Compositions for inhibition of membrane fusion-associated events, including human parainfluenza virus transmission

Information

  • Patent Grant
  • 6333395
  • Patent Number
    6,333,395
  • Date Filed
    Wednesday, June 7, 1995
    29 years ago
  • Date Issued
    Tuesday, December 25, 2001
    23 years ago
Abstract
The present invention relates to peptides which exhibit potent anti-retroviral activity. The peptides of the invention comprise DP178 (SEQ ID NO:1) peptide corresponding to amino acids 638 to 673 of the HIV-1LAI gp41 protein, and fragments, analogs and homologs of DP178. The invention further relates to the uses of such peptides as inhibitory of human and non-human retroviral, especially HIV, transmission to uninfected cells.
Description




1. INTRODUCTION




The present invention relates, first, to DP178 (SEQ ID NO:1), a peptide corresponding to amino acids 638 to 673 of the HIV-1


LAI


transmembrane protein (TM) gp41, and portions or analogs of DP178 (SEQ ID NO:1), which exhibit anti-membrane fusion capability, antiviral activity, such as the ability to inhibit HIV transmission to uninfected CD-4


+


cells, or an ability to modulate intracellular processes involving coiled-coil peptide structures. Further, the invention relates to the use of DP178 (SEQ ID NO:1) and DP178 portions and/or analogs as antifusogenic or antiviral compounds or as inhibitors of intracellular events involving coiled-coil peptide structures. The present invention also relates to peptides analogous to DP107, a peptide corresponding to amino acids 558 to 595 of the HIV-1


LAI


transmembrane protein (TM) gp41, having amino acid sequences present in other viruses, such as enveloped viruses, and/or other organisms, and further relates to the uses of such peptides. These peptides exhibit anti-membrane fusion capability, antiviral activity, or the ability to modulate intracellular processes involving coiled-coil peptide structures. The present invention additionally relates to methods for identifying compounds that disrupt the interaction between DP178 and DP107, and/or between DP107-like and DP178-like peptides. Further, the invention relates to the use of the peptides of the invention as diagnostic agents. For example, a DP178 peptide may be used as an HIV subtype-specific diagnostic. The invention is demonstrated, first, by way of an Example wherein DP178 (SEQ ID NO:1), and a peptide whose sequence is homologous to DP178 are each shown to be potent, non-cytotoxic inhibitors of HIV-1 transfer to uninfected CD-4


+


cells. The invention is further demonstrated by Examples wherein peptides having structural and/or amino acid motif similarity to DP107 and DP178 are identified in a variety of viral and nonviral organisms, and in examples wherein a number of such identified peptides derived from several different viral systems are demonstrated to exhibit antiviral activity.




2. BACKGROUND OF THE INVENTION




2.1 Membrane Fusion Events




Membrane fusion is a ubiquitous cell biological process (for a review, see White, J. M., 1992, Science 258:917-924). Fusion events which mediate cellular housekeeping functions, such as endocytosis, constitutive secretion, and recycling of membrane components, occur continuously in all eukaryotic cells.




Additional fusion events occur in specialized cells. Intracellularly, for example, fusion events are involved in such processes as occur in regulated exocytosis of hormones, enzymes and neurotransmitters. Intercellularly, such fusion events feature prominently in, for example, sperm-egg fusion and myoblast fusion.




Fusion events are also associated with disease states. For example, fusion events are involved in the formation of giant cells during inflammatory reactions, the entry of all enveloped viruses into cells, and, in the case of human immunodeficiency virus (HIV), for example, are responsible for the virally induced cell-cell fusion which leads to cell death.




2.2. The Human Immunodeficiency Virus




The human immunodeficiency virus (HIV) has been implicated as the primary cause of the slowly degenerative immune system disease termed acquired immune deficiency syndrome (AIDS) (Barre-Sinoussi, F. et al., 1983, Science 220:868-870; Gallo, R. et al., 1984, Science 224:500-503). There are at least two distinct types of HIV: HIV-1 (Barre-Sinoussi, F. et al., 1983, Science 220:868-870; Gallo R. et al., 1984, Science 224:500-503) and HIV-2 (Clavel, F. et al., 1986, Science 233:343-346; Guyader, M. et al., 1987, Nature 326:662-669). Further, a large amount of genetic heterogeneity exists within populations of each of these types. Infection of human CD-4


+


T-lymphocytes with an HIV virus leads to depletion of the cell type and eventually to opportunistic infections, neurological dysfunctions, neoplastic growth, and ultimately death.




HIV is a member of the lentivirus family of retroviruses (Teich, N. et al., 1984, RNA Tumor Viruses, Weiss, R. et al., eds., CSH-Press, pp. 949-956). Retroviruses are small enveloped viruses that contain a diploid, single-stranded RNA genome, and replicate via a DNA intermediate produced by a virally-encoded reverse transcriptase, an RNA-dependent DNA polymerase (Varmus, H., 1988, Science 240:1427-1439). Other retroviruses include, for example, oncogenic viruses such as human T-cell leukemia viruses (HTLV-I,-II,-III), and feline leukemia virus.




The HIV viral particle consists of a viral core, composed of capsid proteins, that contains the viral RNA genome and those enzymes required for early replicative events. Myristylated Gag protein forms an outer viral shell around the viral core, which is, in turn, surrounded by a lipid membrane enveloped derived from the infected cell membrane. The HIV enveloped surface glycoproteins are synthesized as a single 160 Kd precursor protein which is cleaved by a cellular protease during viral budding into two glycoproteins, gp41 and gp120. gp41 is a transmembrane protein and gp120 is an extracellular protein which remains non-covalently associated with gp41, possibly in a trimeric or multimeric form (Hammarskjold, M. and Rekosh, D., 1989, Biochem. Biophys. Acta 989:269-280).




HIV is targeted to CD-4


+


cells because the CD-4 cell surface protein acts as the cellular receptor for the HIV-1 virus (Dalgleish, A. et al., 1984, Nature 312:763-767; Klatzmann et al., 1984, Nature 312:767-768; Maddon et al., 1986, Cell 47:333-348). Viral entry into cells is dependent upon gp120 binding the cellular CD-4


+


receptor molecules (McDougal, J. S. et al., 1986, Science 231:382-385; Maddon, P. J. et al., 1986, Cell 47:333-348) and thus explains HIV's tropism for CD-4


+


cells, while gp41 anchors the enveloped glycoprotein complex in the viral membrane.




2.3. HIV Treatment




HIV infection is pandemic and HIV associated diseases represent a major world health problem. Although considerable effort is being put into the successful design of effective therapeutics, currently no curative anti-retroviral drugs against AIDS exist. In attempts to develop such drugs, several stages of the HIV life cycle have been considered as targets for therapeutic intervention (Mitsuya, H. et al., 1991, FASEB J. 5:2369-2381). For example, virally encoded reverse transcriptase has been one focus of drug development. A number of reverse-transcriptase-targeted drugs, including 2′,3′-dideoxynucleoside analogs such as AZT, ddI, ddC, and d4T have been developed which have been shown to been active against HIV (Mitsuya, H. et al., 1991, Science 249:1533-1544). While beneficial, these nucleoside analogs are not curative, probably due to the rapid appearance of drug resistant HIV mutants (Lander, B. et al., 1989, Science 243:1731-1734). In addition, the drugs often exhibit toxic side effects such as bone marrow suppression, vomiting, and liver function abnormalities.




Attempts are also being made to develop drugs which can inhibit viral entry into the cell, the earliest stage of HIV infection. Here, the focus has thus far been on CD4, the cell surface receptor for HIV. Recombinant soluble CD4, for example, has been shown to inhibit infection of CD-4


+


T-cells by some HIV-1 strains (Smith, D. H. et al., 1987, Science 238:1704-1707). Certain primary HIV-1 isolates, however, are relatively less sensitive to inhibition by recombinant CD-4 (Daar, E. et al., 1990, Proc. Natl. Acad. Sci. USA 87:6574-6579). In addition, recombinant soluble CD-4 clinical trials have produced inconclusive results (Schooley, R. et al., 1990, Ann. Int. Med. 112:247-253; Kahn, J. O. et al., 1990, Ann. Int. Med. 112:254-261; Yarchoan, R. et al., 1989, Proc. Vth Int. Conf. on AIDS, p. 564, MCP 137).




The late stages of HIV replication, which involve crucial virus-specific secondary processing of certain viral proteins, have also been suggested as possible anti-HIV drug targets. Late stage processing is dependent on the activity of a viral protease, and drugs are being developed which inhibit this protease (Erickson, J., 1990, Science 249:527-533). The clinical outcome of these candidate drugs is still in question.




Attention is also being given to the development of vaccines for the treatment of HIV infection. The HIV-1 enveloped proteins (gp160, gp120, gp41) have been shown to be the major antigens for anti-HIV antibodies present in AIDS patients (Barin, et al., 1985, Science 228:1094-1096). Thus far, therefore, these proteins seem to be the most promising candidates to act as antigens for anti-HIV vaccine development. To this end, several groups have begun to use various portions of gp160, gp120, and/or gp41 as immunogenic targets for the host immune system. See for example, Ivanoff, L. et al., U.S. Pat. No. 5,141,867; Saith, G. et al., WO 92/22,654; Shafferman, A., WO 91/09,872; Formoso, C. et al., WO 90/07,119. Clinical results concerning these candidate vaccines, however, still remain far in the future.




Thus, although a great deal of effort is being directed to the design and testing of anti-retroviral drugs, a truly effective, non-toxic treatment is still needed.




3. SUMMARY OF THE INVENTION




The present invention relates, first, to DP178 (SEQ ID NO:1), a 36-amino acid synthetic peptide corresponding to amino acids 638 to 673 of the transmembrane protein (TM) gp41 from the HIV-1 isolate LAI (HIV-


1




LAI


), which exhibits potent anti-HIV-1 activity. As evidenced by the Example presented below, in Section 6, the DP178 (SEQ ID NO:1) antiviral activity is so high that, on a weight basis, no other known anti-HIV agent is effective at concentrations as low as those at which DP178 (SEQ ID NO:1) exhibits its inhibitory effects.




The invention further relates to those portions and analogs of DP178 which also show such antiviral activity, and/or show anti-membrane fusion capability, or an ability to modulate intracellular processes involving coiled-coil peptide structures. The term “DP178 analog” refers to a peptide which contains an amino acid sequence corresponding to the DP178 peptide sequence present within the gp41 protein of HIV-1


LAI


, but found in viruses and/or organisms other than HIV-1


LAI


. Such DP178 analog peptides may, therefore, correspond to DP178-like amino acid sequences present in other viruses, such as, for example, enveloped viruses, such as retroviruses other than HIV-1


LAI


, as well as non-enveloped viruses. Further, such analogous DP178 peptides may also correspond to DP178-like amino acid sequences present in nonviral organisms.




The invention further relates to peptides DP107 analogs. DP107 is a peptide corresponding to amino acids 558-595 of the HIV-1


LAI


transmembrane protein (TM) gp41. The term “DP107 analog” as used herein refers to a peptide which contains an amino acid sequence corresponding to the DP107 peptide sequence present within the gp41 protein of HIV-1


LAI


, but found in viruses and organisms other than HIV-1


LAI


. Such DP107 analog peptides may, therefore, correspond to DP107-like amino acid sequences present in other viruses, such as, for example, enveloped viruses, such as retroviruses other than HIV-1


LAI


, as well as non-enveloped viruses. Further, such DP107 analog peptides may also correspond to DP107-like amino acid sequences present in nonviral organisms.




Further, the peptides of the invention include DP107 analog and DP178 analog peptides having amino acid sequences recognized or identified by the 107×178×4, ALLMOTI5 and/or PLZIP search motifs described herein.




The peptides of the invention may, for example, exhibit antifusogenic activity, antiviral activity, and/or may have the ability to modulate intracellular processes which involve coiled-coil peptide structures. With respect to the antiviral activity of the peptides of the invention, such an antiviral activity includes, but is not limited to the inhibition of HIV transmission to uninfected CD-4


+


cells. Additionally, the antifusogenic capability, antiviral activity or intracellular modulatory activity of the peptides of the invention merely requires the presence of the peptides of the invention, and, specifically, does not require the stimulation of a host immune response directed against such peptides.




The peptides of the invention may be used, for example, as inhibitors of membrane fusion-associated events, such as, for example, the inhibition of human and non-human retroviral, especially HIV, transmission to uninfected cells. It is further contemplated that the peptides of the invention may be used as modulators of intracellular events involving coiled-coil peptide structures.




The peptides of the invention may, alternatively, be used to identify compounds which may themselves exhibit antifusogenic, antiviral, or intracellular modulatory activity. Additional uses include, for example, the use of the peptides of the invention as organism or viral type and/or subtype-specific diagnostic tools.




The terms “antifusogenic” and “anti-membrane fusion”, as used herein, refer to an agent's ability to inhibit or reduce the level of membrane fusion events between two or more moieties relative to the level of membrane fusion which occurs between said moieties in the absence of the peptide. The moieties may be, for example, cell membranes or viral structures, such as viral envelopes or pili. The term “antiviral”, as used herein, refers to the compound's ability to inhibit viral infection of cells, via, for example, cell-cell fusion or free virus infection. Such infection may involve membrane fusion, as occurs in the case of enveloped viruses, or some other fusion event involving a viral structure and a cellular structure (e.g., such as the fusion of a viral pilus and bacterial membrane during bacterial conjugation).




It is also contemplated that the peptides of the invention may exhibit the ability to modulate intracellular events involving coiled-coil peptide structures. “Modulate”, as used herein, refers to a stimulatory or inhibitory effect on the intracellular process of interest relative to the level or activity of such a process in the absence of a peptide of the invention.




Embodiments of the invention are demonstrated below wherein an extremely low concentration of DP178 (SEQ ID NO:1), and very low concentrations of a DP178 homolog (SEQ ID NO:3) are shown to be potent inhibitors of HIV-1 mediated CD-4


+


cell-cell fusion (i.e., syncytial formation) and infection of CD-4


+


cells by cell-free virus. Further, it is shown that DP178 (SEQ ID NO:1) is not toxic to cells, even at concentrations 3 logs higher than the inhibitory DP-178 (SEQ ID NO:1) concentration.




The present invention is based, in part, on the surprising discovery that the DP107 and DP178 domains of the HIV gp41 protein non-covalently complex with each other, and that their interaction is required for the normal infectivity of the virus. This discovery is described in the Example presented, below, in Section 8. The invention, therefore, further relates to methods for identifying antifusogenic, including antiviral, compounds that disrupt the interaction between DP107 and DP178, and/or between DP107-like and DP178-like peptides.




Additional embodiments of the invention (specifically, the Examples presents in Sections 9-16 and 19-25, below) are demonstrated, below, wherein peptides, from a variety of viral and nonviral sources, having structural and/or amino acid motif similarity to DP107 and DP178 are identified, and search motifs for their identification are described. Further, Examples (in Sections 17, 18, 25-29) are presented wherein a number of the peptides of the invention are demonstrated exhibit substantial antiviral activity or activity predictive of antiviral activity.




3.1. DEFINITIONS




Peptides are defined herein as organic compounds comprising two or more amino acids covalently joined by peptide bonds. Peptides may be referred to with respect to the number of constituent amino acids, i.e., a dipeptide contains two amino acid residues, a tripeptide contains three, etc. Peptides containing ten or fewer amino acids may be referred to as oligopeptides, while those with more than ten amino acid residues are polypeptides. Such peptides may also include any of the modifications and additional amino and carboxy groups as are described herein.




Peptide sequences defined herein are represented by one-letter symbols for amino acid residues as follows:




A (alanine)




R (arginine)




N (asparagine)




D (aspartic acid)




C (cysteine)




Q (glutamirie)




E (glutamic acid)




G (glycine)




H (histidine)




I (isoleucine)




L (leucine)




K (lysine)




M (methionine)




F (phenylalanine)




P (proline)




S (serine)




T (threonine)




W (tryptophan)




Y (tyrosine)




V (valine)











4. BRIEF DESCRIPTION OF THE FIGURES




FIG.


1


. Amino acid sequence of DP178 (SEQ ID NO:1) derived from HIV


LAI


; DP178 homologs derived from HIV-1


SF2


(DP-185; SEQ ID NO:3), HIV-1


RF


(SEQ ID NO:4), and HIV-1


MN


(SEQ ID NO:5); DP178 homologs derived from amino acid sequences of two prototypic HIV-2 isolates, namely, HIV-2


rod


(SEQ ID NO:6) and HIV-2


NIHZ


(SEQ ID NO:7); control peptides: DP-180 (SEQ ID NO:2), a peptide incorporating the amino acid residues of DP178 in a scrambled sequence; DP-118 (SEQ ID NO:10) unrelated to DP178, which inhibits HIV-1 cell free virus infection; DP-125 (SEQ ID NO:8), unrelated to DP178, also inhibits HIV-1 cell free virus infection; DP-116 (SEQ ID NO:9), unrelated to DP178, is negative for inhibition of HIV-1 infection when tested using a cell-free virus infection assay. Throughout the figures, the one letter amino acid code is used.




FIG.


2


. Inhibition of HIV-1 cell-free virus infection by synthetic peptides. IC


50


refers to the concentration of peptide that inhibits RT production from infected cells by 50% compared to the untreated control. Control: the level of RT produced by untreated cell cultures infected with the same level of virus as treated cultures.




FIG.


3


. Inhibition of HIV-1 and HIV-2 cell-free virus infection by the synthetic peptide DP178 (SEQ ID NO:1). IC


50


: concentration of peptide that inhibits RT production by 50% compared to the untreated control. Control: Level of RT produced by untreated cell cultures infected with the same level of virus as treated cultures.





FIGS. 4A-4B

. Fusion Inhibition Assays. FIG.


4


A: DP178 (SEQ ID NO:1) inhibition of HIV-1 prototypic isolate-mediated syncytial formation; data represents the number of virus-induced syncytial per cell. FIG. 4B: DP-180 (SEQ ID NO:2) represents a scrambled control peptide; DP-185 (SEQ ID NO:3) represents a DP178 homolog derived from HIV-1


SF2


isolate; Control, refers to the number of syncytial produced in the absence of peptide.




FIG.


5


. Fusion inhibition assay: HIV-1 vs. HIV-2. Data represents the number of virus-induced syncytial per well. ND: not done.




FIG.


6


. Cytotoxicity study of DP178 (SEQ ID NO:1) and DP-116 (SEQ ID NO:9) on CEM cells. Cell proliferation data is shown.




FIG.


7


. Schematic representation of HIV-gp41 and maltose binding protein (MBP)-gp41 fusion proteins. DP107 and DP178 are synthetic peptides based on the two putative helices of gp41. The letter P in the DP107 boxes denotes an Ile to Pro mutation at amino acid number 578. Amino acid residues are numbered according to Meyers et al., “Human Retroviruses and AIDS”, 1991, Theoret. Biol. and Biophys. Group, Los Alamos Natl. Lab., Los Alamos, N. Mex. The proteins are more fully described, below, in Section 8.1.1.





FIG. 8. A

point mutation alters the conformation and anti-HIV activity of M41.




FIG.


9


. Abrogation of DP178 anti-HIV activity. Cell fusion assays were carried out in the presence of 10 nM DP178 and various concentrations of M41Δ178 or M41PΔ178.




FIG.


10


. Binding of DP178 to leucine zipper of gp41 analyzed by FAb-D ELISA.





FIGS. 11A-B

. Models for a structural transition in the HIV-1 TM protein. Two models are proposed which indicate a structural transition from a native oligomer to a fusogenic state following a trigger event (possibly gp120 binding to CD4). Common features of both models include (1) the native state is held together by noncovalent protein-protein interactions to form the heterodimer of gp120/41 and other interactions, principally though gp41 interactive sites, to form homo-oligomers on the virus surface of the gp120/41 complexes; (2) shielding of the hydrophobic fusogenic peptide at the N-terminus (F) in the native state; and (3) the leucine zipper domain (DP107) exists as a homo-oligomer coiled coil only in the fusogenic state. The major differences in the two models include the structural state (native or fusogenic) in which the DP107 and DP178 domains are complexed to each other. In the first model (

FIG. 11A

) this interaction occurs in the native state and in the second (FIG.


11


B), it occurs during the fusogenic state. When triggered, the fusion complex in the model depicted in (A) is generated through formation of coiled-coil interactions in homologous DP107 domains resulting in an extended α-helix. This conformational change positions the fusion peptide for interaction with the cell membrane. In the second model (FIG.


11


B), the fusogenic complex is stabilized by the association of the DP178 domain with the DP107 coiled-coil.




FIG.


12


. Motif design using heptad repeat positioning of amino acids of known coiled-coils [GCN4:(SEQ ID NO:84); C-FOS:(SEQ ID NO:85; C-JUN:(SEQ ID NO:86); C-MYC:(SEQ ID NO:87); FLU LOOP 36:(SEQ ID NO:88)].




FIG.


13


. Motif design using proposed heptad repeat positioning of amino acids of DP107 and DP178.




FIG.


14


. Hybrid motif design crossing GCN4 and DP107.




FIG.


15


. Hybrid motif design crossing GCN4 and DP178.




FIG.


16


. Hybrid motif design 107×178×4, crossing DP107 (SEQ ID NO:89) and DP178 (SEQ ID NO:1). This motif was found to be the most consistent at identifying relevant DP107-like and DP178-like peptide regions.




FIG.


17


. Hybrid motif design crossing GCN4, DP107, and DP178.




FIG.


18


. Hybrid motif design ALLMOTI5 crossing GCN4, DP107, DP178, c-Fos c-Jun, c-Myc, and Flu Loop 36.




FIG.


19


. PLZIP motifs designed to identify N-terminal proline-leucine zipper motifs.




FIG.


20


. Search results for HIV-1 (BRU isolate) enveloped protein gp41 (SEQ ID NO:90). Sequence search motif designations: Spades (): 107×178×4; Hearts (♥) ALLMOTI5; Clubs (): PLZIP; Diamonds (♦): transmembrane region (the putative transmembrane domains were identified using a PC/Gene program designed to search for such peptide regions). Asterisk (*): Lupas method. The amino acid sequences identified by each motif are bracketed by the respective characters. Representative sequences chosen based on 107×178×4 searches are underlined and in bold. DP107 and DP178 sequences are marked, and additionally double-underlined and italicized.




FIG.


21


. Search results for human respiratory syncytial virus (RSV) strain A2 fusion glycoprotein F1 (SEQ ID NO:91). Sequence search motif designations are as in FIG.


20


.




FIG.


22


. Search results for simian immunodeficiency virus (SIV) enveloped protein gp41 (AGM3 isolate) (SEQ ID NO:92). Sequence search motif designations are as in FIG.


20


.




FIG.


23


. Search results for canine distemper virus (strain Onderstepoort) fusion glycoprotein 1 (SEQ ID NO:93). Sequence search motif designations are as in FIG.


20


.




FIG.


24


. Search results for newcastle disease virus (strain Australia-Victoria/32) fusion glycoprotein F1 (SEQ ID NO:94). Sequence search motif designations are as in FIG.


20


.




FIG.


25


. Search results for human parainfluenza 3 virus (strain NIH 47885) fusion glycoprotein F1 (SEQ ID NO:95). Sequence search motif designations are as in FIG.


20


.




FIG.


26


. Search results for influenza A virus (strain A/AICHI/2/68) hemagglutinin precursor HA2 (SEQ ID NO:96). Sequence search designations are as in FIG.


20


.





FIGS. 27A-F

. Respiratory Syncytial Virus (RSV) peptide (SEQ ID NO:97) antiviral and circular dichroism data. FIGS.


27


A-D: Peptides derived from the F2 DP178/DP107-like region (SEQ ID NOS:210-228). Antiviral and CD data. FIGS.


27


E-F: Peptides derived from the Fl DP107-like region (SEQ ID NOS:98, 130-137, 229-253). Peptide and CD data.




Antiviral activity (AV) is represented by the following qualitative symbols:




“−”, negative antiviral activity;




“+/−”, antiviral activity at greater than 100 μg/ml;




“+”, antiviral activity at between 50-100 μg/ml;




“++”, antiviral activity at between 20-50 μg/ml;




“+++”, antiviral activity at between 1-20 μg/ml;




“++++”, antiviral activity at <1 μg/ml.




CD data, referring to the level of helicity is represented by the following qualitative symbol:




“−”, no helicity;




“+”, 25-50% helicity;




“++”, 50-75% helicity;




“+++”′ 75-100% helicity.




IC


50


refers to the concentration of peptide necessary to produce only 50% of the number of syncytial relative to infected control cultures containing no peptide. IC


50


values were obtained using purified peptides only.





FIGS. 28A-C

. Respiratory Syncytial Virus (RSV) DP178-like region (F1) peptide antiviral and CD data (SEQ ID NOS:99, 254-284). Antiviral symbols, CD symbols, and IC


50


are as in

FIGS. 27A-F

. IC


50


values were obtained using purified peptides only.





FIGS. 29A-E

. Peptides derived from the HPIV3 F1 DP107-like region. Peptide antiviral and CD data (SEQ ID NOS:100, 146-151, 285-320). Antiviral symbols, CD symbols, and IC


50


are as in

FIGS. 27A-F

. Purified peptides were used to obtain IC


50


values, except where the values are marked by an asterisk (*), in which cases, the IC


50


values were obtained using a crude peptide preparation.





FIGS. 30A-C

. Peptides derived from the HPIV3 F1 DP178-like region. Peptide antiviral and CD data (SEQ ID NOS:101, 152-157, 321-342). Antiviral symbols, CD symbols, and IC


50


are as in

FIGS. 27A-F

. Purified peptides were used to obtain IC


50


values, except where the values are marked by an asterisk (*), in which cases, the IC


50


values were obtained using a crude peptide preparation.




FIG.


31


. Motif search results for simian immunodeficiency virus (SIV) isolate MM251, enveloped polyprotein gp41 (SEQ ID NO:102). Sequence search designations are as in FIG.


20


.




FIG.


32


. Motif search results for Epstein-Barr Virus (Strain B95-8), glycoprotein gp110 precursor (designated gp115). BALF4 (SEQ ID NO:103). Sequence search designations are as in FIG.


20


.




FIG.


33


. Motif search results for Epstein-Barr Virus (Strain B95-8), BZLF1 trans-activator protein (designated EB1 or Zebra) (SEQ ID NO:104). Sequence search designations are as in FIG.


20


. Additionally, “@” refers to a well known DNA binding domain and “+” refers to a well known dimerization domain, as defined by Flemington and Speck (Flemington, E. and Speck, S. H., 1990, Proc. Natl. Acad. Sci. USA 87:9459-9463).




FIG.


34


. Motif search results for measles virus (strain Edmonston), fusion glycoprotein F1 (SEQ ID NO:105). Sequence search designations are as in FIG.


20


.




FIG.


35


. Motif search results for Hepatitis B Virus (Subtype AYW), major surface antigen precursor S (SEQ ID NO:106). Sequence search designations are as in FIG.


20


.




FIG.


