Compositions and Methods for Treating Cancer

Information

  • Patent Application
  • 20230035774
  • Publication Number
    20230035774
  • Date Filed
    June 28, 2021
    3 years ago
  • Date Published
    February 02, 2023
    2 years ago
Abstract
A double stranded RNA interference (RNAi) agent comprising at least one of (i) a first double-stranded ribonucleic acid (dsRNA) for inhibiting the expression of a CD320 gene wherein the first dsRNA comprises a sense strand and an antisense strand forming a duplex, (ii) a second dsRNA for inhibiting the expression of a LRP2 gene wherein the second dsRNA comprises a sense strand and an antisense strand forming a duplex, or (iii) a cocktail of (i) and (ii) and wherein the sense strand of the first dsRNA is at least substantially complementary to the antisense strand of the first dsRNA and the sense strand of the second dsRNA is at least substantially complementary to the antisense strand of the second dsRNA and the use of the RNAi agent as a pharmaceutical composition for the treatment of cancer in subjects in need of treatment.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jun. 24, 2021, is named 32064-1035_CIP_SL.txt and is 446,136 bytes in size.


BACKGROUND

A variety of cancer therapies and treatments exist such as surgical resection of solid tumors, radiation, and chemotherapy. While surgical resection and radiation are used on localized tumors, chemotherapy is often delivered systemically and impacts both cancer and non-cancer cells, leading to severe and even life-threatening side effects. Older cancer drugs, including alkylators, nucleotide antimetabolites, and tubulin poisons, cause significant side effects because they are similarly toxic to normal cells as to cancer cells, especially those normal cells undergoing routine cell division in the intestine, scalp, and skin. For this reason, much of the effort in contemporary cancer drug discovery is devoted to finding targeted therapeutics which differentiate between cancer cells and normal cells (Neidle et al., (2014) Cancer Drug Design and Discovery). This has led to drugs which inhibit the function of oncolytic proteins that are mutated, overexpressed, or abnormally hyperactive in cancer but not in normal cells. Examples of such drugs include kinase inhibitors, histone deacetylase inhibitors, proteasome inhibitors, mTOR inhibitors, BCL2 inhibitors, and isocitrate dehydrogenase inhibitors. Significant effort has also been devoted to targeting cell surface antigens which are differentially expressed in cancer cells compared to normal cells. Monoclonal antibodies and antibody-drug conjugates targeting cancer cell surface antigens have thus been developed as cancer therapeutics (Beck et al., (2017) Nat Rev Drug Disc 16, 315-337). Another point of differentiation between cancer cells and normal cells is metabolism. It was discovered many years ago that many cancer cells utilize glucose fermentation to generate ATP as opposed to the process of oxidative phosphorylation used by normal cells. A drug targeting isocitrate dehydrogenase, involved in abnormal glucose metabolism in cancer cells, was recently approved by the FDA (Dhillon (2018) Drugs 78, 1509-1516). Abnormalities in one-carbon metabolism, which encompasses the folate and methionine cycles and affects nucleotide synthesis and DNA methylation as a way of controlling gene expression, are strongly associated with some cancers (Fanidi et al., (2019) Int J Cancer 145, 1499-1503; Yang (2018) Front Oncol 8, 493). In this connection, it has been known for a long time that certain synthetic analogs of folic acid (antifolates) can inhibit the growth of cancer cells. It is also known that some cancer cells are dependent for survival on the amino acid methionine. If methionine is restricted, the cancer cells die, while this has little effect on normal cells. In recent years, evidence has begun to emerge that some cancer cells might have an abnormal dependency on vitamin B12. The nature of this dependency is not understood but might, in part, involve the use of vitamin B12 as a catalytic cofactor by the enzyme methionine synthase in one-carbon metabolism.


Vitamin B12 (cobalamin) is an essential micronutrient in the human diet. It is a cofactor for the metabolic enzymes methionine synthase and methylmalonyl-CoA mutase (Fedosov et al., (2012) Water Soluble Vitamins (book) 56, 347-367). After oral ingestion and transport through the intestine, cobalamin is almost completely protein bound in plasma to the chaperone proteins transcobalamin 1 (TCN1, haptocorrin, R-binder) (TCO1_HUMAN) and transcobalamin 2 (TCN2) (TCO2_HUMAN). The TCN2-cobalamin complex (TCN2-Cbl) is taken up by most cells using the process of receptor-mediated endocytosis and has a plasma half-life of 1-15 h. TCN2 has a high affinity and specificity for cobalamin in its various dietary and nutritional supplement forms, such as methyl cobalamin, adenosyl cobalamin and cyanocobalamin (Fedosov et al., (2007) Biochem 46, 6446-6458). TCN1 is a glycoprotein that exists in two different forms in plasma (Marzolo and Farfan (2011) Biol Res 44, 81-105). The most abundant form is sialylated and has a plasma half-life of about 10 days (Bor (2004) Clin Chem 50, 1043-1049). A less abundant form is desialylated and has a plasma half-life of a few minutes. Unlike TCN2-Cbl, which can be taken up by almost all cell types, the transcobalamin 1-cobalamin complex (TCN1-Cbl) is quickly taken up by certain liver cells, only in its desialylated form, by receptor-mediated endocytosis.


CD320 and LRP2 are two receptors involved in the uptake of cobalamin as TCN2-Cbl. CD320, a member of the low-density lipoprotein receptor (LDLR) family, is constitutively expressed in most cells and is the receptor primarily responsible for the uptake of cobalamin (Quadros (2013) Biochimie 95, 1008-1018). CD320 is overexpressed in some types of cancer (Sycel et al., (2013) Anticancer Res 33, 4203-4212; Amagasaki (1990) Blood 76, 1380-1386). There is also evidence that CD320 facilitates the transport of TCN2-Cbl through the blood-brain barrier into the brain (Lai et al.; (2013) FASEB 27, 2468-2475). LRP2 is another receptor in the LDLR family. It is expressed most highly in the kidney but also in other tissues. In addition to cobalamin, LRP2 also transports sundry proteins and small molecules, including albumin, insulin and vitamin D (Mazolo et al., (2011) Biol Res 44, 89-105). In the liver, the asialoglycoprotein receptor (ASGR) uptakes TCN1-Cbl by receptor-mediated endocytosis so long as TCN1 is in its desialylated form. Normal liver cells and liver cancer cells express very high levels of ASGR (50,000 receptors per cell), making this receptor attractive as a portal for delivering drugs to the liver (Luo et al., (2017) Biomedicine and Pharmacotherapy 88, 87-94; Stockert (1995) Physiological Rev 75, 595-609; Soda et al., Blood (1985) 65, 795-802).


After receptor mediated endocytosis, cobalamin is sequestered in the endosome, where the endosomal membrane prevents passive egress to the cytosol. A specialized protein (cblF) facilitates the transport of cobalamin through the endosomal membrane to the cytosol (Banerjee et al., (2009) Curr Opin Chem Bio 13, 484-491).


BRIEF SUMMARY OF THE INVENTION

One embodiment of the present invention provides for a double stranded RNA interference (RNAi) agent comprising at least one of (i) a first double-stranded ribonucleic acid (dsRNA) for inhibiting the expression of a CD320 gene wherein the first dsRNA comprises a sense strand and an antisense strand forming a duplex, (ii) a second dsRNA for inhibiting the expression of a LRP2 gene wherein the second dsRNA comprises a sense strand and an antisense strand forming a duplex, or (iii) a cocktail of (i) and (ii) and wherein the sense strand of the first dsRNA is at least substantially complementary to the antisense strand of the first dsRNA and the sense strand of the second dsRNA is at least substantially complementary to the antisense strand of the second dsRNA. For example, the antisense strand of (i) the first dsRNA includes a region of complementarity to a CD320 RNA transcript and for example the sense strand of (i) the first dsRNA is selected from Table 5. The antisense strand of (ii) the second dsRNA includes a region of complementarity to an LRP2 RNA transcript and the sense strand of (ii) the second dsRNA are selected from Table 6. In one example, (i) the first dsRNA or (ii) the second dsRNA comprises a duplex region which is 16-30 nucleotide pairs in length. In another example, (i) the first dsRNA or (ii) the second dsRNA comprises a duplex region which is 21-23 nucleotide pairs in length. In one embodiment, the double stranded RNAi agent includes at least one strand of: (i) the first dsRNA or (ii) the second dsRNA which comprises a 3′ overhang of at least 2 nucleotides. Further still, in one embodiment, the antisense strand of (i) the first dsRNA, comprises the nucleotide sequence selected from (5′→3′):











(SEQ ID NO: 17)



CAGUUGCGCAGUUUCUUGUCAGUUCdTdT;







(SEQ ID NO 18)



CAGUUGCGCAGUUUCUUGUCAGUUCdT*dT;







(SEQ ID NO 19)



mCmAmGmUmUmGmCmGmCmAmGmUmUmUmCmUmU







mGmUmCmAmGmUmUmCdT*dT;







(SEQ ID NO 21)



mCmAmGmUmUmGmCmGmCmAmGmUmUmUmCmUmU







mGmUmCmAmGmUmUmC;



(SEQ ID NO 23)



CmAmGmUmUmGmCmGmCmAmGmUmUmUmCmUmUm







GmUmCmAmGmUmUmCdT*dT;



(SEQ ID NO 24)



mC2fAmG2fUmU2fGmC2fGmC2fAmG2fUmU2f







UmC2fUmU2fGmU2fCmA2fGmU2fUmCdT*dT;







(SEQ ID NO 25)



mC2fAmG2fUmU2fGmC2fGmC2fAmG2fUmU2f







UmC2fUmU2fGmU2fCmA2fGmU2fUmC;







(SEQ ID NO 28)



2fCmA2fGmU2fUmG2fCmG2fCmA2fGmU2fUm







U2fCmU2fUmG2fUmC2fAmG2fUmU2fCdT*dT;







(SEQ ID NO 29)



2fCmA2fGmU2fUmG2fCmG2fCmA2fGmU2fUm







U2fCmU2fUmG2fUmC2fAmG2fUmU2fC;







(SEQ ID NO 30)



mC2fA2fG2fU2fU2fG2fC2fG2fC2fA2fG2fU







2fU2fU2fC2fU2fU2fG2fU2fC2fA2fG2fU2







fU2fCdT*dT;



(SEQ ID NO 32)



mC2fAmG2fUmU2fGmC2fGmC2fAmG2fUmU2f







UmC2fUmU2fGmU2fCmA2fGmU2fUmCdT*dT;







(SEQ ID NO 33)



mC2fAmG2fUmU2fGmC2fGmC2fAmG2fUmU2f







UmC2fUmU2fGmU2fCmA2fGmU;







(SEQ ID NO 34)



mC2fAmG2fUmU2fGmC2fGmC2fAmG2fUmU2f







UmC2fU2fU2fG2fU2fC2fA2fG2fU);







wherein, mA, mC, mG, and mU are 2′-O-methyl adenosine, cytidine, guanosine, or uridine, respectively; 2fA, 2fC, 2fG, and 2fU are 2′-fluoro adenosine, cytidine, guanosine, or uridine, respectively; and * is a phosphorothioate linkage; and


the sense strand is at least substantially complementary to the antisense strand.


Further still, in another embodiment, the double stranded RNAi agent includes the antisense strand of (i) the first dsRNA, that comprises the nucleotide sequence selected from (5′→3′)











(SEQ ID NO 64)



AAGAGCUCAGGUCUCUGAGGGdTdT;







(SEQ ID NO 65)



AAGAGCUCAGGUCUCUGAGGGdT*dT;







(SEQ ID NO 66)



mAmAmGmAmGmCmUmCmAmGmGmUmCmUmCmUmGmAmGm







GmGdT*dT;







(SEQ ID NO 68)



mAmAmGmAmGmCmUmCmAmGmGmUmCmUmCmUmGmAmGm







GmG;







(SEQ ID NO 71)



mA2fAmG2fAmG2fCmU2fCmA2fGmG2fUmC2fUmC2f







UmG2fAmG2fGmGdT*dT;







(SEQ ID NO 72)



mA2fAmG2fAmG2fCmU2fCmA2fGmG2fUmC2fUmC2f







UmG2fAmG2fGmG;



(SEQ ID NO 75)



2fAmA2fGmA2fGmC2fUmC2fAmG2fGmU2fCmU2fCm







U2fGmA2fGmG2fGdT*dT;







(SEQ ID NO 76)



2fAmA2fGmA2fGmC2fUmC2fAmG2fGmU2fCmU2fCm







U2fGmA2fGmG2fG;







(SEQ ID NO 77)



mA2fA2fGmA2fGmC2fUmC2fAmG2fGmU2fCmU2fCm







U2fGmA2fGmG2fG;







(SEQ ID NO 78)



mA2fA2fGmA2fGmC2fUmC2fAmG2fGmU2fCmU2fCm







U2fGmA2fGmG2fGdT*dT;







(SEQ ID NO 79)



2fAmA2fGmA2fGmC2fUmC2fAmG2fGmU2fCmU2fCm







U2fGmA2fGmG2fGdT*dT;







(SEQ ID NO 81)



2fAmA2fGmA2fGmC2fUmC2fAmG2fGmU2fCmU2fC2







fU2fG2fA2fG2fG2fG;







wherein, mA, mC, mG, and mU are 2′-O-methyl adenosine, cytidine, guanosine, or uridine, respectively; 2fA, 2fC, 2fG, and 2fU are 2′-fluoro adenosine, cytidine, guanosine, or uridine, respectively; and * is a phosphorothioate linkage; and


the sense strand is at least substantially complementary to the antisense strand.


In another embodiment the double stranded RNAi agent of (ii) the second dsRNA comprises the nucleotide sequence selected from (5′→3′)









(SEQ ID NO: 417)


UUUGAUAGCACCAAACCUAGAGCCCdTdT;





(SEQ ID NO: 418)


UUUGAUAGCACCAAACCUAGAGCCCdT*dT;





(SEQ ID NO: 419)


mUm[mUmGmAmUmAmGmCmAmCmCmAmAmAmCmCmUmAmGmAmGmCmCm





CdT*dT;





(SEQ ID NO: 421)


mUmUmUmGmAmUmAmGmCmAmCmCmAmAmAmCmCmUmAmGmAmGmCmCm





C;





(SEQ ID NO: 424)


mU2fUmU2fGmA2fUmA2fGmC2fAmC2fCmA2fAmA2fCmC2fUmA2f





GmA2fGmC2fCmCdT*dT];





(SEQ ID NO: 425)


mU2fUmU2fGmA2fUmA2fGmC2fAmC2fCmA2fAmA2fCmC2fUmA2f





GmA2fGmC2fCmC;





(SEQ ID NO: 429)


mU2fAmU2fCmA2fAmA2fCmC2fUmC2fGmA2fUmA2fGmC2fAmA2f





CmA2fCmC2fGmC;





(SEQ ID NO: 430)


mU2fU2fU2fG2fA2fU2fA2fG2fC2fA2fC2fC2fA2fA2fA2fC2f





C2fU2fA2fG2fA2fG2fC2fC2fCdT*dT;





(SEQ ID NO: 432)


mU2fUmU2fGmA2fUmA2fGmC2fAmC2fCmA2fAmA2fCmC2fUmA2f





GmA2fGmC2fCmCdT*dT;





(SEQ ID NO: 433)


mU2fUmU2fGmA2fUmA2fGmC2fAmC2fCmA2fAmA2fCmC2fUmA2f





GmA2fGmC;


and





(SEQ ID NO: 434)


mU2fUmU2fGmA2fUmA2fGmC2fAmC2fCmA2fAmA2fC2fC2fU2fA





2fG2fA2fG2fC







wherein, mA, mC, mG, and mU are 2′-O-methyl adenosine, cytidine, guanosine, or uridine, respectively; 2fA, 2fC, 2fG, and 2fU are 2′-fluoro adenosine, cytidine, guanosine, or uridine, respectively; and * is a phosphorothioate linkage; and


the sense strand is at least substantially complementary to the antisense strand.


In a further embodiment, the double stranded RNAi agent antisense strand of (ii) the second dsRNA comprises the nucleotide sequence selected from (5′→3′)









(SEQ ID NO: 448)


UUUGCAAUGACUCUCCUAUCAGUCCdTdT





(SEQ ID NO: 449)


UUUGCAAUGACUCUCCUAUCAGUCCdT*dT;





(SEQ ID NO: 450)


mUmUmUmGmCmAmAmUmGmAmCmUmCmUmCmCmUmAmUmCmAmGmUmCm





CdT*dT;





(SEQ ID NO: 452)


mUmUmUmGmCmAmAmUmGmAmCmUmCmUmCmCmUmAmUmCmAmGmUmCm





C;





(SEQ ID NO: 455)


mU2fUmU2fGmC2fAmA2fUmG2fAmC2fUmC2fUmC2fCmU2fAmU2f





CmA2fGmU2fCmCdT*dT;





(SEQ ID NO: 456)


mU2fUmU2fGmC2fAmA2fUmG2fAmC2fUmC2fUmC2fCmU2fAmU2f





CmA2fGmU2fCmC;





(SEQ ID NO: 458)


mU2fUmU2fGmC2fAmA2fUmG2fAmC2fUmC2fUmC2fCmU2fAmU2f





CmA2fCmU2fCmC;





(SEQ ID NO: 459)


2fUmU2fUmG2fCmA2fAmU2fGmA2fCmU2fCmU2fCmC2fUmA2fUm





C2fAmG2fUmC2fCdT*dT;





(SEQ ID NO: 460)


mU2fAmU2fCmC2fUmA2fAmG2fUmC2fAmC2fAmC2fGmU2fUmU2f





GmA2fCmU2fGmC;





(SEQ ID NO: 461)


mU2fU2fU2fG2fC2fA2fA2fU2fG2fA2fC2fU2fC2fU2fC2fC2f





U2fA2fU2fC2fA2fG2fU2fC2fCdT*dT;





(SEQ ID NO: 463)


mU2fUmU2fGmC2fAmA2fUmG2fAmC2fUmC2fUmC2fCmU2fAmU2f





CmA2fGmU2fCmCdT*dT;





(SEQ ID NO: 464)


mU2fUmU2fGmC2fAmA2fUmG2fAmC2fUmC2fUmC2fCmU2fAmU2f





CmA2fGmU;





(SEQ ID NO: 465)


mU2fUmU2fGmC2fAmA2fUmG2fAmC2fUmC2fUmC2fC2fU2fA2fU





2fC2fA2fG2fU







wherein, mA, mC, mG, and mU are 2′-O-methyl adenosine, cytidine, guanosine, or uridine, respectively; 2fA, 2fC, 2fG, and 2fU are 2′-fluoro adenosine, cytidine, guanosine, or uridine, respectively; and * is a phosphorothioate linkage; and


the sense strand is at least substantially complementary to the antisense strand.


For example, when the RNAi agent comprises (iii) the combination of (i) the first dsRNA and (ii) the second dsRNA, the antisense strand of (i) the first dsRNA is selected from









(SEQ ID NO: 17)


CAGUUGCGCAGUUUCUUGUCAGUUCdTdT;





(SEQ ID NO 18)


CAGUUGCGCAGUUUCUUGUCAGUUCdT*dT;





(SEQ ID NO 64)


AAGAGCUCAGGUCUCUGAGGGdTdT;


and





(SEQ ID NO 65)


AAGAGCUCAGGUCUCUGAGGGdT*dT; 


and





the antisense strand of (ii) the second dsRNA is


selected from


(SEQ ID NO: 417)


UUUGAUAGCACCAAACCUAGAGCCCdTdT;





(SEQ ID NO: 418)


UUUGAUAGCACCAAACCUAGAGCCCdT*dT;





(SEQ ID NO: 448)


UUUGCAAUGACUCUCCUAUCAGUCCdTdT;


and





(SEQ ID NO: 449)


UUUGCAAUGACUCUCCUAUCAGUCCdT*dT;







wherein * is a phosphorothioate linkage; and


the sense strand is at least substantially complementary to the antisense strand.


In one embodiment, (i) the first dsRNA has the duplex structure of (SEQ ID NOs: 17 and 110) or (SEQ ID NOs: 18 and 111). In another (ii) the second dsRNA has the duplex structure of (SEQ ID NOs: 417 and 808) or (SEQ ID NOs: 448 and 822).


Another embodiment provides for an isolated cell comprising a double stranded RNAi gent of (i), (ii) or (iii).


For example, the sense strand of (i) the first dsRNA is no more than 30 nucleotides in length, and the antisense strand of (i) the first dsRNA is no more than 30 nucleotides in length. For example, the sense strand of (ii) the second dsRNA is no more than 30 nucleotides in length, and the antisense strand is no more than 30 nucleotides in length.


Yet another embodiment provides a pharmaceutical composition for inhibiting expression of a CD320 gene, the pharmaceutical composition comprising a double stranded RNAi agent (i) or (iii). Further the pharmaceutical composition may include an excipient.


Yet another embodiment provides a pharmaceutical composition for inhibiting expression of an LRP2 gene, the composition comprising a double stranded RNAi agent (ii) or (iii). Further the pharmaceutical composition may include an excipient.


Another embodiment of the present invention provides a method for inhibiting proliferation of a cancer cell (CC) comprising contacting of the CC with an inhibitor of CD320 add/or LRP2 in an amount effective to inhibit proliferation of the CC. For example, the CC may express CD320 and/or LRP2 or both.


Another embodiment of the present invention provides a method for treating a therapeutically-resistant cancer in a subject who has previously received a therapy, comprising administering to the subject an inhibitor of CD320 add/or LRP2 in an amount effective to inhibit or kill cancer cells (CCs) present in the therapeutically-resistant cancer.


Another embodiment of the present invention provides a method for treating cancer in a subject who has recurring or relapsed cancer comprising administering to a subject an inhibitor of CD320 add/or LRP2 in an amount effective to inhibit or kill CCs in the cancer.


The CC is from a cancer selected from melanoma, glioblastoma, lung carcinoma, breast carcinoma, triple negative breast carcinoma, hepatocellular carcinoma, renal carcinoma, pancreatic carcinoma, ovarian carcinoma and prostate carcinoma.


The CD320 inhibitor is selected from an antibody that binds CD320, a small molecule inhibitor of CD320, and a RNAi agent that hybridizes to a nucleic acid sequence encoding CD320.


Further, the method of inhibiting proliferation of a CC, treating a therapeutically resistive cancer in a subject or has a recurring or relapsed cancer comprises administering a cancer therapeutic in combination with an RNAi agent that hybridizes to an mRNA encoding for CD320 or an RNAi agent that hybridizes to an mRNA encoding for LRP2. For example, the cancer therapeutic is selected from the antifolate class, epigenetic modulatory class, or a small molecule or protein inhibitor of CD320 function or LRP2 function, such as an antibody for CD320 or an antibody for LRP2. Further still, the method further comprises administering metformin. For example, the RNAi agent comprises an antisense strand of Table 5 or of Table 6.


The inhibitor is selected from the group consisting of an antibody that binds LRP2, a small molecule inhibitor of LRP2, and an RNAi agent that hybridizes to a nucleic acid sequence encoding LRP2. For example, the method further comprises administering a cancer therapeutic selected from the antifolate class, epigenetic modulatory class, or the small molecule or protein inhibitor of LRP2 function, such as an antibody, in combination with an RNAi agent that hybridizes to an mRNA encoding for LRP2.


The method further comprises administering a cancer therapeutic in combination with an RNAi agent that hybridizes to an mRNA encoding for LRP2.


One embodiment of the present invention provides for a method for inhibiting proliferation of a cancer cell (CC) comprising contacting of a CC with a composition comprising an inhibitor of CD320 and an inhibitor of LRP2 in an amount effective to inhibit proliferation of the CC. For example, the composition is a cocktail comprising i) the CD320 inhibitor selected from an antibody that binds CD320, a small molecule inhibitor of CD320, and a RNAi agent that hybridizes to a nucleic acid encoding CD320 and any combination thereof, and the LRP2 inhibitor selected from an antibody that binds LRP2, a small molecule inhibitor of LRP2, and a RNAi agent that hybridizes to a nucleic acid sequence encoding LRP2 and any combination thereof. Further, the method further comprises administering a cancer therapeutic selected from the antifolate class and epigenetic modulatory class. For example, the RNAi agent that hybridizes to the mRNA encoding for CD320 comprises a first double-stranded ribonucleic acid (dsRNA) for inhibiting expression of CD320, wherein the first dsRNA comprises a sense strand and an antisense strand, the antisense strand comprising a region of complementarity to a CD320 RNA transcript and the RNAi agent that hybridizes to the mRNA encoding for LRP2 comprises a second dsRNA for inhibiting expression of LRP2, wherein the second dsRNA comprises a sense strand and an antisense strand, the antisense strand comprising a region of complementarity to an LRP2 RNA transcript. In a further example, the antisense strand that is complementary to CD320 RNA transcript is selected from Table 5 and the antisense strand that is complementary to the RNA transcript for LRP2 is selected from Table 6. The method further comprises administering a cancer therapeutic selected from the antifolate class and epigenetic modulatory class. The method further comprises administering a cancer therapeutic selected from the immunomodulatory class. Further still, the method further comprises administering metformin.


One aspect of one embodiment of the present invention provides a method for the inhibition of CD320 and LRP2 protein expression, such that the levels of these proteins are reduced in treated cells compared to their endogenous levels in untreated cells; this inhibition may also be referred to as the knockdown of CD320 and LRP2 expression. The method entails the use of a cocktail of small interfering RNA molecules, otherwise known as siRNAs, which guide the mRNA sequences encoding for either CD320 or LRP2 into an enzymatic complex which leads to targeted destruction of these mRNAs.


Another aspect of the present invention provides a method for the individual or concurrent inhibition of LRP2 and CD320 protein expression, which inhibits the growth of many cancer cells as compared to non-cancer (normal) cells. In some instances, CD320 or LRP2 protein knockdown alone is sufficient to severely inhibit cancer cell proliferation compared to normal cells.


Another aspect of the present invention provides for inhibition of cancer cell proliferation by inhibiting LRP2 receptor expression.


Mechanistic investigations into the selectivity of porphyrin uptake by cancer cells led to several nonobvious compounds and methods of using the compound(s). It was discovered that the knockdown of the expression of either CD320 gene or LRP2 gene or the simultaneous knockdown of the expression of CD320 gene and LRP2 gene caused cell death or inhibition of cell growth in a panel of lung cancer cell lines, compared to normal fibroblasts. The experimental outline is illustrated in FIG. 1. In these experiments, cells were plated on day 0. The next day (day 1), virus particles encoding short hairpin RNAs (shRNAs) directed to the CD320 gene and the LRP2 gene or an irrelevant shRNA control were added to the cell culture together with protamine sulfate, a reagent that facilitates cell entry of the virus particles.


Further investigations revealed that knockdown of the expression of either the CD320 gene or LRP2 gene or the simultaneous knockdown of the expression of CD320 and LRP2 genes using small interfering RNAs (siRNAs) caused cell death or inhibition of cell growth in a panel of cancer cell lines that included lung cancer, prostate cancer, breast cancer, glioblastoma and melanoma, compared to normal fibroblasts (FIG. 9-10). It was also found that that knockdown of one gene, either CD320 or LRP2, led to increased expression of the other in some cancer cell lines.


One aspect of the present invention provides for the knockdown of the CD320 receptor, the LRP2 receptor or the simultaneous knockdown of both in vivo and in vitro cancer cells that express CD320 mRNA and/or LRP2 mRNA.


Another aspect of the present invention is a method to inhibit cell growth or cause cell death of cancer cells treated with a compound as described herein, while leaving normal cells unaffected or inhibiting cell growth to a lesser degree or producing less cell death as compared to a cancer cell treated with the same amount of the compound.


Another aspect of a first compound and method of use is a selective therapy which inhibits proliferation of cancer cells and/or kills cancer cells with an inhibition of LRP2 Receptor while leaving normal cells unharmed.


Another aspect of a second compound and method of use is a selective therapy which inhibits proliferation of cancer cells and/or kills cancer cells with an inhibition of CD320 Receptor while leaving normal cells unharmed.


Another aspect of the present invention provides for treating a cancer by administering a therapy to selectively inhibit proliferation of a cancer cell(s) and/or kill a cancer cell(s) with one or more of the following, a first compound that is an inhibitor of CD320 receptor, a second compound that is an inhibitor of LRP2 receptor or a combination thereof.





DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The accompanying drawings, which are incorporated into and form a part of the specification, illustrate one or more embodiments of the present invention and, together with the description, serve to explain the principles of the invention. The drawings are only for the purpose of illustrating one or more embodiments of the invention and are not to be construed as limiting the invention. In the drawings:



FIG. 1 illustrates an experimental design for knocking down CD320 and LRP2 in a cell. Cells were plated on day 0. The next day (day 1), virus particles encoding short hairpin RNAs (shRNAs) directed at the CD320 and LRP2 mRNA or a non-targeting shRNA control were added to the cell culture together with protamine sulfate, a reagent that facilitates cell entry of the virus particles. Table 1 shows the sequences that were used. Each shRNA coding sequence was also combined with a unique drug resistance gene, which would allow for selecting those cells that had taken up the shRNA; cells that had not taken up the shRNA would not survive. On day 2, drug selection was started. On day 3, the cells were harvested and plated in a new dish. Only the cells with a drug resistance gene, i.e., those cells that had taken up shRNA virus particles would survive this re-plating procedure. From day 4 on, each culture was closely observed for cell growth. Cells infected with the non-targeting negative control shRNA continued growing—data not shown. The results for the cell lines that expressed the CD320+LRP2 shRNAs are shown in Table 1.



FIGS. 2 A-C illustrates sensitivity of cancer cell lines to knockdown of CD320 and LRP2. Normal cells (GM05659 fibroblasts) or cancer cells were infected with lentiviruses expressing shRNAs to control sequences or to shCD320 and shLRP2 as described in FIG. 1. The cells were grown as described in FIG. 1. On the ninth day after transfection with the lentiviruses, pictures of the cells were taken. The solid oval indicates healthy growth of normal fibroblast infected with shRNAs to CD320 and LRP2. The broken line ovals indicate unhealthy dying cancer cells infected with shRNAs targeting CD320 and LRP2 (FIG. 2A). The fields of cells in FIG. 2A were counted and quantified and illustrated in FIG. 2B. The data in FIG. 2B were normalized to the number of control cells and illustrated in FIG. 2C. FIG. 2C. shows that the cultures of cells infected with lentivirus encoding the shRNAs against CD320 and LRP2 (white bars) contain far fewer cells than the cultures of cells exposed to the shRNA control (black bar).



FIGS. 3 A-F illustrate graphs of protein levels resulting from transfection of HEK293, MDA-MB-435S and MDA-MB-231 cells with siRNA to LRP2 and CD320. HEK293, MDA-MB-435S and MDA-MB-231 cells were transfected with 20 nM of indicated siRNAs and incubated for 48 hours. siRNAs targeting CD320 are designated OSC17 and OSC47. siRNAs targeting LRP2 are designated OSL245, OSL47, OSL104, OSL90 and OSL119. Whole cell lysates were prepared and immunoblotted for CD320 and LRP2 protein levels. The protein levels were normalized to a housekeeping control gene unaffected by the siRNA transfection. The graphs FIGS. 3 A-F represent the fold change of protein levels compared to siScramble (OSS1 or OSS2). (Average +/− SEM is shown, n=3).



FIGS. 4 A-F illustrate a graph of cells after transfection of LnCAP, MCF-7 and U251 cells with siRNA to LRP2 and CD320. LnCAP, MCF-7 and U251 cells were transfected with 20 nM of indicated siRNAs and incubated for 48 hours. siRNAs targeting CD320 are designated OSC17 and OSC47. siRNAs targeting LRP2 are designated OSL245, OSL47, OSL104, OSL90 and OSL119). Whole cell lysates were prepared and immunoblotted for CD320 and LRP2 protein levels. The protein levels were normalized to a housekeeping control gene unaffected by the siRNA transfection. The graphs FIGS. 4 A-F represent the fold change of protein levels compared to siScramble (OSS2).



FIG. 5A-C illustrate graphs of protein levels after transfection of A172, DU145 and GM05659 cells with siRNA to LRP2 and CD320. A172, DU145 and GM05659 cells were transfected with 20 nM of indicated siRNAs and incubated for 48 hours. siRNAs targeting CD320 are designated OSC17 and OSC47. siRNAs targeting LRP2 are designated OSL245, OSL47, OSL104, OSL90 and OSL119). Whole cell lysates were prepared and immunoblotted for CD320. The protein levels were normalized to a housekeeping control gene unaffected by the siRNA transfection. The graphs FIG. 5A-C represent the fold change of protein levels compared to siScramble (OSS2).



FIG. 6 illustrates a graph of relative LRP2 protein expression in various cell lines—Lysates were made from the cell lines indicated on the x-axis, and western blot was performed to determine LRP2 protein levels. The results represent the averages +/−SEM of three independent lysates.



FIGS. 7 A-B illustrates graphs of the effect of doxorubicin treatment on cell viability, as measured by the CTG assay. A172 and HCC15 cells were plated at 1200 cells/well in a 96 well plate. The next day, cells were treated with doxorubicin at the indicated concentrations. Four days after doxorubicin treatment was initiated, the cells were assayed for viability using the CTG assay. The dashed line indicates the non-linear fitting of the data to calculate an IC50 value.



FIG. 8 is a schematic overview of the functional assay for screening siRNA effects on cell proliferation to facilitate quantification of the effects of knocking down CD320 and LRP2 on cell proliferation. Cells were plated in a 24-well plate. The next day, the cells were transfected with siRNAs targeting CD320 (OSC17, OSC47) and/or targeting LRP2 (05L231, OSL245), or a control siRNA (OSS2). The cell lines may require repeated transfections and/or time for efficient toxicity (cell line dependent). In this experimental set-up there is room for repeat infection should some cell lines require that for efficient toxicity. In addition, in a small subset of the wells, cells were only treated with doxorubicin as a positive control for toxicity. At the end of the study, the cell lines are analyzed for cell growth by the CTG assay.



FIGS. 9 A-E illustrate graphs of the percent cell survival of siCD320 and siLRP2 on cell proliferation—Cell lines representative of several types of cancers (lung, brain) or normal fibroblasts were transfected with individual or combinations of siRNAs targeting CD320 (OSC17, OSC47) or LRP2 (05L231, OSL245), individually at 20 nM or in combination (10 nM each), or a negative control siRNA (OSS2) (20 nM) as indicated. Cells were repeatedly transfected as outlined in Table 9 for efficient toxicity, then assayed for viability by the CTG assay. Doxorubicin-treated cells served as a positive control for cell toxicity in our assays (Table 8).



FIGS. 10 A-E illustrate graphs of the effects of siCD320 and siLRP2 on cell proliferation—Cell lines representative of several types of cancers (breast, prostate, skin) were transfected with individual or combinations of siRNAs targeting CD320 (OSC17, OSC47) or LRP2 (05L231, OSL245) as indicated. Cells were repeatedly transfected as outlined in Table 9 for efficient toxicity, then assayed for viability by the CTG assay. Doxorubicin-treated cells served as a positive control for cell toxicity in our assays (Table 8).



FIGS. 11A-B illustrate the effects of siCD320 and siLRP2 molar proportions on cell proliferation with different molar proportions of siRNA targeting CD320 and siRNA targeting LRP2. Cell lines representative of two types of cancers (breast, prostate) were transfected with different proportions of siRNAs targeting CD320 (OSC17) or LRP2 (05L245) (0-20 nM) or a negative control siRNA (OSS2) as indicated. Cells were repeatedly transfected for efficient toxicity then assayed for viability by the CTG assay. Doxorubicin-treated cells served as a positive control for cell toxicity in our assays (Table 8).



FIGS. 12A-B illustrate graphs of the duration of the knockdown effect for siCD320 and siLRP2 on MDA-MD-231 cells. A representative breast cancer cell line (MDA-MD-231) was transfected on Day 0 with 20 nM of an siRNA targeting CD320 (OSC17) or an siRNA targeting LRP2 (05L245) or a negative control siRNA (OSS2) and the percentage of protein knockdown was analyzed daily over a period of five days by western blot. Protein levels were normalized to the negative control (OSS2).



FIG. 13 is a schematic of polyethylinimine (PEI) and siRNA complexation. PEI and siRNAs are mixed together. Subsequently, polyplexes (a nanoparticle, broadly speaking) of the PEI-siRNA complex form, which are able to enter the cell.



FIG. 14 is a schematic that illustrates that siRNAs are short RNA duplexes of generally 16 to 30 nucleotides; the guide sequence of the siRNA is complementary to a mRNA expressed in the cell. Exogenous siRNA duplexes are introduced into the cell via a method of transfection. The siRNA duplexes are separated via the RISC/AGO (RNA-induced silencing complex) complex, whereby the guide strand of the siRNA hybridizes with its complementary mRNA molecule. The mRNA is degraded by the RISC/AGO complex, which has RNAse activity, resulting in mRNA degradation, and the protein encoded by the mRNA is not produced. This causes the “knockdown” effect or reduced protein levels of the gene targeted by the siRNA compared to control treated cells.



FIGS. 15 A-B illustrate graphs of A172 cell line or MDA-MD-435S cell lines treated with control siRNA (OSS1, OSS2) and siRNA directed to CD320 mRNA (OSC17, OSC47) and siRNA directed to LRP2 mRNA (05L231, OSL245) to determine the effectiveness of INTERFERin, a polyethanolamine transfection reagent, in delivering siRNAs to cancer cells.



FIGS. 16 A-D illustrate plated cells showing the effects of siCD320 and siLRP2 on four cell lines. Cell lines representative of four types of cancers (breast, two prostate, skin) were transfected with siRNAs targeting CD320 (OSC17) or LRP2 (05L245) individually at 20 nM or in combination (10 nM each) or a negative control siRNA (OSS2) (20 nM) as indicated. Cells were repeatedly transfected for efficient toxicity as in Table 9 and then analyzed by microscopy as indicated.



FIG. 17 illustrates a graphical depiction of CD320 mRNA. UTR references the untranslated region, and the CDS references the protein coding sequence.



FIG. 18 illustrates a graphical depiction of LRP2 mRNA UTR references the untranslated region, and the CDS references the protein coding sequence.



FIGS. 19A-G illustrates the structures for unnatural nucleotides which may be incorporated within the sequence of an RNAi. “B” represents a natural (G, C, A, U) RNA nucleobase, a DNA nucleobase, or an unnatural nucleobase. FIG. 19A shows certain chemical modifications to the ribose 2′-position and phosphate moieties. FIGS. 19B-D shows skeletal modifications to the ribose moiety that comprise bridging groups. FIG. 19E shows a deletion of the C2′-C3′ bond. FIGS. 19F-G shows other skeletal modifications to the ribose moiety wherein a six-membered ring replaces the five-membered ring.



FIG. 20 illustrates a schematic for the in vivo murine xenograft model for breast cancer. MDA-MB-231 cells were implanted into the flank of NSG mice and grown to a volume of 70 mm3 after which siRNAs targeting CD320 (OSC17) and LRP2 (05L245) were injected intratumorally once every fourth day.





DETAILED DESCRIPTION OF THE INVENTION

One or more embodiment of the present invention provides methods and RNAi compounds for modulating the expression of a CD320 gene and/or an LRP2 gene in a cell. In certain embodiments, expression of a CD320 gene and/or a LRP2 gene is reduced or inhibited using an CD320 and/or LRP2 specific RNAi. Such inhibition can be useful in treating disorders such as cancer and/or creating cell lines that are useful for screening drugs that treat cancer


The present invention also relates to a method for knocking down (partially or completely) the targeted genes.


One embodiment of the method of producing knockdown cells and organisms comprises introducing into a cell or organism in which a gene (referred to as a targeted gene) to be knocked down, an siRNA of about 16 to about 30 nucleotides (nt) that targets the gene and maintaining the resulting cell or organism under conditions under which RNAi occurs, resulting in degradation of the mRNA of the targeted gene, thereby producing knockdown cells or organisms. Knockdown cells and organisms produced by the present method are also the subject of embodiment of the present invention.


An embodiment of the present invention also relates to a method of examining or assessing the function of a gene in a cell or organism. In one embodiment, RNA of about 16 to about 30 nt which targets mRNA of the gene for degradation is introduced into a cell or organism in which RNAi occurs. The cell or organism is referred to as a test cell or organism. The cell or organism is referred to as a test cell organism. The test cell or organism is maintained under conditions under which degradation of mRNA of the gene occurs. The phenotype of the test cell or organism is then observed and compared to that of an appropriate control cell or organism, such as a corresponding cell or organism that is treated in the same manner except that the gene is not targeted. A 16 to 30 nt RNA that does not target the mRNA for degradation can be introduced into the control cell or organism in place of the siRNA introduced into the test cell or organism, although it is not necessary to do so. A difference between the phenotypes of the test and control cells or organisms provides information about the function of the degraded mRNA.


The RNA of about 16 to about 30 nucleotides is isolated or synthesized and then introduced into a cell or organism in which RNAi occurs (test cell or test organism). The test cell or test organism is maintained under conditions under which degradation of the mRNA occurs. The phenotype of the test cell or organism is then observed and compared to that of an appropriate control, such as a corresponding cell or organism that is treated in the same manner as the test cell or organism except that the targeted gene is not targeted. A difference between the phenotypes of the test and control cells or organisms provides information about the function of the targeted gene. The information provided may be sufficient to identify (define) the function of the gene or may be used in conjunction with information obtained from other assays or analyses to do so.


An embodiment of the present invention also encompasses a method of treating a disease or condition associated with the presence of a protein in an individual, comprising administering to the individual RNA of from about 16 to about 30 nucleotides which targets the mRNA of the protein (the mRNA that encodes the protein) for degradation. As a result, the protein is not produced or is not produced to the extent it would be in the absence of the treatment.



FIG. 14 shows that siRNAs are short RNA duplexes of generally 16 to 30 nucleotides; the sequence of the siRNA is complementary to a mRNA expressed in the cell. Exogenous siRNA duplexes are introduced into the cell via a method of transfection. The siRNA duplexes are unwound via the RNA-induced silencing complex (RISC), whereby the guide strand of the siRNA hybridizes with its complementary mRNA molecule. The mRNA is degraded by the RISC/AGO complex, which has RNAse cleave activity. The end result is that the mRNA targeted by the siRNA is degraded, and the protein encoded by the mRNA is not produced. This causes the “knockdown” effect or reduced protein levels of the gene targeted by the siRNA compared to control treated cells.


In one embodiment, at least one strand of the RNA molecule has a 3′ overhang from about 1 to about 6 nucleotides (e.g., pyrimidine nucleotides, purine nucleotides) in length. In other embodiments, the 3′ overhang is from about 1 to about 5 nucleotides, from about 1 to about 3 nucleotides and from about 2 to about 4 nucleotides in length or, for example, the overhang can be up to 14 nucleotides if the guide strand were a 27-mer. In one embodiment the RNA molecule is double stranded, one strand has a 3′ overhang and the other strand can be blunt-ended or have an overhang. In the embodiment in which the RNA molecule is double stranded and both strands comprise an overhang, the length of the overhangs may be the same or different for each strand. In a particular embodiment, the RNA of the present invention comprises 21-27 nucleotide strands which are Watson-Crick paired and which have overhangs of from about 1 to about 3, particularly about 2, nucleotides on both 3′ ends of the RNA. In order to further enhance the stability of the RNA of the present invention, the 3′ overhangs can be stabilized against degradation. In one embodiment, the RNA is stabilized by including purine nucleotides, such as adenosine or guanosine nucleotides. Alternatively, substitution of pyrimidine nucleotides by unnatural nucleotides, e.g., substitution of uridine 2 nucleotide 3′ overhangs by 2′-deoxythymidine, is tolerated and does not affect the efficiency of RNAi. The absence of a 2′ hydroxyl significantly enhances the nuclease resistance of the overhang in tissue culture medium. The 3′-overhangs can be further stabilized by introduction of phosphorothioate groups in place of the phosphodiesters.


