COMPOSITIONS AND METHODS TO IMMUNIZE AGAINST HEPATITIS C VIRUS

Abstract
Compositions comprising viral antigens and antigenic peptides corresponding to or derived from Hepatitis C virus (HCV) proteins or fragments thereof, fused to heavy and/or light chain of antibodies, or fragments thereof specific for dendritic cells (DCs) are described herein. Included herein are immunostimulatory compositions (HCV vaccines, HCV antigen presenting dendritic cells, etc.) and methods for increasing effectiveness of HCV antigen presentation by an antigen presenting cell, for a treatment, a prophylaxis or a combination thereof against hepatitis C in a human subject, and methods of providing immunostimulation by activation of one or more dendritic cells, methods to treat or prevent hepatitis C.
Description
TECHNICAL FIELD OF THE INVENTION

The present invention relates in general to the field of immunology, and more particularly, to hepatitis C virus (HCV) immunization, vaccines, and targeting of the HCV peptides to human dendritic cells. The application also describes a bi-functional antibody fused to a HCV target antigen(s) that is directed against a dendritic cell (DC)-specific receptor.


STATEMENT OF FEDERALLY FUNDED RESEARCH

None.


REFERENCE TO A SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Mar. 15, 2012, is named BHCS1118.txt and is 388,419 bytes in size.


BACKGROUND OF THE INVENTION

Without limiting the scope of the application, its background is described in connection with immunostimulatory methods and compositions, including vaccines, and increased effectiveness in antigen presentation of HCV peptides in relation to HCV immunization and vaccines.


U.S. Patent Application Publication No. 2009/0238822 (Rajan et al. 2009) relates to chimeric antigens for targeting and activating antigen presenting cells to elicit cellular and humoral immune responses. The Rajan invention describes compositions and methods that contain or use one or more chimeric antigens that contain one or more pre-selected HCV antigen(s), and an immunoglobulin fragment. The invention further discloses chimeric antigens, comprising an HCV antigen and a Fc fragment of an immunoglobulin for eliciting an immune response against said antigen. The immune response is said to be enhanced upon presenting the host immune system with an immune response domain (HCV antigen from HCV core, envelope, or non-structural protein fragments) and a target-binding domain (an Fc fragment).


U.S. Patent Application Publication No. 2008/0241170 (Zurawski et al. 2008) discloses compositions and methods for making and using vaccine that specifically target (deliver) antigens to antigen-presenting cells for the purpose of eliciting potent and broad immune responses directed against the antigen. The purpose is primarily to evoke protective or therapeutic immune responses against the agent (pathogen or cancer) from which the antigen was derived.


U.S. Patent Application Publication 2010/0239575 (Banchereau et al. 2010) refers to compositions and methods for the expression, secretion, and use of novel compositions for use as, e.g., vaccines and antigen delivery vectors, to delivery antigens to antigen presenting cells. In one embodiment, the vector is an anti-CD40 antibody, or fragments thereof, and one or more antigenic peptides linked to the anti-CD40 antibody or fragments thereof, including humanized antibodies.


SUMMARY OF THE INVENTION

The present invention describes immunostimulatory compositions, vaccines, HCV vaccines, HCV antigen presenting dendritic cells, methods for increasing effectiveness of HCV antigen presentation by an antigen presenting cell, methods for increasing effectiveness of HCV antigen presentation by an antigen presenting cell, methods for increasing effectiveness of antigen presentation by an antigen presenting cell, methods for a treatment, a prophylaxis or a combination thereof against hepatitis C in a human subject, methods of providing immunostimulation by activation of one or more dendritic cells, methods to treat or prevent hepatitis C in a subject, and methods for generating a HCV presenting dendritic cell. The present invention further describes virus antigens, e.g., proteins and peptides corresponding to HCV proteins or fragments thereof, fused to heavy and/or light chain of antibodies, or fragments thereof specific for dendritic cells (DCs). The vaccine composition as described herein delivers HCV antigen specifically to DCs for the purpose of invoking an immune response. The vaccine composition may also promote efficient recall memory in hepatitis C patients.


In one embodiment the instant invention discloses an immunostimulatory composition for generating an immune response for a prophylaxis, a therapy, or any combination thereof against a Hepatitis C infection in a human or animal subject comprising: one or more antibodies or fragments thereof specific for a dendritic cell (DC) and one or more HCV antigens attached to the one or more antibodies or fragments thereof. In one aspect the composition disclosed hereinabove further comprises at least one Toll-Like Receptor (TLR) agonist selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and TLR8 agonists. In another aspect the composition further comprises an optional pharmaceutically acceptable carrier that is effective, in combination, to produce the immune response for prophylaxis, for therapy, or any combination thereof in the human or animal subject in need of immunostimulation. In yet another aspect the DC-specific antibody or fragment is specific for a DC specific receptor, wherein the DC-specific antibody or fragment is selected from an antibody that specifically binds to MHC class I, MHC class II, CD1, CD2, CD3, CD4, CD8, CD11b, CD14, CD15, CD16, CD19, CD20, CD29, CD31, CD40, CD43, CD44, CD45, CD54, CD56, CD57, CD58, CD83, CD86, CMRF-44, CMRF-56, DCIR, DC-ASPGR, CLEC-6, CD40, BDCA-2, MARCO, DEC-205, mannose receptor, Langerin, DECTIN-1, B7-1, B7-2, IFN-γ receptor and IL-2 receptor, ICAM-1, Fcγ receptor, LOX-1, and ASPGR.


In the composition of the instant invention the HCV antigens comprises a peptide sequence derived from a HCV 1a genotype protein or a fragment thereof and the HCV antigens are selected from the group consisting of protein E1, envelope protein E2, non-structural protein NS3, non-structural protein NS4b, non-structural protein NS5b, and a fragment thereof. The one or more HCV antigens are selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, and a fragment thereof and from the group consisting of SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, E1b, and a fragment thereof. In one aspect of the composition of the instant invention the composition comprises a recombinant antibody that comprises a fusion protein and the one or more HCV antigen are at a C-terminal position relative to the one or more antibody or fragment thereof within a fusion protein. In another aspect the composition comprises a recombinant antibody, and the one or more HCV antigens are fused to a C-terminus of a heavy chain of the antibody. In yet another aspect the composition comprises a recombinant antibody, and the one or more HCV antigens are fused to a C-terminus of a light chain of the one or more antibody or fragment thereof specific for a DC.


The one or more HCV antigens are selected from the group consisting of SEQ ID NO: 12-linker A-SEQ ID NO: 13, SEQ ID NO: 12-linker A-SEQ ID NO: 11, SEQ ID NO: 12-linker B-SEQ ID NO: 14, SEQ ID NO: 14-linker B-SEQ ID NO: 12, SEQ ID NO: 12-linker B-SEQ ID NO: 10, SEQ ID NO: 10-linker B-SEQ ID NO: 12, SEQ ID NO: 9-linker


B-SEQ ID NO: 10, SEQ ID NO: 10-linker B-SEQ ID NO: 9, SEQ ID NO: 10-linker B-SEQ ID NO: 14, SEQ ID NO: 14-linker B-SEQ ID NO: 10, SEQ ID NO: 9-linker B-SEQ ID NO: 12, SEQ ID NO: 12-linker B-SEQ ID NO: 9, SEQ ID NO: 8-linker B-E1b. SEQ ID NO: 12-linker B-SEQ ID NO: 10-linker C-SEQ ID NO: 14, SEQ ID NO: 12-linker B-SEQ ID NO: 14-linker C-SEQ ID NO: 10, SEQ ID NO: 10-linker B-SEQ ID NO: 12-linker C-SEQ ID NO: 14, SEQ ID NO: 10-linker B-SEQ ID NO: 14-linker C-SEQ ID NO: 12, SEQ ID NO: 14-linker B-SEQ ID NO: 12-linker C-SEQ ID NO: 10, SEQ ID NO: 14-linker B-SEQ ID NO: 10-linker C-SEQ ID NO: 12, and SEQ ID NO: 12-linker B-SEQ ID NO: 10-linker C-SEQ ID NO: 14-linker D-SEQ ID NO: 8. In another aspect the one or more HCV antigens are attached to a C-terminus of a light chain of the recombinant antibody and selected from a group consisting of: SEQ ID NO: 9; SEQ ID NO: 11, and E1b. In yet another aspect the one or more HCV antigens are selected from the group consisting of SEQ ID NO: 9 fused to the C-terminus of a light chain and SEQ ID NO: 10-linker B-SEQ ID NO: 12-linker C-SEQ ID NO: 14 fused to the C-terminus of the heavy chain of the antibody. In a related aspect the one or more HCV antigen are chemically coupled to the one or more antibodies or fragments thereof or are attached to the one or more antibodies or fragments thereof via an affinity association. In a specific aspect the DC-specific antibody is humanized. In another aspect the composition is optimized to be administered to the human or animal subject by an oral route, a nasal route, topically, or as an injection.


Another embodiment of the present invention discloses a vaccine comprising: one or more antibodies or fragments thereof specific for a dendritic cell (DC); and one or more HCV antigens attached to the one or more antibodies or fragments thereof. The vaccine described herein further comprises at least one Toll-Like Receptor (TLR) agonist selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and TLR8 agonists and an optional pharmaceutically acceptable carrier or an adjuvant that is effective, in combination, to produce an immune response for prophylaxis, for therapy, or any combination thereof in the human or animal subject in need of immunostimulation. In one aspect of the vaccine the DC-specific antibody or fragment is specific for a dendritic cell specific receptor. In another aspect the HCV antigen comprises a peptide sequence derived from a HCV 1a genotype protein or a fragment thereof, wherein the HCV antigen is selected from the group consisting of protein E1, envelope protein E2, non-structural protein NS3, non-structural protein NS4b, non-structural protein NS5b, and a fragment thereof. In other related aspects the DC-specific antibody is humanized and the composition is optimized to be administered to the human or animal subject by an oral route, a nasal route, topically, or as an injection.


In yet another embodiment the instant invention discloses a Hepatitis C vaccine (HCV) comprising a fusion protein comprising: (i) one or more antibodies or fragments thereof specific for a dendritic cell (DC), (ii) one or more HCV antigens located C-terminal of the antibodies or fragments thereof, (iii) at least one Toll-Like Receptor (TLR) agonist which is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and TLR8 agonists, and (iv) one or more optional pharmaceutically acceptable carriers and adjuvants, wherein the vaccine is effective to produce an immune response, for a prophylaxis, a therapy, or any combination thereof against hepatitis C in a human or an animal subject in need thereof. In one aspect the vaccine comprises one or more optional agents selected from the group consisting of an agonistic anti-CD40 antibody, an agonistic anti-CD40 antibody fragment, a CD40 ligand (CD40L) polypeptide, a CD40L polypeptide fragment, anti-4-1BB antibody, an anti-4-1BB antibody fragment, 4-1BB ligand polypeptide, a 4-1BB ligand polypeptide fragment, IFN-γ, TNF-α, type 1 cytokines, type 2 cytokines or combinations and modifications thereof.


The instant invention in one embodiment discloses a method for increasing effectiveness of Hepatitis C virus (HCV) antigen presentation by an antigen presenting cell (APC) comprising the steps of: (i) providing an antibody conjugate comprising a dendritic cell (DC) specific antibody or a fragment thereof and one or more native or engineered HCV antigenic peptides, (ii) providing one or more APCs; and (iii) contacting the APC with the conjugate, wherein the antibody-antigen complex is processed and presented for T cell recognition. In a specific aspect of the method the antigen presenting cell comprises a dendritic cell (DC).


In another embodiment the instant invention provides a method for increasing effectiveness of antigen presentation by an antigen presenting cell (APC) comprising the steps of: i) isolating and purifying one or more dendritic cell (DC)-specific antibody or a fragment thereof, ii) providing one or more HCV antigens or antigenic peptides, iii) loading or chemically coupling the one or more HCV antigens or antigenic peptides to the DC-specific antibody to form an antibody-antigen conjugate, and iv) contacting the antigen presenting cell with the conjugate, wherein the antibody-antigen complex is processed and presented for T cell recognition.


The method as described hereinabove further comprises adding at least one Toll-Like Receptor (TLR) agonist which is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and TLR8 agonists and one or more optional steps comprising i) adding one or more optional agents selected from the group consisting of an agonistic anti-CD40 antibody, an agonistic anti-CD40 antibody fragment, a CD40 ligand (CD40L) polypeptide, a CD40L polypeptide fragment, anti-4-1BB antibody, an anti-4-1BB antibody fragment, 4-1BB ligand polypeptide, a 4-1BB ligand polypeptide fragment, IFN-γ, TNF-α, type 1 cytokines, type 2 cytokines or combinations and modifications thereof to the antibody-antigen conjugate and the TLR agonist prior to contacting the antigen presenting cells, ii) measuring a level of one or more agents selected from the group consisting of IFN-γ, TNF-α, IL-12p40, IL-4, IL-5, and IL-13, wherein a change in the level of the one or more agents is indicative of the increase in the effectiveness antigen presentation by the antigen presenting cell, and iii) adding one or more optional agents selected from the group consisting of an agonistic anti-CD40 antibody, an agonistic anti-CD40 antibody fragment, a CD40 ligand (CD40L) polypeptide, a CD40L polypeptide fragment, anti-4-1BB antibody, an anti-4-1BB antibody fragment, 4-1BB ligand polypeptide, a 4-1BB ligand polypeptide fragment, IFN-γ, TNF-α, type 1 cytokines, type 2 cytokines or combinations and modifications thereof.


In yet another embodiment the instant invention provides method for a treatment, a prophylaxis or a combination thereof against hepatitis C in a human subject comprising the steps of: identifying the human subject in need of the treatment, the prophylaxis, or a combination thereof against the hepatisti and administering a vaccine composition comprising one or more antibodies or fragments thereof specific for a dendritic cell (DC) and one or more HCV antigens attached to the one or more antibodies or fragments thereof. In one aspect of the method the vaccine composition further comprises at least one Toll-Like Receptor (TLR) agonist which is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and TLR8 agonists, and one or more optional pharmaceutically acceptable carriers and adjuvants, wherein the conjugate and agonist are each comprised in an amount such that, in combination with the other, are effective to produce an immune response, for the prophylaxis, the therapy or any combination thereof against the influenza in the human subject. In another aspect the vaccine composition further comprises one or more optional agents selected from the group consisting of an agonistic anti-CD40 antibody, an agonistic anti-CD40 antibody fragment, a CD40 ligand (CD40L) polypeptide, a CD40L polypeptide fragment, anti-4-1BB antibody, an anti-4-1BB antibody fragment, 4-1BB ligand polypeptide, a 4-1BB ligand polypeptide fragment, IFN-γ, TNF-α, type 1 cytokines, type 2 cytokines or combinations and modifications thereof. In yet another aspect the vaccine is administered to the human subject by an oral route, a nasal route, topically or as an injection.


In another aspect the one or more antibodies or fragments thereof specific for a dendritic cell comprises antibodies specifically binds to MHC class I, MHC class II, CD1, CD2, CD3, CD4, CD8, CD11b, CD14, CD15, CD16, CD19, CD20, CD29, CD31, CD40, CD43, CD44, CD45, CD54, CD56, CD57, CD58, CD83, CD86, CMRF-44, CMRF-56, DCIR, DC-ASPGR, CLEC-6, CD40, BDCA-2, MARCO, DEC-205, mannose receptor, Langerin, DECTIN-1, B7-1, B7-2, IFN-γ receptor and IL-2 receptor, ICAM-1, Fey receptor, LOX-1, or ASPGR. In yet another aspect the HCV antigen is selected from the group consisting of protein E1, envelope protein E2, non-structural protein NS3, non-structural protein NS4b, non-structural protein NS5b, and a fragment thereof, from the group consisting of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, and a fragment thereof, or from the group consisting of SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, E1b, and a fragment thereof.


A method of providing immunostimulation by activation of one or more dendritic cells (DCs) to a human subject for a prophylaxis, a therapy or a combination thereof against HCV is described in one embodiment of the present invention. The method comprises the steps of: a) identifying the human subject in need of immunostimulation for the prophylaxis, the therapy or a combination thereof against HCV, b) isolating one or more DCs from the human subject, c) exposing the isolated DCs to activating amounts of a composition or a vaccine comprising an anti-dendritic cell immunoreceptor (DCIR) monoclonal antibody or fragments thereof attached to one or more HCV antigens, and d) reintroducing the activated DC complex into the human subject.


The method described above further comprises the steps of contacting the one or more DCs with at least one Toll-Like Receptor (TLR) agonist which is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and TLR8 agonists and a pharmaceutically acceptable carrier to form an activated DC complex and the step of adding one or more optional agents selected from the group consisting of an agonistic anti-CD40 antibody, an agonistic anti-CD40 antibody fragment, a CD40 ligand (CD40L) polypeptide, a CD40L polypeptide fragment, anti-4-1BB antibody, an anti-4-1BB antibody fragment, 4-1BB ligand polypeptide, a 4-1BB ligand polypeptide fragment, IFN-γ, TNF-α, type 1 cytokines, type 2 cytokines or combinations and modifications thereof to the conjugate and the TLR agonist prior to exposing the DCs. The method disclosed hereinabove further comprises the optional step of measuring a level of one or more agents selected from the group consisting of IFN-γ, TNF-α, IL-12p40, IL-4, IL-5, and IL-13, wherein a change in the level of the one or more agents is indicative of the immunostimulation.


The present invention also discloses a method to treat or prevent Hepatitis C in a subject comprising the step of administering to the subject a fusion protein comprising an antibody or fragment thereof specific for a dendritic cell (DC) and a Hepatitis C virus antigen or antigenic peptide fused to the antibody or fragment thereof. A Hepatitis C virus antigen presenting dendritic cell (DC) is also disclosed in one embodiment of the present invention. The HCV antigen presenting DC further comprises one or more isolated dendritic cells (DCs) in contact with a fusion protein comprising an antibody or fragment thereof specific for the DC, the fusion protein further comprising a HCV peptide.


The present invention describes one or more vaccines against HCV comprising one or more antibodies or fragments thereof specific for a dendritic cell (DC) and one or more HCV antigens or antigenic domains attached to the one or more antibodies or fragments thereof. The vaccine has a general structure given by: H-w, H-w-x, H-w-x-y, or H-w-x-y-z, wherein H represents a heavy chain of an antibody or a fragment thereof specific for a DC, w, x, y, and z represent one or more HCV antigens or domains selected from the group consisting of protein E1, envelope protein E2, non-structural protein NS3, non-structural protein NS4b, non-structural protein NS5b, or any combinations thereof. In one aspect w comprises the HCV antigenic domains selected from the group consisting of ProtA, ProtB, He1B, Pa1m, E1b, and E2. In another aspect x comprises the HCV antigenic domains selected from the group consisting of He1C, He1A, Pa1m, ProtA, ProtB, and E1b. In yet another aspect comprises the HCV antigenic domains selected from the group consisting of Pa1m, ProtB, and Protb. In another aspect z comprises HCV antigenic domains selected from E2, ProtA, and He1B. In a related aspect the one or more HCV antigens or antigenic domains are linked or attached to one another by one or more flexible linkers.


Another embodiment disclosed herein relates to a vaccine comprising one or more antibodies or fragments thereof specific for a dendritic cell (DC) and one or more HCV antigens or antigenic domains attached to the one or more antibodies or fragments thereof, wherein the vaccine has a general structure given by L-w-x-y-z, wherein L represents a light chain of an antibody or a fragment thereof specific for a DC, w, x, y, and z represent one or more HCV antigens or domains selected from the group consisting of protein E1, envelope protein E2, non-structural protein NS3, non-structural protein NS4b, non-structural protein NS5b, or any combinations thereof.


In yet another embodiment the present invention discloses a vaccine comprising one or more antibodies or fragments thereof specific for a dendritic cell (DC) and one or more HCV antigens or antigenic domains attached to the one or more antibodies or fragments thereof, wherein the vaccine has a general structure given by:




embedded image


Wherein H represents a heavy chain of an antibody or a fragment thereof specific for a DC, L represents a light chain of an antibody or a fragment thereof specific for the DC, w, x, y, and z represent one or more HCV antigens or domains selected from the group consisting of protein E1, envelope protein E2, non-structural protein NS3, non-structural protein NS4b, non-structural protein NS5b, or any combinations thereof.


Finally, the present invention discloses a method for generating a Hepatitis C virus (HCV) presenting dendritic cells (DCs) in a human subject comprising the steps of: providing one or more DCs and incubating the dendritic cells with a fusion protein, wherein the fusion protein comprises an antibody or fragment thereof specific for a dendritic cell and a HCV antigen fused to the antibody or fragment thereof. The method disclosed herein further comprises the step of administering to the subject an effective amount of IFNA, Ribavirin, or a combination thereof.





BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the features and advantages of the present invention, reference is now made to the detailed description of the invention along with the accompanying figures and in which:



FIG. 1 provides a summary of HCV antigen combined constructs expressed at the C-terminus end of antibody heavy chain. Each HCV domains, as defined in FIG. 2, is represented as color rectangle. Flexible linkers are shown as curved lines. Each color represents a different linker. Domains are fused to the carboxyl terminus end of antibody heavy chain. “Expressed” means that domains fused to the carboxyl terminus end of antibody heavy chain are expressed as fusion antibody after co-transfection with antibody light chain in 293F cells. All possible combination of HCV domains have been constructed, and FIG. 3 shows only those that were expressed as soluble fusion proteins in 293F cells and in CHO cells and purified as recombinant antibodies;



FIG. 2 provides a summary of HCV antigen combined constructs expressed at the C-terminus end of antibody light chain. All possible combinations of HCV domains have been constructed, and the figure shows only those that are expressed as soluble fusion proteins in 293F cells and in CHO cells and purified as recombinant antibodies. The same color code as in FIG. 1 is used;



FIGS. 3A-3B demonstrate the ability of recombinant anti-DCIR and anti-CD40 antibodies fused to HCV NS3He1B specific antigen to elicit the expansion of antigen-specific CD4+ T cells from a chronic HCV infected patient cured after IFNa-Ribavirin therapy. Delivering NS3He1B to DCs through CD40 and DCIR induces IFNγ-TNFa-producing HCV NS3He1B-specific CD4+ T cells. PBMC cells from chronic HCV infected patients; either cured after therapy or in treatment failure, were co-cultured with IFNDCs targeted with anti-CD40-NS3He1B or anti-DCIR-NS3He1B for 10 days. Cells were stimulated with peptides clusters (10 peptides of 15-mers in each clusters) covering HCV NS3 He1B (10 μM): FIG. 3A after 2 days, culture supernatants were analyzed for measuring IFNγ and FIG. 3B PBMC cells were stained for measuring the frequency of peptide-specific CD4+ T cells intracellular IFNγ+TNFα+ cells;



FIG. 4 demonstrates the ability of long HCV antigen bearing vaccine constructs to induce multi epitope CD4+ T cells. HCV antigens from NS3 Helicase He1BC construct were delivered to DCs through CD40 or DCIR. PBMC cells from chronic HCV infected patients; either cured after therapy or in treatment failure, were co-cultured with IFNDCs targeted with anti-CD40-NS3He1B, anti-CD40-NS3He1BC or anti-DCIR-NS3He1B, anti-DCIR-NS3He1BC for 10 days. Cells were stimulated for 6 h with peptides clusters (10 μM; 10 peptides of 15-mers in each clusters) covering HCV NS3 He1B or He1BC constructs. PBMC cells were stained for measuring the frequency of peptide-specific CD4+ T cells intracellular IFNγ+TNFα+ cells, an analyzed by FACS. Number of double positive CD4+ T cells induced after each peptide cluster stimulation were plotted for each vaccine targeting agent;



FIGS. 5A to 5C demonstrate the ability of recombinant anti-DCIR and anti-CD40 antibodies fused to HCV NS3He1B, HCV NS3ProtB and HCV NS5BPa1m specific antigens to elicit the expansion of antigen-specific CD4+ T cells from a chronic HCV infected patient cured after IFNa-Ribavirin therapy. Delivering HCV antigen to DCs through CD40 and DCIR induces IFNγ-TNFa-producing HCV-specific CD4+ T cells, with multi epitopes, specific CD4 T cells. PBMC cells from chronic HCV infected patients cured after therapy were co-cultured with autologous IFNαDCs targeted with anti-CD40-NS3He1B-NS3ProtB-NS5BPa1m or anti-DCIR-NS3He1B-NS3ProtB-NS5BPa1m for 10 days. Cells were stimulated with peptides clusters (10 peptides of 15-mers in each clusters) covering HCV NS3He1B, NS3ProtB or NS5BPa1m (2 μM). PBMC cells were stained for measuring the frequency of peptide-specific CD4+ T cells intracellular IFNγ+TNFα+ cells;



FIGS. 6A to 6C demonstrate the ability of recombinant anti-DCIR and anti-CD40 antibodies fused to HCV NS3He1B, HCV NS3ProtB and HCV NS5BPa1m specific antigens to elicit the expansion of antigen-specific CD8+ T cells from a chronic HCV infected patient cured after IFNa-Ribavirin therapy. Delivering HCV antigen to DCs through CD40 and DCIR induces IFNγ-TNFa-producing HCV-specific CD4+ T cells, with multi epitopes, specific CD4 T cells. PBMC cells from chronic HCV infected patients cured after therapy were co-cultured with autologous IFNαDCs targeted with anti-CD40-NS3He1B-NS3ProtB-NS5BPa1m or anti-DCIR-NS3He1B-NS3ProtB-NS5BPa1m for 10 days. Cells were stimulated with peptides clusters (10 peptides of 15-mers in each clusters) covering HCV NS3He1B, NS3ProtB or NS5BPa1m (2 μM). PBMC cells were stained for measuring the frequency of peptide-specific CD8+T cells intracellular IFNγ+TNFα+ cells;



FIGS. 7A to 7D demonstrate the ability of recombinant anti-DCIR and anti-CD40 antibodies fused to HCV NS3He1B, HCV NS3ProtB or HCV NS5BPa1m specific antigens to elicit the expansion of antigen-specific CD4+ T cells from chronic HCV infected patients cured after IFNa-Ribavirin therapy. HCV antigens from were delivered to DCs through CD40 or DCIR. IFNαDCs were targeted with anti-CD40-NS3He1B; anti-CD40-NS3ProtB; anti-CD40NS5bPa1m or anti-DCIR-NS3He1B; anti-DCIR-NS3ProtB; anti-DCIRNS5bPa1m and co-cultured for 10 days with PBMC cells from 3 chronic HCV infected patients cured after therapy. Cells were stimulated for 6 h with peptide clusters C7 and C9 (10 μM; 10 peptides of 15-mers) covering HCV NS3 He1B constructs; with peptide clusters C2 and C3 covering HCV NS3 ProtB constructs or peptide cluster C2 C4 C5 C6 C7 covering NS5bPa1m construct. PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFNγ+TNFα+ cells, an analyzed by FACS. The left panel represent IFNγ amount secreted after 10 days culture of PBMCs with peptide cluster covering HCVNS3 and HCVNS5b entire proteins;



FIGS. 8A to 8D demonstrates the ability of recombinant anti-DCIR and anti-CD40 antibodies fused to HCV NS3He1B, HCV NS3ProtB or HCV NS5BPa1m specific antigens to elicit the expansion of antigen-specific CD4+ T cells from chronic HCV infected patients in treatment failure. HCV antigens from were delivered to DCs through CD40 or DCIR. IFNαDCs were targeted with anti-CD40-NS3He1B; anti-CD40-NS3ProtB or anti-DCIR-NS3He1B; anti-CD40NS5bPa1m or anti-DCIR-NS3He1B; anti-DCIR-NS3ProtB; anti-DCIRNS5bPa1m and co-cultured for 10 days with PBMC cells from 3 chronic HCV infected patients in treatment failure (HCV+). Cells were stimulated for 6 h with peptide clusters C7 and C9 (10 μM; 10 peptides of 15-mers) covering HCV NS3 He1B constructs; with peptide clusters C2 and C3 covering HCV NS3 ProtB constructs or peptide cluster C2 C4 C5 C6 C7 covering NS5bPa1m construct. PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFNγ+TNFα+ cells, an analyzed by FACS. The left panel represent IFNγ amount secreted after 10 days culture of PBMCs with peptide cluster covering HCVNS3 and HCVNS5b entire proteins;



FIGS. 9A and 9B demonstrate the ability of combination of TLR agonist and anti-DCIR HCV-NS3He1B can induced multi epitopes CD8+ T cells. HCV antigens from NS3 Helicase He1B construct were delivered to DCs through CD40 or DCIR. IFNDCs were targeted with anti-CD40-NS3He1B, or anti-DCIR-NS3He1B in presence of PAM3 (TLR2 agonist; 200 ng/ml), CL097 (TLR7/8 agonist; 5 μg/ml) or polyIC (TLR3 agonist; 25 μg/ml) before co-culture for 10 days with PBMC cells from chronic HCV infected patients; either cured after therapy or in treatment failure. Cells were stimulated for 6 h with peptide clusters C7 (10 μM; 10 peptides of 15-mers) covering HCV NS3 He1B constructs: (FIG. 9A) PBMC cells were stained for measuring the frequency of peptide-specific CD4+ and CD8+ intracellular IFNγ+TNFα+ cells, an analyzed by FACS, (FIG. 9B) Number of double positive CD4+ and CD8+ intracellular IFNγ+TNFα+ T cells induced after each TLR agonist stimulation were plotted;