36


. Motif search results for simian Mason-Pfizer monkey virus, enveloped (TM) protein gp20 (SEQ ID NO:107). Sequence search designations are as in FIG.


20


.




FIG.


37


. Motif search results for Pseudomonas aerginosa, fimbrial protein (Pilin) (SEQ ID NO:108). Sequence search designations are as in FIG.


20


.




FIG.


38


. Motif search results for Neisseria gonorrhoeae fimbrial protein (SEQ ID NO:110) (Pilin) (SEQ ID NO:109). Sequence search designations are as in FIG.


20


.




FIG.


39


. Motif search results for Hemophilus influenzae fimbrial protein. Sequence search designations are as in FIG.


20


.




FIG.


40


. Motif search results for Staphylococcus aureus, toxic shock syndrome toxin-1 (SEQ ID NO:111). Sequence search designations are as in FIG.


20


.




FIG.


41


. Motif search results for Staphylococcus aureus enterotoxin Type E (SEQ ID NO:112). Sequence search designations are as in FIG.


20


.




FIG.


42


. Motif search results for Staphylococcus aureus enterotoxin A (SEQ ID NO:113). Sequence search designations are as in FIG.


20


.




FIG.


43


. Motif search results for Escherichia coli, heat labile enterotoxin A (SEQ ID NO:114). Sequence search designations are as in FIG.


20


.




FIG.


44


. Motif search results for human c-fos proto-oncoprotein (SEQ ID NO:115). Sequence search designations are as in FIG.


20


.




FIG.


45


. Motif search results for human lupus KU autoantigen protein P70 (SEQ ID NO:116). Sequence search designations are as in FIG.


20


.




FIG.


46


. Motif search results for human zinc finger protein 10 (SEQ ID NO:117). Sequence search designations are as in FIG.


20


.




FIG.


47


. Measles virus (MeV) fusion protein DP178-like region antiviral and CD data (SEQ ID NOS:118-119, 343-357). Antiviral symbols, CD symbols, and IC


50


are as in

FIGS. 27A-D

. IC


50


values were obtained using purified peptides.




FIG.


48


. Simian immunodeficiency virus (SIV) TM (fusion) protein DP178-like region antiviral data (SEQ ID NOS: 120, 358-368). Antiviral symbols are as in

FIGS. 27A-D

“NT”, not tested.





FIGS. 49A-L

. DP178-derived peptide antiviral data (SEQ ID NOS:158-200, 369-436). The peptides listed herein were derived from the region surrounding the HIV-1 BRU isolate DP178 region (e.g., gp41 amino acid residues 615-717).




In instances where peptides contained DP178 point mutations, the mutated amino acid residues are shown with a shaded background. In instances in which the test peptide has had an amino and/or carboxy-terminal group added or removed (apart from the standard amido- and acetyl-blocking groups found on such peptides), such modifications are indicated. FIG.


49


A: The column to the immediate right of the name of the test peptide indicates the size of the test peptide and points out whether the peptide is derived from a one amino acid peptide “walk” across the DP178 region. The next column to the right indicates whether the test peptide contains a point mutation, while the column to its right indicates whether certain amino acid residues have been added to or removed from the DP178-derived amino acid sequence. FIG.


49


B: The column to the immediate right of the test peptide name indicates whether the peptide represents a DP178 truncation, the next column to the right points out whether the peptide contains a point mutation, and the column to its right indicates whether the peptide contains amino acids which have been added to or removed from the DP178 sequence itself. FIG.


49


C: The column to the immediate right of the test peptide name indicates whether the test peptide contains a point mutation, while the column to its right indicates whether amino acid residues have been added to or removed from the DP178 sequence itself. IC


50


is as defined in

FIGS. 27A-D

, and IC


50


values were obtained using purified peptides except where marked with an asterisk (*), in which case the IC


50


was obtained using a crude peptide preparation.




FIG.


50


. DP107 and DP107 gp41 region truncated peptide antiviral data (SEQ ID NOS:201, 437-446). IC


50


as defined in

FIGS. 27A-D

, and IC


50


values were obtained using purified peptides except where marked with an asterisk (*), in which case the IC


50


was obtained using a crude peptide preparation.





FIGS. 51A-C

. Epstein-Barr virus Strain B95-8 BZLF1 DP178/DP107 analog region peptide walks and electrophoretic mobility shift assay results. The peptides (SEQ ID NOS:202-207, 447-483) (T-423 to T-446,

FIG. 51B

; T-447 to T-461,

FIG. 51C

) represent one amino acid residue “walks” through the EBV Zebra protein region from amino acid residue 173 to 246.




The amino acid residue within this region which corresponds to the first amino acid residue of each peptide is listed to the left of each peptide, while the amino acid residue within this region which corresponds to the last amino acid residue of each peptide is listed to the right of each peptide. The length of each test peptide is listed at the far right of each line, under the heading “Res”.




“ACT” refers to a test peptide's ability to inhibit Zebra binding to its response element. “+” refers to a visible, but incomplete, abrogation of the response element/Zebra homodimer complex; “+++” refers to a complete abrogation of the complex; and “−” represents a lack of complex disruption.





FIGS. 52A-B

. Hepatitis B virus subtype AYW major surface antigen precursor S protein DP178/DP107 analog region and peptide walks. 52A depicts Domain I (S protein amino acid residues 174-219), which contains a potential DP178/DP107 analog region. In addition, peptides are listed which represent one amino acid peptide “walks” through domain I (SEQ ID NOS:208, 484-517). 52B depicts Domain II (SEQ ID NO:209) (S protein amino acid residues 233-290), which contains a second potential DP178/DP107 analog region. In addition, peptides are listed which represent one amino acid peptide “walks” through domain II.











5. DETAILED DESCRIPTION OF THE INVENTION




Described herein are peptides which may exhibit antifusogenic activity, antiviral capability, and/or the ability to modulate intracellular processes involving coiled-coil peptide structures. The peptides described include, first, DP178 (SEQ ID NO:1), a gp41-derived 36 amino acid peptide and fragments and analogs of DP178.




In addition, the peptides of the invention described herein include peptides which are DP107 analogs. DP107 (SEQ ID NO:99) is a 38 amino acid peptide corresponding to residues 558 to 595 of the HIV-1


LAI


transmembrane (TM) gp41 protein. Such DP107 analogs may exhibit antifusogenic capability, antiviral activity or an ability to modulate intracellular processes involving coiled-coil structures.




Further, peptides of the invention include DP107 and DP178 are described herein having amino acid sequences recognized by the 107×178×4, ALLMOTI5, and PLZIP search motifs. Such motifs are also discussed.




Also described here are antifusogenic, antiviral, intracellular modulatory, and diagnostic uses of the peptides of the invention. Further, procedures are described for the use of the peptides of the invention for the identification of compounds exhibiting antifusogenic, antiviral or intracellular modulatory activity.




While not limited to any theory of operation, the following model is proposed to explain the potent anti-HIV activity of DP178, based, in part, on the experiments described in the Examples, infra. In the HIV protein, gp41, DP178 corresponds to a putative α-helix region located in the C-terminal end of the gp41 ectodomain, and appears to associate with a distal site on gp41 whose interactive structure is influenced by the leucine zipper motif, a coiled-coil structure, referred to as DP107. The association of these two domains may reflect a molecular linkage or “molecular clasp” intimately involved in the fusion process. It is of interest that mutations in the C-terminal α-helix motif of gp41 (i.e., the D178 domain) tend to enhance the fusion ability of gp41, whereas mutations in the leucine zipper region (i.e., the DP107 domain) decrease or abolish the fusion ability of the viral protein. It may be that the leucine zipper motif is involved in membrane fusion while the C-terminal α-helix motif serves as a molecular safety to regulate the availability of the leucine zipper during virus-induced membrane fusion.




On the basis of the foregoing, two models are proposed of gp41-mediated membrane fusion which are schematically shown in

FIGS. 11A-B

. The reason for proposing two models is that the temporal nature of the interaction between the regions defined by DP107 and DP178 cannot, as yet, be pinpointed. Each model envisions two conformations for gp41—one in a “native” state as it might be found on a resting virion. The other in a “fusogenic” state to reflect conformational changes triggered following binding of gp120 to CD4 and just prior to fusion with the target cell membrane. The strong binding affinity between gp120 and CD4 may actually represent the trigger for the fusion process obviating the need for a pH change such as occurs for viruses that fuse within intracellular vesicles. The two major features of both models are: (1) the leucine zipper sequences (DP107) in each chain of oligomeric enveloped are held apart in the native state and are only allowed access to one another in the fusogenic state so as to form the extremely stable coiled-coils, and (2) association of the DP178 and DP107 sites as they exist in gp41 occur either in the native or fusogenic state.

FIGS. 11A

depicts DP178/DP107 interaction in the native state as a molecular clasp. On the other hand, if one assumes that the most stable form of the enveloped occurs in the fusogenic state, the model in

FIG. 11B

can be considered.




When synthesized as peptides, both DP107 and DP178 are potent inhibitors of HIV infection and fusion, probably by virtue of their ability to form complexes with viral gp41 and interfere with its fusogenic process; e.g., during the structural transition of the viral protein from the native structure to the fusogenic state, the DP178 and DP107 peptides may gain access to their respective binding sites on the viral gp41, and exert a disruptive influence. DP107 peptides which demonstrate anti-HIV activity are described in Applicants' co-pending application Ser. No. 08/264,531, filed Jun. 23, 1994, which is incorporated by reference herein in its entirety.




As shown in the Examples, infra, a truncated recombinant gp41 protein corresponding to the ectodomain of gp41 containing both DP107 and DP178 domains (excluding the fusion peptide, transmembrane region and cytoplasmic domain of gp41) did not inhibit HIV-1 induced fusion. However, when a single mutation was introduced to disrupt the coiled-coil structure of the DP107 domain—a mutation which results in a total loss of biological activity of DP107 peptides—the inactive recombinant protein was transformed to an active inhibitor of HIV-1 induced fusion. This transformation may result from liberation of the potent DP178 domain from a molecular clasp with the leucine zipper, DP107 domain.




For clarity of discussion, the invention will be described primarily for DP178 peptide inhibitors of HIV. However, the principles may be analogously applied to other viruses, both enveloped and nonenveloped, and to other non-viral organisms.




5.1. DP178 and DP178-Like Peptides




The DP178 peptide (SEQ ID NO:1) of the invention corresponds to amino acid residues 638 to 673 of the transmembrane protein gp41 from the HIV-1


LAI


isolate, and has the 36 amino acid sequence (reading from amino to carboxy terminus):




NH


2


-YTSLIHSLIEESQNQQEKNEQELLELDKWASLWNWF-COOH (SEQ ID NO:1)




In addition to the full-length DP178 (SEQ ID NO:1) 36-mer, the peptides of the invention may include truncations of the DP178 (SEQ ID NO:1) peptide which exhibit antifusogenic activity, antiviral activity and/or the ability to modulate intracellular processes involving coiled-coil peptide structures. Truncations of DP178 (SEQ ID NO:1) peptides may comprise peptides of between 3 and 36 amino acid residues (i.e., peptides ranging in size from a tripeptide to a 36-mer polypeptide) with the following amino acid sequence X-YTSLIHSLIEESQNQQEKNEQELLELDKWASLWNWF-Y (SEQ ID NO:1). Peptide sequences in these tables are listed from amino (left) to carboxy (right) terminus. “X” may represent an amino group (—NH


2


) and “Z” may represent a carboxyl (—COOH) group. Alternatively, “X” may represent a hydrophobic group, including but not limited to carbobenzyl, dansyl, or T-butoxycarbonyl; an acetyl group; a 9-fluorenylmethoxy-carbonyl (FMOC) group; or a covalently attached macromolecular group, including but not limited to a lipid-fatty acid conjugate, polyethylene glycol, carbohydrate or peptide group. Further, “Z” may represent an amido group; a T-butoxycarbonyl group; or a covalently attached macromolecular group, including but not limited to a lipid-fatty acid conjugate, polyethylene glycol, carbohydrate or peptide group. A preferred “X” or “Z” macromolecular group is a peptide group.




The peptides of the invention also include DP178-like peptides. “DP178-like”, as used herein, refers, first, to DP178 and DP178 truncations which contain one or more amino acid substitutions, insertions and/or deletions. Second, “DP-178-like” refers to peptide sequences identified or recognized by the ALLMOTI5, 107×178×4 and PLZIP search motifs described herein, having structural and/or amino acid motif similarity to DP178. The DP178-like peptides of the invention may exhibit antifusogenic or antiviral activity, or may exhibit the ability to modulate intracellular processes involving coiled-coil peptides. Further, such DP178-like peptides may possess additional advantageous features, such as, for example, increased bioavailability, and/or stability, or reduced host immune recognition.




HIV-1 and HIV-2 enveloped proteins are structurally distinct, but there exists a striking amino acid conservation within the DP178-corresponding regions of HIV-1 and HIV-2. The amino acid conservation is of a periodic nature, suggesting some conservation of structure and/or function. Therefore, one possible class of amino acid substitutions would include those amino acid changes which are predicted to stabilize the structure of the DP178 peptides of the invention. Utilizing the DP178 and DP178 analog sequences described herein, the skilled artisan can readily compile DP178 consensus sequences and ascertain from these, conserved amino acid residues which would represent preferred amino acid substitutions.




The amino acid substitutions may be of a conserved or non-conserved nature. Conserved amino acid substitutions consist of replacing one or more amino acids of the DP178 (SEQ ID NO:1) peptide sequence with amino acids of similar charge, size, and/or hydrophobicity characteristics, such as, for example, a glutamic acid (E) to aspartic acid (D) amino acid substitution. Non-conserved substitutions consist of replacing one or more amino acids of the DP178 (SEQ ID NO:1) peptide sequence with amino acids possessing dissimilar charge, size, and/or hydrophobicity characteristics, such as, for example, a glutamic acid (E) to valine (V) substitution.




Amino acid insertions may consist of single amino acid residues or stretches of residues. The insertions may be made at the carboxy or amino terminal end of the DP178 or DP178 truncated peptides, as well as at a position internal to the peptide. Such insertions will generally range from 2 to 15 amino acids in length. It is contemplated that insertions made at either the carboxy or amino terminus of the peptide of interest may be of a broader size range, with about 2 to about 50 amino acids being preferred. One or more such insertions may be introduced into DP178 (SEQ ID NO:1) or DP178 truncations, as long as such insertions result in peptides which may still be recognized by the 107×178×4, ALLMOTI5 or PLZIP search motifs described herein, or may, alternatively, exhibit antifusogenic or antiviral activity, or exhibit the ability to modulate intracellular processes involving coiled-coil peptide structures.




Preferred amino or carboxy terminal insertions are peptides ranging from about 2 to about 50 amino acid residues in length, corresponding to gp41 protein regions either amino to or carboxy to the actual DP178 gp41 amino acid sequence, respectively. Thus, a preferred amino terminal or carboxy terminal amino acid insertion would contain gp41 amino acid sequences found immediately amino to or carboxy to the DP178 region of the gp41 protein.




Deletions of DP178 (SEQ ID NO:1) or DP178 truncations are also within the scope of the invention. Such deletions consist of the removal of one or more amino acids from the DP178 or DP178-like peptide sequence, with the lower limit length of the resulting peptide sequence being 4 to 6 amino acids. Such deletions may involve a single contiguous or greater than one discrete portion of the peptide sequences. One or more such deletions may be introduced into DP178 (SEQ ID NO:1) or DP178 truncations, as long as such deletions result in peptides which may still be recognized by the 107×178×4, ALLMOTI5 or PLZIP search motifs described herein, or may, alternatively, exhibit antifusogenic or antiviral activity, or exhibit the ability to modulate intracellular processes involving coiled-coil peptide structures.




DP178 analogs are further described, below, in Section 5.3.




5.2. DP107 and DP107-Like Peptides




Further, the peptides of the invention include peptides having amino acid sequences corresponding to DP107 analogs. DP107 is a 38 amino acid peptide which exhibits potent antiviral activity, and corresponds to residues 558 to 595 of HIV-1


LAI


transmembrane (TM) gp41 protein, as shown here:




NH


2


-NNLLRAIEAQQHLLQLTVWQIKQLQARILAVERYLKDQ-COOH




In addition to the full-length DP107 38-mer, the peptides of the invention may include truncations of the DP107 peptide which exhibit antifusogenic activity, antiviral activity and/or the ability to modulate intracellular processes involving coiled-coil peptide structures. Truncations of DP107 peptides may comprise peptides of between 3 and 38 amino acid residues (i.e., peptides ranging in size from a tripeptide to a 38-mer polypeptide), with the following amino acid sequence X-NNLLRAIEAQQHLLQLTVWQIKQLQARILAVERYLKDQ-Y (SEQ ID NO:25) including C-terminally truncated fragments containing at least three amino acids or N-terminal fragments containing at least three amino acids. Peptide sequences in these tables are listed from amino (left) to carboxy (right) terminus. “X” may represent an amino group (—NH


2


) and “Z” may represent a carboxyl (—COOH) group. Alternatively, “X” may represent a hydrophobic group, including but not limited to carbobenzyl, dansyl, or T-butoxycarbonyl; an acetyl group; a 9-fluorenylmethoxy-carbonyl (FMOC) group; or a covalently attached macromolecular group, including but not limited to a lipid-fatty acid conjugate, polyethylene glycol, carbohydrate or peptide group. Further, “Z” may represent an amido group; a T-butoxycarbonyl group; or a covalently attached macromolecular group, including but not limited to a lipid-fatty acid conjugate, polyethylene glycol, carbohydrate or peptide group. A preferred “X” or “Z” macromolecular group is a peptide group.




The peptides of the invention also include DP107-like peptides. “DP107-like”, as used herein, refers, first, to DP107 and DP107 truncations which contain one or more amino acid substitutions, insertions and/or deletions. Second, “DP-107-like” refers to peptide sequences identified or recognized by the ALLMOTI5, 107×178×4 and PLZIP search motifs described herein, having structural and/or amino acid motif similarity to DP107. The DP107-like peptides of the invention may exhibit antifusogenic or antiviral activity, or may exhibit the ability to modulate intracellular processes involving coiled-coil peptides. Further, such DP107-like peptides may possess additional advantageous features, such as, for example, increased bioavailability, and/or stability, or reduced host immune recognition.




HIV-1 and HIV-2 enveloped proteins are structurally distinct, but there exists a striking amino acid conservation within the DP107-corresponding regions of HIV-1 and HIV-2. The amino acid conservation is of a periodic nature, suggesting some conservation of structure and/or function. Therefore, one possible class of amino acid substitutions would include those amino acid changes which are predicted to stabilize the structure of the DP107 peptides of the invention. Utilizing the DP107 and DP107 analog sequences described herein, the skilled artisan can readily compile DP107 consensus sequences and ascertain from these, conserved amino acid residues which would represent preferred amino acid substitutions.




The amino acid substitutions may be of a conserved or non-conserved nature. Conserved amino acid substitutions consist of replacing one or more amino acids of the DP107 peptide sequence with amino acids of similar charge, size, and/or hydrophobicity characteristics, such as, for example, a glutamic acid (E) to aspartic acid (D) amino acid substitution. Non-conserved substitutions consist of replacing one or more amino acids of the DP107 (SEQ ID NO:25) peptide sequence with amino acids possessing dissimilar charge, size, and/or hydrophobicity characteristics, such as, for example, a glutamic acid (E) to valine (V) substitution.




Amino acid insertions may consist of single amino acid residues or stretches of residues. The insertions may be made at the carboxy or amino terminal end of the DP107 or DP107 truncated peptides, as well as at a position internal to the peptide. Such insertions will generally range from 2 to 15 amino acids in length. It is contemplated that insertions made at either the carboxy or amino terminus of the peptide of interest may be of a broader size range, with about 2 to about 50 amino acids being preferred. One or more such insertions may be introduced into DP107 or DP107 truncations, as long as such insertions result in peptides which may still be recognized by the 107×178×4, ALLMOTI5 or PLZIP search motifs described herein, or may, alternatively, exhibit antifusogenic or antiviral activity, or exhibit the ability to modulate intracellular processes involving coiled-coil peptide structures.




Preferred amino or carboxy terminal insertions are peptides ranging from about 2 to about 50 amino acid residues in length, corresponding to gp41 protein regions either amino to or carboxy to the actual DP107 gp41 amino acid sequence, respectively. Thus, a preferred amino terminal or carboxy terminal amino acid insertion would contain gp41 amino acid sequences found immediately amino to or carboxy to the DP107 region of the gp41 protein.




Deletions of DP107 or DP178 truncations are also within the scope of the invention. Such deletions consist of the removal of one or more amino acids from the DP107 or DP107-like peptide sequence, with the lower limit length of the resulting peptide sequence being 4 to 6 amino acids. Such deletions may involve a single contiguous or greater than one discrete portion of the peptide sequences. One or more such deletions may be introduced into DP107 or DP107 truncations, as long as such deletions result in peptides which may still be recognized by the 107×178×4, ALLMOTI5 or PLZIP search motifs described herein, or may, alternatively, exhibit antifusogenic or antiviral activity, or exhibit the ability to modulate intracellular processes involving coiled-coil peptide structures.




DP107 and DP107 truncations are more fully described in Applicants' co-pending U.S. patent application Ser. No. 08/374,666, filed Jan. 27, 1995, and which is incorporated herein by reference in its entirety. DP107 analogs are further described, below, in Section 5.3.




5.3. DP107 and DP178 Analogs




Peptides corresponding to analogs of the DP178, DP178 truncations, DP107 and DP107 truncation sequences of the invention, described, above, in Sections 5.1 and 5.2 may be found in other viruses, including, for example, non-HIV-1


LAI


enveloped viruses, non-enveloped viruses and other non-viral organisms.




The term “analog”, as used herein, refers to a peptide which is recognized or identified via the 107×178×4, ALLMOTI5 and/or PLZIP search strategies discussed below. Further, such peptides may exhibit antifusogenic capability, antiviral activity, or the ability to modulate intracellular processes involving coiled-coil structures.




Such DP178 and DP107 analogs may, for example, correspond to peptide sequences present in TM proteins of enveloped viruses and may, additionally correspond to peptide sequences present in non enveloped and non-viral organisms. Such peptides may exhibit antifusogenic activity, antiviral activity, most particularly antiviral activity which is specific to the virus in which their native sequences are found, or may exhibit an ability to modulate intracellular processes involving coiled-coil peptide structures.




DP178 analogs are peptides whose amino acid sequences are comprised of the amino acid sequences of peptide regions of, for example, other (i.e., other than HIV-1


LAI


) viruses that correspond to the gp41 peptide region from which DP178 (SEQ ID NO:1) was derived. Such viruses may include, but are not limited to, other HIV-1 isolates and HIV-2 isolates. DP178 analogs derived from the corresponding gp41 peptide region of other (i.e., non HIV-1


LAI


) HIV-1 isolates may include, for example, peptide sequences as shown below.




NH


2


-YTNTIYTLLEESQNQQEKNEQELLELDKWASLWNWF-COOH (DP-185; SEQ ID NO:3);




NH


2


-YTGIIYNLLEESQNQQEKNEQELLELDKWANLWNWF-COOH (SEQ ID NO:4);




NH


2


-YTSLIYSLLEKSQIQQEKNEQELLELDKWASLWNWF-COOH (SEQ ID NO:5).




SEQ ID NO:3 (DP-185), SEQ ID NO:4, and SEQ ID NO:5 are derived from HIV-1


SF2


, HIV-1


RF


, and HIV-1


MN


isolates, respectively. Underlined amino acid residues refer to those residues that differ from the corresponding position in the DP178 (SEQ ID NO:1) peptide. One such DP178 analog, DP-185 (SEQ ID NO:3), is described in the Example presented in Section 6, below, where it is demonstrated that DP-185 (SEQ ID NO:3) exhibits antiviral activity. The DP178 analogs of the invention may also include truncations, as described above. Further, the analogs of the invention modifications such those described for DP178 analogs in Section 5.1., above. It is preferred that the DP178 analogs of the invention represent peptides whose amino acid sequences correspond to the DP178 region of the gp41 protein, it is also contemplated that the peptides of the invention may, additionally, include amino sequences, ranging from about 2 to about 50 amino acid residues in length, corresponding to gp41 protein regions either amino to or carboxy to the actual DP178 amino acid sequence.




Striking similarities, as shown in

FIG. 1

, exist within the regions of HIV-1 and HIV-2 isolates which correspond to the DP178 sequence. A DP178 analog derived from the HIV-2


NIHZ


isolate has the 36 amino acid sequence (reading from amino to carboxy terminus):




NH


2


-LEANISQSLEQAQIQQEKNMYELQKLNSWDVFTNWL-COOH (SEQ ID NO:7)




Possible truncations of the HIV-2


NIHZ


DP178 analog may comprise peptides of between 3 and 36 amino acid residues (i.e., peptides ranging in size from a tripeptide to a 36-mer polypeptide) with the following amino acid sequence:




X-LEANISQSLEQAQIQQEKNMYELQKLNSWDVFTNWL-Y (SEQ ID NO:7) including C-terminally truncated fragments containing at least three amino acids or N-terminal fragments containing at least three amino acids. Peptide sequences in these tables are listed from amino (left) to carboxy (right) terminus. “X” may represent an amino group (—NH


2


) and “Z” may represent a carboxyl (—COOH) group. Alternatively, “X” may represent a hydrophobic group, including but not limited to carbobenzyl, dansyl, or T-butoxycarbonyl; an acetyl group; a 9-fluorenylmethoxy-carbonyl (FMOC) group; or a covalently attached macromolecular group, including but not limited to a lipid-fatty acid conjugate, polyethylene glycol, carbohydrate or peptide group. Further, “Z” may represent an amido group; a T-butoxycarbonyl group; or a covalently attached macromolecular group, including but not limited to a lipid-fatty acid conjugate, polyethylene glycol, carbohydrate or peptide group. A preferred “X” or “Z” macromolecular group is a peptide group.




DP178 and DP107 analogs are recognized or identified, for example, by utilizing one or more of the 107×178×4, ALLMOTI5 or PLZIP computer-assisted search strategies described and demonstrated, below, in the Examples presented in Sections 9 through 16 and 19 through 25. The search strategy identifies additional peptide regions which are predicted to have structural and/or amino acid sequence features similar to those of DP107 and/or DP178.




The search strategies are described fully, below, in the Example presented in Section 9. While this search strategy is based, in part, on a primary amino acid motif deduced from DP107 and DP178, it is not based solely on searching for primary amino acid sequence homologies, as such protein sequence homologies exist within, but not between major groups of viruses. For example, primary amino acid sequence homology is high within the TM protein of different strains of HIV-1 or within the TM protein of different isolates of simian immunodeficiency virus (SIV). Primary amino acid sequence homology between HIV-1 and SIV, however, is low enough so as not to be useful. It is not possible, therefore, to find peptide regions similar to DP107 or DP178 within other viruses, or within non-viral organisms, whether structurally, or otherwise, based on primary sequence homology, alone.




