSSASTKGPS






VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTV






SWNSGALTSGVHTFPAVLQSSGLYSLSSVVT






VPSSSLGTQTYICNVNHKPSNTKVDKKVEPK






SCDKTHTCPPCPAPPVAGPDVFLFPPKPKDTL






MISRTPEVTCVVVDVSHEDPEVKFNWYVDG






VEVHNAKTKPREEQYNSTYRVVSVLTVLHQ






DWLNGKEYKCKVSNAALPAPIAKTISKAKGQ






PREPQVYTLPPSRDELTKNQVSLTCLVKGFYP






SDIAVEWESNGQPENNYKTTPPVLDSDGSFFL






YSKLTVDKSRWQQGNVFSCSVMHEALHNRF






TQKSLSLSPGKGGGGSGGGGSGGGGSGGGG






SMLPAPKNLVVSRVTEDSARLSWTAPDAAFD






SFWITYEEKFYRGEAIVLTVPGSERSYDLTGL






KPGTEYKVWIVGVKGGQGSWPLSAIFTTGGG






GSGGGGSGGGGSGGGGSMLPAPKNLVVSRV






TEDSARLSWTAPDAAFDSFLIQYQESEKVGE






AIVLTVPGSERSYDLTGLKPGTEYTVSIYGVE






LIYHGWLDFVFSNPLSAIFTT





909
PRT
Human
ProteinA3HC135
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS






YAISWVRQAPGQGLEWMGWISAINGNTNYA






QKFQGRVTITADESTSTAYMELSSLRSEDTAV






YYCARIWNFLLDYWGQGTLVTVSSASTKGPS






VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTV






SWNSGALTSGVHTFPAVLQSSGLYSLSSVVT






VPSSSLGTQTYICNVNHKPSNTKVDKKVEPK






SCDKTHTCPPCPAPPVAGPDVFLFPPKPKDTL






MISRTPEVTCVVVDVSHEDPEVKFNWYVDG






VEVHNAKTKPREEQYNSTYRVVSVLTVLHQ






DWLNGKEYKCKVSNAALPAPIAKTISKAKGQ






PREPQVYTLPPSRDELTKNQVSLTCLVKGFYP






SDIAVEWESNGQPENNYKTTPPVLDSDGSFFL






YSKLTVDKSRWQQGNVFSCSVMHEALHNRF






TQKSLSLSPGKGGGGSGGGGSGGGGSGGGG






SMLPAPKNLVVSRVTEDSARLSWTAPDAAFD






SFWITYEEKFYRGEAIVLTVPGSERSYDLTGL






KPGTEYKVWIVGVKGGQGSWPLSAIFTTGGG






GSGGGGSGGGGSGGGGSLPAPKNLVVSRVT






EDSARLSWTAPDAAFDSFLIQYQESEKVGEAI






VLTVPGSERSYDLTGLKPGTEYTVSIYGVELI






YHGWLDFVFSNPLSAIFTT





910
PRT
Human
ProteinA9HC136
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSY






WIGWVRQMPGKGLEWMGIIYPGDSDTRYSP






SFQGQVTISADKSISTAYLQWSSLKASDTAM






YYCARWSYSQYSGWLDYWGQGTLVTVSSA






STKGPSVFPLAPSSKSTSGGTAALGCLVKDYF






PEPVTVSWNSGALTSGVHTFPAVLQSSGLYS






LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK






KVEPKSCDKTHTCPPCPAPPVAGPDVFLFPPK






PKDTLMISRTPEVTCVVVDVSHEDPEVKFNW






YVDGVEVHNAKTKPREEQYNSTYRVVSVLT






VLHQDWLNGKEYKCKVSNAALPAPIAKTISK






AKGQPREPQVYTLPPSRDELTKNQVSLTCLV






KGFYPSDIAVEWESNGQPENNYKTTPPVLDS






DGSFFLYSKLTVDKSRWQQGNVFSCSVMHE






ALHNRFTQKSLSLSPGKGGGGSGGGGSGGG






GSGGGGSMLPAPKNLVVSRVTEDSARLSWT






APDAAFDSFWITYEEKFYRGEAIVLTVPGSER






SYDLTGLKPGTEYKVWIVGVKGGQGSWPLS






AIFTTGGGGSGGGGSGGGGSGGGGSMLPAPK






NLVVSRVTEDSARLSWTAPDAAFDSFLIQYQ






ESEKVGEAIVLTVPGSERSYDLTGLKPGTEYT






VSIYGVELIYHGWLDFVFSNPLSAIFTT





911
PRT
Human
ProteinA9HC137
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSY






WIGWVRQMPGKGLEWMGIIYPGDSDTRYSP






SFQGQVTISADKSISTAYLQWSSLKASDTAM






YYCARWSYSQYSGWLDYWGQGTLVTVSSA






STKGPSVFPLAPSSKSTSGGTAALGCLVKDYF






PEPVTVSWNSGALTSGVHTFPAVLQSSGLYS






LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK






KVEPKSCDKTHTCPPCPAPPVAGPDVFLFPPK






PKDTLMISRTPEVTCVVVDVSHEDPEVKFNW






YVDGVEVHNAKTKPREEQYNSTYRVVSVLT






VLHQDWLNGKEYKCKVSNAALPAPIAKTISK






AKGQPREPQVYTLPPSRDELTKNQVSLTCLV






KGFYPSDIAVEWESNGQPENNYKTTPPVLDS






DGSFFLYSKLTVDKSRWQQGNVFSCSVMHE






ALHNRFTQKSLSLSPGKGGGGSGGGGSGGG






GSGGGGSMLPAPKNLVVSRVTEDSARLSWT






APDAAFDSFWITYEEKFYRGEAIVLTVPGSER






SYDLTGLKPGTEYKVWIVGVKGGQGSWPLS






AIFTTGGGGSGGGGSGGGGSGGGGSLPAPKN






LVVSRVTEDSARLSWTAPDAAFDSFLIQYQE






SEKVGEAIVLTVPGSERSYDLTGLKPGTEYTV






SIYGVELIYHGWLDFVFSNPLSAIFTT





912
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC138
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSGGGGS






GGGGSMLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFLIQYQESEKVGEAIVLTVPGSERSY






DLTGLKPGTEYTVSIYGVELIYHGWLDFVFS






NPLSAIFTTGGGGSGGGGSGGGGSGGGGSML






PAPKNLVVSRVTEDSARLSWTAPDAAFDSFW






ITYEEKFYRGEAIVLTVPGSERSYDLTGLKPG






TEYKVWIVGVKGGQGSWPLSAIFTT





913
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC139
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSGGGGS






GGGGSLPAPKNLVVSRVTEDSARLSWTAPDA






AFDSFLIQYQESEKVGEAIVLTVPGSERSYDL






TGLKPGTEYTVSIYGVELIYHGWLDFVFSNPL






SAIFTTGGGGSGGGGSGGGGSGGGGSMLPAP






KNLVVSRVTEDSARLSWTAPDAAFDSFWITY






EEKFYRGEAIVLTVPGSERSYDLTGLKPGTEY






KVWIVGVKGGQGSWPLSAIFTT





914
PRT
Human
ProteinA3HC140
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS






YAISWVRQAPGQGLEWMGWISAINGNTNYA






QKFQGRVTITADESTSTAYMELSSLRSEDTAV






YYCARIWNFLLDYWGQGTLVTVSSASTKGPS






VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTV






SWNSGALTSGVHTFPAVLQSSGLYSLSSVVT






VPSSSLGTQTYICNVNHKPSNTKVDKKVEPK






SCDKTHTCPPCPAPPVAGPDVFLFPPKPKDTL






MISRTPEVTCVVVDVSHEDPEVKFNWYVDG






VEVHNAKTKPREEQYNSTYRVVSVLTVLHQ






DWLNGKEYKCKVSNAALPAPIAKTISKAKGQ






PREPQVYTLPPSRDELTKNQVSLTCLVKGFYP






SDIAVEWESNGQPENNYKTTPPVLDSDGSFFL






YSKLTVDKSRWQQGNVFSCSVMHEALHNRF






TQKSLSLSPGKGGGGSGGGGSGGGGSGGGG






SMLPAPKNLVVSRVTEDSARLSWTAPDAAFD






SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL






KPGTEYTVSIYGVELIYHGWLDFVFSNPLSAI






FTTGGGGSGGGGSGGGGSGGGGSMLPAPKN






LVVSRVTEDSARLSWTAPDAAFDSFWITYEE






KFYRGEAIVLTVPGSERSYDLTGLKPGTEYK






VWIVGVKGGQGSWPLSAIFTT





915
PRT
Human
ProteinA3HC141
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS






YAISWVRQAPGQGLEWMGWISAINGNTNYA






QKFQGRVTITADESTSTAYMELSSLRSEDTAV






YYCARIWNFLLDYWGQGTLVTVSSASTKGPS






VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTV






SWNSGALTSGVHTFPAVLQSSGLYSLSSVVT






VPSSSLGTQTYICNVNHKPSNTKVDKKVEPK






SCDKTHTCPPCPAPPVAGPDVFLFPPKPKDTL






MISRTPEVTCVVVDVSHEDPEVKFNWYVDG






VEVHNAKTKPREEQYNSTYRVVSVLTVLHQ






DWLNGKEYKCKVSNAALPAPIAKTISKAKGQ






PREPQVYTLPPSRDELTKNQVSLTCLVKGFYP






SDIAVEWESNGQPENNYKTTPPVLDSDGSFFL






YSKLTVDKSRWQQGNVFSCSVMHEALHNRF






TQKSLSLSPGKGGGGSGGGGSGGGGSGGGG






SLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK






PGTEYTVSIYGVELIYHGWLDFVFSNPLSAIFT






TGGGGSGGGGSGGGGSGGGGSMLPAPKNLV






VSRVTEDSARLSWTAPDAAFDSFWITYEEKF






YRGEAIVLTVPGSERSYDLTGLKPGTEYKVW






IVGVKGGQGSWPLSAIFTT





916
PRT
Human
ProteinA9HC142
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSY






WIGWVRQMPGKGLEWMGIIYPGDSDTRYSP






SFQGQVTISADKSISTAYLQWSSLKASDTAM






YYCARWSYSQYSGWLDYWGQGTLVTVSSA






STKGPSVFPLAPSSKSTSGGTAALGCLVKDYF






PEPVTVSWNSGALTSGVHTFPAVLQSSGLYS






LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK






KVEPKSCDKTHTCPPCPAPPVAGPDVFLFPPK






PKDTLMISRTPEVTCVVVDVSHEDPEVKFNW






YVDGVEVHNAKTKPREEQYNSTYRVVSVLT






VLHQDWLNGKEYKCKVSNAALPAPIAKTISK






AKGQPREPQVYTLPPSRDELTKNQVSLTCLV






KGFYPSDIAVEWESNGQPENNYKTTPPVLDS






DGSFFLYSKLTVDKSRWQQGNVFSCSVMHE






ALHNRFTQKSLSLSPGKGGGGSGGGGSGGG






GSGGGGSMLPAPKNLVVSRVTEDSARLSWT






APDAAFDSFLIQYQESEKVGEAIVLTVPGSER






SYDLTGLKPGTEYTVSIYGVELIYHGWLDFV






FSNPLSAIFTTGGGGSGGGGSGGGGSGGGGS






MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FWITYEEKFYRGEAIVLTVPGSERSYDLTGLK






PGTEYKVWIVGVKGGQGSWPLSAIFTT





917
PRT
Human
ProteinA9HC143
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSY






WIGWVRQMPGKGLEWMGIIYPGDSDTRYSP






SFQGQVTISADKSISTAYLQWSSLKASDTAM






YYCARWSYSQYSGWLDYWGQGTLVTVSSA






STKGPSVFPLAPSSKSTSGGTAALGCLVKDYF






PEPVTVSWNSGALTSGVHTFPAVLQSSGLYS






LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK






KVEPKSCDKTHTCPPCPAPPVAGPDVFLFPPK






PKDTLMISRTPEVTCVVVDVSHEDPEVKFNW






YVDGVEVHNAKTKPREEQYNSTYRVVSVLT






VLHQDWLNGKEYKCKVSNAALPAPIAKTISK






AKGQPREPQVYTLPPSRDELTKNQVSLTCLV






KGFYPSDIAVEWESNGQPENNYKTTPPVLDS






DGSFFLYSKLTVDKSRWQQGNVFSCSVMHE






ALHNRFTQKSLSLSPGKGGGGSGGGGSGGG






GSGGGGSLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFLIQYQESEKVGEAIVLTVPGSERSY






DLTGLKPGTEYTVSIYGVELIYHGWLDFVFS






NPLSAIFTTGGGGSGGGGSGGGGSGGGGSML






PAPKNLVVSRVTEDSARLSWTAPDAAFDSFW






ITYEEKFYRGEAIVLTVPGSERSYDLTGLKPG






TEYKVWIVGVKGGQGSWPLSAIFTT





918
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC144
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSGGGGS






GGGGSMLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFHIEYAEPWVWGEAIVLTVPGSERS






YDLTGLKPGTEYVVFIGGVKGGHNSTPLSAIF






TTGGGGSGGGGSGGGGSGGGGSMLPAPKNL






VVSRVTEDSARLSWTAPDAAFDSFWITYEEK






FYRGEAIVLTVPGSERSYDLTGLKPGTEYKV






WIVGVKGGQGSWPLSAIFTTDYKDDDDK





919
PRT
Human
CR-
EQKLISEEDLEVQLVETGGGLVKPGGSLRLSC





5133HC145
SASRFSFRDYYMTWIRQAPGKGPEWVSHISG






SGSTIYYADSVRGRFTISRDNAKSSLYLQMDS






LQADDTAVYYCARGGRATSYYWVHWGPGT






LVTVSSASTKGPSVFPLAPSSKSTSGGTAALG






CLVKDYFPEPVTVSWNSGALTSGVHTFPAVL






QSSGLYSLSSVVTVPSSSLGTQTYICNVNHKP






SNTKVDKKVEPKSCDKTHTCPPCPAPPVAGP






DVFLFPPKPKDTLMISRTPEVTCVVVDVSHED






PEVKFNWYVDGVEVHNAKTKPREEQYNSTY






RVVSVLTVLHQDWLNGKEYKCKVSNAALPA






PIAKTISKAKGQPREPQVYTLPPSRDELTKNQ






VSLTCLVKGFYPSDIAVEWESNGQPENNYKT






TPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS






CSVMHEALHNRFTQKSLSLSPGKGGGGSGG






GGSGGGGSGGGGSMLPAPKNLVVSRVTEDS






ARLSWTAPDAAFDSFHIEYAEPWVWGEAIVL






TVPGSERSYDLTGLKPGTEYVVFIGGVKGGH






NSTPLSAIFTTGGGGSGGGGSGGGGSGGGGS






MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FWITYEEKFYRGEAIVLTVPGSERSYDLTGLK






PGTEYKVWIVGVKGGQGSWPLSAIFTT





920
PRT
Human
CR-
EQKLISEEDLEVQLVETGGGLVKPGGSLRLSC





5133HC146
SASRFSFRDYYMTWIRQAPGKGPEWVSHISG






SGSTIYYADSVRGRFTISRDNAKSSLYLQMDS






LQADDTAVYYCARGGRATSYYWVHWGPGT






LVTVSSASTKGPSVFPLAPSSKSTSGGTAALG






CLVKDYFPEPVTVSWNSGALTSGVHTFPAVL






QSSGLYSLSSVVTVPSSSLGTQTYICNVNHKP






SNTKVDKKVEPKSCDKTHTCPPCPAPPVAGP






DVFLFPPKPKDTLMISRTPEVTCVVVDVSHED






PEVKFNWYVDGVEVHNAKTKPREEQYNSTY






RVVSVLTVLHQDWLNGKEYKCKVSNAALPA






PIAKTISKAKGQPREPQVYTLPPSRDELTKNQ






VSLTCLVKGFYPSDIAVEWESNGQPENNYKT






TPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS






CSVMHEALHNRFTQKSLSLSPGKGGGGSGG






GGSGGGGSGGGGSMLPAPKNLVVSRVTEDS






ARLSWTAPDAAFDSFHIEYAEPWVWGEAIVL






TVPGSERSYDLTGLKPGTEYVVFIGGVKGGH






NSTPLSAIFTTGGGGSGGGGSGGGGSGGGGS






MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FWITYEEKFYRGEAIVLTVPGSERSYDLTGLK






PGTEYKVWIVGVKGGQGSWPLSAIFTTDYKD






DDDK





921
PRT
Human
CSD7HC151
QVQLQESGPGLVKPSETLSLTCTVSGGSIRSSS






YYWGWFRQTPGKGLEWLGNVFFSGSAYYNP






SLKNRVTISIDTSENQSSLKLTSVTAADTAVY






YCARPQAYSHDSSGHSPFDLWGRGTLVTVSS






ASTKGPSVFPLAPSSKSTSGGTAALGCLVKD






YFPEPVTVSWNSGALTSGVHTFPAVLQSSGL






YSLSSVVTVPSSSLGTQTYICNVNHKPSNTKV






DKKVEPKSCDKTHTCPPCPAPPVAGPDVFLFP






PKPKDTLMISRTPEVTCVVVDVSHEDPEVKF






NWYVDGVEVHNAKTKPREEQYNSTYRVVS






VLTVLHQDWLNGKEYKCKVSNAALPAPIAK






TISKAKGQPREPQVYTLPPSRDELTKNQVSLT






CLVKGFYPSDIAVEWESNGQPENNYKTTPPV






LDSDGSFFLYSKLTVDKSRWQQGNVFSCSV






MHEALHNRFTQKSLSLSPGKGGGGSGGGGS






GGGGSGGGGSMLPAPKNLVVSRVTEDSARL






SWTAPDAAFDSFHIEYAEPWVWGEAIVLTVP






GSERSYDLTGLKPGTEYVVFIGGVKGGHNST






PLSAIFTTGGGGSGGGGSGGGGSGGGGSMLP






APKNLVVSRVTEDSARLSWTAPDAAFDSFWI






TYEEKFYRGEAIVLTVPGSERSYDLTGLKPGT






EYKVWIVGVKGGQGSWPLSAIFTT





922
PRT
Human
CSD7HC152
QVQLQESGPGLVKPSETLSLTCTVSGGSIRSSS






YYWGWFRQTPGKGLEWLGNVFFSGSAYYNP






SLKNRVTISIDTSENQSSLKLTSVTAADTAVY






YCARPQAYSHDSSGHSPFDLWGRGTLVTVSS






ASTKGPSVFPLAPSSKSTSGGTAALGCLVKD






YFPEPVTVSWNSGALTSGVHTFPAVLQSSGL






YSLSSVVTVPSSSLGTQTYICNVNHKPSNTKV






DKKVEPKSCDKTHTCPPCPAPPVAGPDVFLFP






PKPKDTLMISRTPEVTCVVVDVSHEDPEVKF






NWYVDGVEVHNAKTKPREEQYNSTYRVVS






VLTVLHQDWLNGKEYKCKVSNAALPAPIAK






TISKAKGQPREPQVYTLPPSRDELTKNQVSLT






CLVKGFYPSDIAVEWESNGQPENNYKTTPPV






LDSDGSFFLYSKLTVDKSRWQQGNVFSCSV






MHEALHNHYTQKSLSLSPGKGGGGSGGGGS






GGGGSGGGGSMLPAPKNLVVSRVTEDSARL






SWTAPDAAFDSFHIEYAEPWVWGEAIVLTVP






GSERSYDLTGLKPGTEYVVFIGGVKGGHNST






PLSAIFTTGGGGSGGGGSGGGGSGGGGSMLP






APKNLVVSRVTEDSARLSWTAPDAAFDSFWI






TYEEKFYRGEAIVLTVPGSERSYDLTGLKPGT






EYKVWIVGVKGGQGSWPLSAIFTT





923
PRT
Human
CR-
QVQLQESGGGVVQPGRSLRLSCAASGFTFSS





6526HC153
YGMHWVRQAPGKGLEWVAVISYDGSNKYY






ADSVKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAKNGANAFDIWGQGTMVTVSSASTK






GPSVFPLAPSSKSTSGGTAALGCLVKDYFPEP






VTVSWNSGALTSGVHTFPAVLQSSGLYSLSS






VVTVPSSSLGTQTYICNVNHKPSNTKVDKKV






EPKSCDKTHTCPPCPAPPVAGPDVFLFPPKPK






DTLMISRTPEVTCVVVDVSHEDPEVKFNWYV






DGVEVHNAKTKPREEQYNSTYRVVSVLTVL






HQDWLNGKEYKCKVSNAALPAPIAKTISKAK






GQPREPQVYTLPPSRDELTKNQVSLTCLVKG






FYPSDIAVEWESNGQPENNYKTTPPVLDSDG






SFFLYSKLTVDKSRWQQGNVFSCSVMHEAL






HNRFTQKSLSLSPGKGGGGSGGGGSGGGGSG






GGGSMLPAPKNLVVSRVTEDSARLSWTAPD






AAFDSFHIEYAEPWVWGEAIVLTVPGSERSY






DLTGLKPGTEYVVFIGGVKGGHNSTPLSAIFT






TGGGGSGGGGSGGGGSGGGGSMLPAPKNLV






VSRVTEDSARLSWTAPDAAFDSFWITYEEKF






YRGEAIVLTVPGSERSYDLTGLKPGTEYKVW






IVGVKGGQGSWPLSAIFTT





924
PRT
Human
CR-
QVQLQESGGGVVQPGRSLRLSCAASGFTFSS





6526HC154
YGMHWVRQAPGKGLEWVAVISYDGSNKYY






ADSVKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAKNGANAFDIWGQGTMVTVSSASTK






GPSVFPLAPSSKSTSGGTAALGCLVKDYFPEP






VTVSWNSGALTSGVHTFPAVLQSSGLYSLSS






VVTVPSSSLGTQTYICNVNHKPSNTKVDKKV






EPKSCDKTHTCPPCPAPPVAGPDVFLFPPKPK






DTLMISRTPEVTCVVVDVSHEDPEVKFNWYV






DGVEVHNAKTKPREEQYNSTYRVVSVLTVL






HQDWLNGKEYKCKVSNAALPAPIAKTISKAK






GQPREPQVYTLPPSRDELTKNQVSLTCLVKG






FYPSDIAVEWESNGQPENNYKTTPPVLDSDG






SFFLYSKLTVDKSRWQQGNVFSCSVMHEAL






HNHYTQKSLSLSPGKGGGGSGGGGSGGGGS






GGGGSMLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFHIEYAEPWVWGEAIVLTVPGSERS






YDLTGLKPGTEYVVFIGGVKGGHNSTPLSAIF






TTGGGGSGGGGSGGGGSGGGGSMLPAPKNL






VVSRVTEDSARLSWTAPDAAFDSFWITYEEK






FYRGEAIVLTVPGSERSYDLTGLKPGTEYKV






WIVGVKGGQGSWPLSAIFTT





925
PRT
Human
PagibaximabHC155
EVMLVESGGGLVQPKGSLKLSCAASGFTFNN






YAMNWVRQAPGKGLEWVARIRSKSNNYAT






FYADSVKDRFTISRDDSQSMLYLQMNNLKTE






DTAMYYCVRRGASGIDYAMDYWGQGTSLT






VSSASTKGPSVFPLAPSSKSTSGGTAALGCLV






KDYFPEPVTVSWNSGALTSGVHTFPAVLQSS






GLYSLSSVVTVPSSSLGTQTYICNVNHKPSNT






KVDKKVEPKSCDKTHTCPPCPAPPVAGPDVF






LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV






KFNWYVDGVEVHNAKTKPREEQYNSTYRV






VSVLTVLHQDWLNGKEYKCKVSNAALPAPI






AKTISKAKGQPREPQVYTLPPSRDELTKNQVS






LTCLVKGFYPSDIAVEWESNGQPENNYKTTP






PVLDSDGSFFLYSKLTVDKSRWQQGNVFSCS






VMHEALHNRFTQKSLSLSPGKGGGGSGGGG






SGGGGSGGGGSMLPAPKNLVVSRVTEDSAR






LSWTAPDAAFDSFHIEYAEPWVWGEAIVLTV






PGSERSYDLTGLKPGTEYVVFIGGVKGGHNS






TPLSAIFTTGGGGSGGGGSGGGGSGGGGSML






PAPKNLVVSRVTEDSARLSWTAPDAAFDSFW






ITYEEKFYRGEAIVLTVPGSERSYDLTGLKPG






TEYKVWIVGVKGGQGSWPLSAIFTT





926
PRT
Human
PagibaximabHC156
EVMLVESGGGLVQPKGSLKLSCAASGFTFNN






YAMNWVRQAPGKGLEWVARIRSKSNNYAT






FYADSVKDRFTISRDDSQSMLYLQMNNLKTE






DTAMYYCVRRGASGIDYAMDYWGQGTSLT






VSSASTKGPSVFPLAPSSKSTSGGTAALGCLV






KDYFPEPVTVSWNSGALTSGVHTFPAVLQSS






GLYSLSSVVTVPSSSLGTQTYICNVNHKPSNT






KVDKKVEPKSCDKTHTCPPCPAPPVAGPDVF






LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV






KFNWYVDGVEVHNAKTKPREEQYNSTYRV






VSVLTVLHQDWLNGKEYKCKVSNAALPAPI






AKTISKAKGQPREPQVYTLPPSRDELTKNQVS






LTCLVKGFYPSDIAVEWESNGQPENNYKTTP






PVLDSDGSFFLYSKLTVDKSRWQQGNVFSCS






VMHEALHNHYTQKSLSLSPGKGGGGSGGGG






SGGGGSGGGGSMLPAPKNLVVSRVTEDSAR






LSWTAPDAAFDSFHIEYAEPWVWGEAIVLTV






PGSERSYDLTGLKPGTEYVVFIGGVKGGHNS






TPLSAIFTTGGGGSGGGGSGGGGSGGGGSML






PAPKNLVVSRVTEDSARLSWTAPDAAFDSFW






ITYEEKFYRGEAIVLTVPGSERSYDLTGLKPG






TEYKVWIVGVKGGQGSWPLSAIFTT





927
PRT
Human
RSVHC157
QITLKESGPTLVKPTQTLTLTCTFSGFSLSTSG






MGVSWIRQPPGKALEWLAHIYWDDDKRYNP






SLKSRLTITKDTSKNQVVLTMTNMDPVDTAT






YYCARLYGFTYGFAYWGQGTLVTVSSASTK






GPSVFPLAPSSKSTSGGTAALGCLVKDYFPEP






VTVSWNSGALTSGVHTFPAVLQSSGLYSLSS






VVTVPSSSLGTQTYICNVNHKPSNTKVDKKV






EPKSCDKTHTCPPCPAPPVAGPDVFLFPPKPK






DTLMISRTPEVTCVVVDVSHEDPEVKFNWYV






DGVEVHNAKTKPREEQYNSTYRVVSVLTVL






HQDWLNGKEYKCKVSNAALPAPIAKTISKAK






GQPREPQVYTLPPSRDELTKNQVSLTCLVKG






FYPSDIAVEWESNGQPENNYKTTPPVLDSDG






SFFLYSKLTVDKSRWQQGNVFSCSVMHEAL






HNRFTQKSLSLSPGKGGGGSGGGGSGGGGSG






GGGSMLPAPKNLVVSRVTEDSARLSWTAPD






AAFDSFHIEYAEPWVWGEAIVLTVPGSERSY






DLTGLKPGTEYVVFIGGVKGGHNSTPLSAIFT






TGGGGSGGGGSGGGGSGGGGSMLPAPKNLV






VSRVTEDSARLSWTAPDAAFDSFWITYEEKF






YRGEAIVLTVPGSERSYDLTGLKPGTEYKVW






IVGVKGGQGSWPLSAIFTT





928
PRT
Human
RSVHC158
QITLKESGPTLVKPTQTLTLTCTFSGFSLSTSG






MGVSWIRQPPGKALEWLAHIYWDDDKRYNP






SLKSRLTITKDTSKNQVVLTMTNMDPVDTAT






YYCARLYGFTYGFAYWGQGTLVTVSSASTK






GPSVFPLAPSSKSTSGGTAALGCLVKDYFPEP






VTVSWNSGALTSGVHTFPAVLQSSGLYSLSS






VVTVPSSSLGTQTYICNVNHKPSNTKVDKKV






EPKSCDKTHTCPPCPAPPVAGPDVFLFPPKPK






DTLMISRTPEVTCVVVDVSHEDPEVKFNWYV






DGVEVHNAKTKPREEQYNSTYRVVSVLTVL






HQDWLNGKEYKCKVSNAALPAPIAKTISKAK






GQPREPQVYTLPPSRDELTKNQVSLTCLVKG






FYPSDIAVEWESNGQPENNYKTTPPVLDSDG






SFFLYSKLTVDKSRWQQGNVFSCSVMHEAL






HNHYTQKSLSLSPGKGGGGSGGGGSGGGGS






GGGGSMLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFHIEYAEPWVWGEAIVLTVPGSERS