FIGS. 10A-10D demonstrate the ability of combination of TLR agonist and anti-DCIR HCV-construct to increase CD4+ and induce CD8+ T cells responses in chronic HCV infected patients cured after therapy. HCV antigens from NS3 Helicase He1B or from NS3 Protease ProtB constructs were delivered to DCs through CD40 or DCIR. IFNαDCs were targeted with anti-CD40-NS3He1B, anti-DCIR-NS3He1B, anti-CD40-NS3ProtB, anti-DCIR-NS3ProtB, in presence of PAM3 (TLR2 agonist; 200 ng/ml), CL095 (TLR7/8 agonist; 5 μg/ml) or polyIC (TLR3 agonist; 25 μg/ml) or cyclic glucan (TLR4 agonist, 10 m/ml) before co-culture for 10 days with PBMC cells from chronic HCV infected patients cured after therapy. Cells were stimulated for 6 h with peptide clusters C7 (10 μM; 10 peptides of 15-mers) covering HCV NS3 He1B constructs or with peptide clusters C3 (10 μM; 10 peptides of 15-mers) covering HCV NS3 ProtB constructs: FIGS. 10A and 10B PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFNγ+TNFα+ cells, and analyzed by FACS and FIGS. 10C and 10D PBMC cells were stained for measuring the frequency of peptide-specific CD8+ intracellular IFNγ+TNFα+ cells, an analyzed by FACS;



FIG. 11 demonstrates the ability of combination of TLR agonists and anti-CD40 HCV-constructs to increase CD4+ T cells responses in chronic HCV infected patients in treatment failure. HCV antigens from NS3 Helicase He1B or from NS3 Protease ProtB constructs were delivered to DCs through CD40 or DCIR. IFNαDCs were targeted with anti-CD40-NS3He1B, anti-DCIR-NS3He1B, anti-CD40-NS3ProtB, anti-DCIR-NS3ProtB, in presence of PAM3 (TLR2 agonist; 200 ng/ml), CL095 (TLR7/8 agonist; 5 μg/ml) or polyIC (TLR3 agonist; 25 μg/ml) or cyclic glucan (TLR4 agonist, 10 μg/ml) before co-culture for 10 days with PBMC cells from chronic HCV infected patients cured after therapy. Cells were stimulated for 6 h with peptide clusters C7 (10 μM; 10 peptides of 15-mers) covering HCV NS3 He1B constructs or with peptide clusters C3 (10 μM; 10 peptides of 15-mers) covering HCV NS3 ProtB constructs. PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFNγ+TNFα+ cells, an analyzed by FACS;



FIGS. 12A-12C demonstrate the ability of HCV vaccine candidates to recall CD4+ T cells responses in all chronic HCV infected patients (cured or in treatment failure). HCV antigens from NS3 Helicase He1B, NS5b polymerase Pa1m or from NS3 Protease ProtB constructs were delivered to DCs through CD40 or DCIR. IFNγDCs were targeted with anti-CD40-[NS3He1B˜NS3ProtB˜NS5bPa1m on heavy chain], anti-DCIR-[NS3He1B˜NS3ProtB˜NS5bPa1m on heavy chain] before co-culture for 10 days with PBMC cells from chronic HCV infected patients cured after therapy. Cells were stimulated for 6 h with peptide clusters C7, C9 (10 μM; 10 peptides of 15-mers) covering HCV NS3 He1B domain, with peptide clusters C2-C3-C4 (10 μM; 10 peptides of 15-mers) covering HCV NS3 ProtB domain or with peptide clusters C2-C4-C5-C6-C7 (10 μM; 10 peptides of 15-mers) covering HCV NS5b Pa1m domain. PBMC cells were stained for measuring the frequency of peptide-specific CD4+ and CD8+ intracellular IFNγ+TNFα+ cells, and analyzed by FACS. The number of CD4+IFNγ+TNFα+ cells induced vaccine candidate is shown;



FIGS. 13A-13E demonstrate of the ability of different HCV antigen combination on vaccine candidate for recall CD4+ T cells responses in chronic HCV infected cured patients. HCV antigens from NS3 Helicase He1B, NS5b polymerase Pa1m or from NS3 Protease ProtB combination constructs were delivered to DCs through CD40 or DCIR. IFNaDCs were targeted with second-generation vaccines anti-CD40-[NS3He1B on light chain and NS3ProtB˜NS5bPa1m on heavy chain], anti-DCIR-[NS3He1B on light chain and NS3ProtB˜ NS5bPa1m on heavy chain], or first-generation vaccines anti-CD40-[NS3He1B˜NS3ProtB˜NS5bPa1m on heavy chain], anti-DCIR—[NS3He1B˜NS3ProtB˜NS5bPa1m on heavy chain] before co-culture for 10 days with PBMC cells from chronic HCV infected patients cured after therapy. Cells were stimulated for 6 h with peptide clusters C7 and C9 (10 μM; 10 peptides of 15-mers) covering HCV NS3 He1B domain (shown in green on the figure), with peptide clusters C2-C3-C4 (10 μM; 10 peptides of 15-mers) covering HCV NS3 ProtB domain (shown in pink on the figure) or with peptide clusters C2-C4-C5-C6-C7 (10 μM; 10 peptides of 15-mers) covering HCV NS5b Pa1m domain (shown in orange in the figure). PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFNγ+TNFa+ cells, an analyzed by FACS. The number of CD4+IFNγ+TNFα+ cells induced by first-generation vaccine or second-generation vaccine is compared in the last panel; and



FIGS. 14A to 14H demonstrate the ability of vaccine candidate to recall CD4+ T cells responses in HCV patients infected with non 1 genotype and HCV-exposed but non-infected individual. HCV antigens from NS3 Helicase He1B, NS5b polymerase Pa1m or from NS3 Protease ProtB combination constructs were delivered to DCs through CD40 or DCIR and DC loaded were co-culture for 10 days with PBMC cells from HCV patients infected with non 1 genotype HCV-infected patients (HCV-015, 2b) and HCV-exposed but non infected individual (HCV-029). Cells were stimulated for 6 h with peptide clusters C7 and C9 (10 μM; 10 peptides of 15-mers) covering HCV NS3 He1B domain, with peptide clusters C2-C3-C4 (10 μM; 10 peptides of 15-mers) covering HCV NS3 ProtB domain or with peptide clusters C2-C4-C5-C6-C7 (10 μM; 10 peptides of 15-mers) covering HCV NS5b Pa1m domain. PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFNγ+TNFα+ cells, an analyzed by FACS.



FIGS. 15A to 15B shows the results from a 10 day expansion culture whereby a dose range of 1st generation anti-DCIR-HCV vaccine (left panels) is compared to second generation anti-DCIR-HCV vaccine (right panels). Doses were 0.05 nM, 0.5 nM, and 5 nM and antigen-specific responses were ascertained by stimulation with no peptide (control) or ProtA, He1B, or Pa1m peptide pools in the presence of Brefeldin, followed by staining for CD3+, CD4+ and intracellular IFNg and TNFa. Samples were analyzed by FACS. Shown are comparable CD4+ HCV antigen-specific responses to the two generations of vaccines.



FIGS. 16A to 16B shows the results from a 10 day expansion culture whereby a dose range of 1st generation anti-CD40-HCV vaccine (left panels) is compared to second generation anti-CD40-HCV vaccine (right panels). Doses were 0.05 nM, 0.5 nM, and 5 nM and antigen-specific responses were ascertained by stimulation with no peptide (control) or ProtA, He1B, or Pa1m peptide pools in the presence of Brefeldin, followed by staining for CD3+, CD4+ and intracellular IFNg and TNFa. Samples were analyzed by FACS. Shown are comparable CD4+ HCV antigen-specific responses to the two generations of vaccines.





DETAILED DESCRIPTION OF THE INVENTION

While the making and using of various embodiments of the present invention are discussed in detail below, it should be appreciated that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed herein are merely illustrative of specific ways to make and use the invention and do not delimit the scope of the invention.


To facilitate the understanding of this invention, a number of terms are defined below. Terms defined herein have meanings as commonly understood by a person of ordinary skill in the areas relevant to the present invention. Terms such as “a”, “an” and “the” are not intended to refer to only a singular entity, but include the general class of which a specific example may be used for illustration. The terminology herein is used to describe specific embodiments of the invention, but their usage does not delimit the invention, except as outlined in the claims.


The invention includes also variants and other modification of an antibody (or “Ab”) of fragments thereof, e.g., anti-CD40 fusion protein (antibody is used interchangeably with the term “immunoglobulin”). As used herein, the term “antibodies or fragments thereof,” includes whole antibodies or fragments of an antibody, e.g., Fv, Fab, Fab′, F(ab′)2, Fc, and single chain Fv fragments (ScFv) or any biologically effective fragments of an immunoglobulins that binds specifically to, e.g., CD40. Antibodies from human origin or humanized antibodies have lowered or no immunogenicity in humans and have a lower number or no immunogenic epitopes compared to non-human antibodies. Antibodies and their fragments will generally be selected to have a reduced level or no antigenicity in humans.


As used herein, the terms “Ag” or “antigen” refer to a substance capable of either binding to an antigen binding region of an immunoglobulin molecule or of eliciting an immune response, e.g., a T cell-mediated immune response by the presentation of the antigen on Major Histocompatibility Antigen (MHC) cellular proteins. As used herein, “antigen” includes, but is not limited to, antigenic determinants, haptens, and immunogens, which may be peptides, small molecules, carbohydrates, lipids, nucleic acids or combinations thereof. The skilled immunologist will recognize that when discussing antigens that are processed for presentation to T cells, the term “antigen” refers to those portions of the antigen (e.g., a peptide fragment) that is a T cell epitope presented by MHC to the T cell receptor. When used in the context of a B cell mediated immune response in the form of an antibody that is specific for an “antigen”, the portion of the antigen that binds to the complementarity determining regions of the variable domains of the antibody (light and heavy) the bound portion may be a linear or three-dimensional epitope. In the context of the present invention, the term antigen is used on both contexts, that is, the antibody is specific for a protein antigen (CD40), but also carries one or more peptide epitopes for presentation by MHC to T cells. In certain cases, the antigens delivered by the vaccine or fusion protein of the present invention are internalized and processed by antigen presenting cells prior to presentation, e.g., by cleavage of one or more portions of the antibody or fusion protein.


As used herein, the term “conjugate” refers to a protein having one or more targeting domains, e.g., an antibody, and at least one antigen, e.g., a small peptide or a protein. These conjugates include those produced by chemical methods, such as by chemical coupling, for example, coupling to sulfhydryl groups, and those produced by any other method whereby one or more antibody targeting domains and at least one antigen, are linked, directly or indirectly via linker(s) to a targeting agent. An example of a linker is a cohesin-dockerin (coh-doc) pair, a biotin-avidin pair, histidine tags bound by Zn, and the like.


As used herein, the term “Antigen Presenting Cells” (APC) refers to cells that are capable of activating T cells, and include, but are not limited to, certain macrophages, B cells and dendritic cells. “Dendritic cells” (DCs) refers to any member of a diverse population of morphologically similar cell types found in lymphoid or non-lymphoid tissues. These cells are characterized by their distinctive morphology, high levels of surface MHC-class II expression (Steinman, et al., Ann. Rev. Immunol. 9:271 (1991); incorporated herein by reference for its description of such cells). These cells can be isolated from a number of tissue sources, and conveniently, from peripheral blood, as described herein. Dendritic cell binding proteins refers to any protein for which receptors are expressed on a dendritic cell. Examples include GMCSF, IL-1, TNF, IL-4, CD40L, CTLA4, CD28, and FLT-3 ligand.


For the purpose of the present invention, the term “vaccine composition” is intended to mean a composition that can be administered to humans or to animals in order to induce an immune system response; this immune system response can result in a production of antibodies or simply in the activation of certain cells, in particular antigen-presenting cells, T lymphocytes and B lymphocytes. The vaccine composition can be a composition for prophylactic purposes or for therapeutic purposes, or both. As used herein, the term “antigen” refers to any antigen which can be used in a vaccine, whether it involves a whole microorganism or a subunit, and whatever its nature: peptide, protein, glycoprotein, polysaccharide, glycolipid, lipopeptide, etc. They may be viral antigens, bacterial antigens, or the like; the term “antigen” also comprises the polynucleotides, the sequences of which are chosen so as to encode the antigens whose expression by the individuals to which the polynucleotides are administered is desired, in the case of the immunization technique referred to as DNA immunization. They may also be a set of antigens, in particular in the case of a multivalent vaccine composition which comprises antigens capable of protecting against several diseases, and which is then generally referred to as a vaccine combination, or in the case of a composition which comprises several different antigens in order to protect against a single disease, as is the case for certain vaccines against whooping cough or the flu, for example. The term “antibodies” refers to immunoglobulins, whether natural or partially or wholly produced artificially, e.g. recombinant. An antibody may be monoclonal or polyclonal. The antibody may, in some cases, be a member of one, or a combination immunoglobulin classes, including: IgG, IgM, IgA, IgD, and IgE.


The term “adjuvant” refers to a substance that enhances, augments or potentiates the host's immune response to a vaccine antigen.


The term “gene” is used to refer to a functional protein, polypeptide or peptide-encoding unit. As will be understood by those in the art, this functional term includes both genomic sequences, cDNA sequences, and fragments or combinations thereof, as well as gene products, including those that may have been altered by the hand of man. Purified genes, nucleic acids, protein and the like are used to refer to these entities when identified and separated from at least one contaminating nucleic acid or protein with which it is ordinarily associated.


As used herein, the term “nucleic acid” or “nucleic acid molecule” refers to polynucleotides, such as deoxyribonucleic acid (DNA) or ribonucleic acid (RNA), oligonucleotides, fragments generated by the polymerase chain reaction (PCR), and fragments generated by any of ligation, scission, endonuclease action, and exonuclease action. Nucleic acid molecules can be composed of monomers that are naturally-occurring nucleotides (such as DNA and RNA), or analogs of naturally-occurring nucleotides (e.g., α-enantiomeric forms of naturally-occurring nucleotides), or a combination of both. Modified nucleotides can have alterations in sugar moieties and/or in pyrimidine or purine base moieties. Sugar modifications include, for example, replacement of one or more hydroxyl groups with halogens, alkyl groups, amines, and azido groups, or sugars can be functionalized as ethers or esters. Moreover, the entire sugar moiety can be replaced with sterically and electronically similar structures, such as aza-sugars and carbocyclic sugar analogs. Examples of modifications in a base moiety include alkylated purines and pyrimidines, acylated purines or pyrimidines, or other well-known heterocyclic substitutes. Nucleic acid monomers can be linked by phosphodiester bonds or analogs of such linkages. Analogs of phosphodiester linkages include phosphorothioate, phosphorodithioate, phosphoroselenoate, phosphorodiselenoate, phosphoroanilothioate, phosphoranilidate, phosphoramidate, and the like. The term “nucleic acid molecule” also includes so-called “peptide nucleic acids,” which comprise naturally-occurring or modified nucleic acid bases attached to a polyamide backbone. Nucleic acids can be either single stranded or double stranded.


As used herein, “polynucleotide” or “nucleic acid” refers to a strand of deoxyribonucleotides or ribonucleotides in either a single- or a double-stranded form (including known analogs of natural nucleotides). A double-stranded nucleic acid sequence will include the complementary sequence. The polynucleotide sequence may encode variable and/or constant region domains of immunoglobulin that are formed into a fusion protein with one or more linkers. For use with the present invention, multiple cloning sites (MCS) may be engineered into the locations at the carboxy-terminal end of the heavy and/or light chains of the antibodies to allow for in-frame insertion of peptide for expression between the linkers. As used herein, the term “isolated polynucleotide” refers to a polynucleotide of genomic, cDNA, or synthetic origin or some combination thereof. By virtue of its origin the “isolated polynucleotide” (1) is not associated with all or a portion of a polynucleotide in which the “isolated polynucleotides” are found in nature, (2) is operably linked to a polynucleotide which it is not linked to in nature, or (3) does not occur in nature as part of a larger sequence. The skilled artisan will recognize that to design and implement a vector can be manipulated at the nucleic acid level by using techniques known in the art, such as those taught in Current Protocols in Molecular Biology, 2007 by John Wiley and Sons, relevant portions incorporated herein by reference. Briefly, the encoding nucleic acid sequences can be inserted using polymerase chain reaction, enzymatic insertion of oligonucleotides or polymerase chain reaction fragments in a vector, which may be an expression vector. To facilitate the insertion of inserts at the carboxy terminus of the antibody light chain, the heavy chain, or both, a multiple cloning site (MCS) may be engineered in sequence with the antibody sequences.


As used herein, the term “polypeptide” refers to a polymer of amino acids and does not refer to a specific length of the product; thus, peptides, oligopeptides, and proteins are included within the definition of polypeptide. This term also does not refer to or exclude post expression modifications of the polypeptide, for example, glycosylations, acetylations, phosphorylations and the like. Included within the definition are, for example, polypeptides containing one or more analogs of an amino acid (including, for example, unnatural amino acids, etc.), polypeptides with substituted linkages, as well as other modifications known in the art, both naturally occurring and non-naturally occurring. The term “domain,” or “polypeptide domain” refers to that sequence of a polypeptide that folds into a single globular region in its native conformation, and that may exhibit discrete binding or functional properties.


As used in this application, the term “amino acid” means one of the naturally occurring amino carboxylic acids of which proteins are comprised. The term “polypeptide” as described herein refers to a polymer of amino acid residues joined by peptide bonds, whether produced naturally or synthetically. Polypeptides of less than about 10 amino acid residues are commonly referred to as “peptides.” A “protein” is a macromolecule comprising one or more polypeptide chains. A protein may also comprise non-peptidic components, such as carbohydrate groups. Carbohydrates and other non-peptidic substituents may be added to a protein by the cell in which the protein is produced, and will vary with the type of cell. Proteins are defined herein in terms of their amino acid backbone structures; substituents such as carbohydrate groups are generally not specified, but may be present nonetheless.


A polypeptide or amino acid sequence “derived from” a designated nucleic acid sequence refers to a polypeptide having an amino acid sequence identical to that of a polypeptide encoded in the sequence, or a portion thereof wherein the portion consists of at least 3-5 amino acids, preferably at least 4-7 amino acids, more preferably at least 8-10 amino acids, and even more preferably at least 11-15 amino acids, or which is immunologically identifiable with a polypeptide encoded in the sequence. This terminology also includes a polypeptide expressed from a designated nucleic acid sequence.


As used herein, the terms “stable,” “soluble,” or “unstable” when referring to proteins is used to describe a peptide or protein that maintains its three-dimensional structure and/or activity (stable) or that loses immediately or over time its three-dimensional structure and/or activity (unstable). As used herein, the term “insoluble” refers to those proteins that when produced in a cell (e.g., a recombinant protein expressed in a eukaryotic or prokaryotic cell or in vitro) are not soluble in solution absent the use of denaturing conditions or agents (e.g., heat or chemical denaturants, respectively). The antibody or fragment thereof and the linkers taught herein have been found to convert antibody fusion proteins with the peptides from insoluble and/or unstable into proteins that are stable and/or soluble. Another example of stability versus instability is when the domain of the protein with a stable conformation has a higher melting temperature (Tm) than the unstable domain of the protein when measured in the same solution. A domain is stable compared to another domain when the difference in the Tm is at least about 2° C., more preferably about 4° C., still more preferably about 7° C., yet more preferably about 10° C., even more preferably about 15° C., still more preferably about 20° C., even still more preferably about 25° C., and most preferably about 30° C., when measured in the same solution.


As used herein, the term “in vivo” refers to being inside the body. The term “in vitro” used as used in the present application is to be understood as indicating an operation carried out in a non-living system.


As used herein, the term “treatment” or “treating” means any administration of a compound of the present invention and includes (1) inhibiting the disease in an animal that is experiencing or displaying the pathology or symptomatology of the diseased (i.e., arresting further development of the pathology and/or symptomatology), or (2) ameliorating the disease in an animal that is experiencing or displaying the pathology or symptomatology of the diseased (i.e., reversing the pathology and/or symptomatology).


As used herein, “pharmaceutically acceptable carrier” refers to any material that when combined with an immunoglobulin (Ig) fusion protein of the present invention allows the Ig to retain biological activity and is generally non-reactive with the subject's immune system. Examples include, but are not limited to, standard pharmaceutical carriers such as a phosphate buffered saline solution, water, emulsions such as an oil/water emulsion, and various types of wetting agents. Certain diluents may be used with the present invention, e.g., for aerosol or parenteral administration, that may be phosphate buffered saline or normal (0.85%) saline.


Substantial similarity of a peptide refers to similarity of a peptide as reflected in the amino acid sequence of the peptide. Identity of a continuous stretch of least 8 amino acids in an antigenic epitope of the peptide may be sufficient to establish substantial identity that enables cross reactivity. A first peptide and a second peptide are substantially similar in this regard if they have substantial similar antigenic epitopes so that immunization with the first peptide causes an immune response against the second peptide.


A fragment of an antibody, as used in the present application, refers to a portion of an antibody, created by protein engineering including proteolysis, or genetic engineering including recombination of nucleic acids; the fragment of an antibody retains specificity for the antigen.


A fragment of a peptide used as antigen refers to a portion of the peptide that retains its immunogenicity. A person of ordinary skill in the art will recognize that a continuous stretch of least 8 amino acids in an antigenic epitope of the peptide may be sufficient I order for a peptide to retain its immunogenicity.


Recombinant protein or antibody is generated by genetic engineering of nucleic acid encoding the protein or antibody and subsequent translation of the coding sequence by a cell or in a cell-free translation system.


The present invention describes a vaccine composition for delivering a HCV antigen specifically to DCs for the purpose of invoking an immune response In one embodiment, due to the high polymorphism of HCV, a sequence that is representative of most of circulating HCV sequence was selected. Based on sequence variation HCV can be classified into 6 genotypes that differs one to the other on the basis of sequence identity. World wide, 1 genotype is the most represented and also the most difficult to treat with the current IFNa-Ribavirin double therapy. More precisely, 1a genotype is the most represented subsequence in industrial country, and especially in US.


In one embodiment, 1a genotype was used as target sequence to derive a vaccine. It was observed that sequence alignment with all available 1a sequences found in data bases (euHCVdb and Los Alamos National Laboratory) showed less than 70% of sequence identity and the sequence of the HCV antigen would have to be adjusted accordingly.


A mosaic sequence was derived using the mosaic vaccine tools at www.hiv.lanl.gov/content/sequence/MOSAIC/ interface choosing mosaic sequence cocktail, 1 as cocktail size and 9 as epitope size. We used 249 sequences for E1 mosaic, 656 sequences for E2 mosaic, 213 sequences for NS3 mosaic and 310 sequences for NS5b mosaic. All sequences correspond to complete genes of 576, 1089, 1893, 1773 nucleotides respectively and found in euHCVdb (euhcvdb.ibcp.fr/euHCVdb/).


HCV antigen choice: HCV is an RNA enveloped virus. Virions are consisted by 4 structural proteins Core, E1, E2 and p7. As an RNA virus replication is based on viral proteins that need to be expressed after infection. Six non-structural proteins (NS2, NS3, NS4a, NS4b, NS5a, NS5b) are necessary to establish and maintain replication and virus production. HCV targets the liver and can infect barely all the liver with 90% of hepatocytes infected. However, the virus is able to replicate only in 30% of hepatocytes. Infected cells presented at their surface epitopes coming from structural proteins, while infected virus-producing cells presented all HCV antigens, structural and non structural.


Because HCV targets a vital organ such as the liver, therapeutic vaccine need to be very specific in order to avoid complete liver destruction and death of the patients. Indeed, we choose for our therapeutic vaccine antigens that are only found in infected virus producing hepatocytes, and then target antigen will be non-structural proteins. Moreover, NS3 and NS4b are highly immunogenic in chronic infected patients, as efficient as structural core or E1 E2 structural proteins. Therefore the present inventors included NS5b as an antigen too.


In one embodiment, NS3 and NS5b were chosen because of their possible expression as recombinant protein and the availability of their 3D structure.


Description of an embodiment of a vaccine: A particular embodiment of a vaccine consisted of bifunctional antibodies, which were directed against Dendritic Cells specific receptors and have target antigens fused at C terminus part of heavy chain. This allows unique targeting of DC and more precisely different DC subset that expressed different receptors, DC activation through the targeted receptor, and direct delivery of antigen to DC. In turn antigens are presented more efficiently and APC function is associated to cytokine secretion that orient T cells activation towards different functions.


Design of domains: It is not readily predictable whether any particular non-structural viral protein will be efficiently expressed as a direct antibody-antigen fusion protein. Commonly, fusion proteins may not be soluble and not be secreted. The present application describes that by using flexible linker modules, fragmenting the antigen coding sequence, and varying the fragment order, efficient secretion of recombinant antibody-antigen vaccines bearing extensive stretches of non-structural proteins can be achieved. The current application describes a first testing of constructs by expression of antibody fused to individual HCV non-structural proteins, then linking those that are expressible as soluble protein to each other to maximize the antigen load. Domains were first designed based on the 3D structure of the corresponding full-length proteins. Domains were design as the minimal structured regions in between unfolded loops. Length of the loops was varied in order to increase expression of corresponding domains. Pymol software was used to visualize 3d structures. The domains that expressed at the C-terminal of the antibody heavy chain are represented by SEQ ID NOs: 7-14.


Multiple combinations of individual domains have been made in order to provide as much HCV antigen as possible. In some embodiments, each single domain is separated from the next by flexible linkers, which can be as small as two amino acids (e.g., AS) but can also be longer, e.g., 3, 4, 5, 6, 7 8, 9, 10, 12, 15, 18, 20, 25 or 30 amino acids long. FIG. 1 shows the summary of all combine constructs. The linkers are found in the assembled sequences, can also be SSVSPTTSVHPTPTSVPPTPTKSSP (SEQ ID NO.: 166); PTSTPADSSTITPTATPTATPTIKG (SEQ ID NO.: 167); TVTPTATATPSAIVTTITPTATTKP (SEQ ID NO.: 168); TNGSITVAATAPTVTPTVNATPSAA (SEQ ID NO.: 169).


In another embodiment, domains were also expressed at the C-terminus part of the light chain, and used in combination with heavy chain fused to multiple HCV domains. This allows the formation of a combine antibody with 3HCV domains fused to the heavy chain and one fused to the light chain. FIG. 2 summarizes the construct obtain after fusion of HCV domains at the C-terminus end of light chain.


Preparation of targeting constructs: Anti human DCIR and CD40 V region form H and L chain were cloned in a IgG4 backbone. Spe I cloning site was introduced at the end of the carboxy terminus to clone in frame antigen sequences. HCV antigens from NS3 and NS5b viral proteins represented as subdomains of these proteins were subcloned as a Spe-Not fragment in Nhe-Not linearized pIRES vector.


HCV-domains were designed based on the 3D-structure of the corresponding full-length proteins (PDB code IJXP for NS3protease, 1HEI for NS3Helicase and 1GX5 for NS5b). 3D-structures were visualized using PyMol software. Domains were designed as the minimal structured regions in between unfolded loops. Length of the loops was varied in order to increase expression of corresponding domains fused to the recombinant antibody. For multiple domains cloning, linkers were introduced between domains using Spe-Not/Nhe-Not strategy. Mosaic sequences, used in this study, corresponding to the maximum HCV-domains expressed as antibody-antigen recombinant fusion proteins are shown below. They included amino acids 95 to 180 from NS3Protease, amino acids 132 to 254 from NS3Helicase and a recombinant fusion of amino acids 55 to 80; 172 to 261 and 276 to 362 from NS5bPolymerase. Spe, Nhe and Not introduced cloning sites are underlined.


SEQ ID NOS: 1-6 show the amino acid sequence of the HCV proteins E1, E2, NS3, and NS5b mosaic sequences. Membrane domains are underlined. The full-length protein NS3 contains 631 amino acids and is also presented as being cut in its two enzymatic activities proteins: NS3Protease and NS3Helicase. These may also be produced as recombinant proteins N-terminal fused to either histidine tag or Cohesin tag.