The 16-30 nt RNA molecules of the present invention can be obtained using a number of techniques known to those of skill in the art. For example, the RNA can be chemically synthesized or recombinantly produced using methods known in the art.


In order that the present invention may be more readily understood, certain terms are first defined. In addition, it should be noted that whenever a value or range of values of a parameter are recited, it is intended that values and ranges intermediate to the recited values are also intended to be part of this invention.


The articles “a” and “an” are used herein to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article. By way of example, “an element” means one element or more than one element, e.g., a plurality of elements.


The term “including” is used herein to mean, and is used interchangeably with, the phrase “including but not limited to”.


The term “or” is used herein to mean, and is used interchangeably with, the term “and/or,” unless context clearly indicates otherwise.


As used herein, “CD320” refers to the gene or protein. CD320 is also known as 8D6 antigen, CD320 antigen, 8D6A, transcobalalmin receptor, FDC-SM-8D6, FDC-Signaling Molecule 8D6, 8D6, TCBLR, TCblR, TCN2R. The term CD320 includes human CD320, the amino acid and nucleotide sequence of which may be found in, for example, GenBank Accession No. NM_016579.4 and NM_001165895.2; mouse CD320, the amino acid and nucleotide sequence of which may be found in, for example, GenBank Accession No. NM_019421.3; rat CD320, the amino acid and nucleotide sequence of which may be found in, for example, GenBank Accession No. NM_001014201.1. Additional examples of CD320 mRNA sequences are readily available using, e.g., GenBank. Additional information is found at FIG. 17.


The CD320 DNA sequence from Homo sapiens is as follows: >NM_016579.4 Homo sapiens CD320 molecule (CD320), transcript variant 1, DNA









(SEQ ID NO. 935)


GTGCGCGTGCGCAGGGATAAGAGAGCGGTCTGGACAGCGCGTGGCCGGC





GCCGCTGTGGGGACAGCATGAGCGGCGGTTGGATGGCGCAGGTTGGAGC





GTGGCGAACAGGGGCTCTGGGCCTGGCGCTGCTGCTGCTGCTCGGCCTC





GGACTAGGCCTGGAGGCCGCCGCGAGCCCGCTTTCCACCCCGACCTCTG





CCCAGGCCGCAGGCCCCAGCTCAGGCTCGTGCCCACCCACCAAGTTCCA





GTGCCGCACCAGTGGCTTATGCGTGCCCCTCACCTGGCGCTGCGACAGG





GACTTGGACTGCAGCGATGGCAGCGATGAGGAGGAGTGCAGGATTGAGC





CATGTACCCAGAAAGGGCAATGCCCACCGCCCCCTGGCCTCCCCTGCCC





CTGCACCGGCGTCAGTGACTGCTCTGGGGGAACTGACAAGAAACTGCGC





AACTGCAGCCGCCTGGCCTGCCTAGCAGGCGAGCTCCGTTGCACGCTGA





GCGATGACTGCATTCCACTCACGTGGCGCTGCGACGGCCACCCAGACTG





TCCCGACTCCAGCGACGAGCTCGGCTGTGGAACCAATGAGATCCTCCCG





GAAGGGGATGCCACAACCATGGGGCCCCCTGTGACCCTGGAGAGTGTCA





CCTCTCTCAGGAATGCCACAACCATGGGGCCCCCTGTGACCCTGGAGAG





TGTCCCCTCTGTCGGGAATGCCACATCCTCCTCTGCCGGAGACCAGTCT





GGAAGCCCAACTGCCTATGGGGTTATTGCAGCTGCTGCGGTGCTCAGTG





CAAGCCTGGTCACCGCCACCCTCCTCCTTTTGTCCTGGCTCCGAGCCCA





GGAGCGCCTCCGCCCACTGGGGTTACTGGTGGCCATGAAGGAGTCCCTG





CTGCTGTCAGAACAGAAGACCTCGCTGCCCTGAGGACAAGCACTTGCCA





CCACCGTCACTCAGCCCTGGGCGTAGCCGGACAGGAGGAGAGCAGTGAT





GCGGATGGGTACCCGGGCACACCAGCCCTCAGAGACCTGAGCTCTTCTG





GCCACGTGGAACCTCGAACCCGAGCTCCTGCAGAAGTGGCCCTGGAGAT





TGAGGGTCCCTGGACACTCCCTATGGAGATCCGGGGAGCTAGGATGGGG





AACCTGCCACAGCCAGAACTGAGGGGCTGGCCCCAGGCAGCTCCCAGGG





GGTAGAACGGCCCTGTGCTTAAGACACTCCTGCTGCCCCGTCTGAGGGT





GGCGATTAAAGTTGCTTCACATCCTCAAAAAAAAAAAAAAAAAAAAAAA





AAAAAAAAA.






A protein sequence from CD320 derived from the mRNA sequence above is as follows: >sp|Q9NPF0|CD320_HUMAN CD320 antigen OS=Homo sapiens OX=9606 GN=CD320 PE=1 SV=1









(SEQ ID NO. 936)


MSGGWMAQVGAWRTGALGLALLLLLGLGLGLEAAASPLSTPTSAQAAGP





SSGSCPPTKFQCRTSGLCVPLTWRCDRDLDCSDGSDEEECRIEPCTQKG





QCPPPPGLPCPCTGVSDCSGGTDKKLRNCSRLACLAGELRCTLSDDCIP





LTWRCDGHPDCPDSSDELGCGTNEILPEGDATTMGPPVTLESVTSLRNA





TTMGPPVTLESVPSVGNATSSSAGDQSGSPTAYGVIAAAAVLSASLVTA





TLLLLSWLRAQERLRPLGLLVAMKESLLLSEQKTSLP






The CD320 DNA sequence from Homo sapiens is as follows: >NM_001165895.2 Homo sapiens CD320 molecule (CD320), transcript variant 2, DNA









(SEQ ID NO. 937)


GCGTGCGCGTGCGCAGGGATAAGAGAGCGGTCTGGACAGCGCGTGGCCG





GCGCCGCTGTGGGGACAGCATGAGCGGCGGTTGGATGGCGCAGGTTGGA





GCGTGGCGAACAGGGGCTCTGGGCCTGGCGCTGCTGCTGCTGCTCGGCC





TCGGACTAGGCCTGGAGGCCGCCGCGAGCCCGCTTTCCACCCCGACCTC





TGCCCAGGCCGCAGGGATTGAGCCATGTACCCAGAAAGGGCAATGCCCA





CCGCCCCCTGGCCTCCCCTGCCCCTGCACCGGCGTCAGTGACTGCTCTG





GGGGAACTGACAAGAAACTGCGCAACTGCAGCCGCCTGGCCTGCCTAGC





AGGCGAGCTCCGTTGCACGCTGAGCGATGACTGCATTCCACTCACGTGG





CGCTGCGACGGCCACCCAGACTGTCCCGACTCCAGCGACGAGCTCGGCT





GTGGAACCAATGAGATCCTCCCGGAAGGGGATGCCACAACCATGGGGCC





CCCTGTGACCCTGGAGAGTGTCACCTCTCTCAGGAATGCCACAACCATG





GGGCCCCCTGTGACCCTGGAGAGTGTCCCCTCTGTCGGGAATGCCACAT





CCTCCTCTGCCGGAGACCAGTCTGGAAGCCCAACTGCCTATGGGGTTAT





TGCAGCTGCTGCGGTGCTCAGTGCAAGCCTGGTCACCGCCACCCTCCTC





CTTTTGTCCTGGCTCCGAGCCCAGGAGCGCCTCCGCCCACTGGGGTTAC





TGGTGGCCATGAAGGAGTCCCTGCTGCTGTCAGAACAGAAGACCTCGCT





GCCCTGAGGACAAGCACTTGCCACCACCGTCACTCAGCCCTGGGCGTAG





CCGGACAGGAGGAGAGCAGTGATGCGGATGGGTACCCGGGCACACCAGC





CCTCAGAGACCTGAGCTCTTCTGGCCACGTGGAACCTCGAACCCGAGCT





CCTGCAGAAGTGGCCCTGGAGATTGAGGGTCCCTGGACACTCCCTATGG





AGATCCGGGGAGCTAGGATGGGGAACCTGCCACAGCCAGAACTGAGGGG





CTGGCCCCAGGCAGCTCCCAGGGGGTAGAACGGCCCTGTGCTTAAGACA





CTCCTGCTGCCCCGTCTGAGGGTGGCAATTAAAGTTGCTTCACATCCTC






A protein sequence from CD320 derived from the DNA sequence above is as follows: >sp|Q9NPF0-2|CD320_HUMAN Isoform 2 of CD320 antigen OS=Homo sapiens OX=9606 GN=CD320









(SEQ ID NO. 938)


MSGGWMAQVGAWRTGALGLALLLLLGLGLGLEAAASPLSTPTSAQAAGI





EPCTQKGQCPPPPGLPCPCTGVSDCSGGTDKKLRNCSRLACLAGELRCT





LSDDCIPLTWRCDGHPDCPDSSDELGCGTNEILPEGDATTMGPPVTLES





VTSLRNATTMGPPVTLESVPSVGNATSSSAGDQSGSPTAYGVIAAAAVL





SASLVTATLLLLSWLRAQERLRPLGLLVAMKESLLLSEQKTSLP 






Further, as used herein, “LRP2” refers to the gene or protein. LRP2 is also known as megalin, LRP-2, Glycoprotein 330, DBS, GP330, Gp330, Calcium Sensor Protein, Heymann Nephritis Antigen Homolog, Low-Density Lipoprotein Receptor-Related Protein 2, EC 1.1.2.3, EC 3.4.21.9, LDL receptor related protein 2. The term LRP2 includes human LRP2, the amino acid and nucleotide sequence of which may be found in, for example, GenBank Accession No. NM_004525.3; mouse LRP2, the amino acid and nucleotide sequence of which may be found in, for example, GenBank Accession No. NM_001081088.2; rat LRP2, the amino acid and nucleotide sequence of which may be found in, for example, GenBank Accession No. NM_030827.1. Additional examples of LRP2 mRNA sequences are readily available using, e.g., GenBank. Additional information is found at FIG. 18.


One example of LRP2 is: >NM_004525.3 Homo sapiens LDL receptor related protein 2 (LRP2), DNA:










(SEQ ID NO. 939)



GGTCTAAAGGGCTTTATGCACTGTCTGGAGGGTGGGGACTGGCGCGGGTAGAAAACGGGATGCCTCGGGC






GTGGGGGCAGGCTTTTGGCCACTAGGAGCTGGCGGAGGTGCAGACCTAAAGGAGCGTTCGCTAGCAGAGG





CGCTGCCGGTGCGGTGTGCTACGCGCGCCCACCTCCCGGGGAAGGAACGGCGAGGCCGGGGACCGTCGCG





GAGATGGATCGCGGGCCGGCAGCAGTGGCGTGCACGCTGCTCCTGGCTCTCGTCGCCTGCCTAGCGCCGG





CCAGTGGCCAAGAATGTGACAGTGCGCATTTTCGCTGTGGAAGTGGGCATTGCATCCCTGCAGACTGGAG





GTGTGATGGGACCAAAGACTGTTCAGATGACGCGGATGAAATTGGCTGCGCTGTTGTGACCTGCCAGCAG





GGCTATTTCAAGTGCCAGAGTGAGGGACAATGCATCCCCAACTCCTGGGTGTGTGACCAAGATCAAGACT





GTGATGATGGCTCAGATGAACGTCAAGATTGCTCACAAAGTACATGCTCAAGTCATCAGATAACATGCTC





CAATGGTCAGTGTATCCCAAGTGAATACAGGTGCGACCACGTCAGAGACTGCCCCGATGGAGCTGATGAG





AATGACTGCCAGTACCCAACATGTGAGCAGCTTACTTGTGACAATGGGGCCTGCTATAACACCAGTCAGA





AGTGTGATTGGAAAGTTGATTGCAGGGACTCCTCAGATGAAATCAACTGCACTGAGATATGCTTGCACAA





TGAGTTTTCATGTGGCAATGGAGAGTGTATCCCTCGTGCTTATGTCTGTGACCATGACAATGATTGCCAA





GACGGCAGTGACGAACATGCTTGCAACTATCCGACCTGCGGTGGTTACCAGTTCACTTGCCCCAGTGGCC





GATGCATTTATCAAAACTGGGTTTGTGATGGAGAAGATGACTGTAAAGATAATGGAGATGAAGATGGATG





TGAAAGCGGTCCTCATGATGTTCATAAATGTTCCCCAAGAGAATGGTCTTGCCCAGAGTCGGGACGATGC





ATCTCCATTTATAAAGTTTGTGATGGGATTTTAGATTGCCCAGGAAGAGAAGATGAAAACAACACTAGTA





CCGGAAAATACTGTAGTATGACTCTGTGCTCTGCCTTGAACTGCCAGTACCAGTGCCATGAGACGCCGTA





TGGAGGAGCGTGTTTTTGTCCCCCAGGTTATATCATCAACCACAATGACAGCCGTACCTGTGTTGAGTTT





GATGATTGCCAGATATGGGGAATTTGTGACCAGAAGTGTGAAAGCCGACCTGGCCGTCACCTGTGCCACT





GTGAAGAAGGGTATATCTTGGAGCGTGGACAGTATTGCAAAGCTAATGATTCCTTTGGCGAGGCCTCCAT





TATCTTCTCCAATGGTCGGGATTTGTTAATTGGTGATATTCATGGAAGGAGCTTCCGGATCCTAGTGGAG





TCTCAGAATCGTGGAGTGGCCGTGGGTGTGGCTTTCCACTATCACCTGCAAAGAGTTTTTTGGACAGACA





CCGTGCAAAATAAGGTTTTTTCAGTTGACATTAATGGTTTAAATATCCAAGAGGTTCTCAATGTTTCTGT





TGAAACCCCAGAGAACCTGGCTGTGGACTGGGTTAATAATAAAATCTATCTAGTGGAAACCAAGGTCAAC





CGCATAGATATGGTAAATTTGGATGGAAGCTATCGGGTTACCCTTATAACTGAAAACTTGGGGCATCCTA





GAGGAATTGCCGTGGACCCAACTGTTGGTTATTTATTTTTCTCAGATTGGGAGAGCCTTTCTGGGGAACC





TAAGCTGGAAAGGGCATTCATGGATGGCAGCAACCGTAAAGACTTGGTGAAAACAAAGCTGGGATGGCCT





GCTGGGGTAACTCTGGATATGATATCGAAGCGTGTTTACTGGGTTGACTCTCGGTTTGATTACATTGAAA





CTGTAACTTATGATGGAATTCAAAGGAAGACTGTAGTTCATGGAGGCTCCCTCATTCCTCATCCCTTTGG





AGTAAGCTTATTTGAAGGTCAGGTGTTCTTTACAGATTGGACAAAGATGGCCGTGCTGAAGGCAAACAAG





TTCACAGAGACCAACCCACAAGTGTACTACCAGGCTTCCCTGAGGCCCTATGGAGTGACTGTTTACCATT





CCCTCAGACAGCCCTATGCTACCAATCCGTGTAAAGATAACAATGGGGGCTGTGAGCAGGTCTGTGTCCT





CAGCCACAGAACAGATAATGATGGTTTGGGTTTCCGTTGCAAGTGCACATTCGGCTTCCAACTGGATACA





GATGAGCGCCACTGCATTGCTGTTCAGAATTTCCTCATTTTTTCATCCCAAGTTGCTATTCGTGGGATCC





CGTTCACCTTGTCTACCCAGGAAGATGTCATGGTTCCAGTTTCGGGGAATCCTTCTTTCTTTGTCGGGAT





TGATTTTGACGCCCAGGACAGCACTATCTTTTTTTCAGATATGTCAAAACACATGATTTTTAAGCAAAAG





ATTGATGGCACAGGAAGAGAAATTCTCGCAGCTAACAGGGTGGAAAATGTTGAAAGTTTGGCTTTTGATT





GGATTTCAAAGAATCTCTATTGGACAGACTCTCATTACAAGAGTATCAGTGTCATGAGGCTAGCTGATAA





AACGAGACGCACAGTAGTTCAGTATTTAAATAACCCACGGTCGGTGGTAGTTCATCCTTTTGCCGGGTAT





CTATTCTTCACTGATTGGTTCCGTCCTGCTAAAATTATGAGAGCATGGAGTGACGGATCTCACCTCTTGC





CTGTAATAAACACTACTCTTGGATGGCCCAATGGCTTGGCCATCGATTGGGCTGCTTCACGATTGTACTG





GGTAGATGCCTATTTTGATAAAATTGAGCACAGCACCTTTGATGGTTTAGACAGAAGAAGACTGGGCCAT





ATAGAGCAGATGACACATCCGTTTGGACTTGCCATCTTTGGAGAGCATTTATTTTTTACTGACTGGAGAC





TGGGTGCCATTATTCGAGTCAGGAAAGCAGATGGTGGAGAAATGACAGTTATCCGAAGTGGCATTGCTTA





CATACTGCATTTGAAATCGTATGATGTCAACATCCAGACTGGTTCTAACGCCTGTAATCAACCCACGCAT





CCTAACGGTGACTGCAGCCACTTCTGCTTCCCGGTGCCAAATTTCCAGCGAGTGTGTGGGTGCCCTTATG





GAATGAGGCTGGCTTCCAATCACTTGACATGCGAGGGGGACCCAACCAATGAACCACCCACAGAGCAGTG





TGGCTTATTTTCCTTCCCCTGTAAAAATGGCAGATGTGTGCCCAATTACTATCTCTGTGATGGAGTCGAT





GATTGTCATGATAACAGTGATGAGCAACTATGTGGCACACTTAATAATACCTGTTCATCTTCGGCGTTCA





CCTGTGGCCATGGGGAGTGCATTCCTGCACACTGGCGCTGTGACAAACGCAACGACTGTGTGGATGGCAG





TGATGAGCACAACTGCCCCACCCACGCACCTGCTTCCTGCCTTGACACCCAATACACCTGTGATAATCAC





CAGTGTATCTCAAAGAACTGGGTCTGTGACACAGACAATGATTGTGGGGATGGATCTGATGAAAAGAACT





GCAATTCGACAGAGACATGCCAACCTAGTCAGTTTAATTGCCCCAATCATCGATGTATTGACCTATCGTT





TGTCTGTGATGGTGACAAGGATTGTGTTGATGGATCTGATGAGGTTGGTTGTGTATTAAACTGTACTGCT





TCTCAATTCAAGTGTGCCAGTGGGGATAAATGTATTGGCGTCACAAATCGTTGTGATGGTGTTTTTGATT





GCAGTGACAACTCGGATGAAGCAGGCTGTCCAACCAGGCCTCCTGGTATGTGCCACTCAGATGAATTTCA





GTGCCAAGAAGATGGTATCTGCATCCCGAACTTCTGGGAATGTGATGGGCATCCAGACTGCCTCTATGGA





TCTGATGAGCACAATGCCTGTGTCCCCAAGACTTGCCCTTCATCATATTTCCACTGTGACAACGGAAACT





GCATCCACAGGGCATGGCTCTGTGATCGGGACAATGACTGCGGGGATATGAGTGATGAGAAGGACTGCCC





TACTCAGCCCTTTCGCTGTCCTAGTTGGCAATGGCAGTGTCTTGGCCATAACATCTGTGTGAATCTGAGT





GTAGTGTGTGATGGCATCTTTGACTGCCCCAATGGGACAGATGAGTCCCCACTTTGCAATGGGAACAGCT





GCTCAGATTTCAATGGTGGTTGTACTCACGAGTGTGTTCAAGAGCCCTTTGGGGCTAAATGCCTATGTCC





ATTGGGATTCTTACTTGCCAATGATTCTAAGACCTGTGAAGACATAGATGAATGTGATATTCTAGGCTCT





TGTAGCCAGCACTGTTACAATATGAGAGGTTCTTTCCGGTGCTCGTGTGATACAGGCTACATGTTAGAAA





GTGATGGGAGGACTTGCAAAGTTACAGCATCTGAGAGTCTGCTGTTACTTGTGGCAAGTCAGAACAAAAT





TATTGCCGACAGTGTCACCTCCCAGGTCCACAATATCTATTCATTGGTCGAGAATGGTTCTTACATTGTA





GCTGTTGATTTTGATTCAATTAGTGGTCGTATCTTTTGGTCTGATGCAACTCAGGGTAAAACCTGGAGTG





CGTTTCAAAATGGAACGGACAGAAGAGTGGTATTTGACAGTAGCATCATCTTGACTGAAACTATTGCAAT





AGATTGGGTAGGTCGTAATCTTTACTGGACAGACTATGCTCTGGAAACAATTGAAGTCTCCAAAATTGAT





GGGAGCCACAGGACTGTGCTGATTAGTAAAAACCTAACAAATCCAAGAGGACTAGCATTAGATCCCAGAA





TGAATGAGCATCTACTGTTCTGGTCTGACTGGGGCCACCACCCTCGCATCGAGCGAGCCAGCATGGACGG





CAGCATGCGCACTGTCATTGTCCAGGACAAGATCTTCTGGCCCTGCGGCTTAACTATTGACTACCCCAAC





AGACTGCTCTACTTCATGGACTCCTATCTTGATTACATGGACTTTTGTGATTATAATGGACACCATCGGA





GACAGGTGATAGCCAGTGATTTGATTATACGGCACCCCTATGCCCTAACTCTCTTTGAAGACTCTGTGTA





CTGGACTGACCGTGCTACTCGTCGGGTTATGCGAGCCAACAAGTGGCATGGAGGGAACCAGTCAGTTGTA





ATGTATAATATTCAATGGCCCCTTGGGATTGTTGCGGTTCATCCTTCGAAACAACCAAATTCCGTGAATC





CATGTGCCTTTTCCCGCTGCAGCCATCTCTGCCTGCTTTCCTCACAGGGGCCTCATTTTTACTCCTGTGT





TTGTCCTTCAGGATGGAGTCTGTCTCCTGATCTCCTGAATTGCTTGAGAGATGATCAACCTTTCTTAATA





ACTGTAAGGCAACATATAATTTTTGGAATCTCCCTTAATCCTGAGGTGAAGAGCAATGATGCTATGGTCC





CCATAGCAGGGATACAGAATGGTTTAGATGTTGAATTTGATGATGCTGAGCAATACATCTATTGGGTTGA





AAATCCAGGTGAAATTCACAGAGTGAAGACAGATGGCACCAACAGGACAGTATTTGCTTCTATATCTATG





GTGGGGCCTTCTATGAACCTGGCCTTAGATTGGATTTCAAGAAACCTTTATTCTACCAATCCTAGAACTC





AGTCAATCGAGGTTTTGACACTCCACGGAGATATCAGATACAGAAAAACATTGATTGCCAATGATGGGAC





AGCTCTTGGAGTTGGCTTTCCAATTGGCATAACTGTTGATCCTGCTCGTGGGAAGCTGTACTGGTCAGAC





CAAGGAACTGACAGTGGGGTTCCTGCCAAGATCGCCAGTGCTAACATGGATGGCACATCTGTGAAAACTC





TCTTTACTGGGAACCTCGAACACCTGGAGTGTGTCACTCTTGACATCGAAGAGCAGAAACTCTACTGGGC





AGTCACTGGAAGAGGAGTGATTGAAAGAGGAAACGTGGATGGAACAGATCGAATGATCCTGGTACACCAG





CTTTCCCACCCCTGGGGAATTGCAGTCCATGATTCTTTCCTTTATTATACTGATGAACAGTATGAGGTCA





TTGAAAGAGTTGATAAGGCCACTGGGGCCAACAAAATAGTCTTGAGAGATAATGTTCCAAATCTGAGGGG





TCTTCAAGTTTATCACAGACGCAATGCCGCCGAATCCTCAAATGGCTGTAGCAACAACATGAATGCCTGT





CAGCAGATTTGCCTGCCTGTACCAGGAGGATTGTTTTCCTGCGCCTGTGCCACTGGATTTAAACTCAATC





CTGATAATCGGTCCTGCTCTCCATATAACTCTTTCATTGTTGTTTCAATGCTGTCTGCAATCAGAGGCTT





TAGCTTGGAATTGTCAGATCATTCAGAAACCATGGTGCCGGTGGCAGGCCAAGGACGAAACGCACTGCAT





GTGGATGTGGATGTGTCCTCTGGCTTTATTTATTGGTGTGATTTTAGCAGCTCAGTGGCATCTGATAATG





CGATCCGTAGAATTAAACCAGATGGATCTTCTCTGATGAACATTGTGACACATGGAATAGGAGAAAATGG





AGTCCGGGGTATTGCAGTGGATTGGGTAGCAGGAAATCTTTATTTCACCAATGCCTTTGTTTCTGAAACA





CTGATAGAAGTTCTGCGGATCAATACTACTTACCGCCGTGTTCTTCTTAAAGTCACAGTGGACATGCCTA





GGCATATTGTTGTAGATCCCAAGAACAGATACCTCTTCTGGGCTGACTATGGGCAGAGACCAAAGATTGA





GCGTTCTTTCCTTGACTGTACCAATCGAACAGTGCTTGTGTCAGAGGGCATTGTCACACCACGGGGCTTG





GCAGTGGACCGAAGTGATGGCTACGTTTATTGGGTTGATGATTCTTTAGATATAATTGCAAGGATTCGTA





TCAATGGAGAGAACTCTGAAGTGATTCGTTATGGCAGTCGTTACCCAACTCCTTATGGCATCACTGTTTT





TGAAAATTCTATCATATGGGTAGATAGGAATTTGAAAAAGATCTTCCAAGCCAGCAAGGAACCAGAGAAC





ACAGAGCCACCCACAGTGATAAGAGACAATATCAACTGGCTAAGAGATGTGACCATCTTTGACAAGCAAG





TCCAGCCCCGGTCACCAGCAGAGGTCAACAACAACCCTTGCTTGGAAAACAATGGTGGGTGCTCTCATCT





CTGCTTTGCTCTGCCTGGATTGCACACCCCAAAATGTGACTGTGCCTTTGGGACCCTGCAAAGTGATGGC





AAGAATTGTGCCATTTCAACAGAAAATTTCCTCATCTTTGCCTTGTCTAATTCCTTGAGAAGCTTACACT





TGGACCCTGAAAACCATAGCCCACCTTTCCAAACAATAAATGTGGAAAGAACTGTCATGTCTCTAGACTA





TGACAGTGTAAGTGATAGAATCTACTTCACACAAAATTTAGCCTCTGGAGTTGGACAGATTTCCTATGCC





ACCCTGTCTTCAGGGATCCATACTCCAACTGTCATTGCTTCAGGTATAGGGACTGCTGATGGCATTGCCT





TTGACTGGATTACTAGAAGAATTTATTACAGTGACTACCTCAACCAGATGATTAATTCCATGGCTGAAGA





TGGGTCTAACCGCACTGTGATAGCCCGCGTTCCAAAACCAAGAGCAATTGTGTTAGATCCCTGCCAAGGG





TACCTGTACTGGGCTGACTGGGATACACATGCCAAAATCGAGAGAGCCACATTGGGAGGAAACTTCCGCG





TACCCATTGTGAACAGCAGTCTGGTCATGCCCAGTGGGCTGACTCTGGACTATGAAGAGGACCTTCTCTA





CTGGGTGGATGCTAGTCTGCAGAGGATTGAACGCAGCACTCTGACGGGCGTGGATCGTGAAGTCATTGTC





AATGCAGCCGTTCATGCTTTTGGCTTGACTCTCTATGGCCAGTATATTTACTGGACTGACTTGTACACAC





AAAGAATTTACCGAGCTAACAAATATGACGGGTCAGGTCAGATTGCAATGACCACAAATTTGCTCTCCCA





GCCCAGGGGAATCAACACTGTTGTGAAGAACCAGAAACAACAGTGTAACAATCCTTGTGAACAGTTTAAT





GGGGGCTGCAGCCATATCTGTGCACCAGGTCCAAATGGTGCCGAGTGCCAGTGTCCACATGAGGGCAACT





GGTATTTGGCCAACAACAGGAAGCACTGCATTGTGGACAATGGTGAACGATGTGGTGCATCTTCCTTCAC





CTGCTCCAATGGGCGCTGCATCTCGGAAGAGTGGAAGTGTGATAATGACAACGACTGTGGGGATGGCAGT





GATGAGATGGAAAGTGTCTGTGCACTTCACACCTGCTCACCGACAGCCTTCACCTGTGCCAATGGGCGAT





GTGTCCAATACTCTTACCGCTGTGATTACTACAATGACTGTGGTGATGGCAGTGATGAGGCAGGGTGCCT





GTTCAGGGACTGCAATGCCACCACGGAGTTTATGTGCAATAACAGAAGGTGCATACCTCGTGAGTTTATC





TGCAATGGTGTAGACAACTGCCATGATAATAACACTTCAGATGAGAAAAATTGCCCTGATCGCACTTGCC





AGTCTGGATACACAAAATGTCATAATTCAAATATTTGTATTCCTCGCGTTTATTTGTGTGACGGAGACAA





TGACTGTGGAGATAACAGTGATGAAAACCCTACTTATTGCACCACTCACACGTGCAGCAGCAGTGAGTTC





CAATGCGCATCTGGGCGCTGTATTCCTCAACATTGGTATTGTGATCAAGAAACAGATTGTTTTGATGCCT





CTGATGAACCTGCCTCTTGTGGTCACTCTGAGCGAACATGCCTAGCTGATGAGTTCAAGTGTGATGGTGG





GAGGTGCATCCCAAGCGAATGGATCTGTGACGGTGATAATGACTGTGGGGATATGAGTGACGAGGATAAA





AGGCACCAGTGTCAGAATCAAAACTGCTCGGATTCCGAGTTTCTCTGTGTAAATGACAGACCTCCGGACA





GGAGGTGCATTCCCCAGTCTTGGGTCTGTGATGGCGATGTGGATTGTACTGACGGCTACGATGAGAATCA





GAATTGCACCAGGAGAACTTGCTCTGAAAATGAATTCACCTGTGGTTACGGACTGTGTATCCCAAAGATA





TTCAGGTGTGACCGGCACAATGACTGTGGTGACTATAGCGACGAGAGGGGCTGCTTATACCAGACTTGCC





AACAGAATCAGTTTACCTGTCAGAACGGGCGCTGCATTAGTAAAACCTTCGTCTGTGATGAGGATAATGA





CTGTGGAGACGGATCTGATGAGCTGATGCACCTGTGCCACACCCCAGAACCCACGTGTCCACCTCACGAG





TTCAAGTGTGACAATGGGCGCTGCATCGAGATGATGAAACTCTGCAACCACCTAGATGACTGTTTGGACA





ACAGCGATGAGAAAGGCTGTGGCATTAATGAATGCCATGACCCTTCAATCAGTGGCTGCGATCACAACTG





CACAGACACCTTAACCAGTTTCTATTGTTCCTGTCGTCCTGGTTACAAGCTCATGTCTGACAAGCGGACT





TGTGTTGATATTGATGAATGCACAGAGATGCCTTTTGTCTGTAGCCAGAAGTGTGAGAATGTAATAGGCT





CCTACATCTGTAAGTGTGCCCCAGGCTACCTCCGAGAACCAGATGGAAAGACCTGCCGGCAAAACAGTAA





CATCGAACCCTATCTCATTTTTAGCAACCGTTACTATTTGAGAAATTTAACTATAGATGGCTATTTTTAC





TCCCTCATCTTGGAAGGACTGGACAATGTTGTGGCATTAGATTTTGACCGAGTAGAGAAGAGATTGTATT





GGATTGATACACAGAGGCAAGTCATTGAGAGAATGTTTCTGAATAAGACAAACAAGGAGACAATCATAAA





CCACAGACTACCAGCTGCAGAAAGTCTGGCTGTAGACTGGGTTTCCAGAAAGCTCTACTGGTTGGATGCC





CGCCTGGATGGCCTCTTTGTCTCTGACCTCAATGGTGGACACCGCCGCATGCTGGCCCAGCACTGTGTGG





ATGCCAACAACACCTTCTGCTTTGATAATCCCAGAGGACTTGCCCTTCACCCTCAATATGGGTACCTCTA





CTGGGCAGACTGGGGTCACCGCGCATACATTGGGAGAGTAGGCATGGATGGAACCAACAAGTCTGTGATA





ATCTCCACCAAGTTAGAGTGGCCTAATGGCATCACCATTGATTACACCAATGATCTACTCTACTGGGCAG





ATGCCCACCTGGGTTACATAGAGTACTCTGATTTGGAGGGCCACCATCGACACACGGTGTATGATGGGGC





ACTGCCTCACCCTTTCGCTATTACCATTTTTGAAGACACTATTTATTGGACAGATTGGAATACAAGGACA





GTGGAAAAGGGAAACAAATATGATGGATCAAATAGACAGACACTGGTGAACACAACACACAGACCATTTG





ACATCCATGTGTACCATCCATATAGGCAGCCCATTGTGAGCAATCCCTGTGGTACCAACAATGGTGGCTG





TTCTCATCTCTGCCTCATCAAGCCAGGAGGAAAAGGGTTCACTTGCGAGTGTCCAGATGACTTCCGCACC





CTTCAGCTGAGTGGCAGCACCTACTGCATGCCCATGTGCTCCAGCACCCAGTTCCTGTGCGCTAACAATG





AAAAGTGCATTCCTATCTGGTGGAAATGTGATGGACAGAAAGACTGCTCAGATGGCTCTGATGAACTGGC





CCTTTGCCCGCAGCGCTTCTGCCGACTGGGACAGTTCCAGTGCAGTGACGGCAACTGCACCAGCCCGCAG





ACTTTATGCAATGCTCACCAAAATTGCCCTGATGGGTCTGATGAAGACCGTCTTCTTTGTGAGAATCACC





ACTGTGACTCCAATGAATGGCAGTGCGCCAACAAACGTTGCATCCCAGAATCCTGGCAGTGTGACACATT





TAACGACTGTGAGGATAACTCAGATGAAGACAGTTCCCACTGTGCCAGCAGGACCTGCCGGCCGGGCCAG





TTTCGGTGTGCTAATGGCCGCTGCATCCCGCAGGCCTGGAAGTGTGATGTGGATAATGATTGTGGAGACC





ACTCGGATGAGCCCATTGAAGAATGCATGAGCTCTGCCCATCTCTGTGACAACTTCACAGAATTCAGCTG





CAAAACAAATTACCGCTGCATCCCAAAGTGGGCCGTGTGCAATGGTGTAGATGACTGCAGGGACAACAGT





GATGAGCAAGGCTGTGAGGAGAGGACATGCCATCCTGTGGGGGATTTCCGCTGTAAAAATCACCACTGCA





TCCCTCTTCGTTGGCAGTGTGATGGGCAAAATGACTGTGGAGATAACTCAGATGAGGAAAACTGTGCTCC





CCGGGAGTGCACAGAGAGCGAGTTTCGATGTGTCAATCAGCAGTGCATTCCCTCGCGATGGATCTGTGAC





CATTACAACGACTGTGGGGACAACTCAGATGAACGGGACTGTGAGATGAGGACCTGCCATCCTGAATATT





TTCAGTGTACAAGTGGACATTGTGTACACAGTGAACTGAAATGCGATGGATCCGCTGACTGTTTGGATGC





GTCTGATGAAGCTGATTGTCCCACACGCTTTCCTGATGGTGCATACTGCCAGGCTACTATGTTCGAATGC





AAAAACCATGTTTGTATCCCGCCATATTGGAAATGTGATGGCGATGATGACTGTGGCGATGGTTCAGATG





AAGAACTTCACCTGTGCTTGGATGTTCCCTGTAATTCACCAAACCGTTTCCGGTGTGACAACAATCGCTG





CATTTATAGTCATGAGGTGTGCAATGGTGTGGATGACTGTGGAGATGGAACTGATGAGACAGAGGAGCAC





TGTAGAAAACCGACCCCTAAACCTTGTACAGAATATGAATATAAGTGTGGCAATGGGCATTGCATTCCAC





ATGACAATGTGTGTGATGATGCCGATGACTGTGGTGACTGGTCCGATGAACTGGGTTGCAATAAAGGAAA





AGAAAGAACATGTGCTGAAAATATATGCGAGCAAAATTGTACCCAATTAAATGAAGGAGGATTTATCTGC





TCCTGTACAGCTGGGTTCGAAACCAATGTTTTTGACAGAACCTCCTGTCTAGATATCAATGAATGTGAAC





AATTTGGGACTTGTCCCCAGCACTGCAGAAATACCAAAGGAAGTTATGAGTGTGTCTGTGCTGATGGCTT





CACGTCTATGAGTGACCGCCCTGGAAAACGATGTGCAGCTGAGGGTAGCTCTCCTTTGTTGCTACTGCCT





GACAATGTCCGAATTCGAAAATATAATCTCTCATCTGAGAGGTTCTCAGAGTATCTTCAAGATGAGGAAT





ATATCCAAGCTGTTGATTATGATTGGGATCCCAAGGACATAGGCCTCAGTGTTGTGTATTACACTGTGCG





AGGGGAGGGCTCTAGGTTTGGTGCTATCAAACGTGCCTACATCCCCAACTTTGAATCCGGCCGCAATAAT





CTTGTGCAGGAAGTTGACCTGAAACTGAAATACGTAATGCAGCCAGATGGAATAGCAGTGGACTGGGTTG





GAAGGCATATTTACTGGTCAGATGTCAAGAATAAACGCATTGAGGTGGCTAAACTTGATGGAAGGTACAG





AAAGTGGCTGATTTCCACTGACCTGGACCAACCAGCTGCTATTGCTGTGAATCCCAAACTAGGGCTTATG





TTCTGGACTGACTGGGGAAAGGAACCTAAAATCGAGTCTGCCTGGATGAATGGAGAGGACCGCAACATCC





TGGTTTTCGAGGACCTTGGTTGGCCAACTGGCCTTTCTATCGATTATTTGAACAATGACCGAATCTACTG





GAGTGACTTCAAGGAGGACGTTATTGAAACCATAAAATATGATGGGACTGATAGGAGAGTCATTGCAAAG





GAAGCAATGAACCCTTACAGCCTGGACATCTTTGAAGACCAGTTATACTGGATATCTAAGGAAAAGGGAG





AAGTATGGAAACAAAATAAATTTGGGCAAGGAAAGAAAGAGAAAACGCTGGTAGTGAACCCTTGGCTCAC





TCAAGTTCGAATCTTTCATCAACTCAGATACAATAAGTCAGTGCCCAACCTTTGCAAACAGATCTGCAGC





CACCTCTGCCTTCTGAGACCTGGAGGATACAGCTGTGCCTGTCCCCAAGGCTCCAGCTTTATAGAGGGGA





GCACCACTGAGTGTGATGCAGCCATCGAACTGCCTATCAACCTGCCCCCCCCATGCAGGTGCATGCACGG





AGGAAATTGCTATTTTGATGAGACTGACCTCCCCAAATGCAAGTGTCCTAGCGGCTACACCGGAAAATAT





TGTGAAATGGCGTTTTCAAAAGGCATCTCTCCAGGAACAACCGCAGTAGCTGTGCTGTTGACAATCCTCT





TGATCGTCGTAATTGGAGCTCTGGCAATTGCAGGATTCTTCCACTATAGAAGGACCGGCTCCCTTTTGCC





TGCTCTGCCCAAGCTGCCAAGCTTAAGCAGTCTCGTCAAGCCCTCTGAAAATGGGAATGGGGTGACCTTC





AGATCAGGGGCAGATCTTAACATGGATATTGGAGTGTCTGGTTTTGGACCTGAGACTGCTATTGACAGGT





CAATGGCAATGAGTGAAGACTTTGTCATGGAAATGGGGAAGCAGCCCATAATATTTGAAAACCCAATGTA





CTCAGCCAGAGACAGTGCTGTCAAAGTGGTTCAGCCAATCCAGGTGACTGTATCTGAAAATGTGGATAAT





AAGAATTATGGAAGTCCCATAAACCCTTCTGAGATAGTTCCAGAGACAAACCCAACTTCACCAGCTGCTG





ATGGAACTCAGGTGACAAAATGGAATCTCTTCAAACGAAAATCTAAACAAACTACCAACTTTGAAAATCC





AATCTATGCACAGATGGAGAACGAGCAAAAGGAAAGTGTTGCTGCGACACCACCTCCATCACCTTCGCTC





CCTGCTAAGCCTAAGCCTCCTTCGAGAAGAGACCCAACTCCAACCTATTCTGCAACAGAAGACACTTTTA





AAGACACCGCAAATCTTGTTAAAGAAGACTCTGAAGTATAGCTATACCAGCTATTTAGGGAATAATTAGA





AACACACTTTTGCACATATATTTTTTACAAACAGATGAAAAAAGTTAACATTCAGTACTTTATGAAAAAA





ATATATTTTTCCCTGTTTGCCTATAGTTGGAGGTATCCTGTGTGTCTTTTTTTACTTATGCCGTCTCATA





TTTTTACAAATAATTATCACAATGTACTATATGTATATCTTTGCACTGAAGTTGTCTGAAGGTAATACTA





TAAATATATTGTATATTTGTAAATTTTGGAAAGATTATCCTGTTACTGAATTTGCTAATAAAGATGTCTG





CTGATTTGGTTGGTGATCATTATAGTAAATGATCCAACAAGAAAAGGAATTGACTGGGGACCTTTAGCCG





TGTCTAAAGAAGAGGCACCACTCATATTTCCTATAAAATTATCTAGGAAAGGAATCCAGGCCCCGCTCTT





GGGTCCATTTTTACACATTAGCACTTAATTAATGTTCAATATTACATGTCAATTTGATTAATGGCTATGT





TGATAGGGGCCACTATGTGTTGTATAGACATCTGGACTTGACTGTAGACTCCTCAGATAATACAGAAGGT





AGGAAAAGCAATTCAGTTTGGCCCTTCTGTGTGTTGGCATTGTCTAACCAGAACTCTCTGTTTCATGTGT





GTTCTCTCACTAGCTGCCAAGACAACATTTTTATTTGTGATGTCTATGAGGAAATCCCATATCATTAAGT





GCCAGTGTCCTGCATTGAGTTTGTGGTTAATTAAATGAGCTCTTCTGCTGATGGACCCTGGAGCAATTTC





TCCCCTCACCTGACATTCAAGGTGGTCACCTGCCCTAGTAGTTGGAGCTCAGTAGCTGAATTTCTGAAAC





CAAATCTGTGTCTTCATAAAATAAGGTGCAAAAAAAAAAAATACCAGTTAAGTAAAGCCTCAACTGGGTT





TTTGTTTCTATGAAAATATCATTATAATCACTATTTATTTCCTAAGTTGAACCTGAATAGAAAGGGAAAC





CATTCTTATTAAGCTTTTTATTAGGCCCTGTGGCTAAATGTGTACATTTATATTAGAATGTACTGTACAG





TCCAGATCTTTTCTTTAATTCTTATTGGTTTTTTTTTTTTTTTTTTTTTTAGAGATGGAGTCTTGCTATA





TTGCCAAGGCTGATCTTGAAGTCCTGGGCTCAAGTGATCCTCCCACCTCAGCCTCCTGAGTGGTTGGGGT





TACGGGCGTGAGCCACTGTGCCTGGCTTCCAGCTCTCCTCTTAAATAGTGGGTATAGTCTGCACAACAGG





AACCATGGCAGGAATATACACTTTCCCATAGCAAATAGCATACCTGACTCTCTGTGCTAATATTGCACAT





TTGTTAAACAATGAATGAATGGATGGATGGATGGATGGATGAATGAATGAAACATATACTACTGATTATT





TTATTCCAGAGTTCTCAAAATATTTGTTGCTGATATTTTGAGTGCTGACTGTAATTACTTTGATTAGATA





AACAACTGGAAATAATGCTGCTGAAAAAGTTCTAATAAATGTGTATTTTATCAGA.