YDLTGLKPGTEYVVFIGGVKGGHNSTPLSAIF






TTGGGGSGGGGSGGGGSGGGGSMLPAPKNL






VVSRVTEDSARLSWTAPDAAFDSFWITYEEK






FYRGEAIVLTVPGSERSYDLTGLKPGTEYKV






WIVGVKGGQGSWPLSAIFTT





929
PRT
Human
CR-
EVQLVETGGVAVQPGRSLRLSCAASGFSFRD





6171HC159
YGMHWVRQAAGKGLEWVAFIWPHGVNRFY






ADSMEGRFTISRDDSKNMLYLEMNNLRTEDT






ALYYCTRDQDYVPRKYFDLWGRGTLVTVSS






ASTKGPSVFPLAPSSKSTSGGTAALGCLVKD






YFPEPVTVSWNSGALTSGVHTFPAVLQSSGL






YSLSSVVTVPSSSLGTQTYICNVNHKPSNTKV






DKKVEPKSCDKTHTCPPCPAPPVAGPDVFLFP






PKPKDTLMISRTPEVTCVVVDVSHEDPEVKF






NWYVDGVEVHNAKTKPREEQYNSTYRVVS






VLTVLHQDWLNGKEYKCKVSNAALPAPIAK






TISKAKGQPREPQVYTLPPSRDELTKNQVSLT






CLVKGFYPSDIAVEWESNGQPENNYKTTPPV






LDSDGSFFLYSKLTVDKSRWQQGNVFSCSV






MHEALHNRFTQKSLSLSPGKGGGGSGGGGS






GGGGSGGGGSMLPAPKNLVVSRVTEDSARL






SWTAPDAAFDSFHIEYAEPWVWGEAIVLTVP






GSERSYDLTGLKPGTEYVVFIGGVKGGHNST






PLSAIFTTGGGGSGGGGSGGGGSGGGGSMLP






APKNLVVSRVTEDSARLSWTAPDAAFDSFWI






TYEEKFYRGEAIVLTVPGSERSYDLTGLKPGT






EYKVWIVGVKGGQGSWPLSAIFTT





930
PRT
Human
CR-
EVQLVETGGVAVQPGRSLRLSCAASGFSFRD





6171HC160
YGMHWVRQAAGKGLEWVAFIWPHGVNRFY






ADSMEGRFTISRDDSKNMLYLEMNNLRTEDT






ALYYCTRDQDYVPRKYFDLWGRGTLVTVSS






ASTKGPSVFPLAPSSKSTSGGTAALGCLVKD






YFPEPVTVSWNSGALTSGVHTFPAVLQSSGL






YSLSSVVTVPSSSLGTQTYICNVNHKPSNTKV






DKKVEPKSCDKTHTCPPCPAPPVAGPDVFLFP






PKPKDTLMISRTPEVTCVVVDVSHEDPEVKF






NWYVDGVEVHNAKTKPREEQYNSTYRVVS






VLTVLHQDWLNGKEYKCKVSNAALPAPIAK






TISKAKGQPREPQVYTLPPSRDELTKNQVSLT






CLVKGFYPSDIAVEWESNGQPENNYKTTPPV






LDSDGSFFLYSKLTVDKSRWQQGNVFSCSV






MHEALHNHYTQKSLSLSPGKGGGGSGGGGS






GGGGSGGGGSMLPAPKNLVVSRVTEDSARL






SWTAPDAAFDSFHIEYAEPWVWGEAIVLTVP






GSERSYDLTGLKPGTEYVVFIGGVKGGHNST






PLSAIFTTGGGGSGGGGSGGGGSGGGGSMLP






APKNLVVSRVTEDSARLSWTAPDAAFDSFWI






TYEEKFYRGEAIVLTVPGSERSYDLTGLKPGT






EYKVWIVGVKGGQGSWPLSAIFTT





931
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC161
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKMLPAPKNLVVSRVTE






DSARLSWTAPDAAFDSFHIEYAEPWVWGEAI






VLTVPGSERSYDLTGLKPGTEYVVFIGGVKG






GHNSTPLSAIFTTMLPAPKNLVVSRVTEDSAR






LSWTAPDAAFDSFWITYEEKFYRGEAIVLTVP






GSERSYDLTGLKPGTEYKVWIVGVKGGQGS






WPLSAIFTT





932
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC162
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKMLPAPKNLVVSRVTE






DSARLSWTAPDAAFDSFHIEYAEPWVWGEAI






VLTVPGSERSYDLTGLKPGTEYVVFIGGVKG






GHNSTPLSAIFTTGGGGSMLPAPKNLVVSRV






TEDSARLSWTAPDAAFDSFWITYEEKFYRGE






AIVLTVPGSERSYDLTGLKPGTEYKVWIVGV






KGGQGSWPLSAIFTT





933
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC163
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKMLPAPKNLVVSRVTE






DSARLSWTAPDAAFDSFHIEYAEPWVWGEAI






VLTVPGSERSYDLTGLKPGTEYVVFIGGVKG






GHNSTPLSAIFTTGGGGSGGGGSMLPAPKNL






VVSRVTEDSARLSWTAPDAAFDSFWITYEEK






FYRGEAIVLTVPGSERSYDLTGLKPGTEYKV






WIVGVKGGQGSWPLSAIFTT





934
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC164
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKMLPAPKNLVVSRVTE






DSARLSWTAPDAAFDSFHIEYAEPWVWGEAI






VLTVPGSERSYDLTGLKPGTEYVVFIGGVKG






GHNSTPLSAIFTTGGGGSGGGGSGGGGSMLP






APKNLVVSRVTEDSARLSWTAPDAAFDSFWI






TYEEKFYRGEAIVLTVPGSERSYDLTGLKPGT






EYKVWIVGVKGGQGSWPLSAIFTT





935
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC165
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKMLPAPKNLVVSRVTE






DSARLSWTAPDAAFDSFHIEYAEPWVWGEAI






VLTVPGSERSYDLTGLKPGTEYVVFIGGVKG






GHNSTPLSAIFTTGGGGSGGGGSGGGGSGGG






GSMLPAPKNLVVSRVTEDSARLSWTAPDAAF






DSFWITYEEKFYRGEAIVLTVPGSERSYDLTG






LKPGTEYKVWIVGVKGGQGSWPLSAIFTT





936
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC166
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSMLPAPKNLVV






SRVTEDSARLSWTAPDAAFDSFHIEYAEPWV






WGEAIVLTVPGSERSYDLTGLKPGTEYVVFIG






GVKGGHNSTPLSAIFTTMLPAPKNLVVSRVT






EDSARLSWTAPDAAFDSFWITYEEKFYRGEA






IVLTVPGSERSYDLTGLKPGTEYKVWIVGVK






GGQGSWPLSAIFTT





937
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC167
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSMLPAPKNLVV






SRVTEDSARLSWTAPDAAFDSFHIEYAEPWV






WGEAIVLTVPGSERSYDLTGLKPGTEYVVFIG






GVKGGHNSTPLSAIFTTGGGGSMLPAPKNLV






VSRVTEDSARLSWTAPDAAFDSFWITYEEKF






YRGEAIVLTVPGSERSYDLTGLKPGTEYKVW






IVGVKGGQGSWPLSAIFTT





938
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC168
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSMLPAPKNLVV






SRVTEDSARLSWTAPDAAFDSFHIEYAEPWV






WGEAIVLTVPGSERSYDLTGLKPGTEYVVFIG






GVKGGHNSTPLSAIFTTGGGGSGGGGSMLPA






PKNLVVSRVTEDSARLSWTAPDAAFDSFWIT






YEEKFYRGEAIVLTVPGSERSYDLTGLKPGTE






YKVWIVGVKGGQGSWPLSAIFTT





939
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC169
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSMLPAPKNLVV






SRVTEDSARLSWTAPDAAFDSFHIEYAEPWV






WGEAIVLTVPGSERSYDLTGLKPGTEYVVFIG






GVKGGHNSTPLSAIFTTGGGGSGGGGSGGGG






SMLPAPKNLVVSRVTEDSARLSWTAPDAAFD






SFWITYEEKFYRGEAIVLTVPGSERSYDLTGL






KPGTEYKVWIVGVKGGQGSWPLSAIFTT





940
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC170
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSMLPAPKNLVV






SRVTEDSARLSWTAPDAAFDSFHIEYAEPWV






WGEAIVLTVPGSERSYDLTGLKPGTEYVVFIG






GVKGGHNSTPLSAIFTTGGGGSGGGGSGGGG






SGGGGSMLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFWITYEEKFYRGEAIVLTVPGSERSY






DLTGLKPGTEYKVWIVGVKGGQGSWPLSAIF






TT





941
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC171
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSMLPAP






KNLVVSRVTEDSARLSWTAPDAAFDSFHIEY






AEPWVWGEAIVLTVPGSERSYDLTGLKPGTE






YVVFIGGVKGGHNSTPLSAIFTTMLPAPKNLV






VSRVTEDSARLSWTAPDAAFDSFWITYEEKF






YRGEAIVLTVPGSERSYDLTGLKPGTEYKVW






IVGVKGGQGSWPLSAIFTT





942
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC172
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSMLPAP






KNLVVSRVTEDSARLSWTAPDAAFDSFHIEY






AEPWVWGEAIVLTVPGSERSYDLTGLKPGTE






YVVFIGGVKGGHNSTPLSAIFTTGGGGSMLP






APKNLVVSRVTEDSARLSWTAPDAAFDSFWI






TYEEKFYRGEAIVLTVPGSERSYDLTGLKPGT






EYKVWIVGVKGGQGSWPLSAIFTT





943
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC173
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSMLPAP






KNLVVSRVTEDSARLSWTAPDAAFDSFHIEY






AEPWVWGEAIVLTVPGSERSYDLTGLKPGTE






YVVFIGGVKGGHNSTPLSAIFTTGGGGSGGG






GSMLPAPKNLVVSRVTEDSARLSWTAPDAAF






DSFWITYEEKFYRGEAIVLTVPGSERSYDLTG






LKPGTEYKVWIVGVKGGQGSWPLSAIFTT





944
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC174
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSMLPAP






KNLVVSRVTEDSARLSWTAPDAAFDSFHIEY






AEPWVWGEAIVLTVPGSERSYDLTGLKPGTE






YVVFIGGVKGGHNSTPLSAIFTTGGGGSGGG






GSGGGGSMLPAPKNLVVSRVTEDSARLSWT






APDAAFDSFWITYEEKFYRGEAIVLTVPGSER






SYDLTGLKPGTEYKVWIVGVKGGQGSWPLS






AIFTT





945
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC175
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSMLPAP






KNLVVSRVTEDSARLSWTAPDAAFDSFHIEY






AEPWVWGEAIVLTVPGSERSYDLTGLKPGTE






YVVFIGGVKGGHNSTPLSAIFTTGGGGSGGG






GSGGGGSGGGGSMLPAPKNLVVSRVTEDSA






RLSWTAPDAAFDSFWITYEEKFYRGEAIVLT






VPGSERSYDLTGLKPGTEYKVWIVGVKGGQ






GSWPLSAIFTT





946
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC176
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSGGGGS






MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FHIEYAEPWVWGEAIVLTVPGSERSYDLTGL






KPGTEYVVFIGGVKGGHNSTPLSAIFTTMLPA






PKNLVVSRVTEDSARLSWTAPDAAFDSFWIT






YEEKFYRGEAIVLTVPGSERSYDLTGLKPGTE






YKVWIVGVKGGQGSWPLSAIFTT





947
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC177
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSGGGGS






MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FHIEYAEPWVWGEAIVLTVPGSERSYDLTGL






KPGTEYVVFIGGVKGGHNSTPLSAIFTTGGGG






SMLPAPKNLVVSRVTEDSARLSWTAPDAAFD






SFWITYEEKFYRGEAIVLTVPGSERSYDLTGL






KPGTEYKVWIVGVKGGQGSWPLSAIFTT





948
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC178
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSGGGGS






MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FHIEYAEPWVWGEAIVLTVPGSERSYDLTGL






KPGTEYVVFIGGVKGGHNSTPLSAIFTTGGGG






SGGGGSMLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFWITYEEKFYRGEAIVLTVPGSERSY






DLTGLKPGTEYKVWIVGVKGGQGSWPLSAIF






TT





949
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC179
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSGGGGS






MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FHIEYAEPWVWGEAIVLTVPGSERSYDLTGL






KPGTEYVVFIGGVKGGHNSTPLSAIFTTGGGG






SGGGGSGGGGSMLPAPKNLVVSRVTEDSAR






LSWTAPDAAFDSFWITYEEKFYRGEAIVLTVP






GSERSYDLTGLKPGTEYKVWIVGVKGGQGS






WPLSAIFTT





950
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC180
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSGGGGS






MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FHIEYAEPWVWGEAIVLTVPGSERSYDLTGL






KPGTEYVVFIGGVKGGHNSTPLSAIFTTGGGG






SGGGGSGGGGSGGGGSMLPAPKNLVVSRVT






EDSARLSWTAPDAAFDSFWITYEEKFYRGEA






IVLTVPGSERSYDLTGLKPGTEYKVWIVGVK






GGQGSWPLSAIFTT





951
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC181
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSGGGGS






GGGGSMLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFHIEYAEPWVWGEAIVLTVPGSERS






YDLTGLKPGTEYVVFIGGVKGGHNSTPLSAIF






TTMLPAPKNLVVSRVTEDSARLSWTAPDAAF






DSFWITYEEKFYRGEAIVLTVPGSERSYDLTG






LKPGTEYKVWIVGVKGGQGSWPLSAIFTT





952
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC182
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSGGGGS






GGGGSMLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFHIEYAEPWVWGEAIVLTVPGSERS






YDLTGLKPGTEYVVFIGGVKGGHNSTPLSAIF






TTGGGGSMLPAPKNLVVSRVTEDSARLSWT






APDAAFDSFWITYEEKFYRGEAIVLTVPGSER






SYDLTGLKPGTEYKVWIVGVKGGQGSWPLS






AIFTT





953
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC183
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSGGGGS






GGGGSMLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFHIEYAEPWVWGEAIVLTVPGSERS






YDLTGLKPGTEYVVFIGGVKGGHNSTPLSAIF






TTGGGGSGGGGSMLPAPKNLVVSRVTEDSA






RLSWTAPDAAFDSFWITYEEKFYRGEAIVLT






VPGSERSYDLTGLKPGTEYKVWIVGVKGGQ






GSWPLSAIFTT





954
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC184
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSGGGGS






GGGGSMLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFHIEYAEPWVWGEAIVLTVPGSERS






YDLTGLKPGTEYVVFIGGVKGGHNSTPLSAIF






TTGGGGSGGGGSGGGGSMLPAPKNLVVSRV






TEDSARLSWTAPDAAFDSFWITYEEKFYRGE






AIVLTVPGSERSYDLTGLKPGTEYKVWIVGV






KGGQGSWPLSAIFTT





955
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC185
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGGGGGSGGGGSGGGGSG






GGGSMLPAPKNLVVSRVTEDSARLSWTAPD






AAFDSFPIVYQEWQFYGEAIVLTVPGSERSYD






LTGLKPGTEYLVDIYGVKGGSWSYPLSAIFTT






GGGGSGGGGSGGGGSGGGGSMLPAPKNLVV






SRVTEDSARLSWTAPDAAFDSFWITYEEKFY






RGEAIVLTVPGSERSYDLTGLKPGTEYKVWI






VGVKGGQGSWPLSAIFTT





956
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC186
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNHYTQKSLSLSPGGGGGSGGGGSGGGGS






GGGGSMLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFPIVYQEWQFYGEAIVLTVPGSERSY






DLTGLKPGTEYLVDIYGVKGGSWSYPLSAIFT






TGGGGSGGGGSGGGGSGGGGSMLPAPKNLV






VSRVTEDSARLSWTAPDAAFDSFWITYEEKF






YRGEAIVLTVPGSERSYDLTGLKPGTEYKVW






IVGVKGGQGSWPLSAIFTT





957
PRT
Human
RSVHC187
QITLKESGPTLVKPTQTLTLTCTFSGFSLSTSG






MGVSWIRQPPGKALEWLAHIYWDDDKRYNP






SLKSRLTITKDTSKNQVVLTMTNMDPVDTAT






YYCARLYGFTYGFAYWGQGTLVTVSSASTK






GPSVFPLAPSSKSTSGGTAALGCLVKDYFPEP






VTVSWNSGALTSGVHTFPAVLQSSGLYSLSS






VVTVPSSSLGTQTYICNVNHKPSNTKVDKKV






EPKSCDKTHTCPPCPAPPVAGPDVFLFPPKPK






DTLMISRTPEVTCVVVDVSHEDPEVKFNWYV






DGVEVHNAKTKPREEQYNSTYRVVSVLTVL






HQDWLNGKEYKCKVSNAALPAPIAKTISKAK






GQPREPQVYTLPPSRDELTKNQVSLTCLVKG






FYPSDIAVEWESNGQPENNYKTTPPVLDSDG






SFFLYSKLTVDKSRWQQGNVFSCSVMHEAL






HNHYTQKSLSLSPGKGGGGSGGGGSGGGGS






GGGGSLPAPKNLVVSRVTEDSARLSWTAPDA






AFDSFLIQYQESEKVGEAIVLTVPGSERSYDL






TGLKPGTEYTVSIYGVKGGHRSNPLSAIFTTG






GGGSGGGGSGGGGSGGGGSLPAPKNLVVSR






VTEDSARLSWTAPDAAFDSFLIQYQESEKVG






EAIVLTVPGSERSYDLTGLKPGTEYTVSIYGV






KGGHRSNPLSAIFTT





958
PRT
Human
RSVHC188
QITLKESGPTLVKPTQTLTLTCTFSGFSLSTSG






MGVSWIRQPPGKALEWLAHIYWDDDKRYNP






SLKSRLTITKDTSKNQVVLTMTNMDPVDTAT






YYCARLYGFTYGFAYWGQGTLVTVSSASTK






GPSVFPLAPSSKSTSGGTAALGCLVKDYFPEP






VTVSWNSGALTSGVHTFPAVLQSSGLYSLSS






VVTVPSSSLGTQTYICNVNHKPSNTKVDKKV






EPKSCDKTHTCPPCPAPPVAGPDVFLFPPKPK






DTLMISRTPEVTCVVVDVSHEDPEVKFNWYV






DGVEVHNAKTKPREEQYNSTYRVVSVLTVL






HQDWLNGKEYKCKVSNAALPAPIAKTISKAK






GQPREPQVYTLPPSRDELTKNQVSLTCLVKG






FYPSDIAVEWESNGQPENNYKTTPPVLDSDG






SFFLYSKLTVDKSRWQQGNVFSCSVMHEAL






HNHYTQKSLSLSPGKGGGGSGGGGSGGGGS






GGGGSMLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFLIQYQESEKVGEAIVLTVPGSERSY






DLTGLKPGTEYTVSIYGVKGGHRSNPLSAIFT






TGGGGSGGGGSGGGGSGGGGSMLPAPKNLV






VSRVTEDSARLSWTAPDAAFDSFLIQYQESE






KVGEAIVLTVPGSERSYDLTGLKPGTEYTVSI






YGVKGGHRSNPLSAIFTT





959
PRT
Human
RSVHC189
QITLKESGPTLVKPTQTLTLTCTFSGFSLSTSG






MGVSWIRQPPGKALEWLAHIYWDDDKRYNP






SLKSRLTITKDTSKNQVVLTMTNMDPVDTAT






YYCARLYGFTYGFAYWGQGTLVTVSSASTK






GPSVFPLAPSSKSTSGGTAALGCLVKDYFPEP






VTVSWNSGALTSGVHTFPAVLQSSGLYSLSS






VVTVPSSSLGTQTYICNVNHKPSNTKVDKKV






EPKSCDKTHTCPPCPAPELLGGPSVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNKALPAPIEKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNHYTQKSLSLSPGKGGGGSGGGGSGGGG






SGGGGSLPAPKNLVVSRVTEDSARLSWTAPD






AAFDSFLIQYQESEKVGEAIVLTVPGSERSYD






LTGLKPGTEYTVSIYGVKGGHRSNPLSAIFTT






GGGGSGGGGSGGGGSGGGGSLPAPKNLVVS






RVTEDSARLSWTAPDAAFDSFLIQYQESEKV






GEAIVLTVPGSERSYDLTGLKPGTEYTVSIYG






VKGGHRSNPLSAIFTT





960
PRT
Human
RSVHC190
QITLKESGPTLVKPTQTLTLTCTFSGFSLSTSG






MGVSWIRQPPGKALEWLAHIYWDDDKRYNP






SLKSRLTITKDTSKNQVVLTMTNMDPVDTAT






YYCARLYGFTYGFAYWGQGTLVTVSSASTK






GPSVFPLAPSSKSTSGGTAALGCLVKDYFPEP






VTVSWNSGALTSGVHTFPAVLQSSGLYSLSS






VVTVPSSSLGTQTYICNVNHKPSNTKVDKKV






EPKSCDKTHTCPPCPAPELLGGPSVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNKALPAPIEKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNHYTQKSLSLSPGKGGGGSGGGGSGGGG






SGGGGSMLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFLIQYQESEKVGEAIVLTVPGSERSY






DLTGLKPGTEYTVSIYGVKGGHRSNPLSAIFT






TGGGGSGGGGSGGGGSGGGGSMLPAPKNLV






VSRVTEDSARLSWTAPDAAFDSFLIQYQESE






KVGEAIVLTVPGSERSYDLTGLKPGTEYTVSI






YGVKGGHRSNPLSAIFTT





961
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC200
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPELLGGPSVFLFPPK






PKDTLMISRTPEVTCVVVDVSHEDPEVKFNW






YVDGVEVHNAKTKPREEQYNSTYRVVSVLT






VLHQDWLNGKEYKCKVSNKALPAPIEKTISK






AKGQPREPQVYTLPPSRDELTKNQVSLTCLV






KGFYPSDIAVEWESNGQPENNYKTTPPVLDS






DGSFFLYSKLTVDKSRWQQGNVFSCSVMHE






ALHNRFTQKSLSLSPGKGGGGSGGGGSGGG






GSGGGGSMLPAPKNLVVSRVTEDSARLSWT






APDAAFDSFHIEYAEPWVWGEAIVLTVPGSE






RSYDLTGLKPGTEYVVFIGGVKGGHNSTPLS






AIFTTGGGGSGGGGSGGGGSGGGGSMLPAPK






NLVVSRVTEDSARLSWTAPDAAFDSFWITYE






EKFYRGEAIVLTVPGSERSYDLTGLKPGTEYK






VWIVGVKGGQGSWPLSAIFTT





962
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC201
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPELLGGPSVFLFPPK






PKDTLMISRTPEVTCVVVDVSHEDPEVKFNW






YVDGVEVHNAKTKPREEQYNSTYRVVSVLT






VLHQDWLNGKEYKCKVSNKALPAPIEKTISK






AKGQPREPQVYTLPPSRDELTKNQVSLTCLV






KGFYPSDIAVEWESNGQPENNYKTTPPVLDS






DGSFFLYSKLTVDKSRWQQGNVFSCSVMHE






ALHNHYTQKSLSLSPGKGGGGSGGGGSGGG






GSGGGGSMLPAPKNLVVSRVTEDSARLSWT






APDAAFDSFHIEYAEPWVWGEAIVLTVPGSE






RSYDLTGLKPGTEYVVFIGGVKGGHNSTPLS






AIFTTGGGGSGGGGSGGGGSGGGGSMLPAPK






NLVVSRVTEDSARLSWTAPDAAFDSFWITYE






EKFYRGEAIVLTVPGSERSYDLTGLKPGTEYK






VWIVGVKGGQGSWPLSAIFTT





963
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC212
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNHYTQKSLSLSPGKGGGGSGGGGSGGGG






SGGGGSMLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFHIEYAEPWVWGEAIVLTVPGSERS






YDLTGLKPGTEYVVFIGGVKGGHNSTPLSAIF






TTGGGGSMLPAPKNLVVSRVTEDSARLSWT






APDAAFDSFWITYEEKFYRGEAIVLTVPGSER






SYDLTGLKPGTEYKVWIVGVKGGQGSWPLS






AIFTT





964
PRT
Human
CR-
EQKLISEEDLEVQLVETGGGLVKPGGSLRLSC





5133HC230
SASRFSFRDYYMTWIRQAPGKGPEWVSHISG






SGSTIYYADSVRGRFTISRDNAKSSLYLQMDS






LQADDTAVYYCARGGRATSYYWVHWGPGT






LVTVSSASTKGPSVFPLAPSSKSTSGGTAALG






CLVKDYFPEPVTVSWNSGALTSGVHTFPAVL






QSSGLYSLSSVVTVPSSSLGTQTYICNVNHKP






SNTKVDKKVEPKSCDKTHTCPPCPAPPVAGP






DVFLFPPKPKDTLMISRTPEVTCVVVDVSHED






PEVKFNWYVDGVEVHNAKTKPREEQYNSTY






RVVSVLTVLHQDWLNGKEYKCKVSNAALPA






PIAKTISKAKGQPREPQVYTLPPSRDELTKNQ






VSLTCLVKGFYPSDIAVEWESNGQPENNYKT






TPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS






CSVMHEALHNHYTQKSLSLSPGKGGGGSGG






GGSGGGGSGGGGSMLPAPKNLVVSRVTEDS






ARLSWTAPDAAFDSFHIEYAEPWVWGEAIVL






TVPGSERSYDLTGLKPGTEYVVFIGGVKGGH






NSTPLSAIFTTGGGGSMLPAPKNLVVSRVTED






SARLSWTAPDAAFDSFWITYEEKFYRGEAIV






LTVPGSERSYDLTGLKPGTEYKVWIVGVKGG






QGSWPLSAIFTT





965
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC231
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNHYTQKSLSLSPGKGGGGSGGGGSGGGG






SGGGGSMLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFHIEYAEPWVWGEAIVLTVPGSERS