Envelop protein E1 (192 amino acids) (SEQ ID NO: 1):



YQVRNSSGLYHVTNDCPNSSIVYEAADAILHTPGCVPCVREGNASRCWVAVTPTVATRDGKLPTTQ


LRRHIDLLVGSATLCSALYVGDLCGSVFLVGQLFTFSPRRHWTTQDCNCSIYPGHITGHRMAWDMM


MNWSPTTAVVAQLLRIPQAILDMIAGAHWGVLAGIAYFSMVGNWAKVLVVLLLFAGVDA





Envelop protein E2 (363 amino acids) (SEQ ID NO: 2):


ETHVTGGSAARTTAGLAGLFTPGAKQNIQLINTNGSWHINRTALNCNDSLNTGWVAGLFYYHKFNS


SGCPERLASCRPLTDFDQGWGPISYANGSGPDQRPYCWHYPPKPCGIVPAKSVCGPVYCFTPSPVVV


GTTDRSGAPTYNWGENDTDVFVLNNTRPPLGNWFGCTWMNSTGFTKVCGAPPCVIGGVGNNTLH


CPTDCFRKHPEATYSRCGSGPWITPRCLVDYPYRLWHYPCTINYTIFKIRMYVGGVEHRLEAACNW


TRGERCDLEDRDRSELSPLLLSTTQWQVLPCSFTTLPALSTGLIHLHQNIVDVQYLYGVGSSIASWAI


KWEYVVLLFLLLADARVCSCLWMMLLISQAEA





Non structural protein 3 NS3 (FL 631 amino acids) (SEQ ID NO: 3):


APITAYAQQTRGLLGCIITSLTGRDKNQVEGEVQIVSTAAQTFLATCINGVCWTVYHGAGTRTIASPK


GPVIQMYTNVDQDLVGWPAPQGARSLTPCTCGSSDLYLVTRHADVIPVRRRGDSRGSLLSPRPISYL


KGSSGGPLLCPAGHAVGIFRAAVCTRGVAKAVDFIPVENLETTMRSPVFTDNSSPPAVPQSFQVAHL


HAPTGSGKSTKVPAAYAAQGYKVLVLNPSVAATLGFGAYMSKAHGIDPNIRTGVRTITTGSPITYST


YGKFLADGGCSGGAYDIIICDECHSTDATSILGIGTVLDQAETAGARLVVLATATPPGSVTVPHPNIE


EVALSTTGEIPFYGKAIPLEVIKGGRHLIFCHSKKKCDELAAKLVALGINAVAYYRGLDVSVIPTSGV


VVVVATDALMTGFTGDFDSVIDCNTCVTQTVDFSLDPTFTIETTTLPQDAVSRTQRRGRTGRGKPGI


YRFVAPGERPSGMFDSSVLCECYDAGCAWYELTPAETTVRLRAYMNTPGLPVCQDHLEFWEGVFT


GLTHIDAHFLSQTKQSGENLPYLVAYQATVCARAQAPPPSWDQMWKCLIRLKPTLHGPTPLLYRLG


AVQNEVTLTHPITKYIMTCMSADLEVVT





NS3 (prot 189 amino acids) (SEQ ID NO: 4):



APITAYAQQTRGLLGCIITSLTGRDKNQVEGEVQIVSTAAQTFLATCINGVCWTVYHGAGTRTIASPK



GPVIQMYTNVDQDLVGWPAPQGARSLTPCTCGSSDLYLVTRHADVIPVRRRGDSRGSLLSPRPISYL


KGSSGGPLLCPAGHAVGIFRAAVCTRGVAKAVDFIPVENLETTMRSPVFTDNSSPPAVPQS





NS3 (hel 442 amino acids) (SEQ ID NO: 5):


FQVAHLHAPTGSGKSTKVPAAYAAQGYKVLVLNPSVAATLGFGAYMSKAHGIDPNIRTGVRTITTG


SPITYSTYGKFLADGGCSGGAYDIIICDECHSTDATSILGIGTVLDQAETAGARLVVLATATPPGSVTV


PHPNIEEVALSTTGEIPFYGKAIPLEVIKGGRHLIFCHSKKKCDELAAKLVALGINAVAYYRGLDVSVI


PTSGVVVVVATDALMTGFTGDFDSVIDCNTCVTQTVDFSLDPTFTIETTTLPQDAVSRTQRRGRTGR


GKPGIYRFVAPGERPSGMFDSSVLCECYDAGCAWYELTPAETTVRLRAYMNTPGLPVCQDHLEFW


EGVFTGLTHIDAHFLSQTKQSGENLPYLVAYQATVCARAQAPPPSWDQMWKCLIRLKPTLHGPTPL


LYRLGAVQNEVTLTHPITKYIMTCMSADLEVVT





Non structural NS5b (591 Amino acids) (SEQ ID NO: 6):


SMSYSWTGALVTPCAAEEQKLPINALSNSLLRHHNLVYSTTSRSACQRQKKVTFDRLQVLDSHYQD


VLKEVKAAASKVKANLLSVEEACSLTPPHSAKSKFGYGAKDVRCHARKAVNHINSVWKDLLEDSV


TPIDTTIMAKNEVFCVQPEKGGRKPARLIVFPDLGVRVCEKMALYDVVSKLPLAVMGSSYGFQYSP


GQRVEFLVQAWKSKKTPMGFSYDTRCFDSTVTESDIRTEEAIYQCCDLDPQARVAIKSLTERLYVGG


PLTNSRGENCGYRRCRASGVLTTSCGNTLTCYIKARAACRAAGLQDCTMLVCGDDLVVICESAGVQ


EDAASLRAFTEAMTRYSAPPGDPPQPEYDLELITSCSSNVSVAHDGAGKRVYYLTRDPTTPLARAA


WETARHTPVNSWLGNIIMFAPTLWARMILMTHFFSVLIARDQLEQALDCEIYGACYSIEPLDLPPIIQ


RLHGLSAFSLHSYSPGEINRVAACLRKLGVPPLRAWRHRARSVRARLLSRGGRAAICGKYLFNWAV


RTKLKLTPIAAAGQLDLSGWFTAGYSGGDIYHSVSHARPRWFWFCLLLLAAGVGIYLLPNR






The nucleotide sequences are presented herein below.










NS3Protease domain B (SEQ ID NO: 145)





ACTAGT
ACTCCTTGTACCTGCGGCTCATCCGACCTGTACCTGGTCACCCGGCACGCAGACGTCA



TTCCTGTACGCCGACGCGGGGATAGTAGGGGGAGCCTGCTCTCTCCAAGACCCATATCCTACCT


CAAGGGCAGCAGCGGTGGACCACTGCTGTGTCCCGCTGGTCATGCTGTGGGAATATTTAGGGCC


GCAGTGTGTACCAGAGGCGTGGCCAAAGCTGTTGATTTTATTCCCGTCGAAAATCTTGAAACAA


CCATGAGAAGCCCAGTGTTCACAGACAACTCATCTCCCCCAGCAGTGCCGCAGAGTGCTAGCT


GAGAATTCGCGGCCGC





NS3Helicase domain B (SEQ ID NO: 146):




ACTAGT
GTGACTGTGCCCCACCCCAATATCGAAGAGGTGGCCCTTAGTACTACCGGGGAAATTC



CTTTCTACGGGAAGGCCATCCCTCTCGAGGTTATTAAAGGAGGGCGACATCTGATTTTTTGCCA


CTCCAAGAAGAAGTGTGACGAGCTGGCCGCGAAACTGGTTGCCTTGGGCATCAACGCTGTCGC


ATACTATCGGGGACTGGATGTATCAGTGATACCCACCAGCGGAGTGGTAGTTGTCGTCGCTACA


GACGCATTGATGACCGGCTTTACAGGAGATTTCGACTCCGTCATCGACTGTAACACATGCGTGA


CTCAGACAGTGGATTTCAGCCTTGACCCGACGTTTACGATTGAGACCACCACTCTCCCTCAGGA


TGCTGTGTCTAGGACCCAAAGACGCGGTCGCACAGGCCGGGGCAAACCAGGCATCTATAGGTT


CGTGGCACCAGGGGAAAGAGCTAGCTGAgaattcGCGGCCGC





NS5bPalm (SEQ ID NO: 147):




ACTAGT
GTGCTGGACTCTCACTACCAGGATGTCCTGAAGGAAGTAAAAGCAGCCGCTTCTAAA



GTCAAAGCGAACGCTCTGTACGATGTCGTTTCCAAACTGCCGCTGGCTGTCATGGGCTCTTCCTA


CGGCTTTCAGTATTCCCCGGGTCAGCGCGTTGAGTTCCTGGTCCAGGCGTGGAAATCCAAAAAG


ACTCCGATGGGTTTTTCCTATGACACTCGCTGCTTCGACAGCACCGTTACCGAAAGCGACATTC


GCACCGAGGAAGCAATCTACCAGTGCTGCGACCTGGACCCACAGGCCCGCGTGGCGATCAAAT


CTCTGACCGAACGCCTGTACGTTGGCCGCTGTCGCGCTTCCGGTGTTCTGACGACCTCCTGCGGT


AATACGCTGACCTGCTACATCAAAGCACGCGCTGCCTGTCGCGCAGCCGGTCTGCAGGACTGCA


CCATGCTGGTGTGTGGCGATGACCTGGTGGTGATCTGCGAAAGCGCTGGCGTGCAGGAAGACG


CAGCAAGCCTGCGCGCTTTCACCGAAGCTATGACTCGCTACTCTGCGCCGCCGGGTGACCCGCC


GCAGCCAGAATACGATCTGGAGCTGATCACCGCTAGCTAAGAATTCGCGGCCGC






SEQ ID NOS: 7-14 show the HCV antigen domains E1a, E2, ProtA, Prot B, He1 A, He1 B, He1C, and NS5 bpa1m. These were expressed as antibody fusion proteins. For all constructs, amino acids TS and AS (shown in red) have been added for cloning purpose to the mosaic HCV sequence. NS5b pa1m has been constructed based on NS5b 3D structure (1C2P). It is based on structural domain corresponding of the pa1m domain of NS5b polymerase and do not correspond to the linear amino acid sequence;









Envelop protein E1a construct (63 amino acids)


(SEQ ID NO: 7):



TSVGQLFTFSPRRHWTTQDCNCSIYPGHITGHRMAWDMMMNWSPTTAVVA






QLLRIPQAILDMIAGAS






In SEQ ID NO: 7 membrane domain and predicted unfolded regions have been removed from E1 mosaic 192 aa sequence to increase expression of the Ab fusion protein.









Envelop protein E2 mosaic sequence (342 amino


acids) (SEQ ID NO: 8):



TSETHVTGGSAARTTAGLAGLFTPGAKQNIQLINTNGSWHINRTALNCND






SLNTGWVAGLFYYHKFNSSGCPERLASCRPLTDFDQGWGPISYANGSGP





DQRPYCWHYPPKPCGIVPAKSVCGPVYCFTPSPVVVGTTDRSGAPTYN





WGENDTDVFVLNNTRPPLGNWFGCTWMNSTGFTKVCGAPPCVIGGVGNNT





LHCPTDCFRKHPEATYSRCGSGPWITPRCLVDYPYRLWHYPCTINYTIFK





IRMYVGGVEHRLEAACNWTRGERCDLEDRDRSELSPLLLSTTQWQVLPCS





FTTLPALSTGLIHLHQNIVDVQYLYGVGSSIASWAIKWEYVVLLFLLAS






In SEQ ID NO: 8 the membrane domain has been removed for E2 mosaic sequence.


NS3Protease has been cut in 2 structural domains based on its 3D structure (IJXP).










ProtA









(SEQ ID NO: 9)










TSAPITAYAQQTRGLLGCIITSLTGRDKNQVEGEVQIVSTAAQTFLATCINGVCWTVYHGAGTRTIAS







Prot B







(SEQ ID NO: 10)










TSTPCTCGSSDLYLVTRHADVIPVRRRGDSRGSLLSPRPISYLKGSSGGPLLCPAGHAVGIFRAAVCT




RGVAKAVDFIPVENLETTMRSPVFTDNSSPPAVPQSAS





NS3 Helicase enzymatic protein has been cut in 3 structural domains


based on NS3 Helicase 3D structure. (1HEI)


Hel A








(SEQ ID NO: 11)










custom-character FQVAHLHAPTGSGKSTKVPAAYAAQGYKVLVLNPSVAATLGFGAYMSKAHGIDPNIRTGVRTIT




TGSPITYSTYGKFLADGGCSGGAYDIIICDECHSTDATSILGIGTVLDQAETAGARLVVLATATPPGSAS





Hel B








(SEQ ID NO: 12)










custom-character VTVPHPNIEEVALSTTGEIPFYGKAIPLEVIKGGRHLIFCHSKKKCDELAAKLVALGINAVAYYRG




LDVSVIPTSGVVVVVATDALMTGFTGDFDSVIDCNTCVTQTVDFSLDPTFTIETTTLPQDAVSRTQRR


GRTGRGKPGIYRFVAPGERAS





Hel C








(SEQ ID NO: 13)










custom-character PSGMFDSSVLCECYDAGCAWYELTPAETTVRLRAYMNTPGLPVCQDHLEFWEGVFTGLTHIDAH




FLSQTKQSGENLPYLVAYQATVCARAQAPPPSWDQMWKCLIRLKPTLHGPTPLLYRLGAVQNEVTL


THPITKYIMTCMSADLEVVTAS





NS5bpalm








(SEQ ID NO: 14)










TSVLDSHYQDVLKEVKAAASKVKANALYDVVSKLPLAVMGSSYGFQYSPGQRVEFLVQAWKSKK




TPMGFSYDTRCFDSTVTESDIRTEEAIYQCCDLDPQARVAIKSLTERLYVGRCRASGVLTTSCGNTLT


CYIKARAACRAAGLQDCTMLVCGDDLVVICESAGVQEDAASLRAFTEAMTRYSAPPGDPPQPEYDL


ELITAS






HCV sequence and HCV domains constructions: Due to the high polymorphism of HCV, a sequence that is representative of most of circulating HCV sequence was selected.


A mosaic sequence was derived using the mosaic vaccine tools at http://www.hiv.lanl.gov/content/sequence/MOSAIC/ interface choosing mosaic sequence cocktail, 1 as cocktail size and 9 as epitope size. We used 213 sequences for NS3 mosaic and 310 sequences for NS5b mosaic. All sequences correspond to complete genes of 1893, 1773 nucleotides respectively and found in euHCVdb (available on the internet at: euhcvdb.ibcp.fr/euHCVdb/).


Synthetic corresponding genes were purchased from Bio Basic Inc. (Ontario Canada). For cloning purposes, Spe cloning site was introduced at 5′ end and Nhe, EcoRI and Not I at the 3′ end. HCV domains were then constructed by PCR. NS3Protease domain B was construct using the synthetic gene cloned in pUC57 as template and the following primers: NS3Protease domain B forward: 5′-GAGCTCGGATCCACTAGTACTCCTTGTACCTGCGGCTCATCC3′ (SEQ ID NO: 148) NS3Protease domain B reverse: 5′-GCCCGCGGCCGCGAATTCTCAGCTAGCACTCTGCGGCACTGCTGGGGG-3′ (SEQ ID NO: 149). NS3Helicase domain B was ordered directly as a synthetic gene. For NS5bPolymerase Pa1m domain construction, regions coding for amino acids 172 to 261 and 276 to 362 were amplified using NS5b synthetic gene and the respective following primers: Ns5b Pa1m (aa 172-261) forward: 5′-TCTAAAGTCAAAGCGAACGCTCTGTACGATGTCGTTTCC-3′ (SEQ ID NO: 150), Ns5b Pa1m (aa 172-261) reverse: 5′-ACCGGAAGCGCGACAGCGGCCAACGTACAGGCGTTCGGT-3′ (SEQ ID NO: 151), NS5b Pa1m (aa 276-362) forward: 5′-ACCGAACGCCTGTACGTTGGCCGCTGTCGCGCTTCCGGT-3′ (SEQ ID NO: 152), NS5b Pa1m (aa 276-362) reverse: 5′-GCGGCCGCGAATTCttAGCTAGCGGTGATCAGCTCCAG-3′ (SEQ ID NO: 153). Amplified products were then used as templates together with annealed primers 5′-CAAGCCCAACCCCACTAGTGTGCTGGACTCTCACTACCAGGATGTCCTGAAGGAAGTAAAAG CAGCCGCTTCTAAAGTCAAAGCGAACGCTCTGTACGAT-3′ (SEQ ID NO: 154) and 5′-ATCGTACAGAGCGTTCGCTTTGACTTTAGAAGCGGCTGCTTTTACTTCCTTCAGGACATCCTG GTAGTGAGAGTCCAGCACACTAGTGGGGTTGGGCTTG-3′ (SEQ ID NO: 155) in a final PCR using primers 5′-CAAGCCCAACCCC-3′ (SEQ ID NO: 156) and 5′-GCGGCCGCGAATTCTTAGCTAGCGGTGATCAGCTCCAG-3′ (SEQ ID NO: 157). The amplified NS5bPolymerase Pa1m domain was then cloned in TA vector and sub-cloned in XX vector using Nhe/Not strategy.


Chimeric Recombinant Antibodies Purification: For construct selection, chimeric DC-specific antibodies were transiently expressed in HEK293 cells and purified from the supernatant using Protein A sepharose chromatography. DNA from chimeric constructs expressed in HEK293 was then sub-cloned in cetHSpuro vector as AgeI/NotI fragment for expression in CHO cells after stable transfection. Antibodies were purified from supernatants using ProteinA sepharose.


Patients were recruited at the Baylor Hospital Liver Transplant Clinic (BHLTC, Dallas, Tex.) after obtaining informed consent. The study was approved by the Institutional Review Board of the Baylor Health Care System (Dallas, Tex.). Peripheral blood (100 ml) was collected at the BHLTC from 29 chronic HCV-infected adult patients and one healthy donor in contact with chronic HCV-infected patient. Leukapheresis were collected at Baylor University Medical Center Apharesis Collection Center (Dallas, Tex.) from all the enrolled individuals within 30 days after the first visit. Patient information is summarized in Table I.


Preparation of dendritic cells and PBMCs: PBMCs were isolated from heparinized blood on Ficoll density gradients. Monocytes were enriched from the leukapheresis according to cellular density and size by elutriation (Elutra™, CaridianBCT, Lakewood, Colo.) as per the manufacturer's recommendations. Elutriation Fraction 5 consisted mainly on monocytes (85% on average). Cells were cryopreserved in 10% DMSO 50% FCS 10% culture medium before use. For dendritic cell generation, monocytes were resuspended in serum-free CellGro DC culture medium (CellGenix Technologie Transfer Gmbh, Germany) at a concentration of 1 106 cells/ml. Media were supplemented with 100 ng/ml granulocyte-macrophage colony-stimulated factor (GMCSF, Leukine, Berlex, Wayne, N.J.) and 500 UI/ml alpha-interferon (IFN-α, Intro A, IFN-α-2b, Merck/Schering-Plough, Kenilworth, N.J.). After 24 h of culture at 37 degree Celsius, 5% CO2, fresh cytokines were added. On day 3, recombinant antibody vaccines were added at various concentration (5 nM, 0.5 nM or 0.05 nM) or peptide cluster controls (2 μM each peptide) as indicated. Alternatively, TLR agonists (polyIC, 25 μg/ml; CL075 1 μg/ml; or PAM3, 200 ng/ml; all from Invivogen) were added in the culture at the same time as vaccine candidates or peptide controls. DC were pulsed for 16 h before harvest and used in PBMCs co-culture.









TABLE I







Demographics of patients used in the study.
























HCV

Viral


HLA
HLA
HLA


Patient ID
Genotype
Sex
Ethnicity
Race
status
Age
Load
HLA A*
HLA B*
Cw*
DRB1
DQB1





HCV-VAC-001
1a
M
Hispanic
White
non
39
5 877033
0201;
1302;
0202;
0701;
0202;







responder

(H)
0205
5101
0602
1301
0603


HCV-VAC-002
1a
F
Non
White
cured
57
UnDectable
0101;
0818;
0701G;
1101;
0301;





Hispanic

after

(UD)
0301
5108
1502
1301
0603







therapy


HCV-VAC-003
1a
M
Non
White
cured
59
UD
0301;
0702;
0401;
0101;
0501;





Hispanic

after


3004
3501
0702
0402
0302







therapy


HCV-VAC-004
1a
M
Non
White
cured
55
UD
0201;
0702;
0202;
0401;
0302;





Hispanic

after


3201
1002
0702
0901
0303







therapy


HCV-VAC-005
1a
M
Non
White
cured
58
UD
0101;
1801;
0501;
0301;
0503;





Hispanic

after


1101
5101
1402
1407
0201







therapy


HCV-VAC-006
3a
M
Non
White
cured
57
UD
0101;
0702;
0602;
0701;
0303;





Hispanic

after


2902
5701
0702







therapy


HCV-VAC-007
3a
M
Non
White
cured
48
UD
no
no
no
no
no





Hispanic

after


apheresis
apheresis
apheresis
apheresis
apheresis







therapy


HCV-VAC-008
1b
M
Non
White
non
63

0101;
0801;
0701;
0301;
0201;





Hispanic

responder


6901
3508
1203


HCV-VAC-009
1a
M
Non
White
non
51

0101;
0801;
0701G;
0301;
0201;





Hispanic

responder


3004


0701
0303


HCV-VAC-010
1a
M
Non
White
cured
48
UD
0201;
0801;
0202;
0301;
0201;





Hispanic

after


2402
4002
0701G
0701
0202







therapy


HCV-VAC-011
1a
F
Non
White
non
52
?
0205;
1530;
0102;
0301;
0201;





Hispanic

responder


3101
4901
0707G
0802
0402


HCV-VAC-012
1a
M
Non
White
cured
43
UD
0101;
4101;
1502;
0301;
0201;





Hispanic

after


1101
5101
1710G
1305
0301







therapy


HCV-VAC-013
1a
M
Non
White
non
55

0101;
0801;
0401;
0301;
0502;





Hispanic

responder


0201
3502
0701G
1601
0201


HCV-VAC-014
1b
F
Non
White
non
56

3101;
0702;
0401;
0403;
0302;





Hispanic

responder


6801
3503
0702
1501
0602


HCV-VAC-015
2b
M
Non
White
positive
50

0101;
0801;
0401;
0301;
0201;





Hispanic

untreated


0301
3501
0701G
0701
0303


HCV-VAC-016
1a
M
Non
White
non
55

0101;
5001;
0303;
0701;
0503;





Hispanic

responder



5501
0602
1401
0202


HCV-VAC-017
1a
M
Non
White
positive
52

2402;
3901;
0602;
0701;
0202;





Hispanic

untreated


2501
5701
1203

0303


HCV-VAC-018
1a
M
Non
White
non
53

no
no
no
no
no





Hispanic

responder


apheresis
apheresis
apheresis
apheresis
apheresis


HCV-VAC-019
1a
M
Non
White
cured
62
UD
2402;
3901;
0102;
0701;
0202;





Hispanic

after


2501
4402
1203
1501
0602







therapy


HCV-VAC-020
1a
F
Non
White
cured
46
UD
0201;
1501;
0202;
0401;
0301;





Hispanic

after


0301
2705
0304
1101
0302







therapy


HCV-VAC-021
1a
M
Non
White
non
64

0101;
0801;
0304;
0101;
0501;





Hispanic

responder


3002
4001
0701G
0301
0201


HCV-VAC-022
1b
F
Non
White
non
58

0301;
1801;
0304;
0301;
0201;





Hispanic

responder


6801
4001
0501
1302
0604


HCV-VAC-023
2
F
Non
White
positive
45

no
no
no
no
no





Hispanic

untreated


apheresis
apheresis
apheresis
apheresis
apheresis


HCV-VAC-024
2b
M
Non
White
positive
43

0301;
1402;


0202;





Hispanic

untreated



4701


0602


HCV-VAC-025
3a
F
Non
White
positive
31
?
no
no
no
no
no





Hispanic

untreated


apheresis
apheresis
apheresis
apheresis
apheresis


HCV-VAC-026
3a
M
Non
White
positive
29
?
no
no
no
no
no





Hispanic

untreated


apheresis
apheresis
apheresis
apheresis
apheresis


HCV-VAC-027
1a
F
Non
White
positive
26

02; 26
15(62);


03(7);





Hispanic

untreated



51


05


HCV-VAC-028
1a
F
Hispanic
other
positive
47

03; 25
07; 18


06;







untreated


HCV-VAC-029
Non
F
Non
White
uninfected
63

01; 11
44; 55


02; 05



infected

Hispanic


HCV-VAC-030
1
M
Non
White
positive
57
?
03; 24
07; 27


03(7);





Hispanic

untreated






06









Expansion of Antigen-specific T cells in DC/PBMCs coculture. Frozen PBMCs from leukapharesis were thawed, washed by centrifugation and resuspended at 2×106 cells/ml in cRPMI medium. Autologous DC loaded with vaccine candidates or peptides cluster controls were co-cultured with PBMCs in a 24 well tissue plate at a ratio of 1/20 and incubated for a total of 10 days. IL2 (20 IU/ml, Aldesleukine, ProleukineR; Bayer Healthcare and Novartis, Emeryville, Calif.) was added every two days. At day 9, PBMCs from a 24-well plate were washed, distributed in 2 wells in a 96-well plates and rested for 24 h. The specificity of the T-cell response elicited by vaccine candidate loaded-DC was assessed by restimulation of PBMCs with peptide clusters (2 μM each peptide). For each condition, a negative background control was included as a restimulation without peptides.


Flow cytometry: After 1 hour of peptide clusters restimulation, BFA (Sigma) was added for the last 5-6 h to block cytokine secretion. The cells were stained for surface markers with a combination of fluorochrome antibodies (perCP-CD3, PE-CD8, APCH7-CD4), fixed, permeabilized and intracellular-stained with a mixture of APC-IFNγ, FITC-IL2 and PEcy7-TNFα antibodies. For CTL marker function analysis, FITC-CD107a antibody was added with BFA in the culture medium and the following antibodies combination was used for the surface staining: PerCP-CD3, pacific blue-CD8, APCH7-CD4 and for the intracellular staining: PE-IFNγ, APC-GranzB, APCcy7-TNFα. All antibodies were purchased from BD sciences except APC-GranzB (Invitrogen). Cells were analyzed on a FACS-Canto collecting 500,000 events, and results analyzed using FlowJo software. Most of the data were displayed as two colors plot to measure IFN-γ and TNF-α production in CD3+CD8+ or CD3+CD4+ cells.


Luminex: Supernatants of DC-PBMCs co-culture were harvested 48 h after PBMCs restimulation with peptide clusters. Cytokine multiplex assays were employed to analyzed IFN-γ, IL-10, and IL-13.


Evaluation of embodiments of vaccines: Vaccine candidate were tested in targeting experiment by co-culture of vaccine with PBMCs from chronic HCV infected patients or chronic HCV infected patients cured after IFNa-Ribavirin therapy. The data show that anti-CD40 or anti-DCIR vaccines bearing a HCV NS3He1B antigen can recall a potent memory antigen-specific anti-CD4+ T cell response in vitro using immune cells from HCV infected patients. In this in vitro culture system anti-CD40 and anti-DCIR are equally potent vaccines—these DCs express both receptors. Anti-DCIR vaccine construct bearing longer HCV antigen coverage induced multifunctional CD4+ antigen specific T cells against multiple HCV epitopes.


The data further show that anti-DCIR vaccines bearing a HCV NS3He1BC antigen can recall a potent memory antigen-specific anti-CD4+ T cell response in vitro using immune cells from HCV infected patients. This response is directed against multiples HCV epitopes. In this in vitro culture system, both concentration used for anti-DCIR HCV-NS3He1BC targeting are equally potent in contrast to anti-DCIR HCV-NS3He1B vaccine.



FIGS. 3A-3B demonstrate the ability of recombinant anti-DCIR and anti-CD40 antibodies fused to HCV NS3He1B specific antigen to elicit the expansion of antigen-specific CD4+ T cells from a chronic HCV infected patient cured after IFNa-Ribavirin therapy. Delivering NS3He1B to DCs through CD40 and DCIR induces IFNγ-TNFa-producing HCV NS3He1B-specific CD4+ T cells. PBMC cells from chronic HCV infected patients; either cured after therapy or in treatment failure, were co-cultured with IFNDCs targeted with anti-CD40-NS3He1B or anti-DCIR-NS3He1B for 10 days. Cells were stimulated with peptides clusters (10 peptides of 15-mers in each clusters) covering HCV NS3 He1B (10 μM): FIG. 3A after 2 days, culture supernatants were analyzed for measuring IFNγ and FIG. 3B PBMC cells were stained for measuring the frequency of peptide-specific CD4+ T cells intracellular IFNγ+TNFα+ cells.


Longer construct are equally potent to recall multi epitopes HCV specific T cells. The data in e.g., FIG. 4, show that both anti-CD40 and anti-DCIR vaccines bearing HCV NS3He1B NS3ProtB and NS5BPa1m antigens can recall a potent memory antigen-specific anti-CD4+ T cell response in vitro using immune cells from HCV infected patients cured after IFN-Ribavirin therapy. This response is directed against multiples HCV epitopes. In this in vitro culture system, dose effect is observed consistent with clear targeting, with an optimum concentration being at 5 nM for anti-CD40 construct and 0.5 nM for anti-DCIR construct. At these concentrations IgG4 controls induce significantly lower CD4+ T cells responses, consistent with antibody targeting of DC.