Further, while it would be potentially useful to identify primary sequence arrangements of amino acids based on, for example, the physical chemical characteristics of different classes of amino acids rather than based on the specific amino acids themselves, such search strategies have, until now, proven inadequate. For example, a computer algorithm designed by Lupas et al. to identify coiled-coil propensities of regions within proteins (Lupas, A., et al., 1991 Science 252:1162-1164) is inadequate for identifying protein regions analogous to DP107 or DP178.




Specifically, analysis of HIV-1 gp160 (containing both gp120 and gp41) using the Lupas algorithm does not identify the coiled-coil region within DP107. It does, however, identify a region within DP178 beginning eight amino acids N-terminal to the start of DP178 and ending eight amino acids from the C-terminus. The DP107 peptide has been shown experimentally to form a stable coiled coil. A search based on the Lupas search algorithm, therefore, would not have identified the DP107 coiled-coil region. Conversely, the Lupas algorithm identified the DP178 region as a potential coiled-coil motif. However, the peptide derived from the DP178 region failed to form a coiled coil in solution.




A possible explanation for the inability of the Lupas search algorithm to accurately identify coiled-coil sequences within the HIV-1 TM, is that the Lupas algorithm is based on the structure of coiled coils from proteins that are not structurally or functionally similar to the TM proteins of viruses, antiviral peptides (e.g. DP107 and DP178) of which are an object of this invention.




The computer search strategy of the invention, as demonstrated in the Examples presented below, in Sections 9 through 16 and 19 through 25, successfully identifies regions of proteins similar to DP107 or DP178. This search strategy was designed to be used with a commercially-available sequence database package, preferably PC/Gene.




A series of search motifs, the 107×178×4, ALLMOTI5 and PLZIP motifs, were designed and engineered to range in stringency from strict to broad, as discussed in this Section and in Section 9, with 107×178×4 being preferred. The sequences identified via such search motifs, such as those listed in Tables V-XIV, below, potentially exhibit antifusogenic, such as antiviral, activity, may additionally be useful in the identification of antifusogenic, such as antiviral, compounds, and are intended to be within the scope of the invention.




Coiled-coiled sequences are thought to consist of heptad amino acid repeats. For ease of description, the amino acid positions within the heptad repeats are sometimes referred to as A through G, with the first position being A, the second B, etc. The motifs used to identify DP107-like and DP178-like sequences herein are designed to specifically search for and identify such heptad repeats. In the descriptions of each of the motifs described, below, amino acids enclosed by brackets , i.e., [ ], designate the only amino acid residues that are acceptable at the given position, while amino acids enclosed by braces, i.e., { }, designate the only amino acids which are unacceptable at the given heptad position. When a set of bracketed or braced amino acids is followed by a number in parentheses i.e., ( ), it refers to the number of subsequent amino acid positions for which the designated set of amino acids hold, e.g, a (2) means “for the next two heptad amino acid positions”.




The ALLMOTI5 is written as follows:




{CDGHP}-{CFP}(2)-{CDGHP}-{CFP}(3)—




{CDGHP}-{CFP}(2)-{CDGHP}-{CFP}(3)—




{CDGHP}-{CFP}(2)-{CDGHP}-{CFP}(3)—




{CDGHP}-{CFP}(2)-{CDGHP}-{CFP}(3)—




{CDGHP}-{CFP}(2)-{CDGHP}-{CFP}(3)—




Translating this motif, it would read: “at the first (A) position of the heptad, any amino acid residue except C, D, G, H, or P is acceptable, at the next two (B,C) amino acid positions, any amino acid residue except C, F, or P is acceptable, at the fourth heptad position (D), any amino acid residue except C, D, G, H, or P is acceptable, at the next three (E, F, G) amino acid positions, any amino acid residue except C, F, or P is acceptable. This motif is designed to search for five consecutive heptad repeats (thus the repeat of the first line five times), meaning that it searches for 35-mer sized peptides. It may also be designed to search for 28-mers, by only repeating the initial motif four times. With respect to the ALLMOTI5 motif, a 35-mer search is preferred. Those viral (non-bacteriophage) sequences identified via such an ALLMOTI5 motif are listed in Table V, below, at the end of this Section. The viral sequences listed in Table V potentially exhibit antiviral activity, may be useful in the identification of antiviral compounds, and are intended to be within the scope of the invention. In those instances wherein a single gene exhibits greater than one sequence recognized by the ALLMOTI5 search motif, the amino acid residue numbers of these sequences are listed under “Area 2”, Area 3”, etc. This convention is used for each of the Tables listed, below, at the end of this Section.




The 107×178×4 motif is written as follows:




[EFIKLNQSTVWY]-{CFMP}(2)-[EFIKLNQSTVWY]-{CFMP}(3)—




[EFIKLNQSTVWY]-{CFMP}(2)-[EFIKLNQSTVWY]-{CFMP}(3)—




[EFIKLNQSTVWY]-{CFMP}(2)-[EFIKLNQSTVWY]-{CFMP}(3)—




[EFIKLNQSTVWY]-{CFMP}(2)-[EFIKLNQSTVWY]-{CFMP}(3)—




Translating this motif, it would read: “at the first (A) position of the heptad, only amino acid residue E, F, I, K, L, N, Q, S, T, V, W, or Y is acceptable, at the next two (B,C) amino acid positions, any amino acid residue except C, F, M or P is acceptable, at the fourth position (D), only amino acid residue E, F, I, K, L, N, Q, S, T, V, W, or Y is acceptable, at the next three (E, F, G) amino acid positions, any amino acid residue except C, F, M or P is acceptable. This motif is designed to search for four consecutive heptad repeats (thus the repeat of the first line four times), meaning that it searches for 28-mer sized peptides. It may also be designed to search for 35-mers, by repeating the initial motif five times. With respect to the 107×178×4 motif, a 28-mer search is preferred.




Those viral (non-bacteriophage) sequences identified via such a 107×178×4 motif are listed in Table II, below, at the end of this Section, with those viral (non-bacteriophage) sequences listed in Table III, below at the end of this Section, being preferred.




The 107×178×4 search motif was also utilized to identify non-viral procaryotic protein sequences, as listed in Table IV, below, at the end of this Section. Further, this search motif was used to reveal a number of human proteins. The results of this human protein 107×178×4 search is listed in Table V, below, at the end of this Section. The sequences listed in Tables IV and V, therefore, reveal peptides which may be useful as antifusogenic compounds or in the identification of antifusogenic compounds, and are intended to be within the scope of the invention.




The PLZIP series of motifs are as listed in FIG.


19


. These motifs are designed to identify leucine zipper coiled-coil like heptads wherein at least one proline residue is present at some predefined distance N-terminal to the repeat. These PLZIP motifs find regions of proteins with similarities to HIV-1 DP178 generally located just N-terminal to the transmembrane anchor. These motifs may be translated according to the same convention described above. Each line depicted in

FIG. 19

represents a single, complete search motif. “X” in these motifs refers to any amino acid residue. In instances wherein a motif contains two numbers within parentheses, this refers to a variable number of amino acid residues. For example, X (1,12) is translated to “the next one to twelve amino acid residues, inclusive, may be any amino acid”.




Tables VI through IX below, at the end of this Section, list sequences identified via searches conducted with such PLZIP motifs. Specifically, Table VI lists viral sequences identified via PCTLZIP, P1CTLZIP and P2CTLZIP search motifs, Table VII lists viral sequences identified via P3CTLZIP, P4CTLZIP, P5CTLZIP and P6CTLZIP search motifs, Table VIII lists viral sequences identified via P7CTLZIP, P8CTLZIP and P9CTLZIP search motifs, Table IX lists viral sequences identified via P12LZIPC searches and Table X lists viral sequences identified via P23TLZIPC search motifs The viral sequences listed in these tables represent peptides which potentially exhibit antiviral activity, may be useful in the identification of antiviral compounds, and are intended to be within the scope of the invention.




The Examples presented in Sections 17, 18, 26 and 27 below, demonstrate that viral sequences identified via the motif searches described herein identify substantial antiviral characteristics. Specifically, the Example presented in Section 17 describes peptides with anti-respiratory syncytial virus activity, the Example presented in Section 18 describes peptides with anti-parainfluenza virus activity, the Example presented in Section 26 describes peptides with anti-measles virus activity and the Example presented in Section 27 describes peptides with anti-simian immunodeficiency virus activity.




The DP107 and DP178 analogs may, further, contain any of the additional groups described for DP178, above, in Section 5.1. For example, these peptides may include any of the additional amino-terminal groups as described above for “X” groups, and may also include any of the carboxy-terminal groups as described, above, for “Z” groups.




Additionally, truncations of the identified DP107 and DP178 peptides are among the peptides of the invention. Further, such DP107 and DP178 analogs and DP107/DP178 analog truncations may exhibit one or more amino acid substitutions, insertion, and/or deletions. The DP178 analog amino acid substitutions, insertions and deletions, are as described, above, for DP178-like peptides in Section 5.1. The DP-107 analog amino acid substitutions, insertions and deletions are also as described, above, for DP107-like peptides in Section 5.2.




Truncations of Respiratory Syncytial Virus region DP107 peptides may comprise peptides of between 3 and 36 amino acid residues (i.e., peptides ranging in size from a tripeptide to a 36 mer polypeptide) with the following amino acid sequence:




X-YTSVITIELSNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMZQST-Z (SEQ ID NO:16) including C-terminally truncated fragments containing at least three amino acids or N-terminal fragments containing at least three amino acids. Truncations of Respiratory Syncytial Virus region DP178 peptides may comprise peptides of between 3 and 36 amino acid residues (i.e., peptides ranging in size from a tripeptide to a 36 mer polypeptide) with the following amino acid sequence:




X-FYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELL-Z (SEQ ID NO:17) including C-terminally truncated fragments containing at least three amino acids or N-terminal fragments containing at least three amino acids. Truncations of Human Parainfluenza Virus 3 region DP107 peptides may comprise peptides of between 3 and 36 amino acid residues (i.e., peptides ranging in size from a tripeptide to a 36 mer polypeptide) with the following amino acid sequence:




X-ALGVATSAQITAAVALVEAKQARSDIEKLKEAIR-Z (SEQ ID NO:19) including C-terminally truncated fragments containing at least three amino acids or N-terminal fragments containing at least three amino acids. Truncations of Human Parainfluenza Virus 3 region DP178 peptides may comprise peptides of between 3 and 36 amino acid residues (i.e., peptides ranging in size from a tripeptide to a 36 mer polypeptide) with the following amino acid sequence:




X-ITLNNSVALDPIDISIELNKAKSDLEESKEWIRRS-Z (SEQ ID NO:18) including C-terminally truncated fragments containing at least three amino acids or N-terminal fragments containing at least three amino acids. Further, Table XI, below, presents DP107/DP178 analogs and analog truncations which exhibit substantial antiviral activity. These antiviral peptides are grouped according to the specific virus which they inhibit, including respiratory syncytial virus, human parainfluenza virus 3, simian immunodeficiency virus and measles virus.





































































































































































































































































































































































































































































































































































































































































































































































































































TABLE XI




REPRESENTATIVE DP107/DP178 ANALOG ANTIVIRAL PEPTIDES




Anti-Respiratory Syncytial Virus Peptides




X-TSVITIELSNIKENKCNGTDAKVKLIKQELDKYKN-Z (SEQ ID NO:125)




X-SVITIELSNIKENKCNGTDAKVKLIKQELDKYKNA-Z (SEQ ID NO:126)




X-VITIELSNIKENKCNGTDAKVKLIKQELDKYKNAV-Z (SEQ ID NO:213)




X-VAVSKVLHLEGEVNKIALLSTNKAVVSLSNGVS-Z (SEQ ID NO:20)




X-AVSKVLHLEGEVNKIALLSTNKAVVSLSNGVSV-Z (SEQ ID NO:21)




X-VSKVLHLEGEVNKIALLSTNKAVVSLSNGVSVL-Z (SEQ ID NO:22)




X-SKVLHLEGEVNKIALLSTNKAVVSLSNGVSVLT-Z (SEQ ID NO:23)




X-KVLHLEGEVNKIALLSTNKAVVSLSNGVSVLTS-Z (SEQ ID NO:24)




X-LEGEVNKIALLSTNKAVVSLSNGVSVLTSKVLD-Z (SEQ ID NO:25)




X-GEVNKIALLSTNKAVVSLSNGVSVLTSKVLDLK-Z (SEQ ID NO:26)




X-EVNKIALLSTNKAVVSLSNGVSVLTSKVLDLKN-Z (SEQ ID NO:27)




X-VNKIALLSTNKAVVSLSNGVSVLTSKVLDLKNY-Z (SEQ ID NO:28)




X-NKIALLSTNKAVVSLSNGVSVLTSKVLDLKNYI-Z (SEQ ID NO:29)




X-KIALLSTNKAVVSLSNGVSVLTSKVLDLKNYID-Z (SEQ ID NO:30)




X-IALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDK-Z (SEQ ID NO:31)




X-ALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQ-Z (SEQ ID NO:32)




Anti-human Parainfluenza Virus 3 Peptides




X-TLNNSVALDPIDISIELNKAKSDLEESKEWIRRSN-Z (SEQ ID NO:33)




X-LNNSVALDPIDISIELNKAKSDLEESKEWIRRSNQ-Z (SEQ ID NO:34)




X-NNSVALDPIDISIELNKAKSDLEESKEWIRRSNQK-Z (SEQ ID NO:35)




X-NSVALDPIDISIELNKAKSDLEESKEWIRRSNQKL-Z (SEQ ID NO:36)




X-SVALDPIDISIELNKAKSDLEESKEWIRRSNQKLD-Z (SEQ ID NO:37)




X-VALDPIDISIELNKAKSDLEESKEWIRRSNQKLDS-Z (SEQ ID NO:38)




X-ALDPIDISIELNKAKSDLEESKEWIRRSNQKLDSI-Z (SEQ ID NO:39)




X-LDPIDISIELNKAKSDLEESKEWIRRSNQKLDSIG-Z (SEQ ID NO:40)




X-DPIDISIELNKAKSDLEESKEWIRRSNQKLDSIGN-Z (SEQ ID NO:41)




X-PIDISIELNKAKSDLEESKEWIRRSNQKLDSIGNW-Z (SEQ ID NO:42)




X-IDISIELNKAKSDLEESKEWIRRSNQKLDSIGNWH-Z (SEQ ID NO:43)




X-DISIELNKAKSDLEESKEWIRRSNQKLDSIGNWHQ-Z (SEQ ID NO:44)




X-ISIELNKAKSDLEESKEWIRRSNQKLDSIGNWHQS-Z (SEQ ID NO:45)




X-SIELNKAKSDLEESKEWIRRSNQKLDSIGNWHQSS-Z (SEQ ID NO:46)




X-IELNKAKSDLEESKEWIRRSNQKLDSIGNWHQSST-Z (SEQ ID NO:47)




X-ELNKAKSDLEESKEWIRRSNQKLDSIGNWHQSSTT-Z (SEQ ID NO:48)




X-TAAVALVEAKQARSDIEKLKEAIRDTNKAVQSVQS-Z (SEQ ID NO:49)




X-AVALVEAKQARSDIEKLKEAIRDTNKAVQSVQSSI-Z (SEQ ID NO:50)




X-LVEAKQARSDIEKLKEAIRDTNKAVQSVQSSIGNL-Z (SEQ ID NO:51)




X-VEAKQARSDIEKLKEAIRDTNKAVQSVQSSIGNLI-Z (SEQ ID NO:52)




X-EAKQARSDIEKLKEAIRDTNKAVQSVQSSIGNLIV-Z (SEQ ID NO:53)




X-AKQARSDIEKLKEAIRDTNKAVQSVQSSIGNLIVA-Z (SEQ ID NO:54)




X-KQARSDIEKLKEAIRDTNKAVQSVQSSIGNLIVAI-Z (SEQ ID NO:55)




X-QARSDIEKLKEAIRDTNKAVQSVQSSIGNLIVAIK-Z (SEQ ID NO:56)




X-ARSDIEKLKEAIRDTNKAVQSVQSSIGNLIVAIKS-Z (SEQ ID NO:57)




X-RSDIEKLKEAIRDTNKAVQSVQSSIGNLIVAIKSV-Z (SEQ ID NO:58)




X-SDIEKLKEAIRDTNKAVQSVQSSIGNLIVAIKSVQ-Z (SEQ ID NO:59)




X-KLKEAIRDTNKAVQSVQSSIGNLIVAIKSVQDYVN-Z (SEQ ID NO:60)




X-LKEAIRDTNKAVQSVQSSIGNLIVAIKSVQDYVNK-Z (SEQ ID NO:61)




X-AIRDTNKAVQSVQSSIGNLIVAIKSVQDYVNKEIV-Z (SEQ ID NO:62)




Anti-simian Immunodeficiency Virus Peptides




X-WQEWERKVDFLEENITALLEEAQIQQEKNMYELQK-Z (SEQ ID NO:63)




X-QEWERKVDFLEENITALLEEAQIQQEKNMYELQKL-Z (SEQ ID NO:64)




X-EWERKVDFLEENITALLEEAQIQQEKNMYELQKLN-Z (SEQ ID NO:65)




X-WERKVDFLEENITALLEEAQIQQEKNMYELQKLNS-Z (SEQ ID NO:66)




X-ERKVDFLEENITALLEEAQIQQEKNMYELQKLNSW-Z (SEQ ID NO:67)




X-RKVDFLEENITALLEEAQIQQEKNMYELQKLNSWD-Z (SEQ ID NO:68)




X-KVDFLEENITALLEEAQIQQEKNMYELQKLNSWDV-Z (SEQ ID NO:69)




X-VDFLEENITALLEEAQIQQEKNMYELQKLNSWDVF-Z (SEQ ID NO:70)




X-DFLEENITALLEEAQIQQEKNMYELQKLNSWDVFG-Z (SEQ ID NO:71)




X-FLEENITALLEEAQIQQEKNMYELQKLNSWDVFGN-Z (SEQ ID NO:72)




Anti-measles Virus Peptides




X-LHRIDLGPPISLERLDVGTNLGNAIAKLEAKELL-Z (SEQ ID NO:73)




X-HRIDLGPPISLERLDVGTNLGNAIAKLEAKELLE-Z (SEQ ID NO:74)




X-RIDLGPPISLERLDVGTNLGNAIAKLEAKELLES-Z (SEQ ID NO:75)




X-IDLGPPISLERLDVGTNLGNAIAKLEAKELLESS-Z (SEQ ID NO:76)




X-DLGPPISLERLDVGTNLGNAIAKLEAKELLESSD-Z (SEQ ID NO:77)




X-LGPPISLERLDVGTNLGNAIAKLEAKELLESSDQ-Z (SEQ ID NO:78)




X-GPPISLERLDVGTNLGNAIAKLEAKELLESSDQI-Z (SEQ ID NO:79)




X-PPISLERLDVGTNLGNAIAKLEAKELLESSDQIL-Z (SEQ ID NO:80)




X-PISLERLDVGTNLGNAIAKLEAKELLESSDQILR-Z (SEQ ID NO:81)




X-SLERLDVGTNLGNAIAKLEAKELLESSDQILRSM-Z (SEQ ID NO:82)




X-LERLDVGTNLGNAIAKLEAKELLESSDQILRSMK-Z (SEQ ID NO:83)




The one Letter Amino Acid Code is used.




Additionally,




“X” may represent an amino group, a hydrophobic group, including but not limited to carbobenzoxyl, dansyl, or T-butyloxycarbonyl; an acetyl group; a 9-fluorenylmethoxy-carbonyl (FMOC) group; a macromolecular carrier group including but not limited to lipid-fatty acid conjugates, polyethylene glycol, or carbohydrates.




“Z” may represent a carboxyl group; an amido group; a T-butyloxycarbonyl group; a macromolecular carrier group including but not limited to lipid-fatty acid conjugates, polyethylene glycol, or carbohydrates.




5.4. Synthesis of Peptides




The peptides of the invention may be synthesized or prepared by techniques well known in the art. See, for example, Creighton, 1983, Proteins: Structures and Molecular Principles, W.H. Freeman and Co., NY, which is incorporated herein by reference in its entirety. Short peptides, for example, can be synthesized on a solid support or in solution. Longer peptides may be made using recombinant DNA techniques. Here, the nucleotide sequences encoding the peptides of the invention may be synthesized, and/or cloned, and expressed according to techniques well known to those of ordinary skill in the art. See, for example, Sambrook, et al., 1989, Molecular Cloning, A Laboratory Manual, Vols. 1-3, Cold Spring Harbor Press, N.Y.




The peptides of the invention may alternatively be synthesized such that one or more of the bonds which link the amino acid residues of the peptides are non-peptide bonds. These alternative non-peptide bonds may be formed by utilizing reactions well known to those in the art, and may include, but are not limited to imino, ester, hydrazide, semicarbazide, and azo bonds, to name but a few. In yet another embodiment of the invention, peptides comprising the sequences described above may be synthesized with additional chemical groups present at their amino and/or carboxy termini, such that, for example, the stability, bioavailability, and/or inhibitory activity of the peptides is enhanced. For example, hydrophobic groups such as carbobenzoxyl, dansyl, or t-butyloxycarbonyl groups, may be added to the peptides' amino termini. Likewise, an acetyl group or a 9-fluorenylmethoxy-carbonyl group may be placed at the peptides' amino termini. (See “X” in Tables I to IV, above.) Additionally, the hydrophobic group, t-butyloxycarbonyl, or an amido group may be added to the peptides' carboxy termini. (See “Z” in Tables I to IV, above.)




Further, the peptides of the invention may be synthesized such that their steric configuration is altered. For example, the D-isomer of one or more of the amino acid residues of the peptide may be used, rather than the usual L-isomer.




Still further, at least one of the amino acid residues of the peptides of the invention may be substituted by one of the well known non-naturally occurring amino acid residues. Alterations such as these may serve to increase the stability, bioavailability and/or inhibitory action of the peptides of the invention.




Any of the peptides described above may, additionally, have a macromolecular carrier group covalently attached to their amino and/or carboxy termini. Such macromolecular carrier groups may include, for example, lipid-fatty acid conjugates, polyethylene glycol, carbohydrates or additional peptides. “X”, in Tables I to IV, above, may therefore additionally represent any of the above macromolecular carrier groups covalently attached to the amino terminus of a peptide, with an additional peptide group being preferred. Likewise, “Z”, in Tables I to IV, may additionally represent any of the macromolecular carrier groups described above.




5.5. Assays for Anti-Membrane Fusion Activity




Described herein, are methods for ability of a compound, such as the peptides of the invention, to inhibit membrane fusion events. Specifically, assays for cell fusion events are described in Section 5.5.1, below, and assays for antiviral activity are described in Section 5.5.2, below.




5.5.1 Assays for Cell Fusion Events




Assays for cell fusion events are well known to those of skill in the art, and may be used in conjunction, for example, with the peptides of the invention to test the peptides' antifusogenic capabilities.




Cell fusion assays are generally performed in vitro. Such an assay may comprise culturing cells which, in the absence of any treatment would undergo an observable level of syncytial formation. For example, uninfected cells may be incubated in the presence of cells chronically infected with a virus that induces cell fusion. Such viruses may include, but are not limited to, HIV, SIV, or respiratory syncytial virus.




For the assay, cells are incubated in the presence of a peptide to be assayed. For each peptide, a range of peptide concentrations may be tested. This range should include a control culture wherein no peptide has been added.




Standard conditions for culturing cells, well known to those of ordinary skill in the art, are used. After incubation for an appropriate period (24 hours at 37° C., for example) the culture is examined microscopically for the presence of multinucleated giant cells, which are indicative of cell fusion and syncytial formation. Well known stains, such as crystal violet stain, may be used to facilitate the visualization of syncytial formation.




5.5.2 Assays for Antiviral Activity




The antiviral activity exhibited by the peptides of the invention may be measured, for example, by easily performed in vitro assays, such as those described below, which can test the peptides' ability to inhibit syncytia formation, or their ability to inhibit infection by cell-free virus. Using these assays, such parameters as the relative antiviral activity of the peptides, exhibit against a given strain of virus and/or the strain specific inhibitory activity of the peptide can be determined.




A cell fusion assay may be utilized to test the peptides' ability to inhibit viral-induced, such as HIV-induced, syncytia formation in vitro. Such an assay may comprise culturing uninfected cells in the presence of cells chronically infected with a syncytial-inducing virus and a peptide to be assayed. For each peptide, a range of peptide concentrations may be tested. This range should include a control culture wherein no peptide has been added. Standard conditions for culturing, well known to those of ordinary skill in the art, are used. After incubation for an appropriate period (24 hours at 37° C., for example) the culture is examined microscopically for the presence of multinucleated giant cells, which are indicative of cell fusion and syncytia formation. Well known stains, such as crystal violet stain, may be used to facilitate syncytial visualization. Taking HIV as an example, such an assay would comprise CD-4


+


cells (such as Molt or CEM cells, for example) cultured in the presence of chronically HIV-infected cells and a peptide to be assayed.




Other well known characteristics of viral infection may also be assayed to test a peptide's antiviral capabilities. Once again taking HIV as an example, a reverse transcriptase (RT) assay may be utilized to test the peptides' ability to inhibit infection of CD-4


+


cells by cell-free HIV. Such an assay may comprise culturing an appropriate concentration (i.e., TCID


50


) of virus and CD-4


+


cells in the presence of the peptide to be tested. Culture conditions well known to those in the art are used. As above, a range of peptide concentrations may be used, in addition to a control culture wherein no peptide has been added. After incubation for an appropriate period (e.g., 7 days) of culturing, a cell-free supernatant is prepared, using standard procedures, and tested for the present of RT activity as a measure of successful infection. The RT activity may be tested using standard techniques such as those described by, for example, Goff et al. (Goff, S. et al., 1981, J. Virol. 38:239-248) and/or Willey et al. (Willey, R. et al., 1988, J. Virol. 62:139-147). These references are incorporated herein by reference in their entirety.




Standard methods which are well-known to those of skill in the art may be utilized for assaying non-retroviral activity. See, for example, Pringle et al. (Pringle, C. R. et al., 1985, J. Medical Virology 17:377-386) for a discussion of respiratory syncytial virus and parainfluenza virus activity assay techniques. Further, see, for example, “Zinsser Microbiology”, 1988, Joklik, W. K. et al., eds., Appleton & Lange, Norwalk, Conn., 19th ed., for a general review of such techniques. These references are incorporated by reference herein in their entirety. In addition, the Examples presented below, in Sections 17, 18, 26 and 27 each provide additional assays for the testing of a compound's antiviral capability.




In vivo assays may also be utilized to test, for example, the antiviral activity of the peptides of the invention. To test for anti-HIV activity, for example, the in vivo model described in Barnett et al. (Barnett, S. W. et al., 1994, Science 266:642-646) may be used.