One example of a protein sequence from the above LRP2 DNA is: >sp|P98164|LRP2_HUMAN Low-density lipoprotein receptor-related protein 2 OS=Homo sapiens OX=9606 GN=LRP2 PE=1 SV=3









(SEQ ID NO. 940)


MDRGPAAVACTLLLALVACLAPASGQECDSAHFRCGSGHCIPADWRCDG





TKDCSDDADEIGCAVVTCQQGYFKCQSEGQCIPNSWVCDQDQDCDDGSD





ERQDCSQSTCSSHQITCSNGQCIPSEYRCDHVRDCPDGADENDCQYPTC





EQLTCDNGACYNTSQKCDWKVDCRDSSDEINCTEICLHNEFSCGNGECI





PRAYVCDHDNDCQDGSDEHACNYPTCGGYQFTCPSGRCIYQNWVCDGED





DCKDNGDEDGCESGPHDVHKCSPREWSCPESGRCISIYKVCDGILDCPG





REDENNTSTGKYCSMTLCSALNCQYQCHETPYGGACFCPPGYIINHNDS





RTCVEFDDCQIWGICDQKCESRPGRHLCHCEEGYILERGQYCKANDSFG





EASIIFSNGRDLLIGDIHGRSFRILVESQNRGVAVGVAFHYHLQRVFWT





DTVQNKVFSVDINGLNIQEVLNVSVETPENLAVDWVNNKIYLVETKVNR





IDMVNLDGSYRVTLITENLGHPRGIAVDPTVGYLFFSDWESLSGEPKLE





RAFMDGSNRKDLVKTKLGWPAGVTLDMISKRVYWVDSRFDYIETVTYDG





IQRKTVVHGGSLIPHPFGVSLFEGQVFFTDWTKMAVLKANKFTETNPQV





YYQASLRPYGVTVYHSLRQPYATNPCKDNNGGCEQVCVLSHRTDNDGLG





FRCKCTFGFQLDTDERHCIAVQNFLIFSSQVAIRGIPFTLSTQEDVMVP





VSGNPSFFVGIDFDAQDSTIFFSDMSKHMIFKQKIDGTGREILAANRVE





NVESLAFDWISKNLYWTDSHYKSISVMRLADKTRRTVVQYLNNPRSVVV





HPFAGYLFFTDWFRPAKIMRAWSDGSHLLPVINTTLGWPNGLAIDWAAS





RLYWVDAYFDKIEHSTFDGLDRRRLGHIEQMTHPFGLAIFGEHLFFTDW





RLGAIIRVRKADGGEMTVIRSGIAYILHLKSYDVNIQTGSNACNQPTHP





NGDCSHFCFPVPNFQRVCGCPYGMRLASNHLTCEGDPTNEPPTEQCGLF





SFPCKNGRCVPNYYLCDGVDDCHDNSDEQLCGTLNNTCSSSAFTCGHGE





CIPAHWRCDKRNDCVDGSDEHNCPTHAPASCLDTQYTCDNHQCISKNWV





CDTDNDCGDGSDEKNCNSTETCQPSQFNCPNHRCIDLSFVCDGDKDCVD





GSDEVGCVLNCTASQFKCASGDKCIGVTNRCDGVFDCSDNSDEAGCPTR





PPGMCHSDEFQCQEDGICIPNFWECDGHPDCLYGSDEHNACVPKTCPSS





YFHCDNGNCIHRAWLCDRDNDCGDMSDEKDCPTQPFRCPSWQWQCLGHN





ICVNLSVVCDGIFDCPNGTDESPLCNGNSCSDFNGGCTHECVQEPFGAK





CLCPLGFLLANDSKTCEDIDECDILGSCSQHCYNMRGSFRCSCDTGYML





ESDGRTCKVTASESLLLLVASQNKIIADSVTSQVHNIYSLVENGSYIVA





VDFDSISGRIFWSDATQGKTWSAFQNGTDRRVVFDSSIILTETIAIDWV





GRNLYWTDYALETIEVSKIDGSHRTVLISKNLTNPRGLALDPRMNEHLL





FWSDWGHHPRIERASMDGSMRTVIVQDKIFWPCGLTIDYPNRLLYFMDS





YLDYMDFCDYNGHHRRQVIASDLIIRHPYALTLFEDSVYWTDRATRRVM





RANKWHGGNQSVVMYNIQWPLGIVAVHPSKQPNSVNPCAFSRCSHLCLL





SSQGPHFYSCVCPSGWSLSPDLLNCLRDDQPFLITVRQHIIFGISLNPE





VKSNDAMVPIAGIQNGLDVEFDDAEQYIYWVENPGEIHRVKTDGTNRTV





FASISMVGPSMNLALDWISRNLYSTNPRTQSIEVLTLHGDIRYRKTLIA





NDGTALGVGFPIGITVDPARGKLYWSDQGTDSGVPAKIASANMDGTSVK





TLFTGNLEHLECVTLDIEEQKLYWAVTGRGVIERGNVDGTDRMILVHQL





SHPWGIAVHDSFLYYTDEQYEVIERVDKATGANKIVLRDNVPNLRGLQV





YHRRNAAESSNGCSNNMNACQQICLPVPGGLFSCACATGFKLNPDNRSC





SPYNSFIVVSMLSAIRGFSLELSDHSETMVPVAGQGRNALHVDVDVSSG





FIYWCDFSSSVASDNAIRRIKPDGSSLMNIVTHGIGENGVRGIAVDWVA





GNLYFTNAFVSETLIEVLRINTTYRRVLLKVTVDMPRHIVVDPKNRYLF





WADYGQRPKIERSFLDCTNRTVLVSEGIVTPRGLAVDRSDGYVYWVDDS





LDIIARIRINGENSEVIRYGSRYPTPYGITVFENSIIWVDRNLKKIFQA





SKEPENTEPPTVIRDNINWLRDVTIFDKQVQPRSPAEVNNNPCLENNGG





CSHLCFALPGLHTPKCDCAFGTLQSDGKNCAISTENFLIFALSNSLRSL





HLDPENHSPPFQTINVERTVMSLDYDSVSDRIYFTQNLASGVGQISYAT





LSSGIHTPTVIASGIGTADGIAFDWITRRIYYSDYLNQMINSMAEDGSN





RTVIARVPKPRAIVLDPCQGYLYWADWDTHAKIERATLGGNFRVPIVNS





SLVMPSGLTLDYEEDLLYWVDASLQRIERSTLTGVDREVIVNAAVHAFG





LTLYGQYIYWTDLYTQRIYRANKYDGSGQIAMTTNLLSQPRGINTVVKN





QKQQCNNPCEQFNGGCSHICAPGPNGAECQCPHEGNWYLANNRKHCIVD





NGERCGASSFTCSNGRCISEEWKCDNDNDCGDGSDEMESVCALHTCSPT





AFTCANGRCVQYSYRCDYYNDCGDGSDEAGCLFRDCNATTEFMCNNRRC





IPREFICNGVDNCHDNNTSDEKNCPDRTCQSGYTKCHNSNICIPRVYLC





DGDNDCGDNSDENPTYCTTHTCSSSEFQCASGRCIPQHWYCDQETDCFD





ASDEPASCGHSERTCLADEFKCDGGRCIPSEWICDGDNDCGDMSDEDKR





HQCQNQNCSDSEFLCVNDRPPDRRCIPQSWVCDGDVDCTDGYDENQNCT





RRTCSENEFTCGYGLCIPKIFRCDRHNDCGDYSDERGCLYQTCQQNQFT





CQNGRCISKTFVCDEDNDCGDGSDELMHLCHTPEPTCPPHEFKCDNGRC





IEMMKLCNHLDDCLDNSDEKGCGINECHDPSISGCDHNCTDTLTSFYCS





CRPGYKLMSDKRTCVDIDECTEMPFVCSQKCENVIGSYICKCAPGYLRE





PDGKTCRQNSNIEPYLIFSNRYYLRNLTIDGYFYSLILEGLDNVVALDF





DRVEKRLYWIDTQRQVIERMFLNKTNKETIINHRLPAAESLAVDWVSRK





LYWLDARLDGLFVSDLNGGHRRMLAQHCVDANNTFCFDNPRGLALHPQY





GYLYWADWGHRAYIGRVGMDGTNKSVIISTKLEWPNGITIDYTNDLLYW





ADAHLGYIEYSDLEGHHRHTVYDGALPHPFAITIFEDTIYWTDWNTRTV





EKGNKYDGSNRQTLVNTTHRPFDIHVYHPYRQPIVSNPCGTNNGGCSHL





CLIKPGGKGFTCECPDDFRTLQLSGSTYCMPMCSSTQFLCANNEKCIPI





WWKCDGQKDCSDGSDELALCPQRFCRLGQFQCSDGNCTSPQTLCNAHQN





CPDGSDEDRLLCENHHCDSNEWQCANKRCIPESWQCDTFNDCEDNSDED





SSHCASRTCRPGQFRCANGRCIPQAWKCDVDNDCGDHSDEPIEECMSSA





HLCDNFTEFSCKTNYRCIPKWAVCNGVDDCRDNSDEQGCEERTCHPVGD





FRCKNHHCIPLRWQCDGQNDCGDNSDEENCAPRECTESEFRCVNQQCIP





SRWICDHYNDCGDNSDERDCEMRTCHPEYFQCTSGHCVHSELKCDGSAD





CLDASDEADCPTRFPDGAYCQATMFECKNHVCIPPYWKCDGDDDCGDGS





DEELHLCLDVPCNSPNRFRCDNNRCIYSHEVCNGVDDCGDGTDETEEHC





RKPTPKPCTEYEYKCGNGHCIPHDNVCDDADDCGDWSDELGCNKGKERT





CAENICEQNCTQLNEGGFICSCTAGFETNVFDRTSCLDINECEQFGTCP





QHCRNTKGSYECVCADGFTSMSDRPGKRCAAEGSSPLLLLPDNVRIRKY





NLSSERFSEYLQDEEYIQAVDYDWDPKDIGLSVVYYTVRGEGSRFGAIK





RAYIPNFESGRNNLVQEVDLKLKYVMQPDGIAVDWVGRHIYWSDVKNKR





IEVAKLDGRYRKWLISTDLDQPAAIAVNPKLGLMFWTDWGKEPKIESAW





MNGEDRNILVFEDLGWPTGLSIDYLNNDRIYWSDFKEDVIETIKYDGTD





RRVIAKEAMNPYSLDIFEDQLYWISKEKGEVWKQNKFGQGKKEKTLVVN





PWLTQVRIFHQLRYNKSVPNLCKQICSHLCLLRPGGYSCACPQGSSFIE





GSTTECDAAIELPINLPPPCRCMHGGNCYFDETDLPKCKCPSGYTGKYC





EMAFSKGISPGTTAVAVLLTILLIVVIGALAIAGFFHYRRTGSLLPALP





KLPSLSSLVKPSENGNGVTFRSGADLNMDIGVSGFGPETAIDRSMAMSE





DFVMEMGKQPIIFENPMYSARDSAVKVVQPIQVTVSENVDNKNYGSPIN





PSEIVPETNPTSPAADGTQVTKWNLFKRKSKQTTNFENPIYAQMENEQK





ESVAATPPPSPSLPAKPKPPSRRDPTPTYSATEDTFKDTANLVKEDSE





V.






As used herein, “target sequence” refers to a contiguous portion of the nucleotide sequence of an mRNA molecule formed during the transcription of a gene of interest for example a CD320 gene or an LRP2 gene, including mRNA that is a product of RNA processing of a primary transcription product.


As used herein, the term “strand comprising a sequence” refers to an oligonucleotide comprising a chain of nucleotides that is described by the sequence referred to using the standard nucleotide nomenclature.


“G,” “C,” “A” and “U” each generally stand for a nucleotide that contains guanine, cytosine, adenine, and uracil as a base, respectively. “T” and “dT” are used interchangeably herein and refer to a deoxyribonucleotide wherein the nucleobase is thymine, e.g., deoxyribothymine, 2′-deoxythymidine or thymidine. However, it will be understood that the term “ribonucleotide” or “nucleotide” or “deoxyribonucleotide” can also refer to a modified nucleotide, as further detailed below, or a surrogate replacement moiety. The skilled person is well aware that guanine, cytosine, adenine, and uracil may be replaced by other moieties without substantially altering the base pairing properties of an oligonucleotide comprising a nucleotide bearing such replacement moiety. For example, without limitation, a nucleotide comprising inosine as its base may base pair with nucleotides containing adenine, cytosine, or uracil. Hence, nucleotides containing uracil, guanine, or adenine may be replaced in the nucleotide sequences of the invention by a nucleotide containing, for example, inosine. Sequences comprising such replacement moieties are embodiments of the invention.


The term “siRNA” refers to a compound, cocktail, composition or agent that contains RNA as that term is defined herein, and which mediates the targeted cleavage of an RNA transcript via the RISC/AGO (RNA-induced silencing complex) complex, whereby the guide strand of the siRNA hybridizes with its complementary mRNA molecule. The mRNA is degraded by the RISC/AGO complex, which has RNAse cleave activity, resulting in mRNA degradation and the protein encoded by the mRNA is not produced or is produced at a reduced level as compared to untreated cell. This causes the “knockdown” effect or reduced protein levels of the gene targeted by the siRNA compared to control treated cells. The siRNA modulates, e.g., inhibits, the expression of CD320 in a cell or LRP2 in a cell, e.g., a cell within a subject, such as a mammalian subject.


In one embodiment, an RNAi agent of the invention includes a single stranded RNA that interacts with a target RNA sequence, e.g., a CD320 or LRP2 target mRNA sequence, to direct the cleavage of the target RNA. Without wishing to be bound by theory, it is believed that long double stranded RNA introduced into cells is broken down into siRNA by a Type III endonuclease known as Dicer (Sharp et al. (2001) Genes Dev. 15:485). Dicer, a ribonuclease-Ill-like enzyme, processes the dsRNA into 19-23 base pair (bp) short interfering RNAs with characteristic two base 3′ overhangs (Bernstein, et al., (2001) Nature 409:363). Initially, the siRNAs may consist of two RNA strands, an antisense (or guide) strand and a sense (or passenger) strand, which form a duplex that varies in length from 10-80 bp in length with or without a 3′ nucleotide overhang. A dsRNA can include one or more single-stranded overhang(s) of one or more nucleotides. In one embodiment, at least one end of the dsRNA has a single-stranded nucleotide overhang of 1 to 4, generally 1 or 2 nucleotides. In another embodiment, the antisense strand of the dsRNA has 1-10 nucleotide overhangs each at the 3′ end and the 5′ end over the sense strand. In further embodiments, the sense strand of the dsRNA has 1-10 nucleotide overhangs each at the 3′ end and the 5′ end over the antisense strand.


The siRNA are then incorporated into an RNA-induced silencing complex (RISC) where one or more helicases unwind the siRNA duplex, enabling the complementary antisense (guide) strand to guide target recognition (Nykanen, et al., (2001) Cell 107:309). Upon binding to the appropriate target mRNA, one or more endonucleases within the RISC cleave the target to induce silencing (Elbashir, et al., (2001) Genes Dev. 15:188). Thus, in one aspect the invention relates to a single stranded RNA (siRNA) generated within a cell and which promotes the formation of a RISC complex to effect silencing of the target gene, i.e., a CD320 or LRP2 gene. Accordingly, the term “siRNA” is also used herein to refer to an RNAi as described above.


In another embodiment, the RNAi agent may be a single-stranded siRNA that is introduced into a cell or organism to inhibit a target mRNA. Single-stranded RNAi agents bind to the RISC endonuclease Argonaute 2, which then cleaves the target mRNA. The single-stranded siRNAs are generally 15-80 nucleotides and may be chemically modified to improve metabolic stability and activity; wherein one or multiple pyrimidine nucleotides could be modified as 2′-deoxy-2′-fluoronucleotides, one or more purine nucleotides could be modified as 2′-deoxypurine nucleotides and, moreover, wherein terminal cap modifications could be present at the 3′ or 5′ ends; particularly by the introduction of one or more 2′-deoxythymidine nucleotides, or by the introduction of one or more phosphorothioate groups linking any nucleotides in the sequence but especially at the 3′ and 5′ end. In addition, a 3′-terminal phosphate or vinylphosphonate group could be introduced. Examples of such modifications would include but not be limited to modifications to the ribose moieties of the nucleotides such as: 2′-deoxy, 2′-deoxyfluoro, 2′-methoxy (2′-O-methyl) (Hutvanger et al., (2004) PLOS Biol 2, 0465-0475; Janas et al., (2019) Nuc Acid Res 47, 3306-3320; Jackson et al., (2006) RNA 12, 1197-1205), and 2′-methoxyethyl, wherein it is understood that the stereochemistry of the 2′-substituent could be in the ribo- or arabino-orientation. Another modification could be 2′-trifluoromethoxy. Other modifications to the ribose moieties could include bridging modifications such that the 2′-carbon of the sugar moiety is covalently linked to the 4′-carbon of the sugar moiety by a methylene or methoxymethylene group to afford bridged nucleotides described in the art as LNA and (S)-cET, respectively (Corey et al., (2018) Nuc Acid Res 46; 1584-1600). In addition, the sugar moiety could be modified by removal of the bond between carbons C2′ and C3′ to afford “open” chain nucleotides analogous to those described in WO 2011/139843 A2. The ribose moiety of the RNA nucleotides could also be replaced by a morpholino group to afford PMO nucleotides. Modifications to the phosphate diester moieties of the nucleotides are also possible and could include but not be limited to replacement of the phosphodiester group by phosphorothioate and thio-phosphoramidate (Eckstein et al., (2014) Nuc Acid Therapeutics 24, 374-387). The ends of the strand could be modified with 2′-deoxynucleotides such as dT and, further, the dT nucleotides could be modified by phosphorothioate groups in place of diphosphate esters. The design and testing of single-stranded siRNAs are described in U.S. Pat. No. 8,101,348 and in Lima et al., (2012) Cell 150: 883-894, the entire contents of each of which are hereby incorporated herein by reference. Any of the antisense nucleotide sequences described herein may be used as a single-stranded siRNA as described herein or as chemically modified by the methods described in Lima et al., (2012) Cell 150; 883-894.


In another embodiment, an “RNAi” for use in the compositions, uses, and methods of the invention is a double-stranded RNA and is referred to herein as a “double stranded RNAi agent,” “double-stranded RNA (dsRNA) molecule,” “dsRNA agent,” or “dsRNA”. The term “dsRNA” refers to a complex of ribonucleic acid molecules, having a duplex structure comprising two anti-parallel and substantially complementary nucleic acid strands, referred to as having “sense” (passenger) and “antisense” (guide) orientations with respect to a target RNA, i.e., a CD320 gene or LRP2 gene. In some embodiments of the invention, a double-stranded RNA (dsRNA) triggers the degradation of a target RNA, e.g., an mRNA, through a post-transcriptional gene-silencing mechanism referred to herein as RNA interference or RNAi.


In general, the majority of nucleotides of each strand of a dsRNA molecule are ribonucleotides, but as described in detail herein, each or both strands can also include one or more non-ribonucleotides, e.g., a deoxyribonucleotide and/or a modified nucleotide. In addition, as used in this specification, an “RNAi agent” may include ribonucleotides with chemical modifications (Corey et al., (2018) Nuc Acid Res 46; 1584-1600); an RNAi agent may include substantial modifications at multiple nucleotides or at a single nucleotide. Such modifications may include all types of modifications disclosed herein or known in the art. Any such modifications, as used in a siRNA type molecule, are encompassed by “RNAi agent” for the purposes of this specification and claims. Examples of such modifications would include but not be limited to modifications to the ribose moieties of the nucleotides such as: 2′-deoxy, 2′-deoxyfluoro, 2′-methoxy (2′-O-methyl) (Hutvanger et al., (2004) PLOS Biol 2, 0465-0475; Janas et al., (2019) Nuc Acid Res 47, 3306-3320; Jackson et al., (2006) RNA 12, 1197-1205), and 2′-methoxyethyl, wherein it is understood that the stereochemistry of the 2′-substituent could be in the ribo- or arabino-orientation. Another modification could be 2′-trifluoromethoxy. Other modifications to the ribose moieties could include bridging modifications such that the 2′-carbon of the sugar moiety is covalently linked to the 4′-carbon of the sugar moiety by a methylene or methoxymethylene group to afford bridged nucleotides described in the art as LNA and (S)-cET, respectively (Corey et al., (2018) Nuc Acid Res 46; 1584-1600). In addition, the sugar moiety could be modified by removal of the bond between carbons C2′ and C3′ to afford “open” chain nucleotides analogous to those described in WO 2011/139843 A2. The ribose moiety of the RNA nucleotides could also be replaced by a morpholino group to afford PMO nucleotides. Modifications to the phosphate diester moieties of the nucleotides are also possible and could include but not be limited to replacement of the phosphodiester group by phosphorothioate and thio-phosphoramidate (Eckstein et al., (2014) Nuc Acid Therapeutics 24, 374-387). The ends of the sense and antisense strands could be modified with 2′-deoxynucleotides such as dT and, further, the dT nucleotides could be modified by phosphorothioate groups in place of diphosphate esters (FIG. 19).


Chemical modifications to the ribonucleotides could be made at any individual or combination of nucleotides in the antisense and sense strands. In some cases, all the nucleotides in either the antisense or sense strand, or in both the antisense and sense strands are chemically modified (Allerson et al., (2005) J Med Chem 48, 901-904). In other cases, only some of the nucleotides in the antisense or sense strand, or in both the antisense and sense strands are chemically modified (Chiu et al., (2003) RNA 9, 1034-1048). In yet other cases, the modifications could follow a pattern of alternating 2′-methoxy and 2′-fluoro modifications to either or both strands of the siRNA and sometimes the complementary nucleotides of the antisense and sense strands could contain chemical modifications which are not identical, for example, where one member of a complementary nucleotide pair has a 2′-methoxy modification and the other member has a 2′-fluoro modification (Choung et al. (2006) Biochem Biophys Res Commun 342, 919-927; Hassler et al., (2018) Nucleic Acid Res 46, 2185-2196).


The two strands forming the duplex structure may be different portions of one larger RNA molecule, or they may be separate RNA molecules. Where the two strands are part of one larger molecule, and therefore are connected by an uninterrupted chain of nucleotides between the 3′-end of one strand and the 5′-end of the respective other strand forming the duplex structure, the connecting RNA chain is referred to as a “hairpin loop.” Where the two strands are connected covalently by means other than an uninterrupted chain of nucleotides between the 3′-end of one strand and the 5′-end of the respective other strand forming the duplex structure, the connecting structure is referred to as a “linker.” The RNA strands may have the same or a different number of nucleotides. The maximum number of base pairs is the number of nucleotides in the shortest strand of the dsRNA minus any overhangs that are present in the duplex. In addition to the duplex structure, an RNAi agent may comprise one or more nucleotide overhangs.


In one embodiment, an RNAi agent of the invention is a dsRNA of 20-30 nucleotides that interacts with a target RNA sequence, e.g., a CD320 target mRNA sequence or a LRP2 target mRNA sequence, to direct the cleavage of the target RNA.


The term “antisense strand” refers to the strand of a double stranded RNAi agent which includes a region that is substantially complementary to a target sequence (e.g., a human CD320 mRNA or a LRP2 mRNA). As used herein, the term “region complementary to part of an mRNA encoding CD320 or LRP2” refers to a region on the antisense strand that is substantially complementary to part of a mRNA sequence that codes for either CD320 or LRP2. Where the region of complementarity is not fully complementary to the target sequence, the mismatches are most tolerated in the terminal regions and, if present, are generally in a terminal region or regions, e.g., within 6, 5, 4, 3, or 2 nucleotides of the 5′ and/or 3′ terminus. For example, substantially complementary can in certain embodiments mean that in a hybridized pair of nucleobase sequences, at least 85% but not all of the bases in a contiguous sequence of a first polynucleotide will hybridize with the same number of bases in a contiguous sequence of a second polynucleotide.


The term “sense strand,” as used herein, refers to the strand of a dsRNA that includes a region that is substantially complementary to a region of the antisense strand.


As used herein, the term “cleavage region” refers to a region that is located immediately adjacent to the cleavage site. The cleavage site is the site on the target at which cleavage occurs. In some embodiments, the cleavage region comprises three bases on either end of, and immediately adjacent to, the cleavage site. In some embodiments, the cleavage region comprises two bases on either end of, and immediately adjacent to, the cleavage site. In some embodiments, the cleavage site specifically occurs at the site bound by nucleotides 10 and 11 of the antisense strand, and the cleavage region comprises nucleotides 11, 12 and 13.


As used herein, and unless otherwise indicated, the term “complementary,” when used to describe a first nucleotide sequence in relation to a second nucleotide sequence, refers to the ability of an oligonucleotide or polynucleotide comprising the first nucleotide sequence to hybridize and form a duplex structure under certain conditions with an oligonucleotide or polynucleotide comprising the second nucleotide sequence, as will be understood by the skilled person. Such conditions can, for example, be stringent conditions, where stringent conditions may include: 400 mM NaCl, 40 mM PIPES pH 6.4, 1 mM EDTA, 50° C. or 70° C. for 12-16 hours followed by washing. Other conditions, such as physiologically relevant conditions as may be encountered inside an organism, can apply. For example, a complementary sequence is sufficient to allow the relevant function of the nucleic acid to proceed, e.g., RNAi. The skilled person will be able to determine the set of conditions most appropriate for a test of complementarity of two sequences in accordance with the ultimate application of the hybridized nucleotides.


Sequences can be “fully complementary” with respect to each when there is base-pairing of the nucleotides of the first nucleotide sequence with the nucleotides of the second nucleotide sequence over the entire length of the first and second nucleotide sequences. However, where a first sequence is referred to as “substantially complementary” with respect to a second sequence herein, the two sequences can be fully complementary, or they may form one or more, but generally not more than 4, 3 or 2 mismatched base pairs upon hybridization, while retaining the ability to hybridize under the conditions most relevant to their ultimate application. However, where two oligonucleotides are designed to form, upon hybridization, one or more single stranded overhangs, such overhangs shall not be regarded as mismatches with regard to the determination of complementarity. For example, a dsRNA comprising one oligonucleotide 21 nucleotides in length and another oligonucleotide 23 nucleotides in length, wherein the longer oligonucleotide comprises a sequence of 21 nucleotides that is fully complementary to the shorter oligonucleotide, may yet be referred to as “fully complementary” for the purposes described herein.


“Complementary” sequences, as used herein, may also include, or be formed entirely from, non-Watson-Crick base pairs and/or base pairs formed from non-natural and modified nucleotides, in as far as the above requirements with respect to their ability to hybridize are fulfilled. Such non-Watson-Crick base pairs include, but are not limited to, G:U Wobble or Hoogstein base pairing.


The terms “complementary,” “fully complementary” and “substantially complementary” herein may be used with respect to the base matching between the sense strand and the antisense strand of a dsRNA, or between the antisense strand of a dsRNA and a target sequence, as will be understood from the context of their use.


As used herein, a polynucleotide that is “substantially complementary to at least part of” a messenger RNA (mRNA) refers to a polynucleotide that is substantially complementary to a contiguous portion of the mRNA of interest (e.g., an mRNA encoding CD320 or an mRNA encoding LRP2) including a 5′ UTR, an open reading frame (ORF), or a 3′ UTR. For example, a polynucleotide is complementary to at least a part of a CD320 mRNA or LRP2 mRNA if the sequence is substantially complementary to a non-interrupted portion of an mRNA encoding CD320 or LRP2.


The term “inhibiting,” as used herein, is used interchangeably with “reducing,” “silencing,” “downregulating,” “suppressing” and other similar terms, and includes any level of inhibition.


The phrase “inhibiting expression of a CD320,” “inhibiting expression of a LRP2” as used herein, includes inhibition of expression of any CD320 or LRP2 gene (such as the identified gene from, e.g., a mouse, a rat, a monkey, or a human) as well as variants, (e.g., naturally occurring variants), or mutants of the identified gene. Thus, the CD320 or LRP2 gene may be a wild-type CD320 or LRP2 gene, a mutant CD320 or LRP2 gene, or a transgenic CD320 or LRP2 gene in the context of a genetically manipulated cell, group of cells, or organism.


“Inhibiting expression of a CD320 gene” or “Inhibiting expression of a LRP2 gene” includes any level of inhibition of a CD320 gene or a LRP2 gene, e.g., at least partial suppression of the expression of a CD320 or LRP2 gene, such as an inhibition of at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99%. In a preferred embodiment the inhibition is assessed by expressing the level of CD320 or LRP2 protein in treated cells as a percentage of the level of mRNA in control cells, using the following formula:

    • Normalized protein level for treated cells/Normalized protein level for control cells. The control cells are the negative control siRNA. Normalized means the protein level is normalized to the level of a housekeeping protein.


The expression of a CD320 or LRP2 gene may be assessed based on the level of any variable associated with CD320 or LRP2 gene expression, e.g., CD320 or LRP2 mRNA level, CD320 or LRP2 protein level. Inhibition may be assessed by a decrease in an absolute or relative level of one or more of these variables compared with a control level. The control level may be any type of control level that is utilized in the art, e.g., a pre-dose baseline level, or a level determined from a similar subject, cell, or sample that is untreated or treated with a control (such as, e.g., buffer only control or inactive agent control).


Contacting a cell with a RNAi agent, either ds or ss as used herein, includes contacting a cell by any possible means whether in vivo or in vitro. Contacting a cell with a RNAi agent includes contacting a cell in vitro with the RNAi agent or contacting a cell in vivo with the RNAi agent. The contacting may be done directly or indirectly. Thus, for example, the RNAi agent may be put into physical contact with the cell by the individual performing the method, or alternatively, the RNAi agent may be put into a situation that will permit or cause it to subsequently come into contact with the cell.


A “patient” or “subject,” as used herein, is intended to include either a human or non-human animal, preferably a mammal, e.g., a monkey. Most preferably, the subject or patient is a human.


A “CD320-associated disease,” as used herein, is intended to include any disease associated with a perturbation of the CD320 gene, or protein, polymorphisms, single nucleotide polymorphisms (SNPs) as well as epigenetic modifications of the CD320 gene. Such a disease may be caused, for example, by excess production of the CD320 protein, by CD320 gene mutations, by abnormal cleavage of the CD320 protein, by abnormal folding of the CD320 protein, by abnormal interactions between CD320 itself or with other proteins or other endogenous or exogenous substances. For example, cancer may be a CD320-associated disease. The degree of inhibition of protein expression may be measured by western blotting.


A “LRP2-associated disease,” as used herein, is intended to include any disease associated with a perturbation of the LRP2 gene, protein, polymorphisms, SNPs as well as epigenetic modifications of the CD320 gene. Such a disease may be caused, for example, by excess production of the LRP2 protein, by LRP2 gene mutations, by abnormal cleavage of the LRP2 protein, by abnormal folding of the LRP2 protein, by abnormal interactions between LRP2 molecules and other proteins or other endogenous or exogenous substances. For example, cancer may be a LRP2-associated disease. The degree of inhibition of protein expression may be measured by western blotting.


“Therapeutically effective amount,” as used herein, is intended to include the amount of an RNAi agent that, when administered to a cell or a patient for treating a CD320 associated disease or a LRP2 associated disease, is sufficient to effect treatment of the disease (e.g., by diminishing, ameliorating or maintaining the existing disease or one or more symptoms of disease or by preferentially causing the death of a disease cell as compared to a non-disease cell). The “therapeutically effective amount” may vary depending on the RNAi agent, how the agent is administered, the disease and its severity and the history, age, weight, family history, genetic makeup, stage of pathological processes mediated by CD320 or LRP2 expression, the types of preceding or concomitant treatments, if any, and other individual characteristics of the patient to be treated.


“Prophylactically effective amount,” as used herein, is intended to include the amount of an RNAi agent that, when administered to a subject who does not yet experience or display symptoms of a CD320 associated disease or a LRP2 associated disease, but who may be predisposed to the disease, is sufficient to prevent or ameliorate the disease or one or more symptoms of the disease. Ameliorating the disease includes slowing the course of the disease or reducing the severity of later-developing disease. The “prophylactically effective amount” may vary depending on the RNAi agent, how the agent is administered, the degree of risk of disease, and the history, age, weight, family history, genetic makeup, the types of preceding or concomitant treatments, if any, and other individual characteristics of the patient to be treated.


A “therapeutically-effective amount” or “prophylactically effective amount” also includes an amount of an RNAi agent that produces some desired local or systemic effect at a reasonable benefit/risk ratio applicable to any treatment. RNAi agents employed in the methods of the present invention may be administered in a sufficient amount to produce a reasonable benefit/risk ratio applicable to such treatment.


Pharmaceutical Compositions

The methods described herein include administration of a LRP2 inhibiting composition and/or a CD320 inhibiting composition, e.g., a first siRNA targeting a CD320 gene and/or a second siRNA targeting a LRP2 gene. In some embodiments, the LRP2 inhibiting composition and/or the CD320 inhibiting composition is a pharmaceutical composition.


The methods described herein also include administration of one or multiple LRP2 inhibiting compositions and/or one or multiple CD320 inhibiting compositions, e.g., one or more siRNAs targeting a CD320 gene and/or one or more siRNAs targeting an LRP2 gene. It is understood that such compositions could be chemically modified in a variety of ways and that such modifications need not be identical in compositional mixtures. In some embodiments, the LRP2 inhibiting composition and/or the CD320 inhibiting composition is a pharmaceutical composition.


The pharmaceutical compositions of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical, pulmonary, e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal, intranasal, epidermal and transdermal, oral or parenteral. Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial, e.g., intraparenchymal, intrathecal or intraventricular, administration.


The compositions can be delivered in a manner to target a particular tissue, such as the lung cells or breast cells or brain cells or bladder cells or uterine cells or cervix cells or prostate cells. Pharmaceutical compositions can be delivered by injection directly into the brain. The injection can be by stereotactic injection into a particular region of the brain (e.g., the substantia nigra, cortex, hippocampus, striatum, or globus pallidus), or the dsRNA can be delivered into multiple regions of the central nervous system (e.g., into multiple regions of the brain, and/or into the spinal cord). The dsRNA can also be delivered into diffuse regions of the brain (e.g., diffuse delivery to the cortex of the brain). In general siRNAs are administered 1) by intratumoral injection, 2) by systemic injection, 3) by slow release from an implanted polymer. Other tissue specificity could be achieved by antibody or small molecule conjugation, or by a tissue-specific delivery device (e.g., a catheter can be used to deliver to the bladder).


In one embodiment, an RNAi targeting either LRP2 or the CD320 can be delivered by way of a cannula or other delivery device having one end implanted in a tissue. The cannula can be connected to a reservoir of the RNAi composition. The flow or delivery can be mediated by a pump, e.g., an osmotic pump or minipump. In one embodiment, a pump and reservoir are implanted in an area distant from the tissue, e.g., in the abdomen, and delivery is affected by a conduit leading from the pump or reservoir to the site of release.


Accordingly, in some embodiments, the pharmaceutical compositions described herein comprise one or more pharmaceutically acceptable excipients. The pharmaceutical compositions described herein are formulated for administration to a subject.


As used herein, a pharmaceutical composition or medicament includes a pharmacologically effective amount of at least one of the described RNAi agents and one or more pharmaceutically acceptable excipients. Pharmaceutically acceptable excipients (excipients) are substances other than the Active Pharmaceutical Ingredient (API, therapeutic product, e.g., CD320 RNAi agent or LRP2 RNAi agent) that are intentionally included in the drug delivery system. Excipients do not exert or are not intended to exert a therapeutic effect at the intended dosage. Excipients can act to a) aid in processing of the drug delivery system during manufacture, b) protect, support, or enhance stability, bioavailability or patient acceptability of the API, c) assist in product identification, and/or d) enhance any other attribute of the overall safety, effectiveness, of delivery of the API during storage or use. A pharmaceutically acceptable excipient may or may not be an inert substance.


Excipients include, but are not limited to: absorption enhancers, anti-adherents, anti-foaming agents, anti-oxidants, binders, buffering agents, carriers, coating agents, colors, delivery enhancers, delivery polymers, dextran, dextrose, diluents, disintegrants, emulsifiers, extenders, fillers, flavors, glidants, humectants, lubricants, oils, polymers, preservatives, saline, salts, solvents, sugars, suspending agents, sustained release matrices, sweeteners, thickening agents, tonicity agents, vehicles, water-repelling agents, and wetting agents.


Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor.RTM. ELTM (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS). The composition, understood to include formulations and drug delivery systems, should be stable under the conditions of manufacture and storage and should be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as mannitol, sorbitol, and sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.


Sterile injectable solutions can be prepared by incorporating the active compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filter sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle, which contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, methods of preparation include vacuum drying and freeze-drying which yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.


Formulations suitable for intra-articular administration can be in the form of a sterile aqueous preparation of the drug that can be in microcrystalline form, for example, in the form of an aqueous microcrystalline suspension. Liposomal formulations or biodegradable polymer systems can also be used to present the drug for both intra-articular and ophthalmic administration.


The active compounds can be prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. Liposomal suspensions can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811.


Dosage and Timing


The skilled artisan will appreciate that certain factors may influence the dosage and timing required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present. Moreover, treatment of a subject with a therapeutically effective amount of a composition can include a single treatment or a series of treatments. Estimates of effective dosages and in vivo half-lives for the LRP2 inhibiting composition and or the CD320-inhibiting compositions encompassed by the invention can be made using conventional methodologies or on the basis of in vivo testing using an appropriate animal model, as described elsewhere herein.


In general, a suitable dose of a pharmaceutical composition of the LRP2 inhibiting composition and/or the CD320-inhibiting composition will be in the range of 0.01 to 300.0 milligrams per kilogram body weight of the recipient per day, generally in the range of 1 to 50 mg per kilogram body weight per day.


For example, the LRP2 inhibiting composition and/or the CD320-inhibiting composition can be an siRNA composition of one or more siRNAs, and can be administered at, 0.01 mg/kg, 0.05 mg/kg, 0.2 mg/kg, 0.3 mg/kg, 0.4 mg/kg, 0.5 mg/kg, 0.6 mg/kg, 0.7 mg/kg, 0.8 mg/kg, 0.9 mg/kg, 1 mg/kg, 1.1 mg/kg, 1.2 mg/kg, 1.3 mg/kg, 1.4 mg/kg, 1.5 mg/kg, 1.628 mg/kg, 2 mg/kg, 3 mg/kg, 5.0 mg/kg, 10 mg/kg, 20 mg/kg, 30 mg/kg, 40 mg/kg, 50 mg/kg, 100 mg/kg, 200 mg/kg, 400 mg/kg per single dose. In another embodiment, the dosage is between 0.15 mg/kg and 0.3 mg/kg. For example, the LRP2 and/or the CD320-inhibiting composition can be administered at a dose of 0.15 mg/kg, 0.2 mg/kg, 0.25 mg/kg, or 0.3 mg/kg. In an embodiment, the LRP2 and/or the CD320-inhibiting composition is administered at a dose of 0.3 mg/kg.


The pharmaceutical composition may be administered once daily, or once or twice every 5, 10, 15, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 days. The dosage unit can be compounded for delivery over several days, e.g., using a conventional sustained release formulation which provides sustained release of the LRP2 inhibiting composition and/or the CD320-inhibiting composition over a several day period. Sustained release formulations are well known in the art and are particularly useful for delivery of agents at a particular site, such as could be used with the agents of the present invention.


In an embodiment, the LRP2-inhibiting composition and/or the CD320-inhibiting composition is dependent upon the tumor cell line, and the dosage is 0.3 mg/kg, and wherein the dose is administered once every 21 days. In another embodiment, the effective amount is 0.3 mg/kg and the effective amount is administered once every 21 days via a 70 minute infusion of 1 mL/min for 15 minutes followed by 3 mL/min for 55 minutes. In another embodiment, the effective amount is 0.3 mg/kg and the effective amount is administered at two doses every 21-28 days via a 60 minute infusion of 3.3 mL/min, or via a 70 minute infusion of 1.1 mL/min for 15 minutes followed by 3.3 mL/min for 55 minutes


A dosage of a LRP2-inhibiting composition and/or the CD320-inhibiting composition can be adjusted for treatment


A LRP2-inhibiting composition and/or the CD320-inhibiting composition can be administered in combination with other known agents effective in treatment of pathological processes mediated by target gene expression.


In another embodiment, the pharmaceutical composition is formulated for administration according to a dosage regimen described herein, e.g., not more than once every four weeks, not more than once every three weeks, not more than once every two weeks, or not more than once every week. In another embodiment, the administration of the pharmaceutical composition can be maintained for a month or longer, e.g., one, two, three, or six months, or one year or longer.


In embodiments of the pharmaceutical compositions described herein, the RNAi (e.g., dsRNA) is administered with a buffer solution. In embodiments, the buffer solution comprises acetate, citrate, prolamine, carbonate, or phosphate or any combination thereof. In embodiments, the buffer solution is phosphate buffered saline (PBS).


In embodiments of the pharmaceutical compositions described herein, the composition is administered intravenously.


In embodiments of the pharmaceutical compositions described herein, the composition is administered subcutaneously.


In certain embodiments, a pharmaceutical composition, e.g., a composition described herein, includes a lipid formulation. In embodiments, the composition is administered intravenously.


In some embodiments, a pharmaceutical composition, e.g., a composition described herein, includes a cationic polyamine formulation or nanoparticle (e.g., JetPEI). In some embodiments, the composition is administered intravenously.


In another embodiment, the pharmaceutical composition is formulated for administration according to a dosage regimen described herein, e.g., not more than once every four weeks, not more than once every three weeks, not more than once every two weeks, or not more than once every week. In another embodiment, the administration of the pharmaceutical composition can be maintained for a month or longer, e.g., one, two, three, or six months, or one year or longer.


In another embodiment, a composition containing an RNAi agent featured in the invention, e.g., a dsRNA targeting LRP2 or CD320, is administered with a non-RNAi therapeutic agent, such as an agent known to treat a cancer such as lung cancer. In another embodiment, a composition containing an RNAi agent featured in the invention, e.g., a dsRNA targeting LRP2 and/or CD320, is administered along with a non-RNAi therapeutic regimen, such as radiation, chemotherapy, immunotherapy, photodynamic therapy or a combination thereof.


In an aspect provided herein is a method of inhibiting LRP2 and/or CD320 expression in a cell, the method comprising: (a) introducing into the cell an RNAi agent (e.g., a dsRNA) described herein and (b) maintaining the cell of step (a) fora time sufficient to obtain degradation of the mRNA transcript of an LRP2 gene and/or CD320 gene, thereby inhibiting expression of the LRP2 gene and/or CD320 gene in the cell.


In an aspect provided herein is a method for reducing or inhibiting the expression of LRP2 gene and/or CD320 genes in a cell. The method includes: (a) introducing into the cell one or more complimentary double-stranded ribonucleic acid (dsRNA) molecules, in which one sequence is designated the sense strand and the other sequence the anti-sense strand, and wherein the anti-sense strand has significant complementarity to a portion of mRNA encoding for LRP2 or CD320. The complimentary region is 15-30 nucleotides in length, and generally 19-24 nucleotides in length, and the dsRNA, upon entering a cell expressing LRP2 and/or CD320, inhibits the expression of the LRP2 protein and/or CD320 protein by at least 10%, e.g., at least 20%, at least 30%, at least 40% or more; (b) single or repeated treatment of the cell with dsRNAs, as described in part (a), so as to maintain the inhibition of LRP2 and/or CD320 protein expression over a desired period of time by at least 10%, e.g., at least 20%, at least 30%, at least 40% or more.