FIGS. 5A to 5C demonstrate the ability of recombinant anti-DCIR and anti-CD40 antibodies fused to HCV NS3He1B, HCV NS3ProtB and HCV NS5BPa1m specific antigens to elicit the expansion of antigen-specific CD4+ T cells from a chronic HCV infected patient cured after IFNa-Ribavirin therapy. Delivering HCV antigen to DCs through CD40 and DCIR induces IFNγ-TNFa-producing HCV-specific CD4+ T cells, with multi epitopes, specific CD4 T cells. PBMC cells from chronic HCV infected patients cured after therapy were co-cultured with autologous IFNαDCs targeted with anti-CD40-NS3He1B-NS3ProtB-NS5BPa1m or anti-DCIR-NS3He1B-NS3ProtB-NS5BPa1m for 10 days. Cells were stimulated with peptides clusters (10 peptides of 15-mers in each clusters) covering HCV NS3He1B, NS3ProtB or NS5BPa1m (2 μM). PBMC cells were stained for measuring the frequency of peptide-specific CD4+ T cells intracellular IFNγ+TNFα+ cells.


The data in FIGS. 6A to 6C demonstrate that anti-CD40 vaccines bearing HCV NS3He1B NS3ProtB and NS5BPa1m antigens can recall a potent memory antigen-specific anti-CD8+ T cell response in vitro using immune cells from HCV infected patients cured after IFN-Ribavirin therapy. This response is directed against multiples HCV epitopes. In this in vitro culture system, dose effect is observed consistent with clear targeting, of DC with an optimum concentration being at 5 nM for anti-CD40 constructs. At these concentrations IgG4 controls induce significantly no CD8+ T cells responses, consistent with antibody targeting of DC.


Similar responses are induced in multiple different chronic HCV infected patients either cured or after therapy or in treatment failure.


The data in FIGS. 7A to 7D show that all chronic HCV infected patients cured after therapy are able to recall CD4+ T cells memory after co-culture of PBMCs with DC targeted with either anti-CD40 or anti-DCIR or both, construct bearing HCV antigens.


The data in FIGS. 8A to 8D shows that all chronic HCV infected patients in treatment failure are able to recall CD4+ T cells memory after co-culture of PBMCs with DC targeted with either anti-CD40 or anti-DCIR or both, construct bearing HCV antigens. Compare to chronic HCV infected patients cured after therapy, responses are low in chronic HCV infected patients in treatment failure and more antigen dependent since for example HCV-VAC-016 patient has no CD4+ T cells memory cells recalled after DC targeting with NS5bPa1m construct.


CD8+ antigen specific T cells were obtained after TLR agonist introduction in the co-culture of vaccine with PBMC cells from HCV patients.


The data in FIGS. 9A and 9B show that TLR2 triggering with PAM3 during DC targeting with anti-DCIR vaccines bearing a HCV NS3He1B antigen can recall a potent memory antigen-specific anti-CD4+ and CD8+ T cell response in vitro using immune cells from HCV infected patients. Moderated CD8+ response is also induced by TLR3 triggering and no CD4+ or CD8+ response is induced after TLR7/8 triggering by CL097 in this study. Similar responses are induced in multiple different chronic HCV infected patients either cured or after therapy or in treatment failure.


The data in FIGS. 10A-10D show that TLR2 triggering with PAM3 during DC targeting with anti-CD40 or anti-DCIR vaccines bearing a HCV NS3He1B or HCV NS3ProtB antigen can recall a potent memory antigen-specific anti-CD4+ and CD8+ T cell responses in vitro using immune cells from HCV infected patients. Moderated CD8+ response is also induced by TLR3 triggering in some patients, and cyclic glucan can dramatically increase CD8+ T cells responses in one patient.



FIG. 11 demonstrates the ability of combination of TLR agonists and anti-CD40 HCV-constructs to increase CD4+ T cells responses in chronic HCV infected patients in treatment failure. HCV antigens from NS3 Helicase He1B or from NS3 Protease ProtB constructs were delivered to DCs through CD40 or DCIR. IFNαDCs were targeted with anti-CD40-NS3He1B, anti-DCIR-NS3He1B, anti-CD40-NS3ProtB, anti-DCIR-NS3ProtB, in presence of PAM3 (TLR2 agonist; 200 ng/ml), CL095 (TLR7/8 agonist; 5 μg/ml) or polyIC (TLR3 agonist; 25 μg/ml) or cyclic glucan (TLR4 agonist, 10 μg/ml) before co-culture for 10 days with PBMC cells from chronic HCV infected patients cured after therapy. Cells were stimulated for 6 h with peptide clusters C7 (10 μM; 10 peptides of 15-mers) covering HCV NS3 He1B constructs or with peptide clusters C3 (10 μM; 10 peptides of 15-mers) covering HCV NS3 ProtB constructs. PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFNγ+TNFα+ cells, an analyzed by FACS.


All tested HCV patients are able to recall CD4+ and CD8+ HCV specific memory after DC-targeting with HCV vaccine candidates.



FIG. 12A to 12C demonstrate the ability of HCV vaccine candidates to recall CD4+ T cells responses in all chronic HCV infected patients (cured or in treatment failure). HCV antigens from NS3 Helicase He1B, NS5b polymerase Pa1m or from NS3 Protease ProtB constructs were delivered to DCs through CD40 (FIG. 12B) or DCIR (FIG. 12C). IFNaDCs were targeted with anti-CD40-[NS3He1B˜NS3ProtB˜NS5bPa1m on heavy chain], anti-DCIR-[NS3He1B˜NS3ProtB˜NS5bPa1m on heavy chain] before co-culture for 10 days with PBMC cells from chronic HCV infected patients cured after therapy. Cells were stimulated for 6 h with peptide clusters C7-C9 (10 μM; 10 peptides of 15-mers) covering HCV NS3 He1B domain, with peptide clusters C2-C3-C4 (10 μM; 10 peptides of 15-mers) covering HCV NS3 ProtB domain or with peptide clusters C2-C4-C5-C6-C7 (10 μM; 10 peptides of 15-mers) covering HCV NS5b Pa1m domain. PBMC cells were stained for measuring the frequency of peptide-specific CD4+ and CD8+ intracellular IFNγ+TNFa+ cells, and analyzed by FACS. The number of CD4+ IFNg+TNFa+ cells induced vaccine candidate is shown.


It was also observed that different combinations of HCV domains on vaccine candidate are equally equivalent to recall CD4+HCV memory. Moreover, HCV antigen combination where two domains are borne on heavy chain and one on light chain is more efficient than having the 3 borne by heavy chain.



FIGS. 13A-13E demonstrate the ability of different HCV antigen combination on vaccine candidate for recall CD4+ T cells responses in chronic HCV infected cured patients. HCV antigens from NS3 Helicase He1B, NS5b polymerase Pa1m or from NS3 Protease ProtB combination constructs were delivered to DCs through CD40 or DCIR. IFNαDCs were targeted with second-generation vaccines anti-CD40-[NS3He1B on light chain and NS3ProtB˜NS5bPa1m on heavy chain], anti-DCIR-[NS3He1B on light chain and NS3ProtB˜NS5bPa1m on heavy chain], or first-generation vaccines anti-CD40-[NS3He1B˜NS3ProtB˜NS5bPa1m on heavy chain], anti-DCIR—[NS3He1B˜NS3ProtB˜NS5bPa1m on heavy chain] before co-culture for 10 days with PBMC cells from chronic HCV infected patients cured after therapy. Cells were stimulated for 6 h with peptide clusters C7 and C9 (10 μM; 10 peptides of 15-mers) covering HCV NS3 He1B domain (shown in green on the figure), with peptide clusters C2-C3-C4 (10 μM; 10 peptides of 15-mers) covering HCV NS3 ProtB domain (shown in pink on the figure) or with peptide clusters C2-C4-C5-C6-C7 (10 μM; 10 peptides of 15-mers) covering HCV NS5b Pa1m domain (shown in orange in the figure). PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFNγ+TNFα+ cells, an analyzed by FACS. The number of CD4+IFNγ+TNFα+ cells induced by first-generation vaccine or second-generation vaccine is compared in the last panel.


The vaccine candidates described in the present invention also showed the ability induce cross reactivity recall memory responses in patients infected with an HCV genotype different from those used to build the vaccine (FIGS. 14A to 14H). FIGS. 14A to 14H demonstrate ability of vaccine candidate to recall CD4+ T cells responses in HCV patients infected with non 1 genotype and HCV-exposed but non infected individual. HCV antigens from NS3 Helicase He1B, NS5b polymerase Pa1m or from NS3 Protease ProtB combination constructs were delivered to DCs through CD40 or DCIR and DC loaded were co-culture for 10 days with PBMC cells from HCV patients infected with non 1 genotype HCV-infected patients (HCV-015, 2b) and HCV-exposed but non infected individual (HCV-029). Cells were stimulated for 6 h with peptide clusters C7 and C9 (10 μM; 10 peptides of 15-mers) covering HCV NS3 He1B domain, with peptide clusters C2-C3-C4 (10 μM; 10 peptides of 15-mers) covering HCV NS3 ProtB domain or with peptide clusters C2-C4-C5-C6-C7 (10 μM; 10 peptides of 15-mers) covering HCV NS5b Pa1m domain. PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFNγ+TNFα+ cells, an analyzed by FACS.



FIGS. 15A and 15B show the results from a 10 day expansion culture whereby a dose range of 1st generation anti-DCIR-HCV vaccine (left panels) is compared to second generation anti-DCIR-HCV vaccine (right panels). Doses were 0.05 nM, 0.5 nM, and 5 nM and antigen-specific responses were ascertained by stimulation with no peptide (control) or ProtA, He1B, or Pa1m peptide pools in the presence of Brefeldin, followed by staining for CD3+, CD4+ and intracellular IFNg and TNFa. Samples were analyzed by FACS. Shown are comparable CD4+ HCV antigen-specific responses to the two generations of vaccines.



FIGS. 16A and 16B show the results from a 10 day expansion culture whereby a dose range of 1st generation anti-CD40-HCV vaccine (left panels) is compared to second generation anti-CD40-HCV vaccine (right panels). Doses were 0.05 nM, 0.5 nM, and 5 nM and antigen-specific responses were ascertained by stimulation with no peptide (control) or ProtA, He1B, or Pa1m peptide pools in the presence of Brefeldin, followed by staining for CD3+, CD4+ and intracellular IFNg and TNFa. Samples were analyzed by FACS. Shown are comparable CD4+ HCV antigen-specific responses to the two generations of vaccines.


Non-limiting examples different DC-specific antibodies or fragments (both nucleotide and protein sequences) that may be used in the preparation of the HCV vaccine of the present invention are shown herein below, the nomenclature corresponding to the target (e.g., Anti_CLEC69B9.2G12_Heavy Hv-V-hIgG4H-C—is an anti-CLEC-6 antibody from the mouse hybridoma clone “9B9.2G12” (which is the source of the anti-CLEC-6 antibody sequence); heavy chain “H” variable region “v” (which can be humanized) heavy and is an IgG4 constant region isotype. The same nomenclature applies to light chains (from mouse Kappa light chains), and the antigens.










Anti_CLEC_6_9B9.2G12_Hv-V-hIgG4H-C (SEQ ID NO: 15):



ATGGGCAGGCTTACTTCTTCATTCTTGCTACTGATTGTCCCTGCATATGTCCTGTCCCAGGTTACT


CTGAAAGAGTCTGGCCCTGGGATATTGCAGCCCTCCCAGACCCTCAGTCTGACCTGTTCTTTCTC


TGGGTTTTCACTGAGCACTTCTGGTATGAGTGTAGGCTGGATTCGTCAGCCTTCAGGGAAGGGT


CTGGAGTGGCTGGCTCACATTTGGTGGAATGATGATAAGTACTATAATCCAGTCCTGAAAAGCC


GGCTCACAATCTCCAAGGAGACCTCCAACAACCAGGTATTCCTCAAGATCGCCAGTGTGGTCTC


TGCAGATACTGCCACATACTACTGTGCTCGATTCTATGGTAACTGTCTTGACTACTGGGGCCAA


GGCACCACTCTCACAGTCTCCTCGGCCAAAACAAAGGGCCCATCCGTCTTCCCCCTGGCGCCCT


GCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGA


ACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTC


CTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCA


CGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTG


AGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCATCAGT


CTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGC


GTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTG


GAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTC


AGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCC


AACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAG


CCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACC


TGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCG


GAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCA


GGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATG


AGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTGATT


AATTAA





Anti_CLEC_6_9B9.2G12_Heavy (H)v-V-hIgG4H-C (SEQ ID NO: 80):


MGRLTSSFLLLIVPAYVLSQVTLKESGPGILQPSQTLSLTCSFSGFSLSTSGMSVGWIRQPSGKGLEWL


AHIWWNDDKYYNPVLKSRLTISKETSNNQVFLKIASVVSADTATYYCARFYGNCLDYWGQGTTLT


VSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSL


SSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMI


SRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGK


EYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESN


GQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS





Anti_CLEC_6_9B9.2G12_Kv-V-hIgGK-C (SEQ ID NO: 16):


ATGATGTCCTCTGCTCAGTTCCTTGGTCTCCTGTTGCTCTGTTTTCAAGGTACCAGATGTGATATC


CAGATGACACAGACTACATCCTCCCTGTCTGCCTCTCTGGGAGACAGAGTCACCATCAGTTGCA


GGGCAAGTCAGGACATTAGCAATTATTTAAACTGGTATCAGCAGAAACCAGATGGAACTGTTA


AACTCCTGATCTACTACACATCAATATTACAATTAGGAGTCCCATCAAGATTCAGTGGCAGTGG


GTCTGAAACAGATTATTCTCTCACCATTAGCAACCTGGAGCAAGAAGATATTGCCACTTACTTTT


GCCAACAGGGTGATTCGCTTCCATTCACGTTCGGCTCGGGGACAAAGCTCGAGATCAAACGAAC


TGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCT


CTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAA


CGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTA


CAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATGCCTG


CGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAG





Anti_CLEC_6_9B9.2G12_Light (K)v-V-hIgGK-C (SEQ ID NO: 81):


MMSSAQFLGLLLLCFQGTRCDIQMTQTTSSLSASLGDRVTISCRASQDISNYLNWYQQKPDGTVKLL


IYYTSILQLGVPSRFSGSGSETDYSLTISNLEQEDIATYFCQQGDSLPFTFGSGTKLEIKRTVAAPSVFIF


PPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKA


DYEKHKVYACEVTHQGLSSPVTKSFNRGEC





Anti-ASGPR_49C11_7H-LV-hIgG4H-C (SEQ ID NO: 17):


ATGAGAGCGCTGATTCTTTTGTGCCTGTTCACAGCCTTTCCTGGTATCCTGTCTGATGTGCAGCT


TCAGGAGTCAGGACCTGACCTGGTGAAACCTTCTCAGTCACTTTCACTCACCTGCACTGTCACTG


GCTACTCCATCACCAGTGGTTATAGCTGGCACTGGATCCGGCAGTTTCCAGGAAACAAACTGGA


ATGGATGGGCTACATACTCTTCAGTGGTAGCACTAACTACAACCCATCTCTGAAAAGTCGAATC


TCTATCACTCGAGACACATCCAAGAACCAGTTCTTCCTGCAGTTGAATTCTGTGACTACTGAGG


ACACAGCCACATATTTCTGTGCAAGATCTAACTATGGTTCCTTTGCTTCCTGGGGCCAAGGGACT


CTGGTCACTGTCTCTGCAGCCAAAACAACGGGCCCATCCGTCTTCCCCCTGGCGCCCTGCTCCA


GGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGT


GACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAG


TCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACGAAGA


CCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGTCCA


AATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCATCAGTCTTCCT


GTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGCGTGGTG


GTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTGGAGGTG


CATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTCAGCGTC


CTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAA


GGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAGCCACAG


GTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTG


GTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAAC


AACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAGGCTAA


CCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATGAGGCTCT


GCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTGATTAATTAA





Anti-ASGPR_49C11_7H-LV-hIgG4H-C (SEQ ID NO: 82):


MRALILLCLFTAFPGILSDVQLQESGPDLVKPSQSLSLTCTVTGYSITSGYSWHWIRQFPGNKLEWM


GYILFSGSTNYNPSLKSRISITRDTSKNQFFLQLNSVTTEDTATYFCARSNYGSFASWGQGTLVTVSA


AKTTGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV


VTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMISRT


PEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYK


CKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE


NNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS





Anti-ASGPR_49C11_7K-LV-hIgGK-C (SEQ ID NO: 18):


ATGGATTTTCAAGTGCAGATTTTCAGCTTCCTGCTAATCAGTGCCTCAGTCATAATATCCAGAGG


ACAAATTGTTCTCACCCAGTCTCCAGCAATCATGTCTGCATCTCCAGGGGAGAAGGTCACCATG


ACCTGCAGTGCCAGCTCAAGTGTAAGTCACATGCACTGGTACCAGCAGAAGTCAGGCACTTCCC


CCAAAAGATGGATTTATGACACATCCAGACTGGCTTCTGGAGTCCCTGCTCGCTTCAGTGGCAG


TGGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGCATGGAGGCTGAAGATGCTGCCACTTAT


TACTGCCAGCAGTGGAGTAGTCACCCATGGTCGTTCGGTGGAGGCACCAAACTCGAGATCAAA


CGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAAC


TGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTG


GATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGC


ACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTAT


GCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAG


TGTTAG





Anti-ASGPR_49C11_7K-LV-hIgGK-C (SEQ ID NO: 83):


MDFQVQIFSFLLISASVIISRGQIVLTQSPAIMSASPGEKVTMTCSASSSVSHMHWYQQKSGTSPKRWI


YDTSRLASGVPARFSGSGSGTSYSLTISSMEAEDAATYYCQQWSSHPWSFGGGTKLEIKRTVAAPSV


FIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLS


KADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





Anti-ASGPR_4G2.2_Hv-V-hIgG4H-C (SEQ ID NO: 19):


ATGGCTTGGGTGTGGACCTTGCTATTCCTGATGGCAGCTGCCCAAAGTGCCCAAGCACAGATCC


AGTTGGTGCAGTCTGGACCTGAGCTGAAGAAGCCTGGAGAGACAGTCAAGATCTCCTGCAAGG


CTTCTGGGTATACCTTCACAAACTATGGAATGAACTGGGTGAAGCAGGTTCCAGGAAAAGGTTT


AAGGTGGATGGGCTGGATGGACACCTTCACTGGAGAGCCAACATATGCTGATGACTTCAAGGG


ACGGTTTGCCTTCTCTTTGGAAACCTCTGCCAGCACTGCCTATTTGCAGATCAACAGCCTCAAAA


ATGAGGACACGGCTACTTATTTCTGTGCAAGAGGGGGGATTTTACGACTCAACTACTTTGACTA


CTGGGGCCAAGGCACCACTCTCACAGTCTCCTCAGCCAAAACGAAGGGCCCATCCGTCTTCCCC


CTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACT


ACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTT


CCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGC


AGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGAC


AAGAGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGG


GACCATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGA


GGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGT


GGATGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTA


CCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGC


AAGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAG


CCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTC


AGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAAT


GGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCC


TCTACAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCG


TGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGC


TAGCTGATTAATTAA





Anti-ASGPR_4G2.2_Hv-V-hIgG4H-C (SEQ ID NO: 84):


MAWVWTLLFLMAAAQSAQAQIQLVQSGPELKKPGETVKISCKASGYTFTNYGMNWVKQVPGKGL


RWMGWMDTFTGEPTYADDFKGRFAFSLETSASTAYLQINSLKNEDTATYFCARGGILRLNYFDYW


GQGTTLTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVL


QSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPP


KPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLH


QDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDI


AVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLS


LSLGKAS





Anti-ASGPR_4G2.2_Kv-V-hIgGK-C (SEQ ID NO: 20):


ATGAAGTTTCCTTCTCAACTTCTGCTCTTACTGCTGTTTGGAATCCCAGGCATGATATGTGACAT


CCAGATGACACAATCTTCATCCTCCTTTTCTGTATCTCTAGGAGACAGAGTCACCATTACTTGCA


AGGCAAGTGAGGACATATATAATCGGTTAGGCTGGTATCAGCAGAAACCAGGAAATGCTCCTA


GGCTCTTAATATCTGGTGCAACCAGTTTGGAAACTGGGGTTCCTTCAAGATTCAGTGGCAGTGG


ATCTGGAAAGGATTACGCTCTCAGCATTACCAGTCTTCAGACTGAAGATCTTGCTACTTATTACT


GTCAACAGTGTTGGACTTCTCCGTACACGTTCGGAGGGGGGACCAAGCTCGAGATCAAACGAA


CTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCC


TCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATA


ACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCT


ACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATGCCT


GCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTT


AG





Anti-ASGPR_4G2.2_Kv-V-hIgGK-C (SEQ ID NO: 85):


MKFPSQLLLLLLFGIPGMICDIQMTQSSSSFSVSLGDRVTITCKASEDIYNRLGWYQQKPGNAPRLLIS


GATSLETGVPSRFSGSGSGKDYALSITSLQTEDLATYYCQQCWTSPYTFGGGTKLEIKRTVAAPSVFI


FPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKA


DYEKHKVYACEVTHQGLSSPVTKSFNRGEC





Anti-ASGPR_5F10H-LV-hIgG4H-C (SEQ ID NO: 21):


ATGGGATGGAGCTGGATCTTTCTCTTTCTCTTGTCAGGAACTGGAGGTGTCCTCTCTGAGGTCCA


GCTGCAACAGTCTGGACCTGAGCTGGTGAAGCCTGGGGCTTCAGTGAAGATGTCCTGCAAGGCT


TCTGGATACACCTTCACTGACTACTACATGAAGTGGGTGAAGCAGAGCCATGGAAAGAGCCTTG


AGTGGATTGGAGATATTAATCCTAACTATGGTGATACTTTCTACAACCAGAAGTTCGAGGGCAA


GGCCACATTGACTGTAGACAAATCCTCCAGGACAGCCTACATGCAGCTCAACAGCCTGACATCT


GAGGACTCTGCAGTCTATTATTGTGGAAGAGGGGACTATGGATACTTCGATGTCTGGGGCGCAG


GGACCACGGTCACCGTCTCCTCAGCCAAAACAAAGGGCCCATCCGTCTTCCCCCTGGCGCCCTG


CTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAA


CCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCC


TACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCAC


GAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGA


GTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCATCAGTC


TTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGCG


TGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTGG


AGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTCA


GCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCCA


ACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAGC


CACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCT


GCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGG


AGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAG


GCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATGA


GGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTGA





Anti-ASGPR_5F10H-LV-hIgG4H-C (SEQ ID NO: 86):


MGWSWIFLFLLSGTGGVLSEVQLQQSGPELVKPGASVKMSCKASGYTFTDYYMKWVKQSHGKSLE


WIGDINPNYGDTFYNQKFEGKATLTVDKSSRTAYMQLNSLTSEDSAVYYCGRGDYGYFDVWGAGT


TVTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL


YSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDT


LMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLN


GKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWE


SNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLLSLGKAS





Anti-ASGPR_5F10K-LV-hIgGK-C (SEQ ID NO: 22):


ATGGAGACACATTCTCAGGTCTTTGTATACATGTTGCTGTGGTTGTCTGGTGTTGAAGGAGACAT


TGTGATGACCCAGTCTCACAAATTCATGTCCACATCAGTAGGAGACAGGGTCAGCATCACCTGC


AAGGCCAGTCAGGATGTGGGTACTGCTGTAGCCTGGTATCAACAGAAACCAGGGCAATCTCCT


AAACTACTGATTTACTGGGCATCCACCCGGCACACTGGAGTCCCTGATCGCTTCACAGGCAGTG


GATCTGGGACAGATTTCACTCTCACCATTAACAATGTGCAGTCTGAAGACTTGGCAGATTATTT


CTGTCAGCAATATAGCAGCAATCCGTACATGTTCGGAGGGGGGACCAAGCTCGAGATCAAACG


AACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTG


CCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGA


TAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCAC


CTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATGC


CTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTG


TTAG





Anti-ASGPR_5F10K-LV-hIgGK-C (SEQ ID NO: 87):


METHSQVFVYMLLWLSGVEGDIVMTQSHKFMSTSVGDRVSITCKASQDVGTAVAWYQQKPGQSP


KLLIYWASTRHTGVPDRFTGSGSGTDFTLTINNVQSEDLADYFCQQYSSNPYMFGGGTKLEIKRTVA


APSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSST


LTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





Anti-ASGPR1H11_H-V-hIgG4H-C (SEQ ID NO: 23):


ATGGGATGGAGCTGGATCTTTCTCTTTCTCCTGTCAGGAACTGCAGGTGTCCTCTCTGAGGTCCA


GCTGCAACAGTCTGGACCTGAGTTGGTGAAGCCTGGGGCTTCAGTGAAGATATCCTGCAAGACT


TCTGGATACACATTCACTGAATACACCATGCACTGGGTGAGGCAGAGCCATGGAAAGAGCCTT


GAGTGGATTGGAGGTATTAATCCTATCAATGGTGGTCCTACCTACAACCAGAAGTTCAAGGGCA


AGGCCACATTGACTGTTGACAAGTCCTCCAGCACAGCCTACATGGAGCTCCGCAGCCTGACATC


TGAGGACTCTGCAGTCTATTACTGTGCAAGATGGGACTATGGTAGTCGAGATGTTATGGACTAC


TGGGGTCAAGGAACCTCAGTCACCGTCTCCTCAGCCAAAACGAAGGGCCCATCCGTCTTCCCCC


TGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTA


CTTCCCCGAACCGGTACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCAC


ACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTC


CAGCAGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGT


GGACAAGAGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAA


GGGGGACCATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCC


CTGAGGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGT


ACGTGGATGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCA


CGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAA


GTGCAAGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGG


GCAGCCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCA


GGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGC


AATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCT


TCCTCTACAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTC


CGTGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAA


GCTAGCTGA





Anti-ASGPR1H11_H-V-hIgG4H-C (SEQ ID NO: 88):


MGWSWIFLFLLSGTAGVLSEVQLQQSGPELVKPGASVKISCKTSGYTFTEYTMHWVRSHGKSLEWI


GGINPINGGPTYNQKFKGKATLTVDKSSSTAYMELRSLTSEDSAVYYCARWDYGSRDVMDYWGQ


GTSVTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVPVTVSWNSGALTSGVHTFPAVL


QSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPP


KPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLH


QDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDI


AVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLS


LSLGKAS





Anti-ASGPR1H11K-LV-var2-hIgGK-C (SEQ ID NO: 24):


ATGGAATCACAGACTCTGGTCTTCATATCCATACTGCTCTGGTTATATGGTGCTGATGGGAACAT


TGTAATGACTCAATCTCCCAAATCCATGTCCATGTCAGTAGGGGAGAGGGTCACCTTGAGCTGC


AAGGCCAGTGAGAATGTGGGAACTTATGTATCCTGGTATCAACAGAGACCAGAACAGTCTCCA


AAACTGCTGATATACGGGGCATCCAACCGGTACACTGGGGTCCCCGATCGCTTCACAGGCAGTG


GATCTGCAACAGATTTCACTCTGACCATCAGCAGTGTGCAGGCTGAGGACCTTGCAGATTATCA


CTGTGGACAGACTTACAGCTATATATTCACGTTCGGCTCGGGGACAAAGCTCGAGATCAAACGA


ACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGC


CTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGAT


AACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACC


TACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATGCC


TGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGT


TAG





Anti-ASGPR1H11K-LV-var2-hIgGK-C (SEQ ID NO: 89):


METHSQVFVYMLLWLSGVEGNIVMTQSPKSMSMSVGERVTLSCKASENVGTYVSWYQQRPEQSPK


LLIYGASNRYTGVPDRFTGSGSATDFTLTISSVQAEDLADYHCGQTYSYIFTFGSGTKLEIKRTVAAP


SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLT


LSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





Anti-CD1d_2B5.3G10_H-V-hIgG4H-C (SEQ ID NO: 25):


ATGGGATGGAGCCGGATCTTTCTCTTCCTCCTGTCAATAACTGCAGGTGTCCATTGCCAGGTCCA


GGTGCAGCAGTCGGGACCTGAGTTGGTGAAGCCTGGGGCCTCAGTGAAGATTTCCTGCAAAGC


CTCTGGCGACGCATTCAGTAGTTCTTGGATGAACTGGGTGAAGCAGAGGCCTGGACAGGGTCTT


GAGTGGATTGGACGGATTTATCTTGGAGATGGAGATATTAATTACAATGGGAAGTTCAAGGGC


AGGGCCACACTGACTGCAGACAAATCCTCCAGCACAGCCTACATGCAGCTCAGCAGCCTGACCT


CTGTGGACTCTGCGGTCTATTTCTGCGCGAGGCAGCTCGGGCTATGGTATGTTATGGACTACTG


GGGTCAAGGAACCTCAGTCACCGTCTCCTCAGCCAAAACAAAGGGCCCATCCGTCTTCCCCCTG


GCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACT


TCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCC


GGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGC


TTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAG


AGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGAC


CATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTC


ACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGAT


GGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGT


GTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAG


GTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCC


GAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCC


TGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGC


AGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTA


CAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGAT


GCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGC


TGA





Anti-CD1d_2B5.3G10_H-V-hIgG4H-C (SEQ ID NO: 90):