Additionally, anti-RSV activity can be assayed in vivo via well known mouse models. For example, RSV can be administered intranasally to mice of various inbred strains. Virus replicates in lungs of all strains, but the highest titers are obtained in P/N, C57L/N and DBA/2N mice. Infection of BALB/c mice produces an asymptomatic bronchiolitis characterized by lymphocytic infiltrates and pulmonary virus titers of 10


4


to 10


5


pfu/g of lung tissue (Taylor, G. et al., 1984, Infect. Immun. 43:649-655).




Cotton rat models of RSV are also well known. Virus replicates to high titer in the nose and lungs of the cotton rat but produces few if any signs of inflammation.




5.6. Uses of the Peptides of the Invention




The peptides of the invention may be utilized as antifusogenic or antiviral compounds, or as compounds which modulate intracellular processes involving coiled coil peptide structures. Further, such peptides may be used to identify agents which exhibit antifusogenic, antiviral or intracellular modulatory activity. Still further, the peptides of the invention may be utilized as organism or viral type/subtype-specific diagnostic tools.




The antifusogenic capability of the peptides of the invention may additionally be utilized to inhibit or treat/ameliorate symptoms caused by processes involving membrane fusion events. Such events may include, for example, virus transmission via cell-cell fusion, abnormal neurotransmitter exchange via cell-fusion, and sperm-egg fusion. Further, the peptides of the invention may be used to inhibit free viral, such as retroviral, particularly HIV, transmission to uninfected cells wherein such viral infection involves membrane fusion events or involves fusion of a viral structure with a cell membrane. Among the intracellular disorders involving coiled coil peptides structures which may be ameliorated by the peptides of the invention are disorders involving, for example, bacterial toxins.




With respect to antiviral activity, the viruses whose transmission may be inhibited by the peptides of the invention include, but are not limited to all strains of the viruses listed above, in Tables V through VII, and IX through XIV.




These viruses include, for example, human retroviruses, particularly HIV-1 and HIV-2 and the human T-lymphocyte viruses (HTLV-I and II). The non-human retroviruses whose transmission may be inhibited by the peptides of the invention include, but are not limited to bovine leukosis virus, feline sarcoma and leukemia viruses, simian immunodeficiency, sarcoma and leukemia viruses, and sheep progress pneumonia viruses.




Non retroviral viruses whose transmission may be inhibited by the peptides of the invention include, but are not limited to human respiratory syncytial virus, canine distemper virus, newcastle disease virus, human parainfluenza virus, influenza viruses, measles viruses, Epstein-Barr viruses, hepatitis B viruses, and simian Mason-Pfizer viruses.




Non enveloped viruses whose transmission may be inhibited by the peptides of the invention include, but are not limited to picornaviruses such as polio viruses, hepatitis A virus, enterovirus, echoviruses and coxsackie viruses, papovaviruses such as papilloma virus, parvoviruses, adenoviruses and reoviruses.




As discussed more fully, below, in Section 5.5.1 and in the Example presented, below, in Section 8, DP107, DP178, DP107 analog and DP178 analog peptides form non-covalent protein-protein interactions which are required for normal activity of the virus. Thus, the peptides of the invention may also be utilized as components in assays for the identification of compounds that interfere with such protein-protein interactions and may, therefore, act as antiviral agents. These assays are discussed, below, in Section 5.5.1.




As demonstrated in the Example presented below in Section 6, the antiviral activity of the peptides of the invention may show a pronounced type and subtype specificity, i.e., specific peptides may be effective in inhibiting the activity of only specific viruses. This feature of the invention presents many advantages. One such advantage, for example, lies in the field of diagnostics, wherein one can use the antiviral specificity of the peptide of the invention to ascertain the identity of a viral isolate. With respect to HIV, one may easily determine whether a viral isolate consists of an HIV-1 or HIV-2 strain. For example, uninfected CD-4


+


cells may be co-infected with an isolate which has been identified as containing HIV the DP178 (SEQ ID NO:1) peptide, after which the retroviral activity of cell supernatants may be assayed, using, for example, the techniques described above in Section 5.2. Those isolates whose retroviral activity is completely or nearly completely inhibited contain HIV-1. Those isolates whose viral activity is unchanged or only reduced by a small amount, may be considered to not contain HIV-1. Such an isolate may then be treated with one or more of the other DP178 peptides of the invention, and subsequently be tested for its viral activity in order to determine the identify of the viral isolate. The DP107 and DP178 analogs of the invention may also be utilized in a diagnostic capacity specific to the type and subtype of virus or organism in which the specific peptide sequence is found. A diagnostic procedure as described, above, for DP178, may be used in conjunction with the DP107/DP178 analog of interest.




5.5.1. Screening Assays




As demonstrated in the Example presented in Section 8, below, DP107 and DP178 portions of the TM protein gp41 form non-covalent protein-protein interactions. As is also demonstrated, the maintenance of such interactions is necessary for normal viral infectivity. Thus, compounds which bind DP107, bind DP178, and/or act to disrupt normal DP107/DP178 protein-protein interactions may act as antifusogenic, antiviral or cellular modulatory agents. Described below are assays for the identification of such compounds. Note that, while, for ease and clarity of discussion, DP107 and DP178 peptides will be used as components of the assays described, but it is to be understood that any of the DP107 analog or DP178 analog peptides described, above, in Sections 5.1 through 5.3 may also be utilized as part of these screens for compounds.




Compounds which may be tested for an ability to bind DP107, DP178, and/or disrupt DP107/DP178 interactions, and which therefore, potentially represent antifusogenic, antiviral or intracellular modulatory compounds, include, but are not limited to, peptides made of D- and/or L-configuration amino acids (in, for example, the form of random peptide libraries; see Lam, K. S. et al., 1991, Nature 354:82-84), phosphopeptides (in, for example, the form of random or partially degenerate, directed phosphopeptide libraries; see, for example, Songyang, Z. et al., 1993, Cell 72:767-778), antibodies, and small organic or inorganic molecules. Synthetic compounds, natural products, and other sources of potentially effective materials may be screened in a variety of ways, as described in this Section.




The compounds, antibodies, or other molecules identified may be tested, for example, for an ability to inhibit cell fusion or viral activity, utilizing, for example, assays such as those described, above, in Section 5.5.




Among the peptides which may be tested are soluble peptides comprising DP107 and/or DP178 domains, and peptides comprising DP107 and/or DP178 domains having one or more mutations within one or both of the domains, such as the M41-P peptide described, below, in the Example presented in Section 8, which contains a isoleucine to proline mutation within the DP178 sequence.




In one embodiment of such screening methods is a method for identifying a compound to be tested for antiviral ability comprising:




(a) exposing at least one compound to a peptide comprising a DP107 peptide for a time sufficient to allow binding of the compound to the DP107 peptide;




(b) removing non-bound compounds; and




(c) determining the presence of the compound bound to the DP107 peptide, thereby identifying an agent to be tested for antiviral ability.




In a second embodiment of such screening methods is a method for identifying a compound to be tested for antiviral ability comprising:




(a) exposing at least one compound to a peptide comprising a DP178 peptide for a time sufficient to allow binding of the compound to the DP178 peptide;




(b) removing non-bound compounds; and




(c) determining the presence of the compound bound to the DP178 peptide, thereby identifying an agent to be tested for antiviral ability.




One method utilizing these types of approaches that may be pursued in the isolation of such DP107-binding or DP178-binding compounds is an assay which would include the attachment of either the DP107 or the DP178 peptide to a solid matrix, such as, for example, agarose or plastic beads, microtiter plate wells, petri dishes, or membranes composed of, for example, nylon or nitrocellulose. In such an assay system, either the DP107 or DP178 protein may be anchored onto a solid surface, and the compound, or test substance, which is not anchored, is labeled, either directly or indirectly. In practice, microtiter plates are conveniently utilized. The anchored component may be immobilized by non-covalent or covalent attachments. Non-covalent attachment may be accomplished simply by coating the solid surface with a solution of the protein and drying.




Alternatively, an immobilized antibody, preferably a monoclonal antibody, specific for the protein may be used to anchor the protein to the solid surface. The surfaces may be prepared in advance and stored.




In order to conduct the assay, the labeled compound is added to the coated surface containing the anchored DP107 or DP178 peptide. After the reaction is complete, unreacted components are removed (e.g., by washing) under conditions such that any complexes formed will remain immobilized on the solid surface. The detection of complexes anchored on the solid surface can be accomplished in a number of ways. Where the compound is pre-labeled, the detection of label immobilized on the surface indicates that complexes were formed. Where the labeled component is not pre-labeled, an indirect label can be used to detect complexes anchored on the surface; e.g., using a labeled antibody specific for the compound (the antibody, in turn, may be directly labeled or indirectly labeled with a labeled anti-Ig antibody).




Alternatively, such an assay can be conducted in a liquid phase, the reaction products separated from unreacted components, and complexes detected; e.g., using an immobilized antibody specific for DP107 or DP178, whichever is appropriate for the given assay, or ab antibody specific for the compound, i.e., the test substance, in order to anchor any complexes formed in solution, and a labeled antibody specific for the other member of the complex to detect anchored complexes.




By utilizing procedures such as this, large numbers of types of molecules may be simultaneously screened for DP107 or DP178-binding capability, and thus potential antiviral activity.




Further, compounds may be screened for an ability to inhibit the formation of or, alternatively, disrupt DP107/DP178 complexes. Such compounds may then be tested for antifusogenic, antiviral or intercellular modulatory capability. For ease of description, DP107 and DP178 will be referred to as “binding partners.” Compounds that disrupt such interactions may exhibit antiviral activity. Such compounds may include, but are not limited to molecules such as antibodies, peptides, and the like described above.




The basic principle of the assay systems used to identify compounds that interfere with the interaction between the DP107 and DP178 peptides involves preparing a reaction mixture containing peptides under conditions and for a time sufficient to allow the two peptides to interact and bind, thus forming a complex. In order to test a compound for disruptive activity, the reaction is conducted in the presence and absence of the test compound, i.e., the test compound may be initially included in the reaction mixture, or added at a time subsequent to the addition of one of the binding partners; controls are incubated without the test compound or with a placebo. The formation of any complexes between the binding partners is then detected. The formation of a complex in the control reaction, but not in the reaction mixture containing the test compound indicates that the compound interferes with the interaction of the DP107 and DP178 peptides.




The assay for compounds that interfere with the interaction of the binding partners can be conducted in a heterogeneous or homogeneous format. Heterogeneous assays involve anchoring one of the binding partners onto a solid phase and detecting complexes anchored on the solid phase at the end of the reaction. In homogeneous assays, the entire reaction is carried out in a liquid phase. In either approach, the order of addition of reactants can be varied to obtain different information about the compounds being tested. For example, test compounds that interfere with the interaction between the binding partners, e.g., by competition, can be identified by conducting the reaction in the presence of the test substance; i.e., by adding the test substance to the reaction mixture prior to or simultaneously with the binding partners. On the other hand, test compounds that disrupt preformed complexes, e.g. compounds with higher binding constants that displace one of the binding partners from the complex, can be tested by adding the test compound to the reaction mixture after complexes have been formed. The various formats are described briefly below.




In a heterogeneous assay system, one binding partner, e.g., either the DP107 or DP178 peptide, is anchored onto a solid surface, and its binding partner, which is not anchored, is labeled, either directly or indirectly. In practice, microtiter plates are conveniently utilized. The anchored species may be immobilized by non-covalent or covalent attachments. Non-covalent attachment may be accomplished simply by coating the solid surface with a solution of the protein and drying. Alternatively, an immobilized antibody specific for the protein may be used to anchor the protein to the solid surface. The surfaces may be prepared in advance and stored.




In order to conduct the assay, the binding partner of the immobilized species is added to the coated surface with or without the test compound. After the reaction is complete, unreacted components are removed (e.g., by washing) and any complexes formed will remain immobilized on the solid surface. The detection of complexes anchored on the solid surface can be accomplished in a number of ways. Where the binding partner was pre-labeled, the detection of label immobilized on the surface indicates that complexes were formed. Where the binding partner is not pre-labeled, an indirect label can be used to detect complexes anchored on the surface; e.g., using a labeled antibody specific for the binding partner (the antibody, in turn, may be directly labeled or indirectly labeled with a labeled anti-Ig antibody). Depending upon the order of addition of reaction components, test compounds which inhibit complex formation or which disrupt preformed complexes can be detected.




Alternatively, the reaction can be conducted in a liquid phase in the presence or absence of the test compound, the reaction products separated from unreacted components, and complexes detected; e.g., using an immobilized antibody specific for one binding partner to anchor any complexes formed in solution, and a labeled antibody specific for the other binding partner to detect anchored complexes. Again, depending upon the order of addition of reactants to the liquid phase, test compounds which inhibit complex or which disrupt preformed complexes can be identified.




In an alternate embodiment of the invention, a homogeneous assay can be used. In this approach, a preformed complex of the DP107 and DP178 peptides is prepared in which one of the binding partners is labeled, but the signal generated by the label is quenched due to complex formation (see, e.g., U.S. Pat. No. 4,109,496 by Rubenstein which utilizes this approach for immunoassays). The addition of a test substance that competes with and displaces one of the binding partners from the preformed complex will result in the generation of a signal above background. In this way, test substances which disrupt DP-107/DP-178 protein-protein interaction can be identified.




In an alternative screening assay, test compounds may be assayed for the their ability to disrupt a DP178/DP107 interaction, as measured immunometrically using an antibody specifically reactive to a DP107/DP178 complex (i.e., an antibody that recognizes neither DP107 nor DP178 individually). Such an assay acts as a competition assay, and is based on techniques well known to those of skill in the art.




The above competition assay may be described, by way of example, and not by way of limitation, by using the DP178 and M41Δ178 peptides and by assaying test compounds for the disruption of the complexes formed by these two peptides by immunometrically visualizing DP178/M41Δ78 complexes via the human recombinant Fab, Fab-d, as described, below, in the Example presented in Section 8. M41Δ178 is a maltose binding fusion protein containing a gp41 region having its DP178 domain deleted, and is described, below, in the Example presented in Section 8.




Utilizing such an assay, M41Δ178 may be immobilized onto solid supports such as microtiter wells. A series of dilutions of a test compound may then be added to each M41Δ178-containing well in the presence of a constant concentration of DP-178 peptide. After incubation, at, for example, room temperature for one hour, unbound DP-178 and test compound are removed from the wells and wells are then incubated with the DP178/M41Δ178-specific Fab-d antibody. After incubation and washing, unbound Fab-d is removed from the plates and bound Fab-d is quantitated. A no-inhibitor control should also be conducted. Test compounds showing an ability to disrupt DP178/M41Δ178 complex formation are identified by their concentration-dependent decrease in the level of Fab-d binding.




A variation of such an assay may be utilized to perform a rapid, high-throughput binding assay which is capable of directly measuring DP178 binding to M41Δ178 for the determination of binding constants of the ligand of inhibitory constants for competitors of DP178 binding.




Such an assay takes advantage of accepted radioligand and receptor binding principles. (See, for example, Yamamura, H. I. et al., 1985, “Neurotransmitter Receptor Binding”, 2nd ed., Raven Press, NY.) As above, M41Δ178 is immobilized onto a solid support such as a microtiter well. DP178 binding to M41Δ178 is then quantitated by measuring the fraction of DP178 that is bound as


125


I-DP178 and calculating the total amount bound using a value for specific activity (dpm/μg peptide) determined for each labeled DP178 preparation. Specific binding to M41Δ178 is defined as the difference of the binding of the labeled DP178 preparation in the microtiter wells (totals) and the binding in identical wells containing, in addition, excess unlabeled DP178 (nonspecifics).




5.5 Pharmaceutical Formulations, Dosages and Modes of Administration




The peptides of the invention may be administered using techniques well known to those in the art. Preferably, agents are formulated and administered systemically. Techniques for formulation and administration may be found in “Remington's Pharmaceutical Sciences”, 18th ed., 1990, Mack Publishing Co., Easton, Pa. Suitable routes may include oral, rectal, transmucosal, or intestinal administration; parenteral delivery, including intramuscular, subcutaneous, intramedullary injections, as well as, intrathecal, direct intraventricular, intravenous, intraperitoneal, intranasal, or intraocular injections, just to name a few. For injection, the agents of the invention may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiological saline buffer. For such transmucosal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.




In instances wherein intracellular administration of the peptides of the invention or other inhibitory agents is preferred, techniques well known to those of ordinary skill in the art may be utilized. For example, such agents may be encapsulated into liposomes, then administered as described above. Liposomes are spherical lipid bilayers with aqueous interiors. All molecules present in an aqueous solution at the time of liposome formation are incorporated into the aqueous interior. The liposomal contents are both protected from the external microenvironment and, because liposomes fuse with cell membranes, are effectively delivered into the cell cytoplasm. Additionally, due to their hydrophobicity, when small molecules are to be administered, direct intracellular administration may be achieved.




Nucleotide sequences encoding the peptides of the invention which are to be intracellularly administered may be expressed in cells of interest, using techniques well known to those of skill in the art. For example, expression vectors derived from viruses such as retroviruses, vaccinia viruses, adeno-associated viruses, herpes viruses, or bovine papilloma viruses, may be used for delivery and expression of such nucleotide sequences into the targeted cell population. Methods for the construction of such vectors and expression constructs are well known. See, for example, Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor N.Y., and Ausubel et al., 1989, Current Protocols in Molecular Biology, Greene Publishing Associates and Wiley Interscience, NY.




With respect to HIV, peptides of the invention, particularly DP107 and DP178, may be used as therapeutics in the treatment of AIDS. In addition, the peptides may be used as prophylactic measures in previously uninfected individuals after acute exposure to an HIV virus. Examples of such prophylactic use of the peptides may include, but are not limited to, prevention of virus transmission from mother to infant and other settings where the likelihood of HIV transmission exists, such as, for example, accidents in health care settings wherein workers are exposed to HIV-containing blood products. The successful use of such treatments do not rely upon the generation of a host immune response directed against such peptides.




Effective dosages of the peptides of the invention to be administered may be determined through procedures well known to those in the art which address such parameters as biological half-life, bioavailability, and toxicity. Given the data presented below in Section 6, DP178, for example, may prove efficacious in vivo at doses required to achieve circulating levels of about 1 to about 10 ng per ml of peptide.




A therapeutically effective dose refers to that amount of the compound sufficient to result in amelioration of symptoms or a prolongation of survival in a patient. Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD


50


(the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD


50


/ED


50


. Compounds which exhibit large therapeutic indices are preferred. The data obtained from these cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from cell culture assays. A dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the IC


50


(e.g., the concentration of the test compound which achieves a half-maximal inhibition of the fusogenic event, such as a half-maximal inhibition of viral infection relative to the amount of the event in the absence of the test compound) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography (HPLC).




The peptides of the invention may, further, serve the role of a prophylactic vaccine, wherein the host raises antibodies against the peptides of the invention, which then serve to neutralize HIV viruses by, for example, inhibiting further HIV infection.




Administration of the peptides of the invention as a prophylactic vaccine, therefore, would comprise administering to a host a concentration of peptides effective in raising an immune response which is sufficient to neutralize HIV, by, for example, inhibiting HIV ability to infect cells. The exact concentration will depend upon the specific peptide to be administered, but may be determined by using standard techniques for assaying the development of an immune response which are well known to those of ordinary skill in the art. The peptides to be used as vaccines are usually administered intramuscularly.




The peptides may be formulated with a suitable adjuvant in order to enhance the immunological response. Such adjuvants may include, but are not limited to mineral gels such as aluminum hydroxide; surface active substances such as lysolecithin, pluronic polyols, polyanions; other peptides; oil emulsions; and potentially useful human adjuvants such as BCG and Corynebacterium parvum. Many methods may be used to introduce the vaccine formulations described here. These methods include but are not limited to oral, intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, and intranasal routes.




Alternatively, an effective concentration of polyclonal or monoclonal antibodies raised against the peptides of the invention may be administered to a host so that no uninfected cells become infected by HIV. The exact concentration of such antibodies will vary according to each specific antibody preparation, but may be determined using standard techniques well known to those of ordinary skill in the art. Administration of the antibodies may be accomplished using a variety of techniques, including, but not limited to those described in this section.




For all such treatments described above, the exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition. (See e.g. Fingl et al., 1975, in “The Pharmacological Basis of Therapeutics”, Ch. 1 p1).




It should be noted that the attending physician would know how to and when to terminate, interrupt, or adjust administration due to toxicity, or to organ dysfunctions. Conversely, the attending physician would also know to adjust treatment to higher levels if the clinical response were not adequate (precluding toxicity). The magnitude of an administrated dose in the management of the oncogenic disorder of interest will vary with the severity of the condition to be treated and the route of administration. The dose and perhaps dose frequency, will also vary according to the age, body weight, and response of the individual patient. A program comparable to that discussed above may be used in veterinary medicine.




Use of pharmaceutically acceptable carriers to formulate the compounds herein disclosed for the practice of the invention into dosages suitable for systemic administration is within the scope of the invention. With proper choice of carrier and suitable manufacturing practice, the compositions of the present invention, in particular, those formulated as solutions, may be administered parenterally, such as by intravenous injection. The compounds can be formulated readily using pharmaceutically acceptable carriers well known in the art into dosages suitable for oral administration. Such carriers enable the compounds of the invention to be formulated as tablets, pills, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a patient to be treated.




Pharmaceutical compositions suitable for use in the present invention include compositions wherein the active ingredients are contained in an effective amount to achieve its intended purpose. Determination of the effective amounts is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein.




In addition to the active ingredients, these pharmaceutical compositions may contain suitable pharmaceutically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. The preparations formulated for oral administration may be in the form of tablets, dragees, capsules, or solutions.




The pharmaceutical compositions of the present invention may be manufactured in a manner that is itself known, e.q., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes.




Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.




Pharmaceutical preparations for oral use can be obtained by combining the active compounds with solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP). If desired, disintegrating agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate.




Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.




Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oi.ls, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers may be added.




6. EXAMPLE: DP178 (SEQ ID NO:1) IS A POTENT INHIBITOR OF HIV-1 INFECTION




In this example, DP178 (SEQ ID NO:1) is shown to be a potent inhibitor of HIV-1 mediated CD-4


+


cell-cell fusion and infection by cell free virus. In the fusion assay, this peptide completely blocks virus induced syncytia formation at concentrations of from 1-10 ng/ml. In the infectivity assay the inhibitory concentration is somewhat higher, blocking infection at 90 ng/ml. It is further shown that DP178 (SEQ ID NO:1) shows that the antiviral activity of DP178 (SEQ ID NO:1) is highly specific for HIV-1. Additionally, a synthetic peptide, DP-185 (SEQ ID NO:3), representing a HIV-1-derived DP178 homolog is also found to block HIV-1-mediated syncytia formation.




6.1. Materials and Methods




6.1.1. Peptide Synthesis




Peptides were synthesized using Fast Moc chemistry on an Applied Biosystems Model 431A peptide synthesizer. Generally, unless otherwise noted, the peptides contained amidated carboxy termini and acetylated amino termini. Amidated peptides were prepared using Rink resin (Advanced Chemtech) while peptides containing free carboxy termini were synthesized on Wang (p-alkoxy-benzyl-alcohol) resin (Bachem). First residues were double coupled to the appropriate resin and subsequent residues were single coupled. Each coupling step was followed by acetic anhydride capping. Peptides were cleaved from the resin by treatment with trifluoracetic acid (TFA) (10 ml), H


2


O (0.5 ml), thioanisole (0.5 ml), ethanedithiol (0.25 ml), and crystalline phenol (0.75 g). Purification was carried out by reverse phase HPLC. Approximately 50 mg samples of crude peptide were chromatographed on a Waters Delta Pak C18 column (19 mm×30 cm, 15μ spherical) with a linear gradient; H


2


O/acetonitrile 0.1% TFA. Lyophilized peptides were stored desiccated and peptide solutions were made in water at about 1 mg/ml. Electrospray mass spectrometry yielded the following results: DP178 (SEQ ID NO:1):4491.87 (calculated 4491.94); DP-180 (SEQ ID NO:2):4491.45 (calculated 4491.94); DP-185 (SEQ ID NO:3):not done (calculated 4546.97).




6.1.2. VIRUS




The HIV-1


LAI


virus was obtained from R. Gallo (Popovic, M. et al., 1984, Science 224:497-508) and propagated in CEM cells cultured in RPMI 1640 containing 10% fetal calf serum. Supernatant from the infected CEM cells was passed through a 0.2 μm filter and the infectious titer estimated in a microinfectivity assay using the AA5 cell line to support virus replication. For this purpose, 25 μl of serial diluted virus was added to 75 μl AA5 cells at a concentration of 2×10


5


/ml in a 96-well microtitre plate. Each virus dilution was tested in triplicate. Cells were cultured for eight days by addition of fresh medium every other day. On day 8 post infection, supernatant samples were tested for virus replication as evidenced by reverse transcriptase activity released to the supernatant. The TCID


50


was calculated according to the Reed and Muench formula (Reed, L. J. et al., 1938, Am. J. Hyg. 27:493-497). The titer of the HIV-1


LAI


and HIV-1


MN


stocks used for these studies, as measured on the AA5 cell line, was approximately 1.4×10


6


and 3.8×10


4


TCID


50


/ml, respectively.




6.1.3. Cell Fusion Assay




Approximately 7×10


4


Molt cells were incubated with 1×10


4


CEM cells chronically infected with the HIV-1


LAI


virus in 96-well plates (one-half area cluster plates; Costar, Cambridge, Mass.) in a final volume of 100 μl culture medium as previously described (Matthews, T. J. et al., 1987, Proc. Natl. Acad. Sci. USA 84: 5424-5428). Peptide inhibitors were added in a volume of 10 μl and the cell mixtures were incubated for 24 hr. at 37° C. At that time, multinucleated giant cells were estimated by microscopic examination at a 40×magnification which allowed visualization of the entire well in a single field.




6.1.4. Cell Free Virus Infection Assay




Synthetic peptides were incubated at 37° C. with either 247 TCID


50


(for experiment depicted in FIG.


2


), or 62 TCID


50


(for experiment depicted in FIG.3) units of HIV-1


LAI


virus or 25 TCID


50


units of HIV-2


NIHZ


and CEM CD4


+


cells at peptide concentrations of 0, 0.04, 0.4, 4.0, and 40 μg/ml for 7 days. The resulting reverse transcriptase (RT) activity in counts per minute was determined using the assay described, below, in Section 6.1.5. See, Reed, L. J. et al., 1938, Am. J. Hyg. 27: 493-497 for an explanation of TCID


50


calculations.




6.1.5. Reverse Transcriptase Assay




The micro-reverse transcriptase (RT) assay was adapted from Goff et al. (Goff, S. et al., 1981, J. Virol. 38:239-248) and Willey et al. (Willey, R. et al., 1988, J. Virol. 62:139-147). Supernatants from virus/cell cultures are adjusted to 1% Triton-X100. A 10 μl sample of supernatant was added to 50 μl of RT cocktail in a 96-well U-bottom microtitre plate and the samples incubated at 37° C. for 90 min. The RT cocktail contained 75 mM KCl, 2 mM dithiothreitol, 5 mM MgCl


2


, 5 μg/ml poly A (Pharmacia, cat. No. 27-4110-01), 0.25 units/ml oligo dT (Pharmacia, cat. No. 27-7858-01), 0.05% NP40, 50 mM Tris-HCl, pH 7.8, 0.5 μM non-radioactive dTTP, and 10 μCi/ml


32


P-dTTP (Amersham, cat. No. PB.10167).