In embodiments of the foregoing methods of inhibiting LRP2 and/or CD320 expression in a cell, the cell is treated ex vivo, in vitro, or in vivo. In embodiments, the cell is a melanoma, glioblastoma, lung carcinoma, triple negative breast carcinoma, renal carcinoma, pancreatic carcinoma, hepatocellular carcinoma, ovarian carcinoma and prostate carcinoma.


In some embodiments, the cell is present in a subject in need of treatment, prevention and/or management of a CD320-associated disease or a LRP2-associated disease.


In embodiments, the expression of LRP2 and/or CD320 is inhibited by at least 30%.


In embodiments, the RNAi (e.g., dsRNA) has an IC50 in the range of 0.01-50 nM.


In embodiments, the RNAi (e.g., dsRNA) has an IC50 in the range of 0.01-1 nM.


In certain embodiments, the cell is a mammalian cell (e.g., a human, non-human primate, or rodent cell).


In one embodiment, the cell is treated ex vivo, in vitro, or in vivo (e.g., the cell is present in a subject (e.g., a patient in need of treatment, prevention and/or management of a disorder related to LRP2 and/or CD320 expression).


In one embodiment, the subject is a mammal (e.g., a human) at risk, or diagnosed with a proliferation disorder.


In embodiments, the RNAi (e.g., dsRNA) is formulated as an lipid nanoparticle (LNP) polyplex (polyamine) formulation.


In embodiments, RNAi (e.g., dsRNA) is administered at a dose of 0.05001-500.01 mg/kg.


In embodiments, the RNAi (e.g., dsRNA) is administered at a concentration of 0.01 mg/kg-50.1 mg/kg bodyweight of the subject.


In embodiments, the RNAi (e.g., dsRNA) is formulated as an LNP formulation and is administered at a dose of 0.050.1-50.5 mg/kg.


In embodiments, the RNAi (e.g., dsRNA) has an IC50 in the range of 0.01-10 nM.


In embodiments, the RNAi (e.g., dsRNA) or composition comprising the RNAi is administered according to a dosing regimen. In embodiments, the RNAi (e.g., dsRNA) or composition comprising the RNAi is administered as a single dose or at multiple doses, e.g., according to a dosing regimen.


The term “sample,” as used herein, includes a collection of fluids, cells, or tissues isolated from a subject, as well as fluids, cells, or tissues present within a subject. Examples of biological fluids include blood, serum and serosal fluids, plasma, cerebrospinal fluid, ocular fluids, lymph, urine, saliva, and the like. Tissue samples may include samples from tissues, organs or localized regions. For example, samples may be derived from particular organs, parts of organs, or fluids or cells within those organs. In certain embodiments, samples may be derived from a tumor. In preferred embodiments, a “sample derived from a subject” refers to blood or plasma drawn from the subject. In further embodiments, a “sample derived from a subject” refers to tissue biopsy derived from the subject.


In one embodiment, an RNAi (e.g., a dsRNA) featured herein includes a first sequence of a dsRNA that is selected from the group consisting of the sense sequences of Table 1 and a second sequence that is selected from the group consisting of the corresponding antisense sequences of Table 1. It is understood that the suffix A (e.g., OSC17A) represents the antisense strand whereas the suffix S (e.g., OSC17S) represents the sense strand. In those instances when we refer to an siRNA with no suffix (e.g., OSC17), we mean that to indicate the dsRNA comprised of the antisense and sense strands corresponding to that number (e.g., OSC17A paired with OSC17S).


In some embodiments the RNAi is from about 15 to about 25 nucleotides in length, and in other embodiments the RNAi is from about 25 to about 30 nucleotides in length. An RNAi targeting CD320, upon contact with a cell expressing CD320, inhibits the expression of a CD320 gene by at least 10%, at least 20%, at least 25%, at least 30%, at least 35% or at least 40% or more, such as when assayed by a method as described herein. In one embodiment, the RNAi targeting CD320 is formulated in a stable nucleic acid lipid particle (SNALP).


In some embodiments the RNAi is from about 15 to about 25 nucleotides in length, and in other embodiments the RNAi is from about 25 to about 30 nucleotides in length. An RNAi targeting LRP2, upon contact with a cell expressing LRP2, inhibits the expression of a LRP2 gene by at least 10%, at least 20%, at least 25%, at least 30%, at least 35% or at least 40% or more, such as when assayed by a method as described herein. In one embodiment, the RNAi targeting LRP2 is formulated in a stable nucleic acid lipid particle (SNALP).


In some embodiments the RNAi is from about 15 to about 25 nucleotides in length, and in other embodiments the RNAi is from about 25 to about 30 nucleotides in length. An RNAi targeting CD320, upon contact with a cell expressing CD320, inhibits the expression of a CD320 gene by at least 10%, at least 20%, at least 25%, at least 30%, at least 35% or at least 40% or more, such as when assayed by a method as described herein. In one embodiment, the RNAi targeting CD320 is formulated as a complex, which may exist as a nanoparticle, with a cationic polyamine.


In some embodiments the RNAi is from about 15 to about 25 nucleotides in length, and in other embodiments the RNAi is from about 25 to about 30 nucleotides in length. An RNAi targeting LRP2, upon contact with a cell expressing LRP2, inhibits the expression of a LRP2 gene by at least 10%, at least 20%, at least 25%, at least 30%, at least 35% or at least 40% or more, such as when assayed by a method as described herein. In one embodiment, the RNAi targeting LRP2 is formulated as a complex, which may exist as a nanoparticle, with a cationic polyamine.


Referring now to Table 1—DNA sequences are illustrated, which are subsequently transcribed into shRNA, which hence targets the CD320 or LRP2 mRNA for destruction in the cell. shRNA sequences used in lentiviral vectors illustrates the sequences that were used to target the CD320 sequence coding for the CD320 protein and the LRP2 sequence coding for the LRP2 protein. The Each vector that carried a shRNA coding sequence also contained a unique drug resistance gene which would allow for selecting those cells that had taken up the shRNA as those cells that had not taken up the shRNA having the unique drug resistance gene would not survive. On day 2, drug selection was started. On day 3, the cells were harvested and plated in a new dish. Only the cells with a drug resistance gene, i.e., those cells that had taken up shRNA virus particles would survive this re-plating procedure. From day 4 on, each culture was closely observed for cell growth. The cells that were infected with the irrelevant control shRNA kept on growing as expected (since the shRNA was essentially a non-functional shRNA)—data not shown. The results for the cell lines that took up the CD320+LRP2 shRNAs are shown in Table 1.













TABLE 1








Anti-Sense 
Location


Name
Target
Sense Sequence
Sequence
in DNA







shScramble
non-targeting 
CCTAAGGTTAAGTC
CGAGGGCGACTTAAC
N/A



control
GCCCTCG(SEQ ID
CTTAGG(SEQ ID  





NO. 941)
NO. 942)






shCD320- 
CD320 
CCCTCAGAGACCTG
AAGAGCTCAGGTCTC
1006-


#27
(NM_016579.3)
AGCTCTT(SEQ ID
TGAGGG(SEQ ID  
1026




NO. 943)
NO. 944)






shLRP2- 
LRP2 
CCTGTAATAAACAC
AAGAGTAGTGTTTAT
2800-


#89
(NM_004525.2)
TACTCTT(SEQ ID
TACAGG(SEQ ID
2820




NO. 945)
NO. 946)










The preliminary studies show that cancer cells are selectively killed by CD320 and LRP2 knockdown, while normal cells remain unaffected (Table 2).


Table 2 shows the effect of simultaneous knockdown of CD320 and LRP2 on cell viability.











TABLE 2









Outcome of CD320/LRP2



knockdown










Cell arrest/death
Alive














Cancer (Lung)
HCC15





H157




H358




H1999



Non-cancer
Normal fibroblast





LDLR mutant fibroblast











Additional cancer cell lines were also treated with the compounds described herein to determine whether cancer cell lines were more susceptible to growth inhibition and toxicity as compared to non-cancer cells of the same origin. Cell lines from skin, prostate, and brain cancers were screened similarly to the experimental outline in FIG. 1. Table 3 summarizes the effects of simultaneous knockdown of CD320 and LRP2 in cancer and normal cells.














TABLE 3









shCD320 +



Cell
shSCR
shCD320
shLRP2
shLRP2
Comments







Normal cells







GM05659
+++
+++
+++
+++
no effect of knockdown


GM00701
+++
++
+++
+++
cells grow very slow; hard to determine







if any affect of knockdown


SAEC
pending


Lung cells


HCC15
+++
+
+
+
cells strongly affected by knockdown


H157
+++
+
++
+
senescent phenotype


H358
+++
++
++
++
morphology changes; cells rounded


H1993
+++
++
++
+
cells rounded; morphology change


Melanoma Cells


MDA-MB-4353
+++
++
+
+
morphology change; cells strongly affected







by double knockdown


Prostate cells


LncAP
+++
++
++
+
cells rounded; morphology change


PC3
+++
+++
++
+++
cells minimally to not affected by knockdown


DU-145
+++
++
+
++
cells modestly affected by knockdown


Glioblastoma


A172
+++
+
+
0
cells strongly affected by knockdown


U251MG
+++
+
++
0
cells strongly affected by knockdown


U343
+++
+++
++
+++
cells modestly affected by LRP2 knockdown


T98G
+++
+++
++
++
cells slightly affected by knockdown





+++ cells unaffected compared to shSCR (control)


++ cells modestly affected compared to shSCR (control)


+ cells significantly affected compared to shSCR (control)


0 vast majority of cells killed compared to shSCR (control)






The screening results showed that lung, prostate, skin, and brain cancer cell lines were growth-inhibited or killed by the simultaneous knockdown (“double knockdown”) of CD320 and LRP2, while non-cancerous cells were unaffected.


Referring now to FIG. 2, representative pictures of the cells were taken to record their phenotypes after the double knockdown of CD320 and LRP2 and to illustrate the sensitivity of cancer cell lines to knockdown of the expression of CD320 and LRP2 proteins.


Normal cells (GM05659 fibroblasts) or cancer cells were infected with lentiviruses expressing shRNAs to control sequences or to shCD320 and shLRP2 as described in FIG. 1. The cells were grown as described in FIG. 1. On the ninth day after transfection with the lentiviruses, pictures of the cells were taken. The solid line ovals indicate healthy growth of normal fibroblast infected with shRNAs to CD320 and LRP2. The broken line ovals indicate unhealthy dying cells of cancer cell lines infected with shRNAs to CD320 and LRP2.


These results support use of the compounds as therapeutics based upon decreasing expression of CD320 and LRP2 protein preferentially resulting in detrimental effects in cancer cells as compared to non-cancer cells. The original experiments were conducted using shRNAs delivered by lentiviral vectors. Short inhibitory RNAs (siRNAs), having a sequence complimentary to a portion of the CD320 protein and/or the LRP2 protein were designed. The siRNAs can be chemically modified to increase their stability and potency and reduce their immunogenicity, and multiple platforms exist for their delivery in clinical applications.


siRNA sequences that efficiently knock down the protein levels of LRP2 and/or CD320 were designed and identified. Table 4 is a list of siRNA sequences complementary to mRNA for CD320 or LRP2 that were tested for their ability to knock down CD320 or LRP2 protein, respectively (see FIG. 3, FIG. 4, FIG. 5, FIG. 12, and FIG. 15).














TABLE 4









Nucleo-







tide




Passenger 


start 



ID
Sequence
Target
Size
site
Location







OSS1
CCUAAGGUU
none
21
N/A
N/A



AAGUCGCCC







UCG 







(SEQ ID 







NO. 947)









OSS2
UGGUUUACA
none
19
N/A
N/A



UGUUGUGUG







A (SEQ ID 







NO. 948)









OSL231
GGGCUCUAG
LRP2
25
12537
CDS



GUUUGGUGC







UAUCAAA 







(SEQ ID 







NO. 949)
NM_004525.2








OSL245
GGACUGAUA
LRP2
25
12995
CDS



GGAGAGUCA







UUGCAAA 







(SEQ ID 







NO. 950)
NM_004525.2








OSL47
CCUGUAAUA
LRP2
21
 2800
CDS



AACACUACU







CUU 







(SEQ ID 







NO. 951)
NM_004525.2








OSL104
CCUUCUAUG
LRP2
21
 5677
CDS



AACCUGGCC







UUA







(SEQ ID 







NO. 952)
NM_004525.2








OSL90
GUGAUUUGA
LRP2
19
 5126
CDS



UUAUACGGC







A (SEQ ID 







NO. 953)
NM_004525.2








OSL119
CCUCAAAUG
LRP2
19
 6266
CDS



GCUGUAGCA







A (SEQ ID 







NO. 954)
NM_004525.2








OSC17
GAACUGACA
CD320
25
  422
CDS



AGAAACUGC







GCAACUG







(SEQ ID 







NO. 955)
NM_016579.3








OSC47
CCCUCAGAG
CD320
21
 1006
3′-UTR



ACCUGAGCU







CUU







(SEQ ID 







NO. 956)
NM_016579.3









The list of all potential siRNA sequences is quite large. We have identified 340 potential siRNA sequences to LRP2 and 59 potential siRNA sequences to CD320. (See Table 5 and Table 6 for the complete list and Table 5A and Table 6A identify the target position and sequence that is complementary for each antisense sequence identified). In addition, chemical modifications can be made to these siRNA sequences to improve their stability and reduce their off-target effects. siRNA molecules are vulnerable to metabolic degradation, for example by RNase or DNase enzymes. Chemical modification of siRNA molecules by incorporation of one or more unnatural, that is, manmade, nucleotides within the sequence can render siRNAs resistant to such metabolic degradation and increase their biological half-life in the cell or in plasma. Moreover, the inclusion of manmade nucleotides at strategic locations within the siRNA sequence can decrease the immunogenicity of the siRNA and improve the selectivity for the guide strand over the passenger strand. Modified siRNA molecules may incorporate manmade nucleotides of a single type or may include multiple manmade nucleotides of different types. Manmade nucleotides may include, but are not limited to, those which contain chemical modifications to the ribose moiety or to the phosphate moieties (FIG. 19 and Table 7). Examples of manmade nucleotides include, but are not limited to, the structures shown in the Table 7. Moreover, modification of multiple structural elements may be combined. In addition, modification may be made to the nucleobase B, which, in addition to the natural RNA nucleobases (G, C, A, U), may include unnatural bases, such as those containing a sulfur atom (e.g., thiouracil).









TABLE 7







Nucleotide modifications corresponding to FIG. 19A



















B


Designationa
Y
X
Z
R
R′
(nucleobase)





[2fN]
O
O
O
F
H
G, C, A, U,








other


2′-FANA
O
O
O
H
F
G, C, A, U,








other


[mN]
O
O
O
OMe
H
G, C, A, U,








other


2′-MOE
O
O
O
CH2CH2OMe
H
G, C, A, U,








other


2′-EA
O
O
O
CH2CH2NH2
H
G, C, A, U,








other


2′-DMEA
O
O
O
CH2CH2NMe2
H
G, C, A, U,








other


2′-DMAP
O
O
O
CH2CH2CH2NMe2
H
G, C, A, U,








other


* as in N1*N2
O
S
O
OH
H
G, C, A, U,








other


** as in N1**N2
S
S
O
OH
H
G, C, A, U,








other


2′-deoxy
O
O
O
H
H
G, C, A, U,








other


4′-S
O
O
S
H
H
G, C, A, U,








other


F-SRNA
O
O
S
F
H
G, C, A, U,








other


Me-SRNA
O
O
S
OMe
H
G, C, A, U,








other


4′-S-FANA
O
O
S
H
F
G, C, A, U,








other






aN designates an arbitrary ribonucleotide or deoxyribonucleotide or analogs thereof.








In some embodiments, chemical modification is made to the phosphodiester group which covalently connects two nucleotides, such that, for example, one or two oxygen atoms in that group are substituted with sulfur atoms, as indicated by a single or double asterisk between two nucleotides to represent the replacement of one or two oxygen atoms with sulfur in the phosphodiester (Table 7 and FIG. 19A). In some embodiments, the siRNA sequences may include other manmade nucleotides wherein further structural modifications have been made to the ribose moiety, such as the addition of bridging atoms that covalently link carbons 2′ and 5′ of the ribose moiety (FIG. 19B-C) or positions 1′ and 2′ of the ribose moiety (FIG. 19D), or alternatively, changes to the size of the sugar ring in a given nucleotide, for example, deletion of the bond between carbons 2′ and 3′ of the ribose moiety (FIG. 19E), or increasing the size of the sugar ring from five to six atoms (FIG. 19F-G).









TABLE 5







CD320










OS ID
Antisense Strand (5′ TO 3′) 
OSID
Sense Strand (5′ TO 3′) 





OSC1A
UCUUAUCCCUGCGCACGCGCA[dT][dT] 
OSC1S
UGCGCGUGCGCAGGGAUAAGA[dT][dT]



(SEQ ID NO 1)

(SEQ ID NO: 94)





OSC2A
UCUCUUAUCCCUGCGCACGCG[dT][dT](SEQ 
OSC2S
CGCGUGCGCAGGGAUAAGAGA[dT][dT]



ID NO 2)

(SEQ ID NO: 95)





OSC3A
AUGCUGUCCCCACAGCGGCGC[dT][dT](SEQ 
OSC3S
GCGCCGCUGUGGGGACAGCAU[dT][dT]



ID NO 3)

(SEQ ID NO: 96)





OSC4A
AUCCAACCGCCGCUCAUGCUG[dT][dT](SEQ 
OSC4S
CAGCAUGAGCGGCGGUUGGAU[dT][dT]



ID NO 4)

(SEQ ID NO: 97)





OSC5A
UGGAAAGCGGGCUCGCGGCGG[dT][dT](SEQ 
OSC5S
CCGCCGCGAGCCCGCUUUCCA[dT][dT]



ID NO 5)

(SEQ ID NO: 98)





OSC6A
AACUUGGUGGGUGGGCACGAG[dT][dT](SEQ 
OSC6S
CUCGUGCCCACCCACCAAGUU[dT][dT]



ID NO 6)

(SEQ ID NO: 99)





OSC7A
UGGAACUUGGUGGGUGGGCAC[dT][dT](SEQ 
OSC7S
GUGCCCACCCACCAAGUUCCA[dT][dT]



ID NO 7)

(SEQ ID NO: 100)





OSC8A
ACUGGAACUUGGUGGGUGGGC[dT][dT](SEQ 
OSC8S
GCCCACCCACCAAGUUCCAGU[dT][dT]



ID NO 8)

(SEQ ID NO: 101)





OSC9A
UAAGCCACUGGUGCGGCACUG[dT][dT](SEQ 
OSC9S
CAGUGCCGCACCAGUGGCUUA[dT][dT]



ID NO 9)

(SEQ ID NO: 102)





OSC10A
ACGCAUAAGCCACUGGUGCGG[dT][dT](SEQ 
OSC10S
CCGCACCAGUGGCUUAUGCGU[dT][dT]



ID NO 10)

(SEQ ID NO: 103)





OSC11A
UCCAAGUCCCUGUCGCAGCGC[dT][dT](SEQ 
OSC11S
GCGCUGCGACAGGGACUUGGA[dT][dT]



ID NO 11)

(SEQ ID NO: 104)





OSC12A
UCCUCAUCGCUGCCAUCGCUG[dT][dT](SEQ 
OSC12S
CAGCGAUGGCAGCGAUGAGGA[dT][dT]



ID NO 12)

(SEQ ID NO: 105)





OSC13A
UCACUGACGCCGGUGCAGGGG[dT][dT](SEQ 
OSC13S
CCCCUGCACCGGCGUCAGUGA[dT][dT]



ID NO 13)

(SEQ ID NO: 106)





OSC14A
UUGUCAGUUCCCCCAGAGCAG[dT][dT](SEQ 
OSC14S
CUGCUCUGGGGGAACUGACAA[dT][dT]



ID NO 14)

(SEQ ID NO: 107)





OSC15A
UUCUUGUCAGUUCCCCCAGAG[dT][dT](SEQ 
OSC15S
CUCUGGGGGAACUGACAAGAA[dT][dT]



ID NO 15)

(SEQ ID NO: 108)





OSC16A
AGUUUCUUGUCAGUUCCCCCA[dT][dT](SEQ 
OSC16S
UGGGGGAACUGACAAGAAACU[dT][dT]



ID NO 16)

(SEQ ID NO: 109)





OSC17A-
CAGUUGCGCAGUUUCUUGUCAGUUC[dT][dT]
OSC17S-
GAACUGACAAGAAACUGCGCAACUG


1
(SEQ ID NO 17)
1
[dT][dT](SEQ ID NO: 110)





OSC17A-
CAGUUGCGCAGUUUCUUGUCAGUUC[dT]*[dT]
OSC17S-
GAACUGACAAGAAACUGCGCAACUG[dT]*


2
(SEQ ID NO 18)
2
[dT](SEQ ID NO: 111)





OSC17A-
[mC][mA][mG][mU][mU][mG][mC][mG][mC]
OSC17S-
[mG][mA][mA][mC][mU][mG][mA][mC]


3
[mA][mG][mU][mU][mU][mC][mU][mU][mG] 
3
[mA][mA][mG][mA][mA][mA][mC][mU][mG] 



[mU][mC][mA][mG][mU][mU][mC][dT]*[dT]]

[mC][mG][mC][mA][mA][mC][mU][mG]



(SEQ ID NO 19) 

[dT]*[dT](SEQ ID NO: 112) 





OSC17A-
[mC][mA][mG][mU][mU][mG][mC][mG][mC]
OSC17S-
[mG][mA][mA][mC][mU][mG][mA][mC]


4
[mA][mG][mU][mU][mU][mC][mU][mU][mG]
4
[mA][mA][mG][mA][mA][mA][mC][mU][mG]



[mU][mC][mA][mG][mU][mU][mC][dT]*[dT]]

[mC][mG][mC][mA][mA][mC][mU][mG]



(SEQ ID NO 20) 

(SEQ ID NO: 113)





OSC17A-
[mC][mA][mG][mU][mU][mG][mC][mG][mC]
OSC17S-
[mG][mA][mA][mC][mU][mG][mA][mC]


5
[mA][mG][mU][mU][mU][mC][mU][mU][mG] 
5
[mA][mA][mG][mA][mA][mA][mC][mU][mG]



[mU][mC][mA][mG][mU][mU][mC]](SEQ ID 

[mC][mG][mC][mA][mA][mC][mU][mG]



NO 21)

[dT]*[dT](SEQ ID NO: 114) 





OSC17A-
[mC][mA][mG][mU][mU][mG][mC][mG][mC]
OSC17S-
[mG][mA][mA][mC][mU][mG][mA][mC]



[mA][mG][mU][mU][mU][mC][mU][mU][mG] 
6
[mA][mA][mG][mA][mA][mA][mC][mU][mG]



[mU][mC][mA][mG][mU][mU][mC]](SEQ ID

[mC][mG][mC][mA][mA][mC][mU][mG]


6
NO 22)

(SEQ ID NO: 115)





OSC17A-
[mC][mA][mG][mU][mU][mG][mC][mG][mC]
OSC17S-
GAACUGACAAGAAACUGCGCAACUG[dT]*[dT]


7
[mA][mG][mU][mU][mU][mC][mU][mU][mG]
7
(SEQ ID NO: 116)



[mU][mC][mA][mG][mU][mU][mC][dT]*[dT]]





(SEQ ID NO 23)







OSC17A-
[mC][2fA][mG][2fU][mU][2fG][mC][2fG][mC]
OSC17S-
[2fG][mA][2fA][mC][2fU][mG][2fA][mC]


8
[2fA][mG][2fU][mU][2fU][mC][2fU][mU]
8
[2fA][mA][2fG][mA][2fA][mA][2fC][mU]



[2fG][mU][2fC][mA][2fG][mU][2fU][mC][dT]*

[2fG][mC][2fG][mC][2fA][mA][2fC][mU]



[dT](SEQ ID NO 24)

[2fG][dT]*[dT](SEQ ID NO: 117)





OSC17A-
[mC][2fA][mG][2fU][mU][2fG][mC][2fG][mC]
OSC17S-
[2fG][mA][2fA][mC][2fU][mG][2fA][mC]


9
[2fA][mG][2fU][mU][2fU][mC][2fU][mU][2fG]
9
[2fA][mA][2fG][mA][2fA][mA][2fC][mU]



[mU][2fC][mA][2fG][mU][2fU][mC](SEQ ID

[2fG][mC][2fG][mC][2fA][mA][2fC][mU]



NO 25)

[2fG][dT]*[dT](SEQ ID NO: 118)





OSC17A-
[mC][2fA][mG][2fU][mU][2fG][mC][2fG][mC]
OSC17S-
[2fG][mA][2fA][mC][2fU][mG][2fA][mC]


10
[2fA][mG][2fU][mU][2fU][mC][2fU][mU][2fG]
10
[2fA][mA][2fG][mA][2fA][mA][2fC][mU]



[mU][2fC][mA][2fG][mU][2fU][mC][dT]*[dT]

[2fG][mC][2fG][mC][2fA][mA][2fC][mU]



(SEQ ID NO 26)

[2fG](SEQ ID NO: 119)





OSC17A-
[mC][2fA][mG][2fU][mU][2fG][mC][2fG][mC]
OSC17S-
[2fG][mA][2fA][mC][2fU][mG][2fA][mC]


11
[2fA][nnG][2fU][mU][2fU][mC][2fU][mU][2fG]
11
[2fA][mA][2fG][mA][2fA][mA][2fC][mU]



[mU][2fC][mA][2fG][mU][2fU][mC](SEQ ID

[2fG][mC][2fG][mC][2fA][mA][2fC][mU]



NO 27)

[2fG](SEQ ID NO: 120)





OSC17A-
[2fC][mA][2fG][mU][2fU][mG][2fC][mG][2fC]
OSC17S-
[mG][2fA][mA][2fC][mU][2fG][mA][2fC]


12
[mA][2fG][mU][2fU][mU][2fC][mU][2fU][mG]
12
[mA][2fA][mG][2fA][mA][2fA][mC][2fU]



[2fU][mC][2fA][mG][2fU][mU][2fC][dT]*[dT]

[mG][2fC][mG][2fC][mA][2fA][mC][2fU]



(SEQ ID NO 28)

[mG][dT]*[dT](SEQ ID NO: 121)





OSC17A-
[2fC][mA][2fG][mU][2fU][mG][2fC][mG][2fC]
OSC17S-
[mG][2fA][mA][2fC][mU][2fG][mA][2fC]


13
[mA][2fG][mU][2fU][mU][2fC][mU][2fU][mG]
13
[mA][2fA][mG][2fA][mA][2fA][mC]



[2fU][mC][2fA][mG][2fU][mU][2fC](SEQ ID

[2fU][mG][2fC][mG][2fC][mA][2fA][mC]



NO 29)

[2fU][mG](SEQ ID NO: 122)





OSC17A-
[mC][2fA][2fG][2fU][2fU][2fG][2fC][2fG]
OSC17S-
[2fU][mG][2fA][mC][2fA][mA][2fG][mA]


14
[2fC][2fA][2fG][2fU][2fU][2fU][2fC][2fU]
14
[2fA][mA][2fC][mU][2fG][mC][2fG][mC]



[2fU][2fG][2fU][2fC][2fA][2fG][2fU][2fU]

[2fA][mA][2fC][mU][2fG][dT]*[dT](SEQ 



[2fC][dT]*[dT](SEQ ID NO 30)

ID NO: 123)





OSC17A-
[mC][2fA][2fG][2fU][2fU][2fG][2fC][2fG]
OSC17S-
[2fG][mA][2fA][mA][2fC][mU][2fG][mC]


15
[2fC][2fA][2fG][2fU][2fU][2fU][2fC][2fU]
15
[2fG][mC][2fA][mA][2fC][mU][2fG][dT]*



[2fU][2fG][2fU][2fC][2fA][2fG][2fU][2fU]

[dT](SEQ ID NO: 124)



[2fC][dT]*[dT](SEQ ID NO 31)







OSC17A-
[mC][2fA][mG][2fU][mU][2fG][mC][2fG][mC]
OSC17S-
[2fG][mA][2fA][mA][2fC][mU][2fG][mC]


16
[2fA][G][2fU][mU][2fU][mC][2fU][mU][2fG]
16
[2fG][mC][2fA][mA][2fC][mU][2fG][dT]*



[mU][2fC][mA][2fG][mU][2fU][mC][dT]*[dT]

[dT](SEQ ID NO: 125)



(SEQ ID NO 32)







OSC17A-
[mC][2fA][mG][2fU][mU][2fG][mC][2fG][mC]
OSC17S-
[2fG][mA][2fA][mA][2fC][mU][2fG][mC]


17
[2fA][mG][2fU][mU][2fU][mC][2fU][mU][2fG]
17
[2fG][mC][2fA][mA][2fC][mU][2fG](SEQ 



[mU][2fC][mA][2fG][mU](SEQ ID NO 33)

ID NO: 126)





OSC17A-
[mC][2fA][mG][2fU][mU][2fG][mC][2fG][mC]
OSC17S-
[2fG][mA][2fA][mA][2fC][mU][2fG][mC]


18
[2fA][mG][2fU][mU][2fU][mC][2fU][2fU]
18
[2fG][mC][2fA][mA][2fC][mU][2fG](SEQ 



[2fG][2fU][2fC][2fA][2fG][2fU](SEQ ID 

ID NO: 127)



NO 34)







OSC18A
AUGCAGUCAUCGCUCAGCGUG[dT][dT](SEQ 
OSC18S
CACGCUGAGCGAUGACUGCAU[dT][dT]



ID NO 35)

(SEQ ID NO: 128)





OSC19A
AAUGCAGUCAUCGCUCAGCGU[dT][dT](SEQ 
OSC19S
ACGCUGAGCGAUGACUGCAUU[dT][dT]



ID NO 36)

(SEQ ID NO: 129)





OSC20A
UGGAAUGCAGUCAUCGCUCAG[dT][dT](SEQ 
OSC20S
CUGAGCGAUGACUGCAUUCCA[dT][dT]



ID NO 37)

(SEQ ID NO: 130)





OSC21A
AGUGGAAUGCAGUCAUCGCUC[dT][dT](SEQ 
OSC21S
GAGCGAUGACUGCAUUCCACU[dT][dT]



ID NO 38)

(SEQ ID NO: 131)





OSC22A
ACAGUCUGGGUGGCCGUCGCA[dT][dT](SEQ 
OSC22S
UGCGACGGCCACCCAGACUGU[dT][dT]



ID NO 39)

(SEQ ID NO: 132)





OSC23A
AUUGGUUCCACAGCCGAGCUC[dT][dT](SEQ 
OSC23S
GAGCUCGGCUGUGGAACCAAU[dT][dT]



ID NO 40)

(SEQ ID NO: 133)





OSC24A
UCUCAUUGGUUCCACAGCCGA[dT][dT](SEQ 
OSC24S
UCGGCUGUGGAACCAAUGAGA[dT][dT]



ID NO 41)

(SEQ ID NO: 134)





OSC25A
AUCUCAUUGGUUCCACAGCCG[dT][dT](SEQ 
OSC25S
CGGCUGUGGAACCAAUGAGAU[dT][dT]



ID NO 42)

(SEQ ID NO: 135)





OSC26A
AGGAUCUCAUUGGUUCCACAG[dT][dT](SEQ 
OSC26S
CUGUGGAACCAAUGAGAUCCU[dT][dT]



ID NO 43)

(SEQ ID NO: 136)





OSC27A
UGAGAGAGGUGACACUCUCCA[dT][dT](SEQ 
OSC27S
UGGAGAGUGUCACCUCUCUCA[dT][dT]



ID NO 44)

(SEQ ID NO: 137)





OSC28A
UGGUUGUGGCAUUCCUGAGAG[dT][dT]
OSC28S
CUCUCAGGAAUGCCACAACCA[dT][dT]



(SEQ ID NO 45)

(SEQ ID NO: 138)





OSC29A
UGGCAUUCCCGACAGAGGGGA[dT][dT](SEQ 
OSC29S
UCCCCUCUGUCGGGAAUGCCA[dT][dT]



ID NO 46)

(SEQ ID NO: 139)





OSC30A
AGGAUGUGGCAUUCCCGACAG[dT][dT](SEQ 
OSC30S
CUGUCGGGAAUGCCACAUCCU[dT][dT]



ID NO 47)

(SEQ ID NO: 140)





OSC31A
UUCCAGACUGGUCUCCGGCAG[dT][dT](SEQ 
OSC31S
CUGCCGGAGACCAGUCUGGAA[dT][dT]



ID NO 48)

(SEQ ID NO: 141)





OSC32A
AUAACCCCAUAGGCAGUUGGG[dT][dT](SEQ 
OSC32S
CCCAACUGCCUAUGGGGUUAU[dT][dT]



ID NO 49)

(SEQ ID NO: 142)





OSC33A
UUGCACUGAGCACCGCAGCAG[dT][dT](SEQ 
OSC33S
CUGCUGCGGUGCUCAGUGCAA[dT][dT]



ID NO 50)

(SEQ ID NO: 143)





OSC34A
AAAAGGAGGAGGGUGGCGGUG[dT][dT](SEQ 
OSC34S
CACCGCCACCCUCCUCCUUUU[dT][dT]



ID NO 51)

(SEQ ID NO: 144)





OSC35A
ACAAAAGGAGGAGGGUGGCGG[dT][dT](SEQ 
OSC35S
CCGCCACCCUCCUCCUUUUGU[dT][dT]



ID NO 52)

(SEQ ID NO: 145)





OSC36A
ACCAGUAACCCCAGUGGGCGG[dT][dT](SEQ 
OSC36S
CCGCCCACUGGGGUUACUGGU[dT][dT]



ID NO 53)

(SEQ ID NO: 146)





OSC37A
UUCAUGGCCACCAGUAACCCC[dT][dT](SEQ 
OSC37S
GGGGUUACUGGUGGCCAUGAA[dT][dT]



ID NO 54)

(SEQ ID NO: 147)





OSC38A
ACUCCUUCAUGGCCACCAGUA[dT][dT](SEQ 
OSC38S
UACUGGUGGCCAUGAAGGAGU[dT][dT]



ID NO 55)

(SEQ ID NO: 148)





OSC39A
UUCUGACAGCAGCAGGGACUC[dT][dT](SEQ 
OSC39S
GAGUCCCUGCUGCUGUCAGAA[dT][dT]



ID NO 56)

(SEQ ID NO: 149)





OSC40A
UCUGUUCUGACAGCAGCAGGG[dT][dT](SEQ 
OSC40S
GGCUGCUGCUGUCAGAACAGA[dT][dT]



ID NO 57)

(SEQ ID NO: 150)





OSC41A
UCUUCUGUUCUGACAGCAGCA[dT][dT](SEQ 
OSC41S
UGCUGCUGUCAGAACAGAAGA[dT][dT]



ID NO 58)

(SEQ ID NO: 151)





OSC42A
AGGUCUUCUGUUCUGACAGCA[dT][dT](SEQ 
OSC42S
UGCUGUCAGAACAGAAGACCU[dT][dT]



ID NO 59)

(SEQ ID NO: 152)





OSC43A
UUGUCCUCAGGGCAGCGAGGU[dT][dT](SEQ 
OSC43S
ACCUCGCUGCCCUGAGGACAA[dT][dT]



ID NO 60)

(SEQ ID NO: 153)





OSC44A
AAGUGCUUGUCCUCAGGGCAG[dT][dT](SEQ 
OSC44S
CUGCCCUGAGGACAAGCACUU[dT][dT]



ID NO 61)

(SEQ ID NO: 154)





OSC45A
UACCCAUCCGCAUCACUGCUC[dT][dT](SEQ 
OSC45S
GAGCAGUGAUGCGGAUGGGUA[dT][dT]



ID NO 62)

(SEQ ID NO: 155)





OSC46A
UCUCUGAGGGCUGGUGUGCCC[dT][dT](SEQ 
OSC46S
GGGCACACCAGCCCUCAGAGA[dT][dT]



ID NO 63)

(SEQ ID NO: 156)





OSC47A-
AAGAGCUCAGGUCUCUGAGGG[dT][dT](SEQ 
OSC475-
CCCUCAGAGACCUGAGCUCUU[dT][dT]


1
ID NO 64)
1
(SEQ ID NO: 157)





OSC47A-
AAGAGCUCAGGUCUCUGAGGG[dT]*[dT]
OSC47S-
CCCUCAGAGACCUGAGCUCUU[dT]*[dT]


2
(SEQ ID NO 65)
2
(SEQ ID NO: 158)





OSC47A-
[mA][mA][mG][mA][mG][mC][mU][mC][mA]
OSC47S-
[mC][mC][mC][mU][mC][mA][mG][mA]


3
[mG][mG][mU][mC][mU][mC][mU][mG][mA]
3
[mG][mA][mC][mC][mU][mG][mA][mG]



[mG][mG][mG][dT]*[dT](SEQ ID NO 66)

[mC][mU][mC][mU][mU][dT]*[dT](SEQ ID





NO: 159)





OSC47A-
[mA][mA][mG][mA][mG][mC][mU][mC][mA]
OSC47S-
[mC][mC][mC][mU][mC][mA][mG][mA]


4
[mG][mG][mU][mC][mU][mC][mU][mG][mA]
4
[mG][mA][mC][mC][mU][mG][mA][mG]



[mG][mG][mG][dT]*[dT](SEQ ID NO 67)

[mC][mU][mC][mU][mU](SEQ ID NO: 160)





OSC47A-
[mA][mA][mG][mA][mG][mC][mU][mC][mA]
OSC47S-
[mC][mC][mC][mU][mC][mA][mG][mA]


5
[mG][mG][mU][mC][mU][mC][mU][mG][mA]
5
[mG][mA][mC][mC][mU][mG][mA][mG]



[mG][mG][mG](SEQ ID NO 68)

[mC][mU][mC][mU][mU][dT]*[dT](SEQ ID





NO: 161)





OSC47A-
[mA][mA][mG][mA][mG][mC][mU][mC][mA]
OSC47S-
[mC][mC][mC][mU][mC][mA][mG][mA]


6
[mG][mG][mU][mC][mU][mC][mU][mG][mA]
6
[mG][mA][mC][mC][mU][mG][mA][mG]



[mG][mG][mG](SEQ ID NO 69)

[mC][mU][mC][mU][mU](SEQ ID NO: 162)





OSC47A-
[mA][mA][mG][mA][mG][mC][mU][mC][mA]
OSC47S-
CCCUCAGAGACCUGAGCUCUU[dT]*[dT]


7
[mG][mG][mU][mC][mU][mC][mU][mG][mA]
7
(SEQ ID NO: 163)



[mG][mG][mG][dT]*[dT](SEQ ID NO 70)







OSC47A-
[mA][2fA][mG][2fA][mG][2fC][mU][2fC][mA]
OSC47S-
[2fC][mC][2fC][mU][2fC][mA][2fG][mA]


8
[2fG][mG][2fU][mC][2fU][mC][2fU][mG][2fA]
8
[2fG][mA][2fC][mC][2fU][mG][2fA][mG]



[mG][2fG][mG][dT]*[dT](SEQ ID NO 71)

[2fC][mU][2fC][mU][2fU][dT]*[dT](SEQ ID





NO: 164)





OSC47A-
[mA][2fA][mG][2fA][mG][2fC][mU][2fC][mA]
OSC47S-
[2fC][mC][2fC][mU][2fC][mA][2fG][mA]


9
[2fG][mG][2fU][mC][2fU][mC][2fU][mG][2fA]
9
[2fG][mA][2fC][mC][2fU][mG][2fA][mG]



[mG][2fG][mG](SEQ ID NO 72)

[2fC][mU][2fC][mU][2fU][dT]*[dT](SEQ ID





NO: 165)





OSC47A-
[mA][2fA][mG][2fA][mG][2fC][mU][2fC][mA]
OSC47S-
[2fC][mC][2fC][mU][2fC][mA][2fG][mA]


10
[2fG][mG][2fU][mC][2fU][mC][2fU][mG][2fA]
10
[2fG][mA][2fC][mC][2fU][mG][2fA][mG]



[mG][2fG][mG][dT]*[dT](SEQ ID NO 73)

[2fC][mU][2fC][mU][2fU](SEQ ID NO: 166)





SC47A-
[mA][2fA][mG][2fA][mG][2fC][mU][2fC][mA]
OSC47S-
[2fC][mC][2fC][mU][2fC][mA][2fG]][mA]


11
[2fG][mG][2fU][mC][2fU][mC][2fU][mG][2fA]
11
[2fG[mA][2fC][mC][2fU][mG][2fA][mG]



[mG][2fG][mG](SEQ ID NO 74)

[2fC][mU][2fC][mU][2fU](SEQ ID NO: 167)





OSC47A-
[2fA][mA][2fG][mA][2fG][mC][2fU][mC][2fA]
OSC47S-
[mC][2fC][mC][2fU][mC][2fA][mG][2fA]


12
[mG][2fG][mU][2fC][mU][2fC][mU][2fG][mA]
12
[mG][2fA][mC][2fC][mU][2fG][mA][2fG]



[2fG][mG][2fG][dT]*[dT](SEQ ID NO 75)

[mC][2fU][mC][2fU][mU][dT][dT]*(SEQ ID





NO: 168)





OSC47A-
[2fA][mA][2fG][mA][2fG][mC][2fU][mC][2fA]
OSC47S-
[2fC][mC][2fC][mU][2fC][mA][2fG][mA]


13
[mG][2fG][mU][2fC][mU][2fC][mU][2fG][mA]
13
[2fG][mA][2fC][mC][2fU][mG][2fA][mG]



[2fG][mG][2fG](SEQ ID NO 76)

[2fC][mU][2fC][mU][2fU]-LIG-LINKER(SEQ 





ID NO: 169)





OSC47A-
[mA][2fA][2fG][mA][2fG][mC][2fU][mC][2fA]
OSC47S-
[2fC][mC][2fC][mU][2fC][mA][2fG][mA]


14
[mG][2fG][mU][2fC][mU][2fC][mU][2fG][mA]
14
[2fG][mA][2fC][mC][2fU][mG][2fA][mG]



[2fG][mG][2fG](SEQ ID NO 77)

[2fC][mU][2fC][mU][2fU][dT]*[dT](SEQ 





ID NO: 170)





OSC47A-
[mA][2fA][2fG][mA][2fG][mC][2fU][mC][2fA]
OSC47S-
[2fG][mA][2fG][mA][2fC][mC][2fU][mG]


15
[mG][2fG][mU][2fC][mU][2fC][mU][2fG][mA]
15
[2fA][mG][2fC][mU][2fC][mU][2fU][dT]*



[2fG][mG][2fG][dT]*[dT](SEQ ID NO 78)

[dT](SEQ ID NO: 171)





OSC47A-
[2fA][mA][2fG][mA][2fG][mC][2fU][mC][2fA]
OSC47S-
[2fG][mA][2fG][mA][2fC][mC][2fU][mG]


16
[mG][2fG][mU][2fC][mU][2fC][mU][2fG][mA]
16
[2fA][mG][2fC][mU][2fC][mU][2fU][dT]*



[2fG][mG][2fG][dT]*[dT](SEQ ID NO 79)

[dT](SEQ ID NO: 172)





OSC47A-
[2fA][mA][2fG][mA][2fG][mC][2fU][mC][2fA]
OSC47S-
[2fG][mA][2fG][mA][2fC][mC][2fU][mG]


17
[mG][2fG][mU][2fC][mU][2fC][mU][2fG][mA]
17
[2fA][mG][2fC][mU][2fC][mU][2fU](SEQ 