MGWSRIFLFLLSITAGVHCQVQVQQSGPELVKPGASVKISCKASGDAFSSSWMNWVKQRPGQGLE


WIGRIYLGDGDINYNGKFKGRATLTADKSSSTAYMQLSSLTSVDSAVYFCARQLGLWYVMDYWG


QGTSVTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQ


SSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPK


PKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQ


DWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIA


VEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLS


LGKAS





Anti-CD1d_2B5.3G10_K-V-hIgGK-C (SEQ ID NO: 26):


ATGAGTGTGCCCACTCAGGTCCTGGGGTTGCTGCTGCTGTGGCTTACAGGTGCCAGATGTGACA


TCCAGATGGCTCAGTCTCCAGCCTCCCTATCTGCATCTGTGGGAGAAACTGTCACCATCACATGT


CGAGCAAGTGAGAATATTTACAGTTATTTAGCATGGTATCAGCAGAAACAGGGAAAATCTCCTC


AGCTCCTGGTCTATAATGCAAAAACCTTAGCAGAAGGTGTGCCATCAAGGTTCAGTGGCAGTGG


ATCAGGCACACAGTTTTCTCTGAAGATCAACAGCCTGCAGCCTGAAGATTTTGGGAGTTATTAC


TGTCAACATCATTATGGTTTTCCGTGGACGTTCGGTGGAGGCACCAAGCTCGAGATCAAACGAA


CTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCC


TCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATA


ACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCT


ACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATGCCT


GCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTT


AG





Anti-CD1d_2B5.3G10_K-V-hIgGK-C (SEQ ID NO: 91):


MSVPTQVLGLLLLWLTGARCDIQMAQSPASLSASVGETVTITCRASENIYSYLAWYQQKQGKSPQL


LVYNAKTLAEGVPSRFSGSGSGTQFSLKINSLQPEDFGSYYCQHHYGFPWTFGGGTKLEIKRTVAAP


SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLT


LSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





Anti-CD1d_2H11.2G5_H-V-hIgG4H-C (SEQ ID NO: 27):


ATGAACTTCGGGCTCAGCTTGATTTTCCTTGTCCTCATTTTAAAAGGTGTCCAGTGTGAGGTGCA


GCTGGTGGAGTCTGGGGGAGACTTAGTGAAGCCTGGAGGGTCCCTGAAACTCTCCTGTGCAGCC


TCTGGATTCACTTTCAGTAGCTATGGCATGTCTTGGGTTCGCCAGACTCCAGACAAGAGGCTGG


AGTGGGTCGCAGTCATTAGTAGTGGTGGAAGTTCCACCTTCTATCCAGACAGTGTGAAGGGGCG


ATTCACCATCTCCAGAGACAATGCCAAGAACACCCTGTACCTGCAAATGAGCAGTCTGAAGTCT


GAGGACACAGCCGTGTATTACTGTTCAAGAGGAGGTTACTACTTTGACTACTGGGGCCAAGGCA


CCACTCTCACAGTCTCCGCAGCCAAAACAAAGGGCCCATCCGTCTTCCCCCTGGCGCCCTGCTC


CAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACC


GGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTA


CAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACGA


AGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGT


CCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCATCAGTCTT


CCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGCGTG


GTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTGGAG


GTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTCAGC


GTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCCAAC


AAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAGCCA


CAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGC


CTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAG


AACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAGGC


TAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATGAGG


CTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTGA





Anti-CD1d_2H11.2G5_H-V-hIgG4H-C (SEQ ID NO: 92):


MNFGLSLIFLVLILKGVQCEVQLVESGGDLVKPGGSLKLSCAASGFTFSSYGMSWVRQTPDKRLEW


VAVISSGGSSTFYPDSVKGRFTISRDNAKNTLYLQMSSLKSEDTAVYYCSRGGYYFDYWGQGTTLT


VSAAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYS


LSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLM


ISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGK


EYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESN


GQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS





Anti-CD1d_2H11.2G5_K-V-hIgGK-C (SEQ ID NO: 28):


ATGAGGTTCCAGGTTCAGGTTCTGGGGCTCCTTCTGCTCTGGATATCAGGTGCCCAGTGTGATGT


CCAGATAACCCAGTCTCCATCTTATCTTGCTGCATCTCCTGGAGAAACCATTACTATTAATTGCA


GGGCAAGCAAGACCATTAGCAAATATTTAGCCTGGTATCAAGAGAAACCTGAGAAAACTGATA


AGCTTCTTATCTACTCTGGATCCACTTTGCAATCTGGAATTCCATCAAGGTTCAGTGGCAGTGGA


TCTGGTACAGATTTCACTCTCACCATCAGTGGCCTGGAGCCTGAAGATTTTGCAATGTATTACTG


TCAACAGCATAATGAATACCCGTGGACGTTCGGTGGAGGCACCAAGCTCGAGATCAAACGAAC


TGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCT


CTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAA


CGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTA


CAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATGCCTG


CGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAG





Anti-CD1d_2H11.2G5_K-V-hIgGK-C (SEQ ID NO: 93):


MRFQVQVLGLLLLWISGAQCDVQITQSPSYLAASPGETITINCRASKTISKYLAWYQEKPEKTDKLLI


YSGSTLQSGIPSRFSGSGSGTDFTLTISGLEPEDFAMYYCQQHNEYPWTFGGGTKLEIKRTVAAPSVFI


FPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKA


DYEKHKVYACEVTHQGLSSPVTKSFNRGEC





Anti-CD40_11B6.1C3_H-LV-hIgG4H-C (SEQ ID NO: 29):


ATGGGATGGAGCTGGATCTTTCTCTTTCTCCTGTCAGGAACTGCAGGTGTCCTCTCTGAGGTCCA


GCTGCAACAGTCTGGACCTGAGCTGGTGAAGCCTGGGGCTTCAGTGAAGATATCCTGCAAGGCT


TCTGGTTACTCATTCACTGGCTACTACATGCACTGGGTGAAGCAAAGCCATGTAAAGAGCCTTG


AGTGGATTGGACGTATTAATCCTTACAATGGTGCTACTAGCTACAACCAGAATTTCAAGGACAA


GGCCAGCTTGACTGTAGATAAGTCCTCCAGCACAGCCTACATGGAGCTCCACAGCCTGACATCT


GAGGACTCTGCAGTCTATTACTGTGCAAGAGAGGACTACGTCTACTGGGGCCAAGGCACCACTC


TCACAGTCTCCTCAGCCAAAACGAAGGGCCCATCCGTCTTCCCCCTGGCGCCCTGCTCCAGGAG


CACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACG


GTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCT


CAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACGAAGACCTA


CACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGTCCAAATA


TGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCATCAGTCTTCCTGTTC


CCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGCGTGGTGGTGG


ACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTGGAGGTGCATA


ATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTCAGCGTCCTCA


CCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGGCC


TCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAGCCACAGGTGT


ACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCA


AAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACT


ACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAGGCTAACCGT


GGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCA


CAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTGA





Anti-CD40_11B6.1C3_H-LV-hIgG4H-C (SEQ ID NO: 94):


MGWSWIFLFLLSGTAGVLSEVQLQQSGPELVKPGASVKISCKASGYSFTGYYMHWVKQSHVKSLE


WIGRINPYNGATSYNQNFKDKASLTVDKSSSTAYMELHSLTSEDSAVYYCAREDYVYWGQGTTLT


VSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSL


SSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMI


SRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGK


EYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESN


GQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS





Anti-CD40_11B6.1C3_K-LV-hIgGK-C (SEQ ID NO: 30):


ATGAAGTTGCCTGTTAGGCTGTTGGTGCTGATGTTCTGGATTCCTGCTTCCAGCAGTGATGTTGT


GATGACCCAAACTCCACTCTCCCTGCCTGTCAGTCTTGGAGATCAAGCCTCCATCTCTTGCAGAT


CTAGTCAGAGCCTTGTACACAGTAATGGAAACACCTATTTACATTGGTACCTGCAGAAGCCAGG


CCAGTCTCCAAAGCTCCTGATCTACAAAGTTTCCAACCGATTTTCTGGGGTCCCAGACAGGTTC


AGTGGCAGTGGATCAGGGACAGATTTCGCACTCAAGATCAGTAGAGTGGAGGCTGAGGATCTG


GGAGTTTATTTCTGCTCTCAAAGTACACATGTTCCGTGGACGTTCGGTGGAGGCACCAAGCTCG


AGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAA


ATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAG


TGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGC


AAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACAC


AAAGTCTATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACA


GGGGAGAGTGTTAG





Anti-CD40_11B6.1C3_K-LV-hIgGK-C (SEQ ID NO: 95):


MKLPVRLLVLMFWIPASSSDVVMTQTPLSLPVSLGDQASISCRSSQSLVHSNGNTYLHWYLQKPGQ


SPKLLIYKVSNRFSGVPDRFSGSGSGTDFALKISRVEAEDLGVYFCSQSTHVPWTFGGGTKLEIKRTV


AAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSS


TLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





Anti-CD40_12B4.2C10_H-LV-hIgG4H-C (SEQ ID NO: 31):


ATGGAATGGAGTTGGATATTTCTCTTTCTTCTGTCAGGAACTGCAGGTGTCCACTCTGAGGTCCA


GCTGCAGCAGTCTGGACCTGAGCTGGTAAAGCCTGGGGCTTCAGTGAAGATGTCCTGCAAGGCT


TCTGGATACACATTCACTGACTATGTTTTGCACTGGGTGAAACAGAAGCCTGGGCAGGGCCTTG


AGTGGATTGGATATATTAATCCTTACAATGATGGTACTAAGTACAATGAGAAGTTCAAAGGCAA


GGCCACACTGACTTCAGACAAATCCTCCAGCACAGCCTACATGGAGCTCAGCAGCCTGACCTCT


GAGGACTCTGCGGTCTATTACTGTGCAAGGGGCTATCCGGCCTACTCTGGGTATGCTATGGACT


ACTGGGGTCAAGGAACCTCAGTCACCGTCTCCTCAGCCAAAACGAAGGGCCCATCCGTCTTCCC


CCTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGAC


TACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCT


TCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGC


AGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGAC


AAGAGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGG


GACCATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGA


GGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGT


GGATGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTA


CCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGC


AAGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAG


CCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTC


AGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAAT


GGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCC


TCTACAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCG


TGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGC


TAGCTGA





Anti-CD40_12B4.2C10_H-LV-hIgG4H-C (SEQ ID NO: 96):


MEWSWIFLFLLSGTAGVHSEVQLQQSGPELVKPGASVKMSCKASGYTFTDYVLHWVKQKPGQGLE


WIGYINPYNDGTKYNEKFKGKATLTSDKSSSTAYMELSSLTSEDSAVYYCARGYPAYSGYAMDYW


GQGTSVTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVL


QSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPP


KPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLH


QDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDI


AVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLS


LSLGKAS





Anti-CD40_12B4.2C10_K-LV-v2-hIgGK-C (SEQ ID NO: 32):


ATGATGTCCTCTGCTCAGTTCCTTGGTCTCCTGTTGCTCTGTTTTCAAGGTACCAGATGTGATATC


CAGATGACACAGACTACATCCTCCCTGTCTGCCTCTCTGGGAGACAGAGTCACCATCAGTTGCA


GGGCAAGTCAGGACATTAGCAATTATTTAAACTGGTATCAGCAGAAACCAGATGGAACTGTTA


AACTCCTGATCTACTACACATCAAGATTACACTCAGGAGTCCCATCAAGGTTCAGTGGCAGTGG


GTCTGGAACAGATTATTCTCTCACCATTAGCAACCTGGAGCAAGAAGATATTGCCACTTACTTTT


GCCATCATGGTAATACGCTTCCGTGGACGTTCGGTGGAGGCACCAAGCTCGAGATCAAACGAA


CTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCC


TCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATA


ACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCT


ACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATGCCT


GCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTT


AG





Anti-CD40_12B4.2C10_K-LV-v2-hIgGK-C (SEQ ID NO: 97):


MMSSAQFLGLLLLCFQGTRCDIQMTQTTSSLSASLGDRVTISCRASQDISNYLNWYQQKPDGTVKLL


IYYTSRLHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCHHGNTLPWTFGGGTKLEIKRTVAAPSVF


IFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSK


ADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





Anti-CD40_12E12.3F3_H-V-hIgG4H-C (SEQ ID NO: 33):


ATGAACTTGGGGCTCAGCTTGATTTTCCTTGTCCTTGTTTTAAAAGGTGTCCAGTGTGAAGTGAA


GCTGGTGGAGTCTGGGGGAGGCTTAGTGCAGCCTGGAGGGTCCCTGAAACTCTCCTGTGCAACC


TCTGGATTCACTTTCAGTGACTATTACATGTATTGGGTTCGCCAGACTCCAGAGAAGAGGCTGG


AGTGGGTCGCATACATTAATTCTGGTGGTGGTAGCACCTATTATCCAGACACTGTAAAGGGCCG


ATTCACCATCTCCAGAGACAATGCCAAGAACACCCTGTACCTGCAAATGAGCCGGCTGAAGTCT


GAGGACACAGCCATGTATTACTGTGCAAGACGGGGGTTACCGTTCCATGCTATGGACTATTGGG


GTCAAGGAACCTCAGTCACCGTCTCCTCAGCCAAAACGAAGGGCCCATCCGTCTTCCCCCTGGC


GCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTC


CCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGG


CTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTG


GGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGA


GTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCAT


CAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCAC


GTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGG


CGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGT


GGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGT


CTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCG


AGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCT


GACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCA


GCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTAC


AGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATG


CATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCT


GA





Anti-CD40_12E12.3F3_H-V-hIgG4H-C (SEQ ID NO: 98):


MNLGLSLIFLVLVLKGVQCEVKLVESGGGLVQPGGSLKLSCATSGFTFSDYYMYWVRQTPEKRLE


WVAYINSGGGSTYYPDTVKGRFTISRDNAKNTLYLQMSRLKSEDTAMYYCARRGLPFHAMDYWG


QGTSVTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQ


SSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPK


PKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQ


DWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIA


VEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLS


LGKAS





Anti-CD40_12E12.3F3_K-LV-hIgGK-C (SEQ ID NO: 34):


ATGATGTCCTCTGCTCAGTTCCTTGGTCTCCTGTTGCTCTGTTTTCAAGGTACCAGATGTGATATC


CAGATGACACAGACTACATCCTCCCTGTCTGCCTCTCTAGGAGACAGAGTCACCATCAGTTGCA


GTGCAAGTCAGGGCATTAGCAATTATTTAAACTGGTATCAGCAGAAACCAGATGGAACTGTTAA


ACTCCTGATCTATTACACATCAATTTTACACTCAGGAGTCCCATCAAGGTTCAGTGGCAGTGGG


TCTGGGACAGATTATTCTCTCACCATCGGCAACCTGGAACCTGAAGATATTGCCACTTACTATTG


TCAGCAGTTTAATAAGCTTCCTCCGACGTTCGGTGGAGGCACCAAACTCGAGATCAAACGAACT


GTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTC


TGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAAC


GCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTAC


AGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATGCCTGC


GAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAG





Anti-CD40_12E12.3F3_K-LV-hIgGK-C (SEQ ID NO: 99):


MMSSAQFLGLLLLCFQGTRCDIQMTQTTSSLSASLGDRVTISCSASQGISNYLNWYQQKPDGTVKLL


IYYTSILHSGVPSRFSGSGSGTDYSLTIGNLEPEDIATYYCQQFNKLPPTFGGGTKLEIKRTVAAPSVFI


FPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKA


DYEKHKVYACEVTHQGLSSPVTKSFNRGEC





Anti-DCIR_24A5.4A5_H-V-hIgG4H-C (SEQ ID NO: 35):


ATGGATTGGCTGTGGAACTTGCTATTCCTGATGGCAGCTGCCCAAAGTGCCCAAGCACAGATCC


AGTTGGTGCAGTCTGGACCTGAGCTGAAGAAGCCTGGAGAGACAGTCAAGATCTCCTGCAAGG


CTTCTGGGTATTCCTTCACAAACTATGGAATGAACTGGGTGAAACAGGCTCCAGGAAAGGGTTT


AAAGTGGATGGGCTGGATAAACACCTACACTGGAGAGTCAACATATGCTGATGACTTCAAGGG


ACGGTTTGCCTTCTCTTTGGAAACCTCTGCCAGCACTGCCTATTTGCAGATCAGTAACCTCAAAA


ATGAGGACATGGCTACATATTTCTGTGCTAGAGGGGACTTTAGGTACTACTATTTTGACTACTG


GGGCCAAGGCACCACTCTCACAGGCTCCTCAGCCAAAACGAAGGGCCCATCCGTCTTCCCCCTG


GCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACT


TCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCC


GGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGC


TTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAG


AGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGAC


CATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTC


ACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGAT


GGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGT


GTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAG


GTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCC


GAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCC


TGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGC


AGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTA


CAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGAT


GCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGC


TGAT





Anti-DCIR_24A5.4A5_H-V-hIgG4H-C (SEQ ID NO: 100):


MDWLWNLLFLMAAAQSAQAQIQLVQSGPELKKPGETVKISCKASGYSFTNYGMNWVKQAPGKGL


KWMGWINTYTGESTYADDFKGRFAFSLETSASTAYLQISNLKNEDMATYFCARGDFRYYYFDYWG


QGTTLTGSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQ


SSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPK


PKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQ


DWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIA


VEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLS


LGKAS





Anti-DCIR_24A5.4A5_K-V-hIgGK-C (SEQ ID NO: 36):


ATGAGTGTGCTCACTCAGGTCCTGGCGTTGCTGCTGCTGTGGCTTACAGGTGCCAGATGTGACA


TCCAGATGACTCAGTCTCCAGCCTCCCTATCTGCATCTGTGGGAGAAACTGTCACCATCACGTGT


CGAGCAAGTGGGAATATTCACAATTATTTAGCATGGTATCAGCAGAAACAGGGAAAATCTCCTC


AGCTCCTGGTCTATAATGCAAAAACCTTGGCAGATGGTGTGCCATCAAGGTTCAGTGGCAGTGG


ATCAGGAACACAATATTCTCTCAAGATCAACACCCTGCAGCCTGAAGATTTTGGGAGTTATTAC


TGTCAACATTTTTGGGATTCTTGGACGTTCGGTGGAGGCACCAAGCTCGAGATCAAACGAACTG


TGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCT


GTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACG


CCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACA


GCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATGCCTGCG


AAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAG





Anti-DCIR_24A5.4A5_K-V-hIgGK-C (SEQ ID NO: 101):


MSVLTQVLALLLLWLTGARCDIQMTQSPASLSASVGETVTITCRASGNIHNYLAWYQQKQGKSPQL


LVYNAKTLADGVPSRFSGSGSGTQYSLKINTLQPEDFGSYYCQHFWDSWTFGGGTKLEIKRTVAAP


SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLT


LSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





Anti-DCIR_24E7.3H9_H-V-hIgG4H-C (SEQ ID NO: 37):


ATGGAATGGACCTGGGTCTTTCTCTTCCTCCTGTCAGTAACTGCAGGTGTCCACTCCCAGGTTCA


GCTGCAGCAGTCTGGAGCTGAGCTGATGAAGCCTGGGGCCTCAGTGAAGATATCCTGCAAGGC


TACTGGCTACACATTCAGTAGCTACTGGATAGAGTGGGTAAAGCAGAGGCCTGGACATGGCCTT


GAGTGGATTGGAGAGATTTTACCTGGAAGTGGTAGGACTAACGACAATGAGAAGTTCAAGGGC


AAGGCCACATTCACTGCAGATACATCCTCCAAGAAAGCCTACATGCAACTCAGCAGCCTGACAT


CTGAGGACTCTGCCGTCTATTATTGTGCAAGAAGGGGTGGTTACTCCTTTGCTTACTGGGGCCA


AGGGACTCTGGTCACTGTCTCTGCAGCCAAAACAAAGGGCCCATCCGTCTTCCCCCTGGCGCCC


TGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCG


AACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGT


CCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGC


ACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTT


GAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCATCAG


TCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGC


GTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTG


GAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTC


AGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCC


AACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAG


CCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACC


TGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCG


GAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCA


GGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATG


AGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTGA





Anti-DCIR_24E7.3H9_H-V-hIgG4H-C (SEQ ID NO: 102):


MEWTWVFLFLLSVTAGVHSQVQLQQSGAELMKPGASVKISCKATGYTFSSYWIEWVKQRPGHGLE


WIGEILPGSGRTNDNEKFKGKATFTADTSSKKAYMQLSSLTSEDSAVYYCARRGGYSFAYWGQGTL


VTVSAAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL


YSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDT


LMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLN


GKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWE


SNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS





Anti-DCIR_24E7.3H9_K-V-hIgGK-C (SEQ ID NO: 38):


ATGACCATGTTCTCACTAGCTCTTCTCCTCAGTCTTCTTCTCCTCTGTGTCTCTGATTCTAGGGCA


GAAACAACTGTGACCCAGTCTATGACCATGTTCTCACTAGCTCTTCTCCTCAGTCTTCTTCTCCT


CTGTGTCTCTGATTCTAGGGCAGAAACAACTGTGACCCAGTCTCCAGCATCCCTGTCCATGGCT


ATAGGGGAAAAAGTCACCATCAGATGCGTAACCAGCACTGATATTGATGATGATGTGAACTGG


TACCAGCAGAAGCCAGGGGAACCTCCTAAACTCCTTATTTCAGAAGGCAATACTCTTCGTCCTG


GAGTCCCATCCCGATTCTCCAGCAGTGGCTATGGTACAGATTTTGTTTTTACAATTGAGAACATG


CTCTCAGAAGATGTTGCAGATTACTACTGTTTGCAAAGTGGTAACTTGCCGTACACGTTCGGAG


GGGGGACCAAGCTCGAGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATC


TGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGA


GAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTC


ACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCA


GACTACGAGAAACACAAAGTCTATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTC


ACAAAGAGCTTCAACAGGGGAGAGTGTTAGCCAGCATCCCTGTCCATGGCTATAGGGGAAAAA


GTCACCATCAGATGCGTAACCAGCACTGATATTGATGATGATGTGAACTGGTACCAGCAGAAGC


CAGGGGAACCTCCTAAACTCCTTATTTCAGAAGGCAATACTCTTCGTCCTGGAGTCCCATCCCG


ATTCTCCAGCAGTGGCTATGGTACAGATTTTGTTTTTACAATTGAGAACATGCTCTCAGAAGATG


TTGCAGATTACTACTGTTTGCAAAGTGGTAACTTGCCGTACACGTTCGGAGGGGGGACCAAGCT


CGAGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTG


AAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTAC


AGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACA


GCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAAC


ACAAAGTCTATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAA


CAGGGGAGAGTGTTAG





Anti-DCIR_24E7.3H9_K-V-hIgGK-C (SEQ ID NO: 103):


MTMFSLALLLSLLLLCVSDSRAETTVTQSPASLSMAIGEKVTIRCVTSTDIDDDVNWYQQKPGEPPK


LLISEGNTLRPGVPSRFSSSGYGTDFVFTIENMLSEDVADYYCLQSGNLPYTFGGGTKLEIKRTVAAP


SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLT


LSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





Anti-DCIR_29E9.2E2_H-VhIgG4H-C (SEQ ID NO: 39):


ATGGCTTGGGTGTGGACCTTGCTATTCCTGATGGCAGCTGCCCAAAGTGCCCAAGCACAGATCC


AGTTGGTGCAGTCTGGACCTGAGCTGAAGAAGCCTGGAGAGACAGTCAAGATCTCCTGCAAGG


CTTCTGGGTATACCTTCACAAACTATGGAATGAACTGGGTGAAGCAGGCTCCAGGAAAGGGTTT


AAAGTGGGTGGGCTGGATAAACACCTTCACTGGAGAGCCAACATATGTTGATGACTTCAAGGG


ACGGTTTGCCTTCTCTTTGGAAACCTCTGCCAGCACTGCCTATTTGCAGATCAACAACCTCAAAA


ATGAGGACACGGCTACATATTTCTGTGCAAGAGGGAATTTTAGGTACTACTACTTTGACTACTG


GGGCCAAGGCACCACTCTCACAGTCTCCTCAGCCAAAACAAAGGGCCCATCCGTCTTCCCCCTG


GCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACT


TCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCC


GGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGC


TTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAG


AGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGAC


CATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTC


ACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGAT


GGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGT


GTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAG


GTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCC


GAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCC


TGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGC


AGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTA


CAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGAT


GCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGC


TGA





Anti-DCIR_29E9.2E2_H-VhIgG4H-C (SEQ ID NO: 104):


MAWVWTLLFLMAAAQSAQAQIQLVQSGPELKKPGETVKISCKASGYTFTNYGMNWVKQAPGKGL


KWVGWINTFTGEPTYVDDFKGRFAFSLETSASTAYLQINNLKNEDTATYFCARGNFRYYYFDYWG


QGTTLTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQ


SSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPK


PKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQ


DWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIA


VEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLS


LGKAS





Anti-DCIR_29E9.2E2_K-V-hIgGK-C (SEQ ID NO: 40):


ATGAGTGTGCTCACTCAGGTCCTGGCGTTGCTGCTGCTGTGGCTTACAGGTGCCAGATGTGACA


TCCAGATGACTCAGTCCCCAGCCTCCCTATCTGCATCTGTGGGAGAAACTGTCACCATCACATG


TCGAACAAGTGGGAATATTCGCAATTATTTAGCATGGTATCAGCAGAAACAGGGAAAATCTCCT


CAACTCCTGGTCTATAATGCAAAAACCTTAGCAGATGGTGTGCCATCAAGGTTCGGTGGCAGTG


GATCAGGAACACAATATTCTCTCAAGATCAACAGCCTGCAGCCTGAAGATTTTGGGAATTATTA


CTGTCAACATTTTTGGAGTAGTCCGTACACGTTCGGAGGGGGGACCAAGCTCGAGATCAAACGA


ACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGC


CTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGAT


AACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACC


TACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATGCC


TGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGT


TAG





Anti-DCIR_29E9.2E2_K-V-hIgGK-C (SEQ ID NO: 105):


MSVLTQVLALLLLWLTGARCDIQMTQSPASLSASVGETVTITCRTSGNIRNYLAWYQQKQGKSPQL


LVYNAKTLADGVPSRFGGSGSGTQYSLKINSLQPEDFGNYYCQHFWSSPYTFGGGTKLEIKRTVAAP


SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLT


LSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





Anti-DCIR_29G10.3D9_H-V-hIgG4H-C (SEQ ID NO: 41):


ATGATGGGATGGAGCTATATCATCCTCTTTTTGGTAGCAACAGCTACAGATGTCCACTCCCAGG


TCCAACTGCAGCAGCCTGGGGCTGAACTGGTGAAGCCTGGGGCTTCAGTGAAGCTGTCCTGCAA


GGCTTCTGGCTACACCTTCACCAGCTACTGGATGCACTGGGTGAAGCAGAGGCCTGGAGAAGG


CCTTGAGTGGATTGGAGAGATTAATCCTAGCTACGGTCGTACTGACTACAATGAGAAGTTCAAG


AACAAGGCCACACTGACTGTAGCCAAATCCTCCAGCACAGCCTACATGCAACTCAGCAGCCTG


ACATCTGAGGACTCTGCGGTCTATTACTGTGCAAGAGGAGATTACTACGGTAGTAGCTCGTTTG


CTTACTGGGGCCAAGGGACTCTGGTCACTGTCTCTGCAGCCAAAACAAAGGGCCCATCCGTCTT


CCCCCTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAG


GACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACA


CCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCC


AGCAGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTG


GACAAGAGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAG


GGGGACCATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCC


TGAGGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTA


CGTGGATGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCAC


GTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAA


GTGCAAGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGG


GCAGCCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCA


GGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGC


AATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCT


TCCTCTACAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTC


CGTGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAA


GCTAGCGGATGGAGCTATATCATCCTCTTTTTGGTAGCAACAGCTACAGATGTCCACTCCCAGG


TCCAACTGCAGCAGCCTGGGGCTGAACTGGTGAAGCCTGGGGCTTCAGTGAAGCTGTCCTGCAA


GGCTTCTGGCTACACCTTCACCAGCTACTGGATGCACTGGGTGAAGCAGAGGCCTGGAGAAGG


CCTTGAGTGGATTGGAGAGATTAATCCTAGCTACGGTCGTACTGACTACAATGGGAAGTTCAAG


AACAAGGCCACACTGACTGTAGCCAAATCCTCCAGCACAGCCTACATGCAACTCAGCAGCCTG


ACATCTGAGGACTCTGCGGTCTATTACTGTGCAAGAGGAGATTACTACGGTAGTAGCTCGTTTG


CTTACTGGGGCCAAGGGACTCTGGTCACTGTCTCTGCAGCCAAAACAAAGGGCCCATCCGTCTT


CCCCCTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAG


GACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACA


CCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCC


AGCAGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTG


GACAAGAGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAG


GGGGACCATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCC


TGAGGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTA


CGTGGATGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCAC


GTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAA


GTGCAAGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGG


GCAGCCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCA


GGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGC


AATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCT


TCCTCTACAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTC


CGTGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAA


GCTAGCTGA





Anti-DCIR_29G10.3D9_H-V-hIgG4H-C (SEQ ID NO: 106):