After the incubation period, 40 μl of reaction mixture was applied to a Schleicher and Schuell (S+S) NA45 membrane (or DE81 paper) saturated in 2×SSC buffer (0.3M NaCl and 0.003M sodium citrate) held in a S+S Minifold over one sheet of GBOO3 (S+S) filter paper, with partial vacuum applied. Each well of the minifold was washed four times with 200 μl 2×SSC, under full vacuum. The membrane was removed from the minifold and washed 2 more times in a pyrex dish with an excess of 2×SSC. Finally, the membrane was drained on absorbent paper, placed on Whatman #3 paper, covered with Saran wrap, and exposed to film overnight at −70° C.




6.2. Results




6.2.1. Peptide Inhibition of Infected Cell-Induced Syncytia Formation




The initial screen for antiviral activity assayed peptides' ability to block syncytium formation induced by overnight co-cultivation of uninfected Molt4 cells with chronically HIV-1 infected CEM cells. The results of several such experiments are presented herein. In the first of these experiments, serial DP178 (SEQ ID NO:1) peptide concentrations between 10 μg/ml and 12.5 ng/ml were tested for blockade of the cell fusion process. For these experiments, CEM cells chronically infected with either HIV-1


LAI


, HIV-1


MN


, HIV-1


RF


, or HIV-1


SF2


virus were cocultivated overnight with uninfected Molt 4 cells. The results (

FIG. 4

) show that DP178 (SEQ ID NO:1) afforded complete protection against each of the HIV-1 isolates down to the lowest concentration of DP178 (SEQ ID NO:1) used. For HIV


LAI


inhibition, the lowest concentration tested was 12.5 ng/ml; for all other HIV-1 viruses, the lowest concentration of DP178 (SEQ ID NO:1) used in this study was 100 ng/ml. A second peptide, DP-180 (SEQ ID NO:2), containing the same amino acid residues as DP178 (SEQ ID NO:1) but arranged in a random order exhibited no evidence of anti-fusogenic activity even at the high concentration of 40 μg/ml (FIG.


4


). These observations indicate that the inhibitory effect of DP178 (SEQ ID NO:1) is primary sequence-specific and not related to non-specific peptide/protein interactions. The actual endpoint (i.e., the lowest effective inhibitory concentration) of DP178 inhibitory action is within the range of 1-10 ng/ml.




The next series of experiments involved the preparation and testing of a DP178 (SEQ ID NO:1) homolog for its ability to inhibit HIV-1-induced syncytia formation. As shown in

FIG. 1

, the sequence of DP-185 (SEQ ID NO:3) is slightly different from DP178 (SEQ ID NO:1) in that its primary sequence is taken from the HIV-1


SF2


isolate and contains several amino acid differences relative to DP178 (SEQ ID NO:1) near the N terminus. As shown in

FIG. 4

, DP-185 (SEQ ID NO:3), exhibits inhibitory activity even at 312.5 ng/ml, the lowest concentration tested.




The next series of experiments involved a comparison of DP178 (SEQ ID NO:1) HIV-1 and HIV-2 inhibitory activity. As shown in

FIG. 5

, DP178 (SEQ ID NO:1) blocked HIV-1-mediated syncytia formation at peptide concentrations below 1 ng/ml. DP178 (SEQ ID NO:1) failed, however, to block HIV-2 mediated syncytia formation at concentrations as high as 10 μg/ml. This striking 4 log selectivity of DP178 (SEQ ID NO:1) as an inhibitor of HIV-1-mediated cell fusion demonstrates an unexpected HIV-1 specificity in the action of DP178 (SEQ ID NO:1). DP178 (SEQ ID NO:1) inhibition of HIV-1-mediated cell fusion, but the peptide's inability to inhibit HIV-2 medicated cell fusion in the same cell type at the concentrations tested provides further evidence for the high degree of selectivity associated with the antiviral action of DP178 (SEQ ID NO:1).




6.2.2. Peptide Inhibition of Infection by Cell-Free Virus




DP178 (SEQ ID NO:1) was next tested for its ability to block CD-4


+


CEM cell infection by cell free HIV-1 virus. The results, shown in

FIG. 2

, are from an experiment in which DP178 (SEQ ID NO:1) was assayed for its ability to block infection of CEM cells by an HIV-1


LAI


isolate. Included in the experiment were three control peptides, DP-116 (SEQ ID NO:9), DP-125 (SEQ ID NO:8), and DP-118 (SEQ ID NO:10). DP-116 (SEQ ID NO:9) represents a peptide previously shown to be inactive using this assay, and DP-125 (SEQ ID NO:8; Wild, C. et al., 1992, Proc. Natl. Acad, Sci. USA 89:10,537) and DP-118 (SEQ ID NO:10) are peptides which have previously been shown to be active in this assay. Each concentration (0, 0.04, 0.4, 4, and 40 μg/ml) of peptide was incubated with 247 TCID


50


units of HIV-1


LAI


virus and CEM cells. After 7 days of culture, cell-free supernatant was tested for the presence of RT activity as a measure of successful infection. The results, shown in

FIG. 2

, demonstrate that DP178 (SEQ ID NO:1) inhibited the de novo infection process mediated by the HIV-1 viral isolate at concentrations as low as 90 ng/ml (IC50=90 ng/ml). In contrast, the two positive control peptides, DP-125 (SEQ ID NO:8) and DP-118 (SEQ ID NO:10), had over 60-fold higher IC50 concentrations of approximately 5 μg/ml.




In a separate experiment, the HIV-1 and HIV-2 inhibitory action of DP178 (SEQ ID NO:1) was tested with CEM cells and either HIV-1


LAI


or HIV-2


NIHZ


. 62 TCID


50


HIV-1


LAI


or 25 GCID


50


HIV-2


NIHZ


were used in these experiments, and were incubated for 7 days. As may be seen in

FIG. 3

, DP178 (SEQ ID NO:1) inhibited HIV-1 infection with an IC50 of about 31 ng/ml. In contrast, DP178 (SEQ ID NO:1) exhibited a much higher IC50 for HIV-2


NIHZ


, thus making DP178 (SEQ ID NO:1) two logs more potent as a HIV-1 inhibitor than a HIV-2 inhibitor. This finding is consistent with the results of the fusion inhibition assays described, above, in Section 6.2.1, and further supports a significant level of selectivity (i.e., for HIV-1 over HIV-2).




7. EXAMPLE: THE HIV-1 INHIBITOR, DP178 (SEQ ID NO:1) IS NON-CYTOTOXIC




In this Example, the 36 amino acid synthetic peptide inhibitor DP178 (SEQ ID NO:1) is shown to be non-cytotoxic to cells in culture, even at the highest peptide concentrations (40 μg/ml) tested.




7.1. Materials and Methods




Cell proliferation and toxicity assay: Approximately 3.8×10


5


CEM cells for each peptide concentration were incubated for 3 days at 37° C. in T25 flasks. Peptides tested were DP178 (SEQ ID NO:1) and DP-116 (SEQ ID NO:9), as described in FIG.


1


. Peptides were synthesized as described, above, in Section 6.1. The concentrations of each peptide used were 0, 2.5, 10, and 40 μg/ml. Cell counts were taken at incubation times of 0, 24, 48, and 72 hours.




7.2. RESULTS




Whether the potent HIV-1 inhibitor DP178 (SEQ ID NO:1) exhibited any cytotoxic effects was assessed by assaying the peptide's effects on the proliferation and viability of cells in culture. CEM cells were incubated in the presence of varying concentrations of DP178 (SEQ ID NO:1), and DP-116 (SEQ ID NO:9), a peptide previously shown to be ineffective as a HIV inhibitor (Wild, C. et al., 1992, Proc. Natl. Acad. Sci. USA 89:10,537-10,541). Additionally, cells were incubated in the absence of either peptide.




The results of the cytotoxicity study demonstrate that DP178 (SEQ ID NO:1) exhibits no cytotoxic effects on cells in culture. As can be seen, below, in Table XXIV, even the proliferation and viability characteristics of cells cultured for 3 days in the presence of the highest concentration of DP178 (SEQ ID NO:1) tested (40 μg/ml) do not significantly differ from the DP-116 (SEQ ID NO:9) or the no-peptide controls. The cell proliferation data is also represented in graphic form in FIG.


6


. As was demonstrated in the Working Example presented above in Section 6, DP178 (SEQ ID NO:1) completely inhibits HIV-1 mediated syncytia formation at peptide concentrations between 1 and 10 ng/ml, and completely inhibits cell-free viral infection at concentrations of at least 90 ng/ml. Thus, this study demonstrates that even at peptide concentrations greater than 3 log higher than the HIV inhibitory dose, DP178 (SEQ ID NO:1) exhibits no cytotoxic effects.
















TABLE XII














% Viability








Peptide




at time (hours)


















Peptide




Concentration μg/ml




0




24




48




72






















DP178




40




98




97




95




97







(SEQ ID




10




98




97




98




98







NO: 1)




2.5




98




93




96




96







DP116




40




98




95




98




97







(SEQ ID




10




98




95




93




98







NO: 9)




2.5




98




96




98




99







No




0




98




97




99




98







Peptide















8. EXAMPLE: THE INTERACTION OF DP178 AND DP107




Soluble recombinant forms of gp41 used in the example described below provide evidence that the DP178 peptide associates with a distal site on gp41 whose interactive structure is influenced by the DP107 leucine zipper motif. A single mutation disrupting the coiled-coil structure of the leucine zipper domain transformed the soluble recombinant gp41 protein from an inactive to an active inhibitor of HIV-1 fusion. This transformation may result from liberation of the potent DP178 domain from a molecular clasp with the leucine zipper, DP107, determinant. The results also indicate that the anti-HIV activity of various gp41 derivatives (peptides and recombinant proteins) may be due to their ability to form complexes with viral gp41 and interfere with its fusogenic process.




8.1. Maretials and Methods




8.1.1. Construction of Fusion Protiens and GP41 Mutants




Construction of fusion proteins and mutants shown in

FIG. 7

was accomplished as follows: the DNA sequence corresponding to the extracellular domain of gp41 (540-686) was cloned into the Xmn I site of the expression vector pMal-p2 (New England Biolab) to give M41. The gp41 sequence was amplified from pgtat (Malim et al., 1988, Nature 355: 181-183) by using polymerase chain reaction (PCR) with upstream primer 5′-ATGACGCTGACGGTACAGGCC-3′ (primer A) (SEQ ID NO:11) and downstream primer 5′-TGACTAAGCTTAATACCACAGCCAATTTGTTAT-3′ (SEQ ID NO:12) (primer B). M41-P was constructed by using the T7-Gen in vitro mutagenesis kit from United States Biochemicals (USB) following the supplier's instructions. The mutagenic primer (5′-GGAGCTGCTTGGGGCCCCAGAC-3′) (SEQ ID NO:13) introduces an Ile to Pro mutation in M41 at position 578. M41Δ107, from which the DP-107 region has been deleted, was made using a deletion mutagenic primer 5′-CCAAATCCCCAGGAGCTGCTCGAGCTGCACTATACCAGAC-3′ (SEQ ID NO:14) (primer C) following the USB T7-Gen mutagenesis protocol. M41Δ178, from which the DP-178 region has been deleted, was made by cloning the DNA fragment corresponding to gp41 amino acids 540-642 into the Xmn I site of pMal-p2. Primer A and 5′-ATAGCTTCTAGATTAATTGTTAATTTCTCTGTCCC-3′ (SEQ ID NO:15) (primer D) were used in the PCR with the template pgtat to generate the inserted DNA fragments. M41-P was used as the template with primer A and D in PCR to generate M41-PΔ178. All inserted sequences and mutated residues were checked by restriction enzyme analysis and confirmed by DNA sequencing.




8.1.2. Purification and Characterization of Fusion Proteins




The fusion proteins were purified according to the protocol described in the manufacturer's brochure of protein fusion and purification systems from New England Biolabs (NEB). Fusion proteins (10 ng) were analyzed by electrophoresis on 8% SDS polyacrylamide gels. Western blotting analysis was performed as described by Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, 2d Ed, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., Ch. 18, pp. 64-75. An HIV-1 positive serum diluted 1000-fold, or a human Fab derived from repertoire cloning was used to react with the fusion proteins. The second antibody was HRP-conjugated goat antihuman Fab. An ECL Western blotting detection system (Amersham) was used to detect the bound antibody. A detailed protocol for this detection system was provided by the manufacturer. Rainbow molecular weight markers (Amersham) were used to estimate the size of fusion proteins.




8.1.3. Cell Fusion Assays For Anti-HIV Activity




Cell fusion assays were performed as previously described (Matthews et al., 1987, Proc. Natl. Acad. Sci. USA 84: 5424-5481). CEM cells (7×10


4


) were incubated with HIV-1


IIIB


chronically infected CEM cells (10


4


) in 96-well flat-bottomed half-area plates (Costar) in 100 μl culture medium. Peptide and fusion proteins at various concentrations in 10 μl culture medium were incubated with the cell mixtures at 37° C. for 24 hours. Multinucleated syncytia were estimated with microscopic examination. Both M41 and M41-P did not show cytotoxicity at the concentrations tested and shown in FIG.


8


.




Inhibition of HIV-1 induced cell-cell fusion activity was carried out in the presence of 10 nM DP178 and various concentrations of M41Δ178 or M41-PΔ178 as indicated in FIG.


9


. There was no observable syncytia in the presence of 10 nM DP178. No peptide or fusion protein was added in the control samples.




8.1.4. Elisa Analysis of DP178 Binding to the Leucine Zipper Motif of gp41




The amino acid sequence of DP178 used is: YTSLIHSLIEESQNQQEKNEQELLELDKWASLWNWF. For enzyme linked immunoassay (ELISA), M41Δ78 or M41-PΔ178 (5 μg/ml) in 0.1M NaHCO


3


, pH 8.6, were coated on 96 wells Linbro ELISA plates (Flow Lab, Inc.) overnight. Each well was washed three times with distilled water then blocked with 3% bovine serum albumin (BSA) for 2 hours. After blocking, peptides with 0.5% BSA in TBST (40 mM Tris-HCl pH7.5, 150 mM NaCl, 0.05% Tween 20) were added to the ELISA plates and incubated at room temperature for 1 hour. After washing three times with TBST, Fab-d was added at a concentration of 10 ng/ml with 0.5% BSA in TBST. The plates were washed three times with TBST after incubation at room temperature for 1 hour. Horse radish peroxidase (HRP) conjugated goat antihuman Fab antiserum at a 2000 fold dilution in TBST with 0.5% BSA was added to each well and incubated at room temperature for 45 minutes. The plates were then washed four times with TBST. The peroxidase substrate o-phenylene diamine (2.5 mg/ml) and 0.15% H


2


O


2


were added to develop the color. The reaction was stopped with an equal volume of 4.5 N H


2


SO


4


after incubation at room temperature for 10 minutes. The optical density of the stopped reaction mixture was measured with a micro plate reader (Molecular Design) at 490 nm. Results are shown in FIG.


10


.




8.2. Results




8.2.1. The Expression and Characterization of the Ectodomain of gp41




As a step toward understanding the roles of the two helical regions in gp41 structure and function, the ectodomain of gp41 was expressed as a maltose binding fusion protein (M41) (FIG.


7


). The fusogenic peptide sequence at the N-terminal of gp41 was omitted from this recombinant protein and its derivatives to improve solubility. The maltose binding protein facilitated purification of the fusion proteins under relatively mild, non-denaturing conditions. Because the M41 soluble recombinant gp41 was not glycosylated, lacked several regions of the transmembrane protein (i.e., the fusion peptide, the membrane spanning, and the cytoplasmic domains), and was expressed in the absence of gp120, it was not expected to precisely reflect the structure of native gp41 on HIV-1 virions. Nevertheless, purified M41 folded in a manner that preserved certain discontinuous epitopes as evidenced by reactivity with human monoclonal antibodies, 98-6, 126-6, and 50-69, previously shown to bind conformational epitopes on native gp41 expressed in eukaryotic cells (Xu et al., 1991, J. Virol. 65: 4832-4838; Chen, 1994, J. Virol. 68:2002-2010). Thus, at least certain regions of native gp41 defined by these antibodies appear to be reproduced in the recombinant fusion protein M41. Furthermore, M41 reacted with a human recombinant Fab (Fab-d) that recognizes a conformational epitope on gp41 and binds HIV-1 virions as well as HIV-1 infected cells but not uninfected cells as analyzed by FACS. Deletion of either helix motif, i.e., DP107 or DP178, of the M41 fusion protein eliminated reactivity with Fab-d. These results indicate that both helical regions, separated by 60 amino acids in the primary sequence, are required to maintain the Fab-d epitope.




8.2.2. Anti-HIV Activity of the Recombinant Ectodomain of gp41




The wild type M41 fusion protein was tested for anti-HIV-1 activity. As explained, supra, synthetic peptides corresponding to the leucine zipper (DP107) and the C-terminal putative helix (DP178) show potent anti-HIV activity. Despite inclusion of both these regions, the recombinant M41 protein did not affect HIV-1 induced membrane fusion at concentrations as high as 50 μM (Table XXV, below).












TABLE XIII











DISRUPTION OF THE LEUCINE ZIPPER OF






GP41 FREES THE ANTI-HIV MOTIF

















DP107




DP178




M41




M41-P




M41-PΔ178




















Cell fusion




1 μM




 1 nM




>50 μM




83 nM




>50 μM






(IC


90


)






Fab-D














3.5 × 10


−9






2.5 × 10


−8













binding (k


D


)






HIV infectivity




1 μM




80 nM




>16 μM




66 nM




 >8 μM






(IC


90


)











1 The affinity constants of Fab-d binding to the fusion proteins were determined using a protocol described by B. Friguet et al., 1985, J. Immunol. Method. 77:305-319.










— = No detectable binding of Fab-d to the fusion proteins.










Antiviral Infectivity Assays. 20 μl of serially diluted virus stock was incubated for 60 minutes at ambient temperature with 20 μl of the indicated concentration of purified recombinant fusion protein in RPMI 1640 containing 10% fetal bovine serum and antibiotics in a 96-well microtiter plate. 20 μl of CEM4 cells at 6 × 10


5


cells/ml were added to each well, and cultures were incubated at 37° C. in a humidified CO


2


incubator. Cells were cultured for 9








# days by the addition of fresh medium every 2 to 3 days. On days 5, 7, and 9 postinfection, supernatant samples were assayed for reverse transcriptase (RT) activity, as described below, to monitor viral replication. The 50% tissue culture infectious dose (TCID


50


) was calculated for each condition according to the formula of Reed & Muench, 1937, Am. J. Hyg. 27:493-497. RT activity was determined by a modification of the published methods of Goff et al., 1981, J. Virol. 38:






# 239-248 and Willey et al., 1988, J. Virol. 62:139-147 as described in Chen et al., 1993, AIDS Res. Human Retroviruses 9:1079-1086.











Surprisingly, a single amino acid substitution, proline in place of isoleucine in the middle of the leucine zipper motif, yielded a fusion protein (M41-P) which did exhibit antiviral activity (Table XIII and FIG.


8


). As seen in Table XIII, M41-P blocked syncytia formation by 90% at approximately 85 nM and neutralized HIV-1


IIIB


infection by 90% at approximately 70 nM concentrations. The anti-HIV-1 activity of M41-P appeared to be mediated by the C-terminal helical sequence since deletion of that region from M41-P yielded an inactive fusion protein, M41-PΔ178 (Table XIII). This interpretation was reinforced by experiments demonstrating that a truncated fusion protein lacking the DP178 sequence, M41Δ178, abrogated the potent anti-fusion activity of the DP178 peptide in a concentration-dependent manner (FIG.


9


). The same truncated fusion protein containing the proline mutation disrupting the leucine zipper, M41-PΔ178, was not active in similar competition experiments (FIG.


9


). The results indicate that the DP178 peptide associates with a second site on gp41 whose interactive structure is dependent on a wild type leucine zipper sequence. A similar interaction may occur within the wild type fusion protein, M41, and act to form an intramolecular clasp which sequesters the DP178 region, making it unavailable for anti-viral activity.




A specific association between these two domains is also indicated by other human monoclonal Fab-d studies. For example, Fab-d failed to bind either the DP178 peptide or the fusion protein M41Δ178, but its epitope was reconstituted by simply mixing these two reagents together (FIG.


10


). Again, the proline mutation in the leucine zipper domain of the fusion protein, M41-PΔ178, failed to reconstitute the epitope in similar mixing experiments.




9. EXAMPLE: METHOD FOR COMPUTER-ASSISTED IDENTIFICATION OF DP107-LIKE AND DP178-LIKE SEOUENCES




A number of known coiled-coil sequences have been well described in the literature and contain heptad repeat positioning for each amino acid. Coiled-coil nomenclature labels each of seven amino acids of a heptad repeat A through G, with amino acids A and D tending to be hydrophobic positions. Amino acids E and G tend to be charged. These four positions (A, D, E, and G) form the amphipathic backbone structure of a monomeric alpha-helix. The backbones of two or more amphipathic helices interact with each other to form di-, tri-, tetrameric, etc., coiled-coil structures. In order to begin to design computer search motifs, a series of well characterized coiled coils were chosen including yeast transcription factor GCN4, Influenza Virus hemagglutinin loop 36, and human proto-oncogenes c-Myc, c-Fos, and c-Jun. For each peptide sequence, a strict homology for the A and D positions, and a list of the amino acids which could be excluded for the B, C, E, F, and G positions (because they are not observed in these positions) was determined. Motifs were tailored to the DP107 and DP178 sequences by deducing the most likely possibilities for heptad positioning of the amino acids of HIV-1 Bru DP-107, which is known to have coiled-coil structure, and HIV-1 Bru DP178, which is still structurally undefined. The analysis of each of the sequences is contained in FIG.


12


. For example, the motif for GCN4 was designed as follows:




1. The only amino acids (using standard single letter amino acid codes) found in the A or D positions of GCN4 were [LMNV].




2. All amino acids were found at B, C, E, F, and G positions except {CFGIMPTW}.




3. The PESEARCH motif would, therefore, be written as follows:




[LMNV]-{CFGIMPTW}(2)-[LMNV]-{CFGIMPTW}(3)—




[LMNV]-{CFGIMPTW}(2)-[LMNV]-{CFGIMPTW}(3)—




[LMNV]-{CFGIMPTW}(2)-[LMNV]-{CFGIMPTW}(3)—




[LMNV]-{CFGIMPTW}(2)-[LMNV]-{CFGIMPTW}(3)




Translating or reading the motif: “at the first A position either L, M, N, or V must occur; at positions B and C (the next two positions) accept everything except C, F, G, I, M, P, T, or W; at the D position either L, M, N, or V must occur; at positions E, F, and G (the next 3 positions) accept everything except C, F, G, I, M, P, T, or W.” This statement is contained four times in a 28-mer motif and five times in a 35-mer motif. The basic motif key then would be: [LMNV]-{CFGIMPTW}. The motif keys for the remaining well described coiled-coil sequences are summarized in FIG.


12


.




The motif design for DP107 and DP178 was slightly different than the 28-mer model sequences described above due to the fact that heptad repeat positions are not defined and the peptides are both longer than 28 residues.

FIG. 13

illustrates several possible sequence alignments for both DP107 and DP178 and also includes motif designs based on 28-mer, 35-mer, and full-length peptides. Notice that only slight differences occur in the motifs as the peptides are lengthened. Generally, lengthening the base peptide results in a less stringent motif. This is very useful in broadening the possibilities for identifying DP107- or DP-178-like primary amino acid sequences referred to in this document as “hits”. In addition to making highly specific motifs for each type peptide sequence to be searched, it is also possible to make “hybrid” motifs. These motifs are made by “crossing” two or more very stringent motifs to make a new search algorithm which will find not only both “parent” motif sequences but also any peptide sequences which have similarities to one, the other, or both “parents”. For example, in

FIG. 14

the “parent” sequence of GCN4 is crossed with each of the possible “parent” motifs of DP-107. Now the hybrid motif must contain all of the amino acids found in the A and D positions of both parents, and exclude all of the amino acids not found in either parent at the other positions. The resulting hybrid from crossing GCN4 or [LMNV]{CFGIMPTW} and DP107 (28-mer with the first L in the D position) or [ILQT]{CDFIMPST}, is [ILMNQTV]{CFIMPT}. Notice that now only two basic hybrid motifs exist which cover both framing possibilities, as well as all peptide lengths of the parent DP-107 molecule.

FIG. 15

represents the “hybridizations” of GCN4 with DP-178.

FIG. 16

represents the “hybridizations” of DP107 and DP178. It is important to keep in mind that the represented motifs, both parent and hybrid, are motif keys and not the depiction of the full-length motif needed to actually do the computer search.




Hybridizations can be performed on any combination of two or more motifs.

FIG. 17

summarizes several three-motif hybridizations including GCN4, DP107 (both frames), and DP178 (also both frames). Notice that the resulting motifs are now becoming much more similar to each other. In fact, the first and third hybrid motifs are actually subsets of the second and fourth hybrid motifs respectively. This means that the first and third hybrid motifs are slightly more stringent than the second and fourth. It should also be noted that with only minor changes in these four motifs, or by hybridizing them, a single motif could be obtained which would find all of the sequences. However, it should be remembered that stringency is also reduced. Finally, the most broad-spectrum and least-stringent hybrid motif is described in

FIG. 18

which summarizes the hybridization of GCN4, DP107 (both frames), DP178 (both frames), c-Fos, c-Jun, c-Myc, and Flu loop 36.




A special set of motifs was designed based on the fact that DP-178 is located only approximately ten amino acids upstream of the transmembrane spanning region of gp41 and just C-terminal to a proline which separates DP107 and DP178. It has been postulated that DP178 may be an amphipathic helix when membrane associated, and that the proline might aid in the initiation of the helix formation. The same arrangement was observed in Respiratory Syncytial Virus; however, the DP178-like region in this virus also had a leucine zipper just C-terminal to the proline. Therefore, N-terminal proline-leucine zipper motifs were designed to analyze whether any other viruses might contain this same pattern. The motifs are summarized in FIG.


19


.




The PC/Gene protein database contains 5879 viral amino acid sequences (library file PVIRUSES; CD-ROM release 11.0). Of these, 1092 are viral enveloped or glycoprotein sequences (library file PVIRUSE1). Tables V through XIV contain lists of protein sequence names and motif hit locations for all the motifs searched.