[2fG][mG][2fG][dT]*[dT](SEQ ID NO 80)

ID NO: 173)





OSC47A-
[2fA][mA][2fG][mA][2fG][mC][2fU][mC][2fA]
OSC47S-
[2fG][mA][2fG][mA][2fC][mC][2fU][mG]


18
[mG][2fG][mU][2fC][mU][2fC][2fU][2fG][2fA]
18
[2fA][mG][2fC][mU][2fC][mU][2fU](SEQ 



[2fG][2fG][2fG](SEQ ID NO 81)

ID NO: 174)





OSC48A
AAGAGCUCAGGUCUCUGAGGG[dT][dT](SEQ 
OSC48S
CCCUCAGAGACCUGAGCUCUU[dT][dT]



ID NO 82)

(SEQ ID NO: 175)





OSC49A
AGAAGAGCUCAGGUCUCUGAG[dT][dT](SEQ 
OSC49S
CUCAGAGACCUGAGCUCUUCU[dT][dT]



ID NO: 83)

(SEQ ID NO: 176)





OSC50A
AUAGGGAGUGUCCAGGGACCC[dT][dT](SEQ 
OSC50S
GGGUCCCUGGACACUCCCUAU[dT][dT]



ID NO: 84)

(SEQ ID NO: 177)





OSC51A
UCCAUAGGGAGUGUCCAGGGA[dT][dT](SEQ
OSC51S
UCCCUGGACACUCCCUAUGGA[dT][dT]



ID NO: 85)

(SEQ ID NO: 178)





OSC52A
AUCUCCAUAGGGAGUGUCCAG[dT][dT](SEQ 
OSC52S
CUGGACACUCCCUAUGGAGAU[dT][dT]



ID NO: 86)

(SEQ ID NO: 179)





OSC53A
UCAGUUCUGGCUGUGGCAGGU[dT][dT](SEQ 
OSC53S
ACCUGCCACAGCCAGAACUGA[dT][dT]



ID NO: 87)

(SEQ ID NO: 180)





OSC54A
UUCUACCCCCUGGGAGCUGCC[dT][dT](SEQ 
OSC54S
GGCAGCUCCCAGGGGGUAGAA[dT][dT]



ID NO: 88)

(SEQ ID NO: 181)





OSC55A
AAGCACAGGGCCGUUCUACCC[dT][dT](SEQ 
OSC55S
GGGUAGAACGGCCCUGUGCUU[dT][dT]



ID NO: 89)

(SEQ ID NO: 182)





OSC56A
UGUCUUAAGCACAGGGCCGUU[dT][dT](SEQ 
OSC56S
AACGGCCCUGUGCUUAAGACA[dT][dT]



ID NO: 90)

(SEQ ID NO: 183)





OSC57A
AGUGUCUUAAGCACAGGGCCG[dT][dT](SEQ 
OSC57S
CGGCCCUGUGCUUAAGACACU[dT][dT]



ID NO: 91)

(SEQ ID NO: 184)





OSC58A
UUUUUUGAGGAUGUGAAGCAA[dT][dT]
OSC58S
UUGCUUCACAUCCUCAAAAAA[dT][dT]



(SEQ ID NO: 92)

(SEQ ID NO: 185)





OSC59A
UUUUUUUGAGGAUGUGAAGCA[dT][dT]
OSC59S
UGCUUCACAUCCUCAAAAAAA[dT][dT]



(SEQ ID NO: 93)

(SEQ ID NO: 186) 
















TABLE 6







LRP2










OS ID
Antisense Strand (5' TO 3')
OS ID
Sense Strand (5' TO 3')





OSL1A
UACUUUGUGAGCAAUCUUGAC[dT][dT](SEQ 
OSL1S 
GUCAAGAUUGCUCACAAAGUA[dT][dT]



ID NO: 187)

(SEQ ID NO: 561)





OSL2A
AUUCACUUGGGAUACACUGAC[dT][dT](SEQ 
OSL2S 
GUCAGUGUAUCCCAAGUGAAU[dT][dT]



ID NO: 188)

(SEQ ID NO: 562)





OSL3A
ACAUGAAAACUCAUUGUGCAA[dT][dT](SEQ 
OSL3S 
UUGCACAAUGAGUUUUCAUGU[dT][dT]



ID NO: 189)

(SEQ ID NO: 563)





OSL4A
UCUUUACAGUCAUCUUCUCCA[dT][dT](SEQ 
OSL4S 
UGGAGAAGAUGACUGUAAAGAUA[dT][dT]



ID NO: 190)

(SEQ ID NO: 564)





OSL5A
UAUCUUUACAGUCAUCUUCUC[dT][dT](SEQ 
OSL5S 
GAGAAGAUGACUGUAAAGAUA[dT][dT]



ID NO: 191)

(SEQ ID NO: 565)





OSL6A
AACAUUUAUGAACAUCAUGAG[dT][dT](SEQ 
OSL6S 
CUCAUGAUGUUCAUAAAUGUU[dT][dT]



ID NO: 192)

(SEQ ID NO: 566)





OSL7A
UCACAAACUUUAUAAAUGGAG[dT][dT](SEQ 
OSL7S 
CUCCAUUUAUAAAGUUUGUGA[dT][dT]



ID NO: 193)

(SEQ ID NO: 567)





OSL8A
AUCACAAACUUUAUAAAUGGA[dT][dT](SEQ 
OSL8S 
UCCAUUUAUAAAGUUUGUGAU[dT][dT]



ID NO: 194)

(SEQ ID NO: 568)





OSL9A
AUACUACAGUAUUUUCCGGUA[dT][dT](SEQ 
OSL9S 
UACCGGAAAAUACUGUAGUAU[dT][dT]



ID NO: 195)

(SEQ ID NO: 569)





OSL10A
UCAUACUACAGUAUUUUCCGG[dT][dT](SEQ 
OSL10S 
CCGGAAAAUACUGUAGUAUGA[dT][dT]



ID NO: 196)

(SEQ ID NO: 570)





OSL11A
ACAAAUUCCCCAUAUCUGGCA[dT][dT](SEQ 
OSL11S 
UGCCAGAUAUGGGGAAUUUGU[dT][dT]



ID NO: 197)

(SEQ ID NO: 571)





OSL12A
AAGAUAUACCCUUCUUCACAG[dT][dT](SEQ 
OSL12S 
CUGUGAAGAAGGGUAUAUCUU[dT][dT]



ID NO: 198)

(SEQ ID NO: 572)





OSL13A
UUAGCUUUGCAAUACUGUCCA[dT][dT](SEQ 
OSL13S
UGGACAGUAUUGCAAAGCUAA[dT][dT]



ID NO: 199)

(SEQ ID NO: 573)





OSL14A
AUCAUUAGCUUUGCAAUACUG[dT][dT](SEQ 
OSL14S 
CAGUAUUGCAAAGCUAAUGAU[dT][dT]



ID NO: 200)

(SEQ ID NO: 574)





OSL15A
AAAGGAAUCAUUAGCUUUGCA[dT][dT](SEQ 
OSL15S 
UGCAAAGCUAAUGAUUCCUUU[dT][dT]



ID NO: 201)

(SEQ ID NO: 575)





OSL16A
AUGAAUAUCACCAAUUAACAA[dT][dT](SEQ 
OSL16S 
UUGUUAAUUGGUGAUAUUCAU[dT][dT]



ID NO: 202)

(SEQ ID NO: 576)





OSL17A
AAAAAACCUUAUUUUGCACGG[dT][dT](SEQ 
OSL17S 
CCGUGCAAAAUAAGGUUUUUU[dT][dT]



ID NO: 203)

(SEQ ID NO: 577)





OSL18A
UGAAAAAACCUUAUUUUGCAC[dT][dT](SEQ 
OSL18S 
GUGCAAAAUAAGGUUUUUUCA[dT][dT]



ID NO: 204)

(SEQ ID NO: 578)





OSL19A
AAUGUCAACUGAAAAAACCUU[dT][dT](SEQ 
OSL19S 
AAGGUUUUUUCAGUUGACAUU[dT][dT]



ID NO: 205)

(SEQ ID NO: 579)





OSL20A
UAAUGUCAACUGAAAAAACCU[dT][dT](SEQ 
OSL20S 
AGGUUUUUUCAGUUGACAUUA[dT][dT]



ID NO: 206)

(SEQ ID NO: 580)





OSL21A
UUAAACCAUUAAUGUCAACUG[dT][dT](SEQ 
OSL21S 
CAGUUGACAUUAAUGGUUUAA[dT][dT]



ID NO: 207)

(SEQ ID NO: 581)





OSL22A
UAUUUAAACCAUUAAUGUCAA[dT][dT](SEQ 
OSL22S 
UUGACAUUAAUGGUUUAAAUA[dT][dT]



ID NO: 208)

(SEQ ID NO: 582)





OSL23A
UAGAUUUUAUUAUUAACCCAG[dT][dT](SEQ 
OSL23S
CUGGGUUAAUAAUAAAAUCUA[dT][dT]



ID NO: 209)

(SEQ ID NO: 583)





OSL24A
AUAGAUUUUAUUAUUAACCCA[dT][dT](SEQ 
OSL24S 
UGGGUUAAUAAUAAAAUCUAU[dT][dT]



ID NO: 210)

(SEQ ID NO: 584)





OSL25A
AAAUUUACCAUAUCUAUGCGG[dT][dT](SEQ 
OSL25S 
CCGCAUAGAUAUGGUAAAUUU[dT][dT]



ID NO: 211)

(SEQ ID NO: 585)





OSL26A
AAGUUUUCAGUUAUAAGGGUA[dT][dT](SEQ 
OSL26S 
UACCCUUAUAACUGAAAACUU[dT][dT]



ID NO: 212)

(SEQ ID NO: 586)





OSL27A
AAUAAAUAACCAACAGUUGGG[dT][dT](SEQ 
OSL27S 
CCCAACUGUUGGUUAUUUAUU[dT][dT]



ID NO: 213)

(SEQ ID NO: 587)





OSL28A
AGAAAAAUAAAUAACCAACAG[dT][dT](SEQ 
OSL28S 
CUGUUGGUUAUUUAUUUUUCU[dT][dT]



ID NO: 214)

(SEQ ID NO: 588)





OSL29A
AUAUCAUAUCCAGAGUUACCC[dT][dT](SEQ 
OSL29S 
GGGUAACUCUGGAUAUGAUAU[dT][dT]



ID NO: 215)

(SEQ ID NO: 589)





OSL30A
AGUUUCAAUGUAAUCAAACCG[dT][dT](SEQ 
OSL30S 
CGGUUUGAUUACAUUGAAACU[dT][dT]



ID NO: 216)

(SEQ ID NO: 590)





OSL31A
UUACAGUUUCAAUGUAAUCAA[dT][dT](SEQ 
OSL31S
UUGAUUACAUUGAAACUGUAA[dT][dT]



ID NO: 217)

(SEQ ID NO: 591)





OSL32A
AUAAGUUACAGUUUCAAUGUA[dT][dT](SEQ 
OSL32S 
UACAUUGAAACUGUAACUUAU[dT][dT]



ID NO: 218)

(SEQ ID NO: 592)





OSL33A
UCUUUACACGGAUUGGUAGCA[dT][dT](SEQ 
OSL33S 
UGCUACCAAUCCGUGUAAAGA[dT][dT]



ID NO: 219)

(SEQ ID NO: 593)





OSL34A
AAAAUCAAUCCCGACAAAGAA[dT][dT](SEQ 
OSL34S 
UUCUUUGUCGGGAUUGAUUUU[dT][dT]



ID NO: 220)

(SEQ ID NO: 594)





OSL35A
UCUGAAAAAAAGAUAGUGCUG[dT][dT](SEQ 
OSL35S 
CAGCACUAUCUUUUUUUCAGA[dT][dT]



ID NO: 221)

(SEQ ID NO: 595)





OSL36A
AUCUGAAAAAAAGAUAGUGCU[dT][dT](SEQ 
OSL36S 
AGCACUAUCUUUUUUUCAGAU[dT][dT]



ID NO: 222)

(SEQ ID NO: 596)





OSL37A
AAAAAUCAUGUGUUUUGACAU[dT][dT](SEQ 
OSL37S
AUGUCAAAACACAUGAUUUUU[dT][dT]



ID NO: 223)

(SEQ ID NO: 597)





OSL38A
UUUGCUUAAAAAUCAUGUGUU[dT][dT](SEQ 
OSL38S 
AACACAUGAUUUUUAAGCAAA[dT][dT]



ID NO: 224)

(SEQ ID NO: 598)





OSL39A
AACUUUCAACAUUUUCCACCC[dT][dT](SEQ 
OSL39S 
GGGUGGAAAAUGUUGAAAGUU[dT][dT]



ID NO: 225)

(SEQ ID NO: 599)





OSL40A
UUGAAAUCCAAUCAAAAGCCA[dT][dT](SEQ 
OSL40S 
UGGCUUUUGAUUGGAUUUCAA[dT][dT]



ID NO: 226)

(SEQ ID NO: 600)





OSL41A
UUUGAAAUCCAAUCAAAAGCC[dT][dT](SEQ 
OSL41S 
GGCUUUUGAUUGGAUUUCAAA[dT][dT]



ID NO: 227)

(SEQ ID NO: 601)





OSL42A
UAGAGAUUCUUUGAAAUCCAA[dT][dT](SEQ 
OSL42S 
UUGGAUUUCAAAGAAUCUCUA[dT][dT]



ID NO: 228)

(SEQ ID NO: 602)





OSL43A
AUAGAGAUUCUUUGAAAUCCA[dT][dT](SEQ 
OSL43S 
UGGAUUUCAAAGAAUCUCUAU[dT][dT]



ID NO: 229)

(SEQ ID NO: 603)





OSL44A
UUUAAAUACUGAACUACUGUG[dT][dT](SEQ 
OSL44S 
CACAGUAGUUCAGUAUUUAAA[dT][dT]



ID NO: 230)

(SEQ ID NO: 604)





OSL45A
UAUUUAAAUACUGAACUACUG[dT][dT](SEQ 
OSL45S 
CAGUAGUUCAGUAUUUAAAUA[dT][dT]



ID NO: 231)

(SEQ ID NO: 605)





OSL46A
AUAGAUACCCGGCAAAAGGAU[dT][dT](SEQ 
OSL46S 
AUCCUUUUGCCGGGUAUCUAU[dT][dT]



ID NO: 232)

(SEQ ID NO: 606)





OSL47A
AAGAGUAGUGUUUAUUACAGG[dT][dT](SEQ 
OSL47S 
CCCCUGUAAUAAACACUACUC[dT][dT]



ID NO: 233)

(SEQ ID NO: 607)





OSL48A
AUCAAAAUAGGCAUCUACCCA[dT][dT](SEQ 
OSL48S 
UGGGUAGAUGCCUAUUUUGAU[dT][dT]



ID NO: 234)

(SEQ ID NO: 608)





OSL49A
UCAAUUUUAUCAAAAUAGGCA[dT][dT](SEQ 
OSL49S 
UGCCUAUUUUGAUAAAAUUGA[dT][dT]



ID NO: 235)

(SEQ ID NO: 609)





OSL50A
UAAAUGCUCUCCAAAGAUGGC[dT][dT](SEQ 
OSL50S 
GCCAUCUUUGGAGAGCAUUUA[dT][dT]



ID NO: 236)

(SEQ ID NO: 610)





OSL51A
UCAAAUGCAGUAUGUAAGCAA[dT][dT](SEQ 
OSL51S 
UUGCUUACAUACUGCAUUUGA[dT][dT]



ID NO: 237)

(SEQ ID NO: 611)





OSL52A
UUCAAAUGCAGUAUGUAAGCA[dT][dT](SEQ 
OSL52S 
UGCUUACAUACUGCAUUUGAA[dT][dT]



ID NO: 238)

(SEQ ID NO: 612)





OSL53A
UGAUUACAGGCGUUAGAACCA[dT][dT](SEQ 
OSL53S 
UGGUUCUAACGCCUGUAAUCA[dT][dT]



ID NO: 239)

(SEQ ID NO: 613)





OSL54A
UGUUAUCAUGACAAUCAUCGA[dT][dT](SEQ 
OSL545 
UCGAUGAUUGUCAUGAUAACA[dT][dT]



ID NO: 240)

(SEQ ID NO: 614)





OSL55A
UUAUCACAGGUGUAUUGGGUG[dT][dT](SEQ 
OSL55S
CACCCAAUACACCUGUGAUAA[dT][dT]



ID NO: 241)

(SEQ ID NO: 615)





OSL56A
AUUAUCACAGGUGUAUUGGGU[dT][dT](SEQ 
OSL56S 
ACCCAAUACACCUGUGAUAAU[dT][dT]



ID NO: 242)

(SEQ ID NO: 616)





OSL57A
AGUUCUUUGAGAUACACUGGU[dT][dT](SEQ 
OSL57S 
ACCAGUGUAUCUCAAAGAACU[dT][dT]



ID NO: 243)

(SEQ ID NO: 617)





OSL58A
UCGAAUUGCAGUUCUUUUCAU[dT][dT](SEQ 
OSL58S 
AUGAAAAGAACUGCAAUUCGA[dT][dT]



ID NO: 244)

(SEQ ID NO: 618)





OSL59A
UCAAUACAUCGAUGAUUGGGG[dT][dT](SEQ 
OSL59S 
CCCCAAUCAUCGAUGUAUUGA[dT][dT]



ID NO: 245)

(SEQ ID NO: 619)





OSL60A
AACGAUAGGUCAAUACAUCGA[dT][dT](SEQ 
OSL60S 
UCGAUGUAUUGACCUAUCGUU[dT][dT]



ID NO: 246)

(SEQ ID NO: 620)





OSL61A
ACAAACGAUAGGUCAAUACAU[dT][dT](SEQ 
OSL61S 
AUGUAUUGACCUAUCGUUUGU[dT][dT]



ID NO: 247)

(SEQ ID NO: 621)





OSL62A
UCAAAAACACCAUCACAACGA[dT][dT](SEQ 
OSL62S 
UCGUUGUGAUGGUGUUUUUGA[dT][dT]



ID NO: 248)

(SEQ ID NO: 622)





OSL63A
UCACAUUCCCAGAAGUUCGGG[dT][dT](SEQ 
OSL63S 
CCCGAACUUCUGGGAAUGUGA[dT][dT]



ID NO: 249)

(SEQ ID NO: 623)





OSL64A
AUCACAUUCCCAGAAGUUCGG[dT][dT](SEQ 
OSL64S 
CCGAACUUCUGGGAAUGUGAU[dT][dT]



ID NO: 250)

(SEQ ID NO: 624)





OSL65A
UGAUGAAGGGCAAGUCUUGGG[dT][dT](SEQ 
OSL65S 
CCCAAGACUUGCCCUUCAUCA[dT][dT]



ID NO: 251)

(SEQ ID NO: 625)





OSL66A
AGAAUCAUUGGCAAGUAAGAA[dT][dT](SEQ 
OSL66S 
UUCUUACUUGCCAAUGAUUCU[dT][dT]



ID NO: 252)

(SEQ ID NO: 626)





OSL67A
UAUCACAUUCAUCUAUGUCUU[dT][dT](SEQ 
OSL67S 
AAGACAUAGAUGAAUGUGAUA[dT][dT]



ID NO: 253)

(SEQ ID NO: 627)





OSL68A
AAUAUCACAUUCAUCUAUGUC[dT][dT](SEQ 
OSL68S 
GACAUAGAUGAAUGUGAUAUU[dT][dT]



ID NO: 254)

(SEQ ID NO: 628)





OSL69A
AACAUGUAGCCUGUAUCACAC[dT][dT](SEQ 
OSL69S 
GUGUGAUACAGGCUACAUGUU[dT][dT]



ID NO: 255)

(SEQ ID NO: 629)





OSL70A
UCACUUUCUAACAUGUAGCCU[dT][dT](SEQ 
OSL70S 
AGGCUACAUGUUAGAAAGUGA[dT][dT]



ID NO: 256)

(SEQ ID NO: 630)





OSL71A
AUCACUUUCUAACAUGUAGCC[dT][dT](SEQ 
OSL71S 
GGCUACAUGUUAGAAAGUGAU[dT][dT]



ID NO: 257)

(SEQ ID NO: 631)





OSL72A
AAUGUAAGAACCAUUCUCGAC[dT][dT](SEQ 
OSL72S 
GUCGAGAAUGGUUCUUACAUU[dT][dT]



ID NO: 258)

(SEQ ID NO: 632)





OSL73A
UACAAUGUAAGAACCAUUCUC[dT][dT](SEQ 
OSL73S 
GAGAAUGGUUCUUACAUUGUA[dT][dT]



ID NO: 259)

(SEQ ID NO: 633)





OSL74A
AAAAUCAACAGCUACAAUGUA[dT][dT](SEQ 
OSL74S 
UACAUUGUAGCUGUUGAUUUU[dT][dT]



ID NO: 260)

(SEQ ID NO: 634)





OSL75A
AUUGAAUCAAAAUCAACAGCU[dT][dT](SEQ 
OSL75S 
AGCUGUUGAUUUUGAUUCAAU[dT][dT]



ID NO: 261)

(SEQ ID NO: 635)





OSL76A
UAAUUGAAUCAAAAUCAACAG[dT][dT](SEQ 
OSL76S 
CUGUUGAUUUUGAUUCAAUUA[dT][dT]



ID NO: 262)

(SEQ ID NO: 636)





OSL77A
AAGAUACGACCACUAAUUGAA[dT][dT](SEQ 
OSL77S 
UUCAAUUAGUGGUCGUAUCUU[dT][dT]



ID NO: 263)

(SEQ ID NO: 637)





OSL78A
AGUUUCAGUCAAGAUGAUGCU[dT][dT](SEQ 
OSL78S 
AGCAUCAUCUUGACUGAAACU[dT][dT]



ID NO: 264)

(SEQ ID NO: 638)





OSL79A
AAUAGUUUCAGUCAAGAUGAU[dT][dT](SEQ 
OSL795 
AUCAUCUUGACUGAAACUAUU[dT][dT]



ID NO: 265)

(SEQ ID NO: 639)





OSL80A
UAUUGCAAUAGUUUCAGUCAA[dT][dT](SEQ 
OSL80S
UUGACUGAAACUAUUGCAAUA[dT][dT]



ID NO: 266)

(SEQ ID NO: 640)





OSL81A
UCUAUUGCAAUAGUUUCAGUC[dT][dT](SEQ 
OSL81S
GACUGAAACUAUUGCAAUAGA[dT][dT]



ID NO: 267)

(SEQ ID NO: 641)





OSL82A
AAUCUAUUGCAAUAGUUUCAG[dT][dT](SEQ 
OSL82S 
CUGAAACUAUUGCAAUAGAUU[dT][dT]



ID NO: 268)

(SEQ ID NO: 642)





OSL83A
AUUUUGGAGACUUCAAUUGUU[dT][dT](SEQ 
OSL83S 
AACAAUUGAAGUCUCCAAAAU[dT][dT]



ID NO: 269)

(SEQ ID NO: 643)





OSL84A
UUAGGUUUUUACUAAUCAGCA[dT][dT](SEQ 
OSL84S 
UGCUGAUUAGUAAAAACCUAA[dT][dT]



ID NO: 270)

(SEQ ID NO: 644)





OSL85A
UCAUUCUGGGAUCUAAUGCUA[dT][dT](SEQ 
OSL85S
UAGCAUUAGAUCCCAGAAUGA[dT][dT]



ID NO: 271)

(SEQ ID NO: 645)





OSL86A
UUCAUUCUGGGAUCUAAUGCU[dT][dT](SEQ 
OSL86S 
AGCAUUAGAUCCCAGAAUGAA[dT][dT]



ID NO: 272)

(SEQ ID NO: 646)





OSL87A
AGUAGAUGCUCAUUCAUUCUG[dT][dT](SEQ 
OSL87S
CAGAAUGAAUGAGCAUCUACU[dT][dT]



ID NO: 273)

(SEQ ID NO: 647)





OSL88A
AUUAUAAUCACAAAAGUCCAU[dT][dT](SEQ 
OSL88S 
AUGGACUUUUGUGAUUAUAAU[dT][dT]



ID NO: 274)

(SEQ ID NO: 648)





OSL89A
UCCAUUAUAAUCACAAAAGUC[dT][dT](SEQ 
OSL89S 
GACUUUUGUGAUUAUAAUGGA[dT][dT]



ID NO: 275)

(SEQ ID NO: 649)





OSL90A
UGCCGUAUAAUCAAAUCAC[dT][dT](SEQ 
OSL90S 
GUGUGAUUUGAUUAUACGGCA[dT][dT]



ID NO: 276)

(SEQ ID NO: 650)





OSL91A
AUAUUAUACAUUACAACUGAC[dT][dT](SEQ 
OSL91S
GUCAGUUGUAAUGUAUAAUAU[dT][dT]



ID NO: 277)

(SEQ ID NO: 651)





OSL92A
AUUGAAUAUUAUACAUUACAA[dT][dT](SEQ 
OSL92S 
UUGUAAUGUAUAAUAUUCAAU[dT][dT]



ID NO: 278)

(SEQ ID NO: 652)





OSL93A
AAUUUGGUUGUUUCGAAGGAU[dT][dT](SEQ 
OSL93S 
AUCCUUCGAAACAACCAAAUU[dT][dT]



ID NO: 279)

(SEQ ID NO: 653)





OSL94A
ACGGAAUUUGGUUGUUUCGAA[dT][dT](SEQ 
OSL94S 
UUCGAAACAACCAAAUUCCGU[dT][dT]



ID NO: 280)

(SEQ ID NO: 654)





OSL95A
UUACAGUUAUUAAGAAAGGUU[dT][dT](SEQ 
OSL95S 
AACCUUUCUUAAUAACUGUAA[dT][dT]



ID NO: 281)

(SEQ ID NO: 655)





OSL96A
UCCAAAAAUUAUAUGUUGCCU[dT][dT](SEQ 
OSL96S 
AGGCAACAUAUAAUUUUUGGA[dT][dT]



ID NO: 282)

(SEQ ID NO: 656)





OSL97A
UUCCAAAAAUUAUAUGUUGCC[dT][dT](SEQ 
OSL97S 
GGCAACAUAUAAUUUUUGGAA[dT][dT]



ID NO: 283)

(SEQ ID NO: 657)





OSL98A
UCUAAACCAUUCUGUAUCCCU[dT][dT](SEQ 
OSL98S 
AGGGAUACAGAAUGGUUUAGA[dT][dT]



ID NO: 284)

(SEQ ID NO: 658)





OSL99A
AUCUAAACCAUUCUGUAUCCC[dT][dT](SEQ 
OSL99S 
GGGAUACAGAAUGGUUUAGAU[dT][dT]



ID NO: 285)

(SEQ ID NO: 659)





OSL100A
UUCAACAUCUAAACCAUUCUG[dT][dT](SEQ 
OSL100S
CAGAAUGGUUUAGAUGUUGAA[dT][dT]



ID NO: 286)

(SEQ ID NO: 660)





OSL101A
AUUUUCAACCCAAUAGAUGUA[dT][dT](SEQ 
OSL101S
UACAUCUAUUGGGUUGAAAAU[dT][dT]



ID NO: 287)

(SEQ ID NO: 661)





OSL102A
UAUAGAAGCAAAUACUGUCCU[dT][dT](SEQ 
OSL102S
AGGACAGUAUUUGCUUCUAUA[dT][dT]



ID NO: 288)

(SEQ ID NO: 662)





OSL103A
UAGAUAUAGAAGCAAAUACUG[dT][dT](SEQ 
OSL103S
CAGUAUUUGCUUCUAUAUCUA[dT][dT]



ID NO: 289)

(SEQ ID NO: 663)





OSL104A
UAAGGCCAGGUUCAUAGAAGG[dT][dT](SEQ 
OSL104S
CCUUCUAUGAACCUGGCCU[dT][dT](SEQ 



ID NO: 290)

ID NO: 664)





OSL105A
UCUUGAAAUCCAAUCUAAGGC[dT][dT](SEQ 
OSL105S
GCCUUAGAUUGGAUUUCAAGA[dT][dT]



ID NO: 291)

(SEQ ID NO: 665)





OSL106A
AUAAAGGUUUCUUGAAAUCCA[dT][dT](SEQ 
OSL106S
UGGAUUUCAAGAAACCUUUAU[dT][dT]



ID NO: 292)

(SEQ ID NO: 666)





OSL107A
UCAAAACCUCGAUUGACUGAG[dT][dT](SEQ 
OSL107S
CUCAGUCAAUCGAGGUUUUGA[dT][dT]



ID NO: 293)

(SEQ ID NO: 667)





OSL108A
UUCUGUAUCUGAUAUCUCCGU[dT][dT](SEQ 
OSL108S
ACGGAGAUAUCAGAUACAGAA[dT][dT]



ID NO: 294)

(SEQ ID NO: 668)





OSL109A
UUUCUGUAUCUGAUAUCUCCG[dT][dT](SEQ 
OSL109S
CGGAGAUAUCAGAUACAGAAA[dT][dT]



ID NO: 295)

(SEQ ID NO: 669)





OSL110A
UUUUUCUGUAUCUGAUAUCUC[dT][dT](SEQ 
OSL110S
GAGAUAUCAGAUACAGAAAAA[dT][dT]



ID NO: 296)

(SEQ ID NO: 670)





OSL111A
AUCAAUGUUUUUCUGUAUCUG[dT][dT](SEQ 
OSL111S
CAGAUACAGAAAAACAUUGAU[dT][dT]



ID NO: 297)

(SEQ ID NO: 671)





OSL112A
AUAAAGGAAAGAAUCAUGGAC[dT][dT](SEQ 
OSL112S
GUCCAUGAUUCUUUCCUUUAU[dT][dT]



ID NO: 298)

(SEQ ID NO: 672)





OSL113A
AAUAAAGGAAAGAAUCAUGGA[dT][dT](SEQ 
OSL113S
UCCAUGAUUCUUUCCUUUAUU[dT][dT]



ID NO: 299)

(SEQ ID NO: 673)





OSL114A
UCAGUAUAAUAAAGGAAAGAA[dT][dT](SEQ 
OSL114S
UUCUUUCCUUUAUUAUACUGA[dT][dT]



ID NO: 300)

(SEQ ID NO: 674)





OSL115A
UUUCAAUGACCUCAUACUGUU[dT][dT](SEQ 
OSL115S
AACAGUAUGAGGUCAUUGAAA[dT][dT]



ID NO: 301)

(SEQ ID NO: 675)





OSL116A
AUUUGGAACAUUAUCUCUCAA[dT][dT](SEQ 
OSL116S
UUGAGAGAUAAUGUUCCAAAU[dT][dT]



ID NO: 302)

(SEQ ID NO: 676)





OSL117A
AGAUUUGGAACAUUAUCUCUC[dT][dT](SEQ 
OSL117S
GAGAGAUAAUGUUCCAAAUCU[dT][dT]



ID NO: 303)

(SEQ ID NO: 677)





OSL118A
UCAGAUUUGGAACAUUAUCUC[dT][dT](SEQ 
OSL118S
GAGAUAAUGUUCCAAAUCUGA[dT][dT]



ID NO: 304)

(SEQ ID NO: 678)





OSL119A
UUGCUACAGCCAUUUGAGG[dT][dT](SEQ ID 
OSL119S
CCUCAAAUGGCUGUAGCAA[dT][dT](SEQ 



NO: 305)

ID NO: 679)





OSL120A
AUGAAAGAGUUAUAUGGAGAG[dT][dT](SEQ 
OSL120S
CUCUCCAUAUAACUCUUUCAU[dT][dT]



ID NO: 306)

(SEQ ID NO: 680)





OSL121A
ACAAUGAAAGAGUUAUAUGGA[dT][dT](SEQ 
OSL121S
UCCAUAUAACUCUUUCAUUGU[dT][dT]



ID NO: 307)

(SEQ ID NO: 681)





OSL122A
UGAAACAACAAUGAAAGAGUU[dT][dT](SEQ 
OSL122S
AACUCUUUCAUUGUUGUUUCA[dT][dT]



ID NO: 308)

(SEQ ID NO: 682)





OSL123A
AUUGAAACAACAAUGAAAGAG[dT][dT](SEQ 
OSL123S
CUCUUUCAUUGUUGUUUCAAU[dT][dT]



ID NO: 309)

(SEQ ID NO: 683)





OSL124A
AGCUAAAGCCUCUGAUUGCAG[dT][dT](SEQ 
OSL124S
CUGCAAUCAGAGGCUUUAGCU[dT][dT]



ID NO: 310)

(SEQ ID NO: 684)





OSL125A
AAGCUAAAGCCUCUGAUUGCA[dT][dT](SEQ 
OSL125S
UGCAAUCAGAGGCUUUAGCUU[dT][dT]



ID NO: 311)

(SEQ ID NO: 685)





OSL126A
ACAAUUCCAAGCUAAAGCCUC[dT][dT](SEQ 
OSL126S
GAGGCUUUAGCUUGGAAUUGU[dT][dT]



ID NO: 312)

(SEQ ID NO: 686)





OSL127A
UGACAAUUCCAAGCUAAAGCC[dT][dT](SEQ 
OSL127S
GGCUUUAGCUUGGAAUUGUCA[dT][dT]



ID NO: 313)

(SEQ ID NO: 687)





OSL128A
UGAAUGAUCUGACAAUUCCAA[dT][dT](SEQ 
OSL128S
UUGGAAUUGUCAGAUCAUUCA[dT][dT]



ID NO: 314)

(SEQ ID NO: 688)





OSL129A
AUGUUCAUCAGAGAAGAUCCA[dT][dT](SEQ 
OSL129S
UGGAUCUUCUCUGAUGAACAU[dT][dT]



ID NO: 315)

(SEQ ID NO: 689)





OSL130A
UAUUCCAUGUGUCACAAUGUU[dT][dT](SEQ 
OSL130S
AACAUUGUGACACAUGGAAUA[dT][dT]



ID NO: 316)

(SEQ ID NO: 690)





OSL131A
ACUUCUAUCAGUGUUUCAGAA[dT][dT](SEQ 
OSL131S
UUCUGAAACACUGAUAGAAGU[dT][dT]



ID NO: 317)

(SEQ ID NO: 691)





OSL132A
UAUUGAUCCGCAGAACUUCUA[dT][dT](SEQ 
OSL132S
UAGAAGUUCUGCGGAUCAAUA[dT][dT]



ID NO: 318)

(SEQ ID NO: 692)





OSL133A
UGUUCUUGGGAUCUACAACAA[dT][dT](SEQ 
OSL133S
UUGUUGUAGAUCCCAAGAACA[dT][dT]



ID NO: 319)

(SEQ ID NO: 693)





OSL134A
AAAGAACGCUCAAUCUUUGGU[dT][dT](SEQ 
OSL134S
ACCAAAGAUUGAGCGUUCUUU[dT][dT]



ID NO: 320)

(SEQ ID NO: 694)





OSL135A
UAAACGUAGCCAUCACUUCGG[dT][dT](SEQ 
OSL135S
CCGAAGUGAUGGCUACGUUUA[dT][dT]



ID NO: 321)

(SEQ ID NO: 695)





OSL136A
AUCUAAAGAAUCAUCAACCCA[dT][dT](SEQ 
OSL136S
UGGGUUGAUGAUUCUUUAGAU[dT][dT]



ID NO: 322)

(SEQ ID NO: 696)





OSL137A
UUAUAUCUAAAGAAUCAUCAA[dT][dT](SEQ 
OSL137S
UUGAUGAUUCUUUAGAUAUAA[dT][dT]



ID NO: 323)

(SEQ ID NO: 697)





OSL138A
AUAGAAUUUUCAAAAACAGUG[dT][dT](SEQ 
OSL138S
CACUGUUUUUGAAAAUUCUAU[dT][dT]



ID NO: 324)

(SEQ ID NO: 698)





OSL139A
UGAUAGAAUUUUCAAAAACAG[dT][dT](SEQ 
OSL139S
CUGUUUUUGAAAAUUCUAUCA[dT][dT]



ID NO: 325)

(SEQ ID NO: 699)





OSL140A
UUUCAAAUUCCUAUCUACCCA[dT][dT](SEQ 
OSL140S
UGGGUAGAUAGGAAUUUGAAA[dT][dT]



ID NO: 326)

(SEQ ID NO: 700)





OSL141A
UUUUCAAAUUCCUAUCUACCC[dT][dT](SEQ 
OSL141S
GGGUAGAUAGGAAUUUGAAAA[dT][dT]



ID NO: 327)

(SEQ ID NO: 701)





OSL142A
AUAUUGUCUCUUAUCACUGUG[dT][dT](SEQ 
OSL142S
CACAGUGAUAAGAGACAAUAU[dT][dT]



ID NO: 328)

(SEQ ID NO: 702)





OSL143A
UGAUAUUGUCUCUUAUCACUG[dT][dT](SEQ 
OSL143S
CAGUGAUAAGAGACAAUAUCA[dT][dT]



ID NO: 329)

(SEQ ID NO: 703)





OSL144A
UGAAAUGGCACAAUUCUUGCC[dT][dT](SEQ 
OSL144S
GGCAAGAAUUGUGCCAUUUCA[dT][dT]



ID NO: 330)

(SEQ ID NO: 704)





OSL145A
UGUUGAAAUGGCACAAUUCUU[dT][dT](SEQ 
OSL145S
AAGAAUUGUGCCAUUUCAACA[dT][dT]



ID NO: 331)

(SEQ ID NO: 705)





OSL146A
AAUUUUCUGUUGAAAUGGCAC[dT][dT](SEQ 
OSL146S
GUGCCAUUUCAACAGAAAAUU[dT][dT]



ID NO: 332)

(SEQ ID NO: 706)





OSL147A
AAAUUUUCUGUUGAAAUGGCA[dT][dT](SEQ 
OSL147S
UGCCAUUUCAACAGAAAAUUU[dT][dT]



ID NO: 333)

(SEQ ID NO: 707)





OSL148A
AUUAGACAAGGCAAAGAUGAG[dT][dT](SEQ 
OSL148S
CUCAUCUUUGCCUUGUCUAAU[dT][dT]



ID NO: 334)

(SEQ ID NO: 708)





OSL149A
ACAUUUAUUGUUUGGAAAGGU[dT][dT](SEQ 
OSL149S
ACCUUUCCAAACAAUAAAUGU[dT][dT]



ID NO: 335)

(SEQ ID NO: 709)





OSL150A
AUCACUUACACUGUCAUAGUC[dT][dT](SEQ 
OSL150S
GACUAUGACAGUGUAAGUGAU[dT][dT]



ID NO: 336)

(SEQ ID NO: 710)





OSL151A
UAGAUUCUAUCACUUACACUG[dT][dT](SEQ 
OSL151S
CAGUGUAAGUGAUAGAAUCUA[dT][dT]



ID NO: 337)

(SEQ ID NO: 711)





OSL152A
AGUAGAUUCUAUCACUUACAC[dT][dT](SEQ 
OSL152S
GUGUAAGUGAUAGAAUCUACU[dT][dT]



ID NO: 338)

(SEQ ID NO: 712)





OSL153A
UUUUGUGUGAAGUAGAUUCUA[dT][dT](SEQ 
OSL153S
UAGAAUCUACUUCACACAAAA[dT][dT]



ID NO: 339)

(SEQ ID NO: 713)





OSL154A
UAAAUUUUGUGUGAAGUAGAU[dT][dT](SEQ 
OSL154S
AUCUACUUCACACAAAAUUUA[dT][dT]



ID NO: 340)

(SEQ ID NO: 714)





OSL155A
UCUAGUAAUCCAGUCAAAGGC[dT][dT](SEQ 
OSL155S
GCCUUUGACUGGAUUACUAGA[dT][dT]



ID NO: 341)

(SEQ ID NO: 715)





OSL156A
AAUUCUUCUAGUAAUCCAGUC[dT][dT](SEQ 
OSL156S
GACUGGAUUACUAGAAGAAUU[dT][dT]



ID NO: 342)

(SEQ ID NO: 716)





OSL157A
UAAAUUCUUCUAGUAAUCCAG[dT][dT](SEQ 
OSL157S
CUGGAUUACUAGAAGAAUUUA[dT][dT]



ID NO: 343)

(SEQ ID NO: 717)





OSL158A
AUAAAUUCUUCUAGUAAUCCA[dT][dT](SEQ 
OSL158S
UGGAUUACUAGAAGAAUUUAU[dT][dT]



ID NO: 344)

(SEQ ID NO: 718)





OSL159A
AUAUACUGGCCAUAGAGAGUC[dT][dT](SEQ 
OSL159S
GACUCUCUAUGGCCAGUAUAU[dT][dT]



ID NO: 345)

(SEQ ID NO: 719)





OSL160A
UUCUUUGUGUGUACAAGUCAG[dT][dT](SEQ 
OSL160S
CUGACUUGUACACACAAAGAA[dT][dT]



ID NO: 346)

(SEQ ID NO: 720)





OSL161A
AAUUCUUUGUGUGUACAAGUC[dT][dT](SEQ 
OSL161S
GACUUGUACACACAAAGAAUU[dT][dT]



ID NO: 347)

(SEQ ID NO: 721)





OSL162A
UCGGUAAAUUCUUUGUGUGUA[dT][dT](SEQ 
OSL162S
UACACACAAAGAAUUUACCGA[dT][dT]



ID NO: 348)

(SEQ ID NO: 722)





OSL163A
UGUUACACUGUUGUUUCUGGU[dT][dT](SEQ 
OSL163S
ACCAGAAACAACAGUGUAACA[dT][dT]



ID NO: 349)

(SEQ ID NO: 723)





OSL164A
AUUGUUACACUGUUGUUUCUG[dT][dT](SEQ 
OSL164S
CAGAAACAACAGUGUAACAAU[dT][dT]



ID NO: 350)

(SEQ ID NO: 724)





OSL16A5
AAACUGUUCACAAGGAUUGUU[dT][dT](SEQ 
OSL165S
AACAAUCCUUGUGAACAGUUU[dT][dT]



ID NO: 351)

(SEQ ID NO: 725)





OSL166A
ACAUCGUUCACCAUUGUCCAC[dT][dT](SEQ 
OSL166S
GUGGACAAUGGUGAACGAUGU[dT][dT]



ID NO: 352)

(SEQ ID NO: 726)





OSL167A
UGUUAUUGCACAUAAACUCCG[dT][dT](SEQ 
OSL167S
CGGAGUUUAUGUGCAAUAACA[dT][dT]



ID NO: 353)

(SEQ ID NO: 727)





OSL168A
UCUGUUAUUGCACAUAAACUC[dT][dT](SEQ 
OSL168S
GAGUUUAUGUGCAAUAACAGA[dT][dT]



ID NO: 354)

(SEQ ID NO: 728)





OSL169A
UUAUGACAUUUUGUGUAUCCA[dT][dT](SEQ 
OSL169S
UGGAUACACAAAAUGUCAUAA[dT][dT]



ID NO: 355)

(SEQ ID NO: 729)





OSL170A
UGAAUUAUGACAUUUUGUGUA[dT][dT](SEQ 
OSL170S
UACACAAAAUGUCAUAAUUCA[dT][dT]



ID NO: 356)

(SEQ ID NO: 730)





OSL171A
UUUGAAUUAUGACAUUUUGUG[dT][dT](SEQ 
OSL171S
CACAAAAUGUCAUAAUUCAAA[dT][dT]



ID NO: 357)

(SEQ ID NO: 731)





OSL172A
UACAAAUAUUUGAAUUAUGAC[dT][dT](SEQ 
OSL172S
GUCAUAAUUCAAAUAUUUGUA[dT][dT]



ID NO: 358)