YDLTGLKPGTEYVVFIGGVKGGHNSTPLSAIF






TTGGGGSMLPAPKNLVVSRVTEDSARLSWT






APDAAFDSFWITYEEKFYRGEAIVLTVPGSER






SYDLTGLKPGTEYKVWIVGVKGGQGSWPLS






AIFTTDYKDDDDK





966
PRT
Human
CR-
EQKLISEEDLEVQLVETGGGLVKPGGSLRLSC





5133HC232
SASRFSFRDYYMTWIRQAPGKGPEWVSHISG






SGSTIYYADSVRGRFTISRDNAKSSLYLQMDS






LQADDTAVYYCARGGRATSYYWVHWGPGT






LVTVSSASTKGPSVFPLAPSSKSTSGGTAALG






CLVKDYFPEPVTVSWNSGALTSGVHTFPAVL






QSSGLYSLSSVVTVPSSSLGTQTYICNVNHKP






SNTKVDKKVEPKSCDKTHTCPPCPAPPVAGP






DVFLFPPKPKDTLMISRTPEVTCVVVDVSHED






PEVKFNWYVDGVEVHNAKTKPREEQYNSTY






RVVSVLTVLHQDWLNGKEYKCKVSNAALPA






PIAKTISKAKGQPREPQVYTLPPSRDELTKNQ






VSLTCLVKGFYPSDIAVEWESNGQPENNYKT






TPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS






CSVMHEALHNHYTQKSLSLSPGKGGGGSGG






GGSGGGGSGGGGSMLPAPKNLVVSRVTEDS






ARLSWTAPDAAFDSFHIEYAEPWVWGEAIVL






TVPGSERSYDLTGLKPGTEYVVFIGGVKGGH






NSTPLSAIFTTGGGGSMLPAPKNLVVSRVTED






SARLSWTAPDAAFDSFWITYEEKFYRGEAIV






LTVPGSERSYDLTGLKPGTEYKVWIVGVKGG






QGSWPLSAIFTTDYKDDDDK





967
PRT
Human
CR-
EQKLISEEDLEVQLVETGGGLVKPGGSLRLSC





5133HC233
SASRFSFRDYYMTWIRQAPGKGPEWVSHISG






SGSTIYYADSVRGRFTISRDNAKSSLYLQMDS






LQADDTAVYYCARGGRATSYYWVHWGPGT






LVTVSSASTKGPSVFPLAPSSKSTSGGTAALG






CLVKDYFPEPVTVSWNSGALTSGVHTFPAVL






QSSGLYSLSSVVTVPSSSLGTQTYICNVNHKP






SNTKVDKKVEPKSCDKTHTCPPCPAPPVAGP






DVFLFPPKPKDTLMISRTPEVTCVVVDVSHED






PEVKFNWYVDGVEVHNAKTKPREEQYNSTY






RVVSVLTVLHQDWLNGKEYKCKVSNAALPA






PIAKTISKAKGQPREPQVYTLPPSRDELTKNQ






VSLTCLVKGFYPSDIAVEWESNGQPENNYKT






TPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS






CSVMHEALHNRFTQKSLSLSPGKGGGGSGG






GGSGGGGSGGGGSMLPAPKNLVVSRVTEDS






ARLSWTAPDAAFDSFHIEYAEPWVWGEAIVL






TVPGSERSYDLTGLKPGTEYVVFIGGVKGGH






NSTPLSAIFTTGGGGSMLPAPKNLVVSRVTED






SARLSWTAPDAAFDSFWITYEEKFYRGEAIV






LTVPGSERSYDLTGLKPGTEYKVWIVGVKGG






QGSWPLSAIFTT





968
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC234
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSGGGGS






GGGGSMLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFHIEYAEPWVWGEAIVLTVPGSERS






YDLTGLKPGTEYVVFIGGVKGGHNSTPLSAIF






TTGGGGSMLPAPKNLVVSRVTEDSARLSWT






APDAAFDSFWITYEEKFYRGEAIVLTVPGSER






SYDLTGLKPGTEYKVWIVGVKGGQGSWPLS






AIFTTDYKDDDDK





969
PRT
Human
CR-
EQKLISEEDLEVQLVETGGGLVKPGGSLRLSC





5133HC235
SASRFSFRDYYMTWIRQAPGKGPEWVSHISG






SGSTIYYADSVRGRFTISRDNAKSSLYLQMDS






LQADDTAVYYCARGGRATSYYWVHWGPGT






LVTVSSASTKGPSVFPLAPSSKSTSGGTAALG






CLVKDYFPEPVTVSWNSGALTSGVHTFPAVL






QSSGLYSLSSVVTVPSSSLGTQTYICNVNHKP






SNTKVDKKVEPKSCDKTHTCPPCPAPPVAGP






DVFLFPPKPKDTLMISRTPEVTCVVVDVSHED






PEVKFNWYVDGVEVHNAKTKPREEQYNSTY






RVVSVLTVLHQDWLNGKEYKCKVSNAALPA






PIAKTISKAKGQPREPQVYTLPPSRDELTKNQ






VSLTCLVKGFYPSDIAVEWESNGQPENNYKT






TPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS






CSVMHEALHNHYTQKSLSLSPGKGGGGSGG






GGSGGGGSGGGGSMLPAPKNLVVSRVTEDS






ARLSWTAPDAAFDSFHIEYAEPWVWGEAIVL






TVPGSERSYDLTGLKPGTEYVVFIGGVKGGH






NSTPLSAIFTTGGGGSGGGGSGGGGSGGGGS






MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FWITYEEKFYRGEAIVLTVPGSERSYDLTGLK






PGTEYKVWIVGVKGGQGSWPLSAIFTT





970
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC236
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNHYTQKSLSLSPGKGGGGSGGGGSGGGG






SGGGGSMLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFHIEYAEPWVWGEAIVLTVPGSERS






YDLTGLKPGTEYVVFIGGVKGGHNSTPLSAIF






TTGGGGSGGGGSGGGGSGGGGSMLPAPKNL






VVSRVTEDSARLSWTAPDAAFDSFWITYEEK






FYRGEAIVLTVPGSERSYDLTGLKPGTEYKV






WIVGVKGGQGSWPLSAIFTTDYKDDDDK





971
PRT
Human
CR-
EQKLISEEDLEVQLVETGGGLVKPGGSLRLSC





5133HC237
SASRFSFRDYYMTWIRQAPGKGPEWVSHISG






SGSTIYYADSVRGRFTISRDNAKSSLYLQMDS






LQADDTAVYYCARGGRATSYYWVHWGPGT






LVTVSSASTKGPSVFPLAPSSKSTSGGTAALG






CLVKDYFPEPVTVSWNSGALTSGVHTFPAVL






QSSGLYSLSSVVTVPSSSLGTQTYICNVNHKP






SNTKVDKKVEPKSCDKTHTCPPCPAPPVAGP






DVFLFPPKPKDTLMISRTPEVTCVVVDVSHED






PEVKFNWYVDGVEVHNAKTKPREEQYNSTY






RVVSVLTVLHQDWLNGKEYKCKVSNAALPA






PIAKTISKAKGQPREPQVYTLPPSRDELTKNQ






VSLTCLVKGFYPSDIAVEWESNGQPENNYKT






TPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS






CSVMHEALHNHYTQKSLSLSPGKGGGGSGG






GGSGGGGSGGGGSMLPAPKNLVVSRVTEDS






ARLSWTAPDAAFDSFHIEYAEPWVWGEAIVL






TVPGSERSYDLTGLKPGTEYVVFIGGVKGGH






NSTPLSAIFTTGGGGSGGGGSGGGGSGGGGS






MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FWITYEEKFYRGEAIVLTVPGSERSYDLTGLK






PGTEYKVWIVGVKGGQGSWPLSAIFTTDYKD






DDDK





972
PRT
Human
CR-
EQKLISEEDLEVQLVETGGGLVKPGGSLRLSC





5133HC238
SASRFSFRDYYMTWIRQAPGKGPEWVSHISG






SGSTIYYADSVRGRFTISRDNAKSSLYLQMDS






LQADDTAVYYCARGGRATSYYWVHWGPGT






LVTVSSASTKGPSVFPLAPSSKSTSGGTAALG






CLVKDYFPEPVTVSWNSGALTSGVHTFPAVL






QSSGLYSLSSVVTVPSSSLGTQTYICNVNHKP






SNTKVDKKVEPKSCDKTHTCPPCPAPPVAGP






DVFLFPPKPKDTLMISRTPEVTCVVVDVSHED






PEVKFNWYVDGVEVHNAKTKPREEQYNSTY






RVVSVLTVLHQDWLNGKEYKCKVSNAALPA






PIAKTISKAKGQPREPQVYTLPPSRDELTKNQ






VSLTCLVKGFYPSDIAVEWESNGQPENNYKT






TPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS






CSVMHEALHNRFTQKSLSLSPGKGGGGSGG






GGSGGGGSGGGGSMLPAPKNLVVSRVTEDS






ARLSWTAPDAAFDSFHIEYAEPWVWGEAIVL






TVPGSERSYDLTGLKPGTEYVVFIGGVKGGH






NSTPLSAIFTTGGGGSMLPAPKNLVVSRVTED






SARLSWTAPDAAFDSFWITYEEKFYRGEAIV






LTVPGSERSYDLTGLKPGTEYKVWIVGVKGG






QGSWPLSAIFTTDYKDDDDK





973
PRT
Human
CR-
DYKDDDDKEVQLVETGGGLVKPGGSLRLSC





5133HC239
SASRFSFRDYYMTWIRQAPGKGPEWVSHISG






SGSTIYYADSVRGRFTISRDNAKSSLYLQMDS






LQADDTAVYYCARGGRATSYYWVHWGPGT






LVTVSSASTKGPSVFPLAPSSKSTSGGTAALG






CLVKDYFPEPVTVSWNSGALTSGVHTFPAVL






QSSGLYSLSSVVTVPSSSLGTQTYICNVNHKP






SNTKVDKKVEPKSCDKTHTCPPCPAPPVAGP






DVFLFPPKPKDTLMISRTPEVTCVVVDVSHED






PEVKFNWYVDGVEVHNAKTKPREEQYNSTY






RVVSVLTVLHQDWLNGKEYKCKVSNAALPA






PIAKTISKAKGQPREPQVYTLPPSRDELTKNQ






VSLTCLVKGFYPSDIAVEWESNGQPENNYKT






TPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS






CSVMHEALHNRFTQKSLSLSPGKGGGGSGG






GGSGGGGSGGGGSMLPAPKNLVVSRVTEDS






ARLSWTAPDAAFDSFHIEYAEPWVWGEAIVL






TVPGSERSYDLTGLKPGTEYVVFIGGVKGGH






NSTPLSAIFTTGGGGSGGGGSGGGGSGGGGS






MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FWITYEEKFYRGEAIVLTVPGSERSYDLTGLK






PGTEYKVWIVGVKGGQGSWPLSAIFTT





974
PRT
Human
CR-
DYKDDDDKEVQLVETGGGLVKPGGSLRLSC





5133HC240
SASRFSFRDYYMTWIRQAPGKGPEWVSHISG






SGSTIYYADSVRGRFTISRDNAKSSLYLQMDS






LQADDTAVYYCARGGRATSYYWVHWGPGT






LVTVSSASTKGPSVFPLAPSSKSTSGGTAALG






CLVKDYFPEPVTVSWNSGALTSGVHTFPAVL






QSSGLYSLSSVVTVPSSSLGTQTYICNVNHKP






SNTKVDKKVEPKSCDKTHTCPPCPAPPVAGP






DVFLFPPKPKDTLMISRTPEVTCVVVDVSHED






PEVKFNWYVDGVEVHNAKTKPREEQYNSTY






RVVSVLTVLHQDWLNGKEYKCKVSNAALPA






PIAKTISKAKGQPREPQVYTLPPSRDELTKNQ






VSLTCLVKGFYPSDIAVEWESNGQPENNYKT






TPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS






CSVMHEALHNHYTQKSLSLSPGKGGGGSGG






GGSGGGGSGGGGSMLPAPKNLVVSRVTEDS






ARLSWTAPDAAFDSFHIEYAEPWVWGEAIVL






TVPGSERSYDLTGLKPGTEYVVFIGGVKGGH






NSTPLSAIFTTGGGGSGGGGSGGGGSGGGGS






MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FWITYEEKFYRGEAIVLTVPGSERSYDLTGLK






PGTEYKVWIVGVKGGQGSWPLSAIFTT





975
PRT
Human
CR-
DYKDDDDKEVQLVETGGGLVKPGGSLRLSC





5133HC241
SASRFSFRDYYMTWIRQAPGKGPEWVSHISG






SGSTIYYADSVRGRFTISRDNAKSSLYLQMDS






LQADDTAVYYCARGGRATSYYWVHWGPGT






LVTVSSASTKGPSVFPLAPSSKSTSGGTAALG






CLVKDYFPEPVTVSWNSGALTSGVHTFPAVL






QSSGLYSLSSVVTVPSSSLGTQTYICNVNHKP






SNTKVDKKVEPKSCDKTHTCPPCPAPPVAGP






DVFLFPPKPKDTLMISRTPEVTCVVVDVSHED






PEVKFNWYVDGVEVHNAKTKPREEQYNSTY






RVVSVLTVLHQDWLNGKEYKCKVSNAALPA






PIAKTISKAKGQPREPQVYTLPPSRDELTKNQ






VSLTCLVKGFYPSDIAVEWESNGQPENNYKT






TPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS






CSVMHEALHNRFTQKSLSLSPGKGGGGSGG






GGSGGGGSGGGGSMLPAPKNLVVSRVTEDS






ARLSWTAPDAAFDSFHIEYAEPWVWGEAIVL






TVPGSERSYDLTGLKPGTEYVVFIGGVKGGH






NSTPLSAIFTTGGGGSMLPAPKNLVVSRVTED






SARLSWTAPDAAFDSFWITYEEKFYRGEAIV






LTVPGSERSYDLTGLKPGTEYKVWIVGVKGG






QGSWPLSAIFTT





976
PRT
Human
CR-
DYKDDDDKEVQLVETGGGLVKPGGSLRLSC





5133HC242
SASRFSFRDYYMTWIRQAPGKGPEWVSHISG






SGSTIYYADSVRGRFTISRDNAKSSLYLQMDS






LQADDTAVYYCARGGRATSYYWVHWGPGT






LVTVSSASTKGPSVFPLAPSSKSTSGGTAALG






CLVKDYFPEPVTVSWNSGALTSGVHTFPAVL






QSSGLYSLSSVVTVPSSSLGTQTYICNVNHKP






SNTKVDKKVEPKSCDKTHTCPPCPAPPVAGP






DVFLFPPKPKDTLMISRTPEVTCVVVDVSHED






PEVKFNWYVDGVEVHNAKTKPREEQYNSTY






RVVSVLTVLHQDWLNGKEYKCKVSNAALPA






PIAKTISKAKGQPREPQVYTLPPSRDELTKNQ






VSLTCLVKGFYPSDIAVEWESNGQPENNYKT






TPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS






CSVMHEALHNHYTQKSLSLSPGKGGGGSGG






GGSGGGGSGGGGSMLPAPKNLVVSRVTEDS






ARLSWTAPDAAFDSFHIEYAEPWVWGEAIVL






TVPGSERSYDLTGLKPGTEYVVFIGGVKGGH






NSTPLSAIFTTGGGGSMLPAPKNLVVSRVTED






SARLSWTAPDAAFDSFWITYEEKFYRGEAIV






LTVPGSERSYDLTGLKPGTEYKVWIVGVKGG






QGSWPLSAIFTT





977
PRT
Human
RSVHC65
QITLKESGPTLVKPTQTLTLTCTFSGFSLSTSG






MGVSWIRQPPGKALEWLAHIYWDDDKRYNP






SLKSRLTITKDTSKNQVVLTMTNMDPVDTAT






YYCARLYGFTYGFAYWGQGTLVTVSSASTK






GPSVFPLAPSSKSTSGGTAALGCLVKDYFPEP






VTVSWNSGALTSGVHTFPAVLQSSGLYSLSS






VVTVPSSSLGTQTYICNVNHKPSNTKVDKKV






EPKSCDKTHTCPPCPAPPVAGPDVFLFPPKPK






DTLMISRTPEVTCVVVDVSHEDPEVKFNWYV






DGVEVHNAKTKPREEQYNSTYRVVSVLTVL






HQDWLNGKEYKCKVSNAALPAPIAKTISKAK






GQPREPQVYTLPPSRDELTKNQVSLTCLVKG






FYPSDIAVEWESNGQPENNYKTTPPVLDSDG






SFFLYSKLTVDKSRWQQGNVFSCSVMHEAL






HNRFTQKSLSLSPGKGGGGSGGGGSGGGGSG






GGGSLPAPKNLVVSRVTEDSARLSWTAPDAA






FDSFLIQYQESEKVGEAIVLTVPGSERSYDLT






GLKPGTEYTVSIYGVKGGHRSNPLSAIFTT





978
PRT
Human
CR-
EIVLTQSPATLSLSPGERATLSCRASQSVSGYL





5133LC290
GWYQQKPGQAPRLLIYGASSRATGIPDRFSG






SGSGTDFTLTISRLEPEDFAVYYCQQYGSSPL






TFGGGTKLEIKRTVAAPSVFIFPPSDEQLKSGT






ASVVCLLNNFYPREAKVQWKVDNALQSGNS






QESVTEQDSKDSTYSLSSTLTLSKADYEKHK






VYACEVTHQGLSSPVTKSFNRGECGGGGSGG






GGSGGGGSGGGGSMLPAPKNLVVSRVTEDS






ARLSWTAPDAAFDSFLIQYQESEKVGEAIVLT






VPGSERSYDLTGLKPGTEYTVSIYGVKGGHR






SNPLSAIFTT





979
PRT
Human
CR-
EIVLTQSPATLSLSPGERATLSCRASQSVSGYL





5133LC291
GWYQQKPGQAPRLLIYGASSRATGIPDRFSG






SGSGTDFTLTISRLEPEDFAVYYCQQYGSSPL






TFGGGTKLEIKRTVAAPSVFIFPPSDEQLKSGT






ASVVCLLNNFYPREAKVQWKVDNALQSGNS






QESVTEQDSKDSTYSLSSTLTLSKADYEKHK






VYACEVTHQGLSSPVTKSFNRGECGGGGSGG






GGSGGGGSGGGGSMLPAPKNLVVSRVTEDS






ARLSWTAPDAAFDSFWITYEEKFYRGEAIVL






TVPGSERSYDLTGLKPGTEYKVWIVGVKGG






QGSWPLSAIFTT





980
PRT
Human
CR-
EIVLTQSPATLSLSPGERATLSCRASQSVSGYL





5133LC292
GWYQQKPGQAPRLLIYGASSRATGIPDRFSG






SGSGTDFTLTISRLEPEDFAVYYCQQYGSSPL






TFGGGTKLEIKRTVAAPSVFIFPPSDEQLKSGT






ASVVCLLNNFYPREAKVQWKVDNALQSGNS






QESVTEQDSKDSTYSLSSTLTLSKADYEKHK






VYACEVTHQGLSSPVTKSFNRGECGGGGSGG






GGSGGGGSGGGGSMLPAPKNLVVSRVTEDS






ARLSWTAPDAAFDSFHIEYAEPWVWGEAIVL






TVPGSERSYDLTGLKPGTEYVVFIGGVKGGH






NSTPLSAIFTT





981
PRT
Human
RSVLC343
DIVMTQSPDSLAVSLGERATINCRASQSVDY






NGISYMHWYQQKPGQPPKLLIYAASNPESGV






PDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQ






IIEDPWTFGQGTKVEIKRTVAAPSVFIFPPSDE






QLKSGTASVVCLLNNFYPREAKVQWKVDNA






LQSGNSQESVTEQDSKDSTYSLSSTLTLSKAD






YEKHKVYACEVTHQGLSSPVTKSFNRGECG






GGGSGGGGSGGGGSGGGGSMLPAPKNLVVS






RVTEDSARLSWTAPDAAFDSFLIQYQESEKV






GEAIVLTVPGSERSYDLTGLKPGTEYTVSIYG






VKGGHRSNPLSAIFTT





982
PRT
Human
RSVLC344
DIVMTQSPDSLAVSLGERATINCRASQSVDY






NGISYMHWYQQKPGQPPKLLIYAASNPESGV






PDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQ






IIEDPWTFGQGTKVEIKRTVAAPSVFIFPPSDE






QLKSGTASVVCLLNNFYPREAKVQWKVDNA






LQSGNSQESVTEQDSKDSTYSLSSTLTLSKAD






YEKHKVYACEVTHQGLSSPVTKSFNRGECG






GGGSGGGGSGGGGSGGGGSMLPAPKNLVVS






RVTEDSARLSWTAPDAAFDSFWITYEEKFYR






GEAIVLTVPGSERSYDLTGLKPGTEYKVWIV






GVKGGQGSWPLSAIFTT





983
PRT
Human
RSVLC345
DIVMTQSPDSLAVSLGERATINCRASQSVDY






NGISYMHWYQQKPGQPPKLLIYAASNPESGV






PDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQ






IIEDPWTFGQGTKVEIKRTVAAPSVFIFPPSDE






QLKSGTASVVCLLNNFYPREAKVQWKVDNA






LQSGNSQESVTEQDSKDSTYSLSSTLTLSKAD






YEKHKVYACEVTHQGLSSPVTKSFNRGECG






GGGSGGGGSGGGGSGGGGSMLPAPKNLVVS






RVTEDSARLSWTAPDAAFDSFHIEYAEPWV






WGEAIVLTVPGSERSYDLTGLKPGTEYVVFIG






GVKGGHNSTPLSAIFTT





984
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC355
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSGGGGS






GGGGSMLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFGIGYLEYPWYGEAIVLTVPGSERSY






DLTGLKPGTEYFVDIYGVKGGWWSYPLSAIF






TTGGGGSGGGGSGGGGSGGGGSMLPAPKNL






VVSRVTEDSARLSWTAPDAAFDSFWITYEEK






FYRGEAIVLTVPGSERSYDLTGLKPGTEYKV






WIVGVKGGQGSWPLSAIFTT





985
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC356
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSGGGGS






GGGGSMLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFNIDYFEYYEFGEAIVLTVPGSERSY






DLTGLKPGTEYFVDIYGVKGGSWSLPLSAIFT






TGGGGSGGGGSGGGGSGGGGSMLPAPKNLV






VSRVTEDSARLSWTAPDAAFDSFWITYEEKF






YRGEAIVLTVPGSERSYDLTGLKPGTEYKVW






IVGVKGGQGSWPLSAIFTT





986
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC357
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSGGGGS






GGGGSMLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFNIHYAEYPDFGEAIVLTVPGSERSY






DLTGLKPGTEYIVDIWGVKGGLGSWPLSAIFT






TGGGGSGGGGSGGGGSGGGGSMLPAPKNLV






VSRVTEDSARLSWTAPDAAFDSFWITYEEKF






YRGEAIVLTVPGSERSYDLTGLKPGTEYKVW






IVGVKGGQGSWPLSAIFTT





987
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC358
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSGGGGS






GGGGSMLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFHIEYAEPWVWGEAIVLTVPGSERS






YDLTGLKPGTEYVVFIGGVKGGHASTPLSAIF






TTGGGGSGGGGSGGGGSGGGGSMLPAPKNL






VVSRVTEDSARLSWTAPDAAFDSFWITYEEK






FYRGEAIVLTVPGSERSYDLTGLKPGTEYKV






WIVGVKGGQGSWPLSAIFTT





988
PRT
Human
CR-
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD





5133HC359
YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSGGGGS






GGGGSMLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFHIEYAEPWVWGEAIVLTVPGSERS






YDLTGLKPGTEYVVFIGGVKGGHSSTPLSAIF






TTGGGGSGGGGSGGGGSGGGGSMLPAPKNL






VVSRVTEDSARLSWTAPDAAFDSFWITYEEK






FYRGEAIVLTVPGSERSYDLTGLKPGTEYKV






WIVGVKGGQGSWPLSAIFTT





989
PRT
Artificial
Luk26
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





Consensus
X32I X34Y X36E X38 X39 X40 X41 X42EAI





Sequence
X46LTVPGSERSYDLTGLKPGT X66Y X68V X70I






X72GVKG X77 X78 X79 S X81 X82L X84A X86FTT






X32 is any amino acid residue, X34 is E, X36 is any






amino acid residue, X38 is any amino acid residue,






X39 is W or a functionally equivalent amino acid






residue, X40 is any amino acid residue, X41 is W,






X42 is any amino acid residue, X46 is any amino






acid residue, X66 is any amino acid residue, X68 is






any amino acid residue, X70 is F, X72 is G, X77 is






any amino acid residue, X78 is any amino acid






residue, X79 is any amino acid residue, X81 is any






amino acid residue, X82 is any amino acid residue,






X84 is any amino acid residue, and X86 is any amino






acid residue.





990
PRT
Artificial
Luk27
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





Consensus
X32I X34Y X36E X38 X39 X40 X41 GEAI





Sequence
VLTVPGSERSYDLTGLKPGT EY X68V X70I






X72GVKG G X78 X79 S X81 PLSAIFTT






X32 is any amino acid residue, X34 is any amino






acid residue, X36 is any amino acid residue, X38 is






W, X39 is any amino acid residue, X40 is any amino






acid residue






X41 is any amino acid residue, X68 is L, X70 is D,






X72 is Y, X78 is any amino acid residue,






X79 is W, and X81 is Y.





991
PRT
Artificial
Luk38
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





Consensus
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





Sequence
GTEYTVSIYGV X75 X76 X77 X78 X79 X80X81 X82






X83 X84 X85 X86 SNPLSAIFTT






X75 is any amino acid residue, X76 is any amino






acid residue, X77 is I, X78 is any amino acid






residue, X79 is any amino acid residue,






X80 is G, X81 is W, X82 is L, X83 is D,






X84 is F, X85 is V, and X86 is F.





992
PRT
Artificial
Luk17
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





Consensus
X32I X34Y X36E X38 X39 X40 X41 X42EAI






X46LTVPGSERSYDLTGLKPGTX66Y X68V X70I






X72GVKG X77 X78 X79 S X81 X82L X84A X86FTT






X32 is W, X34 is any amino acid residue,






X36 is E, X38 is K, X39 is F, X40 is Y, X41 is R,






X42 is any amino acid residue, X42 is any amino






acid residue, X46 is any amino acid residue, X66 is






any amino acid residue, X68 is K, X70 is W, X72 is






any amino acid residue, X77 is any amino acid






residue, X78 is any amino acid residue, X79 is any






amino acid residue, X81 is W, X82 is any amino acid






residue






X84 is any amino acid residue, and X86 is any amino






acid residue.





993
PRT
Artificial
Luk26
DSFX32IX34YX36EX38X39X40X41X42E





C strand/CD
X32 is any amino acid residue, X34 is E,





loop region
X36 is any amino acid residue, X38 is any amino





consensus
acid residue, X39 is W, X40 is any amino acid






residue, X41 is W, X42 is any amino acid residue.





994
PRT
Artificial
Luk26
TX66YX68VX70IX72GVKG X77 X78 X79 SX81





F strand and
X66 is any amino acid residue, X68 is any amino





FG loop region
acid residue, X70 is F, X72 is G, X77 is any amino





consensus
acid residue, X78 is any amino acid residue, X79 is






any amino acid residue, X81 is any amino acid






residue.