MMGWSYIILFLVATATDVHSQVQLQQPGAELVKPGASVKLSCKASGYTFTSYWMHWVKQRPGEG


LEWIGEINPSYGRTDYNEKFKNKATLTVAKSSSTAYMQLSSLTSEDSAVYYCARGDYYGSSSFAYW


GQGTLVTVSAAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVL


QSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPP


KPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLH


QDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDI


AVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLS


LSLGKAS





Anti-DCIR_29G10.3D9_K-Var1-V-hIgGK-C (SEQ ID NO: 42):


ATGGATTTTCAAGTGCAGATTTTCAGCTTCCTGCTAATGAGTGCCTCAGTCATAATGTCCAGGGG


ACAAATTGTTCTCACCCAGTCTCCAGCACTCATGTCTGCATCTCCAGGGGAGAAGGTCACCATG


ACCTGCAGTGCCAGCTCAAATATAAGTTACATGTACTGGTACCAGCAGAAGCCAAGATCCTCCC


CCAAACCCTGGATTTATCTCACATCCAACCTGGCTTCTGGAGTCCCTGCTCGCTTCAGTGGCAGT


GGGTCTGGGACCTCTTACTCTCTCACAACCAGCAGCATGGAGGCTGAAGATGCTGCCACTTATT


GCTGCCAGCAGTGGAGTAGTAACCCACCCACGTTCGGTGCTGGGACCAAGCTCGAGATCAAAC


GAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACT


GCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGG


ATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCA


CCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATG


CCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGT


GTTAG





Anti-DCIR_29G10.3D9_K-Var1-V-hIgGK-C (SEQ ID NO: 107):


MDFQVQIFSFLLMSASVIMSRGQIVLTQSPALMSASPGEKVTMTCSASSNISYMYWYQQKPRSSPKP


WIYLTSNLASGVPARFSGSGSGTSYSLTTSSMEAEDAATYCCQQWSSNPPTFGAGTKLEIKRTVAAP


SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLT


LSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





Anti-DCIR_29G10.3D9_K-Var2-V-hIgGK-C (SEQ ID NO: 43):


ATGGATTTTCGAGTGCAGATTTTCAGCTTCCTGCTAATGAGTGCCTCAGTCATAATGTCCAGGGG


ACAAATTGTTCTCACCCAGTCTCCAGCACTCATGTCTGCATCTCCAGGGGAGAAGGTCACCATG


ACCTGCAGTGCCAGCTCAAATATAAGTTACATGTACTGGTACCAGCAGAAGCCAAGATCCTCCC


CCAAACCCTGGATTTATCTCACATCCAACCTGGCTTCTGGAGTCCCTGCTCGCTTCAGTGGCAGT


GGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGCATGGAGGCTGAAGATGCTGCCACTTATT


ACTGCCAGCAGTGGAGTAGTAACCCACCCACGTTCGGTGCTGGGACCAAGCTCGAGATCAAAC


GAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACT


GCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGG


ATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCA


CCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATG


CCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGT


GTTAG





Anti-DCIR_29G10.3D9_K-Var2-V-hIgGK-C (SEQ ID NO: 108):


MDFRVQIFSFLLMSASVIMSRGQIVLTQSPALMSASPGEKVTMTCSASSNISYMYWYQQKPRSSPKP


WIYLTSNLASGVPARFSGSGSGTSYSLTISSMEAEDAATYYCQQWSSNPPTFGAGTKLEIKRTVAAPS


VFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTL


SKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





Anti-DCIR_2C9K-V-hIgGK-C (SEQ ID NO: 44):


ATGGAGACAGACACACTCCTGCTATGGGTGCTGCTGCTCTGGGTTCCAGGTTCCACAGGTGACA


TTGTGCTGATCCAATCTCCAGCTTCTTTGGCTGTGTCTCTAGGGCAGAGGGCCACCATATCCTGC


AGAGCCAGTGAAAGTGTTGATAGTTATGTCAATAGTTTTATGCACTGGTACCAGCAGAAACCAG


GACAGCCACCCAAACTCCTCATCTATCGTGTATCCAACCTAGAATCTGGGATCCCTGCCAGGTT


CAGTGGCAGTGGGTCTAGGACAGACTTCACCCTCACCATTAATCCTGTGGAGGCTGATGATGTT


GCAACCTATTACTGTCAGCAAAGTAATGAGGATCCATTCACGTTCGGCTCGGGGACAAAGCTCG


AGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAA


ATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAG


TGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGC


AAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACAC


AAAGTCTATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACA


GGGGAGAGTGTTAG





Anti-DCIR_2C9K-V-hIgGK-C (SEQ ID NO: 109):


METDTLLLWVLLLWVPGSTGDIVLIQSPASLAVSLGQRATISCRASESVDSYVNSFMHWYQQKPGQ


PPKLLIYRVSNLESGIPARFSGSGSRTDFTLTINPVEADDVATYYCQQSNEDPFTFGSGTKLEIKRTVA


APSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSST


LTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC.





Anti-DCIR_31A6.1F5_H-var2-V-hIgG4H-C (SEQ ID NO: 45):


ATGGAATGTAACTGGATACTTCCTTTTATTCTGTCGGTAATTTCAGGGGTCTACTCAGAGGTTCA


GCTCCAGCAGTCTGGGACTGTGCTGGCAAGGCCTGGGGCTTCCGTGAATATGTCCTGTAAGGCT


GCTGGCTACAGCTTTACCAGTTACTGGGTGTACTGGGTCAAACAGAGGCCTGGACAGGGTCTGG


AATGGATTGGTGCTATTTACCCTAAAAATAGTAGAACTAGCTACAACCAGAAGTTCCAGGACAA


GGCCACACTGACTGCAGTCACATCCGCCAGCACTGCCTACATGGAGCTCAGCAGCCTGACAAAT


GAGGACTCTGCGGTCTATTACTGTACAAGACCTCACTATGATTCGTTTGGTTACTGGGGCCAAG


GGACTCTGGTCACTGTCTCTGCAGCCAAAACAAAGGGCCCATCCGTCTTCCCCCTGGCGCCCTG


CTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAA


CCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCC


TACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCAC


GAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGA


GTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCATCAGTC


TTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGCG


TGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTGG


AGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTCA


GCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCCA


ACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAGC


CACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCT


GCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGG


AGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAG


GCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATGA


GGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTGA





Anti-DCIR_31A6.1F5_H-var2-V-hIgG4H-C (SEQ ID NO: 110):


MECNWILPFILSVISGVYSEVQLQQSGTVLARPGASVNMSCKAAGYSFTSYWVYWVKQRPGQGLE


WIGAIYPKNSRTSYNQKFQDKATLTAVTSASTAYMELSSLTNEDSAVYYCTRPHYDSFGYWGQGTL


VTVSAAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL


YSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDT


LMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLN


GKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWE


SNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS





Anti-DCIR_31A6.1F5_K-var2-V-hIgGK-C (SEQ ID NO: 46):


ATGGAGACAGACACACTCCTGCTATGGGTGCTGCTGCTCTGGGTTCCAGGTTCCACAGGTGACA


TTGTGCTGACCCAATCTCCAGCTTCTTTGGCTGTGTCTCTAGGGCAGAGGGCCACCATATCCTGC


AGAGCCAGTGAAAGTGTAGATAGTTATGGCATTAGTTTTATGCACTGGTACCAGCAGAAACCAG


GACAGCCACCCAAACTCCTCATCTATCGTGCATCCAACCAAGAATCTGGGATCCCTGCCAGGTT


CAGTGGCAGTGGGTCTAGGACAGACTTCACCCTCACCATTAATCCTGTGGAGGCTGATGATGTT


GCAACCTATTACTGTCAGCAAAGTAATGAGGATCCGCTCACGTTCGGTGCTGGGACCAAGCTCG


AGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAA


ATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAG


TGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGC


AAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACAC


AAAGTCTATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACA


GGGGAGAGTGTTAG





Anti-DCIR_31A6.1F5_K-var2-V-hIgGK-C (SEQ ID NO: 111):


METDTLLLWVLLLWVPGSTGDIVLTQSPASLAVSLGQRATISCRASESVDSYGISFMHWYQQKPGQ


PPKLLIYRASNQESGIPARFSGSGSRTDFTLTINPVEADDVATYYCQQSNEDPLTFGAGTKLEIKRTVA


APSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSST


LTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





Anti-DCIR_3C2.2D9_H-LV-hIgG4H-C (SEQ ID NO: 47):


ATGAACAGGCTTACTTCCTCATTGCTGCTGCTGATTGTCCCTGCATATGTCCTGTCCCAGGTTAC


TCTGAAAGAGTCTGGCCCTGGGATATTGCAGCCCTCCCAGACCCTCAGTCTGACTTGTTCTTTCT


CTGGGTTTTCACTGAGCACTTCTGGTATGGGTGTGAGCTGGATTCGTCAGCCTTCAGGAAAGGG


TCTGGAGTGGCTGGCACACATTTACTGGGATGATGACAAGCGCTATAATCCATCCCTGAAGAGC


CGGCTCACAATCTTTAAGGATCCCTCCAGCAACCAGGTATTCCTCAGGATCACCAGTGTGGACA


CTGCAGATACTGCCACATACTACTGTGCTCGAAACTCCCATTACTACGGTAGTACTTACGGGGG


ATACTTCGATGTCTGGGGCGCAGGGACCACGGTCACCGTCTCCTCAGCCAAAACAAAGGGCCC


ATCCGTCTTCCCCCTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGC


CTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCG


GCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGAC


CGTGCCCTCCAGCAGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAA


CACCAAGGTGGACAAGAGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCT


GAGTTCGAAGGGGGACCATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCT


CCCGGACCCCTGAGGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGT


TCAACTGGTACGTGGATGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGT


TCAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAA


GGAGTACAAGTGCAAGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAA


AGCCAAAGGGCAGCCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGAC


CAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAG


TGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGAC


GGCTCCTTCTTCCTCTACAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCT


TCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTC


TCTGGGTAAAGCTAGCTGA





Anti-DCIR_3C2.2D9_H-LV-hIgG4H-C (SEQ ID NO: 112):


NRLTSSLLLLIVPAYVLSQQVTLKESGPGILQPSQTLSLTCSFSGFSLSTSGMGVSWIRQPSGKGLEWL


AHIYWDDDKRYNPSLKSRLTIFKDPSSNQVFLRITSVDTADTATYYCARNSHYYGSTYGGYFDVWG


AGTTVTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQ


SSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPK


PKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQ


DWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIA


VEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLS


LGKAS.





Anti-DCIR_3C2.2D9_K-LV-hIgGK-C (SEQ ID NO: 48):


ATGGAGACAGACACACTCCTGCTATGGGTGCTGCTGCTCGGGGTTCCAGGTTCCACAGGTAACA


TTGTGCTGACCCAGTCTCCAACTTCTTTCACTGTGTCTCTTGGGCAGAGGGCCACCATATCCTGC


AGAGCCAGTGAAAGTGTTCATAGTTATGGCAATAGTTTTATGCACTGGTACCAGCAGAAACCAG


GGCAGCCACCCAAACTCCTCATCTATCTTGCATCCAACGTAGAATCTGGGGTCCCTGCCAGGTT


CAGTGGTAGTGGGTCCAGGACAGACTTCACCCTCACCATTGATCCTGTGGAGGCTGATGATGCT


GCAACCTATTACTGTCAGCAAAATAGTGAGGATCCGTGGACGTTCGGTGGAGGCACCAAGCTC


GAGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGA


AATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACA


GTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAG


CAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACA


CAAAGTCTATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAAC


AGGGGAGAGTGTTAG





Anti-DCIR_3C2.2D9_K-LV-hIgGK-C (SEQ ID NO: 113):


METDTLLLWVLLLGVPGSTGNIVLTQSPTSFTVSLGQRATISCRASESVHSYGNSFMHWYQQKPGQP


PKLLIYLASNVESGVPARFSGSGSRTDFTLTIDPVEADDAATYYCQQNSEDPWTFGGGTKLEIKRTV


AAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSS


TLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





Anti-DCIR_6C8.1G9_H-V-hIgG4H-C (SEQ ID NO: 49):


ATGGAATGGACCTGGGTCTTTCTCTTCCTCCTGTCAGTAACTGCAGGTGTCCACTCCCAGGTTCA


GCTGCAGCAGTCTGGAACTGAGCTGATGAAGCCTGGGGCCTCAGTGAAGATATCCTGCAAGGC


TACTGGCTACACATTCAGTACCTACTGGATAGAGTGGGTAAAGCAGAGGCCTGGACATGGCCTT


GAGTGGATTGGAGAGATTTTACCTGGAAGTGGTAGGACTAACGACAATGAGAAGTTCAAGGGC


AAGGCCACAATCACTGCAGATACATCCTCCAAGAAAGCCTACATGCAACTCAGCAGCCTGACA


TCTGAGGACTCTGCCGTCTATTACTGTGCAAGAAGGGGTGGTTACTCCTTTGCTTTCTGGGGCCA


AGGGACTCTGGTCTCTGTCTCTGCAGCCAAAACAAAGGGCCCATCCGTCTTCCCCCTGGCGCCC


TGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCG


AACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGT


CCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGC


ACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTT


GAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCATCAG


TCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGC


GTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTG


GAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTC


AGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCC


AACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAG


CCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACC


TGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCG


GAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCA


GGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATG


AGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTGA





Anti-DCIR_6C8.1G9_H-V-hIgG4H-C (SEQ ID NO: 114):


MEWTWVFLFLLSVTAGVHSQVQLQQSGTELMKPGASVKISCKATGYTFSTYWIEWVKQRPGHGLE


WIGEILPGSGRTNDNEKFKGKATITADTSSKKAYMQLSSLTSEDSAVYYCARRGGYSFAFWGQGTL


VSVSAAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL


YSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDT


LMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLN


GKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWE


SNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS





Anti-DCIR_6C8.1G9_K-V-hIgGK-C (SEQ ID NO: 50):


ATGACCATGTTCTCACTAGCTCTTCTCCTCAGTCTTCTTCTCCTCTGTGTCTCTGATTCTAGGGCA


GAAACAACTGTGACCCAGTCTCCAGCATCCCTGTCCATGGCTATAGGAGAAAAAGTCACCATCA


GATGCGTAACCAGCACTGATATTGATGATGATGTGAACTGGTACCAGCAGAAGCCAGGGGAAC


CTCCTAAGCTCCTTATTTCAGAAGGCAATACTCTTCGTGCTGGAGTCCCATCCCGATTCTCCAGC


AGTGGCTATGGTACAGATTTTGTTTTTACAATTGAGAACATGCTCTCAGAAGATGTTGCAGATT


ACTACTGTTTGCAAAGTGGTAACTTGCCGTACACGTTCGGAGGGGGGACCAAGCTCGAGATCAA


ACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGA


ACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGG


TGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACA


GCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCT


ATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAG


AGTGTTAG





Anti-DCIR_6C8.1G9_K-V-hIgGK-C (SEQ ID NO: 115):


MTMFSLALLLSLLLLCVSDSRAETTVTQSPASLSMAIGEKVTIRCVTSTDIDDDVNWYQQKPGEPPK


LLISEGNTLRAGVPSRFSSSGYGTDFVFTIENMLSEDVADYYCLQSGNLPYTFGGGTKLEIKRTVAAP


SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLT


LSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





Anti-DCIR_9E8.1E3_H-V-hIgG4H-C (SEQ ID NO: 51):


ATGAACAGGCTTACTTCCTCATTGCTGCTGCTGATTGTCCCTGCATATGTCCTGTCCCAGGTTAC


TCTGAAAGAGTCTGGCCCTGGGATATTGCAGCCCTCCCAGACCCTCAGTCTGACTTGTTCTTTCT


CTGGGTTTTCACTGAGCACTTCTGGTATGGGTCTGAGCTGGATTCGTCAGCCTTCAGGAAAGGG


TCTGGAGTGGCTGGCACACATTTACTGGGATGATGACAAGCGCTATAACCCATCCCTGAAGAGC


CGGCTCACAATCTCCAAGGATACCTCCAGCAACCAGGTTTTCCTCAAGATCACCATTGTGGACA


CTGCAGATGCTGCCACATACTACTGTGCTCGAAGCTCCCATTACTACGGTTATGGCTACGGGGG


ATACTTCGATGTCTGGGGCGCAGGGACCACGGTCACCGTCTCCTCAGCCAAAACGAAGGGCCC


ATCCGTCTTCCCCCTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGC


CTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCG


GCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGAC


CGTGCCCTCCAGCAGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAA


CACCAAGGTGGACAAGAGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCT


GAGTTCGAAGGGGGACCATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCT


CCCGGACCCCTGAGGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGT


TCAACTGGTACGTGGATGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGT


TCAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAA


GGAGTACAAGTGCAAGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAA


AGCCAAAGGGCAGCCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGAC


CAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAG


TGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGAC


GGCTCCTTCTTCCTCTACAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCT


TCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTC


TCTGGGTAAAGCTAGCTGA





Anti-DCIR_9E8.1E3_H-V-hIgG4H-C (SEQ ID NO: 116):


MNRLTSSLLLLIVPAYVLSQVTLKESGPGILQPSQTLSLTCSFSGFSLSTSGMGLSWIRQPSGKGLEWL


AHIYWDDDKRYNPSLKSRLTISKDTSSNQVFLKITIVDTADAATYYCARSSHYYGYGYGGYFDVWG


AGTTVTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQ


SSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPK


PKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQ


DWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIA


VEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLS


LGKAS





Anti-DCIR_9E8.1E3_K-LV-hIgGK-C (SEQ ID NO: 52):


ATGGAGACAGACACACTCCTGCTATGGGTGCTGCTGCTCTGGGTTCCAGGTTCCACAGGTAACA


TTGTGCTGACCCAATCTCCAGCTTCTTTGGCTGTGTCTCTAGGGCAGAGGGCCACCATATCCTGC


AGAGCCAGTGAAAGTATTCATAGTTATGGCAATAGTTTTCTGCACTGGTACCAGCAGAAACCAG


GACAGCCACCCAAACTCCTCATCTATCTTGCATCCAACCTAGAATCTGGGGTCCCTGCCAGGTT


CAGCGGCAGTGGGTCTAGGACAGACTTCACCCTCACCATTGATCCTGTGGAGGCTGATGATGCT


GCAACCTATTACTGTCAGCAAAATAATGAGGATCCGTGGACGTTCGGTGGAGGCACCAAGCTC


GAGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGA


AATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACA


GTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAG


CAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACA


CAAAGTCTATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAAC


AGGGGAGAGTGTTAGGCGGCCGCACTAGCGCGGGCCGCATTCGAAGAGCTCGGTACCCGGGGA


TCCTCTAGAGTCGACCTGCAGGCATGCAAGCTGGCCGCGACTCTAGATCATAATCAGC





Anti-DCIR_9E8.1E3_K-LV-hIgGK-C (SEQ ID NO: 117):


METDTLLLWVLLLWVPGSTGNIVLTQSPASLAVSLGQRATISCRASESIHSYGNSFLHWYQQKPGQP


PKLLIYLASNLESGVPARFSGSGSRTDFTLTIDPVEADDAATYYCQQNNEDPWTFGGGTKLEIKRTV


AAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSS


TLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





Anti-DCIR2C9H-LV-hIgG4H-V-hIgG4H-C (SEQ ID NO: 53):


ATGAAATGCAGCTGGGTCATCTTCTTCCTGATGGCAGTGGTTACAGGGGTCAATTCAGAGGTTC


AGCTGCAGCAGTCTGGGGCTGAGCTTGTGAGGCCAGGGGCCTTAGTCAAGTTGTCCTGCAAAGC


TTCTGGCTTCAACATTAATGACTACTATATCCACTGGGTGAAGCAGCGGCCTGAACAGGGCCTG


GAGCGGATTGGATGGATTGATCCTGACAATGGTAATACTATATATGACCCGAAGTTCCAGGGCA


AGGCCAGTATAACAGCAGACACATCCCCCAACACAGCCTACCTGCAGCTCAGCAGCCTGACAT


CTGAGGACACTGCCGTCTATTACTGTGCTAGAACCCGATCTCCTATGGTTACGACGGGGTTTGTT


TACTGGGGCCAAGGGACTGTGGTCACTGTCTCTGCAGCCAAAACGAAGGGCCCATCCGTCTTCC


CCCTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGA


CTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACC


TTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAG


CAGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGA


CAAGAGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGG


GGACCATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTG


AGGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACG


TGGATGGCGTGGAGGTGCATAATGCCAAGACRAAGCCGCGGGAGGAGCAGTTCAACAGCACGT


ACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGT


GCAAGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGC


AGCCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGG


TCAGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAA


TGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTC


CTCTACAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCC


GTGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAT


GA





Anti-DCIR2C9H-LV-hIgG4H-V-hIgG4H-C (SEQ ID NO: 118):


MKCSWVIFFLMAVVTGVNSEVQLQQSGAELVRPGALVKLSCKASGFNINDYYIHWVKQRPEQGLE


RIGWIDPDNGNTIYDPKFQGKASITADTSPNTAYLQLSSLTSEDTAVYYCARTRSPMVTTGFVYWGQ


GTVVTVSAAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQS


SGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKP


KDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKXKPREEQFNSTYRVVSVLTVLHQD


WLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAV


EWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSL


GK





Anti-DC-SIGNL16E3H (SEQ ID NO: 54):


ATGGAAAGGCACTGGATCTTTCTCTTCCTGTTTTCAGTAACTGCAGGTGTCCACTCCCAGGTCCA


GCTTCAGCAGTCTGGGGCTGAGCTGGCAAAACCTGGGGCCTCAGTGAAGATGTCCTGCAAGGCT


TCTGGCTACACCTTTACTACCTACTGGATGCACTGGGTAAAACAGAGGCCTGGACAGGGTCTGG


AATGGATTGGATACATTAATCCTATCACTGGTTATACTGAGTACAATCAGAAGTTCAAGGACAA


GGCCACCTTGACTGCAGACAAATCCTCCAGCACAGCCTACATGCAACTGAGCAGCCTGACATCT


GAGGACTCTGCAGTCTATTACTGTGCAAGAGAGGGTTTAAGTGCTATGGACTATTGGGGTCAGG


GAACCTCAGTCACCGTCACCTCAGCCAAAACAACAGCCCCATCGGTCTATCCACTGGCCCCTGT


GTGTGGAGATACAACTGGCTCCTCGGTAACTCTAGGATGCCTGGTCAAGGGTTATTTCCCTGAG


CCAGTGACCTTGACCTGGAACTCTGGATCCCTGTCCAGTGGTGTGCACACCTTCCCAGCTGTCCT


GCAGTCTGACCTCTACACCCTCAGCAGCTCAGTGACTGTAACCTCGAGCACCTGGCCCAGCCAG


ACCGTCACCTGCAGCGTTGCTCACCCAGCCAGCAGCACCACGGTGGACAAAAAACTTGAGCCC


AGCGGGCCCATTTCAACAATCAACCCCTGTCCTCCATGCAAGGAGTGTCACAAATGCCCAGCTC


CTAACCTCGAGGGTGGACCATCCGTCTTCATCTTCCCTCCAAATATCAAGGATGTACTCATGATC


TCCCTGACACCCAAGGTCACGTGTGTGGTGGTGGATGTGAGCGAGGATGACCCAGACGTCCAG


ATCAGCTGGTTTGTGAACAACGTGGAAGTACACACAGCTCAGACACAAACCCATAGAGAGGAT


TACAACAGTACTATCCGGGTGGTCAGCACCCTCCCCATCCAGCACCAGGACTGGATGAGTGGCA


AGGAGTTCAAATGCAAGGTCAACAACAAAGACCTCCCATCACCCATCGAGAGAACCATCTCAA


AAATTAAAGGGCTAGTCAGAGCTCCACAAGTATACATCTTGCCGCCACCAGCAGAGCAGTTGTC


CAGGAAAGATGTCAGTCTCACTTGCCTGGTCGTGGGCTTCAACCCTGGAGACATCAGTGTGGAG


TGGACCAGCAATGGGCATACAGAGGAGAACTACAAGGACACCGCACCAGTCCTGGACTCTGAC


GGTTCTTACTTCATATATAGCAAGCTCAATATGAAAACAAGCAAGTGGGAGAAAACAGATTCCT


TCTCATGCAACGTGAGACACGAGGGTCTGAAAAATTACTACCTGAAGAAGACCATCTCCCGGTC


TCCGGGTAAAGCTAGCTGA





Anti-DC-SIGNL16E3H (SEQ ID NO: 119):


MERHWIFLFLFSVTAGVHSQVQLQQSGAELAKPGASVKMSCKASGYTFTTYWMHWVKQRPGQGL


EWIGYINPITGYTEYNQKFKDKATLTADKSSSTAYMQLSSLTSEDSAVYYCAREGLSAMDYWGQGT


SVTVTSAKTTAPSVYPLAPVCGDTTGSSVTLGCLVKGYFPEPVTLTWNSGSLSSGVHTFPAVLQSDL


YTLSSSVTVTSSTWPSQTVTCSVAHPASSTTVDKKLEPSGPISTINPCPPCKECHKCPAPNLEGGPSVFI


FPPNIKDVLMISLTPKVTCVVVDVSEDDPDVQISWFVNNVEVHTAQTQTHREDYNSTIRVVSTLPIQ


HQDWMSGKEFKCKVNNKDLPSPIERTISKIKGLVRAPQVYILPPPAEQLSRKDVSLTCLVVGFNPGDI


SVEWTSNGHTEENYKDTAPVLDSDGSYFIYSKLNMKTSKWEKTDSFSCNVRHEGLKNYYLKKTISR


SPGKAS





Anti-DC-SIGNL16E3K (SEQ ID NO: 55):


ATGGGCATCAAGATGGAGTCACGGATTCAGGCATTTGTATTCGTGTTTCTCTGGTTGTCTGGTGT


TGGCGGAGACATTGTGATGACCCAGTCTCACAAATTCATGTCCACATCAGTAGGAGACAGGGTC


AGCGTCACCTGCAAGGCCAGTCAGGATGTGACTTCTGCTGTAGCCTGGTATCAACAAAAACCAG


GGCAATCTCCTAAACTACTGATTTACTGGGCATCCACCCGGCACACTGGAGTCCCTGATCGCTT


CACAGGCAGTGGATCTGGGACAGATTATACTCTCACCATCAGCAGTGGGCAGGCTGAAGACCT


GGCACTTTATTACTGTCACCAATATTATAGCGCTCCTCGGACGTTCGGTGGAGGCACCAAGCTG


GAAGTCAAACGGGCTGATGCTGCACCAACTGTATCCATCTTCCCACCATCCAGTGAGCAGTTAA


CATCTGGAGGTGCCTCAGTCGTGTGCTTCTTGAACAACTTCTACCCCAAAGACATCAATGTCAA


GTGGAAGATTGATGGCAGTGAACGACAAAATGGCGTCCTGAACAGTTGGACTGATCAGGACAG


CAAAGACAGCACCTACAGCATGAGCAGCACCCTCACGTTGACCAAGGACGAGTATGAACGACA


TAACAGCTATACCTGTGAGGCCACTCACAAGACATCAACTTCACCCATCGTCAAGAGCTTCAAT


AGGAATGAGTGTTAG





Anti-DC-SIGNL16E3K (SEQ ID NO: 120):


MESRIQAFVFVFLWLSGVGGDIVMTQSHKFMSTSVGDRVSVTCKASQDVTSAVAWYQQKPGQSPK


LLIYWASTRHTGVPDRFTGSGSGTDYTLTISSGQAEDLALYYCHQYYSAPRTFGGGTKLEVKRADA


APTVSIFPPSSEQLTSGGASVVCFLNNFYPKDINVKWKIDGSERQNGVLNSWTDQDSKDSTYSMSST


LTLTKDEYERHNSYTCEATHKTSTSPIVKSFNRNEC





Anti-DC-SIGNL16E7H-LV-hIgG4H-C (SEQ ID NO: 56):


ATGGAAAGGCACTGGATCTTTCTCTTCCTGTTTTCAGTAACTGCAGGTGTCCACTCCCAGGTCCA


GCTTCAGCAGTCTGGGGCTGAGCTGGCAAAACCTGGGGCCTCAGTGAAGATGTCCTGCAAGGCT


TCTGGCTACACCTTTACTACCTACTGGATGCACTGGGTAAAACAGAGGCCTGGACAGGGTCTGG


AATGGATTGGATACATTAATCCTATCACTGGTTATACTGAGTACAATCAGAAGTTCAAGGACAA


GGCCACCTTGACTGCAGACAAATCCTCCAGCACAGCCTACATGCAACTGAGCAGCCTGACATCT


GAGGACTCTGCAGTCTATTACTGTGCAAGAGAGGGTTTAAGTGCTATGGACTATTGGGGTCAGG


GAACCTCAGTCACCGTCACCTCAGCCAAAACAACGGGCCCATCCGTCTTCCCCCTGGCGCCCTG


CTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAA


CCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCC


TACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCAC


GAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGA


GTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCATCAGTC


TTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGCG


TGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTGG


AGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTCA


GCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCCA


ACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAGC


CACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCT


GCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGG


AGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAG


GCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATGA


GGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTGA





Anti-DC-SIGNL16E7H-LV-hIgG4H-C (SEQ ID NO: 121):


MERHWIFLFLFSVTAGVHSQVQLQQSGAELAKPGASVKMSCKASGYTFTTYWMHWVKQRPGQGL


EWIGYINPITGYTEYNQKFKDKATLTADKSSSTAYMQLSSLTSEDSAVYYCAREGLSAMDYWGQGT


SVTVTSAKTTGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL


YSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDT


LMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLN


GKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWE


SNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKA


S.