(SEQ ID NO: 732)





OSL173A
AAAUAAACGCGAGGAAUACAA[dT][dT](SEQ 
OSL173S
UUGUAUUCCUCGCGUUUAUUU[dT][dT]



ID NO: 359)

(SEQ ID NO: 733)





OSL174A
AAUAAGUAGGGUUUUCAUCAC[dT][dT](SEQ 
OSL174S
GUGAUGAAAACCCUACUUAUU[dT][dT]



ID NO: 360)

(SEQ ID NO: 734)





OSL175A
UCACAAUACCAAUGUUGAGGA[dT][dT](SEQ 
OSL175S
UCCUCAACAUUGGUAUUGUGA[dT][dT]



ID NO: 361)

(SEQ ID NO: 735)





OSL176A
UGUUUCUUGAUCACAAUACCA[dT][dT](SEQ 
OSL176S
UGGUAUUGUGAUCAAGAAACA[dT][dT]



ID NO: 362)

(SEQ ID NO: 736)





OSL177A
AACAAUCUGUUUCUUGAUCAC[dT][dT](SEQ 
OSL177S
GUGAUCAAGAAACAGAUUGUU[dT][dT]



ID NO: 363)

(SEQ ID NO: 737)





OSL178A
UUUACACAGAGAAACUCGGAA[dT][dT](SEQ 
OSL178S
UUCCGAGUUUCUCUGUGUAAA[dT][dT]



ID NO: 364)

(SEQ ID NO: 738)





OSL179A
AUUUACACAGAGAAACUCGGA[dT][dT](SEQ 
OSL179S
UCCGAGUUUCUCUGUGUAAAU[dT][dT]



ID NO: 365)

(SEQ ID NO: 739)





OSL180A
UUCUGAUUCUCAUCGUAGCCG[dT][dT](SEQ 
OSL180S
CGGCUACGAUGAGAAUCAGAA[dT][dT]



ID NO: 366)

(SEQ ID NO: 740)





OSL181A
AUUUUCAGAGCAAGUUCUCCU[dT][dT](SEQ 
OSL181S
AGGAGAACUUGCUCUGAAAAU[dT][dT]



ID NO: 367)

(SEQ ID NO: 741)





OSL182A
AUAUCUUUGGGAUACACAGUC[dT][dT](SEQ 
OSL182S
GACUGUGUAUCCCAAAGAUAU[dT][dT]



ID NO: 368)

(SEQ ID NO: 742)





OSL183A
AGGUAAACUGAUUCUGUUGGC[dT][dT](SEQ 
OSL183S
GCCAACAGAAUCAGUUUACCU[dT][dT]



ID NO: 369)

(SEQ ID NO: 743)





OSL184A
AUAGAAACUGGUUAAGGUGUC[dT][dT](SEQ 
OSL184S
GACACCUUAACCAGUUUCUAU[dT][dT]



ID NO: 370)

(SEQ ID NO: 744)





OSL185A
ACAAUAGAAACUGGUUAAGGU[dT][dT](SEQ 
OSL185S
ACCUUAACCAGUUUCUAUUGU[dT][dT]



ID NO: 371)

(SEQ ID NO: 745)





OSL186A
UCAUCAAUAUCAACACAAGUC[dT][dT](SEQ 
OSL186S
GACUUGUGUUGAUAUUGAUGA[dT][dT]



ID NO: 372)

(SEQ ID NO: 746)





OSL187A
AGAUGUAGGAGCCUAUUACAU[dT][dT](SEQ 
OSL187S
AUGUAAUAGGCUCCUACAUCU[dT][dT]



ID NO: 373)

(SEQ ID NO: 747)





OSL188A
UCGAUGUUACUGUUUUGCCGG[dT][dT](SEQ 
OSL188S
CCGGCAAAACAGUAACAUCGA[dT][dT]



ID NO: 374)

(SEQ ID NO: 748)





OSL189A
UUGCUAAAAAUGAGAUAGGGU[dT][dT](SEQ 
OSL189S
ACCCUAUCUCAUUUUUAGCAA[dT][dT]



ID NO: 375)

(SEQ ID NO: 749)





OSL190A
AUUUCUCAAAUAGUAACGGUU[dT][dT](SEQ 
OSL190S
AACCGUUACUAUUUGAGAAAU[dT][dT]



ID NO: 376)

(SEQ ID NO: 750)





OSL191A
AAUUUCUCAAAUAGUAACGGU[dT][dT](SEQ 
OSL191S
ACCGUUACUAUUUGAGAAAUU[dT][dT]



ID NO: 377)

(SEQ ID NO: 751)





OSL192A
AAAUUUCUCAAAUAGUAACGG[dT][dT](SEQ 
OSL192S
CCGUUACUAUUUGAGAAAUUU[dT][dT]



ID NO: 378)

(SEQ ID NO: 752)





OSL193A
AGUUAAAUUUCUCAAAUAGUA[dT][dT](SEQ 
OSL193S
UACUAUUUGAGAAAUUUAACU[dT][dT]



ID NO: 379)

(SEQ ID NO: 753)





OSL194A
AUCUAUAGUUAAAUUUCUCAA[dT][dT](SEQ 
OSL194S
UUGAGAAAUUUAACUAUAGAU[dT][dT]



ID NO: 380)

(SEQ ID NO: 754)





OSL195A
UAAAAAUAGCCAUCUAUAGUU[dT][dT](SEQ 
OSL195S
AACUAUAGAUGGCUAUUUUUA[dT][dT]



ID NO: 381)

(SEQ ID NO: 755)





OSL196A
AUCUAAUGCCACAACAUUGUC[dT][dT](SEQ 
OSL196S
GACAAUGUUGUGGCAUUAGAU[dT][dT]



ID NO: 382)

(SEQ ID NO: 756)





OSL197A
AAUCCAAUACAAUCUCUUCUC[dT][dT](SEQ 
OSL197S
GAGAAGAGAUUGUAUUGGAUU[dT][dT]



ID NO: 383)

(SEQ ID NO: 757)





OSL198A
ACAUUCUCUCAAUGACUUGCC[dT][dT](SEQ 
OSL198S
GGCAAGUCAUUGAGAGAAUGU[dT][dT]



ID NO: 384)

(SEQ ID NO: 758)





OSL199A
AUGAUUGUCUCCUUGUUUGUC[dT][dT](SEQ 
OSL199S
GACAAACAAGGAGACAAUCAU[dT][dT]



ID NO: 385)

(SEQ ID NO: 759)





OSL200A
AUUAUCACAGACUUGUUGGUU[dT][dT](SEQ 
OSL200S
AACCAACAAGUCUGUGAUAAU[dT][dT]



ID NO: 386)

(SEQ ID NO: 760)





OSL201A
UUCAAAAAUGGUAAUAGCGAA[dT][dT](SEQ 
OSL201S
UUCGCUAUUACCAUUUUUGAA[dT][dT]



ID NO: 387)

(SEQ ID NO: 761)





OSL202A
UCUUCAAAAAUGGUAAUAGCG[dT][dT](SEQ 
OSL202S
CGCUAUUACCAUUUUUGAAGA[dT][dT]



ID NO: 388)

(SEQ ID NO: 762)





OSL203A
AUUUGUUUCCCUUUUCCACUG[dT][dT](SEQ 
OSL203S
CAGUGGAAAAGGGAAACAAAU[dT][dT]



ID NO: 389)

(SEQ ID NO: 763)





OSL204A
AUUUGAUCCAUCAUAUUUGUU[dT][dT](SEQ 
OSL204S
AACAAAUAUGAUGGAUCAAAU[dT][dT]



ID NO: 390)

(SEQ ID NO: 764)





OSL205A
UAUAUGGAUGGUACACAUGGA[dT][dT](SEQ 
OSL205S
UCCAUGUGUACCAUCCAUAUA[dT][dT]



ID NO: 391)

(SEQ ID NO: 765)





OSL206A
AAAGAAGACGGUCUUCAUCAG[dT][dT](SEQ 
OSL206S
CUGAUGAAGACCGUCUUCUUU[dT][dT]



ID NO: 392)

(SEQ ID NO: 766)





OSL207A
UGAAUUCUGUGAAGUUGUCAC[dT][dT](SEQ 
OSL207S
GUGACAACUUCACAGAAUUCA[dT][dT]



ID NO: 393)

(SEQ ID NO: 767)





OSL208A
ACAAUGUCCACUUGUACACUG[dT][dT](SEQ 
OSL208S
CGGUGUACAAGUGGACAUUGU[dT][dT]



ID NO: 394)

(SEQ ID NO: 768)





OSL209A
ACACAAUGUCCACUUGUACAC[dT][dT](SEQ 
OSL209S
GUGUACAAGUGGACAUUGUGU[dT][dT]



ID NO: 395)

(SEQ ID NO: 769)





OSL210A
UUUUUGCAUUCGAACAUAGUA[dT][dT](SEQ 
OSL210S
UACUAUGUUCGAAUGCAAAAA[dT][dT]



ID NO: 396)

(SEQ ID NO: 770)





OSL211A
AUGGUUUUUGCAUUCGAACAU[dT][dT](SEQ 
OSL211S
AUGUUCGAAUGCAAAAACCAU[dT][dT]



ID NO: 397)

(SEQ ID NO: 771)





OSL212A
AUACAAACAUGGUUUUUGCAU[dT][dT](SEQ 
OSL212S
AUGCAAAAACCAUGUUUGUAU[dT][dT]



ID NO: 398)

(SEQ ID NO: 772)





OSL213A
AUCACAUUUCCAAUAUGGCGG[dT][dT](SEQ 
OSL213S
CCGCCAUAUUGGAAAUGUGAU[dT][dT]



ID NO: 399)

(SEQ ID NO: 773)





OSL214A
UGAAGUUCUUCAUCUGAACCA[dT][dT](SEQ 
OSL214S
UGGUUCAGAUGAAGAACUUCA[dT][dT]



ID NO: 400)

(SEQ ID NO: 774)





OSL215A
AUAAAUGCAGCGAUUGUUGUC[dT][dT](SEQ 
OSL215S
GACAACAAUCGCUGCAUUUAU[dT][dT]



ID NO: 401)

(SEQ ID NO: 775)





OSL216A
AUUCUGUACAAGGUUUAGGGG[dT][dT](SEQ 
OSL216S
CCCCUAAACCUUGUACAGAAU[dT][dT]



ID NO: 402)

(SEQ ID NO: 776)





OSL217A
UAUUCUGUACAAGGUUUAGGG[dT][dT](SEQ 
OSL217S
CCCUAAACCUUGUACAGAAUA[dT][dT]



ID NO: 403)

(SEQ ID NO: 777)





OSL218A
AUUCAUAUUCUGUACAAGGUU[dT][dT](SEQ 
OSL218S
AACCUUGUACAGAAUAUGAAU[dT][dT]



ID NO: 404)

(SEQ ID NO: 778)





OSL219A
UAUUCAUAUUCUGUACAAGGU[dT][dT](SEQ 
OSL219S
ACCUUGUACAGAAUAUGAAUA[dT][dT]



ID NO: 405)

(SEQ ID NO: 779)





OSL220A
UUAUAUUCAUAUUCUGUACAA[dT][dT](SEQ 
OSL220S
UUGUACAGAAUAUGAAUAUAA[dT][dT]



ID NO: 406)

(SEQ ID NO: 780)





OSL221A
UAUUGCAACCCAGUUCAUCGG[dT][dT](SEQ 
OSL221S
CCGAUGAACUGGGUUGCAAUA[dT][dT]



ID NO: 407)

(SEQ ID NO: 781)





OSL222A
AUAUUUUCAGCACAUGUUCUU[dT][dT](SEQ 
OSL222S
AAGAACAUGUGCUGAAAAUAU[dT][dT]



ID NO: 408)

(SEQ ID NO: 782)





OSL223A
UUAAUUGGGUACAAUUUUGCU[dT][dT](SEQ 
OSL223S
AGCAAAAUUGUACCCAAUUAA[dT][dT]



ID NO: 409)

(SEQ ID NO: 783)





OSL224A
AAAAACAUUGGUUUCGAACCC[dT][dT](SEQ 
OSL224S
GGGUUCGAAACCAAUGUUUUU[dT][dT]



ID NO: 410)

(SEQ ID NO: 784)





OSL225A
UGUCAAAAACAUUGGUUUCGA[dT][dT](SEQ 
OSL225S
UCGAAACCAAUGUUUUUGACA[dT][dT]



ID NO: 411)

(SEQ ID NO: 785)





OSL226A
UUCGAAUUCGGACAUUGUCAG[dT][dT](SEQ 
OSL226S
CUGACAAUGUCCGAAUUCGAA[dT][dT]



ID NO: 412)

(SEQ ID NO: 786)





OSL227A
AUUAUAUUUUCGAAUUCGGAC[dT][dT](SEQ 
OSL227S
GUCCGAAUUCGAAAAUAUAAU[dT][dT]



ID NO: 413)

(SEQ ID NO: 787)





OSL228A
AGAUUAUAUUUUCGAAUUCGG[dT][dT](SEQ 
OSL228S
CCGAAUUCGAAAAUAUAAUCU[dT][dT]



ID NO: 414)

(SEQ ID NO: 788)





OSL229A
UCAUCUUGAAGAUACUCUGAG[dT][dT](SEQ 
OSL229S
CUCAGAGUAUCUUCAAGAUGA[dT][dT]



ID NO: 415)

(SEQ ID NO: 789)





OSL230A
UAUAUUCCUCAUCUUGAAGAU[dT][dT](SEQ 
OSL230S
AUCUUCAAGAUGAGGAAUAUA[dT][dT]



ID NO: 416)

(SEQ ID NO: 790)





OSL231A-
UUUGAUAGCACCAAACCUAGAGCCC[dT][dT]
OSL231S-
GGGCUCUAGGUUUGGUGCUAUCAAA[dT]


1
(SEQ ID NO: 417)
1
[dT](SEQ ID NO: 791) 





OSL231A-
UUUGAUAGCACCAAACCUAGAGCCC[dT]*[dT]
OSL231S-
GGGCUCUAGGUUUGGUGCUAUCAAA[dT]*


2
(SEQ ID NO: 418)
2
[dT](SEQ ID NO: 792)





OSL231A-
[mU][mU][mU][mG][mA][mU][mA][mG][mC]
OSL231S-
[mG][mG][mG][mC][mU][mC][mU][mA]


3
[mA][mC][mC][mA][mA][mA][mC][mC][mU]
3
[mG][mG][mU][mU][mU][mG][mG][mU][mG]



[mA][mG][mA][mG][mC][mC][mC][dT]*[dT]

[mC][mU][mA][mU][mC][mA][mA][mA] 



(SEQ ID NO: 419)

[dT]*[dT](SEQ ID NO: 793) 





OSL231A-
[mU][mU][mU][mG][mA][mU][mA][mG][mC]
OSL231S- 
[mG][mG][mG][mC][mU][mC][mU][mA] 


4
[mA][mC][mC][mA][mA][mA][mC][mC][mU]
4
[mG][mG][mU][mU][mU][mG][mG][mU][mG]



[mA][mG][mA][mG][mC][mC][mC][dT]*[dT]

[mC][mU][mA][mU][mC][mA][mA][mA]



(SEQ ID NO: 420)

(SEQ ID NO: 794)





OSL231A-
[mU][mU][mU][mG][mA][mU][mA][mG][mC]
OSL231S-
[mG][mG][mG][mC][mU][mC][mU][mA][mG] 


5
[mA][mC][mC][mA][mA][mA][mC][mC][mU]
5
[mG][mU][mU][mU][mG][mG][mU][mG]



[mA][mG][mA][mG][mC][mC][mC](SEQ ID 

[mC][mU][mA][mU][mC][mA][mA][mA] 



NO: 421)

[dT]*[dT](SEQ ID NO: 795) 





OSL231A-
[mU][mU][mU][mG][mA][mU][mA][mG][mC]
OSL231S-
[mG][mG][mG][mC][mU][mC][mU][mA][mG] 


6
[mA][mC][mC][mA][mA][mA][mC][mC][mU]
6
[mG][mU][mU][mU][mG][mG][mU][mG]



[mA][mG][mA][mG][mC][mC][mC](SEQ ID 

[mC][mU][mA][mU][mC][mA][mA][mA]



NO: 422)

(SEQ ID NO: 796)





OSL231A-
[mU][mU][mU][mG][mA][mU][mA][mG][mC]
OSL231S-
GGGCUCUAGGUUUGGUGCUAUCAAA[dT]* 


7
[mA][mC][mC][mA][mA][mA][mC][mC][mU]
7
[dT](SEQ ID NO: 797) 



[mA][mG][mA][mG][mC][mC][mC][dT]*[dT]





(SEQ ID NO: 423)







OSL231A-
[mU][2fU][mU][2fG][mA][2fU][mA][2fG][mC]
OSL231S- 
[2fG][mG][2fG][mC][2fU][mC][2fU][mA] 


8
[2fA][mC][2fC][mA][2fA][mA][2fC][mC][2fU]
8
[2fG][mG][2fU][mU][2fU][mG][2fG][mU] 



[mA][2fG][mA][2fG][mC][2fC][mC][dT]*[dT]

[2fG][mC][2fU][mA][2fU][mC][2fA][mA]



(SEQ ID NO: 424)

[2fA][dT]*[dT](SEQ ID NO: 798) 





OSL231A-
[mU][2fU][mU][2fG][mA][2fU][mA][2fG][mC]
OSL231S- 
[2fG][mG][2fG][mC][2fU][mC][2fU][mA] 


9
[2fA][mC][2fC][mA][2fA][mA][2fC][mC][2fU]
9
[2fG][mG][2fU][mU][2fU][mG][2fG][mU] 



[mA][2fG][mA][2fG][mC][2fC][mC](SEQ ID

[2fG][mC][2fU][mA][2fU][mC][2fA][mA]



NO: 425)

[2fA][dT]*[dT](SEQ ID NO: 799) 





OSL231A-
[mU][2fU][mU][2fG][mA][2fU][mA][2fG][mC]
OSL231S- 
[2fG][mG][2fG][mC][2fU][mC][2fU][mA] 


10
[2fA][mC][2fC][mA][2fA][mA][2fC][mC][2fU]
10
[2fG][mG][2fU][mU][2fU][mG][2fG][mU]



[mA][2fG][mA][2fG][mC][2fC][mC][dT]*[dT]

[2fG][mC][2fU][mA][2fU][mC][2fA][mA]



(SEQ ID NO: 426)

[2fA](SEQ ID NO: 800)





OSL231A-
[mU][2fU][mU][2fG][mA][2fU][mA][2fG][mC]
OSL231S- 
[2fG][mG][2fG][mC][2fU][mC][2fU][mA] 


11
[2fA][mC][2fC][mA][2fA][mA][2fC][mC][2fU]
11
[2fG][mG][2fU][mU][2fU][mG][2fG][mU]



[mA][2fG][mA][2fC][mC][2fC][mC](SEQ ID 

[2fG][mC][2fU][mA][2fU][mC][2fA][mA]



NO: 427)

[2fA](SEQ ID NO: 801)





OSL231A-
[2fU][mU][2fU][mG][2fA][mU][2fA][mG][2fC]
OSL231S- 
[mG][2fG][mG][2fC][mU][2fC][mU][2fA] 


12
[mA][2fC][mC][2fA][mA][2fA][mC][2fC][mU]
12
[mG][2fG][mU][2fU][mU][2fG][mG][2Fu] 



[2fA][mG][2fA][mG][2fC][mC][2fC][dT]*[dT]

[mG][2fC][mU][2fA][mU][2fC][mA][2fA]



(SEQ ID NO: 428)

[mA][dT]*[dT](SEQ ID NO: 802) 





OSL231A-
[mU][2fA][mU][2fC][mA][2fA][mA][2fC][mC]
OSL231S-
[2fG][mG][2fG][mC][2fU][mC][2fU][mA] 


13
[2fU][mC][2fG][mA][2fU][mA][2fG][mC][2fA]
13
[2fG][mG][2fU][mU][2fU][mG][2fG][mU]



[mA][2fC][mA][2fC][mC][2fG][mC](SEQ ID 

[2fG][mC][2fU][mA][2fU][mC][2fA][mA]



NO: 429)

[2fA]-LINKER-LIG(SEQ ID NO: 803)





OSL231A-
[mU][2fU][2fU][2fG][2fA][2fU][2fA][2fG][2fC]
OSL231S- 
[2fU][mC][2fU][mA][2fG][mG][2fU][mU] 


14
[2fA][2fC][2fC][2fA][2fA][2fA][2fC][2fC][2fU]
14
[2fU][mG][2fG][mU][2fG][mC][2fU][mA] 



[2fA][2fG][2fA][2fG][2fC][2fC][2fC][dT]*[dT]

[2fU][mC][2fA][mA][2fA][dT]*[dT]   



(SEQ ID NO: 430)

(SEQ ID NO: 804)





OSL231A-
[mU][2fU][2fU][2fG][2fA][2fU][2fA][2fG][2fC]
OSL231S- 
[2fU][mU][2fU][mG][2fG][mU][2fG][mC] 


15
[2fA][2fC][2fC][2fA][2fA][2fA][2fC][2fC][2fU]
15
[2fU][mA][2fU][mC][2fA][mA][2fA]



[2fA][2fG][2fA][2fG][2fC][2fC][2fC][dT]*[dT]

[dT]*[dT](SEQ ID NO: 805)



(SEQ ID NO: 431)







OSL231A-
[mU][2fU][mU][2fG][mA][2fU][mA][2fG][mC]
OSL231S-
[2fU][mU][2fU][mG][2fG][mU][2fG][mC] 


16
[2fA][mC][2fC][mA][2fA][mA][2fC][mC][2fU]
16
[2fU][mA][2fU][mC][2fA][mA][2fA]



[mA][2fG][mA][2fG][mC][2fC][mC][dT]*[dT]

[dT]*[dT](SEQ ID NO: 806) 



(SEQ ID NO: 432)







OSL231A-
[mU][2fU][mU][2fG][mA][2fU][mA][2fG][C]
OSL231S-
[2fU][mU][2fU][mG][2fG][mU][2fG][mC] 


17
[2fA][mC][2fC][mA][2fA][mA][2fC][mC][2fU]
17
[2fU][mA][2fU][mC][2fA][mA][2fA]  



[mA][2fG][mA][2fG][mC](SEQ ID NO: 433) 

(SEQ ID NO: 807)





OSL231A-
[mU][2fU][mU][2fG][mA][2fU][mA][2fG][mC]
OSL231S-
[2fU][mU][2fU][mG][2fG][mU][2fG][mC] 


18
[2fA][mC][2fC][mA][2fA][mA][2fC][2fC][2fU]
18
[2fU][mA][2fU][mC][2fA][mA][2fA]  



[2fA][2fG][2fA][2fG][2fC](SEQ ID NO: 434)

(SEQ ID NO: 808)





OSL232A
UCAAAGUUGGGGAUGUAGGCA[dT][dT](SEQ 
OSL232S
UGCCUACAUCCCCAACUUUGA[dT][dT]



ID NO: 435)

(SEQ ID NO: 809)





OSL233A
UCAGUUUCAGGUCAACUUCCU[dT][dT](SEQ 
OSL233S
AGGAAGUUGACCUGAAACUGA[dT][dT]



ID NO: 436)

(SEQ ID NO: 810)





OSL234A
UACGUAUUUCAGUUUCAGGUC[dT][dT](SEQ 
OSL234S
GACCUGAAACUGAAAUACGUA[dT][dT]



ID NO: 437)

(SEQ ID NO: 811)





OSL235A
UUACGUAUUUCAGUUUCAGGU[dT][dT](SEQ 
OSL235S
ACCUGAAACUGAAAUACGUAA[dT][dT]



ID NO: 438)

(SEQ ID NO: 812)





OSL236A
AGUUUAGCCACCUCAAUGCGU[dT][dT](SEQ 
OSL236S
ACGCAUUGAGGUGGCUAAACU[dT][dT]



ID NO: 439)

(SEQ ID NO: 813)





OSL237A
AACAUAAGCCCUAGUUUGGGA[dT][dT](SEQ 
OSL237S
UCCCAAACUAGGGCUUAUGUU[dT][dT]



ID NO: 440)

(SEQ ID NO: 814)





OSL238A
UCGAUUUUAGGUUCCUUUCCC[dT][dT](SEQ 
OSL238S
GGGAAAGGAACCUAAAAUCGA[dT][dT]



ID NO: 441)

(SEQ ID NO: 815)





OSL239A
UCGAAAACCAGGAUGUUGCGG[dT][dT](SEQ 
OSL239S
CCGCAACAUCCUGGUUUUCGA[dT][dT]



ID NO: 442)

(SEQ ID NO: 816)





OSL240A
UCAAAUAAUCGAUAGAAAGGC[dT][dT](SEQ 
OSL240S
GCCUUUCUAUCGAUUAUUUGA[dT][dT]



ID NO: 443)

(SEQ ID NO: 817)





OSL241A
UUGUUCAAAUAAUCGAUAGAA[dT][dT](SEQ 
OSL241S
UUCUAUCGAUUAUUUGAACAA[dT][dT]



ID NO: 444)

(SEQ ID NO: 818)





OSL242A
UUAUGGUUUCAAUAACGUCCU[dT][dT](SEQ 
OSL242S
AGGACGUUAUUGAAACCAUAA[dT][dT]



ID NO: 445)

(SEQ ID NO: 819)





OSL243A
UUUUAUGGUUUCAAUAACGUC[dT][dT](SEQ 
OSL243S
GACGUUAUUGAAACCAUAAAA[dT][dT]



ID NO: 446)

(SEQID NO: 820)





OSL244A
AUUUUAUGGUUUCAAUAACGU[dT][dT](SEQ 
OSL244S
ACGUUAUUGAAACCAUAAAAU[dT][dT]



ID NO: 447)

(SEQ ID NO: 821)





OSL245A-
UUUGCAAUGACUCUCCUAUCAGUCC[dT][dT]
OSL245S-
GGACUGAUAGGAGAGUCAUUGCAAA[dT]


1
(SEQ ID NO: 448)
1
[dT](SEQ ID NO: 822)





OSL245A-
UUUGCAAUGACUCUCCUAUCAGUCC[dT]*[dT] 
OSL245S-
GGACUGAUAGGAGAGUCAUUGCAA]A[dT]*


2
(SEQ ID NO: 449) 
2
[dT](SEQ ID NO: 823) 





OSL245A-
[mU][mU][mU][mG][mC][mA][mA][mU][mG]
OSL245S- 
[mG][mG][mA][mC][mU][mG][mA][mU][mA] 


3
[mA][mC][mU][mC][mU][mC][mC][mU][mA]
3
[mG][mG][mA][mG][mA][mG][mU][mC][mA]



[mU][mC][mA][mG][mU][mC][mC][dT]*[dT]

[mU][mU][mG][mC][mA][mA][mA][dT]* 



(SEQ ID NO: 450)

[dT](SEQ ID NO: 824) 





OSL245A-
[mU][mU][mU][mG][mC][mA][mA][mU][mG]
OSL245S-
[mG][mG][mA][mC][mU][mG][mA][mU][mA] 


4
[mA][mC][mU][mC][mU][mC][mC][mU][mA]
4
[mG][mG][mA][mG][mA][mG][mU][mC][mA]



[mU][mC][mA][mG][mU][mC][mC][dT]*[dT]

[mU][mU][mG][mC][mA][mA][mA](SEQ 



(SEQ ID NO: 451)

ID NO: 825)





OSL245A-
[mU][mU][mU][mG][mC][mA][mA][mU][mG]
OSL245S- 
[mG][mG][mA][mC][mU][mG][mA][mU] 


5
[mA][mC][mU][mC][mU][mC][mC][mU][mA]
5
[mA][mG][mG][mA][mG][mA][mG][mU][mC]



[mU][mC][mA][mG][mU][mC][mC](SEQ ID

[mA][mU][mU][mG][mC][mA][mA][mA]



NO: 452)

[dT]*[dT](SEQ ID NO: 826)





OSL245A-
[mU][mU][mU][mG][mC][mA][mA][mU][mG]
OSL245S- 
[mG][mG][mA][mC][mU][mG][mA][mU][mA] 


6
[mA][mC][mU][mC][mU][mC][mC][mU][mA]
6
[mG][mG][mA][mG][mA][mG][mU][mC][mA]



[mU][mC][mA][mG][mU][mC][mC](SEQ ID

[mU][mU][mG][mC][mA][mA][mA]



NO: 453)

(SEQ ID NO: 827)





OSL245A-
[mU][mU][mU][mG][mC][mA][mA][mU][mG]
OSL245S- 
GGACUGAUAGGAGAGUCAUUGCAAA[dT]*[dT]


7
[mA][mC][mU][mC][mU][mC][mC][mU][mA]
7
(SEQ ID NO: 828)



[mU][mC][mA][mG][mU][mC][mC][dT]*[dT]





(SEQ ID NO: 454)







OSL245A-
[mU][2fU][mU][2fG][mC][2fA][mA][2fU][mG]
OSL245S- 
[2fG][mG][2fA][mC][2fU][mG][2fA][mU] 


8
[2fA][mC][2fU][mC][2fU][mC][2fC][mU][2fA]
8
[2fA][mG][2fG][mA][2fG][mA][2fG][mU]



[mU][2fC][mA][2fG][mU][2fC][mC][dT]*[dT]

[2fC][mA][2fU][mU][2fG][mC][2fA][mA]



(SEQ ID NO: 455)

[2fA][dT]*[dT](SEQ ID NO: 829)





OSL245A-
[mU][2fU][mU][2fG][mC][2fA][mA][2fU][mG]
OSL245S-
[2fG][mG][2fA][mC][2fU][mG][2fA][mU] 


9
[2fA][mC][2fU][mC][2fU][mC][2fC][mU][2fA]
9
[2fA][mG][2fG][mA][2fG][mA][2fG][mU]



[mU][2fC][mA][2fG][mU][2fC][mC](SEQ ID 

[2fC][mA][2fU][mU][2fG][mC][2fA][mA] 



NO: 456)

[2fA][dT]*[dT](SEQ ID NO: 830)





OSL245A-
[mU][2fU][mU][2fG][mC][2fA][mA][2fU][mG]
OSL245S- 
[2fG][mG][2fA][mC][2fU][mG][2fA][mU] 


10
[2fA][mC][2fU][mC][2fU][mC][2fC][mU][2fA]
10
[2fA][mG][2fG][mA][2fG][mA][2fG][mU]



[mU][2fC][mA][2fG][mU][2fC][mC][dT]*[dT]

[2fC][mA][2fU][mU][2fG][mC][2fA][mA]



(SEQ ID NO: 457)

[2fA](SEQ ID NO: 831)





OSL245A-
[mU][2fU][mU][2fG][mC][2fA][mA][2fU][mG]
OSL245S- 
[2fG][mG][2fA][mC][2fU][mG][2fA][mU] 


11
[2fA][mC][2fU][mC][2fU][mC][2fC][mU][2fA]
11
[2fA][mG][2fG][mA][2fG][mA][2fG][mU]



[mU][2fC][mA][2fC][mU][2fC][mC]

[2fC][mA][2fU][mU][2fG][mC][2fA][mA]



(SEQ IDNO: 458)

[2fA](SEQ ID NO: 832)





OSL245A-
[2fU][mU][2fU][mG][2fC][mA][2fA][mU][2fG]
OSL245S-
[mG][2fG][mA][2fC][mU][2fG][mA][2fU] 


12
[mA][2fC][mU][2fC][mU][2fC][mC][2fU][mA]
12
[mA][2fG][mG][2fA][mG][2fA][mG][2fU]



[2fU][mC][2fA][mG][2fU][mC][2fC][dT]*[dT]

[mC][2fA][mU][2fU][mG][2fC][mA][2fA] 



(SEQ ID NO: 459)

[mA][dT]*[dT](SEQ ID NO: 833)





OSL245A-
[mU][2fA][mU][2fC][mC][2fU][mA][2fA][mG]
OSL245S- 
[2fG][mG][2fA][mC][2fU][mG][2fA][mU] 


13
[2fU][mC][2fA][mC][2fA][mC][2fG][mU][2fU]
13
[2fA][mG][2fG][mA][2fG][mA][2fG][mU]



[mU][2fG][mA][2fC][mU][2fG][mC](SEQ ID

[2fC][mA][2fU][mU][2fG][mC][2fA][mA]



NO: 460)

[2fA](SEQ ID NO: 834)





OSL245A-
[mU][2fU][2fU][2fG][2fC][2fA][2fA][2fU]
OSL245S- 
[2fU][mG][2fA][mU][2fA][mG][2fG][mA] 


14
[2fG][2fA][2fC][2fU][2fC][2fU][2fC][2fC]
14
[2fG][mA][2fG][mU][2fC][mA][2fU][mU]



[2fU][2fA][2fU][2fC][2fA][2fG][2fU][2fC]

[2fG][mC][2fA][mA][2fA][dT]*[dT]  



[2fC][dT]*[dT](SEQ ID NO: 461)

(SEQ ID NO: 835)





OSL245A-
[mU][2fU][2fU][2fG][2fC][2fA][2fA][2fU]
OSL245S- 
[2fG][mA][2fG][mA][2fG][mU][2fC][mA] 


15
[2fG][2fA][2fC][2fU][2fC][2fU][2fC][2fC]
15
[2fU][mU][2fG][mC][2fA][mA][2fA]



[2fU][2fA][2fU][2fC][2fA][2fG][2fU][2fC]

[dT]*[dT](SEQ ID NO: 836)



[2fC][dT]*[dT](SEQ ID NO: 462)







OSL245A-
[mU][2fU][mU][2fG][mC][2fA][mA][2fU][mG]
OSL245S- 
[2fG][mA][2fG][mA][2fG][mU][2fC][mA] 


16
[2fA][mC][2fU][mC][2fU][mC][2fC][mU][2fA]
16
[2fU][mU][2fG][mC][2fA][mA][2fA]



[mU][2fC][mA][2fG][mU][2fC][mC][dT]*[dT]

[dT]*[dT](SEQ ID NO: 837)



(SEQ ID NO: 463)







OSL245A-
[mU][2fU][mU][2fG][mC][2fA][mA][2fU][mG]
OSL245S-
[2fG][mA][2fG][mA][2fG][mU][2fC][mA] 


17
[2fA][mC][2fU][mC][2fU][mC][2fC][mU][2fA]
17
[2fU][mU][2fG][mC][2fA][mA][2fA]  



[mU][2fC][mA][2fG][mU](SEQ ID NO: 464)

(SEQ ID NO: 838)





OSL245A-
[mU][2fU][mU][2fG][mC][2fA][mA][2fU][mG]
OSL245S-
ACCAGUUAUACUGGAUAUCUA[dT][dT]


18
[2fA][mC][2fU][mC][2fU][mC][2fC][2fU][2fA]
18
(SEQ ID NO: 840)



[2fU][2fC][2fA][2fG][2fU](SEQ ID NO: 465)







OSL246A
UAGAUAUCCAGUAUAACUGGU[dT][dT](SEQ 
OSL246S
GGGAGAAGUAUGGAAACAAAA[dT][dT]



ID NO: 466)

(SEQ ID NO: 841)





OSL247A
UUUUGUUUCCAUACUUCUCCC[dT][dT](SEQ 
OSL247S
AAGUAUGGAAACAAAAUAAAU[dT][dT]



ID NO: 467)

(SEQ ID NO: 842)





OSL248A
AUUUAUUUUGUUUCCAUACUU[dT][dT](SEQ 
OSL248S
UUCAUCAACUCAGAUACAAUA[dT][dT]



ID NO: 468)

(SEQ ID NO: 843)





OSL249A
UAUUGUAUCUGAGUUGAUGAA[dT][dT](SEQ 
OSL249S
CGGAGGAAAUUGCUAUUUUGA[dT][dT]



ID NO: 469)

(SEQ ID NO: 844)





OSL250A
UCAAAAUAGCAAUUUCCUCCG[dT][dT](SEQ 
OSL250S
AGGAAAUUGCUAUUUUGAUGA[dT][dT]



ID NO: 470)

(SEQ ID NO: 845)





OSL251A
UCAUCAAAAUAGCAAUUUCCU[dT][dT](SEQ 
OSL251S
CACCGGAAAAUAUUGUGAAAU[dT][dT]



ID NO: 471)

(SEQ ID NO: 846)





OSL252A
AUUUCACAAUAUUUUCCGGUG[dT][dT](SEQ 
OSL252S
UUGUGAAAUGGCGUUUUCAAA[dT][dT]



ID NO: 472)

(SEQ ID NO: 847)





05L253A
UUUGAAAACGCCAUUUCACAA[dT][dT](SEQ 
OSL253S
CAGGAUUCUUCCACUAUAGAA[dT][dT]



ID NO: 473)

(SEQ ID NO: 848)





OSL254A
UUCUAUAGUGGAAGAAUCCUG[dT][dT](SEQ 
OSL254S
GGCAGAUCUUAACAUGGAUAU[dT][dT]



ID NO: 474)

(SEQ ID NO: 849)





OSL255A
AUAUCCAUGUUAAGAUCUGCC[dT][dT](SEQ 
OSL255S
GGCAAUGAGUGAAGACUUUGU[dT][dT]



ID NO: 475)

(SEQ ID NO: 850)





OSL256A
ACAAAGUCUUCACUCAUUGCC[dT][dT](SEQ 
OSL256S
AUCUGAAAAUGUGGAUAAUAA[dT][dT]



ID NO: 476)

(SEQ ID NO: 851)





OSL257A
UUAUUAUCCACAUUUUCAGAU[dT][dT](SEQ 
OSL257S
ACCAGUUAUACUGGAUAUCUA[dT][dT]



ID NO: 477)

(SEQ ID NO: 840)





OSL258A
UCUUAUUAUCCACAUUUUCAG[dT][dT](SEQ 
OSL258S
CUGAAAAUGUGGAUAAUAAGA[dT][dT]



ID NO: 478)

(SEQ ID NO: 852)





OSL259A
UCCAUAAUUCUUAUUAUCCAC[dT][dT](SEQ 
OSL259S
GUGGAUAAUAAGAAUUAUGGA[dT][dT]



ID NO: 479)

(SEQ ID NO: 853)





OSL260A
UUCCAUAAUUCUUAUUAUCCA[dT][dT](SEQ 
OSL260S
UGGAUAAUAAGAAUUAUGGAA[dT][dT]



ID NO: 480)

(SEQ ID NO: 854)





OSL261A
UUUUCGUUUGAAGAGAUUCCA[dT][dT](SEQ 
OSL261S
UGGAAUCUCUUCAAACGAAAA[dT][dT]



ID NO: 481)

(SEQ ID NO: 855)





OSL262A
UAGAUUUUCGUUUGAAGAGAU[dT][dT](SEQ 
OSL262S
AUCUCUUCAAACGAAAAUCUA[dT][dT]



ID NO: 482)

(SEQ ID NO: 856)





OSL263A
UUUAGAUUUUCGUUUGAAGAG[dT][dT](SEQ 
OSL263S
CUCUUCAAACGAAAAUCUAAA[dT][dT]



ID NO: 483)

(SEQ ID NO: 857)





OSL264A
UUGUUUAGAUUUUCGUUUGAA[dT][dT](SEQ 
OSL264S
UUCAAACGAAAAUCUAAACAA[dT][dT]



ID NO: 484)

(SEQ ID NO: 858)





OSL265A
UAGUUUGUUUAGAUUUUCGUU[dT][dT]
OSL265S
AACGAAAAUCUAAACAAACUA[dT][dT]



(SEQ ID NO: 485)

(SEQ ID NO: 859)





0SL266A
UUUCAAAGUUGGUAGUUUGUU[dT][dT](SEQ 
OSL266S
AACAAACUACCAACUUUGAAA[dT][dT]



ID NO: 486)

(SEQ ID NO: 860)





OSL267A
AUUGGAUUUUCAAAGUUGGUA[dT][dT](SEQ 
OSL267S
UACCAACUUUGAAAAUCCAAU[dT][dT]



ID NO: 487)

(SEQ ID NO: 861)





OSL268A
AUAGAUUGGAUUUUCAAAGUU[dT][dT](SEQ 
OSL268S
AACUUUGAAAAUCCAAUCUAU[dT][dT]



ID NO: 488)

(SEQ ID NO: 862)





OSL269A
UUAAAAGUGUCUUCUGUUGCA[dT][dT](SEQ 
OSL269S
UGCAACAGAAGACACUUUUAA[dT][dT]



ID NO: 489)

(SEQ ID NO: 863)





OSL270A
UCUUUAACAAGAUUUGCGGUG[dT][dT](SEQ 
OSL270S
CACCGCAAAUCUUGUUAAAGA[dT][dT]



ID NO: 490)

(SEQ ID NO: 864)





OSL271A
UCUUCUUUAACAAGAUUUGCG[dT][dT](SEQ 
OSL271S
CGCAAAUCUUGUUAAAGAAGA[dT][dT]



ID NO: 491)

(SEQ ID NO: 865)





OSL272A
UGGUAUAGCUAUACUUCAGAG[dT][dT](SEQ 
OSL272S
CUCUGAAGUAUAGCUAUACCA[dT][dT]



ID NO: 492)

(SEQ ID NO: 866)





OSL273A
AUUAUUCCCUAAAUAGCUGGU[dT][dT](SEQ 
OSL273S
ACCAGCUAUUUAGGGAAUAAU[dT][dT]



ID NO: 493)

(SEQ ID NO: 867)





OSL274A
UAAUUAUUCCCUAAAUAGCUG[dT][dT](SEQ 
OSL274S
CAGCUAUUUAGGGAAUAAUUA[dT][dT]



ID NO: 494)

(SEQ ID NO: 868)





OSL275A
AUAUAUGUGCAAAAGUGUGUU[dT][dT](SEQ 
OSL275S
AACACACUUUUGCACAUAUAU[dT][dT]



ID NO: 495)

(SEQ ID NO: 869)





OSL276A
AAAUAUAUGUGCAAAAGUGUG[dT][dT](SEQ 
OSL276S
CACACUUUUGCACAUAUAUUU[dT][dT]



ID NO: 496)

(SEQ ID NO: 870)





OSL277A
AACUUUUUUCAUCUGUUUGUA[dT][dT](SEQ 
OSL277S
UACAAACAGAUGAAAAAAGUU[dT][dT]



ID NO: 497)

(SEQ ID NO: 871)





OSL278A
UAAAGUACUGAAUGUUAACUU[dT][dT](SEQ 
OSL278S
AAGUUAACAUUCAGUACUUUA[dT][dT]



ID NO: 498)

(SEQ ID NO: 872)





OSL279A
UUUUUUUCAUAAAGUACUGAA[dT][dT](SEQ 
OSL279S
UUCAGUACUUUAUGAAAAAAA[dT][dT]



ID NO: 499)

(SEQ ID NO: 873)





OSL280A
UAUUUUUUUCAUAAAGUACUG[dT][dT](SEQ 
OSL280S
CAGUACUUUAUGAAAAAAAUA[dT][dT]



ID NO: 500)

(SEQ ID NO: 874)





OSL281A
AUUUGUAAAAAUAUGAGACGG[dT][dT](SEQ 
OSL281S
CCGUCUCAUAUUUUUACAAAU[dT][dT]



ID NO: 501)

(SEQ ID NO: 875)





OSL282A
ACAUUGUGAUAAUUAUUUGUA[dT][dT](SEQ 
OSL282S
UACAAAUAAUUAUCACAAUGU[dT][dT]



ID NO: 502)

(SEQ ID NO: 876)





OSL283A
AUACAUAUAGUACAUUGUGAU[dT][dT](SEQ 
OSL283S
AUCACAAUGUACUAUAUGUAU[dT][dT]



ID NO: 503)