995
PRT
Artificial
Luk27
DSFX32IX34YX36EX38X39X40X41GE





C strand/CD
X32 is any amino acid residue, X34 is any amino





loop region
acid residue, X36 is any amino acid residue, X38 is





consensus
W, X39 is any amino acid residue, X40 is any amino






acid residue, and X41 is any amino acid residue;





996
PRT
Artificial
Luk27
TEYX68VX70IX72GVKGG X78 X79 SX81





F strand and
X68 is L, X70 is D, X72 is Y, X78 is any amino acid





FG loop region
residue, X79 is W, and X81 is Y.





consensus






997
PRT
Artificial
Luk38
X75 X76 X77 X78 X79 X80X81 X82 X83 X84 X85 X86





FG loop region
X75 is any amino acid residue, X76 is any amino





consensus
acid residue, X77 is I, X78 is any amino acid






residue, X79 is any amino acid residue, X80 is G, X81






is W, X82 is L, X83 is D, X84 is F, X85 is V, and X86 is






F.





998
PRT
Artificial
Luk17
DSFX32IX34YX36EX38X39X40X41X42E





C strand/CD
X32 is W, X34 is any amino acid residue, X36 is E,





loop region
X38 is K, X39 is F, X40 is Y, X41 is R, and X42 is any





consensus
amino acid residue;





999
PRT
Artificial
Luk17
TX66YX68VX70IX72GVKG X77 X78 X79 SX81





F strand and
X66 is any amino acid residue, X68 is K, X70 is W,





FG loop region
X72 is any amino acid residue, X77 is any amino





consensus
acid residue, X78 is any amino acid residue, X79 is






any amino acid residue, and X81 is W.





1000
PRT
Human
ProteinA3HC41
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS






YAISWVRQAPGQGLEWMGWISAINGNTNYA






QKFQGRVTITADESTSTAYMELSSLRSEDTAV






YYCARIWNFLLDYWGQGTLVTVSSASTKGPS






VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTV






SWNSGALTSGVHTFPAVLQSSGLYSLSSVVT






VPSSSLGTQTYICNVNHKPSNTKVDKKVEPK






SCDKTHTCPPCPAPPVAGPDVFLFPPKPKDTL






MISRTPEVTCVVVDVSHEDPEVKFNWYVDG






VEVHNAKTKPREEQYNSTYRVVSVLTVLHQ






DWLNGKEYKCKVSNAALPAPIAKTISKAKGQ






PREPQVYTLPPSRDELTKNQVSLTCLVKGFYP






SDIAVEWESNGQPENNYKTTPPVLDSDGSFFL






YSKLTVDKSRWQQGNVFSCSVMHEALHNRF






TQKSLSLSPGK





1001
PRT
Human
ProteinA3HC39
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS






YAISWVRQAPGQGLEWMGWISAINGNTNYA






QKFQGRVTITADESTSTAYMELSSLRSEDTAV






YYCARIWNFLLDYWGQGTLVTVSSASTKGPS






VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTV






SWNSGALTSGVHTFPAVLQSSGLYSLSSVVT






VPSSSLGTQTYICNVNHKPSNTKVDKKVEPK






SCDKTHTCPPCPAPELLGGPSVFLFPPKPKDT






LMISRTPEVTCVVVDVSHEDPEVKFNWYVD






GVEVHNAKTKPREEQYNSTYRVVSVLTVLH






QDWLNGKEYKCKVSNKALPAPIEKTISKAKG






QPREPQVYTLPPSRDELTKNQVSLTCLVKGF






YPSDIAVEWESNGQPENNYKTTPPVLDSDGS






FFLYSKLTVDKSRWQQGNVFSCSVMHEALH






NHYTQKSLSLSPGK





1002
PRT
Human
ProteinA3HC40
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS






YAISWVRQAPGQGLEWMGWISAINGNTNYA






QKFQGRVTITADESTSTAYMELSSLRSEDTAV






YYCARIWNFLLDYWGQGTLVTVSSASTKGPS






VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTV






SWNSGALTSGVHTFPAVLQSSGLYSLSSVVT






VPSSSLGTQTYICNVNHKPSNTKVDKKVEPK






SCDKTHTCPPCPAPPVAGPDVFLFPPKPKDTL






MISRTPEVTCVVVDVSHEDPEVKFNWYVDG






VEVHNAKTKPREEQYNSTYRVVSVLTVLHQ






DWLNGKEYKCKVSNAALPAPIAKTISKAKGQ






PREPQVYTLPPSRDELTKNQVSLTCLVKGFYP






SDIAVEWESNGQPENNYKTTPPVLDSDGSFFL






YSKLTVDKSRWQQGNVFSCSVMHEALHNHY






TQKSLSLSPGK





1003
PRT
Human
PagibaximabHC68
EVMLVESGGGLVQPKGSLKLSCAASGFTFNN






YAMNWVRQAPGKGLEWVARIRSKSNNYAT






FYADSVKDRFTISRDDSQSMLYLQMNNLKTE






DTAMYYCVRRGASGIDYAMDYWGQGTSLT






VSSASTKGPSVFPLAPSSKSTSGGTAALGCLV






KDYFPEPVTVSWNSGALTSGVHTFPAVLQSS






GLYSLSSVVTVPSSSLGTQTYICNVNHKPSNT






KVDKKVEPKSCDKTHTCPPCPAPELLGGPSV






FLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE






VKFNWYVDGVEVHNAKTKPREEQYNSTYR






VVSVLTVLHQDWLNGKEYKCKVSNKALPAP






IEKTISKAKGQPREPQVYTLPPSRDELTKNQV






SLTCLVKGFYPSDIAVEWESNGQPENNYKTT






PPVLDSDGSFFLYSKLTVDKSRWQQGNVFSC






SVMHEALHNHYTQKSLSLSPGK





1004
PRT
Human
PagibaximabHC23
EVMLVESGGGLVQPKGSLKLSCAASGFTFNN






YAMNWVRQAPGKGLEWVARIRSKSNNYAT






FYADSVKDRFTISRDDSQSMLYLQMNNLKTE






DTAMYYCVRRGASGIDYAMDYWGQGTSLT






VSSASTKGPSVFPLAPSSKSTSGGTAALGCLV






KDYFPEPVTVSWNSGALTSGVHTFPAVLQSS






GLYSLSSVVTVPSSSLGTQTYICNVNHKPSNT






KVDKKVEPKSCDKTHTCPPCPAPPVAGPDVF






LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV






KFNWYVDGVEVHNAKTKPREEQYNSTYRV






VSVLTVLHQDWLNGKEYKCKVSNAALPAPI






AKTISKAKGQPREPQVYTLPPSRDELTKNQVS






LTCLVKGFYPSDIAVEWESNGQPENNYKTTP






PVLDSDGSFFLYSKLTVDKSRWQQGNVFSCS






VMHEALHNRFTQKSLSLSPGK





1005
PRT
Human
PagibaximabHC69
EVMLVESGGGLVQPKGSLKLSCAASGFTFNN






YAMNWVRQAPGKGLEWVARIRSKSNNYAT






FYADSVKDRFTISRDDSQSMLYLQMNNLKTE






DTAMYYCVRRGASGIDYAMDYWGQGTSLT






VSSASTKGPSVFPLAPSSKSTSGGTAALGCLV






KDYFPEPVTVSWNSGALTSGVHTFPAVLQSS






GLYSLSSVVTVPSSSLGTQTYICNVNHKPSNT






KVDKKVEPKSCDKTHTCPPCPAPPVAGPDVF






LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV






KFNWYVDGVEVHNAKTKPREEQYNSTYRV






VSVLTVLHQDWLNGKEYKCKVSNAALPAPI






AKTISKAKGQPREPQVYTLPPSRDELTKNQVS






LTCLVKGFYPSDIAVEWESNGQPENNYKTTP






PVLDSDGSFFLYSKLTVDKSRWQQGNVFSCS






VMHEALHNHYTQKSLSLSPGK





1006
PRT
Human
PagibaximabHC686
EVMLVESGGGLVQPKGSLKLSCAASGFTFNN






YAMNWVRQAPGKGLEWVARIRSKSNNYAT






FYADSVKDRFTISRDDSQSMLYLQMNNLKTE






DTAMYYCVRRGASGIDYAMDYWGQGTSLT






VSSASTKGPSVFPLAPSSKSTSGGTAALGCLV






KDYFPEPVTVSWNSGALTSGVHTFPAVLQSS






GLYSLSSVVTVPSSSLGTQTYICNVNHKPSNT






KVDKKVEPKSCDKTHTCPPCPAPELLGGPSV






FLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE






VKFNWYVDGVEVHNAKTKPREEQYNSTYR






VVSVLTVLHQDWLNGKEYKCKVSNKALPAP






IEKTISKAKGQPREPQVYTLPPSRDELTKNQV






SLTCLVKGFYPSDIAVEWESNGQPENNYKTT






PPVLDSDGSFFLYSKLTVDKSRWQQGNVFSC






SVMHEALHNRFTQKSLSLSPGK





1007
PRT
Human
ProteinA5HC42
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS






YAISWVRQAPGQGLEWMGGIIPIFGTANYAQ






KFQGRVTITADESTSTAYMELSSLRSEDTAVY






YCARTELRASWGDFDYWGQGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPELLGGPSVFLFPPK






PKDTLMISRTPEVTCVVVDVSHEDPEVKFNW






YVDGVEVHNAKTKPREEQYNSTYRVVSVLT






VLHQDWLNGKEYKCKVSNKALPAPIEKTISK






AKGQPREPQVYTLPPSRDELTKNQVSLTCLV






KGFYPSDIAVEWESNGQPENNYKTTPPVLDS






DGSFFLYSKLTVDKSRWQQGNVFSCSVMHE






ALHNHYTQKSLSLSPGK





1008
PRT
Human
ProteinA5HC43
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS






YAISWVRQAPGQGLEWMGGIIPIFGTANYAQ






KFQGRVTITADESTSTAYMELSSLRSEDTAVY






YCARTELRASWGDFDYWGQGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNHYTQKSLSLSPGK





1009
PRT
Human
ProteinAA5HC44
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS






YAISWVRQAPGQGLEWMGGIIPIFGTANYAQ






KFQGRVTITADESTSTAYMELSSLRSEDTAVY






YCARTELRASWGDFDYWGQGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGK





1010
PRT
Human
ProteinA5HC45
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS






YAISWVRQAPGQGLEWMGGIIPIFGTANYAQ






KFQGRVTITADESTSTAYMELSSLRSEDTAVY






YCARTELRASWGDFDYWGQGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPELLGGPSVFLFPPK






PKDTLMISRTPEVTCVVVDVSHEDPEVKFNW






YVDGVEVHNAKTKPREEQYNSTYRVVSVLT






VLHQDWLNGKEYKCKVSNKALPAPIEKTISK






AKGQPREPQVYTLPPSRDELTKNQVSLTCLV






KGFYPSDIAVEWESNGQPENNYKTTPPVLDS






DGSFFLYSKLTVDKSRWQQGNVFSCSVMHE






ALHNRFTQKSLSLSPGK





1011
PRT
Human
ProteinA3HC46
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS






YAISWVRQAPGQGLEWMGWISAINGNTNYA






QKFQGRVTITADESTSTAYMELSSLRSEDTAV






YYCARIWNFLLDYWGQGTLVTVSSASTKGPS






VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTV






SWNSGALTSGVHTFPAVLQSSGLYSLSSVVT






VPSSSLGTQTYICNVNHKPSNTKVDKKVEPK






SCDKTHTCPPCPAPELLGGPSVFLFPPKPKDT






LMISRTPEVTCVVVDVSHEDPEVKFNWYVD






GVEVHNAKTKPREEQYNSTYRVVSVLTVLH






QDWLNGKEYKCKVSNKALPAPIEKTISKAKG






QPREPQVYTLPPSRDELTKNQVSLTCLVKGF






YPSDIAVEWESNGQPENNYKTTPPVLDSDGS






FFLYSKLTVDKSRWQQGNVFSCSVMHEALH






NRFTQKSLSLSPGK





1012
PRT
Human
ProteinAA9HC47
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSY






WIGWVRQMPGKGLEWMGIIYPGDSDTRYSP






SFQGQVTISADKSISTAYLQWSSLKASDTAM






YYCARWSYSQYSGWLDYWGQGTLVTVSSA






STKGPSVFPLAPSSKSTSGGTAALGCLVKDYF






PEPVTVSWNSGALTSGVHTFPAVLQSSGLYS






LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK






KVEPKSCDKTHTCPPCPAPELLGGPSVFLFPP






KPKDTLMISRTPEVTCVVVDVSHEDPEVKFN






WYVDGVEVHNAKTKPREEQYNSTYRVVSVL






TVLHQDWLNGKEYKCKVSNKALPAPIEKTIS






KAKGQPREPQVYTLPPSRDELTKNQVSLTCL






VKGFYPSDIAVEWESNGQPENNYKTTPPVLD






SDGSFFLYSKLTVDKSRWQQGNVFSCSVMH






EALHNHYTQKSLSLSPGK





1013
PRT
Human
ProteinA9HC48
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSY






WIGWVRQMPGKGLEWMGIIYPGDSDTRYSP






SFQGQVTISADKSISTAYLQWSSLKASDTAM






YYCARWSYSQYSGWLDYWGQGTLVTVSSA






STKGPSVFPLAPSSKSTSGGTAALGCLVKDYF






PEPVTVSWNSGALTSGVHTFPAVLQSSGLYS






LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK






KVEPKSCDKTHTCPPCPAPELLGGPSVFLFPP






KPKDTLMISRTPEVTCVVVDVSHEDPEVKFN






WYVDGVEVHNAKTKPREEQYNSTYRVVSVL






TVLHQDWLNGKEYKCKVSNKALPAPIEKTIS






KAKGQPREPQVYTLPPSRDELTKNQVSLTCL






VKGFYPSDIAVEWESNGQPENNYKTTPPVLD






SDGSFFLYSKLTVDKSRWQQGNVFSCSVMH






EALHNRFTQKSLSLSPGK





1014
PRT
Human
ProteinA9HC49
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSY






WIGWVRQMPGKGLEWMGIIYPGDSDTRYSP






SFQGQVTISADKSISTAYLQWSSLKASDTAM






YYCARWSYSQYSGWLDYWGQGTLVTVSSA






STKGPSVFPLAPSSKSTSGGTAALGCLVKDYF






PEPVTVSWNSGALTSGVHTFPAVLQSSGLYS






LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK






KVEPKSCDKTHTCPPCPAPPVAGPDVFLFPPK






PKDTLMISRTPEVTCVVVDVSHEDPEVKFNW






YVDGVEVHNAKTKPREEQYNSTYRVVSVLT






VLHQDWLNGKEYKCKVSNAALPAPIAKTISK






AKGQPREPQVYTLPPSRDELTKNQVSLTCLV






KGFYPSDIAVEWESNGQPENNYKTTPPVLDS






DGSFFLYSKLTVDKSRWQQGNVFSCSVMHE






ALHNHYTQKSLSLSPGK





1015
PRT
Human
ProteinA9HC50
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSY






WIGWVRQMPGKGLEWMGIIYPGDSDTRYSP






SFQGQVTISADKSISTAYLQWSSLKASDTAM






YYCARWSYSQYSGWLDYWGQGTLVTVSSA






STKGPSVFPLAPSSKSTSGGTAALGCLVKDYF






PEPVTVSWNSGALTSGVHTFPAVLQSSGLYS






LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK






KVEPKSCDKTHTCPPCPAPPVAGPDVFLFPPK






PKDTLMISRTPEVTCVVVDVSHEDPEVKFNW






YVDGVEVHNAKTKPREEQYNSTYRVVSVLT






VLHQDWLNGKEYKCKVSNAALPAPIAKTISK






AKGQPREPQVYTLPPSRDELTKNQVSLTCLV






KGFYPSDIAVEWESNGQPENNYKTTPPVLDS






DGSFFLYSKLTVDKSRWQQGNVFSCSVMHE






ALHNRFTQKSLSLSPGK





1016
PRT
Human
ProteinA5LC
DIQMTQSPSSLSASVGDRVTITCRASQSISSYL






NWYQQKPGKAPKLLIYAASSLQSGVPSRFSG






SGSGTDFTLTISSLQPEDFATYYCQQSYSTPLT






FGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGT






ASVVCLLNNFYPREAKVQWKVDNALQSGNS






QESVTEQDSKDSTYSLSSTLTLSKADYEKHK






VYACEVTHQGLSSPVTKSFNRGEC





1017
PRT
Artificial
Tencon
LPAPKNLVVSEVTEDSLRLSWTAPDAAFDSF






LIQYQESEKVGEAINLTVPGSERSYDLTGLKP






GTEYTVSIYGVKGGHRSNPLSAEFTT





1018
PRT
Artificial
LukA (PDB
NSAHKDSQDQNKKEHVDKSQQKDKRNVTN





Entry 4tw1)
KDKNSTAPDDIGKNGKITKRTETVYDEKTNIL






QNLQFDFIDDPTYDKNVLLVKKQGSIHSNLK






FESHKEEKNSNWLKYPSEYHVDFQVKRNRK






TEILDQLPKNKISTAKVDSTFSYSSGGKFDST






KGIGRTSSNSYSKTISYNQQNYDTIASGKNNN






WHVHWSVIANDLKYGGEVKNRNDELLFYR






NTRIATVENPELSFASKYRYPALVRSGFNPEF






LTYLSNEKSNEKTQFEVTYTRNQDILKNRPGI






HYAPPILEKNKDGQRLIVTYEVDWKNKTVK






VVDKYSDDNKPYKEG





1019
PRT
Artificial
LukA (HDX)
NSAHHHHHHGSHKDSQDQNKKEHVDKSQQ






KDKRNVTNKDKNSTAPDDIGKNGKITKRTET






VYDEKTNILQNLQFDFIDDPTYDKNVLLVKK






QGSIHSNLKFESHKEEKNSNWLKYPSEYHVD






FQVKRNRKTEILDQLPKNKISTAKVDSTFSYS






SGGKFDSTKGIGRTSSNSYSKTISYNQQNYDT






IASGKNNNWHVHWSVIANDLKYGGEVKNR






NDELLFYRNTRIATVENPELSFASKYRYPALV






RSGFNPEFLTYLSNEKSNEKTQFEVTYTRNQ






DILKNRPGIHYAPPILEKNKDGQRLIVTYEVD






WKNKTVKVVDKYSDDNKPYKAG





1020
PRT
Artificial
LukA (Loop
MNSAHHHHHHGSHKDSQDQNKKEHVDKSQ





Mutants)
QKDKRNVTNKDKNSTAPDDIGKNGKITKRTE






TVYDEKTNILQNLQFDFIDDPTYDKNVLLVK






KQGSIHSNLKFESHKEEKNSNWLKYPSEYHV






DFQVKRNRKTEILDQLPKNKISTAKVDSTFSY






SSGGKFDSTKGIGRTSSNSYSKTISYNQQNYD






TIASGKNNNWHVHWSVIANDLKYGGEVKNR






NDELLFYRNTRIATVENPELSFASKYRYPALV






RSGFNPEFLTYLSNEKSNEKTQFEVTYTRNQ






DILKNRPGIHYAPPILEKNKDGQRLIVTYEVD






WKNKTVKVVDKYSDDNKPYKAG





1021
PRT
Artificial
LukA (Point
MNSAHHHHHHHHHHGGGLNDIFEAQKIEWH





Mutants)
EGSHKDSQDQNKKEHVDKSQQKDKRNVTN






KDKNSTAPDDIGKNGKITKRTETVYDEKTNIL






QNLQFDFIDDPTYDKNVLLVKKQGSIHSNLK






FESHKEEKNSNWLKYPSEYHVDFQVKRNRK






TEILDQLPKNKISTAKVDSTFSYSSGGKFDST






KGIGRTSSNSYSKTISYNQQNYDTIASGKNNN






WHVHWSVIANDLKYGGEVKNRNDELLFYR






NTRIATVENPELSFASKYRYPALVRSGFNPEF






LTYLSNEKSNEKTQFEVTYTRNQDILKNRPGI






HYAPPILEKNKDGQRLIVTYEVDWKNKTVK






VVDKYSDDNKPYKAG





1022
PRT
Artificial
LukA mut3
MNSAHHHHHHGSHKDSQDQNKKEHVDKSQ






QKDKRNVTNKDKNSTAPDDIGKNGKITKRTE






TVYDEKTNILQNLQFDFIDDPTYDKNVLLVK






KQGSIHSNLKFESHKEEKNSNWLKYPSEYHV






DFQVKRNRKTEILDQLPKNKISGGSGGNYDTI






ASGKNNNWHVHWSVIANDLKYGGEVKNRN






DELLFYRNTRIATVENPELSFASKYRYPALVR






SGFNPEFLTYLSNEKSNEKTQFEVTYTRNQDI






LKNRPGIHYAPPILEKNKDGQRLIVTYEVDW






KNKTVKVVDKYSDDNKPYKAG





1023
PRT
Artificial
LukA mut4
MNSAHHHHHHGSHKDSQDQNKKEHVDKSQ






QKDKRNVTNKDKNSTAPDDIGKNGKITKRTE






TVYDEKTNILQNLQFDFIDDPTYDKNVLLVK






KQGSIHSNLKFESHKEEKNSNWLKYPSEYHV






DFQVKRNRKTEILDQLPKNKISGGSGNYDTIA






SGKNNNWHVHWSVIANDLKYGGEVKNRND






ELLFYRNTRIATVENPELSFASKYRYPALVRS






GFNPEFLTYLSNEKSNEKTQFEVTYTRNQDIL






KNRPGIHYAPPILEKNKDGQRLIVTYEVDWK






NKTVKVVDKYSDDNKPYKAG





1024
PRT
Artificial
LukA mut5
MNSAHHHHHHGSHKDSQDQNKKEHVDKSQ






QKDKRNVTNKDKNSTAPDDIGKNGKITKRTE






TVYDEKTNILQNLQFDFIDDPTYDKNVLLVK






KQGSIHSNLKFESHKEEKNSNWLKYPSEYHV






DFQVKRNRKTEILDQLPKNSGGSGQNYDTIA






SGKNNNWHVHWSVIANDLKYGGEVKNRND






ELLFYRNTRIATVENPELSFASKYRYPALVRS






GFNPEFLTYLSNEKSNEKTQFEVTYTRNQDIL






KNRPGIHYAPPILEKNKDGQRLIVTYEVDWK






NKTVKVVDKYSDDNKPYKAG





1025
PRT
Artificial
LukA mut6
MNSAHHHHHHGSHKDSQDQNKKEHVDKSQ






QKDKRNVTNKDKNSTAPDDIGKNGKITKRTE






TVYDEKTNILQNLQFDFIDDPTYDKNVLLVK






KQGSIHSNLKFESHKEEKNSNWLKYPSEYHV






DFQVKRNRKTEILDQLPKNSGGSGGQNYDTI






ASGKNNNWHVHWSVIANDLKYGGEVKNRN






DELLFYRNTRIATVENPELSFASKYRYPALVR






SGFNPEFLTYLSNEKSNEKTQFEVTYTRNQDI






LKNRPGIHYAPPILEKNKDGQRLIVTYEVDW






KNKTVKVVDKYSDDNKPYKAG





1026
PRT
Artificial
LukB (PDB
KINSEIKQVSEKNLDGDTKMYTRTATTSDSQ





Entry 4tw1)
KNITQSLQFNFLTEPNYDKETVFIKAKGTIGS






GLRILDPNGYWNSTLRWPGSYSVSIQNVDDN






NNTNVTDFAPKNQDESREVKYTYGYKTGGD






FSINRGGLTGNITKESNYSETISYQQPSYRTLL






DQSTSHKGVGWKVEAHLINNMGHDHTRQLT






NDSDNRTKSEIFSLTRNGNLWAKDNFTPKDK






MPVTVSEGFNPEFLAVMSHDKKDKGKSQFV






VHYKRSMDEFKIDWNRHGFWGYWSGENHV






DKKEEKLSALYEVDWKTHNVKFVKVLND





1027
PRT
Artificial
LukB (HDX)
KINSEIKQVSEKNLDGDTKMYTRTATTSDSQ






KNITQSLQFNFLTEPNYDKETVFIKAKGTIGS






GLRILDPNGYWNSTLRWPGSYSVSIQNVDDN






NNTNVTDFAPKNQDESREVKYTYGYKTGGD






FSINRGGLTGNITKESNYSETISYQQPSYRTLL






DQSTSHKGVGWKVEAHLINNMGHDHTRQLT






NDSDNRTKSEIFSLTRNGNLWAKDNFTPKDK






MPVTVSEGFNPEFLAVMSHDKKDKGKSQFV






VHYKRSMDEFKIDWNRHGFWGYWSGENHV






DKKEEKLSALYEVDWKTHNVKFVKVLNDNE






KK





1028
PRT
Artificial
LukB
MKINSEIKQVSEKNLDGDTKMYTRTATTSDS





(Mutants)
QKNITQSLQFNFLTEPNYDKETVFIKAKGTIG






SGLRILDPNGYWNSTLRWPGSYSVSIQNVDD






NNNTNVTDFAPKNQDESREVKYTYGYKTGG






DFSINRGGLTGNITKESNYSETISYQQPSYRTL






LDQSTSHKGVGWKVEAHLINNMGHDHTRQL






TNDSDNRTKSEIFSLTRNGNLWAKDNFTPKD






KMPVTVSEGFNPEFLAVMSHDKKDKGKSQF






VVHYKRSMDEFKIDWNRHGFWGYWSGENH






VDKKEEKLSALYEVDWKTHNVKFVKVLND






NEKK





1029
PRT
Artificial
LukB mut3
MKINSEIKQVSEKNLDGDTKMYTRTATTSDS






QKNITQSLQFNFLTEPNYDKETVFIKAKGTIG






SGLRILDPNGYWNSTLRWPGSYSVSIQNVDD






NNNTNVTDFAPKNQDESGGSGGSYRTLLDQS






TSHKGVGWKVEAHLINNMGHDHTRQLTNDS






DNRTKSEIFSLTRNGNLWAKDNFTPKDKMPV






TVSEGFNPEFLAVMSHDKKDKGKSQFVVHY






KRSMDEFKIDWNRHGFWGYWSGENHVDKK






EEKLSALYEVDWKTHNVKFVKVLNDNEKK





1030
PRT
Artificial
LukB mut4
MKINSEIKQVSEKNLDGDTKMYTRTATTSDS






QKNITQSLQFNFLTEPNYDKETVFIKAKGTIG






SGLRILDPNGYWNSTLRWPGSYSVSIQNVDD






NNNTNVTDFAPKNQDESGGSGSYRTLLDQST






SHKGVGWKVEAHLINNMGHDHTRQLTNDS






DNRTKSEIFSLTRNGNLWAKDNFTPKDKMPV






TVSEGFNPEFLAVMSHDKKDKGKSQFVVHY






KRSMDEFKIDWNRHGFWGYWSGENHVDKK






EEKLSALYEVDWKTHNVKFVKVLNDNEKK





1031
PRT
Artificial
LukB mut5
MKINSEIKQVSEKNLDGDTKMYTRTATTSDS






QKNITQSLQFNFLTEPNYDKETVFIKAKGTIG






SGLRILDPNGYWNSTLRWPGSYSVSIQNVDD






NNNTNVTDFAPKNQDESGGSGPSYRTLLDQS






TSHKGVGWKVEAHLINNMGHDHTRQLTNDS






DNRTKSEIFSLTRNGNLWAKDNFTPKDKMPV






TVSEGFNPEFLAVMSHDKKDKGKSQFVVHY






KRSMDEFKIDWNRHGFWGYWSGENHVDKK






EEKLSALYEVDWKTHNVKFVKVLNDNEKK





1032
PRT
Artificial
LukB mut6
MKINSEIKQVSEKNLDGDTKMYTRTATTSDS






QKNITQSLQFNFLTEPNYDKETVFIKAKGTIG






SGLRILDPNGYWNSTLRWPGSYSVSIQNVDD






NNNTNVTDFAPKNQSGGSGPSYRTLLDQSTS






HKGVGWKVEAHLINNMGHDHTRQLTNDSD






NRTKSEIFSLTRNGNLWAKDNFTPKDKMPVT






VSEGFNPEFLAVMSHDKKDKGKSQFVVHYK






RSMDEFKIDWNRHGFWGYWSGENHVDKKE






EKLSALYEVDWKTHNVKFVKVLNDNEKK





1033
PRT
Artificial
LukB_Y74A
MKINSEIKQVSEKNLDGDTKMYTRTATTSDS






QKNITQSLQFNFLTEPNYDKETVFIKAKGTIG






SGLRILDPNGAWNSTLRWPGSYSVSIQNVDD






NNNTNVTDFAPKNQDESREVKYTYGYKTGG






DFSINRGGLTGNITKESNYSETISYQQPSYRTL






LDQSTSHKGVGWKVEAHLINNMGHDHTRQL






TNDSDNRTKSEIFSLTRNGNLWAKDNFTPKD






KMPVTVSEGFNPEFLAVMSHDKKDKGKSQF






VVHYKRSMDEFKIDWNRHGFWGYWSGENH






VDKKEEKLSALYEVDWKTHNVKFVKVLND






NEKK





1034
PRT
Artificial
LukB_W75A
MKINSEIKQVSEKNLDGDTKMYTRTATTSDS






QKNITQSLQFNFLTEPNYDKETVFIKAKGTIG






SGLRILDPNGYANSTLRWPGSYSVSIQNVDD






NNNTNVTDFAPKNQDESREVKYTYGYKTGG






DFSINRGGLTGNITKESNYSETISYQQPSYRTL






LDQSTSHKGVGWKVEAHLINNMGHDHTRQL






TNDSDNRTKSEIFSLTRNGNLWAKDNFTPKD






KMPVTVSEGFNPEFLAVMSHDKKDKGKSQF






VVHYKRSMDEFKIDWNRHGFWGYWSGENH






VDKKEEKLSALYEVDWKTHNVKFVKVLND






NEKK





1035
PRT
Artificial
LukB_R194A
MKINSEIKQVSEKNLDGDTKMYTRTATTSDS






QKNITQSLQFNFLTEPNYDKETVFIKAKGTIG






SGLRILDPNGYWNSTLRWPGSYSVSIQNVDD






NNNTNVTDFAPKNQDESREVKYTYGYKTGG






DFSINRGGLTGNITKESNYSETISYQQPSYRTL






LDQSTSHKGVGWKVEAHLINNMGHDHTRQL






TNDSDNATKSEIFSLTRNGNLWAKDNFTPKD






KMPVTVSEGFNPEFLAVMSHDKKDKGKSQF






VVHYKRSMDEFKIDWNRHGFWGYWSGENH






VDKKEEKLSALYEVDWKTHNVKFVKVLND






NEKK





1036
PRT
Artificial
LukB_K196A
MKINSEIKQVSEKNLDGDTKMYTRTATTSDS






QKNITQSLQFNFLTEPNYDKETVFIKAKGTIG






SGLRILDPNGYWNSTLRWPGSYSVSIQNVDD






NNNTNVTDFAPKNQDESREVKYTYGYKTGG






DFSINRGGLTGNITKESNYSETISYQQPSYRTL






LDQSTSHKGVGWKVEAHLINNMGHDHTRQL






TNDSDNRTASEIFSLTRNGNLWAKDNFTPKD






KMPVTVSEGFNPEFLAVMSHDKKDKGKSQF






VVHYKRSMDEFKIDWNRHGFWGYWSGENH






VDKKEEKLSALYEVDWKTHNVKFVKVLND






NEKK





1037
PRT
Artificial
LukB_R204A
MKINSEIKQVSEKNLDGDTKMYTRTATTSDS






QKNITQSLQFNFLTEPNYDKETVFIKAKGTIG






SGLRILDPNGYWNSTLRWPGSYSVSIQNVDD






NNNTNVTDFAPKNQDESREVKYTYGYKTGG






DFSINRGGLTGNITKESNYSETISYQQPSYRTL






LDQSTSHKGVGWKVEAHLINNMGHDHTRQL






TNDSDNRTKSEIFSLTANGNLWAKDNFTPKD






KMPVTVSEGFNPEFLAVMSHDKKDKGKSQF






VVHYKRSMDEFKIDWNRHGFWGYWSGENH






VDKKEEKLSALYEVDWKTHNVKFVKVLND






NEKK





1038
PRT
Artificial
LukB_N205A
MKINSEIKQVSEKNLDGDTKMYTRTATTSDS






QKNITQSLQFNFLTEPNYDKETVFIKAKGTIG






SGLRILDPNGYWNSTLRWPGSYSVSIQNVDD






NNNTNVTDFAPKNQDESREVKYTYGYKTGG






DFSINRGGLTGNITKESNYSETISYQQPSYRTL






LDQSTSHKGVGWKVEAHLINNMGHDHTRQL






TNDSDNRTKSEIFSLTRAGNLWAKDNFTPKD






KMPVTVSEGFNPEFLAVMSHDKKDKGKSQF






VVHYKRSMDEFKIDWNRHGFWGYWSGENH






VDKKEEKLSALYEVDWKTHNVKFVKVLND






NEKK





1039
PRT
Artificial
LukB_N207A
MKINSEIKQVSEKNLDGDTKMYTRTATTSDS






QKNITQSLQFNFLTEPNYDKETVFIKAKGTIG






SGLRILDPNGYWNSTLRWPGSYSVSIQNVDD






NNNTNVTDFAPKNQDESREVKYTYGYKTGG






DFSINRGGLTGNITKESNYSETISYQQPSYRTL






LDQSTSHKGVGWKVEAHLINNMGHDHTRQL






TNDSDNRTKSEIFSLTRNGALWAKDNFTPKD






KMPVTVSEGFNPEFLAVMSHDKKDKGKSQF






VVHYKRSMDEFKIDWNRHGFWGYWSGENH






VDKKEEKLSALYEVDWKTHNVKFVKVLND






NEKK





1040
PRT
Artificial
LukB_W209A
MKINSEIKQVSEKNLDGDTKMYTRTATTSDS






QKNITQSLQFNFLTEPNYDKETVFIKAKGTIG






SGLRILDPNGYWNSTLRWPGSYSVSIQNVDD






NNNTNVTDFAPKNQDESREVKYTYGYKTGG






DFSINRGGLTGNITKESNYSETISYQQPSYRTL






LDQSTSHKGVGWKVEAHLINNMGHDHTRQL






TNDSDNRTKSEIFSLTRNGNLAAKDNFTPKD






KMPVTVSEGFNPEFLAVMSHDKKDKGKSQF






VVHYKRSMDEFKIDWNRHGFWGYWSGENH






VDKKEEKLSALYEVDWKTHNVKFVKVLND






NEKK





1041
PRT
Artificial
LukB_D262A
MKINSEIKQVSEKNLDGDTKMYTRTATTSDS






QKNITQSLQFNFLTEPNYDKETVFIKAKGTIG






SGLRILDPNGYWNSTLRWPGSYSVSIQNVDD






NNNTNVTDFAPKNQDESREVKYTYGYKTGG






DFSINRGGLTGNITKESNYSETISYQQPSYRTL






LDQSTSHKGVGWKVEAHLINNMGHDHTRQL






TNDSDNRTKSEIFSLTRNGNLWAKDNFTPKD






KMPVTVSEGFNPEFLAVMSHDKKDKGKSQF






VVHYKRSMDEFKIAWNRHGFWGYWSGENH






VDKKEEKLSALYEVDWKTHNVKFVKVLND






NEKK





1042
PRT
Artificial
LukB_D262R
MKINSEIKQVSEKNLDGDTKMYTRTATTSDS






QKNITQSLQFNFLTEPNYDKETVFIKAKGTIG






SGLRILDPNGYWNSTLRWPGSYSVSIQNVDD






NNNTNVTDFAPKNQDESREVKYTYGYKTGG






DFSINRGGLTGNITKESNYSETISYQQPSYRTL






LDQSTSHKGVGWKVEAHLINNMGHDHTRQL






TNDSDNRTKSEIFSLTRNGNLWAKDNFTPKD






KMPVTVSEGFNPEFLAVMSHDKKDKGKSQF






VVHYKRSMDEFKIRWNRHGFWGYWSGENH






VDKKEEKLSALYEVDWKTHNVKFVKVLND






NEKK





1043
PRT
Artificial
LukB_W263A
MKINSEIKQVSEKNLDGDTKMYTRTATTSDS






QKNITQSLQFNFLTEPNYDKETVFIKAKGTIG






SGLRILDPNGYWNSTLRWPGSYSVSIQNVDD






NNNTNVTDFAPKNQDESREVKYTYGYKTGG






DFSINRGGLTGNITKESNYSETISYQQPSYRTL






LDQSTSHKGVGWKVEAHLINNMGHDHTRQL






TNDSDNRTKSEIFSLTRNGNLWAKDNFTPKD






KMPVTVSEGFNPEFLAVMSHDKKDKGKSQF






VVHYKRSMDEFKIDANRHGFWGYWSGENH






VDKKEEKLSALYEVDWKTHNVKFVKVLND






NEKK





1044
PRT
Artificial
LukB_N264A
MKINSEIKQVSEKNLDGDTKMYTRTATTSDS






QKNITQSLQFNFLTEPNYDKETVFIKAKGTIG






SGLRILDPNGYWNSTLRWPGSYSVSIQNVDD






NNNTNVTDFAPKNQDESREVKYTYGYKTGG






DFSINRGGLTGNITKESNYSETISYQQPSYRTL






LDQSTSHKGVGWKVEAHLINNMGHDHTRQL






TNDSDNRTKSEIFSLTRNGNLWAKDNFTPKD






KMPVTVSEGFNPEFLAVMSHDKKDKGKSQF






VVHYKRSMDEFKIDWARHGFWGYWSGENH






VDKKEEKLSALYEVDWKTHNVKFVKVLND






NEKK





1045
PRT
Artificial
LukB_R265A
MKINSEIKQVSEKNLDGDTKMYTRTATTSDS






QKNITQSLQFNFLTEPNYDKETVFIKAKGTIG






SGLRILDPNGYWNSTLRWPGSYSVSIQNVDD






NNNTNVTDFAPKNQDESREVKYTYGYKTGG






DFSINRGGLTGNITKESNYSETISYQQPSYRTL






LDQSTSHKGVGWKVEAHLINNMGHDHTRQL






TNDSDNRTKSEIFSLTRNGNLWAKDNFTPKD






KMPVTVSEGFNPEFLAVMSHDKKDKGKSQF






VVHYKRSMDEFKIDWNAHGFWGYWSGENH






VDKKEEKLSALYEVDWKTHNVKFVKVLND






NEKK





1046
PRT
Artificial
LukB_R265E
MKINSEIKQVSEKNLDGDTKMYTRTATTSDS






QKNITQSLQFNFLTEPNYDKETVFIKAKGTIG






SGLRILDPNGYWNSTLRWPGSYSVSIQNVDD






NNNTNVTDFAPKNQDESREVKYTYGYKTGG






DFSINRGGLTGNITKESNYSETISYQQPSYRTL






LDQSTSHKGVGWKVEAHLINNMGHDHTRQL






TNDSDNRTKSEIFSLTRNGNLWAKDNFTPKD






KMPVTVSEGFNPEFLAVMSHDKKDKGKSQF






VVHYKRSMDEFKIDWNEHGFWGYWSGENH






VDKKEEKLSALYEVDWKTHNVKFVKVLND






NEKK





1047
PRT
Artificial
LukB_H266A
MKINSEIKQVSEKNLDGDTKMYTRTATTSDS






QKNITQSLQFNFLTEPNYDKETVFIKAKGTIG






SGLRILDPNGYWNSTLRWPGSYSVSIQNVDD






NNNTNVTDFAPKNQDESREVKYTYGYKTGG






DFSINRGGLTGNITKESNYSETISYQQPSYRTL






LDQSTSHKGVGWKVEAHLINNMGHDHTRQL






TNDSDNRTKSEIFSLTRNGNLWAKDNFTPKD






KMPVTVSEGFNPEFLAVMSHDKKDKGKSQF






VVHYKRSMDEFKIDWNRAGFWGYWSGENH






VDKKEEKLSALYEVDWKTHNVKFVKVLND






NEKK





1048
PRT
Artificial
LukB_G267R
MKINSEIKQVSEKNLDGDTKMYTRTATTSDS






QKNITQSLQFNFLTEPNYDKETVFIKAKGTIG






SGLRILDPNGYWNSTLRWPGSYSVSIQNVDD






NNNTNVTDFAPKNQDESREVKYTYGYKTGG






DFSINRGGLTGNITKESNYSETISYQQPSYRTL






LDQSTSHKGVGWKVEAHLINNMGHDHTRQL






TNDSDNRTKSEIFSLTRNGNLWAKDNFTPKD






KMPVTVSEGFNPEFLAVMSHDKKDKGKSQF






VVHYKRSMDEFKIDWNRHRFWGYWSGENH






VDKKEEKLSALYEVDWKTHNVKFVKVLND






NEKK





1049
PRT
Artificial
LukB_G267A
MKINSEIKQVSEKNLDGDTKMYTRTATTSDS






QKNITQSLQFNFLTEPNYDKETVFIKAKGTIG






SGLRILDPNGYWNSTLRWPGSYSVSIQNVDD






NNNTNVTDFAPKNQDESREVKYTYGYKTGG






DFSINRGGLTGNITKESNYSETISYQQPSYRTL






LDQSTSHKGVGWKVEAHLINNMGHDHTRQL






TNDSDNRTKSEIFSLTRNGNLWAKDNFTPKD






KMPVTVSEGFNPEFLAVMSHDKKDKGKSQF






VVHYKRSMDEFKIDWNRHAFWGYWSGENH






VDKKEEKLSALYEVDWKTHNVKFVKVLND






NEKK





1050
PRT
Artificial
LukB_F268A
MKINSEIKQVSEKNLDGDTKMYTRTATTSDS






QKNITQSLQFNFLTEPNYDKETVFIKAKGTIG






SGLRILDPNGYWNSTLRWPGSYSVSIQNVDD






NNNTNVTDFAPKNQDESREVKYTYGYKTGG






DFSINRGGLTGNITKESNYSETISYQQPSYRTL






LDQSTSHKGVGWKVEAHLINNMGHDHTRQL






TNDSDNRTKSEIFSLTRNGNLWAKDNFTPKD






KMPVTVSEGFNPEFLAVMSHDKKDKGKSQF






VVHYKRSMDEFKIDWNRHGAWGYWSGENH






VDKKEEKLSALYEVDWKTHNVKFVKVLND






NEKK





1051
PRT
Artificial
LukB_W269A
MKINSEIKQVSEKNLDGDTKMYTRTATTSDS






QKNITQSLQFNFLTEPNYDKETVFIKAKGTIG






SGLRILDPNGYWNSTLRWPGSYSVSIQNVDD






NNNTNVTDFAPKNQDESREVKYTYGYKTGG






DFSINRGGLTGNITKESNYSETISYQQPSYRTL






LDQSTSHKGVGWKVEAHLINNMGHDHTRQL






TNDSDNRTKSEIFSLTRNGNLWAKDNFTPKD