Anti-DC-SIGNL16E7K-LV-hIgGK-C (SEQ ID NO: 57):


ATGGGCATCAAGATGGAGTCACAGATTCAGGCATTTGTATTCGTGTTTCTCTGGTTGTCTGGTGT


TGGCGGAGACATTGTGATGACCCAGTCTCACAAATTCATGTCCACATCAGTAGGAGACAGGGTC


AGCGTCACCTGCAAGGCCAGTCAGGATGTGACTTCTGCTGTAGCCTGGTATCAACAAAAACCAG


GGCAATCTCCTAAACTACTGATTTACTGGGCATCCACCCGGCACACTGGAGTCCCTGATCGCTT


CACAGGCAGTGGATCTGGGACAGATTATACTCTCACCATCAGCAGTGGGCAGGCTGAAGACCT


GGCACTTTATTACTGTCACCAATATTATAGCGCTCCTCGGACGTTCGGTGGAGGCACCAAGCTC


GAGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGA


AATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACA


GTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAG


CAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACA


CAAAGTCTATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAAC


AGGGGAGAGTGTTAG





Anti-DC-SIGNL16E7K-LV-hIgGK-C (SEQ ID NO: 122):


MESQIQAFVFVFLWLSGVGGDIVMTQSHKFMSTSVGDRVSVTCKASQDVTSAVAWYQQKPGQSPK


LLIYWASTRHTGVPDRFTGSGSGTDYTLTISSGQAEDLALYYCHQYYSAPRTFGGGTKLEIKRTVAA


PSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTL


TLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





Anti-Dectin_1_11B6.4_H-V-hIgG4H-C (SEQ ID NO: 58):


ATGGCTGTCCTGGCACTACTCCTCTGCCTGGTGGCTTTCCCAACTTGTACCCTGTCCCAGGTGCA


ACTGAAGGAGTCAGGACCTGGCCTGGTGGCGCCCTCACAGAGCCTGTCCATTACCTGCTCTGTC


TCTGGGTTCTCATTAAGCAACTATGATATAAGCTGGATTCGCCAGCCACCAGGAAAGGGTCTGG


AGTGGCTTGGAGTAATGTGGACTGGTGGAGGCGCAAATTATAATTCAGCTTTCATGTCCAGACT


GAGCATCAACAAGGACAACTCCAAGAGCCAAGTTTTTTTAAAAATGAACAATCTGCAAACTGA


TGACACAGCCATTTATTACTGTGTCAGAGATGCGGTGAGGTACTGGAACTTCGATGTCTGGGGC


GCAGGGACCACGGTCACCGTCTCCTCAGCCAAAACGAAGGGCCCATCCGTCTTCCCCCTGGCGC


CCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCC


CGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCT


GTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGG


GCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAG


TTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCATC


AGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACG


TGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGC


GTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTG


GTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTC


TCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGA


GAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTG


ACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAG


CCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACA


GCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGC


ATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTGA





Anti-Dectin_1_11B6.4_H-V-hIgG4H-C (SEQ ID NO: 123):


MAVLALLLCLVAFPTCTLSQVQLKESGPGLVAPSQSLSITCSVSGFSLSNYDISWIRQPPGKGLEWLG


VMWTGGGANYNSAFMSRLSINKDNSKSQVFLKMNNLQTDDTAIYYCVRDAVRYWNFDVWGAGT


TVTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL


YSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDT


LMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLN


GKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWE


SNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS





Anti-Dectin_1_11B6.4_K-LV-hIgGK-C (SEQ ID NO: 59):


ATGGATTTTCAAGCGCAGATTTTCAGCTTCCTGCTAATCAGTGCTTCAGTCATAATGTCCAGAGG


ACAAATTGTTCTCTCCCAGTCACCAGCAATCCTGTCTGCATCTCCAGGGGAGAAGGTCACAATG


ACTTGCAGGGCCAGCTCAAGTGTAAGTTACATACACTGGTACCAGCAGAAGCCAGGATCCTCCC


CCAAACCCTGGATTTATGCCACATCCCACCTGGCTTCTGGAGTCCCTGCTCGCTTCAGTGGCAGT


GGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGAGTGGAGGCTGAAGATACTGCCACTTATT


ACTGCCAGCAGTGGAGTAGTAACCCATTCACGTTCGGCTCGGGGACAAAGCTCGAGATCAAAC


GAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACT


GCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGG


ATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCA


CCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATG


CCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGT


GTTAG





Anti-Dectin_1_11B6.4_K-LV-hIgGK-C (SEQ ID NO: 124):


MDFQAQIFSFLLISASVIMSRGQIVLSQSPAILSASPGEKVTMTCRASSSVSYIHWYQQKPGSSPKPWI


YATSHLASGVPARFSGSGSGTSYSLTISRVEAEDTATYYCQQWSSNPFTFGSGTKLEIKRTVAAPSVF


IFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSK


ADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





Anti-Dectin_1_15E2.5_H-V-hIgG4H-C (SEQ ID NO: 60):


ATGGAAAGGCACTGGATCTTTCTACTCCTGTTGTCAGTAACTGCAGGTGTCCACTCCCAGGTCC


AGCTGCAGCAGTCTGGGGCTGAACTGGCAAGACCTGGGGCCTCAGTGAAGATGTCCTGCAAGG


CTTCTGGCTACACCTTTACTACCTACACTATGCACTGGGTAAAACAGAGGCCTGGACAGGGTCT


GGAATGGATTGGATACATTAATCCTAGCAGTGGTTATACTAATTACAATCAGAAGTTCAAGGAC


AAGGCCACATTGACTGCAGACAAATCCTCCAGCACAGCCTCCATGCAACTGAGCAGCCTGACAT


CTGAGGACTCTGCAGTCTATTACTGTGCAAGAGAGAGGGCGGTATTAGTCCCCTATGCTATGGA


CTACTGGGGTCAAGGAACCTCAGTCACCGTCTCCTCAGCCAAAACAAAGGGCCCATCCGTCTTC


CCCCTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGG


ACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACAC


CTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCA


GCAGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGG


ACAAGAGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGG


GGGACCATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCT


GAGGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTAC


GTGGATGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACG


TACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGT


GCAAGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGC


AGCCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGG


TCAGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAA


TGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTC


CTCTACAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCC


GTGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAG


CTAGCTGA





Anti-Dectin_1_15E2.5_H-V-hIgG4H-C (SEQ ID NO: 125):


MERHWIFLLLLSVTAGVHSQVQLQQSGAELARPGASVKMSCKASGYTFTTYTMHWVKQRPGQGL


EWIGYINPSSGYTNYNQKFKDKATLTADKSSSTASMQLSSLTSEDSAVYYCARERAVLVPYAMDY


WGQGTSVTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAV


LQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFP


PKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVL


HQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPS


DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSL


SLSLGKAS





Anti-Dectin_1_15E2.5_K-V-hIgGK-C (SEQ ID NO: 61):


ATGCATTTTCAAGTGCAGATTTTCAGCTTCCTGCTAATCAGTGCCTCAGTCATAATGTCCAGAGG


ACAAATTGTTCTCACCCAGTCTCCAGCAGTCATGTCTGCATCTCCAGGGGAGAAGGTCACCATA


ACCTGCACTGCCAGCTCAAGTTTAAGTTACATGCACTGGTTCCAGCAGAAGCCAGGCACTTCTC


CCAAACTCTGGCTTTATAGCACATCCATCCTGGCTTCTGGAGTCCCTACTCGCTTCAGTGGCAGT


GGATCTGGGACCTCTTACTCTCTCACAATCAGCCGAATGGAGGCTGAAGATGCTGCCACTTATT


ACTGCCAGCAAAGGAGTAGTTCCCCATTCACGTTCGGCTCGGGGACAAAGCTCGAGATCAAAC


GAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACT


GCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGG


ATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCA


CCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATG


CCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGT


GTTAG





Anti-Dectin_1_15E2.5_K-V-hIgGK-C (SEQ ID NO: 126):


MHFQVQIFSFLLISASVIMSRGQIVLTQSPAVMSASPGEKVTITCTASSSLSYMHWFQQKPGTSPKLW


LYSTSILASGVPTRFSGSGSGTSYSLTISRMEAEDAATYYCQQRSSSPFTFGSGTKLEIKRTVAAPSVFI


FPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKA


DYEKHKVYACEVTHQGLSSPVTKSFNRGEC





Anti-Dectin_1_2D8.2D4H-V-hIgG4H-C (SEQ ID NO: 62):


ATGGGATGGACCTGGATCTTTATTTTAATCCTGTCAGTTACTACAGGTGTCCACTCTGAGGTCCA


GCTGCAGCAGTCTGGACCTGAGCTGGAGAAGCCTGGCGCTTCAGTGAAGATATCCTGCAAGGCT


TCTGGTTACTCCTTCACTGGCTACAACATGAACTGGGTGAAACAGAGCAATGGAAAGAGCCTTG


AGTGGATTGGAAATATTGATCCTTACTATGGTGATACTAACTACAACCAGAAGTTCAAGGGCAA


GGCCACATTGACTGTAGACAAATCCTCCAGCACAGCCTACATGCACCTCAAGAGCCTGACATCT


GAGGACTCTGCAGTCTATTACTGTGCAAGACCCTACGGTAGTGAGGCCTACTTTGCTTACTGGG


GCCAAGGGACTCTGGTCACTGTCTCTGCAGCCAAAACGAAGGGCCCATCCGTCTTCCCCCTGGC


GCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTC


CCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGG


CTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTG


GGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGA


GTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCAT


CAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCAC


GTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGG


CGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGT


GGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGT


CTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCG


AGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCT


GACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCA


GCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTAC


AGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATG


CATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCT


GA





Anti-Dectin_1_2D8.2D4H-V-hIgG4H-C (SEQ ID NO: 127):


MGWTWIFILILSVTTGVHSEVQLQQSGPELEKPGASVKISCKASGYSFTGYNMNWVKQSNGKSLEW


IGNIDPYYGDTNYNQKFKGKATLTVDKSSSTAYMHLKSLTSEDSAVYYCARPYGSEAYFAYWGQG


TLVTVSAAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSS


GLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPK


DTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDW


LNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVE


WESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLG


KAS





Anti-Dectin_1_2D8.2D4K-V-hIgGK-C (SEQ ID NO: 63):


ATGGTGTCCACTTCTCAGCTCCTTGGACTTTTGCTTTTCTGGACTTCAGCCTCCAGATGTGACATT


GTGATGACTCAGTCTCCAGCCACCCTGTCTGTGACTCCAGGAGATAGAGTCTCTCTTTCCTGCAG


GGCCAGCCAGAGTATTAGCGACTACTTACACTGGTATCAACAAAAATCACATGAGTCTCCAAGG


CTTCTCATCAAATATGCTGCCCAATCCATCTCTGGGATCCCCTCCAGGTTCAGTGGCAGTGGATC


AGGGTCAGATTTCACTCTCAGTATCAACGGTGTGGAACCTGAAGATGTTGGAGTGTATTACTGT


CAAAATGGTCACAGCTTTCCGTACACGTTCGGAGGGGGGACCAAGCTCGAGATCAAACGAACT


GTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTC


TGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAAC


GCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTAC


AGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATGCCTGC


GAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAG





Anti-Dectin_1_2D8.2D4K-V-hIgGK-C (SEQ ID NO: 128):


DIVMTQSPATLSVTPGDRVSLSCRASQSISDYLHWYQQKSHESPRLLIKYAAQSISGIPSRFSGSGSGS


DFTLSINGVEPEDVGVYYCQNGHSFPYTFGGGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLN


NFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLS


SPVTKSFNRGEC





Anti-Langerin15B10H-LV-hIgG4H-C (SEQ ID NO: 64):


ATGGAATGGAGGATCTTTCTCTTCATCCTGTCAGGAACTGCAGGTGTCCACTCCCAGGTTCAGCT


GCGGCAGTCTGGACCTGAGCTGGTGAAGCCTGGGGCTTCAGTGAAGATGTCCTGCAAGGCTTCT


GGATACACATTTACTGACTATGTTATAAGTTGGGTGAAGCAGAGAACTGGACAGGGCCTTGAGT


GGATTGGAGATATTTATCCTGGAAGTGGTTATTCTTTCTACAATGAGAACTTCAAGGGCAAGGC


CACACTGACTGCAGACAAATCCTCCACCACAGCCTACATGCAGCTCAGCAGCCTGACATCTGAG


GACTCTGCGGTCTATTTCTGTGCAACCTACTATAACTACCCTTTTGCTTACTGGGGCCAAGGGAC


TCTGGTCACTGTCTCTGCAGCCAAAACAACGGGCCCATCCGTCTTCCCCCTGGCGCCCTGCTCCA


GGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGT


GACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAG


TCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACGAAGA


CCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGTCCA


AATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCATCAGTCTTCCT


GTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGCGTGGTG


GTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTGGAGGTG


CATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTCAGCGTC


CTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAA


GGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAGCCACAG


GTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTG


GTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAAC


AACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAGGCTAA


CCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATGAGGCTCT


GCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTGA





Anti-Langerin15B10H-LV-hIgG4H-C (SEQ ID NO: 129):


QVQLRQSGPELVKPGASVKMSCKASGYTFTDYVISWVKQRTGQGLEWIGDIYPGSGYSFYNENFKG


KATLTADKSSTTAYMQLSSLTSEDSAVYFCATYYNYPFAYWGQGTLVTVSAAKTTGPSVFPLAPCS


RSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTC


NVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDP


EVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTI


SKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDG


SFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS.





Anti-Langerin15B10K-LV-hIgGK-C (SEQ ID NO: 65):


ATGAAGTTGCCTGTTAGGCTGTTGGTGCTGATGTTCTGGATTCCTGCTTCCAGCAGTGATGTTGT


GATGACCCAAACTCCACTCTCCCTGCCTGTCCGTCTTGGAGATCAAGCCTCCATCTCTTGCAGAT


CTAGTCAGAGCCTTGTACACAGTAATGGAAACACCTATTTACATTGGTACCTGCAGAAGCCAGG


CCAGTCTCCAAAGCTCCTGATCTACAAAGTTTCCAACCGATTTTCTGGGGTCCCAGACAGGTTC


AGTGGCAGTGGATCAGGGACAAATTTCACACTCAAGATCAGCAGAGTGGAGGCTGAGGATCTG


GGACTTTATTTCTGCTCTCAAAGTACACATGTTCCGTACACGTTCGGAGGGGGGACCAAGCTCG


AGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAA


ATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAG


TGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGC


AAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACAC


AAAGTCTATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACA


GGGGAGAGTGTTAG





Anti-Langerin15B10K-LV-hIgGK-C (SEQ ID NO: 130):


DVVMTQTPLSLPVRLGDQASISCRSSQSLVHSNGNTYLHWYLQKPGQSPKLLIYKVSNRFSGVPDRF


SGSGSGTNFTLKISRVEAEDLGLYFCSQSTHVPYTFGGGTKLEIKRTVAAPSVFIFPPSDEQLKSGTAS


VVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEV


THQGLSSPVTKSFNRGEC





Anti-Langerin2G3H-LV-hIgG4H-C (SEQ ID NO: 66):


ATGACATTGAACATGCTGTTGGGGCTGAGGTGGGTTTTCTTTGTTGTTTTTTATCAAGGTGTGCA


TTGTGAGGTGCAGCTTGTTGAGTCTGGTGGAGGATTGGTGCAGCCTAAAGGGTCATTGAAACTC


TCATGTGCAGCCTCTGGATTAACCTTCAATATCTACGCCATGAACTGGGTCCGCCAGGCTCCAG


GAAAGGGTTTGGAATGGGTTGCTCGCATAAGAAATAAAAGTAATAATTATGCAACATATTATGC


CGATTCAGTGAAAGACAGGTTCACCATCTCCAGAGATGATTCACAAAGCTTGCTCTATCTGCAA


ATGAACAACTTGAAAACTGAGGACACAGCCATGTATTACTGTGTGGGACGGGACTGGTTTGATT


ACTGGGGCCAAGGGACTCTGGTCACTGTCTCTGCAGCCAAAACGAAGGGCCCATCCGTCTTCCC


CCTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGAC


TACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCT


TCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGC


AGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGAC


AAGAGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGG


GACCATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGA


GGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGT


GGATGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTA


CCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGC


AAGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAG


CCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTC


AGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAAT


GGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCC


TCTACAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCG


TGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGC


TAGCTGA





Anti-Langerin2G3H-LV-hIgG4H-C (SEQ ID NO: 131):


MTLNMLLGLRWVFFVVFYQGVHCEVQLVESGGGLVQPKGSLKLSCAASGLTFNIYAMNWVRQAP


GKGLEWVARIRNKSNNYATYYADSVKDRFTISRDDSQSLLYLQMNNLKTEDTAMYYCVGRDWFD


YWGQGTLVTVSAAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFP


AVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFL


FPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTV


LHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPS


DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSL


SLSLGKAS





Anti-Langerin2G3L-LV-hIgGK-C (SEQ ID NO: 67):


ATGGCCTGGATTTCACTTATACTCTCTCTCCTGGCTCTCAGCTCAGGGGCCATTTCCCAGGCTGT


TGTGACTCAGGAATCTGCACTCACCACATCACCTGGTGAAACAGTCACACTCACTTGTCGCTCA


AGTACTGGGGCTGTTACAACTAGTAACTATGCCAACTGGGTCCAAGAAAAACCAGATCATTTAT


TCACTGGTCTAATAGGTGGTACCAACAACCGAGTTTCAGGTGTTCCTGCCAGATTCTCAGGCTC


CCTGATTGGAGACAAGGCTGCCCTCACCATCACAGGGGCACAGACTGAGGATGAGGCAATATA


TTTCTGTGCTCTATGGTACAGCAACCATTGGGTGTTCGGTGGAGGAACCAAACTCGAGATCAAA


CGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAAC


TGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTG


GATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGC


ACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTAT


GCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAG


TGTTAG





Anti-Langerin2G3L-LV-hIgGK-C (SEQ ID NO: 132):


MAWISLILSLLALSSGAISQAVVTQESALTTSPGETVTLTCRSSTGAVTTSNYANWVQEKPDHLFTGL


IGGTNNRVSGVPARFSGSLIGDKAALTITGAQTEDEAIYFCALWYSNHWVFGGGTKLEIKRTVAAPS


VFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTL


SKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





Anti-Lox_1_10F9H-LV-hIgG4H-C (SEQ ID NO: 68):


ATGGAATGGACCTGGGTCTTTCTCTTCCTCCTGTCAGTAACTGCAGGTGTCCACTCCCAGGTTCA


GCTGCAGCAGTCTGGAGCTGAGCTGATGAAGCCTGGGGCCTCAGTGAAGATATCCTGCAAGGC


TACTGGCTACACATTCGGTAGCTACTGGATAGAGTGGGTAAAGCAGAGGCCTGGACATGGCCTT


GAGTGGATTGGAGAGATTTTACCTGGAAGTGGTAATACTAACTACAATGAGAACTTCAAGGGC


AAGGCCACATTCACTGCAGATACATCCTCCAACACAGCCTACATGCAACTCACCAGTCTGACAT


CTGAGGACTCTGCCGTCTATTACTGTGCTAGGGCGGGGATTTATTGGGGCCAAGGGACTCTGGT


CACTGTCTCTGCAGCCAAAACGAAGGGCCCATCCGTCTTCCCCCTGGCGCCCTGCTCCAGGAGC


ACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGG


TGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTC


AGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACGAAGACCTAC


ACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGTCCAAATAT


GGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCATCAGTCTTCCTGTTCC


CCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGCGTGGTGGTGGA


CGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTGGAGGTGCATAA


TGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTCAGCGTCCTCAC


CGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGGCCT


CCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAGCCACAGGTGTA


CACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAA


AGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTA


CAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAGGCTAACCGTG


GACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCAC


AACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTGA





Anti-Lox_1_10F9H-LV-hIgG4H-C (SEQ ID NO: 133):


MEWTWVFLFLLSVTAGVHSQVQLQQSGAELMKPGASVKISCKATGYTFGSYWIEWVKQRPGHGLE


WIGEILPGSGNTNYNENFKGKATFTADTSSNTAYMQLTSLTSEDSAVYYCARAGIYWGQGTLVTVS


AAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSS


VVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMISR


TPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEY


KCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ


PENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS





Anti-Lox_1_10F9K-LV-hIgGK-C (SEQ ID NO: 69):


ATGGAGAAAGACACACTCCTGCTATGGGTCCTGCTTCTCTGGGTTCCAGGTTCCACAGGTGACA


TTGTGCTGACCCAATCTCCAGCTTTTTTGGCTGTGTCTCTAGGGCAGAGGGCCACCATCTCCTGC


AGAGCCAGCGAAAGTGTTGATAATTATGGCATTAGTTTTATGAACTGGTTCCAACAGAAACCAG


GACAGCCACCCAAACTCCTCATCTATGTTGCATCCAAGCAAGGATCCGGGGTCCCTGCCAGGTT


TAGTGGCAGTGGGTCTGGGACAGACTTCAGCCTCAACATCCATCCTATGGAGGAGGATGATACT


GCAATGTATTTCTGTCAGCAAAGTAAGGAGGTTCCTCGGACGTTCGGTGGAGGCACCAAGCTCG


AGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAA


ATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAG


TGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGC


AAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACAC


AAAGTCTATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACA


GGGGAGAGTGTTAG





Anti-Lox_1_10F9K-LV-hIgGK-C (SEQ ID NO: 134):


MEKDTLLLWVLLLWVPGSTGDIVLTQSPAFLAVSLGQRATISCRASESVDNYGISFMNWFQQKPGQ


PPKLLIYVASKQGSGVPARFSGSGSGTDFSLNIHPMEEDDTAMYFCQQSKEVPRTFGGGTKLEIKRT


VAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLS


STLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





Anti-LOX-111C8H-LV-hIgG4H-C (SEQ ID NO: 70):


ATGGAATGTAACTGGATACTTCCTTTTATTCTGTCGGTAACTTCAGGGGTCTACTCAGAGGTTCA


GCTCCAGCAGTCTGGGACTGTGCTGGCAAGGCCTGGGGCTTCAGTGAAGATGTCCTGCAAGGCT


TCTGGCTACACCTTTACCAGCTACTGGATGCACTGGGTAAAACAGAGGCCTGGACAGGGTCTGG


AATGGATTGGCGCTATTTATCCTGGAAATAGTGATACTACCTACAACCAGAAGTTCAAGGGCAA


GGCCAAACTGACTGCAGTCACATCCACCAGCACTGCCTACATGGAGCTCAGCAGCCTGACAAAT


GAGGACTCTGCGGTCTATTACTGTACACCTACTTACTACTTTGACTACTGGGGCCAAGGCACCTC


TCTCACAGTCTCCTCAGCCAAAACGAAGGGCCCATCCGTCTTCCCCCTGGCGCCCTGCTCCAGG


AGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGA


CGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTC


CTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACGAAGACC


TACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGTCCAAA


TATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCATCAGTCTTCCTGT


TCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGCGTGGTGGT


GGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTGGAGGTGCA


TAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTCAGCGTCCT


CACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGG


CCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAGCCACAGGT


GTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTC


AAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAAC


TACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAGGCTAACCG


TGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGC


ACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTGA





Anti-LOX-111C8H-LV-hIgG4H-C (SEQ ID NO: 135):


MECNWILPFILSVTSGVYSEVQLQQSGTVLARPGASVKMSCKASGYTFTSYWMHWVKQRPGQGLE


WIGAIYPGNSDTTYNQKFKGKAKLTAVTSTSTAYMELSSLTNEDSAVYYCTPTYYFDYWGQGTSLT


VSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSL


SSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMI


SRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGK


EYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESN


GQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS





Anti-LOX-111C8K-LV-hIgGK-C (SEQ ID NO: 71):


ATGAGTCCTGCCCAATTCCTGTTTCTGTTAGTGCTCTGGATTCGGGAAACCAACGGTGATGTTGT


GATGACCCAGACTCCACTCACTTTGTCGGTTACCATTGGACAACCAGCCTCCATCTCTTGCAAGT


CAAGTCAGAGCCTCTTAGATAGTGATGGAAAGACATATTTGAATTGGTTCTTACAGAGGCCAGG


CCAGTCTCCAAAGCGCCTAATCTATCTGGTGTCTAAACTGGACTCTGGAGTCCCTGACAGGTTC


ACTGGCAGTGGATCAGGGACAGATTTCACACTGAAAATCAGCAGAGTGGAGGCTGAGGATTTG


GGAGTTTATTATTGCTGGCAAGGTACACATTTTCCGTGGACGTTCGGTGGAGGCACCAAGCTCG


AGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAA


ATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAG


TGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGC


AAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACAC


AAAGTCTATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACA


GGGGAGAGTGTTAG





Anti-LOX-111C8K-LV-hIgGK-C (SEQ ID NO: 136):


MSPAQFLFLLVLWIRETNGDVVMTQTPLTLSVTIGQPASISCKSSQSLLDSDGKTYLNWFLQRPGQSP


KRLIYLVSKLDSGVPDRFTGSGSGTDFTLKISRVEAEDLGVYYCWQGTHFPWTFGGGTKLEIKRTVA


APSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSST


LTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





Anti-LOX-115C4H-LV-hIgG4H-C (SEQ ID NO: 72):


ATGGGAGGGATCTGGATCTTTCTCTTCCTCCTGTCAGGAACTGCAGGTGCCCACTCTGAGATCC


AGCTGCAGCAGACTGGACCTGAGCTGGTGAAGCCTGGGGCTTCAGTGAAGATATCCTGCAAGG


CTTCTGGTTATCCATTCACTGACTACATCATGGTCTGGGTGAAGCAGAGCCATGGAAAGAGCCT


TGAGTGGATTGGAAATATTAGTCCTTACTATGGTACTACTAACTACAATCTGAAGTTCAAGGGC


AAGGCCACATTGACTGTAGACAAATCTTCCAGCACAGCCTACATGCAGCTCAACAGTCTGACAT


CTGAGGACTCTGCAGTCTATTACTGTGCAAGATCCCCTAACTGGGACGGGGCCTGGTTTGCTCA


CTGGGGCCAAGGGGCTCTGGTCACTGTCTCTGCAGCCAAAACAAAGGGCCCATCCGTCTTCCCC


CTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACT


ACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTT


CCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGC


AGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGAC


AAGAGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGG


GACCATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGA


GGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGT


GGATGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTA


CCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGC


AAGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAG


CCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTC


AGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAAT


GGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCC


TCTACAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCG


TGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGC


TAGCTGATTAATTAA





Anti-LOX-115C4H-LV-hIgG4H-C (SEQ ID NO: 137):


MGGIWIFLFLLSGTAGAHSEIQLQQTGPELVKPGASVKISCKASGYPFTDYIMVWVKQSHGKSLEWI


GNISPYYGTTNYNLKFKGKATLTVDKSSSTAYMQLNSLTSEDSAVYYCARSPNWDGAWFAHWGQ


GALVTVSAAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQS


SGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKP


KDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQD


WLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAV


EWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSL


GKAS





Anti-LOX-115C4K-LV-hIgGK-C (SEQ ID NO: 73):