10. EXAMPLE: COMPUTER-ASSISTED IDENTIFICATION OF DP107 AND DP178-LIKE SEQUENCES IN HUMAN IMMUNODEFICIENCY VIRUS





FIG. 20

represents search results for HIV-1 BRU isolate gp41 (PC/Gene protein sequence PENV_HV1BR). Notice that the hybrid motif which crosses DP-107 and DP-178 (named 107×178×4; the same motif as found in

FIG. 16

found three hits including amino acids 550-599, 636-688, and 796-823. These areas include DP-107 plus eight N-terminal and four C-terminal amino acids; DP178 plus seven N-terminal and ten C-terminal amino acids; and an area inside the transmembrane region (cytoplasmic).

FIG. 20

also contains the results obtained from searching with the motif named ALLMOTI5, for which the key is found in

FIG. 17

({CDGHP} {CFP}×5). This motif also found three hits including DP107 (amino acids 510-599), DP178 (615-717), and a cytoplasmic region (772-841). These hits overlap the hits found by the motif 107×178×4 with considerable additional sequences on both the amino and carboxy termini. This is not surprising in that 107×178×4 is a subset of the ALLMOTI5 hybrid motif. Importantly, even though the stringency of ALLMOTI5 is considerably less than 107×178×4, it still selectively identifies the DP107 and DP178 regions of gp41 shown to contain sequences for inhibitory peptides of HIV-1. The results of these two motif searches are summarized in Table V under the PC/Gene protein sequence name PENV HV1BR. The proline-leucine zipper motifs also gave several hits in HIV-1 BRU including 503-525 which is at the very C-terminus of gp120, just upstream of the cleavage site (P7LZIPC and P12LZIPC); and 735-768 in the cytoplasmic domain of gp41 (P23LZIPC). These results are found in Tables VIII, IX, and X under the same sequence name as mentioned above. Notice that the only area of HIV-1 BRU which is predicted by the Lupas algorithm to contain a coiled-coil region, is from amino acids 635-670. This begins eight amino acids N-terminal to the start and ends eight amino acids N-terminal to the end of DP178. DP107, despite the fact that it is a known coiled coil, is not predicted to contain a coiled-coil region using the Lupas method.




11. EXAMPLE: COMPUTER-ASSISTED IDENTIFICATION OF DP107-LIKE AND DP178-LIKE SEQUENCES IN HUMAN RESPIRATORY SYNCYTIAL VIRUS





FIG. 21

represents search results for Human Respiratory Syncytial Virus (RSV; Strain A2) fusion glycoprotein F1 (PC/Gene protein sequence name PVGLF_HRSVA). Motif 107×178×4 finds three hits including amino acids 152-202, 213-243, and 488-515. The arrangement of these hits is similar to what is found in HIV-1 except that the motif finds two regions with similarities to DP-178, one just downstream of what would be called the DP107 region or amino acids 213-243, and one just upstream of the transmembrane region (also similar to DP178) or amino acids 488-515. Motif ALLMOTI5 also finds three areas including amino acids 116-202, 267-302, and 506-549. The proline-leucine zipper motifs also gave several hits including amino acids 205-221 and 265-287 (PlLZIPC 265-280, P12LZIPC), and 484-513 (P7LZIPC and P12LZIPC 484-506, P23LZIPC). Notice that the PLZIP motifs also identify regions which share location similarities with DP-178 of HIV-1.




12. EXAMPLE: COMPUTER-ASSISTED IDENTIFICATION OF DP107-LIKE AND DP178-LIKE SEQUENCES IN SIMIAN IMMUNODEFICIENCY VIRUS




Motif hits for Simian immunodeficiency Virus gp41 (AGM3 isolate; PC/Gene protein sequence name PENV_SIVAG) are shown in FIG.


22


. Motif 107×178×4 finds three hits including amino acids 566-593, 597-624, and 703-730. The first two hits only have three amino acids between them and could probably be combined into one hit from 566-624 which would represent a DP107-like hit. Amino acids 703 to 730 would then represent a DP178-like hit. ALLMOTI5 also finds three hits including amino acids 556-628 (DP107-like), 651-699 (DP178-like), and 808-852 which represents the transmembrane spanning region. SIV also has one region from 655-692 with a high propensity to form a coiled coil as predicted by the Lupas algorithm. Both 107×178×4 and ALLMOTI5 motifs find the same region. SIV does not have any PLZIP motif hits in gp41.




The identification of DP178/DP107 analogs for a second SIV isolate (MM251) is demonstrated in the Example presented, below, in Section 19.




13. EXAMPLE: COMPUTER-ASSISTED IDENTIFICATION OF DP107-LIKE AND DP178 LIKE SEQUENCES IN CANINE DISTEMPER VIRUS




Canine Distemper Virus (strain Onderstepoort) fusion glycoprotein F1 (PC/Gene Protein sequence name PVGLF_CDVO) has regions similar to Human RSV which are predicted to be DP107-like and DP178-like (FIG.


23


). Motif 107×178×4 highlights one area just C-terminal to the fusion peptide at amino acids 252-293. Amino acids 252-286 are also predicted to be coiled coil using the Lupas algorithm. Almost 100 amino acids C-terminal to the first region is a DP178-like area at residues 340-367. ALLMOTI5 highlights three areas of interest including: amino acids 228-297, which completely overlaps both the Lupas prediction and the DP107-like 107×178×4 hit; residues 340-381, which overlaps the second 107×178×4 hit; and amino acids 568-602, which is DP178-like in that it is located just N-terminal to the transmembrane region. It also overlaps another region (residues 570-602) predicted by the Lupas method to have a high propensity to form a coiled coil. Several PLZIP motifs successfully identified areas of interest including P6 and P12LZIPC which highlight residues 336-357 and 336-361 respectively; P1 and P12LZIPC which find residues 398-414; and P12 and P23LZIPC which find residues 562-589 and 562-592 respectively.




14. EXAMPLE: COMPUTER-ASSISTED IDENTIFICATION OF DP107-LIKE AND DP178-LIKE SEQUENCES IN NEWCASTLE DISEASE VIRUS





FIG. 24

shows the motif hits found in Newcastle Disease Virus (strain Australia-Victoria/32; PC Gene protein sequence name PVGLF_NDVA). Motif 107×178×4 finds two areas including a DP107-like hit at amino acids 151-178 and a DP178-like hit at residues 426-512. ALLMOTI5 finds three areas including residues 117-182, 231-272, and 426-512. The hits from 426-512 include a region which is predicted by the Lupas method to have a high coiled-coil propensity (460-503). The PLZIP motifs identify only one region of interest at amino acids 273-289 (P1 and 12LZIPC).




15. EXAMPLE: COMPUTER-ASSISTED IDENTIFICATION OF DP107-LIKE AND DP178-LIKE SEQUENCES IN HUMAN PARAINFLUENZA VIRUS




Both motifs 107×178×4 and ALLMOTI5 exhibit DP107-like hits in the same region, 115-182 and 117-182 respectively, of Human Parainfluenza Virus (strain NIH 47885; PC/Gene protein sequence name PVGLF_p13H4; (FIG.


25


). In addition, the two motifs have a DP178-like hit just slightly C-terminal at amino acids 207-241. Both motifs also have DP178-like hits nearer the transmembrane region including amino acids 457-497 and 462-512 respectively. Several PLZIP motif hits are also observed including 283-303 (P5LZIPC), 283-310 (P12LZIPC), 453-474 (P6LZIPC), and 453-481 (P23LZIPC). The Lupas algorithm predicts that amino acids 122-176 may have a propensity to form a coiled-coil.




16. EXAMPLE: COMPUTER-ASSISTED IDENTIFICATION OF DP107-LIKE AND DP178-LIKE SEQUENCES OF INFLUENZA A VIRUS





FIG. 26

illustrates the Lupas prediction for a coiled coil in Influenza A Virus (strain A/Aichi/2/68) at residues 379-436, as well as the motif hits for 107×178×4 at amino acids 387-453, and for ALLMOTI5 at residues 380-456. Residues 383-471 (38-125 of HA2) were shown by Carr and Kim to be an extended coiled coil when under acidic pH (Carr and Kim, 1993, Cell 73: 823-832). The Lupas algorithm predicts a coiled-coil at residues 379-436. All three methods successfully predicted the region shown to actually have coiled-coil structure; however, ALLMOTI5 predicted the greatest portion of the 88 residue stretch.




17. EXAMPLE: POTENTIAL RESPIRATORY SYNCYTIAL VIRUS DP178/DP107 ANALOGS: CD AND ANTIVIRAL CHARACTERIZATION




In the Example presented herein, respiratory syncytial virus (RSV) peptides identified by utilizing the computer-assisted search motifs described in the Examples presented in Sections 9 and 11, above, were tested for anti-RSV activity. Additionally, circular dichroism (CD) structural analyses were conducted on the peptides, as discussed below. It is demonstrated that several of the identified peptides exhibit potent antiviral capability. Additionally, it is shown that several of these peptides exhibit a substantial helical character.




17.1 Materials and Methods




Structural analyses: The CD spectra were measured in a 10 mM sodium phosphate, 150 mM sodium chloride, pH 7.0, buffer at approximately 10 mM concentrations, using a 1 cm pathlength cell on a Jobin/Yvon Autodichrograph Mark V CD spectrophotometer. Peptides were synthesized according to the methods described, above, in Section 6.1. Peptide concentrations were determined from A


280


using Edlehoch's method (1967, Biochemistry 6:1948).




Anti-RSV antiviral activity assays: The assay utilized herein tested the ability of the peptides to disrupt the ability of HEp2 cells acutely infected with RSV (i.e., cells which are infected with a multiplicity of infection of greater than 2) to fuse and cause syncytial formation on a monolayer of uninfected an uninfected line of Hep-2 cells. The lower the observed level of fusion, the greater the antiviral activity of the peptide was determined to be.




Uninfected confluent monolayers of Hep-2 cells were grown in microtiter wells in 3% EMEM (Eagle Minimum Essential Medium w/o L-glutamine [Bio Whittaker Cat. No. 12-125F], with fetal bovine serum [FBS; which had been heat inactivated for 30 minutes at 56° C.; Bio Whittaker Cat. No. 14-501F) supplemented at 3%, antibiotics (penicillin/streptomycin; Bio Whittaker Cat. No. 17-602E) added at 1%, and glutamine added at 1%.




To prepare Hep2 cells for addition to uninfected cells, cultures of acutely infected Hep2 cells were washed with DPBS (Dulbecco's Phosphate Buffered Saline w/o calcium or magnesium; Bio Whittaker Cat. No. 17-512F) and cell monolayers were removed with Versene (1:5000; Gibco Life Technologies Cat. No. 15040-017). The cells were spun 10 minutes and resuspended in 3% FBS. Cell counts were performed using a hemacytometer. Persistent cells were added to the uninfected Hep-2 cells.




The antiviral assay was conducted by, first, removing all media from the wells containing uninfected Hep-2 cells, then adding peptides (at the dilutions described below) in 3% EMEM, and 100 acutely RSV-infected Hep2 cells per well. Wells were then incubated at 37° C. for 48 hours.




After incubation, cells in control wells were checked for fusion centers, media was removed from the wells, followed by addition, to each well, of either Crystal Violet stain or XTT. With respect to Crystal Violet, approximately 50 μl 0.25% Crystal Violet stain in methanol were added to each well. The wells were rinsed immediately, to remove excess stain, and were allowed to dry. The number of syncytia per well were then counted, using a dissecting microscope.




With respect to XTT (2,3-bis[2-Methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxyanilide inner salt), 50 μl XTT (1 mg/ml in RPMI buffered with 100 mM HEPES, pH 7.2-7.4, plus 5% DMS0) were added to each well. The OD


450/690


was measured (after blanking against growth medium without cells or reagents, and against reagents) according to standard procedures.




Peptides: The peptides characterized in the study presented herein were:




1) peptides T-142 to T-155 and T-575, as shown in

FIG. 27A

, and peptides T-22 to T-27, T-68, T-334 and T-371 to T-375 and T-575, as shown in

FIG. 27B

;




2) peptides T-120 to T-141 and T-576, as shown in

FIG. 27B

, and peptides T-12, T-13, T-15, T-19, T-28 to T-30, T-66, T-69, T-70 and T-576, as shown in

FIG. 27D

; and




3) peptides T-67 and T-104 to T-119 and T-384, as shown in

FIG. 28A

, and peptides T-71, T-613 to T-617, T-662 to T-676 and T-730, as shown in FIG.


28


B.




The peptides of group 1 represent portions of the RSV F2 protein DP178/107-like region. The peptides of group 2 represent portions of the RSV F1 protein DP107-like region. The peptides of groups 3 represent portions of the RSV F1 protein DP178-like region.




Each peptide was tested at 2-fold serial dilutions ranging from 100 μg/ml to approximately 100 ng/ml. For each of the assays, a well containing no peptide was also used. The IC


50


data for each peptide represents the average of several experiments conducted utilizing that peptide.




17.2 Results




The data summarized in

FIGS. 27A-B

and


28


A-B represent antiviral and structural information obtained from peptides derived from the RSV F2 DP178/DP107-like F2 region (FIGS.


27


A-B), the RSV F1 DP-107-like region (

FIGS. 27C-D

) and the RSV DP178-like F2 region (FIGS.


28


A-B).




As shown in

FIGS. 27A-D

, a number of the RSV DP178/DP107-like peptides exhibited a detectable level of antiviral activity. Peptides from the RSV DP178/DP107-like F2 region (FIGS.


27


A-B), for example, T-142 to T-145 and T-334 purfied peptides, exhibited detectable levels of antiviral activity, as evidenced by their IC


50


values. Further, a number of RSV F1 DP107-like peptides (

FIGS. 27C-D

) exhibited a sizable level of antiviral activity as purified peptides, including, for example, peptides T-124 to T-127, T-131, T-135 and T-137 to T-139, as demonstrated by their low IC


50


values. In addition, CD analysis

FIGS. 27A

,


27


C) reveals that many of the peptides exhibit some detectable level of helical structure.




The results summarized in

FIGS. 28A-B

demonstrate that a number of DP178-like purified peptides exhibit a range of potent anti-viral activity. These peptides include, for example, T-67, T-104, T-105 and T-107 to T-119, as listed in

FIG. 28A

, and T-665 to T-669 and T-671 to T-673, as listed in FIG.


28


B. In addition, some of the DP178-like peptides exhibited some level of helicity.




Thus, the computer assisted searches described, hereinabove, successfully identified viral peptide domains that represent highly promising anti-RSV antiviral compounds.




18. EXAMPLE: POTENTIAL HUMAN PARAINFLUENZA VIRUS TYPE 3 DP178/DP107 ANALOGS: CD AND ANTIVIRAL CHARACTERIZATION




In the Example presented herein, human parainfluenza virus type 3 (HPIV3) peptides identified by utilizing the computer-assisted search motifs described in the Examples presented in Sections 9 and 15, above, were tested for anti-HPIV3 activity. Additionally, circular dichroism (CD) structural analyses were conducted on the peptides, as discussed below. It is demonstrated that several of the identified peptides exhibit potent antiviral capability. Additionally, it is shown that several of these peptides exhibit a substantial helical character.




18.1 Materials and Methods




Structural analyses: Structural analyses consisted of circular dichroism (CD) studies. The CD spectra were measured in a lOmM sodium phosphate, 150 mM sodium chloride, pH 7.0, buffer at approximately 10 mM concentrations, using a 1 cm pathlength cell on a Jobin/Yvon Autodichrograph Mark V CD spectrophotometer. Peptide concentrations were determined from A


280


using Edlehoch's method (1967, Biochemistry 6:1948).




Anti-HPIV3 antiviral activity assays: The assay utilized herein tested the ability of the peptides to disrupt the ability of Hep2 cells chronically infected with HPIV3 to fuse and cause syncytial formation on a monolayer of an uninfected line of CV-1W cells. The more potent the lower the observed level of fusion, the greater the antiviral activity of the peptide.




Uninfected confluent monolayers of CV-1W cells were grown in microtiter wells in 3% EMEM (Eagle Minimum Essential Medium w/o L-glutamine [Bio Whittaker Cat. No. 12-125F], with fetal bovine serum [FBS; which had been heat inactivated for 30 minutes at 56° C.; Bio Whittaker Cat. No. 14-501F) supplemented at 3%, antibiotics/antimycotics (Gibco BRL Life Technologies Cat. No. 15040-017) added at 1%, and glutamine added at 1%.




To prepare Hep2 cells for addition to uninfected cells, cultures of chronically infected Hep2 cells were washed with DPBS (Dulbecco's Phosphate Buffered Saline w/o calcium or magnesium; Bio Whittaker Cat. No. 17-512F) and cell monolayers were removed with Versene (1:5000; Gibco Life Technologies Cat. No. 15040-017). The cells were spun 10 minutes and resuspended in 3% FBS. Cell counts were performed using a hemacytometer. Persistent cells were added to the uninfected CV-1W cells.




The antiviral assay was conducted by, first, removing all media from the wells containing uninfected CV-1W cells, then adding peptides (at the dilutions described below) in 3% EMEM, and 500 chronically HPIV3-infected Hep2 cells per well. Wells were then incubated at 37° C. for 24 hours.




On day 2, after cells in control wells were checked for fusion centers, media was removed from the wells, followed by addition, to each well, of approximately 50 μl 0.25% Crystal Violet stain in methanol. Wells were rinsed immediately, to remove excess stain and were then allowed to dry. The number of syncytia per well were then counted, using a dissecting microscope.




Alternatively, instead of Crystal Violet analysis, cells were assayed with XTT, as described, above, in Section 17.1.




Peptides: The peptides characterized in the study presented herein were:




1) Peptides 157 to 188, as shown in

FIG. 29A

, and peptides T-38 to T-40, T-42 to T-46 and T-582, as shown in FIG.


29


B. These peptides are derived from the DP107 region of the HPIV3 F1 fusion protein (represented by HPF3 107, as shown in FIG.


29


A); and




2) Peptides 189 to 210, as shown in

FIG. 30A

, and T-269, T-626, T-383 and T-577 to T-579, as shown in FIG.


30


B. These peptides are primarily derived from the DP178 region of the HPIV3 F1 fusion protein (represented by HPF3 178, as shown in FIG.


30


A). Peptide T-626 contains two mutated amino acid resides (represented by a shaded background). Additionally, peptide T-577 represents F1 amino acids 65-100, T-578 represents F1 amino acids 207-242 and T-579 represents F1 amino acids 273-309.




Each peptide was tested at 2-fold serial dilutions ranging from 500 μg/ml to approximately 500 ng/ml. For each of the assays, a well containing no peptide was also used.




18.2 Results




The data summarized in

FIGS. 29A-C

and


30


A-B represent antiviral and structural information obtained from peptides derived from the HPIV3 fusion protein DP107-like region (

FIGS. 29A-C

) and the HPIV3 fusion protein DP178-like region (FIGS.


30


A-B).




As shown in

FIGS. 29A-B

, a number of the HPIV3 DP107-like peptides exhibited potent levels of antiviral activity. These peptides include, for example, peptides T-40, T-172 to T-175, T-178, T-184 and T-185.




CD analysis reveals that a number of the peptides exhibit detectable to substantial level of helical structure.




The results summarized in

FIGS. 30A-B

demonstrate that a number of the DP178-like peptides tested exhibit a range of anti-viral activity. These peptides include, for example, peptides 194 to 211, as evidenced by their low IC


50


values. In fact, peptides 201 to 205 exhibit IC


50


values in the nanogram/ml range. In addition, many of the DP178-like peptides exhibited some level of helicity.




Thus, the computer assisted searches described, hereinabove, have successfully identified viral peptide domains that represent highly promising anti-HPIV3 antiviral compounds.




19. EXAMPLE: COMPUTER-ASSISTED IDENTIFICATION OF DP178/DP107 ANALOGS IN SIMIAN IMMUNODEFICIENCY VIRUS





FIG. 31

represents search results for SIV isolate MM251 (PC/Gene® protein sequence PENV_SIVM2). Both 107×178×4 and ALLMOTI5 search motifs identified two regions with similarities to DP107 and/or DP178.




The peptide regions found by 107×178×4 were located at amino acid residues 156-215 and 277-289. The peptide regions found by ALLMOTI5 were located at amino acid residues 156-219 and 245-286. Both motifs, therefore, identify similar regions.




Interestingly, the first SIV peptide region (i.e., from amino acid residue 156 to approximately amino acid residue 219) correlates with a DP107 region, while the second region identified (i.e., from approximately amino acid residue 245 to approximately amino acid residue 289) correlates with the DP178 region of HIV. In fact, an alignment of SIV isolate MM251 and HIV isolate BRU, followed by a selection of the best peptide matches for HIV DP107 and DP178, reveals that the best matches are found within the peptide regions identified by the 107×178×4 and ALLMOTI5 search motifs.




It should be noted that a potential coiled-coil region at amino acid residues 242-282 is predicted by the Lupas program. This is similar to the observation in HIV in which the coiled-coil is predicted by the Lupas program to be in the DP178 rather than in the DP107 region. It is possible, therefore, that SIV may be similar to HIV in that it may contain a coiled-coil structure in the DP107 region, despite such a structure being missed by the Lupas algorithm. Likewise, it may be that the region corresponding to a DP178 analog in SIV may exhibit an undefined structure, despite the Lupas program's prediction of a coiled-coil structure.




20. EXAMPLE: COMPUTER-ASSISTED IDENTIFICATION OF DP178/DP107 ANALOGS IN EPSTEIN-BARR VIRUS




The results presented herein describe the identification of DP178/DP107 analogs within two different Epstein-Barr Virus proteins. Epstein-Barr is a human herpes virus which is the causative agent of, for example, infectious mononucleosis (IM), and is also associated with nasopharyngeal carcinomas (NPC), Burkitt's lymphoma and other diseases. The virus predominantly exists in the latent form and is activated by a variety of stimuli.





FIG. 32

depicts the search motif results for the Epstein-Barr Virus (Strain B95-8; PC/Gene® protein sequence PVGLB_EBV) glycoprotein gp110 precursor (gp115). The 107×178×4 motif identified two regions of interest, namely the regions covered by amino acid residues 95-122 and 631-658. One PZIP region was identified at amino acid residue 732-752 which is most likely a cytoplasmic region of the protein. The Lupas algorithm predicts a coiled-coil structure for amino acids 657-684. No ALLMOTI5 regions were identified.





FIG. 33

depicts the search motif results for the Zebra (or EB1) trans-activator protein (BZLF1) of the above-identified Epstein-Barr virus. This protein is a transcription factor which represents the primary mediator of viral reactivation. It is a member of the b-ZIP family of transcription factors and shares significant homology with the basic DNA-binding and dimerization domains of the cellular oncogenes c-fos and C/EBP. The Zebra protein functions as a homodimer.




Search results demonstrate that the Zebra protein exhibits a single region which is predicted to be either of DP107 or DP178 similarity, and is found between the known DNA binding and dimerization regions of the protein. Specifically, this region is located at amino acid residues 193-220, as shown in FIG.


33


. The Lupas program predicted no coiled-coil regions.




21. EXAMPLE: COMPUTER-ASSISTED IDENTIFICATION OF DP178IDP107 ANALOGS IN MEASLES VIRUS





FIG. 34

illustrates the motif search results for the fusion protein F1 of measles virus, strain Edmonston (PC Gene® protein sequence PVGLF_MEASE), successfully identifying DP178/DP107 analogs.




The 107×178×4 motif identifies a single region at amino acid residues 228-262. The ALLMOTI5 search motif identifies three regions, including amino acid residues 116-184, 228-269 and 452-500. Three regions containing proline residues followed by a leucine zipper-like sequence were found beginning at proline residues 214, 286 and 451.




The Lupas program identified two regions it predicted had potential for coiled-coil structure, which include amino acid residues 141-172 and 444-483.




22. EXAMPLE: COMPUTER-ASSISTED IDENTIFICATION OF DP178/DP107 ANALOGS IN HEPATITIS B VIRUS





FIG. 35

depicts the results of a PZIP motif search conducted on the Hepatitis B virus subtype AYW. Two regions of interest within the major surface antigen precursor S protein were identified. The first lies just C-terminal to the proposed fusion peptide of the major surface antigen (Hbs) which is found at amino acid residues 174-191. The second region is located at amino acid residues 233-267. The Lupas program predicts no coiled-coil repeat regions.




In order to test the potential anti-HBV antiviral activity of these D178/DP107 analog regions, peptides derived from area around the analog regions are synthesized, as shown in

FIGS. 52A-B

. These peptides represent one amino acid peptide “walks” through the putative DP178/DP107 analog regions. The peptides are synthesized according to standard Fmoc chemistry on Rinkamide MBHA resins to provide for carboxy terminal blockade (Chang, C. D. and Meinhofer, J., 1978, Int. J. Pept. Protein Res. 11:246-249; Fields, G. B. and Noble, R. L., 1990, Int. J. Pept. Protein Res. 35:161-214). Following complete synthesis, the peptide amino-terminus is blocked through automated acetylation and the peptide is cleaved with trifluoroacetic acid (TFA) and the appropriate scavengers (King, D. S. et al., 1990, Int. J. Pept. Res. 36:255-266). After cleavage, the peptide is precipitated with ether and dried under vacuum for 24 hours.




The anti-HBV activity of the peptides is tested by utilizing standard assays to determine the test peptide concentration required to cause an acceptable (e.g., 90%) decrease in the amount of viral progeny formed by cells exposed to an HBV viral inoculum. Candidate antivial peptides are further characterized in model systems such as wood chuck tissue culture and animal systems, prior to testing on humans.




23. EXAMPLE: COMPUTER-ASSISTED IDENTIFICATION OF DP178/DP107 ANALOGS IN SIMIAN MASON-PFIZER MONKEY VIRUS




The results depicted herein illustrate the results of search motifs conducted on the Simian Mason-Pfizer monkey virus. The motifs reveal DP178/DP107 analogs within the enveloped (TM) protein GP20, as shown in FIG.


36


.




The 107×178×4 motifs identifies a region at amino acid residues 422-470. The ALLMOTI5 finds a region at amino acid residues 408-474. The Lupas program predicted a coiled-coil structure a amino acids 424-459.




24. EXAMPLE: COMPUTER-ASSISTED IDENTIFICATION OF DP178/DP107 ANALOGS IN BACTERIAL PROTEINS




The results presented herein demonstrate the identification of DP178/DP107 analogs corresponding to sequences present in proteins of a variety of bacterial species.





FIG. 37

depicts the search motif results for the Pseudomonas aeruginosa fimbrial protein (Pilin). Two regions were identified by motifs 107×178×4 and ALLMOTI5. The regions located at amino acid residues 30-67 and 80-144 were identified by the 107×178×4 motif. The regions at amino acid residues 30-68 and 80-125 were identified by the ALLMOTI5.





FIG. 38

depicts the search motif results for the Pseudomonas gonorrhoeae fimbrial protein (Pilin). A single region was identified by both the 107×178×4 and the ALLMOTI5 motifs. The region located at amino acid residues 66-97 was identified by the 107×178×4 motif. The region located at amino acid residues 66-125 were identified by the ALLMOTI5 search motif. No coiled-coil regions were predicted by the Lupas program.