KMPVTVSEGFNPEFLAVMSHDKKDKGKSQF






VVHYKRSMDEFKIDWNRHGFAGYWSGENH






VDKKEEKLSALYEVDWKTHNVKFVKVLND






NEKK





1052
PRT
Artificial
LukB_Y271A
MKINSEIKQVSEKNLDGDTKMYTRTATTSDS






QKNITQSLQFNFLTEPNYDKETVFIKAKGTIG






SGLRILDPNGYWNSTLRWPGSYSVSIQNVDD






NNNTNVTDFAPKNQDESREVKYTYGYKTGG






DFSINRGGLTGNITKESNYSETISYQQPSYRTL






LDQSTSHKGVGWKVEAHLINNMGHDHTRQL






TNDSDNRTKSEIFSLTRNGNLWAKDNFTPKD






KMPVTVSEGFNPEFLAVMSHDKKDKGKSQF






VVHYKRSMDEFKIDWNRHGFWGAWSGENH






VDKKEEKLSALYEVDWKTHNVKFVKVLND






NEKK





1053
PRT
Artificial
Luk17
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FWITYEEKFYRGEAIVLTVPGSERSYDLTGLK






PGTEYKVWIVGVKGGQGSWPLSAIFTTGGHH






HHHH





1054
PRT
Artificial
LukE (PDB
MFKKKMLAATLSVGLIAPLASPIQESRANTNI





Entry 3rohA)
ENIGDGAEVIKRTEDVSSKKWGVTQNVQFDF






VKDKKYNKDALIVKMQGFINSRTSFSDVKGS






GYELTKRMIWPFQYNIGLTTKDPNVSLINYLP






KNKIETTDVGQTLGYNIGGNFQSAPSIGGNGS






FNYSKTISYTQKSYVSEVDKQNSKSVKWGV






KANEFVTPDGKKSAHDRYLFVQSPNGPTGSA






REYFAPDNQLPPLVQSGFNPSFITTLSHEKGSS






DTSEFEISYGRNLDITYATLFPRTGIYAERKHN






AFVNRNFVVRYEVNWKTHEIKVKGHN





1055
PRT
Artificial
LukE (HDX)
NSAHHHHHHGSNTNIENIGDGAEVIKRTEDV






SSKKWGVTQNVQFDFVKDKKYNKDALIVK






MQGFINSRTSFSDVKGSGYELTKRMIWPFQY






NIGLTTKDPNVSLINYLPKNKIETTDVGQTLG






YNIGGNFQSAPSIGGNGSFNYSKTISYTQKSY






VSEVDKQNSKSVKWGVKANEFVTPDGKKSA






HDRYLFVQSPNGPTGSAREYFAPDNQLPPLV






QSGFNPSFITTLSHEKGSSDTSEFELSYGRNLD






ITYATLFPRTGIYAERKHNAFVNRNFVVRYK






VNWKTHEIKVKGHN





1056
PRT
Artificial
LukE
MGSSGLNDIFEAQKIEWHEGGHHHHHHHHH





(Mutants)
HSSGLVPRGSHMLENTNIENIGDGAEVIKRTE






DVSSKKWGVTQNVQFDFVKDKKYNKDALIV






KMQGFINSRTSFSDVKGSGYELTKRMIWPFQ






YNIGLTTKDPNVSLINYLPKNKIETTDVGQTL






GYNIGGNFQSAPSIGGNGSFNYSKTISYTQKS






YVSEVDKQNSKSVKWGVKANEFVTPDGKKS






AHDRYLFVQSPNGPTGSAREYFAPDNQLPPL






VQSGFNPSFITTLSHEKGSSDTSEFEISYGRNL






DITYATLFPRTGIYAERKHNAFVNRNFVVRY






EVNWKTHEIKVKGHN





1057
PRT
Artificial
LukE_S105A
MGSSGLNDIFEAQKIEWHEGGHHHHHHHHH






HSSGLVPRGSHMLENTNIENIGDGAEVIKRTE






DVSSKKWGVTQNVQFDFVKDKKYNKDALIV






KMQGFINSRTSFADVKGSGYELTKRMIWPFQ






YNIGLTTKDPNVSLINYLPKNKIETTDVGQTL






GYNIGGNFQSAPSIGGNGSFNYSKTISYTQKS






YVSEVDKQNSKSVKWGVKANEFVTPDGKKS






AHDRYLFVQSPNGPTGSAREYFAPDNQLPPL






VQSGFNPSFITTLSHEKGSSDTSEFEISYGRNL






DITYATLFPRTGIYAERKHNAFVNRNFVVRY






EVNWKTHEIKVKGHN





1058
PRT
Artificial
LukE_V107A
MGSSGLNDIFEAQKIEWHEGGHHHHHHHHH






HSSGLVPRGSHMLENTNIENIGDGAEVIKRTE






DVSSKKWGVTQNVQFDFVKDKKYNKDALIV






KMQGFINSRTSFSDAKGSGYELTKRMIWPFQ






YNIGLTTKDPNVSLINYLPKNKIETTDVGQTL






GYNIGGNFQSAPSIGGNGSFNYSKTISYTQKS






YVSEVDKQNSKSVKWGVKANEFVTPDGKKS






AHDRYLFVQSPNGPTGSAREYFAPDNQLPPL






VQSGFNPSFITTLSHEKGSSDTSEFEISYGRNL






DITYATLFPRTGIYAERKHNAFVNRNFVVRY






EVNWKTHEIKVKGHN





1059
PRT
Artificial
LukE_K108A
MGSSGLNDIFEAQKIEWHEGGHHHHHHHHH






HSSGLVPRGSHMLENTNIENIGDGAEVIKRTE






DVSSKKWGVTQNVQFDFVKDKKYNKDALIV






KMQGFINSRTSFSDVAGSGYELTKRMIWPFQ






YNIGLTTKDPNVSLINYLPKNKIETTDVGQTL






GYNIGGNFQSAPSIGGNGSFNYSKTISYTQKS






YVSEVDKQNSKSVKWGVKANEFVTPDGKKS






AHDRYLFVQSPNGPTGSAREYFAPDNQLPPL






VQSGFNPSFITTLSHEKGSSDTSEFEISYGRNL






DITYATLFPRTGIYAERKHNAFVNRNFVVRY






EVNWKTHEIKVKGHN





1060
PRT
Artificial
LukE_G109R
MGSSGLNDIFEAQKIEWHEGGHHHHHHHHH






HSSGLVPRGSHMLENTNIENIGDGAEVIKRTE






DVSSKKWGVTQNVQFDFVKDKKYNKDALIV






KMQGFINSRTSFSDVKRSGYELTKRMIWPFQ






YNIGLTTKDPNVSLINYLPKNKIETTDVGQTL






GYNIGGNFQSAPSIGGNGSFNYSKTISYTQKS






YVSEVDKQNSKSVKWGVKANEFVTPDGKKS






AHDRYLFVQSPNGPTGSAREYFAPDNQLPPL






VQSGFNPSFITTLSHEKGSSDTSEFEISYGRNL






DITYATLFPRTGIYAERKHNAFVNRNFVVRY






EVNWKTHEIKVKGHN





1061
PRT
Artificial
LukE_Y112A
MGSSGLNDIFEAQKIEWHEGGHHHHHHHHH






HSSGLVPRGSHMLENTNIENIGDGAEVIKRTE






DVSSKKWGVTQNVQFDFVKDKKYNKDALIV






KMQGFINSRTSFSDVKGSGAELTKRMIWPFQ






YNIGLTTKDPNVSLINYLPKNKIETTDVGQTL






GYNIGGNFQSAPSIGGNGSFNYSKTISYTQKS






YVSEVDKQNSKSVKWGVKANEFVTPDGKKS






AHDRYLFVQSPNGPTGSAREYFAPDNQLPPL






VQSGFNPSFITTLSHEKGSSDTSEFEISYGRNL






DITYATLFPRTGIYAERKHNAFVNRNFVVRY






EVNWKTHEIKVKGHN





1062
PRT
Artificial
LukE_L114A
MGSSGLNDIFEAQKIEWHEGGHHHHHHHHH






HSSGLVPRGSHMLENTNIENIGDGAEVIKRTE






DVSSKKWGVTQNVQFDFVKDKKYNKDALIV






KMQGFINSRTSFSDVKGSGYEATKRMIWPFQ






YNIGLTTKDPNVSLINYLPKNKIETTDVGQTL






GYNIGGNFQSAPSIGGNGSFNYSKTISYTQKS






YVSEVDKQNSKSVKWGVKANEFVTPDGKKS






AHDRYLFVQSPNGPTGSAREYFAPDNQLPPL






VQSGFNPSFITTLSHEKGSSDTSEFEISYGRNL






DITYATLFPRTGIYAERKHNAFVNRNFVVRY






EVNWKTHEIKVKGHN





1063
PRT
Artificial
LukE_T115A
MGSSGLNDIFEAQKIEWHEGGHHHHHHHHH






HSSGLVPRGSHMLENTNIENIGDGAEVIKRTE






DVSSKKWGVTQNVQFDFVKDKKYNKDALIV






KMQGFINSRTSFSDVKGSGYELAKRMIWPFQ






YNIGLTTKDPNVSLINYLPKNKIETTDVGQTL






GYNIGGNFQSAPSIGGNGSFNYSKTISYTQKS






YVSEVDKQNSKSVKWGVKANEFVTPDGKKS






AHDRYLFVQSPNGPTGSAREYFAPDNQLPPL






VQSGFNPSFITTLSHEKGSSDTSEFEISYGRNL






DITYATLFPRTGIYAERKHNAFVNRNFVVRY






EVNWKTHEIKVKGHN





1064
PRT
Artificial
LukE_R117A
MGSSGLNDIFEAQKIEWHEGGHHHHHHHHH






HSSGLVPRGSHMLENTNIENIGDGAEVIKRTE






DVSSKKWGVTQNVQFDFVKDKKYNKDALIV






KMQGFINSRTSFSDVKGSGYELTKAMIWPFQ






YNIGLTTKDPNVSLINYLPKNKIETTDVGQTL






GYNIGGNFQSAPSIGGNGSFNYSKTISYTQKS






YVSEVDKQNSKSVKWGVKANEFVTPDGKKS






AHDRYLFVQSPNGPTGSAREYFAPDNQLPPL






VQSGFNPSFITTLSHEKGSSDTSEFEISYGRNL






DITYATLFPRTGIYAERKHNAFVNRNFVVRY






EVNWKTHEIKVKGHN





1065
PRT
Artificial
LukE_I283A
MGSSGLNDIFEAQKIEWHEGGHHHHHHHHH






HSSGLVPRGSHMLENTNIENIGDGAEVIKRTE






DVSSKKWGVTQNVQFDFVKDKKYNKDALIV






KMQGFINSRTSFSDVKGSGYELTKRMIWPFQ






YNIGLTTKDPNVSLINYLPKNKIETTDVGQTL






GYNIGGNFQSAPSIGGNGSFNYSKTISYTQKS






YVSEVDKQNSKSVKWGVKANEFVTPDGKKS






AHDRYLFVQSPNGPTGSAREYFAPDNQLPPL






VQSGFNPSFITTLSHEKGSSDTSEFEISYGRNL






DATYATLFPRTGIYAERKHNAFVNRNFVVRY






EVNWKTHEIKVKGHN





1066
PRT
Artificial
LukE_Y285A
MGSSGLNDIFEAQKIEWHEGGHHHHHHHHH






HSSGLVPRGSHMLENTNIENIGDGAEVIKRTE






DVSSKKWGVTQNVQFDFVKDKKYNKDALIV






KMQGFINSRTSFSDVKGSGYELTKRMIWPFQ






YNIGLTTKDPNVSLINYLPKNKIETTDVGQTL






GYNIGGNFQSAPSIGGNGSFNYSKTISYTQKS






YVSEVDKQNSKSVKWGVKANEFVTPDGKKS






AHDRYLFVQSPNGPTGSAREYFAPDNQLPPL






VQSGFNPSFITTLSHEKGSSDTSEFEISYGRNL






DITAATLFPRTGIYAERKHNAFVNRNFVVRY






EVNWKTHEIKVKGHN





1067
PRT
Artificial
LukE_T287A
MGSSGLNDIFEAQKIEWHEGGHHHHHHHHH






HSSGLVPRGSHMLENTNIENIGDGAEVIKRTE






DVSSKKWGVTQNVQFDFVKDKKYNKDALIV






KMQGFINSRTSFSDVKGSGYELTKRMIWPFQ






YNIGLTTKDPNVSLINYLPKNKIETTDVGQTL






GYNIGGNFQSAPSIGGNGSFNYSKTISYTQKS






YVSEVDKQNSKSVKWGVKANEFVTPDGKKS






AHDRYLFVQSPNGPTGSAREYFAPDNQLPPL






VQSGFNPSFITTLSHEKGSSDTSEFEISYGRNL






DITYAALFPRTGIYAERKHNAFVNRNFVVRY






EVNWKTHEIKVKGHN





1068
PRT
Artificial
LukE_F289A
MGSSGLNDIFEAQKIEWHEGGHHHHHHHHH






HSSGLVPRGSHMLENTNIENIGDGAEVIKRTE






DVSSKKWGVTQNVQFDFVKDKKYNKDALIV






KMQGFINSRTSFSDVKGSGYELTKRMIWPFQ






YNIGLTTKDPNVSLINYLPKNKIETTDVGQTL






GYNIGGNFQSAPSIGGNGSFNYSKTISYTQKS






YVSEVDKQNSKSVKWGVKANEFVTPDGKKS






AHDRYLFVQSPNGPTGSAREYFAPDNQLPPL






VQSGFNPSFITTLSHEKGSSDTSEFEISYGRNL






DITYATLAPRTGIYAERKHNAFVNRNFVVRY






EVNWKTHEIKVKGHN





1069
PRT
Artificial
LukE_T292A
MGSSGLNDIFEAQKIEWHEGGHHHHHHHHH






HSSGLVPRGSHMLENTNIENIGDGAEVIKRTE






DVSSKKWGVTQNVQFDFVKDKKYNKDALIV






KMQGFINSRTSFSDVKGSGYELTKRMIWPFQ






YNIGLTTKDPNVSLINYLPKNKIETTDVGQTL






GYNIGGNFQSAPSIGGNGSFNYSKTISYTQKS






YVSEVDKQNSKSVKWGVKANEFVTPDGKKS






AHDRYLFVQSPNGPTGSAREYFAPDNQLPPL






VQSGFNPSFITTLSHEKGSSDTSEFEISYGRNL






DITYATLFPRAGIYAERKHNAFVNRNFVVRY






EVNWKTHEIKVKGHN





1070
PRT
Artificial
LukE_Y295A
MGSSGLNDIFEAQKIEWHEGGHHHHHHHHH






HSSGLVPRGSHMLENTNIENIGDGAEVIKRTE






DVSSKKWGVTQNVQFDFVKDKKYNKDALIV






KMQGFINSRTSFSDVKGSGYELTKRMIWPFQ






YNIGLTTKDPNVSLINYLPKNKIETTDVGQTL






GYNIGGNFQSAPSIGGNGSFNYSKTISYTQKS






YVSEVDKQNSKSVKWGVKANEFVTPDGKKS






AHDRYLFVQSPNGPTGSAREYFAPDNQLPPL






VQSGFNPSFITTLSHEKGSSDTSEFEISYGRNL






DITYATLFPRTGIAAERKHNAFVNRNFVVRY






EVNWKTHEIKVKGHN





1071
PRT
Artificial
LukE_E297A
MGSSGLNDIFEAQKIEWHEGGHHHHHHHHH






HSSGLVPRGSHMLENTNIENIGDGAEVIKRTE






DVSSKKWGVTQNVQFDFVKDKKYNKDALIV






KMQGFINSRTSFSDVKGSGYELTKRMIWPFQ






YNIGLTTKDPNVSLINYLPKNKIETTDVGQTL






GYNIGGNFQSAPSIGGNGSFNYSKTISYTQKS






YVSEVDKQNSKSVKWGVKANEFVTPDGKKS






AHDRYLFVQSPNGPTGSAREYFAPDNQLPPL






VQSGFNPSFITTLSHEKGSSDTSEFEISYGRNL






DITYATLFPRTGIYAARKHNAFVNRNFVVRY






EVNWKTHEIKVKGHN





1072
PRT
Artificial
LukE_K299A
MGSSGLNDIFEAQKIEWHEGGHHHHHHHHH






HSSGLVPRGSHMLENTNIENIGDGAEVIKRTE






DVSSKKWGVTQNVQFDFVKDKKYNKDALIV






KMQGFINSRTSFSDVKGSGYELTKRMIWPFQ






YNIGLTTKDPNVSLINYLPKNKIETTDVGQTL






GYNIGGNFQSAPSIGGNGSFNYSKTISYTQKS






YVSEVDKQNSKSVKWGVKANEFVTPDGKKS






AHDRYLFVQSPNGPTGSAREYFAPDNQLPPL






VQSGFNPSFITTLSHEKGSSDTSEFEISYGRNL






DITYATLFPRTGIYAERAHNAFVNRNFVVRY






EVNWKTHEIKVKGHN





1073
PRT
Artificial
LukE_H300A
MGSSGLNDIFEAQKIEWHEGGHHHHHHHHH






HSSGLVPRGSHMLENTNIENIGDGAEVIKRTE






DVSSKKWGVTQNVQFDFVKDKKYNKDALIV






KMQGFINSRTSFSDVKGSGYELTKRMIWPFQ






YNIGLTTKDPNVSLINYLPKNKIETTDVGQTL






GYNIGGNFQSAPSIGGNGSFNYSKTISYTQKS






YVSEVDKQNSKSVKWGVKANEFVTPDGKKS






AHDRYLFVQSPNGPTGSAREYFAPDNQLPPL






VQSGFNPSFITTLSHEKGSSDTSEFEISYGRNL






DITYATLFPRTGIYAERKANAFVNRNFVVRY






EVNWKTHEIKVKGHN





1074
PRT
Artificial
LukE_N301A
MGSSGLNDIFEAQKIEWHEGGHHHHHHHHH






HSSGLVPRGSHMLENTNIENIGDGAEVIKRTE






DVSSKKWGVTQNVQFDFVKDKKYNKDALIV






KMQGFINSRTSFSDVKGSGYELTKRMIWPFQ






YNIGLTTKDPNVSLINYLPKNKIETTDVGQTL






GYNIGGNFQSAPSIGGNGSFNYSKTISYTQKS






YVSEVDKQNSKSVKWGVKANEFVTPDGKKS






AHDRYLFVQSPNGPTGSAREYFAPDNQLPPL






VQSGFNPSFITTLSHEKGSSDTSEFEISYGRNL






DITYATLFPRTGIYAERKHAAFVNRNFVVRY






EVNWKTHEIKVKGHN





1075
PRT
Artificial
LukE_F303A
MGSSGLNDIFEAQKIEWHEGGHHHHHHHHH






HSSGLVPRGSHMLENTNIENIGDGAEVIKRTE






DVSSKKWGVTQNVQFDFVKDKKYNKDALIV






KMQGFINSRTSFSDVKGSGYELTKRMIWPFQ






YNIGLTTKDPNVSLINYLPKNKIETTDVGQTL






GYNIGGNFQSAPSIGGNGSFNYSKTISYTQKS






YVSEVDKQNSKSVKWGVKANEFVTPDGKKS






AHDRYLFVQSPNGPTGSAREYFAPDNQLPPL






VQSGFNPSFITTLSHEKGSSDTSEFEISYGRNL






DITYATLFPRTGIYAERKHNAAVNRNFVVRY






EVNWKTHEIKVKGHN





1076
PRT
Artificial
LukE_R306A
MGSSGLNDIFEAQKIEWHEGGHHHHHHHHH






HSSGLVPRGSHMLENTNIENIGDGAEVIKRTE






DVSSKKWGVTQNVQFDFVKDKKYNKDALIV






KMQGFINSRTSFSDVKGSGYELTKRMIWPFQ






YNIGLTTKDPNVSLINYLPKNKIETTDVGQTL






GYNIGGNFQSAPSIGGNGSFNYSKTISYTQKS






YVSEVDKQNSKSVKWGVKANEFVTPDGKKS






AHDRYLFVQSPNGPTGSAREYFAPDNQLPPL






VQSGFNPSFITTLSHEKGSSDTSEFEISYGRNL






DITYATLFPRTGIYAERKHNAFVNANFVVRY






EVNWKTHEIKVKGHN





1077
PRT
Artificial
Luk26
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FHIEYAEPWVWGEAIVLTVPGSERSYDLTGL






KPGTEYVVFIGGVKGGHNSTPLSAIFTTGGHH






HHHH





1078
PRT
Artificial
LukABHC111
EVQLQQSGAELVKPGASVKISCKASGYAFSS






SWMNWLKQRPGKGLEWIGRIYPGDGDTNYN






GKFKGKATLTADKSSSTAYMQLSSLTSEDSA






VYFCARYGYDYDGEYYYAMDYWGQGTSVT






VSSAKTTPPSVYPLAPGSAAQTNSMVTLGCL






VKGYFPEPVTVTWNSGSLSSGVHTFPAVLES






DLYTLSSSVTVPSSPRPSETVTCNVAHPASST






KVDKKIVPRDCGCKPCICTVPEVSSVFIFPPKP






KDVLTITLTPKVTCVVVDISKDDPEVQFSWF






VDDVEVHTAQTQPREEQFNSTFRSVSELPIM






HQDWLNGKEFKCRVNSAAFPAPIEKTISKTK






GRPKAPQVYTIPPPKEQMAKDKVSLTCMITD






FFPEDITVEWQWNGQPAENYKNTQPIMNTN






GSYFVYSKLNVQKSNWEAGNTFTCSVLHEG






LHNHHTEKSLSHSPGK





1079
PRT
Artificial
LukABLC111
DIVMTQSPTTMAASPGERITITCSAHSNLISNY






LHWYQQKPGFSPKLLIYRTSNLASGVPARFS






GSGSGTSYSLTIGTMEAEDVATYFCQQGSSIP






FTFGSGTKLEIKRADAAPTVSIFPPSSEQLTSG






GASVVCFLNNFYPKDINVKWKIDGSERQNGV






LNSWTDQDSKDSTYSMSSTLTLTKDEYERHN






SYTCEATHKTSTSPIVKSFNRNEC





1080
PRT
Artificial
FabHC214
EVQLQQSGAELVKPGASVKISCKASGYAFSS






SWMNWLKQRPGKGLEWIGRIYPGDGDTNYN






GKFKGKATLTADKSSSTAYMQLSSLTSEDSA






VYFCARYGYDYDGEYYYAMDYWGQGTSVT






VSSASTKGPSVFPLAPSSKSTSGGTAALGCLV






KDYFPEPVTVSWNSGALTSGVHTFPAVLQSS






GLYSLSSVVTVPSSSLGTQTYICNVNHKPSNT






KVDKKVEPKSCHHHHHH





1081
PRT
Artificial
FabLC214
DIVMTQSPTTMAASPGERITITCSAHSNLISNY






LHWYQQKPGFSPKLLIYRTSNLASGVPARFS






GSGSGTSYSLTIGTMEAEDVATYFCQQGSSIP






FTFGSGTKLEIKRTVAAPSVFIFPPSDEQLKSG






TASVVCLLNNFYPREAKVQWKVDNALQSGN






SQESVTEQDSKDSTYSLSSTLTLSKADYEKHK






VYACEVTHQGLSSPVTKSFNRGEC





1082
PRT
Artificial
FabHC229
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD






YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSSAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCHHHHHH





1083
PRT
Artificial
FabLC229
EIVLTQSPATLSLSPGERATLSCRASQSVSGYL






GWYQQKPGQAPRLLIYGASSRATGIPDRFSG






SGSGTDFTLTISRLEPEDFAVYYCQQYGSSPL






TFGGGTKLEIKRTVAAPSVFIFPPSDEQLKSGT






ASVVCLLNNFYPREAKVQWKVDNALQSGNS






QESVTEQDSKDSTYSLSSTLTLSKADYEKHK






VYACEVTHQGLSSPVTKSFNRGEC





1084
PRT
Artificial
TD peptide
LCBiot-






TDTDTDTDTDTDTDTDTDTDHHHHHHHH-






OH





1085
PRT
Artificial
SD-GlcNAc
LCBiot-





peptide
SDSDSDSDSDSDSDSDSD(SGlcNAc)DHHHHH






HHH-OH





1086
PRT
Artificial
Hla H35L
MKTRIVSSVTTTLLLGSILMNPVANAADSDIN





toxoid
IKTGTTDIGSNTTVKTGDLVTYDKENGMLKK






VFYSFIDDKNHNKKLLVIRTKGTIAGQYRVY






SEEGANKSGLAWPSAFKVQLQLPDNEVAQIS






DYYPRNSIDTKEYMSTLTYGFNGNVTGDDTG






KIGGLIGANVSIGHTLKYVQPDFKTILESPTDK






KVGWKVIFNNMVNQNWGPYDRDSWNPVYG






NQLFMKTRNGSMKAADNFLDPNKASSLLSS






GFSPDFATVITMDRKASKQQTNIDVIYERVRD






DYQLHWTSTNWKGTNTKDKWIDRSSERYKI






DWEKEEMTNHHHHHH





1087
PRT
Artificial
Luk957 Hla
LPAPKNLVVSRVTEDSARLSWGEAPIWVAFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGVFQPNNFHSNPLSAIFTT





1088
PRT
Artificial
Luk958 Hla
LPAPKNLVVSRVTEDSARLSWEANAWDDVN





binding FN3
FDSFLIQYRESEKVGEAIVLTVPGSERSYDLT





domain
GLKPGTEYTVSIYGVWNQTHYRWPSNPLSAI






FTT





1089
PRT
Artificial
Luk959 Hla
LPAPKNLVVSRVTEDSARLSWTYIFPIFDSFLI





binding FN3
QYQESEKVGEAIVLTVPGSERSYDLTGLKPG





domain
TEYTVSIYGVLQYFEFTSNPLSAIFTT





1090
PRT
Artificial
Luk960 Hla
LPAPKNLVVSRVTEDSARLSWDSEELFLFDSF





binding FN3
LIQYQESEKVGEAIVLTIPGSERSYDLTGLKPG





domain
TEYTVSIYGVWGHWDWYWKTSNPLSAIFTT





1091
PRT
Artificial
Luk961 Hla
LPAPKNLVVSRVTEDSARLSWDSEELFLFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVWGHWDWYWKTSNPLSAIFTT





1092
PRT
Artificial
Luk962 Hla
LPAPKNLVVSRVTEDSARLSWKVEHEFDSFLI





binding FN3
QYQESEKVGEAIVLTVPGSERSYDLTGLKPG





domain
TEYTVSIYGVGDSQWYFWRFSNPLSAIFTT





1093
PRT
Artificial
Luk963 Hla
LPAPKNLVVSRVTEDSARLSWGEEVHWLFDS





binding FN3
FLIQYQESEKVGEAIVLTVPGSERSYDLTSLK





domain
PGTEYTVSIYGVAGYAHWFTTWSNPLSAIFTT





1094
PRT
Artificial
Luk964 Hla
LPAPKNLVVSRVTEDSARLSWAPSHFPRSFDS





binding FN3
FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVLTVATIRWQSNPLSAIFTT





1095
PRT
Artificial
Luk965 Hla
LPAPKNLVVSRVTEDSARLSWDEQLWIQFDS





binding FN3
FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVVPWLPNYWQVSNPLSAIFTT





1096
PRT
Artificial
Luk966 Hla
LPAPKNLVVSRVTEDSARLSWWSENWVNWF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVWEVKNRIRWLSNPLSAIF






TT





1097
PRT
Artificial
Luk967 Hla
LPAPKNLVVSRVTEDSARLSWEANAWDDVN





binding FN3
FDSFLIQYQESEKVGEAIVLTVPGSERSYDLT





domain
GLKPGTEYTVSIYGVWNQTHYRWPSNPLSAI






FTT





1098
PRT
Artificial
Luk968 Hla
LPAPKNLVVSRVTEDSARLSWVDKRHPDFDS





binding FN3
FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVHGFLQWYWSTSNPLSAIFTT





1099
PRT
Artificial
Luk969 Hla
LPAPKNLVVSRVTEDSARLSWNSEIAEQFFFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGVWGHWDWYWKTSNPLSAI






FTT





1100
PRT
Artificial
Luk970 Hla
LPAPKNLVVSRVTEDSARLSWNRGLIPFDSFL





binding FN3
IQYQESEKVGEAIVLTVPGSERSYDLTGLKLG





domain
TEYTVSIYGVGTYYPWWPLSNPLSAIFTT





1101
PRT
Artificial
Luk971 Hla
LPAPKNLVVSRVTEDSARLSWSPWFFGQFDS





binding FN3
FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVIELGQQYSFTSNPLSAIFTT





1102
PRT
Artificial
Luk972 Hla
LPAPKNLVVSRVTEDSARLSWNSEIAEQFFFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGVWGHWDWYWKTSNPLSAI






VTT





1103
PRT
Artificial
Luk973 Hla
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
GIGYPEFYRKGEAIQLRVPGSERSYDLTGLKP





domain
GTEYTVSIYGVSDLTTHWWLLSNPLSAIFTT





1104
PRT
Artificial
Luk974 Hla
LPAPKNLVVSRVTEDSARLSWGEEVHWLFDS





binding FN3
FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVAGYAHWFTTWSNPLSAIFTT





1105
PRT
Artificial
Luk975 Hla
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
AISYQELDPEGEAINLSVPGSERSYDLTGLKP





domain
GTKYLVTIDGVKGGKASKPLPANFTT





1106
PRT
Artificial
Luk976 Hla
LPAPKNLVVSRVTEDSARLSWDTLTPWIIFDS





binding FN3
FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVQPWQVYYQYSNPLSAIFTT





1107
PRT
Artificial
Luk977 Hla
LPAPKNLVVSRVTEDSARLSWGASIERSRWF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
QKPGTEYTVSIYGVHNVPNLFVQGSNPLSAIF






TT





1108
PRT
Artificial
Luk978 Hla
LPAPKNLVVSRVTEDSARLSWKAYHFIFDSFL





binding FN3
IQYQESEKVGEAIVLTVPGSERSYDLTGLKPG





domain
TEYTVSIYGVRSDYVYWASNPLSAIFTT





1109
PRT
Artificial
Luk979 Hla
LPAPKNLVVSRVTEDSARLSWQIFPAFARFDS





binding FN3
FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVIFGPHTFQSNPLSAIFTT





1110
PRT
Artificial
Luk980 Hla
LPAPKNLVVSRVTEDSARLSWRISFPHFDSFLI





binding FN3
QYQESEKVGEAIVLTVRGSERSYDLTGLKPG





domain
TEYTVSIYGVLWYWRAYSNPLSAIFTT





1111
PRT
Artificial
Luk981 Hla
LPAPKNLVVSRVTEDSARLSWEANAWDDVN





binding FN3
FDSFLIQYQESEKVGDAIVLTVPGSERSYDLT





domain
GLKPGTEYTVSIYGVWNQTHYRWPSNPLSAI






FTT





1112
PRT
Artificial
Luk982 Hla
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
AIGYPEYHDAGEAIHLFVPGSERSYDLTGLKP





domain
GTEYVVAIRGVKGGHASEPLHAHFTT





1113
PRT
Artificial
Luk983 Hla
LPAPKNLVVSRVTEDSARLSWKRNGVFEVNF





binding FN3
DSFLIQYQESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVWNQTHYRWPSNPLSAIF






TT





1114
PRT
Artificial
Luk984 Hla
LPAPKNLVVSRVTEDSARLSWFVTWRNGFFD





binding FN3
SFLIQYQESEKVGEAIVLTVPGSERSYDLTGL





domain
KPGTEYTVSIYGVVHQYYPHYWFSNPLSAIFTT





1115
PRT
Artificial
Luk985 Hla
LPAPKNLVVSRVTEDSARLSWKRNGVFEVNF





binding FN3
DSFLIQYRESEKVGEAIVLTVPGSERSYDLTG





domain
LKPGTEYTVSIYGVWNQTHYRWPSNPLSAIF






TT





1116
PRT
Artificial
Luk986 Hla
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP





domain
GTEYTVSIYGVITLLFNGAVLSNPLSAIFTT





1117
PRT
Artificial
Luk987 Hla
LPAPKNLVVSRVTEDSARLSWVDKRHPDFDS





binding FN3
FLIQYQESEKVGEAIVLTVSGSERSYDLTGLK





domain
PGTEYTVSIYGVHGFLQWYWSTSNPLSAIFTT





1118
PRT
Artificial
Luk988 Hla
LPAPKNLVVSRVTEDSARLSWAPSHFPRSFDS





binding FN3
FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK





domain
PGTEYTVSIYGVLTVATIRWQSDPLSAIFTT





1119
PRT
Artificial
Luk989 Hla
LPAPKNLFVSRVTEDSARLSWTAPDAAFDSF





binding FN3
FIRYVEYGQPGEAIPLDVPGSERSYDLTGLKP





domain
GTEYGVSINGVKGGNRSSPLFARFTT





1120
PRT
Artificial
Luk990 Hla
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
SISYKEWWAVGEAIFLHVPGSERSYDLTGLK





domain
PGTEYHVPISGVKGGDKSLPAHFTT





1121
PRT
Artificial
Luk991 Hla
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
GIHYGELWWNGEAIALVVPGSERSYDLTGLK





domain
PGTEYKVWIPGVKGGSQSKPLWAFFTT





1122
PRT
Artificial
Luk992 Hla
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
YIYYVEKPDPGEAIELYVPGSERSYDLTGLKP





domain
GTEYRVRIEGVKGGDHSFPLVAGFTT





1123
PRT
Artificial
Luk993 Hla
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSFI





binding FN3
IEYWEERQRGEAIGLTVPGSERSYDLTGLKPG





domain
TEYRVIIVGVKGGTYSVPLEAFFTT





1124
PRT
Artificial
Luk994 Hla
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
GIEYHEPSKWGEAIGLNVPGSERSYDLTGLKP





domain
GTEYSVQIKGVKGGWWSHPLPAAFTT





1125
PRT
Artificial
Luk995 Hla
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
YIKYGEGNHGEAIWLFVPGSERSYDLTGLKP





domain
GTEYYVEIVGVKGGFPSQPLHAQFTT





1126
PRT
Artificial
Luk996 Hla
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
KIDYIEIDVEGEAIYLFVPGSERSYDLTGLKPG





domain
TEFRVRIPGVKGGDHSVPLAAAFTT





1127
PRT
Artificial
Luk997 Hla
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSFI





binding FN3
ISYPEYWAIGEAIPLFVPGSERSYDLTGLKPGT





domain
EYIVIIPGVKGGKGSNPLWAIFTT





1128
PRT
Artificial
Luk998 Hla
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
EIGYFAEVDPGEAIQLDVPGSERSYDLTGLKP





domain
GTEYAVNIPGVKGGYKSDPLNAHSTT





1129
PRT
Artificial
Luk999 Hla
LPAPKNLVVSRVTEDSVRLSWTAPDAAFDSF





binding FN3
DIPYQELNRKGEAIQLTVPGSESSYDLTGLKP





domain
GTEYKVHIRGVKGGKQSLPLIAGFTT





1130
PRT
Artificial
Luk1000 Hla
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
EITYHEIYKFGEAITLQVPGSERSYDLTGLKPG





domain
TEYRVRITGVKGGWKSQPLVAKFTT





1131
PRT
Artificial
Luk1001 Hla
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
DIRYDEEGYWGEAIPLHVPGSERSYDLTGLK





domain
PGTEYTVWIYGVKGGRKSVPLVAEFTT





1132
PRT
Artificial
Luk1002 Hla
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
NIRYKEPHRQGEAIPLIVPGSERSYDLTGLKP





domain
GTEYNVHIHGVKGGKWSIPLYAWFTT





1133
PRT
Artificial
Luk1003 Hla
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
DISYWEQVWQGEAIVLVVPGSERSYDLTGLK





domain
PGTEYPVFIRGVKGGSQSGPLRAFFTT





1134
PRT
Artificial
Luk1004 Hla
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
YIYYYEFFRNGEAIVLFVPGSERSYDLTGLKP





domain
GTEYWVRIKGVKGGRDSHPLYAGFTT





1135
PRT
Artificial
Luk1005 Hla
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
SIGYHEVQQTGEAIRLFVPGSERSYDLTGLKP





domain
GTEYEVEIRGVKGGTTSIPLWAHFTT





1136
PRT
Artificial
Luk1006 Hla
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
GITYEEPHEIGEAIFLVVPGSERSYDLTGLKPG





domain
TEYYVEIQGVKGGDPSDPLNAAFTT





1137
PRT
Artificial
Luk1007 Hla
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
AIHYREWSIWGEAIDLVVPGSERSYDLTGLKP





domain
GTEYIVIIPGVKGGYVSNPLFAFFTTT





1138
PRT
Artificial
Luk1008 Hla
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
HIYYSERQRIGEAIILVVPGSERSYDLTGLKPG





domain
TEYIVKINGVKGGIISQPLIAPFTT





1139
PRT
Artificial
Luk1009 Hla
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
NITYVEPVTEGEAISLVVPGSERSYDLTGLKP





domain
GTEYSVKIHGVKGGPASNPLYAKFTT





1140
PRT
Artificial
Luk1010 Hla
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
KIKYKEERHIGEAIHLGVPGSERSYDLTGLKP





domain
GTEYEVYIVGVKGGSSSSPLFAHFTT





1141
PRT
Artificial
Luk1011 Hla
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
RITYWEDNSTGEAILLVVPGSERSYDLTGLKP





domain
GTEYRVAIVGVKGGDDSWPLLATFTT





1142
PRT
Artificial
Luk1012 Hla
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
FILYVEYSVNGEAIELSVPGSERSYDLTGLKP





domain
GTEYDVIIGGVKGGNHSKPLVAFFTT





1143
PRT
Artificial
Luk1013 Hla
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
AIHYREWFIWGEAIDLVVPGSERSYDLTGLKP





domain
GTEYIVIIPGVKGGYVSNPLFAFFTT





1144
PRT
Artificial
Luk1014 Hla
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
GIGYRELGGLGEAIVLTVPGSERSYDLTGLKP





domain
GTEYYVVIPGVKGGGLSLPLSAIFTT





1145
PRT
Artificial
Luk1015 Hla
LPAPKNLVVSRVTEDSARLSWTALDAAFDSF





binding FN3
GIPYRELGRGGEAIVLTVPGSERSYDLTGLKP





domain
GTEYVVYITGVKGGMISTPLSAIFTT





1146
PRT
Artificial
Luk1016 Hla
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
GIPYRELGRGGEAIVLTVPGSERSYDLTGLKP





domain
GTEYVVYITGVKGGMISTPLSAIFTT





1147
PRT
Artificial
Luk1017 Hla
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





binding FN3
WIHYREVPVPGEAIVLTVPGSERSYDLTGLKP





domain
GTEYFVYIMGVKGGTFSAPLSAIFTT





1148
PRT
Artificial
Luk1018 Hla
LPAPKNLVVSRVTEDSACLSWTAPDAAFDSF





binding FN3
GIPYRELGRGGEAIVLTVPGSERSYDLTGLKP





domain
GTEYVVYITGVKGGMISTPLSAIFTT





1149
PRT
Artificial
LukA mut1
MNSAHHHHHHHHHHGGGLNDIFEAQKIEWH






EGSHKDSQDQNKKEHVDKSQQKDKRNVTN






KDKNSTAPDDIGKNGKITKRTETVYDEKTNIL






QNLQFDFIDDPTYDKNVLLVKKQGSIHSNLK






FESHKEEKNSNWLKYPSEYHVDFQVKRNRK






TEILDQLPKNKISTAKVDSTFKFDSTKGIGRTS






SNSYSKTISYNQQNYDTIASGKNNNWHVHW






SVIANDLKYGGEVKNRNDELLFYRNTRIATV






ENPELSFASKYRYPALVRSGFNPEFLTYLSNE






KSNEKTQFEVTYTRNQDILKNRPGIHYAPPIL






EKNKDGQRLIVTYEVDWKNKTVKVVDKYS






DDNKPYKAG





1150
PRT
Artificial
LukB mut1
MKINSEIKQVSEKNLDGDTKMYTRTATTSDS






QKNITQSLQFNFLTEPNYDKETVFIKAKGTIG






SGLRILDPNGYWNSTLRWPGSYSVSIQNVDD






NNNTNVTDFAPKNQDESREVKYTYGYKTIN






RGGLTGNITKESNYSETISYQQPSYRTLLDQS






TSHKGVGWKVEAHLINNMGHDHTRQLTNDS






DNRTKSEIFSLTRNGNLWAKDNFTPKDKMPV






TVSEGFNPEFLAVMSHDKKDKGKSQFVVHY






KRSMDEFKIDWNRHGFWGYWSGENHVDKK






EEKLSALYEVDWKTHNVKFVKVLNDNEKK





1151
PRT
Artificial
LukB mut2
MKINSEIKQVSEKNLDGDTKMYTRTATTSDS






QKNITQSLQFNFLTEPNYDKETVFIKAKGTIG






SGLRILDPNGYWNSTLRWPGSYSVSIQNVDD






NNNTNVTDFAPKNQDESREVKYTYGYKTGG






DFSINRNITKESNYSETISYQQPSYRTLLDQST






SHKGVGWKVEAHLINNMGHDHTRQLTNDS






DNRTKSEIFSLTRNGNLWAKDNFTPKDKMPV






TVSEGFNPEFLAVMSHDKKDKGKSQFVVHY






KRSMDEFKIDWNRHGFWGYWSGENHVDKK






EEKLSALYEVDWKTHNVKFVKVLNDNEKK





1152
PRT
Artificial
TENCON_HIS_SA
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK






PGTEYTVSIYGVKGGHRSNPLSAIFTTGGHHH






HHHGGGLNDIFEAQKIEWHE





1153
PRT
Artificial
Luk17_HIS_SA
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FWITYEEKFYRGEAIVLTVPGSERSYDLTGLK






PGTEYKVWIVGVKGGQGSWPLSAIFTTGGHH






HHHHGGGLNDIFEAQKIEWHE





1154
PRT
Artificial
Luk19_HIS_SA
MLPAPKNLVVSRVTEDSARLSWYHAIHRLN






HFDSFLIQYQESEKVGEAIVLTVPGSERSYDL






AGLKPGTEYTVSIYGVLPDAFVSSNPLSAIFTT






GGHHHHHHGGGLNDIFEAQKIEWHE





1155
PRT
Artificial
Luk26_HIS_SA
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FHIEYAEPWVWGEAIVLTVPGSERSYDLTGL






KPGTEYVVFIGGVKGGHNSTPLSAIFTTGGHH






HHHHGGGLNDIFEAQKIEWHE





1156
PRT
Artificial
Luk31_HIS_SA
MLPAPNNLVVSRVTEDSARLSWDWDKYYTN






RFDSFLIQYQESEKVGEAIVLTVPGSERSYDL






TGLKPGTEYTVSIYGVLVRDYIRAAEWYSNP






LSAIFTTGGHHHHHHGGGLNDIFEAQKIEWHE





1157
PRT
Artificial
Luk32_HIS_SA
MLPAPKNLVVSRVTEDSARLSWYHENAYLL






FDSFLIQYQESEKVGEAIVLTVPGSERSYDLT






GLKPGTEYTVSIYGVVYDLTPEKRSSNPLSAI






FTTGGHHHHHHGGGLNDIFEAQKIEWHE





1158
PRT
Artificial
Luk163_HIS_SA
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FYIEYWEPTSDGEAIALNVPGSERSYDLTGLK






PGTEYFVEIWGVKGGPRSPPLSAWFTTGGHH






HHHHGGGLNDIFEAQKIEWHE





1159
PRT
Artificial
Luk174_HIS_SA
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FDIEYGEPEKIGEAIWLTVPGSERSYDLTGLK






PGTEYWVFIYGVKGGALSRPLTATFTTGGHH






HHHHGGGLNDIFEAQKIEWHE





1160
PRT
Artificial
Luk187_HIS_SA
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FRILYFEYKRLGEAIVLTVPGSERSYDLTGLK






PGTEYFVGIHGVKGGYISRPLSAIFTTGGHHH






HHHGGGLNDIFEAQKIEWHE





1161
PRT
Artificial
Luk188_HIS_SA
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FHIHYWEFNPAGEAIVLTVPGSERSYDLTGLK






PGTEYFVGIHGVKGGGISWPLSAIFTTGGHHH






HHHGGGLNDIFEAQKIEWHE





1162
PRT
Artificial
Luk311_HIS_SA
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FWISYVEPDDGEAIELLVPGSERSYDLTGLKP






GTEYIVQIDGVKGGTTSVPLNARFTTGGHHH






HHHGGGLNDIFEAQKIEWHE





1163
PRT
Artificial
HC431
QVQLQQSGAELMNPGASVKISCKSTGYKFSS






YWIEWVKQRPGHGLEWMGEILPGSGSTNHN






EKFKGKAIFTADASSNTAYMELSSLTSEDSAV






YYCARTISTATDWFAYWGQGTLVTVSAAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNRFTQKSLSLSPGKGGGGSGGGGSGGGGS






GGGGSMLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFWITYEEKFYRGEAIVLTVPGSERSY






DLTGLKPGTEYKVWIVGVKGGQGSWPLSAIF






TT





1164
PRT
Artificial
LC431
DVLMTQTPLSLPVSLGDQASISCRSSQTIVYS






DGNTYLEWYLQKPGQSPKLLIYKVSNRFSGV






PDRVSGSGSGTDFTLKISRVEAEDLGVYYCF






QGSHVPYTFGGGTKLEIKRTVAAPSVFIFPPS






DEQLKSGTASVVCLLNNFYPREAKVQWKVD






NALQSGNSQESVTEQDSKDSTYSLSSTLTLSK






ADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





1165
PRT
Artificial
HC432
EVQLQQSGGGLVKPGGSLKLSCAASGFTFSS






YAMSWVRQTPEKRLEWVATITGGGTYTYYL






DSVKGRFTISRDNAKTSLYLQMSSLRSEDTA






MYYCARHRDGNYGCFDVWGAGTTVTVSSA






STKGPSVFPLAPSSKSTSGGTAALGCLVKDYF






PEPVTVSWNSGALTSGVHTFPAVLQSSGLYS






LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK






KVEPKSCDKTHTCPPCPAPPVAGPDVFLFPPK






PKDTLMISRTPEVTCVVVDVSHEDPEVKFNW






YVDGVEVHNAKTKPREEQYNSTYRVVSVLT






VLHQDWLNGKEYKCKVSNAALPAPIAKTISK






AKGQPREPQVYTLPPSRDELTKNQVSLTCLV






KGFYPSDIAVEWESNGQPENNYKTTPPVLDS






DGSFFLYSKLTVDKSRWQQGNVFSCSVMHE






ALHNRFTQKSLSLSPGKGGGGSGGGGSGGG






GSGGGGSMLPAPKNLVVSRVTEDSARLSWT






APDAAFDSFWITYEEKFYRGEAIVLTVPGSER






SYDLTGLKPGTEYKVWIVGVKGGQGSWPLS






AIFTT





1166
PRT
Artificial
LC432
DIVLTQSPAIMSASLGERVTMTCTASSSVSSS






YLHWYQQKPGSSPKLWVYSTSNLASGVPAR






FSGSGSGSSYSLTISSMEPEDTATYYCHQYHR






SPQTFGGGTKLEIKRTVAAPSVFIFPPSDEQLK






SGTASVVCLLNNFYPREAKVQWKVDNALQS






GNSQESVTEQDSKDSTYSLSSTLTLSKADYEK






HKVYACEVTHQGLSSPVTKSFNRGEC





1167
PRT
Artificial
HC505
QVQLQQSGAELMNPGASVKISCKSTGYKFSS






YWIEWVKQRPGHGLEWMGEILPGSGSTNHN






EKFKGKAIFTADASSNTAYMELSSLTSEDSAV






YYCARTISTATDWFAYWGQGTLVTVSAAST






KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS






SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK






VEPKSCDKTHTCPPCPAPPVAGPDVFLFPPKP






KDTLMISRTPEVTCVVVDVSHEDPEVKFNWY






VDGVEVHNAKTKPREEQYNSTYRVVSVLTV






LHQDWLNGKEYKCKVSNAALPAPIAKTISKA






KGQPREPQVYTLPPSRDELTKNQVSLTCLVK






GFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLYSKLTVDKSRWQQGNVFSCSVMHEA