ATGGAGACAGACACAATCCTGCTATGGGTGCTGCTGCTCTGGGTTCCAGGCTCCACTGGTGACA


TTGTGCTGACCCAATCTCCAGCTTCTTTGGCTGTGTCTCTAGGGCAGAGGGCCACCATCTCCTGC


AAGGCCAGCCAAAGTGTTGATTATGATGGTGATAGTTATATGAACTGGTTCCAACAGAAACCAG


GACAGCCACCCAAACTCCTCATCTATGCTGCATCCAATCTAGAATCTGGGATCCCAGCCAGGTT


TAGTGGCAGTGGGTCTGGGACAGACTTCACCCTCAACATCCATCCTGTGGAGGAGGAGGATGCT


GCAACCTATTACTGTCAGCAAAGTAATGAGGATCCATTCACGTTCGGCTCGGGGACAAAGCTCG


AGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAA


ATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAG


TGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGC


AAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACAC


AAAGTCTATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACA


GGGGAGAGTGTTAG





Anti-LOX-115C4K-LV-hIgGK-C (SEQ ID NO: 138):


METDTILLWVLLLWVPGSTGDIVLTQSPASLAVSLGQRATISCKASQSVDYDGDSYMNWFQQKPGQ


PPKLLIYAASNLESGIPARFSGSGSGTDFTLNIHPVEEEDAATYYCQQSNEDPFTFGSGTKLEIKRTVA


APSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSST


LTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





Anti-Marco_10B7.3G4H-LV-hIgG4H-C (SEQ ID NO: 74):


ATGGCTGTCCTGGGGCTGCTTCTCTGCCTGGTGACGTTCCCAAGCTGTGTCCTGTCCCAGGTGCA


GCTGAAGGAGTCAGGACCTGGCCTGGTGGCACCCTCACAGAGCCTGTCCATCACATGCACTGTC


TCTGGGTTCTCATTATCCAGATATAGTGTATTTTGGGTTCGCCAGCCTCCAGGAAAGGGTCTGGA


GTGGCTGGGATTGATATGGGGTGGTGGAAGCACAGACTATAATTCAGCTCTCAAATCCAGACTG


AGCATCAGCAAGGACAACTCCAAGAGCCAAGTTTTCTTAAAAATGAACAGTCTGCAAACTGAT


GACACAGCCATGTACTACTGTGCCAGAATCTACTTTGATTACGACGGGGCTATGGACTACTGGG


GTCAAGGAACCTCAGTCACCGTCTCCTCAGCCAAAACAACGGGCCCATCCGTCTTCCCCCTGGC


GCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTC


CCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGG


CTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTG


GGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGA


GTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCAT


CAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCAC


GTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGG


CGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGT


GGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGT


CTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCG


AGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCT


GACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCA


GCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTAC


AGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATG


CATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTG





Anti-Marco_10B7.3G4H-LV-hIgG4H-C (SEQ ID NO: 139):


MAVLGLLLCLVTFPSCVLSQVQLKESGPGLVAPSQSLSITCTVSGFSLSRYSVFWVRQPPGKGLEWL


GLIWGGGSTDYNSALKSRLSISKDNSKSQVFLKMNSLQTDDTAMYYCARIYFDYDGAMDYWGQGT


SVTVSSAKTTGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL


YSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDT


LMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLN


GKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWE


SNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS





AntiMarco_10B7.3G4K_H-V-hIgGK-C (SEQ ID NO: 75):


ATGCATCGCACCAGCATGGGCATCAAGATGGAGTCACGGATTCAGGCATTTGTATTCGTGTTTC


TCTGGTTGTCTGGTGTTGGCGGAGACATTGTGATGACCCAGTCTCACAAATTCATGTCCACATCA


GTAGGAGACAGGGTCAGCGTCACCTGCAAGGCCAGTCAGGATGTGACTTCTGCTGTAGCCTGGT


ATCAACAAAAACCAGGGCAATCTCCTAAACTACTGATTTACTGGGCATCCACCCGGCACACTGG


AGTCCCTGATCGCTTCACAGGCAGTGGATCTGGGACAGATTATACTCTCACCATCAGCAGTGGG


CAGGCTGAAGACCTGGCACTTTATTACTGTCACCAATATTATAGCGCTCCTCGGACGTTCGGTG


GAGGCACCAAGCTCGAGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATC


TGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGA


GAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTC


ACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCA


GACTACGAGAAACACAAAGTCTATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTC


ACAAAGAGCTTCAACAGGGGAGAGTGTTAG





AntiMarco_10B7.3G4K_H-V-hIgGK-C (SEQ ID NO: 140):


MHRTSMGIKMESRIQAFVFVFLWLSGVGGDIVMTQSHKFMSTSVGDRVSVTCKASQDVTSAVAWY


QQKPGQSPKLLIYWASTRHTGVPDRFTGSGSGTDYTLTISSGQAEDLALYYCHQYYSAPRTFGGGTK


LEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKD


STYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





Anti-Marco_11A8.3C9_H-V-hIgG4H-C (SEQ ID NO: 76):


ATGGAATGGAACTGGGTCGTTCTCTTCCTCCTGTCATTAACTGCAGGTGTCTATGCCCAGGGTCA


GATGCAGCAGTCTGGAGCTGAGCTGGTGAAGCCTGGGGCTTCAGTGAAGCTGTCCTGCAAGACT


TCTGGCTTCACCTTCAGCAGTAACTATATAAGTTGGTTGAAGCAAAAGCCTGGACAGAGTCTTG


AGTGGATTGCATGGATTTATGCTGGAACTGGTGGTATTACCTATAATCAGAAGTTCAGAGGCAG


GGCCCAACTGACTGTAGACACATCCTCCAGCACAGCCTACATGCAGTTCAGCAGCCTGACAACT


GATGACTCTGCCATCTATTACTGTGCAAGACACGTGAGGGGTTACCATCCTATGGACTACTGGG


GTCAAGGAACCTCAGTCACCGTCTCCTCAGCCAAAACGAAGGGCCCATCCGTCTTCCCCCTGGC


GCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTC


CCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGG


CTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTG


GGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGA


GTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCAT


CAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCAC


GTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGG


CGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGT


GGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGT


CTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCG


AGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCT


GACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCA


GCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTAC


AGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATG


CATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCT


GA





Anti-Marco_11A8.3C9_H-V-hIgG4H-C (SEQ ID NO: 141):


MEWNWVVLFLLSLTAGVYAQGQMQQSGAELVKPGASVKLSCKTSGFTFSSNYISWLKQKPGQSLE


WIAWIYAGTGGITYNQKFRGRAQLTVDTSSSTAYMQFSSLTTDDSAIYYCARHVRGYHPMDYWGQ


GTSVTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSS


GLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPK


DTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDW


LNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVE


WESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLG


KAS





Anti-Marco_11A8.3C9_H-V-hIgGK-C (SEQ ID NO: 77):


ATGGAGTCACAGACTCAGGTCTTTGTATACATGTTGCTGTGGTTGTCTGGTGTTGATGGAGACAT


TGTGATGACCCAGTCTCAAAAATTCATGTCCGCATCAGTAGGGGACAGGGTCAGCGTCACCTGC


AGGGCCAGTCAGAATGTGGTTACTAATGTAGGCTGGTATCAACAGAAACCAGGGCAATCTCCT


AAAGTACTGATTTACTCGGCATCCTTCCGGTACAGTGGAGTCCCTGATCGCTTCACAGGCAGTG


GATCTGGGACAGATTTCACTCTCACCATCACCAATGTGCAGTCTGAAGACTTGGCAGAGTATTT


CTGTCAGCAATATAACAACTATCCGTACACGTTCGGAGGGGGGACCAAGCTCGAGATCAAACG


AACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTG


CCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGA


TAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCAC


CTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATGC


CTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTG


TTAG





Anti-Marco_11A8.3C9_H-V-hIgGK-C (SEQ ID NO: 142):


MESQTQVFVYMLLWLSGVDGDIVMTQSQKFMSASVGDRVSVTCRASQNVVTNVGWYQQKPGQSP


KVLIYSASFRYSGVPDRFTGSGSGTDFTLTITNVQSEDLAEYFCQQYNNYPYTFGGGTKLEIKRTVAA


PSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTL


TLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





Anti-Marco_3H10.1F3_H-V-hIgG4H-C (SEQ ID NO: 78):


ATGGGATGGAGCTATATCATCCTCTTTTTGGTAGCAACAGCTACAGATGTCCACTCCCAGGTCC


AACTGCAGCAGCCTGGGGCTGAACTGGTGAAGCCTGGGGCTTCAGTGAAGCTGTCCTGCAAGG


CTTCTGGCTACACCTTCACCAGCTACTGGATGCACTGGGTGAAGCAGAGGCCTGGAGAAGGCCT


TGAGTGGATTGGAGAGATTAATCCTAGCTACGGTCGTACTGACTACAATGGGAAGTTCAAGAAC


AAGGCCACACTGACTGTAGCCAAATCCTCCAGCACAGCCTACATGCAACTCAGCAGCCTGACAT


CTGAGGACTCTGCGGTCTATTACTGTGCAAGAGGAGATTACTACGGTAGTAGCTCGTTTGCTTA


CTGGGGCCAAGGGACTCTGGTCACTGTCTCTGCAGCCAAAACAAAGGGCCCATCCGTCTTCCCC


CTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACT


ACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTT


CCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGC


AGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGAC


AAGAGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGG


GACCATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGA


GGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGT


GGATGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTA


CCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGC


AAGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAG


CCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTC


AGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAAT


GGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCC


TCTACAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCG


TGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGC


TAGCTGA





Anti-Marco_3H10.1F3_H-V-hIgG4H-C (SEQ ID NO: 143):


MGWSYIILFLVATATDVHSQVQLQQPGAELVKPGASVKLSCKASGYTFTSYWMHWVKQRPGEGLE


WIGEINPSYGRTDYNGKFKNKATLTVAKSSSTAYMQLSSLTSEDSAVYYCARGDYYGSSSFAYWGQ


GTLVTVSAAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQS


SGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKP


KDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQD


WLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAV


EWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSL


GKAS





Anti-Marco_3H10.1F3_K-V-hIgGK-C (SEQ ID NO: 79):


ATGGAGTCACAGACTCAGGTCTTTGTATACATGTTGCTGTGGTTGTCTGGTGTTGATGGAGACAT


TGTGATGACCCAGTCTCAAAAATTCATGTCCACATCATTAGGAGACAGGGTCAGCGTCACCTGC


AAGGCCAGTCAGAATGTGGGTACTAATGTAGCCTGGTATCAACAGAAACCAGGGCACTCTCCT


AAAGCACTGATTTACTCGGCATCCTACCGGTACAGTGGAGTCCCTGATCGCTTCACAGGCAGTG


GATCTGGGACAGATTTCACTCTCACCATCAGCAATGTGCAGTCTGAAGACTTGGCAGAGTTTTT


CTGTCAGCAATATAACAACTATCCGTACACGTTCGGAGGGGGGACCACGCTCGAGATCAAACG


AACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTG


CCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGA


TAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCAC


CTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATGC


CTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTG


TTAG





Anti-Marco_3H10.1F3_K-V-hIgGK-C (SEQ ID NO: 144):


MESQTQVFVYMLLWLSGVDGDIVMTQSQKFMSTSLGDRVSVTCKASQNVGTNVAWYQQKPGHSP


KALIYSASYRYSGVPDRFTGSGSGTDFTLTISNVQSEDLAEFFCQQYNNYPYTFGGGTTLEIKRTVAA


PSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTL


TLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC






Humanized anti-CD40-HCV vaccine is: hAnti-CD40VK2-LV-hIgGK-C×hAnti-CD40VH3-LV-hIgG4H-C-Flex-v1-He1B-f1-ProtB-f2-NS5BPa1m, wherein the portion of He1B are underlined, the portions of ProtB are bold and the portions of NS5BPa1m are italicized. The linker sequence (in bold italics) is flanked by the transition sequence “AS” that bracket the linker sequences









[hAnti-CD40VK2-LV-hIgGK-C]







(SEQ ID NO: 158)







DIQMTQSPSSLSASVGDRVTITCSASQGISNYLNWYQQKPGKAVKLLIYY


TSILHSGVPSRFSGSGSGTDYTLTISSLQPEDFATYYCQQFNKLPPTFGG


GTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWK


VDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEV


THQGLSSPVTKSFNRGEC





hAnti-CD40VH3-LV-hIgG4H-C-Flex-v1-HelB-f1-ProtB-


f2-NS5BPalm







(SEQ ID NO: 159)







EVQLVESGGGLVQPGGSLKLSCATSGFTFSDYYMYWVRQAPGKGLEW


VAYINSGGGSTYYPDTVKGRFTISRDNAKNTLYLQMNSLRAEDTAVYYCA


RRGLPFHAMDYWGQGTLVTVSSAKTKGPSVFPLAPCSRSTSESTAAL


GCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP


SSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGP


SVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEV


HNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSI


EKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEW


ESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSV


MHEALHNHYTQKSLSLSLGKAS custom-charactercustom-character  ASVTVPHPNI



EEVALSTTGEIPFYGKAIPLEVIKGGRHLIFCHSKKKCDELAAKLVAL




GINAVAYYRGLDVSVIPTSGVVVVVATDALMTGFTGDFDSVIDCNTC




VTQTVDFSLDPTFTIETTTLPQDAVSRTQRRGRTGRGKPGIYRFVAP




GERAS custom-character  ASTPCTCGSSDLYLVTRHADVIPVRRRGDS




RGSLLSPRPISYLKGSSGGPLLCPAGHAVGIFRAAVCTRGVAKAVD




FIPVENLETTMRSPVFTDNSSPPAVPQSAS custom-character  ASVLDS




HYQDVLKEVKAAASKVKANALYDVVSKLPLAVMGSSYGFQYSPGQ




RVEFLVQAWKSKKTPMGFSYDTRCFDSTVTESDIRTEEAIYQCCDL




DPQAFVAIKSLTERLYVGRCRASGVLTTSCGNTLTCYIKARAACRAA




GLQDCTMLVCGDDLVVICESAGVQEDAASLRAFTEAMTRYSAPPG




DPPQPEYDLELITAS







Humanized anti-DCIR-HCV 1st generation vaccine is: [hAnti-DCIRVK4-LV-hIgGK-C]×[hAnti-DCIRVH1-LV-hIgG4H-C-Flex-v1-He1B-f1-ProtB-f2-NS5BPa1m] wherein the portion of He1B are underlined, the portions of ProtB are bold and the portions of NS5BPa1m are italicized. The linker sequence (in bold italics) is flanked by the transition sequence “AS” that bracket the linker sequences









hAnti-DCIRVK4-LV-hIgGK-C







(SEQ ID NO: 160)







DIVMTQSPDSLAVSLGERATINCRASESIHSYGNSFLHWYQQKPGQPPKL


LIYLASNLESGVPSRFSGSGSRTDFTLTISSLQPEDFATYYCQQNNEDPW


TFGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKV


QWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYAC


EVTHQGLSSPVTKSFNRGEC





hAnti-DCIRVH1-LV-hIgG4H-C-Flex-v1-HelB-f1-ProtB-


f2-NS5BPaLm







(SEQ ID NO: 161)







QVTLKESGPAIVKFTQTLTLTCSFSGFSLSTSGMGLSWIRQPSGKALEW


LAHIYWDDDKRYNPSLKSRLTISKDTSKNQVVLTMTIVDTVDAATYYCAR


SSHYYGYGYGGYFDVWGQGTTVTVSSAKTKGPSVFPLAPCSRSTSES


TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVV


TVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEG


GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVE


VHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPS


SIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAV


EWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSC


SVMHEALHNHYTQKSLSLSLGKAS custom-charactercustom-character  ASVTV



PHPNIEEVALSTTGEIPFYGKAIPLEVIKGGRHLIFCHSKKKCDELAAKL




VALGINAVAYYRGLDVSVIPTSGVVVVVATDALMTGFTGDFDSVIDCNT




CVTQTVDFSLDPTFTIETTTLPQDAVSRTQRRGRTGRGKPGIYRFVAP




GERAS custom-character  ASTPCTCGSSDLYLVTRHADVIPVRRRGDSR




GSLLSPRPISYLKGSSGGPLLCPAGHAVGIFRAAVCTRGVAKAVDFI




PVENLETTMRSPVFTDNSSPPAVPQSAS custom-character  SVLDSHYQ




DVLKEVKAAASKVKANALYDVVSKLPLAVMGSSYGFQYSPGQRVE




FLVQAWKSKKTPMGFSYDTRCFDSTVTESDIRTEEATYQCCDLDPQ




ARVAIKSLTERLYVGRCRASGVLTTSCGNTLTCYIKARAACRAAGLQD




CTMLVCGDDLVVICESAGVQEDAASLRAFTEAMTRYSAPPGDPPQ




PEYDLELITAS







Humanized anti-CD40-HCV vaccine is: hAnti-CD40VK2-LV-hIgGK-C-ViralHCVhelicasefgtB×hAnti-CD40VH3-LV-hIgG4H-C-Flex-v1-ProtB-f1-NS5BPa1m, wherein the portion of ViralHCVhelicasefgtB are underlined, the portions of ProtB are bold and the portions of NS5BPa1m are italicized. The linker sequence (in bold italics) is flanked by the transition sequence “AS” that bracket the linker sequences.









hAnti-CD40VK2-LV-hIgGK-C-ViralHCVhelicasefgtB







(SEQ ID NO: 162)







DIQMTQSPSSLSASVGDRVTITCSASQGISNYLNWYQQKPGKAVKLLIYY


TSILHSGVPSRFSGSGSGTDYTLTISSLQPEDFATYYCQQFNKLPPTFG


GGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQ


WKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYA


CEVTHQGLSSPVTKSFNRGECASVTVPHPNIEEVALSTTGEIPFYGKA



IPLEVIKGGRHLIFCHSKKKCDELAAKLVALGINAVAYYRGLDVSVIPTS




GVVVVVATDALMTGFTGDFDSVIDCNTCVTQTVDFSLDPTFTIETTTL




PQDAVSRTQRRGRTGRGKPGIYRFVAPGERAS






hAnti-CD40VH3-LV-hIgG4H-C-Flex-v1-ProtB-f1-


NS5BPalm







(SEQ ID NO: 163)







EVQLVESGGGLVQPGGSLKLSCATSGFTFSDYYMYWVRQAPGKGLEWVA


YINSGGGSTYYPDTVKGRFTISRDNAKNTLYLQMNSLRAEDTAVYYCARR


GLPFHAMDYWGQGTLVTVSSAKTKGPSVFPLAPCSRSTSESTAALGC


LVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSS


LGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFL


FPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKT


KPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISK


AKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNG


QPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEAL


HNHYTQKSLSLSLGKAS custom-charactercustom-character  ASTPCTCGSSDLY



LVTRHADVIPVRRRGDSRGSLLSPRPISYLKGSSGGPLLCPAGHAVGIF




RAAVCTRGVAKAVDFIPVENLETTMRSPVFTDNSSPPAVPQSAS custom-character




custom-character  ASVLDSHYQDVLKEVKAAASKVKANALYDVVSKLPLAVMG




SSYGFQYSPGQRVEFLVQAWKSKKTPMGFSYDTRCFDSTVTESDIRTE




EAIYQCCDLDPQARVAIKSLTERLYVGRCRASGVLTTSCGNTLTCYIKAR




AACRAAGLQDCTMLVCGDDLVVICESAGVQEDAASLRAFTEAMTRYS




APPGDPPQPEYDLELITAS







Humanized anti-DCIR-HCV 2nd generation vaccine is: [hAnti-DCIRVK4-LV-hIgGK-C-ViralHCVhelicasefgtB]×[hAnti-DCIRVH1-LV-hIgG4H-C-Flex-v1-ProtB-f1-NS5BPa1m], wherein the portion of ViralHCVhelicasefgtB are underlined, the portions of ProtB are bold and the portions of NS5BPa1m are italicized. The linker sequence (in bold italics) is flanked by the transition sequence “AS” that bracket the linker sequences.









hAnti-DCIRVK4-LV-hIgGK-C-ViralHCVhelicasefgtB







(SEQ ID NO: 164)







DIVMTQSPDSLAVSLGERATINCRASESIHSYGNSFLHWYQQKPGQPPKL


LIYLASNLESGVPSRFSGSGSRTDFTLTISSLQPEDFATYYCQQNNEDPW


TEGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKV


QWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYAC


EVTHQGLSSPVTKSENRGECASVTVPHPNIEEVALSTTGEIPFYGKAIPL



EVIKGGRHLIFCHSKKKCDELAAKLVALGINAVAYYRGLDVSVIPTSGVV




VVVATDALMTGFTGDFDSVIDCNTCVTQTVDFSLDPTFTIETTTLPQDA




VSRTQRRGRTGRGKPGIYRFVAPGERAS






hAnti-DCIRVH1-LV-hIgG4H-C-Flex-v1-ProtB-f1-


NS5BPalm







(SEQ ID NO: 165)







QVTLKESGPAIVKPTQTLTLTCSFSGFSLSTSGMGLSWIRQPSGKALEWL


AHIYWDDDKRYNPSLKSRLTISKDTSKNQVVLTMTIVDTVDAATYYCARS


SHYYGYGYGGYFDVWGQGTTVTVSSAKTKGPSVFPLAPCSRSTSESTA


ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTV


PSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGP


SVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVH


NAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIE


KTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEW


ESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSV


MHEALHNHYTQKSLSLSLGKAS custom-charactercustom-character  ASTPCTC



GSSDLYLVTRHADVIPVRRRGDSRGSLLSPRPISYLKGSSGGPLLCPA




GHAVGIFRAAVCTRGVAKAVDFIPVENLETTMRSPVETDNSSPPAVPQ




SAS custom-charactercustom-character  ASVLDSHYQDVLKEVKAAASKVKANA




LYDVVSKLPLAVMGSSYGFQYSPGQRVEFLVQAWKSKKTPMGESYD




TRCFDSTVTESDIRTEEATYQCCDLDPQARVAIKSLTERLYVGRCRAS




GVLTTSCGNTLTCYIKARAACRAAGLQDCTMLVCGDDLVVICESAGV




QEDAASLRAFTEAMTRYSAPPGDPPQPEYDLELITAS







Linkers can be a small as 2 amino acids, e.g., AS, but can also be longer, e.g., SSVSPTTSVHPTPTSVPPTPTKSSP (SEQ ID NO.: 166); PTSTPADSSTITPTATPTATPTIKG (SEQ ID NO.: 167); TVTPTATATPSAIVTTITPTATTKP (SEQ ID NO.: 168); TNGSITVAATAPTVTPTVNATPSAA (SEQ ID NO.: 169) or QTPTNTISVTPTNNSTPTNNSNPKPNP (SEQ ID NO:170).


It is contemplated that any embodiment discussed in this specification can be implemented with respect to any method, kit, reagent, or composition of the invention, and vice versa. Furthermore, compositions of the invention can be used to achieve methods of the invention.


It will be understood that particular embodiments described herein are shown by way of illustration and not as limitations of the invention. The principal features of this invention can be employed in various embodiments without departing from the scope of the invention. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, numerous equivalents to the specific procedures described herein. Such equivalents are considered to be within the scope of this invention and are covered by the claims.


All publications and patent applications mentioned in the specification are indicative of the level of skill of those skilled in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


The use of the word “a” or “an” when used in conjunction with the term “comprising” in the claims and/or the specification may mean “one,” but it is also consistent with the meaning of “one or more,” “at least one,” and “one or more than one.” The use of the term “or” in the claims is used to mean “and/or” unless explicitly indicated to refer to alternatives only or the alternatives are mutually exclusive, although the disclosure supports a definition that refers to only alternatives and “and/or.” Throughout this application, the term “about” is used to indicate that a value includes the inherent variation of error for the device, the method being employed to determine the value, or the variation that exists among the study subjects.


As used in this specification and claim(s), the words “comprising” (and any form of comprising, such as “comprise” and “comprises”), “having” (and any form of having, such as “have” and “has”), “including” (and any form of including, such as “includes” and “include”) or “containing” (and any form of containing, such as “contains” and “contain”) are inclusive or open-ended and do not exclude additional, unrecited elements or method steps.


The term “or combinations thereof” as used herein refers to all permutations and combinations of the listed items preceding the term. For example, “A, B, C, or combinations thereof” is intended to include at least one of: A, B, C, AB, AC, BC, or ABC, and if order is important in a particular context, also BA, CA, CB, CBA, BCA, ACB, BAC, or CAB. Continuing with this example, expressly included are combinations that contain repeats of one or more item or term, such as BB, AAA, MB, BBC, AAABCCCC, CBBAAA, CABABB, and so forth. The skilled artisan will understand that typically there is no limit on the number of items or terms in any combination, unless otherwise apparent from the context.


All of the compositions and/or methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and/or methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.


REFERENCES

U.S. Patent Application Publication No. 2009/0238822: Chimeric HCV Antigens for Eliciting an Immune Response.


U.S. Patent Application Publication No. 2008/0241170: Vaccines Based on Targeting Antigen to DCIR Expressed on Antigen-Presenting Cells.


U.S. Patent Application Publication No. 2010/0239575: Anti-CD-40 Antibodies and Uses Thereof.

Claims
  • 1.-26. (canceled)
  • 27. A method for increasing effectiveness of Hepatitis C virus (HCV) antigen presentation by an antigen presenting cell (APC) comprising the steps of: contacting an antigen presenting cell (APC) with a composition comprising an antibody conjugate, thereby forming an antibody-antigen complex,the antibody conjugate comprising a dendritic cell (DC) specific antibody or an antigen-binding fragment thereof fused with one or more native or engineered Hepatitis C virus (HCV) antigenic peptides,wherein the antibody-antigen complex is processed and presented for T cell recognition.
  • 28. The method of claim 27, wherein the antigen presenting cell comprises a dendritic cell (DC).
  • 29. The method of claim 27, wherein the DC-specific antibody or antigen-binding fragment is selected from an antibody that specifically binds to MHC class I, MHC class II, CD1, CD2, CD3, CD4, CD8, CD11b, CD14, CD15, CD16, CD19, CD20, CD29, CD31, CD40, CD43, CD44, CD45, CD54, CD56, CD57, CD58, CD83, CD86, CMRF-44, CMRF-56, DCIR, DC-ASPGR, CLEC-6, CD40, BDCA-2, MARCO, DEC-205, mannose receptor, Langerin, DECTIN-1, B7-1, B7-2, IFN-γ receptor and IL-2 receptor, ICAM-1, Fcγ receptor, LOX-1, and ASPGR.
  • 30. The method of claim 27, wherein the one or more native or engineered HCV antigenic peptide is selected from the group consisting of: SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, E1b, and a fragment thereof.
  • 31. The method of claim 27, wherein the DC-specific antibody is humanized.
  • 32. (canceled)
  • 33. The method of claim 27, wherein the composition further comprises one or more agents selected from the group consisting of an agonistic anti-CD40 antibody, an agonistic anti-CD40 antibody fragment, a CD40 ligand (CD40L) polypeptide, a CD40L polypeptide fragment, anti-4-1BB antibody, an anti-4-1BB antibody fragment, 4-1BB ligand polypeptide, a 4-1BB ligand polypeptide fragment, IFN-γ, TNF-α, type 1 cytokines, type 2 cytokines or combinations and modifications thereof.
  • 34. (canceled)
  • 35. (canceled)
  • 36. The method of claim 27, wherein the HCV antigen is selected from the group consisting of protein E1, envelope protein E2, non-structural protein NS3, non-structural protein NS4b, non-structural protein NS5b, and a fragment thereof.
  • 37. The method of claim 27, wherein the one or more HCV antigens is selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, and a fragment thereof.
  • 38. (canceled)
  • 39. (canceled)
  • 40. The method of claim 32, wherein the composition further comprises at least one Toll-Like Receptor (TLR) agonist which is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and TLR8 agonists thereof.
  • 41-57. (canceled)
  • 58. The method of claim 27, wherein a change in the level of one or more agents selected from the group consisting of IFN-γ, TNF-α, IL-12p40, IL-4, IL-5, and IL-13 indicates an increase in the effectiveness antigen presentation by the antigen presenting cell.
  • 59. The method of claim 27, wherein the DC-specific antibody or antigen-binding fragment is selected from an antibody that specifically binds to CD40 or DCIR.
  • 60. The method of claim 27, further comprising the step of isolating the antigen presenting cells from blood.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application Ser. No. 61/467,840, filed Mar. 25, 2011, and U.S. Provisional Application Ser. No. 61/529,700, filed Aug. 31, 2011, the entire contents of each of which are incorporated herein by reference.

Provisional Applications (2)
Number Date Country
61467840 Mar 2011 US
61529700 Aug 2011 US
Divisions (1)
Number Date Country
Parent 13430206 Mar 2012 US
Child 14152448 US