FIG. 39

depicts the search motif results for the Hemophilus Influenza fimbrial protein (Pilin). A single region was identified by both the 107×178×4 and the ALLMOTI5 motifs. The region located at amino acid residues 102-129 was identified by the 107×178×4 motif. The region located at amino acid residues 102-148 were identified by the ALLMOTI5 search motif. No coiled-coil regions were predicted by the Lupas program.





FIG. 40

depicts the search motif results for the Staphylococcus aureus toxic shock syndrome Hemophilus Influenza fimbrial protein (Pilin). A single region was identified by both the 107×178×4 and the ALLMOTI5 motifs. The region located at amino acid residues 102-129 was identified by the 107×178×4 motif. The region located at amino acid residues 102-148 were identified by the ALLMOTI5 search motif. No coiled-coil regions were predicted by the Lupas program.





FIG. 41

summarizes the motif search results conducted on the Staphylococcus aureus enterotoxin Type E protein. These results demonstrate the successful identification of DP178/DP107 analogs corresponding to peptide sequences within this protein, as described below.




The ALLMOTI5 motif identified a region at amino acid residues 22-27. The 107×178×4 motif identified two regions, with the first at amino acid residues 26-69 and the second at 88-115. A P12LZIPC motif search identified two regions, at amino acid residues 163-181 and 230-250.




The Lupas program predicted a region with a high propensity for coiling at amino acid residues 25-54. This sequence is completely contained within the first region identified by both ALLMOTI5 and 107×178×4 motifs.





FIG. 42

depicts the search motif results conducted on a second Staphylococcus aureus toxin, enterotoxin A. Two regions were identified by the ALLMOTI5 motif, at amino acid residues 22-70 and amino acid residues 164-205. The 107×178×4 motif found two regions, the first at amino acid residues 26-69 and the second at amino acid residues 165-192. A P23LZIPC motif search revealed a region at amino acid residues 216-250. No coiled-coil regions were predicted by the Lupas program.





FIG. 43

shows the motif search results conducted on the


E. coli


heat labile enterotoxin A protein, demonstrating that identification of DP178/DP107 analogs corresponding to peptides located within this protein. Two regions were identified by the ALLMOTI5 motif, with the first residing at amino acid residues 55-115, and the second residing at amino acid residues 216-254. The 107×178×4 motif identified a single region at amino acid residues 78-105. No coiled-coil regions were predicted by the Lupas program.




25. EXAMPLE: COMPUTER-ASSISTED IDENTIFICATION OF DP178/DP107 ANALOGS WITHIN VARIOUS HUMAN PROTEINS




The results presented herein demonstrate the identification of DP178/DP107 analogs corresponding to peptide sequences present within several different human proteins.





FIG. 44

illustrates the search motif results conducted on the human c-fos oncoprotein. The ALLMOTI5 motif identified a single region at amino acid residues 155-193. The 107×178×4 motif identified one region at amino acid residues 162-193. The Lupas program predicted a region at amino acid residues 148-201 to have coiled-coil structure.





FIG. 45

illustrates the search motif results conducted on the human lupus KU autoantigen protein P70. The ALLMOTI5 motif identified a single region at amino acid residues 229-280. The 107×178×4 motif identified one region at amino acid residues 235-292. The Lupas program predicted a region at amino acid residues 232-267 to have coiled-coil structure.





FIG. 46

illustrates the search motif results conducted on the human zinc finger protein 10. The ALLMOTI5 motif identified a single region at amino acid residues 29-81. The 107×178×4 motif identified one region at amino acid residues 29-56. A P23LZIPC motif search found a single region at amino acid residues 420-457. The Lupas program predicted no coiled-coil regions.




26. EXAMPLE: POTENTIAL MEASLES VIRUS DP178/DP107 ANALOGS: CD AND ANTIVIRAL CHARACTERIZATION




In the Example presented herein, measles (MeV) virus DP178-like peptides identified by utilizing the computer-assisted search motifs described in the Examples presented in Sections 9 and 21, above, are tested for anti-MeV activity. Additionally, circular dichroism (CD) structural analyses are conducted on the peptides, as discussed below. It is demonstrated that several of the identified peptides exhibit potent antiviral capability. Additionally, it is shown that none of the these peptides exhibit a substantial helical character.




26.1 Materials and Methods




Structural analyses: The CD spectra were measured in a 10 mM sodium phosphate, 150 mM sodium chloride, pH 7.0, buffer at approximately 10 mM concentrations, using a 1 cm pathlength cell on a Jobin/Yvon Autodichrograph Mark V CD spectrophotometer. Peptide concentrations were determined from A


280


using Edlehoch's method (1967, Biochemistry 6:1948).




Anti-MeV antiviral activity syncytial reduction assay: The assay utilized herein tested the ability of the peptides to disrupt the ability of Vero cells acutely infected with MeV (i.e., cells which are infected with a multiplicity of infection of 2-3) to fuse and cause syncytial formation on a monolayer of an uninfected line of Vero cells. The more potent the peptide, the lower the observed level of fusion, the greater the antiviral activity of the peptide.




Uninfected confluent monolayers of Vero cells were grown in microtiter wells in 10% FBS EMEM (Eagle Minimum Essential Medium w/o L-glutamine [Bio Whittaker Cat. No. 12-125F], with fetal bovine serum [FBS; which had been heat inactivated for 30 minutes at 56° C.; Bio Whittaker Cat. No. 14-501F) supplemented at 10%, antibiotics/antimycotics (Bio Whittaker Cat. No. 17-602E) added at 1%, and glutamine added at 1%.




To prepare acutely infected Vero cells for addition to the uninfected cells, cultures of acutely infected Vero cells were washed twice with HBSS (Bio Whittaker Cat. No. 10-543F) and cell monolayers were removed with trypsin (Bio Whittaker Cat. No. 17-161E). Once cells detached, media was added, any remaining clumps of cells were dispersed, and hemacytometer cell counts were performed.




The antiviral assay was conducted by, first, removing all media from the wells containing uninfected Vero cells, then adding peptides (at the dilutions described below) in 10% FBS EMEM, and 50-100 acutely MeV-infected Vero cells per well. Wells were then incubated at 37° C. for a maximum of 18 hours.




On day 2, after cells in control wells were checked for fusion centers, media was removed from the wells, followed by addition, to each well, of approximately 50 μl 0.25% Crystal Violet stain in methanol. Wells were rinsed twice with water immediately, to remove excess stain and were then allowed to dry. The number of syncytia per well were then counted, using a dissecting microscope.




Anti-MeV antiviral activity plaque reduction assay: The assay utilized herein tested the ability of the peptides to disrupt the ability of MeV to infect permissive, uninfected Vero cells, leading to the infected cells' fusing with uninfected cells to produce syncytia. The lower the observed level of syncytial formation, the greater the antiviral activity of the peptide.




Monolayers of uninfected Vero cells are grown as described above.




The antiviral assay was conducted by, first, removing all media from the wells containing uninfected Vero cells, then adding peptides (at the dilutions described below) in 10% FBS EMEM, and MeV stock virus at a final concentration of 30 plaque forming units (PFU) per well. Wells were then incubated at 37° C. for a minimum of 36 hours and a maximum of 48 hours.




On day 2, after cells in control wells were checked for fusion centers, media was removed from the wells, followed by addition, to each well, of approximately 50 μl 0.25% Crystal Violet stain in methanol. Wells were rinsed twice with water immediately, to remove excess stain and were then allowed to dry. The number of syncytia per well were then counted, using a dissecting microscope.




Peptides: The peptides characterized in the study presented herein were peptides T-252A0 to T-256A0, T-257B1/C1, and T-258B1 to T-265B0, and T-266A0 to T-268A0, as shown in FIG.


47


. These peptides represent a walk through the DP178-like region of the MeV fusion protein.




Each peptide was tested at 2-fold serial dilutions ranging from 100 μg/ml to approximately 100 ng/ml. For each of the assays, a well containing no peptide was also used.




26.2 Results




The data summarized in

FIG. 47

represents antiviral and structural information obtained via “peptide walks” through the DP178-like region of the MeV fusion protein.




As shown in

FIG. 47

, the MeV DP178-like peptides exhibited a range of antiviral activity as crude peptides. Several of these peptides were chosen for purification and further antiviral characterization. The IC


50


values for such peptides were determined, as shown in

FIG. 47

, and ranged from 1.35 μg/ml (T-257B1/C1) to 0.072 μg/ml (T-265B1). None of the DP178-like peptides showed, by CD analysis, a detectable level of helicity.




Thus, the computer assisted searches described, hereinabove, as in for example, the Example presented in Section 9, for example, successfully identified viral peptide domains that represent highly promising anti-MeV antiviral compounds.




27. EXAMPLE: POTENTIAL SIV DP178/DP107 ANALOGS: ANTIVIRAL CHARACTERIZATION




In the Example presented herein, simian immunodeficiency virus (SIV) DP178-like peptides identified by utilizing the computer-assisted search motifs described in the Examples presented in Sections 9, 12 and 19, above, were tested for anti-SIV activity. It is demonstrated that several of the identified peptides exhibit potent antiviral capability.




27.1 Materials and Methods




Anti-SIV antiviral assays: The assay utilized herein were as reported in Langolis et al. (Langolis, A. J. et al., 1991, AIDS Research and Human Retroviruses 7:713-720).




Peptides: The peptides characterized in the study presented herein were peptides T-391 to T-400, as shown in FIG.


48


. These peptides represent a walk through the DP178-like region of the SIV ™ protein.




Each peptide was tested at 2-fold serial dilutions ranging from 100 μg/ml to approximately 100 ng/ml. For each of the assays, a well containing no peptide was also used.




27.2 Results




The data summarized in

FIG. 48

represents antiviral information obtained via “peptide walks” through the DP178-like region of the SIV ™ protein.




As shown in

FIG. 48

, peptides T-391 to T-400 were tested and exhibited a potent antiviral activity as crude peptides.




Thus, the computer assisted searches described, hereinabove, as in for example, the Example presented in Section 9, for example, successfully identified viral peptide domains that represent highly promising anti-SIV antiviral compounds.




28. EXAMPLE: ANTI-VIRAL ACTIVITY OF DP107 AND DP-178 PEPTIDE TRUNCATIONS AND MUTATIONS




The Example presented in this Section represents a study of the antiviral activity of DP107 and DP178 truncations and mutations. It is demonstrated that several of these DP107 and DP178 modified peptides exhibit substantial antiviral activity.




28.1 Materials and Methods




Anti-HIV assays: The antiviral assays performed were as those described, above, in Section 6.1. Assays utilized HIV-1/IIIb and/or HIV-2 NIHZ isolates. Purified peptides were used, unless otherwise noted in

FIGS. 49A-C

.




Peptides: The peptides characterized in the study presented herein were:




1)

FIGS. 49A-C

present peptides derived from 30 the region around and containing the DP178 region of the HIV-1 BRU isolate. Specifically, this region spanned from gp41 amino acid residue 615 to amino acid residue 717. The peptides listed contain truncations of this region and/or mutations which vary from the DP178 sequence amino acid sequence. Further, certain of the peptides have had amino- and/or carboxy-terminal groups either added or removed, as indicated in the figures; and




2) FIG.


50


. presents peptides which represent truncations of DP107 and/or the gp41 region surrounding the DP107 amino acid sequence of HIV-1 BRU isolate. Certain of the peptides are unblocked or biotinylated, as indicated in the figure.




Blocked peptides contained an acyl N-terminus and an amido C-terminus.




28.2 Results




Anti-HIV antiviral data was obtained with the group 1 DP178-derived peptides listed in

FIG. 49A-C

. The full-length, non-mutant DP178 peptide (referred to in

FIGS. 49A-C

as T20) results shown are for 4 ng/ml.




In

FIG. 49A

, a number of the DP178 truncations exhibited a high level of antiviral activity, as evidenced by their low IC


50


values. These include, for example, test peptides T-50, T-624, T-636 to T-641, T-645 to T-650, T-652 to T-654 and T-656. T-50 represents a test peptide which contains a point mutation, as indicated by the residue's shaded background. The HIV-1-derived test peptides exhibited a distinct strain-specific antiviral activity, in that none of the peptides tested on the HIV-2 NIHZ isolate demonstrated appreciable anti-HIV-2 antiviral activity.




Among the peptides listed in

FIG. 49B

, are test peptides representing the amino (T-4) and carboxy (T-3) terminal halves of DP178 were tested. The amino terminal peptide was not active (IC


50


>400 μg/ml) whereas the carboxy terminal peptide showed potent antiviral activity (IC


50


=3 μg/ml). A number of additional test peptides also exhibited a high level of antiviral activity. These included, for example, T-61/T-102, T-217 to T-221, T-235, T-381, T-677, T-377, T-590, T-378, T-591, T-271 to T-272, T-611, T-222 to T-223 and T-60/T-224. Certain of the antiviral peptides contain point mutations and/or amino acid residue additions which vary from the DP178 amino acid sequence.




In

FIG. 49C

, point mutations and/or amino and/or carboxy-terminal modifications are introduced into the DP178 amino acid sequence itself. As shown in the figure, the majority of the test peptides listed exhibit potent antiviral activity.




Truncations of the DP107 peptide (referred to in

FIG. 50

as T21) were also produced and tested, as shown in FIG.


50


.

FIG. 50

also presents data concerning blocked and unblocked peptides which contain additional amino acid residues from the gp41 region in which the DP107 sequence resides. Most of these peptides showed antiviral activity, as evidenced by their low IC


50


values.




Thus, the results presented in this Section demonstrate that not only do the full length DP107 and DP178 peptides exhibit potent antiviral activity, but truncations and/or mutant versions of these peptides can also possess substantial antiviral character.




29: EXAMPLE: POTENTIAL EPSTEIN-BARR DP178/DP107 ANALOGS: ANTIVIRAL CHARACTERIZATION




In the Example presented herein, peptides derived from the Epstein-Barr (EBV) DP-178/DP107 analog region of the Zebra protein identified, above, in the Example presented in Section 20 are described and tested for anti-EBV activity. It is demonstrated that among these peptides are ones which exhibit potential antiviral activity.




29.1 Materials and Methods




Electrophoretic Mobility Shift Assays (EMSA)




Briefly, an EBV Zebra protein was synthesized utilizing SP6 RNA polymerase in vitro transcription and wheat germ in vitro translation systems (Promega Corporation recommendations; Butler, E. T. and Chamberlain, M. J., 1984, J. Biol. Chem. 257:5772; Pelham, H. R. B. and Jackson, R. J., 1976, Eur. J. Biochem. 67:247). The in vitro translated Zebra protein was then preincubated with increasing amounts of peptide up to 250 ng/ml prior to the addition of 10,000 to 20,000 c.p.m. of a


32


P-labeled Zebra response element DNA fragment. After a 20 minute incubation in the presence of the response element, the reaction was analyzed on a 4% non-denaturing polyacrylamide gel, followed by autoradiography, utilizing standard gel-shift procedures. The ability of a test peptide to prevent Zebra homodimer DNA binding was assayed by the peptide's ability to abolish the response element gel migration retardation characteristic of a protein-bound nucleic acid molecule.




Peptides: The peptides characterized in this study represent peptide walks through the region containing, and flanked on both sides by, the DP178/DP107 analog region identified in the Example presented in Section 20, above, and shown as shown in FIG.


33


. Specifically, the peptide walks covered the region from amino acid residue 173 to amino acid residue 246 of the EBV Zebra protein.




Each of the tested peptides were analyzed at a range of concentrations, with 150 ng/ml being the lowest concentration at which any of the peptides exerted an inhibitory effect.




29.2 Results




The EBV Zebra protein transcription factor contains a DP178/DP107 analog region, as demonstrated in the Example presented, above, in Section 20. This protein appears to be the primary factor responsible for the reactivation capability of the virus. A method by which the DNA-binding function of the Zebra virus may be abolished may, therefore, represent an effective antiviral technique. In order to identify potential anti-EBV DP178/DP107 peptides, therefore, peptides derived from the region identified in Section 20, above, were tested for their ability to inhibit Zebra protein DNA binding.




The test peptides' ability to inhibit Zebra protein DNA binding was assayed via the EMSA assays described, above, in Section 28.1. The data summarized in

FIGS. 51A-B

presents the results of EMSA assays of the listed EBV test peptides. These peptides represent one amino acid “walks” through the region containing, and flanked on both sides by, the DP178/DP107 analog region identified in the Example presented in Section 20, above, and shown as shown in FIG.


33


. As shown in

FIGS. 51A-B

, the region from which these peptides are derived lies from EBV Zebra protein amino acid residue 173 to 246. A number of the test peptides which were assayed exhibited an ability to inhibit Zebra protein homodimer DNA binding, including 439, 441, 444 and 445.




Those peptides which exhibit an ability to inhibit Zebra protein DNA binding represent potential anti-EBV antiviral compounds whose ability to inhibit EBV infection can be further characterized.




The present invention is not to be limited in scope by the specific embodiments described which are intended as single illustrations of individual aspects of the invention, and functionally equivalent methods and components are within the scope of the invention. Indeed, various modifications of the invention, in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and accompanying drawings. Such modifications are intended to fall within the scope of the appended claims.







517





36 amino acids


amino acid





unknown




peptide




not provided



1
Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu Ser Gln Asn Gln Gln
1 5 10 15
Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu
20 25 30
Trp Asn Trp Phe
35






36 amino acids


amino acid





unknown




peptide




not provided



2
Ser Ser Glu Ser Phe Thr Leu Leu Glu Gln Trp Asn Asn Trp Lys Leu
1 5 10 15
Gln Leu Ala Glu Gln Trp Leu Glu Gln Ile Asn Glu Lys His Tyr Leu
20 25 30
Glu Asp Ile Ser
35






36 amino acids


amino acid





unknown




peptide




not provided



3
Tyr Thr Asn Thr Ile Tyr Thr Leu Leu Glu Glu Ser Gln Asn Gln Gln
1 5 10 15
Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu
20 25 30
Trp Asn Trp Phe
35






36 amino acids


amino acid





unknown




peptide




not provided



4
Tyr Thr Gly Ile Ile Tyr Asn Leu Leu Glu Glu Ser Gln Asn Gln Gln
1 5 10 15
Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Asn Leu
20 25 30
Trp Asn Trp Phe
35






36 amino acids


amino acid





unknown




peptide




not provided



5
Tyr Thr Ser Leu Ile Tyr Ser Leu Leu Glu Lys Ser Gln Thr Gln Gln
1 5 10 15
Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu
20 25 30
Trp Asn Trp Phe
35






36 amino acids


amino acid





unknown




peptide




not provided



6
Leu Glu Ala Asn Ile Ser Lys Ser Leu Glu Gln Ala Gln Ile Gln Gln
1 5 10 15
Glu Lys Asn Met Tyr Glu Leu Gln Lys Leu Asn Ser Trp Asp Ile Phe
20 25 30
Gly Asn Trp Phe
35






36 amino acids


amino acid





unknown




peptide




not provided



7
Leu Glu Ala Asn Ile Ser Gln Ser Leu Glu Gln Ala Gln Ile Gln Gln
1 5 10 15
Glu Lys Asn Met Tyr Glu Leu Gln Lys Leu Asn Ser Trp Asp Val Phe
20 25 30
Thr Asn Trp Leu
35






41 amino acids


amino acid





unknown




peptide




not provided



8
Cys Gly Gly Asn Asn Leu Leu Arg Ala Ile Glu Ala Gln Gln His Leu
1 5 10 15
Leu Gln Leu Thr Val Trp Gly Ile Lys Gln Leu Gln Ala Arg Ile Leu
20 25 30
Ala Val Glu Arg Tyr Leu Lys Asp Gln
35 40






17 amino acids


amino acid





unknown




peptide




not provided



9
Leu Gln Ala Arg Ile Leu Ala Val Glu Arg Tyr Leu Lys Asp Gln Gln
1 5 10 15
Gln






38 amino acids


amino acid





unknown




peptide




not provided



10
Gln Gln Leu Leu Asp Val Val Lys Arg Gln Gln Glu Met Leu Arg Leu
1 5 10 15
Thr Val Trp Gly Thr Lys Asn Leu Gln Ala Arg Val Thr Ala Ile Glu
20 25 30
Lys Tyr Leu Lys Asp Gln
35






21 base pairs


nucleic acid


single


linear




DNA




not provided



11
ATGACGCTGA CGGTACAGGC C 21






33 base pairs


nucleic acid


single


linear




DNA




not provided



12
TGACTAAGCT TAATACCACA GCCAATTTGT TAT 33






22 base pairs


nucleic acid


single


linear




DNA




not provided



13
GGAGCTGCTT GGGGCCCCAG AC 22






40 base pairs


nucleic acid


single


linear




DNA




not provided



14
CCAAATCCCC AGGAGCTGCT CGAGCTGCAC TATACCAGAC 40






35 base pairs


nucleic acid


single


linear




DNA




not provided



15
ATAGCTTCTA GATTAATTGT TAATTTCTCT GTCCC 35






48 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




16
Tyr Thr Ser Val Ile Thr Ile Glu Leu Ser Asn Ile Lys Glu Asn Lys
1 5 10 15
Cys Asn Gly Thr Asp Ala Lys Val Lys Leu Ile Lys Gln Glu Leu Asp
20 25 30
Lys Tyr Lys Asn Ala Val Thr Glu Leu Gln Leu Leu Met Gln Ser Thr
35 40 45






37 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




17
Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile
1 5 10 15
Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys
20 25 30
Ser Asp Glu Leu Leu
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




18
Ile Thr Leu Asn Asn Ser Val Ala Leu Asp Pro Ile Asp Ile Ser Ile
1 5 10 15
Glu Leu Asn Lys Ala Lys Ser Asp Leu Glu Glu Ser Lys Glu Trp Ile
20 25 30
Arg Arg Ser
35






34 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




19
Ala Leu Gly Val Ala Thr Ser Ala Gln Ile Thr Ala Ala Val Ala Leu
1 5 10 15
Val Glu Ala Lys Gln Ala Arg Ser Asp Ile Glu Lys Leu Lys Glu Ala
20 25 30
Ile Arg






33 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




20
Val Ala Val Ser Lys Val Leu His Leu Glu Gly Glu Val Asn Lys Ile
1 5 10 15
Ala Leu Leu Ser Thr Asn Lys Ala Val Val Ser Leu Ser Asn Gly Val
20 25 30
Ser






33 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




21
Ala Val Ser Lys Val Leu His Leu Glu Gly Glu Val Asn Lys Ile Ala
1 5 10 15
Leu Leu Ser Thr Asn Lys Ala Val Val Ser Leu Ser Asn Gly Val Ser
20 25 30
Val






33 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




22
Val Ser Lys Val Leu His Leu Glu Gly Glu Val Asn Lys Ile Ala Leu
1 5 10 15
Leu Ser Thr Asn Lys Ala Val Val Ser Leu Ser Asn Gly Val Ser Val
20 25 30
Leu






33 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




23
Ser Lys Val Leu His Leu Glu Gly Glu Val Asn Lys Ile Ala Leu Leu
1 5 10 15
Ser Thr Asn Lys Ala Val Val Ser Leu Ser Asn Gly Val Ser Val Leu
20 25 30
Thr






33 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




24
Lys Val Leu His Leu Glu Gly Glu Val Asn Lys Ile Ala Leu Leu Ser
1 5 10 15
Thr Asn Lys Ala Val Val Ser Leu Ser Asn Gly Val Ser Val Leu Thr
20 25 30
Ser






33 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




25
Leu Glu Gly Glu Val Asn Lys Ile Ala Leu Leu Ser Thr Asn Lys Ala
1 5 10 15
Val Val Ser Leu Ser Asn Gly Val Ser Val Leu Thr Ser Lys Val Leu
20 25 30
Asp






33 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




26
Gly Glu Val Asn Lys Ile Ala Leu Leu Ser Thr Asn Lys Ala Val Val
1 5 10 15
Ser Leu Ser Asn Gly Val Ser Val Leu Thr Ser Lys Val Leu Asp Leu
20 25 30
Lys






33 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




27
Glu Val Asn Lys Ile Ala Leu Leu Ser Thr Asn Lys Ala Val Val Ser
1 5 10 15
Leu Ser Asn Gly Val Ser Val Leu Thr Ser Lys Val Leu Asp Leu Lys
20 25 30
Asn






33 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




28
Val Asn Lys Ile Ala Leu Leu Ser Thr Asn Lys Ala Val Val Ser Leu
1 5 10 15
Ser Asn Gly Val Ser Val Leu Thr Ser Lys Val Leu Asp Leu Lys Asn
20 25 30
Tyr






33 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




29
Asn Lys Ile Ala Leu Leu Ser Thr Asn Lys Ala Val Val Ser Leu Ser
1 5 10 15
Asn Gly Val Ser Val Leu Thr Ser Lys Val Leu Asp Leu Lys Asn Tyr
20 25 30
Ile






33 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




30
Lys Ile Ala Leu Leu Ser Thr Asn Lys Ala Val Val Ser Leu Ser Asn
1 5 10 15
Gly Val Ser Val Leu Thr Ser Lys Val Leu Asp Leu Lys Asn Tyr Ile
20 25 30
Asp






33 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




31
Ile Ala Leu Leu Ser Thr Asn Lys Ala Val Val Ser Leu Ser Asn Gly
1 5 10 15
Val Ser Val Leu Thr Ser Lys Val Leu Asp Leu Lys Asn Tyr Ile Asp
20 25 30
Lys






33 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




32
Ala Leu Leu Ser Thr Asn Lys Ala Val Val Ser Leu Ser Asn Gly Val
1 5 10 15
Ser Val Leu Thr Ser Lys Val Leu Asp Leu Lys Asn Tyr Ile Asp Lys
20 25 30
Gln






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




33
Thr Leu Asn Asn Ser Val Ala Leu Asp Pro Ile Asp Ile Ser Ile Glu
1 5 10 15
Leu Asn Lys Ala Lys Ser Asp Leu Glu Glu Ser Lys Glu Trp Ile Arg
20 25 30
Arg Ser Asn
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




34
Leu Asn Asn Ser Val Ala Leu Asp Pro Ile Asp Ile Ser Ile Glu Leu
1 5 10 15
Asn Lys Ala Lys Ser Asp Leu Glu Glu Ser Lys Glu Trp Ile Arg Arg
20 25 30
Ser Asn Gln
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




35
Asn Asn Ser Val Ala Leu Asp Pro Ile Asp Ile Ser Ile Glu Leu Asn
1 5 10 15
Lys Ala Lys Ser Asp Leu Glu Glu Ser Lys Glu Trp Ile Arg Arg Ser
20 25 30
Asn Gln Lys
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




36
Asn Ser Val Ala Leu Asp Pro Ile Asp Ile Ser Ile Glu Leu Asn Lys
1 5 10 15
Ala Lys Ser Asp Leu Glu Glu Ser Lys Glu Trp Ile Arg Arg Ser Asn
20 25 30
Gln Lys Leu
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