(SEQ ID NO: 877)





OSL284A
AUAUACAUAUAGUACAUUGUG[dT][dT](SEQ 
OSL284S
CACAAUGUACUAUAUGUAUAU[dT][dT]



ID NO: 504)

(SEQ ID NO: 878)





OSL285A
AAAGAUAUACAUAUAGUACAU[dT][dT](SEQ 
OSL285S
AUGUACUAUAUGUAUAUCUUU[dT][dT]



ID NO: 505)

(SEQ ID NO: 879)





OSL286A
AUUACCUUCAGACAACUUCAG[dT][dT](SEQ 
OSL286S
CUGAAGUUGUCUGAAGGUAAU[dT][dT]



ID NO: 506)

(SEQ ID NO: 880)





OSL287A
UAUUUAUAGUAUUACCUUCAG[dT][dT](SEQ 
OSL287S
CUGAAGGUAAUACUAUAAAUA[dT][dT]



ID NO: 507)

(SEQ ID NO: 881)





OSL288A
UAAUCUUUCCAAAAUUUACAA[dT][dT](SEQ 
OSL288S
UUGUAAAUUUUGGAAAGAUUA[dT][dT]



ID NO: 508)

(SEQ ID NO: 882)





OSL289A
AGUAACAGGAUAAUCUUUCCA[dT][dT](SEQ 
OSL289S
UGGAAAGAUUAUCCUGUUACU[dT][dT]



ID NO: 509)

(SEQ ID NO: 883)





OSL290A
AUUCAGUAACAGGAUAAUCUU[dT][dT](SEQ 
OSL290S
AAGAUUAUCCUGUUACUGAAU[dT][dT]



ID NO: 510)

(SEQ ID NO: 884)





OSL291A
UAGCAAAUUCAGUAACAGGAU[dT][dT](SEQ 
OSL291S
AUCCUGUUACUGAAUUUGCUA[dT][dT]



ID NO: 511)

(SEQ ID NO: 885)





OSL292A
UUAGCAAAUUCAGUAACAGGA[dT][dT](SEQ 
OSL292S
UCCUGUUACUGAAUUUGCUAA[dT][dT]



ID NO: 512)

(SEQ ID NO: 886)





OSL293A
UCUUUAUUAGCAAAUUCAGUA[dT][dT](SEQ 
OSL293S
UACUGAAUUUGCUAAUAAAGA[dT][dT]



ID NO: 513)

(SEQ ID NO: 887)





OSL294A
AUCAUUUACUAUAAUGAUCAC[dT][dT](SEQ 
OSL294S
GUGAUCAUUAUAGUAAAUGAU[dT][dT]



ID NO: 514)

(SEQ ID NO: 888)





OSL295A
UUCUUGUUGGAUCAUUUACUA[dT][dT](SEQ 
OSL295S
UAGUAAAUGAUCCAACAAGAA[dT][dT]



ID NO: 515)

(SEQ ID NO: 889)





OSL296A
UCAAUUCCUUUUCUUGUUGGA[dT][dT](SEQ 
OSL296S
UCCAACAAGAAAAGGAAUUGA[dT][dT]



ID NO: 516)

(SEQ ID NO: 890)





OSL297A
AUUUUAUAGGAAAUAUGAGUG[dT][dT](SEQ 
OSL297S
CACUCAUAUUUCCUAUAAAAU[dT][dT]



ID NO: 517)

(SEQ ID NO: 891)





OSL298A
UAAUUUUAUAGGAAAUAUGAG[dT][dT](SEQ 
OSL298S
CUCAUAUUUCCUAUAAAAUUA[dT][dT]



ID NO: 518)

(SEQ ID NO: 892)





OSL299A
UGCUAAUGUGUAAAAAUGGAC[dT][dT](SEQ 
OSL299S
GUCCAUUUUUACACAUUAGCA[dT][dT]



ID NO: 519)

(SEQ ID NO: 893)





OSL300A
UUGAACAUUAAUUAAGUGCUA[dT][dT](SEQ 
OSL300S
UAGCACUUAAUUAAUGUUCAA[dT][dT]



ID NO: 520)

(SEQ ID NO: 894)





OSL301A
AUUGAACAUUAAUUAAGUGCU[dT][dT](SEQ 
OSL301S
AGCACUUAAUUAAUGUUCAAU[dT][dT]



ID NO: 521)

(SEQ ID NO: 895)





OSL302A
AUAUUGAACAUUAAUUAAGUG[dT][dT](SEQ 
OSL302S
CACUUAAUUAAUGUUCAAUAU[dT][dT]



ID NO: 522)

(SEQ ID NO: 896)





OSL303A
AAAUUGACAUGUAAUAUUGAA[dT][dT](SEQ 
OSL303S
UUCAAUAUUACAUGUCAAUUU[dT][dT]



ID NO: 523)

(SEQ ID NO: 897)





OSL304A
AUCAACAUAGCCAUUAAUCAA[dT][dT](SEQ 
OSL304S
UUGAUUAAUGGCUAUGUUGAU[dT][dT]



ID NO: 524)

(SEQ ID NO: 898)





OSL305A
UCUAUACAACACAUAGUGGCC[dT][dT](SEQ 
OSL305S
GGCCACUAUGUGUUGUAUAGA[dT][dT]



ID NO: 525)

(SEQ ID NO: 899)





OSL306A
AUGUCUAUACAACACAUAGUG[dT][dT](SEQ 
OSL306S
CACUAUGUGUUGUAUAGACAU[dT][dT]



ID NO: 526)

(SEQ ID NO: 900)





OSL307A
ACUGAAUUGCUUUUCCUACCU[dT][dT](SEQ 
OSL307S
AGGUAGGAAAAGCAAUUCAGU[dT][dT]



ID NO: 527)

(SEQ ID NO: 901)





OSL308A
AAAUAAAAAUGUUGUCUUGGC[dT][dT](SEQ 
OSL308S
GCCAAGACAACAUUUUUAUUU[dT][dT]



ID NO: 528)

(SEQ ID NO: 902)





OSL309A
AUCACAAAUAAAAAUGUUGUC[dT][dT](SEQ 
OSL309S
GACAACAUUUUUAUUUGUGAU[dT][dT]



ID NO: 529)

(SEQ ID NO: 903)





OSL310A
AAUGAUAUGGGAUUUCCUCAU[dT][dT](SEQ 
OSL310S
AUGAGGAAAUCCCAUAUCAUU[dT][dT]



ID NO: 530)

(SEQ ID NO: 904)





OSL311A
AUUAACCACAAACUCAAUGCA[dT][dT](SEQ 
OSL311S
UGCAUUGAGUUUGUGGUUAAU[dT][dT]



ID NO: 531)

(SEQ ID NO: 905)





OSL312A
UUUAAUUAACCACAAACUCAA[dT][dT](SEQ 
OSL312S
UUGAGUUUGUGGUUAAUUAAA[dT][dT]



ID NO: 532)

(SEQ ID NO: 906)





OSL313A
UUUGGUUUCAGAAAUUCAGCU[dT][dT](SEQ 
OSL313S
AGCUGAAUUUCUGAAACCAAA[dT][dT]



ID NO: 533)

(SEQ ID NO: 907)





OSL314A
UUAUGAAGACACAGAUUUGGU[dT][dT](SEQ 
OSL314S
ACCAAAUCUGUGUCUCAUAA[dT][dT]



ID NO: 534)

(SEQ ID NO: 908)





OSL315A
UUUCAUAGAAACAAAAACCCA[dT][dT](SEQ 
OSL315S
UGGGUUUUUGUUUCUAUGAAA[dT][dT]



ID NO: 535)

(SEQ ID NO: 909)





OSL316A
AUGAUAUUUUCAUAGAAACAA[dT][dT](SEQ 
OSL316S
UUGUUUCUAUGAAAAUAUCAU[dT][dT]



ID NO: 536)

(SEQ ID NO: 910)





OSL317A
UAUAAUGAUAUUUUCAUAGAA[dT][dT](SEQ 
OSL317S
UUCUAUGAAAAUAUCAUUAUA[dT][dT]



ID NO: 537)

(SEQ ID NO: 911)





OSL318A
UGAUUAUAAUGAUAUUUUCAU[dT][dT](SEQ 
OSL318S
AUGAAAAUAUCAUUAUAAUCA[dT][dT]



ID NO: 538)

(SEQ ID NO: 912)





OSL319A
AUAAAUAGUGAUUAUAAUGAU[dT][dT](SEQ 
OSL319S
AUCAUUAUAAUCACUAUUUAU[dT][dT]



ID NO: 539)

(SEQ ID NO: 913)





OSL320A
AAAAGCUUAAUAAGAAUGGUU[dT][dT](SEQ 
OSL320S
AACCAUUCUUAUUAAGCUUUU[dT][dT]



ID NO: 540)

(SEQ ID NO: 914)





OSL321A
AAAAAGCUUAAUAAGAAUGGU[dT][dT](SEQ 
OSL321S
ACCAUUCUUAUUAAGCUUUUU[dT][dT]



ID NO: 541)

(SEQ ID NO: 915)





OSL322A
UAAAUGUACACAUUUAGCCAC[dT][dT](SEQ 
OSL322S
GUGGCUAAAUGUGUACAUUUA[dT][dT]



ID NO: 542)

(SEQ ID NO: 916)





OSL323A
AUAAAUGUACACAUUUAGCCA[dT][dT](SEQ 
OSL323S
UGGCUAAAUGUGUACAUUUAU[dT][dT]



ID NO: 543)

(SEQ ID NO: 917)





OSL324A
UAUAAAUGUACACAUUUAGCC[dT][dT](SEQ 
OSL324S
GGCUAAAUGUGUACAUUUAUA[dT][dT]



ID NO: 544)

(SEQ ID NO: 918)





OSL325A
UUCUAAUAUAAAUGUACACAU[dT][dT](SEQ 
OSL325S
AUGUGUACAUUUAUAUUAGAA[dT][dT]



ID NO: 545)

(SEQ ID NO: 919)





OSL326A
AAGAAUUAAAGAAAAGAUCUG[dT][dT](SEQ 
OSL326S
CAGAUCUUUUCUUUAAUUCUU[dT][dT]



ID NO: 546)

(SEQ ID NO: 920)





OSL327A
AAUAAGAAUUAAAGAAAAGAU[dT][dT](SEQ 
OSL327S
AUCUUUUCUUUAAUUCUUAUU[dT][dT]



ID NO: 547)

(SEQ ID NO: 921)





OSL328A
AAACCAAUAAGAAUUAAAGAA[dT][dT](SEQ 
OSL328S
UUCUUUAAUUCUUAUUGGUUU[dT][dT]



ID NO: 548)

(SEQ ID NO: 922)





OSL329A
ACUAUACCCACUAUUUAAGAG[dT][dT](SEQ 
OSL329S
CUCUUAAAUAGUGGGUAUAGU[dT][dT]



ID NO: 549)

(SEQ ID NO: 923)





OSL330A
ACAAAUGUGCAAUAUUAGCAC[dT][dT](SEQ 
OSL330S
GUGCUAAUAUUGCACAUUUGU[dT][dT]



ID NO: 550)

(SEQ ID NO: 924)





OSL331A
AACAAAUGUGCAAUAUUAGCA[dT][dT](SEQ 
OSL331S
UGCUAAUAUUGCACAUUUGUU[dT][dT]



ID NO: 551)

(SEQ ID NO: 925)





OSL332A
AUGUUUCAUUCAUUCAUCCAU[dT][dT](SEQ 
OSL332S
AUGGAUGAAUGAAUGAAACAU[dT][dT]



ID NO: 552)

(SEQ ID NO: 926)





OSL333A
AGUAGUAUAUGUUUCAUUCAU[dT][dT](SEQ 
OSL333S
AUGAAUGAAACAUAUACUACU[dT][dT]



ID NO: 553)

(SEQ ID NO: 927)





OSL334A
AAUCAGUAGUAUAUGUUUCAU[dT][dT](SEQ 
OSL334S
AUGAAACAUAUACUACUGAUU[dT][dT]



ID NO: 554)

(SEQ ID NO: 928)





OSL335A
AAAUAAUCAGUAGUAUAUGUU[dT][dT](SEQ 
OSL335S
AACAUAUACUACUGAUUAUUU[dT][dT]



ID NO: 555)

(SEQ ID NO: 929)





OSL336A
AAUCAAAGUAAUUACAGUCAG[dT][dT](SEQ 
OSL336S
CUGACUGUAAUUACUUUGAUU[dT][dT]



ID NO: 556)

(SEQ ID NO: 930)





OSL337A
AUCUAAUCAAAGUAAUUACAG[dT][dT](SEQ 
OSL337S
CUGUAAUUACUUUGAUUAGAU[dT][dT]



ID NO: 557)

(SEQ ID NO: 931)





OSL338A
UUAUUUCCAGUUGUUUAUCUA[dT][dT](SEQ 
OSL338S
UAGAUAAACAACUGGAAAUAA[dT][dT]



ID NO: 558)

(SEQ ID NO: 932)





OSL339A
UUAUUAGAACUUUUUCAGCAG[dT][dT](SEQ 
OSL339S
CUGCUGAAAAAGUUCUAAUAA[dT][dT]



ID NO: 559)

(SEQ ID NO: 933)





OSL340A
UUUAUUAGAACUUUUUCAGCA[dT][dT](SEQ 
OSL340S
UGCUGAAAAAGUUCUAAUAAA[dT][dT]



ID NO: 560)

(SEQ ID NO: 934)
















TABLE 5A







CD320 ANTISENSE TARGET















start



SEQ



target
posi-



ID


ID
position
tion
target sequence
Location
Size
NO:





OSC1
   2-24
   2
TGCGCGTGCGCAGGGATAAGAGA
5′ UTR 
21
 996





OSC2
   4-26
   4
CGCGTGCGCAGGGATAAGAGAGC
5′ UTR
21
 997





OSC3
  48-70
  48
GCGCCGCTGTGGGGACAGCATGA
5′ UTR
21
 998





OSC4
  63-85
  63
CAGCATGAGCGGCGGTTGGATGG
5′ UTR-
21
 999






CDS







OSC5
 164-186
 164
CCGCCGCGAGCCCGCTTTCCACC
CDS
21
1000





OSC6
 222-244
 222
CTCGTGCCCACCCACCAAGTTCC
CDS
21
1001





OSC7
 225-247
 225
GTGCCCACCCACCAAGTTCCAGT
CDS
21
1002





OSC8
 227-249
 227
GCCCACCCACCAAGTTCCAGTGC
CDS
21
1003





OSC9
 244-266
 244
CAGTGCCGCACCAGTGGCTTATG
CDS
21
1004





OSC10
 249-271
 249
CCGCACCAGTGGCTTATGCGTGC
CDS
21
1005





OSC11
 282-304
 282
GCGCTGCGACAGGGACTTGGACT
CDS
21
1006





OSC12
 306-328
 306
CAGCGATGGCAGCGATGAGGAGG
CDS
21
1007





OSC13
 390-412
 390
CCCCTGCACCGGCGTCAGTGACT
CDS
21
1008





OSC14
 411-433
 411
CTGCTCTGGGGGAACTGACAAGA
CDS
21
1009





OSC15
 414-436
 414
CTCTGGGGGAACTGACAAGAAAC
CDS
21
1010





OSC16
 417-439
 417
TGGGGGAACTGACAAGAAACTGC
CDS
21
1011





OSC17
 422-466
 422
GAACTGACAAGAAACTGCGCAACTG
CDS
25
1012





OSC18
 483-505
 483
CACGCTGAGCGATGACTGCATTC
CDS
21
1013





OSC19
 484-506
 484
ACGCTGAGCGATGACTGCATTCC
CDS
21
1014





OSC20
 487-509
 487
CTGAGCGATGACTGCATTCCACT
CDS
21
1015





OSC21
 489-511
 489
GAGCGATGACTGCATTCCACTCA
CDS
21
1016





OSC22
 520-542
 520
TGCGACGGCCACCCAGACTGTCC
CDS
21
1017





OSC23
 556-578
 556
GAGCTCGGCTGTGGAACCAATGA
CDS
21
1018





OSC24
 560-582
 560
TCGGCTGTGGAACCAATGAGATC
CDS
21
1019





OSC25
 561-583
 561
CGGCTGTGGAACCAATGAGATCC
CDS
21
1020





OSC26
 564-586
 564
CTGTGGAACCAATGAGATCCTCC
CDS
21
1021





OSC27
 626-648
 626
TGGAGAGTGTCACCTCTCTCAGG
CDS
21
1022





OSC28
 641-663
 641
CTCTCAGGAATGCCACAACCATG
CDS
21
1023





OSC29
 689-711
 689
TCCCCTCTGTCGGGAATGCCACA
CDS
21
1024





OSC30
 695-717
 695
CTGTCGGGAATGCCACATCCTCC
CDS
21
1025





OSC31
 719-741
 719
CTGCCGGAGACCAGTCTGGAAGC
CDS
21
1026





OSC32
 741-763
 741
CCCAACTGCCTATGGGGTTATTG
CDS
21
1027





OSC33
 767-789
 767
CTGCTGCGGTGCTCAGTGCAAGC
CDS
21
1028





OSC34
 795-817
 795
CACCGCCACCCTCCTCCTTTTGT
CDS
21
1029





OSC35
 797-819
 797
CCGCCACCCTCCTCCTTTTGTCC
CDS
21
1030





OSC36
 843-865
 843
CCGCCCACTGGGGTTACTGGTGG
CDS
21
1031





OSC37
 852-874
 852
GGGGTTACTGGTGGCCATGAAGG
CDS
21
1032





OSC38
 857-879
 857
TACTGGTGGCCATGAAGGAGTCC
CDS
21
1033





OSC39
 874-896
 874
GAGTCCCTGCTGCTGTCAGAACA
CDS
21
1034





OSC40
 878-900
 878
CCCTGCTGCTGTCAGAACAGAAG
CDS
21
1035





OSC41
 881-903
 881
TGCTGCTGTCAGAACAGAAGACC
CDS
21
1036





OSC42
 884-906
 884
TGCTGTCAGAACAGAAGACCTCG
CDS
21
1037





OSC43
 901-923
 901
ACCTCGCTGCCCTGAGGACAAGC
CDS
21
1038





OSC44
 907-929
 907
CTGCCCTGAGGACAAGCACTTGC
CDS-
21
1039






3′ UTR







OSC45
 971-993
 971
GAGCAGTGATGCGGATGGGTACC
3′ UTR
21
1040





OSC46
 995-
 995
GGGCACACCAGCCCTCAGAGACC
3′ UTR
21
1041



1017










OSC47
1006-
1006
CCCTCAGAGACCTGAGCTCTT
3′ UTR
21
1393



1026










OSC48
1006-
1006
CCCTCAGAGACCTGAGCTCTTCT
3′ UTR
21
1042



1028










OSC49
1008-
1008
CTCAGAGACCTGAGCTCTTCTGG
3′ UTR
21
1043



1030










OSC50
1082-
1082
GGGTCCCTGGACACTCCCTATGG
3′ UTR
21
1044



1104










OSC51
1085-
1085
TCCCTGGACACTCCCTATGGAGA
3′ UTR
21
1045



1107










OSC52
1088-
1088
CTGGACACTCCCTATGGAGATCC
3′ UTR
21
1046



1110










OSC53
1129-
1129
ACCTGCCACAGCCAGAACTGAGG
3′ UTR
21
1047



1151










OSC54
1163-
1163
GGCAGCTCCCAGGGGGTAGAACG
3′ UTR
21
1048



1185










OSC55
1176-
1176
GGGTAGAACGGCCCTGTGCTTAA
3′ UTR
21
1049



1198










OSC56
1182-
1182
AACGGCCCTGTGCTTAAGACACT
3′ UTR
21
1050



1204










OSC57
1184-
1184
CGGCCCTGTGCTTAAGACACTCC
3′ UTR
21
1051



1206










OSC58
1237-
1237
TTGCTTCACATCCTCAAAAAAAA
3′ UTR
21
1052



1259










OSC59
1238-
1238
TGCTTCACATCCTCAAAAAAAAA
3′ UTR
21
1053



1260
















TABLE 6A







LRP2 ANTISENSE TARGET














Target
Start



SEQ



posi-
posi-

Loca-

ID


ID
tion
tion
Target sequence
tion
Size
NO:





OSL1
512-534
  512
GTCAAGATTGCTCACAAAGTACA
CDS
21
1054





OSL2
566-588
  566
GTCAGTGTATCCCAAGTGAATAC
CDS
21
1055





OSL3
763-785
  763
TTGCACAATGAGTTTTCATGTGG
CDS
21
1056





OSL4
939-961
  939
TGGAGAAGATGACTGTAAAGATA
CDS
21
1057





OSL5
941-963
  941
GAGAAGATGACTGTAAAGATAAT
CDS
21
1058





OSL6
992-
  992
CTCATGATGTTCATAAATGTTCC
CDS
21
1059



1014










OSL7
1053-
 1053
CTCCATTTATAAAGTTTGTGATG
CDS
21
1060



1075










OSL8
1054-
 1054
TCCATTTATAAAGTTTGTGATGG
CDS
21
1061



1076










OSL9
1119-
 1119
TACCGGAAAATACTGTAGTATGA
CDS
21
1062



1141










OSL10
1121-
 1121
CCGGAAAATACTGTAGTATGACT
CDS
21
1063



1143










OSL11
1267-
 1267
TGCCAGATATGGGGAATTTGTGA
CDS
21
1064



1289










OSL12
1329-
 1329
CTGTGAAGAAGGGTATATCTTGG
CDS
21
1065



1351










OSL13
1356-
 1356
TGGACAGTATTGCAAAGCTAATG
CDS
21
1066



1378










OSL14
1360-
 1360
CAGTATTGCAAAGCTAATGATTC
CDS
21
1067



1382










OSL15
1366-
 1366
TGCAAAGCTAATGATTCCTTTGG
CDS
21
1068



1388










OSL16
1423-
 1423
TTGTTAATTGGTGATATTCATGG
CDS
21
1069



1445










OSL17
1541-
 1541
CCGTGCAAAATAAGGTTTTTTCA
CDS
21
1070



1563










OSL18
1543-
 1543
GTGCAAAATAAGGTTTTTTCAGT
CDS
21
1071



1565










OSL19
1552-
 1552
AAGGTTTTTTCAGTTGACATTAA
CDS
21
1072



1574










OSL20
1553-
 1553
AGGTTTTTTCAGTTGACATTAAT
CDS
21
1073



1575










OSL21
1562-
 1562
CAGTTGACATTAATGGTTTAAAT
CDS
21
1074



1584










OSL22
1565-
 1565
TTGACATTAATGGTTTAAATATC
CDS
21
1075



1587










OSL23
1638-
 1638
CTGGGTTAATAATAAAATCTATC
CDS
21
1076



1660










OSL24
1639-
 1639
TGGGTTAATAATAAAATCTATCT
CDS
21
1077



1661










OSL25
1680-
 1680
CCGCATAGATATGGTAAATTTGG
CDS
21
1078



1702










OSL26
1719-
 1719
TACCCTTATAACTGAAAACTTGG
CDS
21
1079



1741










OSL27
1767-
 1767
CCCAACTGTTGGTTATTTATTTT
CDS
21
1080



1789










OSL28
1772-
 1772
CTGTTGGTTATTTATTTTTCTCA
CDS
21
1081



1794










OSL29
1895-
 1895
GGGTAACTCTGGATATGATATCG
CDS
21
1082



1917










OSL30
1942-
 1942
CGGTTTGATTACATTGAAACTGT
CDS
21
1083



1964










OSL31
1946-
 1946
TTGATTACATTGAAACTGTAACT
CDS
21
1084



1968










OSL32
1951-
 1951
TACATTGAAACTGTAACTTATGA
CDS
21
1085



1973










OSL33
2187-
 2187
TGCTACCAATCCGTGTAAAGATA
CDS
21
1086



2209










OSL34
2437-
 2437
TTCTTTGTCGGGATTGATTTTGA
CDS
21
1087



2459










OSL35
2469-
 2469
CAGCACTATCTTTTTTTCAGATA
CDS
21
1088



2491










OSL36
2470-
 2470
AGCACTATCTTTTTTTCAGATAT
CDS
21
1089



2492










OSL37
2491-
 2491
ATGTCAAAACACATGATTTTTAA
CDS
21
1090



2513










OSL38
2498-
 2498
AACACATGATTTTTAAGCAAAAG
CDS
21
1091



2520










OSL39
2558-
 2558
GGGTGGAAAATGTTGAAAGTTTG
CDS
21
1092



2580










OSL40
2579-
 2579
TGGCTTTTGATTGGATTTCAAAG
CDS
21
1093



2601










OSL41
2580-
 2580
GGCTTTTGATTGGATTTCAAAGA
CDS
21
1094



2602










OSL42
2589-
 2589
TTGGATTTCAAAGAATCTCTATT
CDS
21
1095



2611










OSL43
2590-
 2590
TGGATTTCAAAGAATCTCTATTG
CDS
21
1096



2612










OSL44
2670-
 2670
CACAGTAGTTCAGTATTTAAATA
CDS
21
1097



2692










OSL45
2672-
 2672
CAGTAGTTCAGTATTTAAATAAC
CDS
21
1098



2694










OSL46
2714-
 2714
ATCCTTTTGCCGGGTATCTATTC
CDS
21
1099



2736










OSL47
2800-
 2800
CCTGTAATAAACACTACTCTT
CDS
21
1394



2820










OSL48
2869-
 2869
TGGGTAGATGCCTATTTTGATAA
CDS
21
1100



2891










OSL49
2877-
 2877
TGCCTATTTTGATAAAATTGAGC
CDS
21
1101



2899










OSL50
2971-
 2971
GCCATCTTTGGAGAGCATTTATT
CDS
21
1102



2993










OSL51
3074-
 3074
TTGCTTACATACTGCATTTGAAA
CDS
21
1103



3096










OSL52
3075-
 3075
TGCTTACATACTGCATTTGAAAT
CDS
21
1104



3097










OSL53
3120-
 3120
TGGTTCTAACGCCTGTAATCAAC
CDS
21
1105



3142










OSL54
3356-
 3356
TCGATGATTGTCATGATAACAGT
CDS
21
1106



3378










OSL55
3546-
 3546
CACCCAATACACCTGTGATAATC
CDS
21
1107



3568










OSL56
3547-
 3547
ACCCAATACACCTGTGATAATCA
CDS
21
1108



3569










OSL57
3569-
 3569
ACCAGTGTATCTCAAAGAACTGG
CDS
21
1109



3591










OSL58
3629-
 3629
ATGAAAAGAACTGCAATTCGACA
CDS
21
1110



3651










OSL59
3681-
 3681
CCCCAATCATCGATGTATTGACC
CDS
21
1111



3703










OSL60
3690-
 3690
TCGATGTATTGACCTATCGTTTG
CDS
21
1112



3712










OSL61
3693-
 3693
ATGTATTGACCTATCGTTTGTCT
CDS
21
1113



3715










OSL62
3828-
 3828
TCGTTGTGATGGTGTTTTTGATT
CDS
21
1114



3850










OSL63
3945-
 3945
CCCGAACTTCTGGGAATGTGATG
CDS
21
1115



3967










OSL64
3946-
 3946
CCGAACTTCTGGGAATGTGATGG
CDS
21
1116



3968










OSL65
4015-
 4015
CCCAAGACTTGCCCTTCATCATA
CDS
21
1117



4037










OSL66
4348-
 4348
TTCTTACTTGCCAATGATTCTAA
CDS
21
1118



4370










OSL67
4379-
 4379
AAGACATAGATGAATGTGATATT
CDS
21
1119



4401










OSL68
4381-
 4381
GACATAGATGAATGTGATATTCT
CDS
21
1120



4403










OSL69
4455-
 4455
GTGTGATACAGGCTACATGTTAG
CDS
21
1121



4477










OSL70
4464-
 4464
AGGCTACATGTTAGAAAGTGATG
CDS
21
1122



4486










OSL71
4465-
 4465
GGCTACATGTTAGAAAGTGATGG
CDS
21
1123



4487










OSL72
4597-
 4597
GTCGAGAATGGTTCTTACATTGT
CDS
21
1124



4619










OSL73
4600-
 4600
GAGAATGGTTCTTACATTGTAGC
CDS
21
1125



4622










OSL74
4612-
 4612
TACATTGTAGCTGTTGATTTTGA
CDS
21
1126



4634










OSL75
4620-
 4620
AGCTGTTGATTTTGATTCAATTA
CDS
21
1127



4642










OSL76
4622-
 4622
CTGTTGATTTTGATTCAATTAGT
CDS
21
1128



4644










OSL77
4635-
 4635
TTCAATTAGTGGTCGTATCTTTT
CDS
21
1129



4657










OSL78
4732-
 4732
AGCATCATCTTGACTGAAACTAT
CDS
21
1130



4754










OSL79
4735-
 4735
ATCATCTTGACTGAAACTATTGC
CDS
21
1131



4757










OSL80
4741-
 4741
TTGACTGAAACTATTGCAATAGA
CDS
21
1132



4763










OSL81
4743-
 4743
GACTGAAACTATTGCAATAGATT
CDS
21
1133



4765










OSL82
4745-
 4745
CTGAAACTATTGCAATAGATTGG
CDS
21
1134



4767










OSL83
4806-
 4806
AACAATTGAAGTCTCCAAAATTG
CDS
21
1135



4828










OSL84
4847-
 4847
TGCTGATTAGTAAAAACCTAACA
CDS
21
1136



4869










OSL85
4883-
 4883
TAGCATTAGATCCCAGAATGAAT
CDS
21
1137



4905










OSL86
4884-
 4884
AGCATTAGATCCCAGAATGAATG
CDS
21
1138



4906










OSL87
4896-
 4896
CAGAATGAATGAGCATCTACTGT
CDS
21
1139



4918










OSL88
5077-
 5077
ATGGACTTTTGTGATTATAATGG
CDS
21
1140



5099










OSL89
5080-
 5080
GACTTTTGTGATTATAATGGACA
CDS
21
1141



5102










OSL90
5126-
 5126
GTGATTTGATTATACGGCA
CDS
19
1142



5144










OSL91
5241-
 5241
GTCAGTTGTAATGTATAATATTC
CDS
21
1143



5263










OSL92
5246-
 5246
TTGTAATGTATAATATTCAATGG
CDS
21
1144



5268










OSL93
5291-
 5291
ATCCTTCGAAACAACCAAATTCC
CDS
21
1145



5313










OSL94
5295-
 5295
TTCGAAACAACCAAATTCCGTGA
CDS
21
1146



5317










OSL95
5447-
 5447
AACCTTTCTTAATAACTGTAAGG
CDS
21
1147



5469










OSL96
5467-
 5467
AGGCAACATATAATTTTTGGAAT
CDS
21
1148



5489










OSL97
5468-
 5468
GGCAACATATAATTTTTGGAATC
CDS
21
1149



5490










OSL98
5538-
 5538
AGGGATACAGAATGGTTTAGATG
CDS
21
1150



5560










OSL99
5539-
 5539
GGGATACAGAATGGTTTAGATGT
CDS
21
1151



5561










OSL100
5545-
 5545
CAGAATGGTTTAGATGTTGAATT
CDS
21
1152



5567










OSL101
5584-
 5584
TACATCTATTGGGTTGAAAATCC
CDS
21
1153



5606










OSL102
5644-
 5644
AGGACAGTATTTGCTTCTATATC
CDS
21
1154



5666










OSL103
5648-
 5648
CAGTATTTGCTTCTATATCTATG
CDS
21
1155



5670










OSL104
5677-
 5677
CCTTCTATGAACCTGGCCTTA
CDS
21
1156



5697










OSL105
5692-
 5692
GCCTTAGATTGGATTTCAAGAAA
CDS
21
1157



5714










OSL106
5701-
 5701
TGGATTTCAAGAAACCTTTATTC
CDS
21
1158



5723










OSL107
5738-
 5738
CTCAGTCAATCGAGGTTTTGACA
CDS
21
1159



5760










OSL108
5765-
 5765
ACGGAGATATCAGATACAGAAAA
CDS
21
1160



5787










OSL109
5766-
 5766
CGGAGATATCAGATACAGAAAAA
CDS
21
1161



5788










OSL110
5768-
 5768
GAGATATCAGATACAGAAAAACA
CDS
21
1162



5790










OSL111
5775-
 5775
CAGATACAGAAAAACATTGATTG
CDS
21
1163



5797










OSL112
6115-
 6115
GTCCATGATTCTTTCCTTTATTA
CDS
21
1164



6137










OSL113
6116-
 6116
TCCATGATTCTTTCCTTTATTAT
CDS
21
1165



6138










OSL114
6123-
 6123
TTCTTTCCTTTATTATACTGATG
CDS
21
1166



6145










OSL115
6146-
 6146
AACAGTATGAGGTCATTGAAAGA
CDS
21
1167



6168










OSL116
6202-
 6202
TTGAGAGATAATGTTCCAAATCT
CDS
21
1168



6224










OSL117
6204-
 6204
GAGAGATAATGTTCCAAATCTGA
CDS
21
1169



6226










OSL118
6206-
 6206
GAGATAATGTTCCAAATCTGAGG
CDS
21
1170



6228










OSL119
6266-
 6266
CCTCAAATGGCTGTAGCAA
CDS
19
1171



6284










OSL120
6387-
 6387
CTCTCCATATAACTCTTTCATTG
CDS
21
1172



6409










OSL121
6390-
 6390
TCCATATAACTCTTTCATTGTTG
CDS
21
1173



6412










OSL122
6397-
 6397
AACTCTTTCATTGTTGTTTCAAT
CDS
21
1174



6419










OSL123
6399-
 6399
CTCTTTCATTGTTGTTTCAATGC
CDS
21
1175



6421










OSL124
6425-
 6425
CTGCAATCAGAGGCTTTAGCTTG
CDS
21
1176



6447










OSL125
6426-
 6426
TGCAATCAGAGGCTTTAGCTTGG
CDS
21
1177



6448










OSL126
6434-
 6434
GAGGCTTTAGCTTGGAATTGTCA
CDS
21
1178



6456










OSL127
6436-
 6436
GGCTTTAGCTTGGAATTGTCAGA
CDS
21
1179



6458










OSL128
6445-
 6445
TTGGAATTGTCAGATCATTCAGA
CDS
21
1180



6467










OSL129
6603-
 6603
TGGATCTTCTCTGATGAACATTG
CDS
21
1181



6625










OSL130
6619-
 6619
AACATTGTGACACATGGAATAGG
CDS
21
1182



6641










OSL131
6711-
 6711
TTCTGAAACACTGATAGAAGTTC
CDS
21
1183



6733










OSL132
6725-
 6725
TAGAAGTTCTGCGGATCAATACT
CDS
21
1184



6747










OSL133
6797-
 6797
TTGTTGTAGATCCCAAGAACAGA
CDS
21
1185



6819










OSL134
6849-
 6849
ACCAAAGATTGAGCGTTCTTTCC
CDS
21
1186



6871










OSL135
6939-
 6939
CCGAAGTGATGGCTACGTTTATT
CDS
21
1187



6961










OSL136
6961-
 6961
TGGGTTGATGATTCTTTAGATAT
CDS
21
1188



6983










OSL137
6965-
 6965
TTGATGATTCTTTAGATATAATT
CDS
21
1189



6987










OSL138
7062-
 7062
CACTGTTTTTGAAAATTCTATCA
CDS
21
1190



7084










OSL139
7064-
 7064
CTGTTTTTGAAAATTCTATCATA
CDS
21
1191



7086










OSL140
7087-
 7087
TGGGTAGATAGGAATTTGAAAAA
CDS
21
1192



7109










OSL141
7088-
 7088
GGGTAGATAGGAATTTGAAAAAG
CDS
21
1193



7110










OSL142
7152-
 7152
CACAGTGATAAGAGACAATATCA
CDS
21
1194



7174










OSL143
7154-
 7154
CAGTGATAAGAGACAATATCAAC
CDS
21
1195



7176










OSL144
7348-
 7348
GGCAAGAATTGTGCCATTTCAAC
CDS
21
1196



7370










OSL145
7351-
 7351
AAGAATTGTGCCATTTCAACAGA
CDS
21
1197



7373










OSL146
7358-
 7358
GTGCCATTTCAACAGAAAATTTC
CDS
21
1198



7380










OSL147
7359-
 7359
TGCCATTTCAACAGAAAATTTCC
CDS
21
ligg



7381










OSL148
7381-
 7381
CTCATCTTTGCCTTGTCTAATTC
CDS
21
1200



7403










OSL149
7443-
 7443
ACCTTTCCAAACAATAAATGTGG
CDS
21
1201



7465










OSL150
7486-
 7486
GACTATGACAGTGTAAGTGATAG
CDS
21
1202



7508










OSL151
7494-
 7494
CAGTGTAAGTGATAGAATCTACT
CDS
21
1203



7516










OSL152
7496-
 7496
GTGTAAGTGATAGAATCTACTTC
CDS
21
1204



7518










OSL153
7506-
 7506
TAGAATCTACTTCACACAAAATT
CDS
21
1205



7528










OSL154
7510-
 7510
ATCTACTTCACACAAAATTTAGC
CDS
21
1206



7532










OSL155
7627-
 7627
GCCTTTGACTGGATTACTAGAAG
CDS
21
1207



7649










OSL156
7633-
 7633
GACTGGATTACTAGAAGAATTTA
CDS
21
1208



7655










OSL157
7635-
 7635
CTGGATTACTAGAAGAATTTATT
CDS
21
1209



7657










OSL158
7636-
 7636
TGGATTACTAGAAGAATTTATTA
CDS
21
1210



7658










OSL159
8007-
 8007
GACTCTCTATGGCCAGTATATTT
CDS
21
1211



8029










OSL160
8036-
 8036
CTGACTTGTACACACAAAGAATT
CDS
21
1212



8058










OSL161
8038-
 8038
GACTTGTACACACAAAGAATTTA
CDS
21
1213



8060










OSL162
8044-
 8044
TACACACAAAGAATTTACCGAGC
CDS
21
1214



8066










OSL163
8150-
 8150
ACCAGAAACAACAGTGTAACAAT
CDS
21
1215



8172










OSL164
8152-
 8152
CAGAAACAACAGTGTAACAATCC
CDS
21
1216



8174










OSL165
8167-
 8167
AACAATCCTTGTGAACAGTTTAA
CDS
21
1217



8189










OSL166
8293-
 8293
GTGGACAATGGTGAACGATGTGG
CDS
21
1218



8315










OSL167
8564-
 8564
CGGAGTTTATGTGCAATAACAGA
CDS
21
1219



8586










OSL168
8566-
 8566
GAGTTTATGTGCAATAACAGAAG
CDS
21
1220



8588










OSL169
8685-
 8685
TGGATACACAAAATGTCATAATT
CDS
21
1221



8707










OSL170
8689-
 8689
TACACAAAATGTCATAATTCAAA
CDS
21
1222



8711










OSL171
8691-
 8691
CACAAAATGTCATAATTCAAATA
CDS
21
1223



8713










OSL172
8699-
 8699
GTCATAATTCAAATATTTGTATT
CDS
21
1224



8721










OSL173
8715-
 8715
TTGTATTCCTCGCGTTTATTTGT
CDS
21
1225



8737










OSL174
8768-
 8768
GTGATGAAAACCCTACTTATTGC
CDS
21
1226



8790










OSL175
8844-
 8844
TCCTCAACATTGGTATTGTGATC
CDS
21
1227



8866










OSL176
8854-
 8854
TGGTATTGTGATCAAGAAACAGA
CDS
21
1228



8876










OSL177
8861-
 8861
GTGATCAAGAAACAGATTGTTTT
CDS
21
1229



8883










OSL178
9063-
 9063
TTCCGAGTTTCTCTGTGTAAATG
CDS
21
1230



9085










OSL179
9064-
 9064
TCCGAGTTTCTCTGTGTAAATGA
CDS
21
1231



9086










OSL180
9153-
 9153
CGGCTACGATGAGAATCAGAATT
CDS
21
1232



9175










OSL181
9181-
 9181
AGGAGAACTTGCTCTGAAAATGA
CDS
21
1233



9203










OSL182
9221-
 9221
GACTGTGTATCCCAAAGATATTC
CDS
21
1234



9243










OSL183
9308-
 9308
GCCAACAGAATCAGTTTACCTGT
CDS
21
1235



9330










OSL184
9595-
 9595
GACACCTTAACCAGTTTCTATTG
CDS
21
1236



9617










OSL185
9598-
 9598
ACCTTAACCAGTTTCTATTGTTC
CDS
21
1237



9620










OSL186
9657-
 9657
GACTTGTGTTGATATTGATGAAT
CDS
21
1238



9679










OSL187
9719-
 9719
ATGTAATAGGCTCCTACATCTGT
CDS
21
1239



9741










OSL188
9786-
 9786
CCGGCAAAACAGTAACATCGAAC
CDS
21
1240



9808










OSL189
9807-
 9807
ACCCTATCTCATTTTTAGCAACC
CDS
21
1241



9829










OSL190
9826-
 9826
AACCGTTACTATTTGAGAAATTT
CDS
21
1242



9848










OSL191
9827-
 9827
ACCGTTACTATTTGAGAAATTTA
CDS
21
1243



9849










OSL192
9828-
 9828
CCGTTACTATTTGAGAAATTTAA
CDS
21
1244



9850










OSL193
9832-
 9832
TACTATTTGAGAAATTTAACTAT
CDS
21
1245



9854










OSL194
9838-
 9838
TTGAGAAATTTAACTATAGATGG
CDS
21
1246



9860










OSL195
9849-
 9849
AACTATAGATGGCTATTTTTACT
CDS
21
1247



9871










OSL196
9892-
 9892
GACAATGTTGTGGCATTAGATTT
CDS
21
1248



9914










OSL197
9925-
 9925
GAGAAGAGATTGTATTGGATTGA
CDS
21
1249



9947










OSL198
9956-
 9956
GGCAAGTCATTGAGAGAATGTTT
CDS
21
1250



9978










OSL199
9987-
 9987
GACAAACAAGGAGACAATCATAA
CDS
21
1251



10009










OSL200
10272-
10272
AACCAACAAGTCTGTGATAATCT
CDS
21
1252



10294










OSL201
10444-
10444
TTCGCTATTACCATTTTTGAAGA
CDS
21
1253



10466










OSL202
10446-
10446
CGCTATTACCATTTTTGAAGACA
CDS
21
1254



10468










OSL203
10499-
10499
CAGTGGAAAAGGGAAACAAATAT
CDS
21
1255



10521










OSL204
10513-
10513
AACAAATATGATGGATCAAATAG
CDS
21
1256



10535










OSL205
10574-
10574
TCCATGTGTACCATCCATATAGG
CDS
21
1257



10596










OSL206
10958-
10958
CTGATGAAGACCGTCTTCTTTGT
CDS
21
1258



10980










OSL207
11246-
11246
GTGACAACTTCACAGAATTCAGC
CDS
21
1259



11268










OSL208
11623-
11623
CAGTGTACAAGTGGACATTGTGT
CDS
21
1260



11645










OSL209
11625-
11625
GTGTACAAGTGGACATTGTGTAC
CDS
21
1261



11647










OSL210
11745-
11745
TACTATGTTCGAATGCAAAAACC
CDS
21
1262



11767










OSL211
11749-
11749
ATGTTCGAATGCAAAAACCATGT
CDS
21
1263



11771










OSL212
11757-
11757
ATGCAAAAACCATGTTTGTATCC
CDS
21
1264



11779










OSL213
11779-
11779
CCGCCATATTGGAAATGTGATGG
CDS
21
1265



11801










OSL214
11820-
11820
TGGTTCAGATGAAGAACTTCACC
CDS
21
1266



11842










OSL215
11887-
11887
GACAACAATCGCTGCATTTATAG
CDS
21
1267



11909










OSL216
11984-
11984
CCCCTAAACCTTGTACAGAATAT
CDS
21
1268



12006










OSL217
11985-
11985
CCCTAAACCTTGTACAGAATATG
CDS
21
1269



12007










OSL218
11990-
11990
AACCTTGTACAGAATATGAATAT
CDS
21
1270



12012










OSL219
11991-
11991
ACCTTGTACAGAATATGAATATA
CDS
21
1271



12013










OSL220
11994-
11994
TTGTACAGAATATGAATATAAGT
CDS
21
1272



12016










OSL221
12083-
12083
CCGATGAACTGGGTTGCAATAAA
CDS
21
1273



12105










OSL222
12114-
12114
AAGAACATGTGCTGAAAATATAT
CDS
21
1274



12136










OSL223
12140-
12140
AGCAAAATTGTACCCAATTAAAT
CDS
21
1275



12162










OSL224
12193-
12193
GGGTTCGAAACCAATGTTTTTGA
CDS
21
1276



12215










OSL225
12197-
12197
TCGAAACCAATGTTTTTGACAGA
CDS
21
1277



12219










OSL226
12389-
12389
CTGACAATGTCCGAATTCGAAAA
CDS
21
1278



12411










OSL227
12397-
12397
GTCCGAATTCGAAAATATAATCT
CDS
21
1279



12419










OSL228
12399-
12399
CCGAATTCGAAAATATAATCTCT
CDS
21
1280



12421










OSL229
12435-
12435
CTCAGAGTATCTTCAAGATGAGG
CDS
21
1281



12457










OSL230
12443-
12443
ATCTTCAAGATGAGGAATATATC
CDS
21
1282



12465










OSL231
12537-
12537
GGGCTCTAGGTTTGGTGCTATCA
CDS
25
1283



12561

AA








OSL232
12564-
12564
TGCCTACATCCCCAACTTTGAAT
CDS
21
1284



12586










OSL233
12608-
12608
AGGAAGTTGACCTGAAACTGAAA
CDS
21
1285



12630










OSL234
12616-
12616
GACCTGAAACTGAAATACGTAAT
CDS
21
1286



12638










OSL235
12617-
12617
ACCTGAAACTGAAATACGTAATG
CDS
21
1287



12639










OSL236
12705-
12705
ACGCATTGAGGTGGCTAAACTTG
CDS
21
1288



12727










OSL237
12792-
12792
TCCCAAACTAGGGCTTATGTTCT
CDS
21
1289



12814










OSL238
12825-
12825
GGGAAAGGAACCTAAAATCGAGT
CDS
21
1290



12847










OSL239
12870-
12870
CCGCAACATCCTGGTTTTCGAGG
CDS
21
1291



12892










OSL240
12911-
12911
GCCTTTCTATCGATTATTTGAAC
CDS
21
1292



12933










OSL241
12915-
12915
TTCTATCGATTATTTGAACAATG
CDS
21
1293



12937










OSL242
12965-
12965
AGGACGTTATTGAAACCATAAAA
CDS
21
1294



12987










OSL243
12967-
12967
GACGTTATTGAAACCATAAAATA
CDS
21
1295



12989










OSL244
12968-
12968
ACGTTATTGAAACCATAAAATAT
CDS
21
1296



12990










OSL245
12995-
12995
GGACTGATAGGAGAGTCATTGCA
CDS
21
1297



13019

AA








OSL246
13058-
13058
ACCAGTTATACTGGATATCTAAG
CDS
25
1298



13080










OSL247
13086-
13086
GGGAGAAGTATGGAAACAAAATA
CDS
21
1299



13108










OSL248
13091-
13091
AAGTATGGAAACAAAATAAATTT
CDS
21
1300



13113










OSL249
13175-
13175
TTCATCAACTCAGATACAATAAG
CDS
21
1301



13197










OSL250
13368-
13368
CGGAGGAAATTGCTATTTTGATG
CDS
21
1302



13390










OSL251
13371-
13371
AGGAAATTGCTATTTTGATGAGA
CDS
21
1303



13393










OSL252
13428-
13428
CACCGGAAAATATTGTGAAATGG
CDS
21
1304



13450










OSL253
13440-
13440
TTGTGAAATGGCGTTTTCAAAAG
CDS
21
1305



13462










OSL254
13541-
13541
CAGGATTCTTCCACTATAGAAGG
CDS
21
1306



13563










OSL255
13659-
13659
GGCAGATCTTAACATGGATATTG
CDS
21
1307



13681










OSL256
13725-
13725
GGCAATGAGTGAAGACTTTGTCA
CDS
21
1308



13747










OSL257
13842-
13842
ATCTGAAAATGTGGATAATAAGA
CDS
21
1309



13864










OSL258
13844-
13844
CTGAAAATGTGGATAATAAGAAT
CDS
21
1310



13866










OSL259
13852-
13852
GTGGATAATAAGAATTATGGAAG
CDS
21
1311



13874










OSL260
13853-
13853
TGGATAATAAGAATTATGGAAGT
CDS
21
1312



13875










OSL261
13951-
13951
TGGAATCTCTTCAAACGAAAATC
CDS
21
1313



13973










OSL262
13955-
13955
ATCTCTTCAAACGAAAATCTAAA
CDS
21
1314



13977










OSL263
13957-
13957
CTCTTCAAACGAAAATCTAAACA
CDS
21
1315



13979










OSL264
13960-
13960
TTCAAACGAAAATCTAAACAAAC
CDS
21
1316



13982










OSL265
13964-
13964
AACGAAAATCTAAACAAACTACC
CDS
21
1317



13986










OSL266
13976-
13976
AACAAACTACCAACTTTGAAAAT
CDS
21
1318



13998










OSL267
13983-
13983
TACCAACTTTGAAAATCCAATCT
CDS
21
1319



14005










OSL268
13987-
13987
AACTTTGAAAATCCAATCTATGC
CDS
21
1320



14009










OSL269
14121-
14121
TGCAACAGAAGACACTTTTAAAG
CDS
21
1321



14143










OSL270
14145-
14145
CACCGCAAATCTTGTTAAAGAAG
CDS
21
1322



14167










OSL271
14148-
14148
CGCAAATCTTGTTAAAGAAGACT
CDS
21
1323



14170










OSL272
14169-
14169
CTCTGAAGTATAGCTATACCAGC
CDS/
21
1324



14191


3′-








UTR







OSL273
14186-
14186
ACCAGCTATTTAGGGAATAATTA
3′-UTR
21
1325



14208










OSL274
14188-
14188
CAGCTATTTAGGGAATAATTAGA
3′-UTR
21
1326



14210










OSL275
14211-
14211
AACACACTTTTGCACATATATTT
3′-UTR
21
1327



14233










OSL276
14213-
14213
CACACTTTTGCACATATATTTTT
3′-UTR
21
1328



14235










OSL277
14236-
14236
TACAAACAGATGAAAAAAGTTAA
3′-UTR
21
1329



14258










OSL278
14252-
14252
AAGTTAACATTCAGTACTTTATG
3′-UTR
21
1330



14274










OSL279
14261-
14261
TTCAGTACTTTATGAAAAAAATA
3′-UTR
21
1331



14283










OSL280
14263-
14263
CAGTACTTTATGAAAAAAATATA
3′-UTR
21
1332



14285










OSL281
14341-
14341
CCGTCTCATATTTTTACAAATAA
3′-UTR
21
1333



14363










OSL282
14355-
14355
TACAAATAATTATCACAATGTAC
3′-UTR
21
1334



14377










OSL283
14366-
14366
ATCACAATGTACTATATGTATAT
3′-UTR
21
1335



14388










OSL284
14368-
14368
CACAATGTACTATATGTATATCT
3′-UTR
21
1336



14390










OSL285
14372-
14372
ATGTACTATATGTATATCTTTGC
3′-UTR
21
1337



14394










OSL286
14396-
14396
CTGAAGTTGTCTGAAGGTAATAC
3′-UTR
21
1338



14418










OSL287
14406-
14406
CTGAAGGTAATACTATAAATATA
3′-UTR
21
1339



14428










OSL288
14437-
14437
TTGTAAATTTTGGAAAGATTATC
3′-UTR
21
1340



14459










OSL289
14447-
14447
TGGAAAGATTATCCTGTTACTGA
3′-UTR
21
1341



14469










OSL290
14451-
14451
AAGATTATCCTGTTACTGAATTT
3′-UTR
21
1342



14473










OSL291
14457-
14457
ATCCTGTTACTGAATTTGCTAAT
3′-UTR
21
1343



14479










OSL292
14458-
14458
TCCTGTTACTGAATTTGCTAATA
3′-UTR
21
1344



14480










OSL293
14464-
14464
TACTGAATTTGCTAATAAAGATG
3′-UTR
21
1345



14486










OSL294
14503-
14503
GTGATCATTATAGTAAATGATCC
3′-UTR
21
1346



14525










OSL295
14513-
14513
TAGTAAATGATCCAACAAGAAAA
3′-UTR
21
1347



14535










OSL296
14523-
14523
TCCAACAAGAAAAGGAATTGACT
3′-UTR
21
1348



14545










OSL297
14579-
14579
CACTCATATTTCCTATAAAATTA
3′-UTR
21
1349



14601










OSL298
14581-
14581
CTCATATTTCCTATAAAATTATC
3′-UTR
21
1350



14603










OSL299
14633-
14633
GTCCATTTTTACACATTAGCACT
3′-UTR
21
1351



14655










OSL300
14649-
14649
TAGCACTTAATTAATGTTCAATA
3′-UTR
21
1352



14671










OSL301
14650-
14650
AGCACTTAATTAATGTTCAATAT
3′-UTR
21
1353



14672










OSL302
14652-
14652
CACTTAATTAATGTTCAATATTA
3′-UTR
21
1354



14674










OSL303
14665-
14665
TTCAATATTACATGTCAATTTGA
3′-UTR
21
1355



14687










OSL304
14684-
14684
TTGATTAATGGCTATGTTGATAG
3′-UTR
21
1356



14706










OSL305
14708-
14708
GGCCACTATGTGTTGTATAGACA
3′-UTR
21
1357



14730










OSL306
14711-
14711
CACTATGTGTTGTATAGACATCT
3′-UTR
21
1358



14733










OSL307
14767-
14767
AGGTAGGAAAAGCAATTCAGTTT
3′-UTR
21
1359



14789










OSL308
14856-
14856
GCCAAGACAACATTTTTATTTGT
3′-UTR
21
1360



14878










OSL309
14861-
14861
GACAACATTTTTATTTGTGATGT
3′-UTR
21
1361



14883










OSL310
14886-
14886
ATGAGGAAATCCCATATCATTAA
3′-UTR
21
1362



14908










OSL311
14921-
14921
TGCATTGAGTTTGTGGTTAATTA
3′-UTR
21
1363



14943










OSL312
14925-
14925
TTGAGTTTGTGGTTAATTAAATG
3′-UTR
21
1364



14947










OSL313
15034-
15034
AGCTGAATTTCTGAAACCAAATC
3′-UTR
21
1365



15056










OSL314
15049-
15049
ACCAAATCTGTGTCTTCATAAAA
3′-UTR
21
1366



15071










OSL315
15115-
15115
TGGGTTTTTGTTTCTATGAAAAT
3′-UTR
21
1367



15137










OSL316
15122-
15122
TTGTTTCTATGAAAATATCATTA
3′-UTR
21
1368



15144










OSL317
15126-
15126
TTCTATGAAAATATCATTATAAT
3′-UTR
21
1369



15148










OSL318
15130-
15130
ATGAAAATATCATTATAATCACT
3′-UTR
21
1370



15152










OSL319
15138-
15138
ATCATTATAATCACTATTTATTT
3′-UTR
21
1371



15160










OSL320
15188-
15188
AACCATTCTTATTAAGCTTTTTA
3′-UTR
21
1372



15210










OSL321
15189-
15189
ACCATTCTTATTAAGCTTTTTAT
3′-UTR
21
1373



15211










OSL322
15220-
15220
GTGGCTAAATGTGTACATTTATA
3′-UTR
21
1374



15242










OSL323
15221-
15221
TGGCTAAATGTGTACATTTATAT
3′-UTR
21
1375



15243










OSL324
15222-
15222
GGCTAAATGTGTACATTTATATT
3′-UTR
21
1376



15244










OSL325
15228-
15228
ATGTGTACATTTATATTAGAATG
3′-UTR
21
1377



15250










OSL326
15263-
15263
CAGATCTTTTCTTTAATTCTTAT
3′-UTR
21
1378



15285










OSL327
15266-
15266
ATCTTTTCTTTAATTCTTATTGG
3′-UTR
21
1379



15288










OSL328
15271-
15271
TTCTTTAATTCTTATTGGTTTTT
3′-UTR
21
1380



15293










OSL329
15438-
15438
CTCTTAAATAGTGGGTATAGTCT
3′-UTR
21
1381



15460










OSL330
15524-
15524
GTGCTAATATTGCACATTTGTTA
3′-UTR
21
1382



15546










OSL331
15525-
15525
TGCTAATATTGCACATTTGTTAA
3′-UTR
21
1383



15547










OSL332
15575-
15575
ATGGATGAATGAATGAAACATAT
3′-UTR
21
1384



15597










OSL333
15583-
15583
ATGAATGAAACATATACTACTGA
3′-UTR
21
1385



15605










OSL334
15587-
15587
ATGAAACATATACTACTGATTAT
3′-UTR
21
1386



15609










OSL335
15591-
15591
AACATATACTACTGATTATTTTA
3′-UTR
21
1387



15613










OSL336
15655-
15655
CTGACTGTAATTACTTTGATTAG
3′-UTR
21
1388



15677










OSL337
15659-
15659
CTGTAATTACTTTGATTAGATAA
3′-UTR
21
1389



15681










OSL338
15675-
15675
TAGATAAACAACTGGAAATAATG
3′-UTR
21
1390



15697










OSL339
15698-
15698
CTGCTGAAAAAGTTCTAATAAAT
3′-UTR
21
1391



15720










OSL340
15699-
15699
TGCTGAAAAAGTTCTAATAAATG
3′-UTR
21
1392



15721
















TABLE 11







Additional table of siRNA sequences

















SEQ


SEQ




ID


ID
OSID
antisense sequence (5′ to 3′)
OSID
sense sequence (3′ to 5′)
NOS:





957
OSC17C-1
CAGUUGCGCAGUUUCUUGUC
OSC17B-1
[dT][dT]GUCAACGCGUCA
973




AGUUC[dT][dT]

AAGAACAGUCAAG






958
OSC17C-2
CAGUUGCGCAGUUUCUUGU
OSC17B-2
[dT][dT]*G*UCAACGCGUC
974




[mC][mA]GUUC[dT][dT]

AAAGAACAGUCAAG






959
OSC17C-3
CAGUUGCGCAGUUUCU[mU]
OSC17B-3
[dT][dT]*G*UCAACGCGUC
975




[mG]UCAGUUC[dT][dT]

AAAGAACAG[mU]CAAG






960
OSC17C-4
CAGUUGCGCAGUUUCU[mU]
OSC17B-4
[dT][dT]*G*UCAACGCGUC
976




[mG]U[mC][mA]GUUC[dT][dT]

AAAGAA[mC]AGUCAAG






OSC17B-5
[dT][dT]*G*UCAACGCGUC
977






AAAGAA[mC]AG[mU]CAA







G






OSC17B-6
[dT][dT]*G*UCAA[mC]GCG
978






UCAAAGAA[mC]AG[mU]C







AAG






961
OSC47C-1
AAGAGCUCAGGUCUCUGAGG
OSC47B-1
[dT][dT]UUCUCGAGUCCA
979




G[dT][dT]

GAGACUCCC






962
OSC47C-2
AAGAGCUCAGGUCUC[mU]GA
OSC47B-2
[dT][dT]*U*UCUCGAGUCC
980




GGG[dT][dT]

AGAGACUCCC






963
OSC47C-3
AAGAGCUCAGGUCUC[mU][mG]
OSC47B-3
[dT][dT]*U*UCUCGAGUCC
981




AGGG[dT][dT]

AGAGA[mC]UCCC






OSC47B-4
[dT][dT]*U*UCUCGAGUCC
982






AGAG[mA][mC]UCCC






OSC47B-5
[dT][dT]*U*UCUCGAG[mU]
983






CCAGAG[mA][mC]UCCC






964
OSL231C-1
UUUGAUAGCACCAAACCUAGA
OSL231B-1
[dT][dT]AAACUAUCGUGG
984




GCCC[dT][dT]

UUUGGAUCUCGGG






965
OSL231C-2
UUUGA[mU]AG[mC]ACCAAACC
OSL231B-2
[dT][dT]*A*AACUAUCGUG
985




[mU]AGAGCCC[dT][dT]

GUUUGGAUCUCGGG






966
OSL231C-3
UUUGAUAGCACCAAACC[mU]
OSL231B-3
[dT][dT]*A*AACUA[mU]CG
986




[mA]GAGCCC[dT][dT]

[mU]9 GGUUUGGA[mU]CUC







GGG






967
OSL231C-4
UUUGAUAG[mC]ACCAAACC
OSL231B-4
[dT][dT]*A*AACU[mA][mU]
987




[mU]AGAGCCC[dT][dT]

C[mG][mU]GGUUUGG[mA]







[mU]CUCGGG






968
OSL231C-5
UUUGAUAGCACCAAACC[mU]A
OSL231B-5
[dT][dT]*A*AACUGUCGUG
988




GAGCCC[dT][dT]

GUUUGGA[mU]CUCGGG






OSL231B-6
[dT][dT]*A*AACUGUCG
989






[mU]GGUUUGGA[mU]CUCG







GG






OSL231B-7
[dT][dT]*A*AACUAUCGUG
990






G[mU]UUGGAUCUCGGG






969
OSL245C-1
UUUGCAAUGACUCUCCUAUCA
OSL245B-1
[dT][dT]AAACGUUACUGA
991




GUCC[dT][dT]

GAGGAUAGUCAGG






970
OSL245C-2
UUUGCAA[mU][mG]ACUCUCC
OSL245B-2
[dT][dT]*A*AACG[mU]UA
992




[mU][mA]UCAGUCC[dT][dT]

[mC]UGAGAGGA[mU]AGUC







AGG






971
OSL245C-3
UUUGCAAUGACUCUCC[mU]
OSL245B-3
[dT][dT]*A*AACGUUACUG
993




[mA]UCAGUCC[dT][dT]

AGAGGA[mU]AGUCAGG






972
OSL245C-4
UUUGCAA[mU][mG]ACUCUCCU
OSL245B-4
[dT][dT]*A*AACGUUA[mC]
994




AUCAGUCC[dT][dT]

UGAGAGGA[mU]AGUCAG







G






OSL245B-5
[dT][dT]*A*AACGUUACUG
995






AGAGGAUAGUCAGG





Key to modifications


[dT] = DNA base (T) within RNA oligo


[mA], [mG], [mC], [mU] = 2′O-Methyl RNA


* = Phosphorothioate linkages






In one embodiment, an RNAi (e.g., a dsRNA) featured herein includes a first sequence of a dsRNA that is selected from the group including the sense sequences of any table herein and a second sequence that is selected from the group consisting of the corresponding antisense sequences of any table herein. A corresponding antisense sequence is a nucleotide sequence within the OSID family for example OSC17. In those instances when we refer to an siRNA with no suffix (e.g., OSC17), we mean that to indicate the dsRNA comprised of the antisense and sense strands corresponding to that number (e.g., OSC17A paired with OSC17S or OSC17C-(n) paired with OSC17B-(n) where “n” is any number of the OSC17 family).


Unless otherwise specified, the compounds provided herein may be enantiomerically pure, such as a single enantiomer or a single diastereomer, or be stereoisomeric mixtures, such as a mixture of enantiomers, e.g., a racemic mixture of two enantiomers; or a mixture of two or more diastereomers. Conventional techniques for the preparation/isolation of individual enantiomers include synthesis from a suitable optically pure precursor, asymmetric synthesis from achiral starting materials, or resolution of an enantiomeric mixture, for example, chiral chromatography, recrystallization, resolution, diastereomeric salt formation, or derivatization into diastereomeric adducts followed by separation. It is understood that the phosphorothioate group, designated by an asterisk (*), constitutes a stereogenic center, and the presence of each such group in a sequence engenders two diastereoisomers. The number of such diastereoisomers in a double stranded RNAi agent may be calculated by the formula 2{circumflex over ( )}n, wherein n represents the number of phosphorothioate groups in a sequence comprised of a double stranded siRNA.


In some embodiments, the antisense strand (identified with “A” in the OS ID name) and/or the sense strand (identified with “S” in the OS ID name) of an RNAi agent comprises or consists of a nucleobase sequence, for example, “OSC17A-1” CAGUUGCGCAGUUUCUUGUCAGUUC[dT][dT] (SEQ ID NO: 17), and the nucleobase sequence may include at least one or more nucleotides as a modified nucleotide, and wherein SEQ ID NO: 17 is located at positions 1 to 25 (5′→3′) of the antisense strand and forms a duplex with the corresponding sense strand (identified as OSC17S-1. In some embodiments, the antisense strand of an RNAi agent comprises or consists of a nucleobase sequence for example CAGUUGCGCAGUUUCUUGUCAGUUC[dT][dT] (SEQ ID NO: 17), wherein all or substantially all or 1, 2, 3, 4 or 5 of the nucleotides are modified nucleotides (see for example SEQ ID NO. 24), and wherein SEQ ID NO: 24 is located at positions 1 to 27 (5′→3′) of the antisense strand. For any antisense or sense strand disclosed herein, in some embodiments, the antisense strand of an RNAi agent comprises or consists of the sequence (5′→3′) wherein * is a phosphorothioate linkage between deoxy thymine [dT]; and/or wherein mC, mA, mG, mU are 2′-O-methyl cytidine, 2′-O-methyl adenine, 2′-O-methyl guanosine, 2′-O-methyl uridine respectively; and/or wherein 2fA, 2fU, 2fG, 2fC are 2′-fluoro adenine, 2′-fluoro uridine, 2′-fluoro guanosine, and 2′-fluoro cytosine respectively. The antisense target on the mRNA is identified with the same name but without the notation of “A” or “S” after the name. An antisense sequence with the same name, for example OSC17A-1 through OSC17A-18 binds to the same nucleotide target sequence.


Sequences shown in Table 4 were transfected into HEK 293 (human embryonic kidney) and MDA-MB-435S (human melanoma) cell lines to determine their ability to reduce the protein expression of LRP2 and CD320 gene/protein. These two cell lines were chosen because of their relatively high expression levels of LRP2 as noted in the Human Protein Atlas at world wide web.proteinatlas.org and the NCI-60 gene expression profiles at discover.nci.nih.gov/cellminer/ so that a change in protein expression for LRP2 was easy to detect.


Referring now to FIGS. 3A-B and FIGS. 3D-E, HEK293 and MDA-MB-231 cells were transfected with 20 nM of indicated siRNAs and incubated for 48 hours. Whole cell lysates were prepared and immunoblotted for CD320 and LRP2 protein levels. The protein levels were normalized to a housekeeping control gene unaffected by the siRNA transfection. The graphs represent the fold change of protein levels compared to the scrambled siRNA control (OSS1). (Average −/+ SEM is shown, n=3).


CD320 and LRP2 protein levels were determined by western blot and quantified by Image Studio Software (LiCor Company), relative to a control protein that is not affected by CD320 or LRP2 knockdown. To determine the efficacy of knockdown, protein levels of CD320 (FIGS. 3 A-B) and LRP2 (FIGS. 3 D-E) on the samples that were exposed to siRNA sequences against the mRNA of either gene, were compared to that in the untreated and scrambled controls (black and gray bars, respectively, in all graphs of FIG. 3). We found that both siRNA sequences directed against CD320 (OSC17 and OSC47) almost completely abrogated CD320 expression (circles in FIGS. 3 A-B). siLRP2 sequences resulted in variable efficiency in reducing LRP2 protein. Two sequences (05L231 and OSL245) consistently reduced LRP2 levels 75% or more in both cell lines (circles FIGS. 3 B, E).


Referring now to FIG. 6, lysates were made from transformed (HEK293) and representative cancer cell lines, and western blot was performed to determine LRP2 protein levels. The cancer cells screened have low levels of LRP2 expression. The results represent the averages +SEM of three independent lysates. The data suggests that the cancer cells screened have very low levels of LRP2 expression.


We transfected a panel of LRP2 and CD320 siRNAs into cancer cell lines derived from multiple tissues and analyzed the levels of LRP2 protein and CD320 protein in the cell line. Representative cell lines from prostate, breast and glioblastoma, and normal fibroblasts were exposed to CD320 and LRP2 siRNAs in an experimental set-up similar to that described for HEK293 and MDA-MB-435S cells. The results are shown in FIGS. 3 C, F, and FIG. 4.


Referring now to FIGS. 3 C, F; and FIG. 4, MDA-MB-231 LnCAP, MCF-7 and U251 cells were exposed to siRNA sequences to knockdown CD320 (FIG. 3C, and FIGS. 4 A-C) and LRP2 (FIG. 3 F, and FIGS. 4 D-F), in a similar fashion as described for the data represented in FIGS. 3 A, B, D, and E. CD320 protein knockdown FIG. 3C, and FIGS. 4 A-C, compared to the untreated or scrambled controls, is more than 90% for all cell lines tested. LRP2 knockdown is accomplished in all cell lines too. However, the level of knockdown is less in the LnCAP cells compared to the other cell lines and the sequences that are effective may differ as well (FIG. 3 F, and FIGS. 4 D-F).


Referring now to FIG. 5, an experimental set up similar to that described in FIG. 3 was employed. Additional prostate and brain cancer cell lines, as well as normal fibroblast, were exposed to siRNAs directed against CD320. Levels of CD320 were nearly abrogated in DU-145 (prostate) cells, whereas the levels of knockdown in A172 brain cells and normal fibroblasts were 21%-33% and 25%-28%, respectively (FIGS. 5 A-C).


From these studies we can conclude that two siRNAs to CD320 (OSC17 and OSC47) are very effective in knocking down CD320 protein levels (80% or more), in nearly every cell line tested. While LRP2 is theoretically harder to knock down because of its size, we have identified two siRNAs, OSL231 and OSL245, that consistently knock down LRP2 in most cell lines in which we can detect LRP2.


In addition, LRP2 protein expression levels are very high in HEK 293 cells and easily detectable by western blot. Cancer cell lines have much lower expression of LRP2 compared to HEK293 cells as measured by western blot (FIG. 6), and some cell lines may contain LRP2 at levels below reliable detection.


Referring now to FIG. 7, the effects of doxorubicin treatment on cell viability, as measured by the CTG assay, are illustrated. A172 and HCC15 cells were plated at 1200 cells/well in a 96 well plate. The next day, cells were treated with doxorubicin at the indicated concentrations. Four days after the doxorubicin exposure was initiated, the cells were assayed for viability using the CTG assay. The line indicates the non-linear fitting of the data to calculate an IC50 value. Instead of visually assessing the effect of CD320/LRP2 gene expression knockdown on cell proliferation (as shown for shRNA-mediated CD320/LRP2 knockdown in FIG. 2), a functional assay for quantitating the effect on cell viability of the simultaneous knockdown of LRP2 and CD320 by siRNA was developed. A widely used assay for the measurement of cell viability is the Promega Cell-titer GLO® platform (CTG), which quantifies ATP levels in the cell (live cells produce ATP, dead cells do not). After incubating the cells with the CTG reagent, ATP levels can be indirectly measured as light production using the TECAN luminescence plate reader. As a first step, toxicity of a known chemotherapeutic drug, doxorubicin, was assayed on the cell lines of interest. Doxorubicin was used as a positive control for cell toxicity in our assay. Representative data from A172 brain cancer cells (FIG. 7A) and HCC15 lung cancer cells (FIG. 7B) exposed to doxorubicin are shown in FIG. 7. From this data, the IC50 of doxorubicin treatment on these cell lines was determined: 132 nm for A172 cells and 167 nm for HCC15 cells. Based upon these findings, a larger screen was initiated to determine the IC50 of doxorubicin in several cancer and non-cancer cell lines, to determine the doxorubicin dose to use when cell lines are used in the viability assay to test the simultaneous knockdown of CD320 and LRP2. The results of the cell lines tested are summarized in Table 8 IC50 determination of doxorubicin.


To quantify the effects of knocking down CD320 and LRP2 on cell proliferation, cells are plated in a 24-well plate. The next day, the cells are transfected with siRNAs to CD320 and/or LRP2. The cell lines may require repeated transfections and/or time for efficient toxicity (cell line dependent). In this experimental set-up there is room for repeat infection should some cell lines require that for efficient toxicity. At the end of the study, the cell lines are analyzed for cell growth by the CTG assay. A schematic of this experimental setup is presented in FIG. 8.













TABLE 8







Cancer type
Cell line
IC50 (nM)




















Glioblastoma
A172
132




U251
24



Breast
MDA-MB-231
43




MCF7
121



Prostate
DU145
248




PC3
387



Lung
NCI-H460
56




A549
126




HCC15
167



Melanoma
MDA-MB-435S
325



Other
GM05659
267




HEK293
29










The cells lines were plated at 1,000 to 4,000 cells/well in a 96-well plate and treated with doxorubicin the following day. CTG activity was measured 4 days after treatment. IC50 values were calculated by GraphPad Prism Software. Results are tabulated in Table 8.


These data show that doxorubicin works efficiently on this CTG platform (i.e., doxorubicin kills cancer cells) and can thus be used as a positive control in the in vitro assay to compare the cytotoxic effects of siRNA-knockdown of CD320 and LRP2. In this latter assay, normal or cancer cells are transfected with individual or combinations of siRNAs sequences that are targeting CD320 or LRP2 specifically or control siRNAs, similar to the experiments that provided the data for FIGS. 3, 4, and 5. In FIGS. 3, 4, and 5, protein levels are measured, but in the in vitro assay, cell viability is measured.


Referring now to FIG. 8, an overview of a functional assay for screening (ds) siRNA effects on cell proliferation is illustrated. To quantify the effects of knocking down CD320 and LRP2 on cell proliferation, cells are plated in a 24-well plate. The next day, the cells are transfected with siRNAs to CD320 and/or LRP2. The cell lines may require repeated transfections and/or time for efficient toxicity (cell line dependent). In this experimental set-up there is room for repeat infection should some cell lines require that for efficient toxicity. At the end of the study, the cell lines were analyzed for cell growth by the CTG assay.


Now, referring to FIG. 10B, MDA-MB-231 triple negative breast cancer cells were plated in a 24-well plate at 20,000 cells/well. Cells were transfected the next day with an siRNA selected from the group of OSC17, OSC47, OSL231, and OSL245 at 20 nM. Cells were also transfected with combinations of two siRNAs each of 10 nM, one of these targeting CD320 and the other LRP2, with the siRNAs targeting CD320 selected from the group of OSC17 and OSC47, and the LRP2 targeting siRNAs selected from the group of OSL231 and OSL245, each dosed at 10 nM. Cells were repeated transfected 4 times over the course of 11 days as indicated in Table 9. At day 11, cells were analyzed for cell growth by the CTG assay. The percent cell survival compared to the non-targeting control (OSS2) is shown. The data represented is the average of 6 experiments −/+ SEM.


Now, referring to FIG. 11, MDA-MB-231 and DU-145 cells were transfected with 20 nM of the negative control siRNA (OSS2), 20 nM siRNA targeting CD320 (OSC17), or 20 nM siRNA targeting LRP2 (05L245). Cells were also transfected with a combination of a CD320 targeting siRNA (OSC17) and LRP2 targeting siRNA (05L24), over a range of concentrations (2-20 nM), so the concentration of the two siRNAs equaled 20 nM total siRNA transfected, as indicated in FIG. 11. Cells were repeatedly transfected as indicated in Table 9, and the percent cell survival is shown.


Now, referring to FIG. 12, MDA-MB-231 breast cancer cells were transfected with 20 nM of the negative control siRNA (OSS2), 20 nM siRNA targeting CD320 (OSC17), or 20 nM siRNA targeting LRP2 (05L245). Each day, over five days, lysates were prepared. Western blotting was performed on the lysates for CD320 protein levels (FIG. 12A) or LRP2 protein levels (FIG. 12B).


Referring now to FIG. 9 and FIG. 10, data quantifying the effects of knocking down CD320 and LRP2 in various cell lines is represented. Cell lines representative of several types of cancers or normal fibroblasts were transfected with individual or combinations of siRNAs to CD320 or LRP2 as indicated. Cells were repeatedly transfected as outlined in Table 9 for efficient toxicity, then assayed for viability by the CTG assay. Doxorubicin treated cells served as a positive control for cell toxicity in our assays.


The data of the individual experiments presented in FIG. 9 and FIG. 10 and additional cell lines we have screened are summarized in Table 9. These experiments show the broad applicability of siCD320 and siLRP2 toxicity in a variety of cancer types.


Referring now to FIG. 13, a schematic of PEI and siRNA complexes is illustrated. PEI and siRNAs are mixed together. Subsequently, polyplexes (a nanoparticle, broadly speaking) form of the PEI-siRNA complex, which are able to enter the cell via an endocytotic or pinocytotic mechanism.


Referring now to FIG. 14, siRNAs are short RNA duplexes of generally 16 to 30 nucleotides; the sequence of the siRNA is complementary to a mRNA expressed in the cell. Exogenous siRNA duplexes are introduced into the cell via a method of transfection. The siRNA duplexes are unwound via the RISC (RNA-induced silencing complex) complex, whereby the guide strand of the siRNA hybridizes with its complementary mRNA molecule. The mRNA is degraded by the RISC/AGO complex, which has RNAse cleave activity. The end result is that the mRNA targeted by the siRNA is degraded, and the protein encoded by the mRNA is not produced. This causes the “knockdown” effect or reduced protein levels of the gene targeted by the siRNA compared to control-treated cells.


Referring now to FIG. 15 effectiveness of INTERFERin in delivering siRNAs to cancer cells is illustrated. 2 nM of indicated siRNAs were transfected into A172 and MDA-MB-435S cells as per the manufacturers protocol. Cell lysates were prepared 3 days post-infection and analyzed by western blot for CD320 protein levels. OSS1 and OSS2 are non-targeting siRNA controls. In this experiment, both sequences were tested. CD320 protein levels were knocked down to 9% to 18% for A172 cells and 26% to 48% for MDA-MB-435S cells, compared to OSS1. Much more efficient knockdown of CD320 is observed when the siRNAs were delivered with other transfection reagents (e.g. RNAiMAX, Viromer Blue) that were used in the experiments described previously particularly for MDA-MB-435S cells. The Polyplus INTERFERin platform has been tested in vitro in our laboratory in a proof of principle experiment, whereby the platform is able to deliver siRNAs to the target cells in vitro.


Referring now to FIG. 16, treatment of breast, prostate, and skin cancer cells with an inhibitor of CD320 receptor or an inhibitor of LRP2 receptor or a combination of both in an amount effective to inhibit proliferation of the cancer cells as compared to the control cells treated with control siRNA is illustrated. MDA-MB-231, DU145, LnCAP, and MDA-MB-435S cells were plated at 20,000 cells per well in a 24-well plate. The next day, the cells were transected with 20 nM of indicated siRNAs to knock down CD320, LRP2, or scrambled control. For the combination of siRNAs, cells were treated with 10 nM of each siRNA for 20 nM total treatments. Cells were repeatedly transfected as in Table 9 for the length of time indicated in Table 9. The indicated pictures of the cells were taken at the end of the experiment.









TABLE 9







Summary of functional siRNA data screening











Single siRNA knockdown
Double siRNA knockdown














(siCD320)
(siLRP2)
OSC17+
OSC47+






















# of
Days
OSC-
OSO-
OSL-
OSL-
OSL
OSL
OSL
OSL



Cell line
n
txns
expt
17
47
231
245
231
245
231
245
DOX






















Normal














GM05659
3
4
7
133
104
96
103
111
129
97
107
39


Lung


HCC15
3
2
7
86
109
68
92
81
93
38
105
2


H157
3
5
8
7
9
116
33
119
39
31
15
20


Melanoma


MDA-MB-435S
4
5
10
119
108
92
31
122
56
103
70
51


Prostate


LnCAP
3
4
7
52
42
72
60
68
51
52
57
38


DU-145
6
4
7
39
82
71
44
80
44
90
76
40


Glioblastoma


A172
3
5
7
94
17
50
101
73
107
19
51
8


U251
4
6
8
94
50
77
97
99
94
66
87
51


Breast


MCF-7
3
2
7
61
69
32
68
31
52
26
48
5


MDA-MB-231
6
4
11
66
81
130
77
71
44
81
61
7





Note:


The numbers represent percent survival compared to negative control OSS2.






A murine human tumor xenograft model was established using triple-negative breast cancer cells (MDA-MB-231) injected into the flanks of nude mice to test the efficacy of combined dosing of OSC17 and OSL245. The administration of the drug is by repeated dosing over a range of drug concentrations using intratumoral, iv, ip or specialized route of administration. The dosing schedule is based on pilot studies to determine the tolerability of the delivery vehicle and the drug and will incorporate ranges that are taught in the art. Among the delivery platforms are nanoparticles, liposomes, micelles, polymers, small molecule conjugates, aptamers and antibody conjugates. Hybrid technologies containing elements of the aforementioned delivery systems are also known.


The manufacturing process consists of synthesizing the two single strand oligonucleotides of the duplex by conventional solid phase oligonucleotide synthesis. After purification, the two oligonucleotides are annealed into the duplex.


In vivo JetPEI® is a cationic polymer delivery system that binds the negatively charged siRNA molecules to the cationic polyamine polymer. Its use has been reported in xenograft models using MCF-7 (breast), MDA-MB-231 (breast) and A549 (lung) cell lines both ip and intratumoral. This delivery system is currently used in seven human clinical trials (Table 10). The formulated siRNAs are reported to be very stable.









TABLE 10







Clinical trial use of in vivo-jetPEI ®









Organization
Type of study
Phase





Cancer Targeting Systems
Imaging and cancer
Pre-clinical



therapy


Benitec
Lung metastases
Pre-clinical


Avena
Blood-brain barrier
Pre-clinical


BiOncoTech
Melanoma immunotherapy
Phase 1


Ottawa Hospital Research
Acute myocardial infarction
Phase 1


Institute
gene therapy


CHU-Toulouse, Rangueil
Pancreatic cancer gene
Phase 2


Hospital
therapy


BioCancell
Bladder cancer gene
Phase 3



therapy









Note that in the specification and claims, “about” or “approximately” means within twenty percent (20%) of the numerical amount cited. Although the invention has been described in detail with particular reference to these embodiments, other embodiments can achieve the same results. For example, antisense oligonucleotides that are complimentary to the target mRNA can inhibit expression of the protein of interest even though the antisense oligonucleotide is not provided as a dsRNA and may not bind to RISC/AGO complex. Variations and modifications of the present invention will be obvious to those skilled in the art and it is intended to cover in the appended claims all such modifications and equivalents. The entire disclosures of all references, applications, patents, and publications cited above are hereby incorporated by reference.

Claims
  • 1. A double stranded RNA interference (RNAi) agent comprising: (i) a first double-stranded ribonucleic acid (dsRNA) for inhibiting the expression of a CD320 gene wherein the first dsRNA comprises a sense strand and an antisense strand forming a duplex, (ii) a second dsRNA for inhibiting the expression of a LRP2 gene wherein the second dsRNA comprises a sense strand and an antisense strand forming a duplex, and wherein the sense strand of the first dsRNA is at least substantially complementary to the antisense strand of the first dsRNA and the sense strand of the second dsRNA is at least substantially complementary to the antisense strand of the second dsRNA.
  • 2. The double stranded RNAi agent of claim 1 wherein the antisense strand of (i) the first dsRNA includes a region of complementarity to a CD320 RNA transcript.
  • 3. The double stranded RNAi agent of claim 1 wherein the sense strand of (i) the first dsRNA is selected from Table 5.
  • 4-6. (canceled)
  • 7. The double stranded RNAi agent of claim 1 wherein the antisense strand of (i) the first dsRNA, comprises the nucleotide sequence selected from (5′→3′)
  • 8. The double stranded RNAi agent of claim 1 wherein the antisense strand of (i) the first dsRNA, comprises the nucleotide sequence selected from (5′→3′)
  • 9. The double stranded RNAi agent of claim 1 wherein the sense strand of (i) the first dsRNA is no more than 30 nucleotides in length, and the antisense strand of (i) the first dsRNA is no more than 30 nucleotides in length.
  • 10. The double stranded RNAi agent of claim 1 wherein the antisense strand of (ii) the second dsRNA includes a region of complementarity to an LRP2 RNA transcript.
  • 11. The double stranded RNAi agent of claim 1 wherein the antisense strand and the sense strand of (ii) the second dsRNA are selected from Table 6.
  • 12. The double stranded RNAi agent of claim 1, wherein the antisense strand of (ii) the second dsRNA comprises the nucleotide sequence selected from (5′→3′)
  • 13. The double stranded RNAi agent of claim 1, wherein the antisense strand of (ii) the second dsRNA comprises the nucleotide sequence selected from (5′→3′)
  • 14. (canceled)
  • 15. The double stranded RNAi agent of claim 1 comprises (iii) the combination of (i) the first dsRNA and (ii) the second dsRNA.
  • 16. The double stranded RNAi agent of claim 15 wherein the antisense strand of (i) the first dsRNA is selected from
  • 17. The double stranded RNAi agent of claim 1 wherein (i) the first dsRNA has the duplex structure of (SEQ ID NOs: 17 and 110) or (SEQ ID NOs: 18 and 111).
  • 18. The double stranded RNAi agent of claim 1 wherein (ii) the second dsRNA has the duplex structure of (SEQ ID NOs: 417 and 808) or (SEQ ID NOs: 448 and 822).
  • 19. An isolated cell comprising a double stranded RNAi agent of claim 1.
  • 20. A pharmaceutical composition for inhibiting expression of a CD320 gene, the pharmaceutical composition comprising a double stranded RNAi agent (i) and (ii) of claim 1.
  • 21. A pharmaceutical composition for inhibiting expression of an LRP2 gene, the composition comprising a double stranded RNAi agent (i) and (ii) of claim 1.
  • 22-23. (canceled)
  • 24. A method for inhibiting proliferation of a cancer cell (CC) comprising contacting of the CC with an inhibitor of CD320 in an amount effective to inhibit proliferation of the CC.
  • 25-41. (canceled)
  • 42. A method for inhibiting proliferation of a cancer cell (CC) comprising contacting of the CC with an inhibitor of LRP2 in an amount effective in inhibiting proliferation of the CC.
  • 43-58. (canceled)
  • 59. A method for inhibiting proliferation of a cancer cell (CC) comprising contacting of the CC with a composition comprising an inhibitor of CD320 and an inhibitor of LRP2 in an amount effective to inhibit proliferation of the CC.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Continuation-In-Part application of International Patent Application No. PCT/US2019/068423, filed on Dec. 23, 2019, titled “Compositions and Methods for Treating Cancer”, which claim priority to and the benefit of U.S. Provisional Patent Application No. 62/785,592, titled “Compositions and Methods for Treating Cancer”, filed on Dec. 27, 2018. This application also claims priority to and the benefit of the filing of U.S. Provisional Patent Application No. 63/044,771, filed on Jun. 26, 2020, titled “Compositions and Methods for Treating Cancer”. The specification and claims thereof are incorporated herein by reference.

Provisional Applications (2)
Number Date Country
62785592 Dec 2018 US
63044771 Jun 2020 US
Continuation in Parts (1)
Number Date Country
Parent PCT/US2019/068423 Dec 2019 US
Child 17359905 US