LHNHYTQKSLSLSPGKGGGGSGGGGSGGGG






SGGGGSMLPAPKNLVVSRVTEDSARLSWTAP






DAAFDSFWITYEEKFYRGEAIVLTVPGSERSY






DLTGLKPGTEYKVWIVGVKGGQGSWPLSAIF






TT





1168
PRT
Artificial
LC505
DVLMTQTPLSLPVSLGDQASISCRSSQTIVYS






DGNTYLEWYLQKPGQSPKLLIYKVSNRFSGV






PDRVSGSGSGTDFTLKISRVEAEDLGVYYCF






QGSHVPYTFGGGTKLEIKRTVAAPSVFIFPPS






DEQLKSGTASVVCLLNNFYPREAKVQWKVD






NALQSGNSQESVTEQDSKDSTYSLSSTLTLSK






ADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





1169
PRT
Artificial
HC506
EVQLQQSGGGLVKPGGSLKLSCAASGFTFSS






YAMSWVRQTPEKRLEWVATITGGGTYTYYL






DSVKGRFTISRDNAKTSLYLQMSSLRSEDTA






MYYCARHRDGNYGCFDVWGAGTTVTVSSA






STKGPSVFPLAPSSKSTSGGTAALGCLVKDYF






PEPVTVSWNSGALTSGVHTFPAVLQSSGLYS






LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK






KVEPKSCDKTHTCPPCPAPPVAGPDVFLFPPK






PKDTLMISRTPEVTCVVVDVSHEDPEVKFNW






YVDGVEVHNAKTKPREEQYNSTYRVVSVLT






VLHQDWLNGKEYKCKVSNAALPAPIAKTISK






AKGQPREPQVYTLPPSRDELTKNQVSLTCLV






KGFYPSDIAVEWESNGQPENNYKTTPPVLDS






DGSFFLYSKLTVDKSRWQQGNVFSCSVMHE






ALHNHYTQKSLSLSPGKGGGGSGGGGSGGG






GSGGGGSMLPAPKNLVVSRVTEDSARLSWT






APDAAFDSFWITYEEKFYRGEAIVLTVPGSER






SYDLTGLKPGTEYKVWIVGVKGGQGSWPLS






AIFTT





1170
PRT
Artificial
LC506
DIVLTQSPAIMSASLGERVTMTCTASSSVSSS






YLHWYQQKPGSSPKLWVYSTSNLASGVPAR






FSGSGSGSSYSLTISSMEPEDTATYYCHQYHR






SPQTFGGGTKLEIKRTVAAPSVFIFPPSDEQLK






SGTASVVCLLNNFYPREAKVQWKVDNALQS






GNSQESVTEQDSKDSTYSLSSTLTLSKADYEK






HKVYACEVTHQGLSSPVTKSFNRGEC





1171
PRT
Artificial
Luk047001
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS





(SAFN3-
FHIEYWEQSIVGEAIVLTVPGSERSYDLTGLK





TENCON)
PGTEYRVWIYGVKGGNDSWPLSAIFTTGGGG






SGGGGSGGGGSGGGGSMLPAPKNLVVSRVT






EDSARLSWTAPDAAFDSFLIQYQESEKVGEAI






VLTVPGSERSYDLTGLKPGTEYTVSIYGVKG






GHRSNPLSAIFTTGGHHHHHH





1172
PRT
Artificial
Luk047002
MTIDEWLLKEAKEKAIEELKKAGITSDYYFD





(SABD-
LINKAKTVEGVNALKDEILKAGGGGSGGGGS





TENCON)
GGGGSGGGGSMLPAPKNLVVSRVTEDSARL






SWTAPDAAFDSFLIQYQESEKVGEAIVLTVPG






SERSYDLTGLKPGTEYTVSIYGVKGGHRSNP






LSAIFTTGGHHHHHH





1173
PRT
Artificial
Luk047003
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS





(TFFN3-
FAIEYEELRDWGEAIVLTVPGSERSYDLTGLK





TENCON)
PGTEYSVSITGVKGGAESWPLSAIFTTGGGGS






GGGGSGGGGSGGGGSMLPAPKNLVVSRVTE






DSARLSWTAPDAAFDSFLIQYQESEKVGEAIV






LTVPGSERSYDLTGLKPGTEYTVSIYGVKGG






HRSNPLSAIFTTGGHHHHHH





1174
PRT
Artificial
Luk047004
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS





(SAFN3-
FHIEYWEQSIVGEAIVLTVPGSERSYDLTGLK





LukE26)
PGTEYRVWIYGVKGGNDSWPLSAIFTTGGGG






SGGGGSGGGGSGGGGSMLPAPKNLVVSRVT






EDSARLSWTAPDAAFDSFHIEYAEPWVWGE






AIVLTVPGSERSYDLTGLKPGTEYVVFIGGVK






GGHNSTPLSAIFTTGGHHHHHH





1175
PRT
Artificial
Luk047005
MTIDEWLLKEAKEKAIEELKKAGITSDYYFD





(SABD-
LINKAKTVEGVNALKDEILKAGGGGSGGGGS





LukE26)
GGGGSGGGGSMLPAPKNLVVSRVTEDSARL






SWTAPDAAFDSFHIEYAEPWVWGEAIVLTVP






GSERSYDLTGLKPGTEYVVFIGGVKGGHNST






PLSAIFTTGGHHHHHH





1176
PRT
Artificial
Luk047006
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS





(TFFN3-
FAIEYEELRDWGEAIVLTVPGSERSYDLTGLK





LukE26)
PGTEYSVSITGVKGGAESWPLSAIFTTGGGGS






GGGGSGGGGSGGGGSMLPAPKNLVVSRVTE






DSARLSWTAPDAAFDSFHIEYAEPWVWGEAI






VLTVPGSERSYDLTGLKPGTEYVVFIGGVKG






GHNSTPLSAIFTTGGHHHHHH





1177
PRT
Artificial
TENCON_HIS
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FLIQYQESEKVGEAIVLTVPGSERSYDLTGLK






PGTEYTVSIYGVKGGHRSNPLSAIFTTGGHHH






HHH





1178
PRT
Artificial
Luk047007
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FHIEYWEQSIVGEAIVLTVPGSERSYDLTGLK






PGTEYRVWIYGVKGGNDSWPLSAIFTTGGGG






SGGGGSGGGGSGGGGSMLPAPKNLVVSRVT






EDSARLSWTAPDAAFDSFWITYEEKFYRGEA






IVLTVPGSERSYDLTGLKPGTEYKVWIVGVK






GGQGSWPLSAIFTTGGHHHHHH





1179
PRT
Artificial
Luk047008
MTIDEWLLKEAKEKAIEELKKAGITSDYYFD






LINKAKTVEGVNALKDEILKAGGGGSGGGGS






GGGGSGGGGSMLPAPKNLVVSRVTEDSARL






SWTAPDAAFDSFWITYEEKFYRGEAIVLTVP






GSERSYDLTGLKPGTEYKVWIVGVKGGQGS






WPLSAIFTTGGHHHHHH





1180
PRT
Artificial
Luk047009
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FAIEYEELRDWGEAIVLTVPGSERSYDLTGLK






PGTEYSVSITGVKGGAESWPLSAIFTTGGGGS






GGGGSGGGGSGGGGSMLPAPKNLVVSRVTE






DSARLSWTAPDAAFDSFWITYEEKFYRGEAI






VLTVPGSERSYDLTGLKPGTEYKVWIVGVKG






GQGSWPLSAIFTTGGHHHHHH





1181
PRT
Artificial
Luk047010
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FHIEYWEQSIVGEAIVLTVPGSERSYDLTGLK






PGTEYRVWIYGVKGGNDSWPLSAIFTTGGGG






SGGGGSGGGGSGGGGSMLPAPKNLVVSRVT






EDSARLSWYHAIHRLNHFDSFLIQYQESEKV






GEAIVLTVPGSERSYDLAGLKPGTEYTVSIYG






VLPDAFVSSNPLSAIFTTGGHHHHHH





1182
PRT
Artificial
Luk047011
MTIDEWLLKEAKEKAIEELKKAGITSDYYFD






LINKAKTVEGVNALKDEILKAGGGGSGGGGS






GGGGSGGGGSMLPAPKNLVVSRVTEDSARL






SWYHAIHRLNHFDSFLIQYQESEKVGEAIVLT






VPGSERSYDLAGLKPGTEYTVSIYGVLPDAF






VSSNPLSAIFTTGGHHHHHH





1183
PRT
Artificial
Luk047012
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FAIEYEELRDWGEAIVLTVPGSERSYDLTGLK






PGTEYSVSITGVKGGAESWPLSAIFTTGGGGS






GGGGSGGGGSGGGGSMLPAPKNLVVSRVTE






DSARLSWYHAIHRLNHFDSFLIQYQESEKVG






EAIVLTVPGSERSYDLAGLKPGTEYTVSIYGV






LPDAFVSSNPLSAIFTTGGHHHHHH





1184
PRT
Artificial
Luk047013
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FHIEYWEQSIVGEAIVLTVPGSERSYDLTGLK






PGTEYRVWIYGVKGGNDSWPLSAIFTTGGGG






SGGGGSGGGGSGGGGSMLPAPKNLVVSRVT






EDSARLSWTAPDAAFDSFPIVYQEWQFYGEA






IVLTVPGSERSYDLTGLKPGTEYLVDIYGVKG






GSWSYPLSAIFTTGGHHHHHH





1185
PRT
Artificial
Luk047014
MTIDEWLLKEAKEKAIEELKKAGITSDYYFD






LINKAKTVEGVNALKDEILKAGGGGSGGGGS






GGGGSGGGGSMLPAPKNLVVSRVTEDSARL






SWTAPDAAFDSFPIVYQEWQFYGEAIVLTVP






GSERSYDLTGLKPGTEYLVDIYGVKGGSWSY






PLSAIFTTGGHHHHHH





1186
PRT
Artificial
Luk047015
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FAIEYEELRDWGEAIVLTVPGSERSYDLTGLK






PGTEYSVSITGVKGGAESWPLSAIFTTGGGGS






GGGGSGGGGSGGGGSMLPAPKNLVVSRVTE






DSARLSWTAPDAAFDSFPIVYQEWQFYGEAI






VLTVPGSERSYDLTGLKPGTEYLVDIYGVKG






GSWSYPLSAIFTTGGHHHHHH





1187
PRT
Artificial
Luk047016
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FHIEYWEQSIVGEAIVLTVPGSERSYDLTGLK






PGTEYRVWIYGVKGGNDSWPLSAIFTTGGGG






SGGGGSGGGGSGGGGSMLPAPNNLVVSRVT






EDSARLSWDWDKYYTNRFDSFLIQYQESEKV






GEAIVLTVPGSERSYDLTGLKPGTEYTVSIYG






VLVRDYIRAAEWYSNPLSAIFTTGGHHHHHH





1188
PRT
Artificial
Luk047017
MTIDEWLLKEAKEKAIEELKKAGITSDYYFD






LINKAKTVEGVNALKDEILKAGGGGSGGGGS






GGGGSGGGGSMLPAPNNLVVSRVTEDSARL






SWDWDKYYTNRFDSFLIQYQESEKVGEAIVL






TVPGSERSYDLTGLKPGTEYTVSIYGVLVRD






YIRAAEWYSNPLSAIFTTGGHHHHHH





1189
PRT
Artificial
Luk047018
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FAIEYEELRDWGEAIVLTVPGSERSYDLTGLK






PGTEYSVSITGVKGGAESWPLSAIFTTGGGGS






GGGGSGGGGSGGGGSMLPAPNNLVVSRVTE






DSARLSWDWDKYYTNRFDSFLIQYQESEKV






GEAIVLTVPGSERSYDLTGLKPGTEYTVSIYG






VLVRDYIRAAEWYSNPLSAIFTTGGHHHHHH





1190
PRT
Artificial
Luk047019
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FHIEYWEQSIVGEAIVLTVPGSERSYDLTGLK






PGTEYRVWIYGVKGGNDSWPLSAIFTTGGGG






SGGGGSGGGGSGGGGSMLPAPKNLVVSRVT






EDSARLSWYHENAYLLFDSFLIQYQESEKVG






EAIVLTVPGSERSYDLTGLKPGTEYTVSIYGV






VYDLTPEKRSSNPLSAIFTTGGHHHHHH





1191
PRT
Artificial
Luk047020
MTIDEWLLKEAKEKAIEELKKAGITSDYYFD






LINKAKTVEGVNALKDEILKAGGGGSGGGGS






GGGGSGGGGSMLPAPKNLVVSRVTEDSARL






SWYHENAYLLFDSFLIQYQESEKVGEAIVLT






VPGSERSYDLTGLKPGTEYTVSIYGVVYDLTP






EKRSSNPLSAIFTTGGHHHHHH





1192
PRT
Artificial
Luk047021
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FAIEYEELRDWGEAIVLTVPGSERSYDLTGLK






PGTEYSVSITGVKGGAESWPLSAIFTTGGGGS






GGGGSGGGGSGGGGSMLPAPKNLVVSRVTE






DSARLSWYHENAYLLFDSFLIQYQESEKVGE






AIVLTVPGSERSYDLTGLKPGTEYTVSIYGVV






YDLTPEKRSSNPLSAIFTTGGHHHHHH





1193
PRT
Artificial
Luk047022
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FHIEYWEQSIVGEAIVLTVPGSERSYDLTGLK






PGTEYRVWIYGVKGGNDSWPLSAIFTTGGGG






SGGGGSGGGGSGGGGSMLPAPKNLVVSRVT






EDSARLSWTAPDAAFDSFLIQYQESEKVGEAI






VLTVPGSERSYDLTGLKPGTEYTVSIYGVELI






YHGWLDFVFSNPLSAIFTTGGHHHHHH





1194
PRT
Artificial
Luk047023
MTIDEWLLKEAKEKAIEELKKAGITSDYYFD






LINKAKTVEGVNALKDEILKAGGGGSGGGGS






GGGGSGGGGSMLPAPKNLVVSRVTEDSARL






SWTAPDAAFDSFLIQYQESEKVGEAIVLTVPG






SERSYDLTGLKPGTEYTVSIYGVELIYHGWL






DFVFSNPLSAIFTTGGHHHHHH





1195
PRT
Artificial
Luk047024
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FAIEYEELRDWGEAIVLTVPGSERSYDLTGLK






PGTEYSVSITGVKGGAESWPLSAIFTTGGGGS






GGGGSGGGGSGGGGSMLPAPKNLVVSRVTE






DSARLSWTAPDAAFDSFLIQYQESEKVGEAIV






LTVPGSERSYDLTGLKPGTEYTVSIYGVELIY






HGWLDFVFSNPLSAIFTTGGHHHHHH





1196
PRT
Artificial
Luk047025
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FHIEYWEQSIVGEAIVLTVPGSERSYDLTGLK






PGTEYRVWIYGVKGGNDSWPLSAIFTTGGGG






SGGGGSGGGGSGGGGSMLPAPKNLVVSRVT






EDSARLSWTAPDAAFDSFYIEYWEPTSDGEAI






ALNVPGSERSYDLTGLKPGTEYFVEIWGVKG






GPRSPPLSAWFTTGGHHHHHH





1197
PRT
Artificial
Luk047026
MTIDEWLLKEAKEKAIEELKKAGITSDYYFD






LINKAKTVEGVNALKDEILKAGGGGSGGGGS






GGGGSGGGGSMLPAPKNLVVSRVTEDSARL






SWTAPDAAFDSFYIEYWEPTSDGEAIALNVP






GSERSYDLTGLKPGTEYFVEIWGVKGGPRSP






PLSAWFTTGGHHHHHH





1198
PRT
Artificial
Luk047027
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FAIEYEELRDWGEAIVLTVPGSERSYDLTGLK






PGTEYSVSITGVKGGAESWPLSAIFTTGGGGS






GGGGSGGGGSGGGGSMLPAPKNLVVSRVTE






DSARLSWTAPDAAFDSFYIEYWEPTSDGEAI






ALNVPGSERSYDLTGLKPGTEYFVEIWGVKG






GPRSPPLSAWFTTGGHHHHHH





1199
PRT
Artificial
Luk047028
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FHIEYWEQSIVGEAIVLTVPGSERSYDLTGLK






PGTEYRVWIYGVKGGNDSWPLSAIFTTGGGG






SGGGGSGGGGSGGGGSMLPAPKNLVVSRVT






EDSARLSWTAPDAAFDSFDIEYGEPEKIGEAI






WLTVPGSERSYDLTGLKPGTEYWVFIYGVKG






GALSRPLTATFTTGGHHHHHH





1200
PRT
Artificial
Luk047029
MTIDEWLLKEAKEKAIEELKKAGITSDYYFD






LINKAKTVEGVNALKDEILKAGGGGSGGGGS






GGGGSGGGGSMLPAPKNLVVSRVTEDSARL






SWTAPDAAFDSFDIEYGEPEKIGEAIWLTVPG






SERSYDLTGLKPGTEYWVFIYGVKGGALSRP






LTATFTTGGHHHHHH





1201
PRT
Artificial
Luk047030
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FAIEYEELRDWGEAIVLTVPGSERSYDLTGLK






PGTEYSVSITGVKGGAESWPLSAIFTTGGGGS






GGGGSGGGGSGGGGSMLPAPKNLVVSRVTE






DSARLSWTAPDAAFDSFDIEYGEPEKIGEAIW






LTVPGSERSYDLTGLKPGTEYWVFIYGVKGG






ALSRPLTATFTTGGHHHHHH





1202
PRT
Artificial
Luk047031
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FHIEYWEQSIVGEAIVLTVPGSERSYDLTGLK






PGTEYRVWIYGVKGGNDSWPLSAIFTTGGGG






SGGGGSGGGGSGGGGSMLPAPKNLVVSRVT






EDSARLSWTAPDAAFDSFRILYFEYKRLGEAI






VLTVPGSERSYDLTGLKPGTEYFVGIHGVKG






GYISRPLSAIFTTGGHHHHHH





1203
PRT
Artificial
Luk047032
MTIDEWLLKEAKEKAIEELKKAGITSDYYFD






LINKAKTVEGVNALKDEILKAGGGGSGGGGS






GGGGSGGGGSMLPAPKNLVVSRVTEDSARL






SWTAPDAAFDSFRILYFEYKRLGEAIVLTVPG






SERSYDLTGLKPGTEYFVGIHGVKGGYISRPL






SAIFTTGGHHHHHH





1204
PRT
Artificial
Luk047033
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FAIEYEELRDWGEAIVLTVPGSERSYDLTGLK






PGTEYSVSITGVKGGAESWPLSAIFTTGGGGS






GGGGSGGGGSGGGGSMLPAPKNLVVSRVTE






DSARLSWTAPDAAFDSFRILYFEYKRLGEAIV






LTVPGSERSYDLTGLKPGTEYFVGIHGVKGG






YISRPLSAIFTTGGHHHHHH





1205
PRT
Artificial
Luk047034
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FHIEYWEQSIVGEAIVLTVPGSERSYDLTGLK






PGTEYRVWIYGVKGGNDSWPLSAIFTTGGGG






SGGGGSGGGGSGGGGSMLPAPKNLVVSRVT






EDSARLSWTAPDAAFDSFHIHYWEFNPAGEA






IVLTVPGSERSYDLTGLKPGTEYFVGIHGVKG






GGISWPLSAIFTTGGHHHHHH





1206
PRT
Artificial
Luk047035
MTIDEWLLKEAKEKAIEELKKAGITSDYYFD






LINKAKTVEGVNALKDEILKAGGGGSGGGGS






GGGGSGGGGSMLPAPKNLVVSRVTEDSARL






SWTAPDAAFDSFHIHYWEFNPAGEAIVLTVP






GSERSYDLTGLKPGTEYFVGIHGVKGGGISW






PLSAIFTTGGHHHHHH





1207
PRT
Artificial
Luk047036
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FAIEYEELRDWGEAIVLTVPGSERSYDLTGLK






PGTEYSVSITGVKGGAESWPLSAIFTTGGGGS






GGGGSGGGGSGGGGSMLPAPKNLVVSRVTE






DSARLSWTAPDAAFDSFHIHYWEFNPAGEAI






VLTVPGSERSYDLTGLKPGTEYFVGIHGVKG






GGISWPLSAIFTTGGHHHHHH





1208
PRT
Artificial
Luk047037
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FHIEYWEQSIVGEAIVLTVPGSERSYDLTGLK






PGTEYRVWIYGVKGGNDSWPLSAIFTTGGGG






SGGGGSGGGGSGGGGSMLPAPKNLVVSRVT






EDSARLSWTAPDAAFDSFHIFYHETDAYGEAI






VLTVPGSERSYDLTGLKPGTEYFVVIHGVKG






GFISSPLSAIFTTGGHHHHHH





1209
PRT
Artificial
Luk047038
MTIDEWLLKEAKEKAIEELKKAGITSDYYFD






LINKAKTVEGVNALKDEILKAGGGGSGGGGS






GGGGSGGGGSMLPAPKNLVVSRVTEDSARL






SWTAPDAAFDSFHIFYHETDAYGEAIVLTVP






GSERSYDLTGLKPGTEYFVVIHGVKGGFISSP






LSAIFTTGGHHHHHH





1210
PRT
Artificial
Luk047039
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FAIEYEELRDWGEAIVLTVPGSERSYDLTGLK






PGTEYSVSITGVKGGAESWPLSAIFTTGGGGS






GGGGSGGGGSGGGGSMLPAPKNLVVSRVTE






DSARLSWTAPDAAFDSFHIFYHETDAYGEAI






VLTVPGSERSYDLTGLKPGTEYFVVIHGVKG






GFISSPLSAIFTTGGHHHHHH





1211
PRT
Artificial
Luk047040
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FHIEYWEQSIVGEAIVLTVPGSERSYDLTGLK






PGTEYRVWIYGVKGGNDSWPLSAIFTTGGGG






SGGGGSGGGGSGGGGSMLPAPKNLVVSRVT






EDSARLSWTAPDAAFDSFWISYVEPDDGEAI






ELLVPGSERSYDLTGLKPGTEYIVQIDGVKGG






TTSVPLNARFTTGGHHHHHH





1212
PRT
Artificial
Luk047041
MTIDEWLLKEAKEKAIEELKKAGITSDYYFD






LINKAKTVEGVNALKDEILKAGGGGSGGGGS






GGGGSGGGGSMLPAPKNLVVSRVTEDSARL






SWTAPDAAFDSFWISYVEPDDGEAIELLVPGS






ERSYDLTGLKPGTEYIVQIDGVKGGTTSVPLN






ARFTTGGHHHHHH





1213
PRT
Artificial
Luk047042
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FAIEYEELRDWGEAIVLTVPGSERSYDLTGLK






PGTEYSVSITGVKGGAESWPLSAIFTTGGGGS






GGGGSGGGGSGGGGSMLPAPKNLVVSRVTE






DSARLSWTAPDAAFDSFWISYVEPDDGEAIE






LLVPGSERSYDLTGLKPGTEYIVQIDGVKGGT






TSVPLNARFTTGGHHHHHH





1214
PRT
Artificial
Luk047043
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FHIEYWEQSIVGEAIVLTVPGSERSYDLTGLK






PGTEYRVWIYGVKGGNDSWPLSAIFTTGGGG






SGGGGSGGGGSGGGGSMLPAPKNLVVSRVT






EDSARLSWTAPDAAFDSFGIGYLEYPWYGEA






IVLTVPGSERSYDLTGLKPGTEYFVDIYGVKG






GWWSYPLSAIFTTGGHHHHHH





1215
PRT
Artificial
Luk047044
MTIDEWLLKEAKEKAIEELKKAGITSDYYFD






LINKAKTVEGVNALKDEILKAGGGGSGGGGS






GGGGSGGGGSMLPAPKNLVVSRVTEDSARL






SWTAPDAAFDSFGIGYLEYPWYGEAIVLTVP






GSERSYDLTGLKPGTEYFVDIYGVKGGWWS






YPLSAIFTTGGHHHHHH





1216
PRT
Artificial
Luk047045
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FAIEYEELRDWGEAIVLTVPGSERSYDLTGLK






PGTEYSVSITGVKGGAESWPLSAIFTTGGGGS






GGGGSGGGGSGGGGSMLPAPKNLVVSRVTE






DSARLSWTAPDAAFDSFGIGYLEYPWYGEAI






VLTVPGSERSYDLTGLKPGTEYFVDIYGVKG






GWWSYPLSAIFTTGGHHHHHH





1217
PRT
Artificial
Luk047046
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FHIEYWEQSIVGEAIVLTVPGSERSYDLTGLK






PGTEYRVWIYGVKGGNDSWPLSAIFTTGGGG






SGGGGSGGGGSGGGGSMLPAPKNLVVSRVT






EDSARLSWTAPDAAFDSFNIDYFEYYEFGEAI






VLTVPGSERSYDLTGLKPGTEYFVDIYGVKG






GSWSLPLSAIFTTGGHHHHHH





1218
PRT
Artificial
Luk047047
MTIDEWLLKEAKEKAIEELKKAGITSDYYFD






LINKAKTVEGVNALKDEILKAGGGGSGGGGS






GGGGSGGGGSMLPAPKNLVVSRVTEDSARL






SWTAPDAAFDSFNIDYFEYYEFGEAIVLTVPG






SERSYDLTGLKPGTEYFVDIYGVKGGSWSLP






LSAIFTTGGHHHHHH





1219
PRT
Artificial
Luk047048
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FAIEYEELRDWGEAIVLTVPGSERSYDLTGLK






PGTEYSVSITGVKGGAESWPLSAIFTTGGGGS






GGGGSGGGGSGGGGSMLPAPKNLVVSRVTE






DSARLSWTAPDAAFDSFNIDYFEYYEFGEAIV






LTVPGSERSYDLTGLKPGTEYFVDIYGVKGG






SWSLPLSAIFTTGGHHHHHH





1220
PRT
Artificial
Luk047049
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FHIEYWEQSIVGEAIVLTVPGSERSYDLTGLK






PGTEYRVWIYGVKGGNDSWPLSAIFTTGGGG






SGGGGSGGGGSGGGGSMLPAPKNLVVSRVT






EDSARLSWTAPDAAFDSFDISYDEYPEFGEAI






VLTVPGSERSYDLTGLKPGTEYLVDIIGVKGG






EISLPLSAIFTTGGHHHHHH





1221
PRT
Artificial
Luk047050
MTIDEWLLKEAKEKAIEELKKAGITSDYYFD






LINKAKTVEGVNALKDEILKAGGGGSGGGGS






GGGGSGGGGSMLPAPKNLVVSRVTEDSARL






SWTAPDAAFDSFDISYDEYPEFGEAIVLTVPG






SERSYDLTGLKPGTEYLVDIIGVKGGEISLPLS






AIFTTGGHHHHHH





1222
PRT
Artificial
Luk047051
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FAIEYEELRDWGEAIVLTVPGSERSYDLTGLK






PGTEYSVSITGVKGGAESWPLSAIFTTGGGGS






GGGGSGGGGSGGGGSMLPAPKNLVVSRVTE






DSARLSWTAPDAAFDSFDISYDEYPEFGEAIV






LTVPGSERSYDLTGLKPGTEYLVDIIGVKGGE






ISLPLSAIFTTGGHHHHHH





1223
PRT
Artificial
Luk047052
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FHIEYWEQSIVGEAIVLTVPGSERSYDLTGLK






PGTEYRVWIYGVKGGNDSWPLSAIFTTGGGG






SGGGGSGGGGSGGGGSMLPAPKNLVVSRVT






EDSARLSWTAPDAAFDSFNIHYAEYPDFGEAI






VLTVPGSERSYDLTGLKPGTEYIVDIWGVKG






GLGSWPLSAIFTTGGHHHHHH





1224
PRT
Artificial
Luk047053
MTIDEWLLKEAKEKAIEELKKAGITSDYYFD






LINKAKTVEGVNALKDEILKAGGGGSGGGGS






GGGGSGGGGSMLPAPKNLVVSRVTEDSARL






SWTAPDAAFDSFNIHYAEYPDFGEAIVLTVPG






SERSYDLTGLKPGTEYIVDIWGVKGGLGSWP






LSAIFTTGGHHHHHH





1225
PRT
Artificial
Luk047054
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FAIEYEELRDWGEAIVLTVPGSERSYDLTGLK






PGTEYSVSITGVKGGAESWPLSAIFTTGGGGS






GGGGSGGGGSGGGGSMLPAPKNLVVSRVTE






DSARLSWTAPDAAFDSFNIHYAEYPDFGEAI






VLTVPGSERSYDLTGLKPGTEYIVDIWGVKG






GLGSWPLSAIFTTGGHHHHHH





1226
PRT
Artificial
Luk047055
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FHIEYWEQSIVGEAIVLTVPGSERSYDLTGLK






PGTEYRVWIYGVKGGNDSWPLSAIFTTGGGG






SGGGGSGGGGSGGGGSMLPAPKNLVVSRVT






EDSARLSWTAPDAAFDSFVIFYGEYENGGEAI






VLTVPGSERSYDLTGLKPGTEYFVIIVGVKGG






FDSKPLSAIFTTGGHHHHHH





1227
PRT
Artificial
Luk047056
MTIDEWLLKEAKEKAIEELKKAGITSDYYFD






LINKAKTVEGVNALKDEILKAGGGGSGGGGS






GGGGSGGGGSMLPAPKNLVVSRVTEDSARL






SWTAPDAAFDSFVIFYGEYENGGEAIVLTVP






GSERSYDLTGLKPGTEYFVIIVGVKGGFDSKP






LSAIFTTGGHHHHHH





1228
PRT
Artificial
Luk047057
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FAIEYEELRDWGEAIVLTVPGSERSYDLTGLK






PGTEYSVSITGVKGGAESWPLSAIFTTGGGGS






GGGGSGGGGSGGGGSMLPAPKNLVVSRVTE






DSARLSWTAPDAAFDSFVIFYGEYENGGEAI






VLTVPGSERSYDLTGLKPGTEYFVIIVGVKGG






FDSKPLSAIFTTGGHHHHHH





1229
PRT
Artificial
Luk047058
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FHIEYWEQSIVGEAIVLTVPGSERSYDLTGLK






PGTEYRVWIYGVKGGNDSWPLSAIFTTGGGG






SGGGGSGGGGSGGGGSMLPAPKNLVVSRVT






EDSARLSWTAPDAAFDSFQIFYQEVVEWGEA






IVLTVPGSERSYDLTGLKPGTEYFVVIHGVKG






GWISDPLSAIFTTGGHHHHHH





1230
PRT
Artificial
Luk047059
MTIDEWLLKEAKEKAIEELKKAGITSDYYFD






LINKAKTVEGVNALKDEILKAGGGGSGGGGS






GGGGSGGGGSMLPAPKNLVVSRVTEDSARL






SWTAPDAAFDSFQIFYQEVVEWGEAIVLTVP






GSERSYDLTGLKPGTEYFVVIHGVKGGWISD






PLSAIFTTGGHHHHHH





1231
PRT
Artificial
Luk047060
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FAIEYEELRDWGEAIVLTVPGSERSYDLTGLK






PGTEYSVSITGVKGGAESWPLSAIFTTGGGGS






GGGGSGGGGSGGGGSMLPAPKNLVVSRVTE






DSARLSWTAPDAAFDSFQIFYQEVVEWGEAI






VLTVPGSERSYDLTGLKPGTEYFVVIHGVKG






GWISDPLSAIFTTGGHHHHHH





1232
PRT
Artificial
Luk047061
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FHIEYWEQSIVGEAIVLTVPGSERSYDLTGLK






PGTEYRVWIYGVKGGNDSWPLSAIFTTGGGG






SGGGGSGGGGSGGGGSMLPAPKNLVVSRVT






EDSARLSWTAPDAAFDSFAIFYVELVWKGEA






IVLTVPGSERSYDLTGLKPGTEYFVVIHGVKG






GYISDPLSAIFTTGGHHHHHH





1233
PRT
Artificial
Luk047062
MTIDEWLLKEAKEKAIEELKKAGITSDYYFD






LINKAKTVEGVNALKDEILKAGGGGSGGGGS






GGGGSGGGGSMLPAPKNLVVSRVTEDSARL






SWTAPDAAFDSFAIFYVELVWKGEAIVLTVP






GSERSYDLTGLKPGTEYFVVIHGVKGGYISDP






LSAIFTTGGHHHHHH





1234
PRT
Artificial
Luk047063
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FAIEYEELRDWGEAIVLTVPGSERSYDLTGLK






PGTEYSVSITGVKGGAESWPLSAIFTTGGGGS






GGGGSGGGGSGGGGSMLPAPKNLVVSRVTE






DSARLSWTAPDAAFDSFAIFYVELVWKGEAI






VLTVPGSERSYDLTGLKPGTEYFVVIHGVKG






GYISDPLSAIFTTGGHHHHHH





1235
PRT
Artificial
Luk047064
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FHIEYWEQSIVGEAIVLTVPGSERSYDLTGLK






PGTEYRVWIYGVKGGNDSWPLSAIFTTGGGG






SGGGGSGGGGSGGGGSMLPAPKNLVVSRVT






EDSARLSWTAPDAAFDSFVIFYHETRVTGEAI






VLTVPGSERSYDLTGLKPGTEYLVVIHGVKG






GYISEPLSAIFTTGGHHHHHH





1236
PRT
Artificial
Luk047065
MTIDEWLLKEAKEKAIEELKKAGITSDYYFD






LINKAKTVEGVNALKDEILKAGGGGSGGGGS






GGGGSGGGGSMLPAPKNLVVSRVTEDSARL






SWTAPDAAFDSFVIFYHETRVTGEAIVLTVPG






SERSYDLTGLKPGTEYLVVIHGVKGGYISEPL






SAIFTTGGHHHHHH





1237
PRT
Artificial
Luk047066
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FAIEYEELRDWGEAIVLTVPGSERSYDLTGLK






PGTEYSVSITGVKGGAESWPLSAIFTTGGGGS






GGGGSGGGGSGGGGSMLPAPKNLVVSRVTE






DSARLSWTAPDAAFDSFVIFYHETRVTGEAIV






LTVPGSERSYDLTGLKPGTEYLVVIHGVKGG






YISEPLSAIFTTGGHHHHHH





1238
PRT
Artificial
Luk047067
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FHIEYWEQSIVGEAIVLTVPGSERSYDLTGLK






PGTEYRVWIYGVKGGNDSWPLSAIFTTGGGG






SGGGGSGGGGSGGGGSMLPAPKNLVVSRVT






EDSARLSWTAPDAAFDSFLIDYWEGEFDGEA






IHLFVPGSERSYDLTGLKPGTEYDVFIVGVKG






GHGSDPLSAIFTTGGHHHHHH





1239
PRT
Artificial
Luk047068
MTIDEWLLKEAKEKAIEELKKAGITSDYYFD






LINKAKTVEGVNALKDEILKAGGGGSGGGGS






GGGGSGGGGSMLPAPKNLVVSRVTEDSARL






SWTAPDAAFDSFLIDYWEGEFDGEAIHLFVP






GSERSYDLTGLKPGTEYDVFIVGVKGGHGSD






PLSAIFTTGGHHHHHH





1240
PRT
Artificial
Luk047069
MLPAPKNLVVSRVTEDSARLSWTAPDAAFDS






FAIEYEELRDWGEAIVLTVPGSERSYDLTGLK






PGTEYSVSITGVKGGAESWPLSAIFTTGGGGS






GGGGSGGGGSGGGGSMLPAPKNLVVSRVTE






DSARLSWTAPDAAFDSFLIDYWEGEFDGEAI






HLFVPGSERSYDLTGLKPGTEYDVFIVGVKG






GHGSDPLSAIFTTGGHHHHHH





1241
PRT
Artificial
TENCON
LPAPKNLVVSRVTEDSARLSWTAPDAAFDSF





parent
LIQYQESEKVGEAIVLTVPGSERSYDLTGLKP






GTEYTVSIYGVKGGHRSNPLSAIFTT





1242
PRT
Human
CR-5133 VH
EVQLVETGGGLVKPGGSLRLSCSASRFSFRD






YYMTWIRQAPGKGPEWVSHISGSGSTIYYAD






SVRGRFTISRDNAKSSLYLQMDSLQADDTAV






YYCARGGRATSYYWVHWGPGTLVTVSS





1243
PRT
Human
CR-5133 VL
EIVLTQSPATLSLSPGERATLSCRASQSVSGYL






GWYQQKPGQAPRLLIYGASSRATGIPDRFSG






SGSGTDFTLTISRLEPEDFAVYYCQQYGSSPL






TFGGGTKLEIK









Although preferred embodiments have been depicted and described in detail herein, it will be apparent to those skilled in the relevant art that various modifications, additions, substitutions, and the like can be made without departing from the spirit of the disclosure and these are therefore considered to be within the scope of the disclosure as defined in the claims which follow.

Claims
  • 1. A Leukocidin B (LukB) polypeptide comprising an amino acid sequence corresponding to amino acid residues 1-109 of SEQ ID NO: 1026 coupled to amino acid residues 152-305 of SEQ ID NO: 1026, wherein said LukB polypeptide does not comprise one or more amino acid residues corresponding to amino acid residues 110-151 of SEQ ID NO: 1026.
  • 2. A recombinant Leukocidin A (LukA) polypeptide comprising an amino acid sequence corresponding to amino acid residues 1-134 of SEQ ID NO: 1018 coupled to amino acid residues 175-324 of SEQ ID NO: 1018, wherein the amino acid residue corresponding to amino acid residue 323 of SEQ ID NO: 1018 is selected from glutamic acid and alanine, and wherein said LukA polypeptide does not comprise one or more amino acid residues corresponding to amino acid residues 135-174 of SEQ ID NO: 1018.
  • 3. A vaccine composition comprising: a recombinant Leukocidin B (LukB) polypeptide comprising an amino acid sequence corresponding to amino acid residues 1-109 of SEQ ID NO: 1026 coupled to amino acid residues 152-305 of SEQ ID NO: 1026, wherein said LukB polypeptide does not comprise one or more amino acid residues corresponding to amino acid residues 110-151 of SEQ ID NO: 1026; anda recombinant Leukocidin A (LukA) polypeptide comprising an amino acid sequence corresponding to amino acid residues 1-134 of SEQ ID NO: 1018 coupled to amino acid residues 175-324 of SEQ ID NO: 1018, wherein the amino acid residue corresponding to amino acid residue 323 of SEQ ID NO: 1018 is selected from glutamic acid and alanine, and wherein said LukA polypeptide does not comprise one or more amino acid residues corresponding to amino acid residues 135-174 of SEQ ID NO: 1018.
  • 4. The vaccine composition of claim 3, wherein said recombinant LukB polypeptide does not comprise amino acid residues corresponding to amino acid residues 122-126 of SEQ ID NO: 1026, amino acid residues 130-134 of SEQ ID NO: 1026, or amino acid residues 110-151 of SEQ ID NO: 1026.
  • 5. The vaccine composition of claim 3, wherein said recombinant LukB polypeptide comprises an amino acid sequence of SEQ ID NO: 1029, SEQ ID NO: 1030, SEQ ID NO: 1031, SEQ ID NO: 1032, SEQ ID NO: 1150, or SEQ ID NO: 1151.
  • 6. The vaccine composition of claim 3, wherein said recombinant LukA polypeptide comprises an alanine at the amino acid residue corresponding to amino acid residue 323 of SEQ ID NO: 1018.
  • 7. The vaccine composition of claim 3, wherein said recombinant LukA polypeptide does not comprise amino acid residues corresponding to amino acid residues 144-149 of SEQ ID NO: 1018 or amino acid residues 135-174 of SEQ ID NO: 1018.
  • 8. The vaccine composition of claim 3, wherein said LukA polypeptide comprises an amino acid sequence SEQ ID NO: 1022, SEQ ID NO: 1023, SEQ ID NO: 1024, SEQ ID NO: 1025, or SEQ ID NO: 1149.
  • 9. The recombinant LukB polypeptide of claim 1, wherein amino acid residues corresponding to amino acid residues 1-109 of SEQ ID NO: 1026 are coupled to amino acid residues corresponding to amino acid residues 152-305 of SEQ ID NO: 1026 via a serine/glycine-rich linker.
  • 10. The recombinant LukB polypeptide of claim 1, wherein said LukB polypeptide does not comprise amino acid residues corresponding to amino acid residues 122-126 of SEQ ID NO: 1026, amino acid residues 130-134 of SEQ ID NO: 1026, or amino acid residues 110-151 of SEQ ID NO: 1026.
  • 11. The recombinant LukB polypeptide of claim 1, wherein said LukB polypeptide comprises an amino acid sequence of SEQ ID NO: 1029, SEQ ID NO: 1030, SEQ ID NO: 1031, SEQ ID NO: 1032, SEQ ID NO: 1150, or SEQ ID NO: 1151.
  • 12. The recombinant LukA polypeptide of claim 2, wherein amino acid residues corresponding to amino acid residues 1-134 of SEQ ID NO: 1018 are coupled to amino acid residues corresponding to amino acid residues 175-324 of SEQ ID NO: 1018 via a serine/glycine-rich linker.
  • 13. The recombinant LukA polypeptide of claim 2, wherein said LukA polypeptide comprises an alanine at the amino acid residue corresponding to amino acid residue 323 of SEQ ID NO: 1018.
  • 14. The recombinant LukA polypeptide of claim 2, wherein said LukA polypeptide does not comprise amino acid residues corresponding to amino acid residues 144-149 of SEQ ID NO: 1018 or amino acid residues 135-174 of SEQ ID NO: 1018.
  • 15. The recombinant LukA polypeptide of claim 2, wherein said LukA polypeptide comprises an amino acid sequence of SEQ ID NO: 1022, SEQ ID NO: 1023, SEQ ID NO: 1024, SEQ ID NO: 1025, or SEQ ID NO: 1149.
Parent Case Info

This application is a national stage application under 35 U.S.C. § 371 of PCT Application No. PCT/US2016/035931, filed Jun. 4, 2016, which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/171,788, filed Jun. 5, 2015, which is hereby incorporated by reference in its entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2016/035931 6/4/2016 WO 00
Publishing Document Publishing Date Country Kind
WO2016/197071 12/8/2016 WO A
US Referenced Citations (6)
Number Name Date Kind
7608276 Masignani et al. Oct 2009 B2
9783582 Torres et al. Oct 2017 B2
10316067 Torres et al. Jun 2019 B2
20100216708 Jacobs et al. Aug 2010 A1
20110274693 Torres et al. Nov 2011 A1
20190330284 Torres et al. Oct 2019 A1
Foreign Referenced Citations (10)
Number Date Country
02059148 Aug 2002 WO
2006135912 Dec 2006 WO
2009049351 Apr 2009 WO
2010027828 Mar 2010 WO
2010037041 Apr 2010 WO
2010119343 Oct 2010 WO
2012177658 Dec 2012 WO
2013096948 Jun 2013 WO
2013165613 Nov 2013 WO
2015089073 Jun 2015 WO
Non-Patent Literature Citations (11)
Entry
PCT International Preliminary Report on Patentability for PCT/US2016/035931 (dated Dec. 14, 2017).
Reyes-Robles et al., “Exploiting Dominant-Negative Toxins to Combat Staphylococcus aureus Pathogenesis,” EMBO Reports 17(3):428-440 (2016).
Badarau et al., “Structure-Function Analysis of Heterodimer Formation, Oligomerization, and Receptor Binding of the Staphylococcus aureus Bi-Component Toxin LukGH,” J. Biol. Chem. 290(1):142-156 (2015).
Dumont et al., “Identification of a Crucial Residue Required for Staphylococcus aureus LukAB Cytotoxicity and Receptor Recognition,” Infect. & Immun. 82:1268-1276 (2014).
Extended European Search Report for European Patent Application No. 16804614.2 (dated Dec. 6, 2018).
Gouaux et al, “Alpha-Hemolysin, Gamma-Hemolysin, and Leukocidin from Staphylococcus Aureus: Distant in Sequence but Similar in Structure,” Protein Science 6:2631-2635 (1997).
Hazenbos et al., “Novel Staphylococcal Glycosyltransferases SdgA and SdgB Mediate Immunogenicity and Protection of Virulence-Associated Cell Wall Proteins,” PLOS Pathogens 9(10):e1003653 (2013).
PCT International Search Report and Written Opinion corresponding to PCT/US2016/035931, dated Oct. 7, 2016.
Ventura et al., “Identification of a NovelStaphylococcus aureus Two-Component Leukotoxin Using Cell Surface Proteomics,” PLoS ONE 5:e11634 (2010).
Dumont et al., “Characterization of a New Cytotoxin That Contributes to Staphylococcus aureus Pathogenesis,” Mol. Microbiol. 79(3):814-825 (2011).
Nariya et al., “The C-Terminal Region of the S Component of Staphylococcal Leukocidin is Essential for the Biological Activity of the Toxin,” FEBS 329(1,2):219-222 (1993).
Related Publications (1)
Number Date Country
20190127444 A1 May 2019 US
Provisional Applications (1)
Number Date Country
62171788 Jun 2015 US