37
Ser Val Ala Leu Asp Pro Ile Asp Ile Ser Ile Glu Leu Asn Lys Ala
1 5 10 15
Lys Ser Asp Leu Glu Glu Ser Lys Glu Trp Ile Arg Arg Ser Asn Gln
20 25 30
Lys Leu Asp
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




38
Val Ala Leu Asp Pro Ile Asp Ile Ser Ile Glu Leu Asn Lys Ala Lys
1 5 10 15
Ser Asp Leu Glu Glu Ser Lys Glu Trp Ile Arg Arg Ser Asn Gln Lys
20 25 30
Leu Asp Ser
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




39
Ala Leu Asp Pro Ile Asp Ile Ser Ile Glu Leu Asn Lys Ala Lys Ser
1 5 10 15
Asp Leu Glu Glu Ser Lys Glu Trp Ile Arg Arg Ser Asn Gln Lys Leu
20 25 30
Asp Ser Ile
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




40
Leu Asp Pro Ile Asp Ile Ser Ile Glu Leu Asn Lys Ala Lys Ser Asp
1 5 10 15
Leu Glu Glu Ser Lys Glu Trp Ile Arg Arg Ser Asn Gln Lys Leu Asp
20 25 30
Ser Ile Gly
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




41
Asp Pro Ile Asp Ile Ser Ile Glu Leu Asn Lys Ala Lys Ser Asp Leu
1 5 10 15
Glu Glu Ser Lys Glu Trp Ile Arg Arg Ser Asn Gln Lys Leu Asp Ser
20 25 30
Ile Gly Asn
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




42
Pro Ile Asp Ile Ser Ile Glu Leu Asn Lys Ala Lys Ser Asp Leu Glu
1 5 10 15
Glu Ser Lys Glu Trp Ile Arg Arg Ser Asn Gln Lys Leu Asp Ser Ile
20 25 30
Gly Asn Trp
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




43
Ile Asp Ile Ser Ile Glu Leu Asn Lys Ala Lys Ser Asp Leu Glu Glu
1 5 10 15
Ser Lys Glu Trp Ile Arg Arg Ser Asn Gln Lys Leu Asp Ser Ile Gly
20 25 30
Asn Trp His
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




44
Asp Ile Ser Ile Glu Leu Asn Lys Ala Lys Ser Asp Leu Glu Glu Ser
1 5 10 15
Lys Glu Trp Ile Arg Arg Ser Asn Gln Lys Leu Asp Ser Ile Gly Asn
20 25 30
Trp His Gln
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




45
Ile Ser Ile Glu Leu Asn Lys Ala Lys Ser Asp Leu Glu Glu Ser Lys
1 5 10 15
Glu Trp Ile Arg Arg Ser Asn Gln Lys Leu Asp Ser Ile Gly Asn Trp
20 25 30
His Gln Ser
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




46
Ser Ile Glu Leu Asn Lys Ala Lys Ser Asp Leu Glu Glu Ser Lys Glu
1 5 10 15
Trp Ile Arg Arg Ser Asn Gln Lys Leu Asp Ser Ile Gly Asn Trp His
20 25 30
Gln Ser Ser
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




47
Ile Glu Leu Asn Lys Ala Lys Ser Asp Leu Glu Glu Ser Lys Glu Trp
1 5 10 15
Ile Arg Arg Ser Asn Gln Lys Leu Asp Ser Ile Gly Asn Trp His Gln
20 25 30
Ser Ser Thr
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




48
Glu Leu Asn Lys Ala Lys Ser Asp Leu Glu Glu Ser Lys Glu Trp Ile
1 5 10 15
Arg Arg Ser Asn Gln Lys Leu Asp Ser Ile Gly Asn Trp His Gln Ser
20 25 30
Ser Thr Thr
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




49
Thr Ala Ala Val Ala Leu Val Glu Ala Lys Gln Ala Arg Ser Asp Ile
1 5 10 15
Glu Lys Leu Lys Glu Ala Ile Arg Asp Thr Asn Lys Ala Val Gln Ser
20 25 30
Val Gln Ser
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




50
Ala Val Ala Leu Val Glu Ala Lys Gln Ala Arg Ser Asp Ile Glu Lys
1 5 10 15
Leu Lys Glu Ala Ile Arg Asp Thr Asn Lys Ala Val Gln Ser Val Gln
20 25 30
Ser Ser Ile
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




51
Leu Val Glu Ala Lys Gln Ala Arg Ser Asp Ile Glu Lys Leu Lys Glu
1 5 10 15
Ala Ile Arg Asp Thr Asn Lys Ala Val Gln Ser Val Gln Ser Ser Ile
20 25 30
Gly Asn Leu
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




52
Val Glu Ala Lys Gln Ala Arg Ser Asp Ile Glu Lys Leu Lys Glu Ala
1 5 10 15
Ile Arg Asp Thr Asn Lys Ala Val Gln Ser Val Gln Ser Ser Ile Gly
20 25 30
Asn Leu Ile
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




53
Glu Ala Lys Gln Ala Arg Ser Asp Ile Glu Lys Leu Lys Glu Ala Ile
1 5 10 15
Arg Asp Thr Asn Lys Ala Val Gln Ser Val Gln Ser Ser Ile Gly Asn
20 25 30
Leu Ile Val
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




54
Ala Lys Gln Ala Arg Ser Asp Ile Glu Lys Leu Lys Glu Ala Ile Arg
1 5 10 15
Asp Thr Asn Lys Ala Val Gln Ser Val Gln Ser Ser Ile Gly Asn Leu
20 25 30
Ile Val Ala
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




55
Lys Gln Ala Arg Ser Asp Ile Glu Lys Leu Lys Glu Ala Ile Arg Asp
1 5 10 15
Thr Asn Lys Ala Val Gln Ser Val Gln Ser Ser Ile Gly Asn Leu Ile
20 25 30
Val Ala Ile
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




56
Gln Ala Arg Ser Asp Ile Glu Lys Leu Lys Glu Ala Ile Arg Asp Thr
1 5 10 15
Asn Lys Ala Val Gln Ser Val Gln Ser Ser Ile Gly Asn Leu Ile Val
20 25 30
Ala Ile Lys
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




57
Ala Arg Ser Asp Ile Glu Lys Leu Lys Glu Ala Ile Arg Asp Thr Asn
1 5 10 15
Lys Ala Val Gln Ser Val Gln Ser Ser Ile Gly Asn Leu Ile Val Ala
20 25 30
Ile Lys Ser
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




58
Arg Ser Asp Ile Glu Lys Leu Lys Glu Ala Ile Arg Asp Thr Asn Lys
1 5 10 15
Ala Val Gln Ser Val Gln Ser Ser Ile Gly Asn Leu Ile Val Ala Ile
20 25 30
Lys Ser Val
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




59
Ser Asp Ile Glu Lys Leu Lys Glu Ala Ile Arg Asp Thr Asn Lys Ala
1 5 10 15
Val Gln Ser Val Gln Ser Ser Ile Gly Asn Leu Ile Val Ala Ile Lys
20 25 30
Ser Val Gln
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




60
Lys Leu Lys Glu Ala Ile Arg Asp Thr Asn Lys Ala Val Gln Ser Val
1 5 10 15
Gln Ser Ser Ile Gly Asn Leu Ile Val Ala Ile Lys Ser Val Gln Asp
20 25 30
Tyr Val Asn
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




61
Leu Lys Glu Ala Ile Arg Asp Thr Asn Lys Ala Val Gln Ser Val Gln
1 5 10 15
Ser Ser Ile Gly Asn Leu Ile Val Ala Ile Lys Ser Val Gln Asp Tyr
20 25 30
Val Asn Lys
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




62
Ala Ile Arg Asp Thr Asn Lys Ala Val Gln Ser Val Gln Ser Ser Ile
1 5 10 15
Gly Asn Leu Ile Val Ala Ile Lys Ser Val Gln Asp Tyr Val Asn Lys
20 25 30
Glu Ile Val
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




63
Trp Gln Glu Trp Glu Arg Lys Val Asp Phe Leu Glu Glu Asn Ile Thr
1 5 10 15
Ala Leu Leu Glu Glu Ala Gln Ile Gln Gln Glu Lys Asn Met Tyr Glu
20 25 30
Leu Gln Lys
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




64
Gln Glu Trp Glu Arg Lys Val Asp Phe Leu Glu Glu Asn Ile Thr Ala
1 5 10 15
Leu Leu Glu Glu Ala Gln Ile Gln Gln Glu Lys Asn Met Tyr Glu Leu
20 25 30
Gln Lys Leu
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




65
Glu Trp Glu Arg Lys Val Asp Phe Leu Glu Glu Asn Ile Thr Ala Leu
1 5 10 15
Leu Glu Glu Ala Gln Ile Gln Gln Glu Lys Asn Met Tyr Glu Leu Gln
20 25 30
Lys Leu Asn
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




66
Trp Glu Arg Lys Val Asp Phe Leu Glu Glu Asn Ile Thr Ala Leu Leu
1 5 10 15
Glu Glu Ala Gln Ile Gln Gln Glu Lys Asn Met Tyr Glu Leu Gln Lys
20 25 30
Leu Asn Ser
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




67
Glu Arg Lys Val Asp Phe Leu Glu Glu Asn Ile Thr Ala Leu Leu Glu
1 5 10 15
Glu Ala Gln Ile Gln Gln Glu Lys Asn Met Tyr Glu Leu Gln Lys Leu
20 25 30
Asn Ser Trp
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




68
Arg Lys Val Asp Phe Leu Glu Glu Asn Ile Thr Ala Leu Leu Glu Glu
1 5 10 15
Ala Gln Ile Gln Gln Glu Lys Asn Met Tyr Glu Leu Gln Lys Leu Asn
20 25 30
Ser Trp Asp
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




69
Lys Val Asp Phe Leu Glu Glu Asn Ile Thr Ala Leu Leu Glu Glu Ala
1 5 10 15
Gln Ile Gln Gln Glu Lys Asn Met Tyr Glu Leu Gln Lys Leu Asn Ser
20 25 30
Trp Asp Val
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




70
Val Asp Phe Leu Glu Glu Asn Ile Thr Ala Leu Leu Glu Glu Ala Gln
1 5 10 15
Ile Gln Gln Glu Lys Asn Met Tyr Glu Leu Gln Lys Leu Asn Ser Trp
20 25 30
Asp Val Phe
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




71
Asp Phe Leu Glu Glu Asn Ile Thr Ala Leu Leu Glu Glu Ala Gln Ile
1 5 10 15
Gln Gln Glu Lys Asn Met Tyr Glu Leu Gln Lys Leu Asn Ser Trp Asp
20 25 30
Val Phe Gly
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




72
Phe Leu Glu Glu Asn Ile Thr Ala Leu Leu Glu Glu Ala Gln Ile Gln
1 5 10 15
Gln Glu Lys Asn Met Tyr Glu Leu Gln Lys Leu Asn Ser Trp Asp Val
20 25 30
Phe Gly Asn
35






34 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




73
Leu His Arg Ile Asp Leu Gly Pro Pro Ile Ser Leu Glu Arg Leu Asp
1 5 10 15
Val Gly Thr Asn Leu Gly Asn Ala Ile Ala Lys Leu Glu Ala Lys Glu
20 25 30
Leu Leu






34 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




74
His Arg Ile Asp Leu Gly Pro Pro Ile Ser Leu Glu Arg Leu Asp Val
1 5 10 15
Gly Thr Asn Leu Gly Asn Ala Ile Ala Lys Leu Glu Ala Lys Glu Leu
20 25 30
Leu Glu






34 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




75
Arg Ile Asp Leu Gly Pro Pro Ile Ser Leu Glu Arg Leu Asp Val Gly
1 5 10 15
Thr Asn Leu Gly Asn Ala Ile Ala Lys Leu Glu Ala Lys Glu Leu Leu
20 25 30
Glu Ser






34 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




76
Ile Asp Leu Gly Pro Pro Ile Ser Leu Glu Arg Leu Asp Val Gly Thr
1 5 10 15
Asn Leu Gly Asn Ala Ile Ala Lys Leu Glu Ala Lys Glu Leu Leu Glu
20 25 30
Ser Ser






34 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




77
Asp Leu Gly Pro Pro Ile Ser Leu Glu Arg Leu Asp Val Gly Thr Asn
1 5 10 15
Leu Gly Asn Ala Ile Ala Lys Leu Glu Ala Lys Glu Leu Leu Glu Ser
20 25 30
Ser Asp






34 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




78
Leu Gly Pro Pro Ile Ser Leu Glu Arg Leu Asp Val Gly Thr Asn Leu
1 5 10 15
Gly Asn Ala Ile Ala Lys Leu Glu Ala Lys Glu Leu Leu Glu Ser Ser
20 25 30
Asp Gln






34 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




79
Gly Pro Pro Ile Ser Leu Glu Arg Leu Asp Val Gly Thr Asn Leu Gly
1 5 10 15
Asn Ala Ile Ala Lys Leu Glu Ala Lys Glu Leu Leu Glu Ser Ser Asp
20 25 30
Gln Ile






34 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




80
Pro Pro Ile Ser Leu Glu Arg Leu Asp Val Gly Thr Asn Leu Gly Asn
1 5 10 15
Ala Ile Ala Lys Leu Glu Ala Lys Glu Leu Leu Glu Ser Ser Asp Gln
20 25 30
Ile Leu






34 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




81
Pro Ile Ser Leu Glu Arg Leu Asp Val Gly Thr Asn Leu Gly Asn Ala
1 5 10 15
Ile Ala Lys Leu Glu Ala Lys Glu Leu Leu Glu Ser Ser Asp Gln Ile
20 25 30
Leu Arg






34 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




82
Ser Leu Glu Arg Leu Asp Val Gly Thr Asn Leu Gly Asn Ala Ile Ala
1 5 10 15
Lys Leu Glu Ala Lys Glu Leu Leu Glu Ser Ser Asp Gln Ile Leu Arg
20 25 30
Ser Met






34 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/label= A
/note= “Preceeding this amino acid, there may be an amino
group, a hydrophobic group, an acetyl group, a
9-fluorenylmethoxycarbonyl group, or a macromolecular
carrier group.”





Modified-site


48


/label= B
/note= “Following this amino acid, there may be a
carboxyl group, an amido group, a T-butyloxycarbonyl
group, or a macromolecular carrier group.”




83
Leu Glu Arg Leu Asp Val Gly Thr Asn Leu Gly Asn Ala Ile Ala Lys
1 5 10 15
Leu Glu Ala Lys Glu Leu Leu Glu Ser Ser Asp Gln Ile Leu Arg Ser
20 25 30
Met Lys






28 amino acids


amino acid





unknown




peptide




not provided



84
Met Lys Gln Leu Glu Asp Lys Val Glu Glu Leu Leu Ser Lys Asn Tyr
1 5 10 15
His Leu Glu Asn Glu Val Ala Arg Leu Lys Lys Leu
20 25






28 amino acids


am


unknown




peptide




not provided



85
Thr Asp Thr Leu Gln Ala Glu Thr Asp Gln Leu Glu Asp Glu Lys Ser
1 5 10 15
Ala Leu Gln Thr Glu Ile Ala Asn Leu Leu Lys Glu
20 25






28 amino acids


amino acid





unknown




peptide




not provided



86
Ile Ala Arg Leu Glu Glu Lys Val Lys Thr Leu Lys Ala Gln Asn Ser
1 5 10 15
Glu Leu Ala Ser Thr Ala Asn Met Leu Arg Glu Gln
20 25






28 amino acids


amino acid





unknown




peptide




not provided



87
Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Leu Glu Lys Arg Arg Glu
1 5 10 15
Gln Leu Lys His Lys Leu Glu Gln Leu Arg Asn Ser
20 25






28 amino acids


amino acid





unknown




peptide




not provided



88
Ile Glu Lys Thr Asn Glu Lys Phe His Gln Ile Glu Lys Glu Phe Ser
1 5 10 15
Glu Val Glu Gly Arg Ile Gln Asp Leu Glu Lys Tyr
20 25






38 amino acids


amino acid





unknown




peptide




not provided



89
Asn Asn Leu Leu Arg Ala Ile Glu Ala Gln Gln His Leu Leu Gln Leu
1 5 10 15
Thr Val Trp Gly Ile Lys Gln Leu Gln Ala Arg Ile Leu Ala Val Glu
20 25 30
Arg Tyr Leu Lys Asp Gln
35






338 amino acids


amino acid





unknown




protein




not provided



90
Phe Leu Gly Phe Leu Gly Ala Ala Gly Ser Thr Met Gly Ala Arg Ser
1 5 10 15
Met Thr Leu Thr Val Gln Ala Arg Gln Leu Leu Ser Gly Ile Val Gln
20 25 30
Gln Gln Asn Asn Leu Leu Arg Ala Ile Glu Ala Gln Gln His Leu Leu
35 40 45
Gln Leu Thr Val Trp Gly Ile Lys Gln Leu Gln Ala Arg Ile Leu Ala
50 55 60
Val Glu Arg Tyr Leu Lys Asp Gln Gln Leu Leu Gly Ile Trp Gly Cys
65 70 75 80
Ser Gly Lys Leu Ile Cys Thr Thr Ala Val Pro Trp Asn Ala Ser Trp
85 90 95
Ser Asn Lys Ser Leu Glu Gln Ile Trp Asn Asn Met Thr Trp Met Glu
100 105 110
Trp Asp Arg Glu Ile Asn Asn Tyr Thr Ser Leu Ile His Ser Leu Ile
115 120 125
Glu Glu Ser Gln Asn Gln Gln Glu Lys Asn Glu Gln Glu Leu Leu Glu
130 135 140
Leu Asp Lys Trp Ala Ser Leu Trp Asn Trp Phe Asn Ile Thr Asn Trp
145 150 155 160
Leu Trp Tyr Ile Lys Ile Phe Ile Met Ile Val Gly Gly Leu Val Gly
165 170 175
Leu Arg Ile Val Phe Ala Val Leu Ser Ile Val Asn Arg Val Arg Gln
180 185 190
Gly Tyr Ser Pro Leu Ser Phe Gln Thr His Leu Pro Thr Pro Arg Gly
195 200 205
Pro Asp Arg Pro Glu Gly Ile Glu Glu Glu Gly Gly Glu Arg Asp Arg
210 215 220
Asp Arg Ser Ile Arg Leu Val Asn Gly Ser Leu Ala Leu Ile Trp Asp
225 230 235 240
Asp Leu Arg Ser Leu Cys Leu Phe Ser Tyr His Arg Leu Arg Asp Leu
245 250 255
Leu Leu Ile Val Thr Arg Ile Val Glu Leu Leu Gly Arg Arg Gly Trp
260 265 270
Glu Ala Leu Lys Tyr Trp Trp Asn Leu Leu Gln Tyr Trp Ser Gln Glu
275 280 285
Leu Lys Asn Ser Ala Val Ser Leu Leu Asn Ala Thr Ala Ile Ala Val
290 295 300
Ala Glu Gly Thr Asp Arg Val Ile Glu Val Val Gln Gly Ala Cys Arg
305 310 315 320
Ala Ile Arg His Ile Pro Arg Arg Ile Arg Gln Gly Leu Glu Arg Ile
325 330 335
Leu Leu






437 amino acids


amino acid





unknown




protein




not provided



91
Phe Leu Gly Phe Leu Leu Gly Val Gly Ser Ala Ile Ala Ser Gly Val
1 5 10 15
Ala Val Ser Lys Val Leu His Leu Glu Gly Glu Val Asn Lys Ile Lys
20 25 30
Ser Ala Leu Leu Ser Thr Asn Lys Ala Val Val Ser Leu Ser Asn Gly
35 40 45
Val Ser Val Leu Thr Ser Lys Val Leu Asp Leu Lys Asn Tyr Ile Asp
50 55 60
Lys Gln Leu Leu Pro Ile Val Asn Lys Gln Ser Cys Ser Ile Ser Asn
65 70 75 80
Ile Glu Thr Val Ile Glu Phe Gln Gln Lys Asn Asn Arg Leu Leu Glu
85 90 95
Ile Thr Arg Glu Phe Ser Val Asn Ala Gly Val Thr Thr Pro Val Ser
100 105 110
Thr Met Leu Thr Asn Ser Glu Leu Leu Ser Leu Ile Asn Asp Met Pro
115 120 125
Ile Thr Asn Asp Gln Lys Lys Leu Met Ser Asn Asn Val Gln Ile Val
130 135 140
Arg Gln Gln Ser Tyr Ser Ile Met Ser Ile Ile Lys Glu Glu Val Leu
145 150 155 160
Ala Tyr Val Val Gln Leu Pro Leu Tyr Gly Val Ile Asp Thr Pro Cys
165 170 175
Trp Lys Leu His Thr Ser Pro Leu Cys Thr Thr Asn Thr Lys Glu Gly
180 185 190
Ser Asn Ile Cys Leu Thr Arg Thr Asp Arg Gly Trp Tyr Cys Asp Asn
195 200 205
Ala Gly Ser Val Ser Phe Phe Pro Gln Ala Glu Thr Cys Lys Val Gln
210 215 220
Ser Asn Arg Val Phe Cys Asp Thr Met Asn Ser Leu Thr Leu Pro Ser
225 230 235 240
Glu Ile Asn Leu Cys Asn Val Asp Ile Phe Asn Pro Lys Tyr Asp Cys
245 250 255
Lys Ile Met Thr Ser Lys Thr Asp Val Ser Ser Ser Val Ile Thr Ser
260 265 270
Leu Gly Ala Ile Val Ser Cys Tyr Gly Lys Thr Lys Cys Thr Ala Ser
275 280 285
Asn Lys Asn Arg Gly Ile Ile Lys Thr Phe Ser Asn Gly Cys Asp Tyr
290 295 300
Val Ser Asn Lys Gly Met Asp Thr Val Ser Val Gly Asn Thr Leu Tyr
305 310 315 320
Tyr Val Asn Lys Gln Glu Gly Lys Ser Leu Tyr Val Lys Gly Glu Pro
325 330 335
Ile Ile Asn Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp
340 345 350
Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe
355 360 365
Ile Arg Lys Ser Asp Glu Leu Leu His Asn Val Asn Ala Gly Lys Ser
370 375 380
Thr Thr Asn Ile Met Ile Thr Thr Ile Ile Ile Val Ile Ile Val Ile
385 390 395 400
Leu Leu Ser Leu Ile Ala Val Gly Leu Leu Leu Tyr Cys Lys Ala Arg
405 410 415
Ser Thr Pro Val Thr Leu Ser Lys Asp Gln Leu Ser Gly Ile Asn Asn
420 425 430
Ile Ala Phe Ser Asn
435






328 amino acids


amino acid





unknown




protein




not provided



92
Phe Leu Gly Phe Leu Gly Ala Ala Gly Thr Ala Met Gly Ala Ala Ala
1 5 10 15
Thr Ala Leu Thr Val Gln Ser Gln His Leu Leu Ala Gly Ile Leu Gln
20 25 30
Gln Gln Lys Asn Leu Leu Ala Ala Val Glu Ala Gln Gln Gln Met Leu
35 40 45
Lys Leu Thr Ile Trp Gly Val Lys Asn Leu Asn Ala Arg Val Thr Ala
50 55 60
Leu Glu Lys Tyr Leu Glu Asp Gln Ala Arg Leu Asn Ala Trp Gly Cys
65 70 75 80
Ala Trp Lys Gln Val Cys His Thr Thr Val Pro Trp Gln Trp Asn Asn
85 90 95
Arg Thr Pro Asp Trp Asn Asn Met Thr Trp Leu Glu Trp Glu Arg Gln
100 105 110
Ile Ser Tyr Leu Glu Gly Asn Ile Thr Thr Gln Leu Glu Glu Ala Arg
115 120 125
Ala Gln Glu Glu Lys Asn Leu Asp Ala Tyr Gln Lys Leu Ser Ser Trp
130 135 140
Ser Asp Phe Trp Ser Trp Phe Asp Phe Ser Lys Trp Leu Asn Ile Leu
145 150 155 160
Lys Ile Gly Phe Leu Asp Val Leu Gly Ile Ile Gly Leu Arg Leu Leu
165 170 175
Tyr Thr Val Tyr Ser Cys Ile Ala Arg Val Arg Gln Gly Tyr Ser Pro
180 185 190
Leu Ser Pro Gln Ile His Ile His Pro Trp Lys Gly Gln Pro Asp Asn
195 200 205
Ala Glu Gly Pro Gly Glu Gly Gly Asp Lys Arg Lys Asn Ser Ser Glu
210 215 220
Pro Trp Gln Lys Glu Ser Gly Thr Ala Glu Trp Lys Ser Asn Trp Cys
225 230 235 240
Lys Arg Leu Thr Asn Trp Cys Ser Ile Ser Ser Ile Trp Leu Tyr Asn
245 250 255
Ser Cys Leu Thr Leu Leu Val His Leu Arg Ser Ala Phe Gln Tyr Ile
260 265 270
Gln Tyr Gly Leu Gly Glu Leu Lys Ala Ala Ala Gln Glu Ala Val Val
275 280 285
Ala Leu Ala Arg Leu Ala Gln Asn Ala Gly Tyr Gln Ile Trp Leu Ala
290 295 300
Cys Arg Ser Ala Tyr Arg Ala Ile Ile Asn Ser Pro Arg Arg Val Arg
305 310 315 320
Gln Gly Leu Glu Gly Ile Leu Asn
325






438 amino acids


amino acid





unknown




protein




not provided



93
Phe Ala Gly Val Val Leu Ala Gly Val Ala Leu Gly Val Ala Thr Ala
1 5 10 15
Ala Gln Ile Thr Ala Gly Ile Ala Leu His Gln Ser Asn Leu Asn Ala
20 25 30
Gln Ala Ile Gln Ser Leu Arg Thr Ser Leu Glu Gln Ser Asn Lys Ala
35 40 45
Ile Glu Glu Ile Arg Glu Ala Thr Gln Glu Thr Val Ile Ala Val Gln
50 55 60
Gly Val Gln Asp Tyr Val Asn Asn Glu Leu Val Pro Ala Met Gln His
65 70 75 80
Met Ser Cys Glu Leu Val Gly Gln Arg Leu Gly Leu Arg Leu Leu Arg
85 90 95
Tyr Tyr Thr Glu Leu Leu Ser Ile Phe Gly Pro Ser Leu Arg Asp Pro
100 105 110
Ile Ser Ala Glu Ile Ser Ile Gln Ala Leu Ile Tyr Ala Leu Gly Gly
115 120 125
Glu Ile His Lys Ile Leu Glu Lys Leu Gly Tyr Ser Gly Ser Asp Met
130 135 140
Ile Ala Ile Leu Glu Ser Arg Gly Ile Lys Thr Lys Ile Thr His Val
145 150 155 160
Asp Leu Pro Gly Lys Phe Ile Ile Leu Ser Ile Ser Tyr Pro Thr Leu
165 170 175
Ser Glu Val Lys Gly Val Ile Val His Arg Leu Glu Ala Val Ser Tyr
180 185 190
Asn Ile Gly Ser Gln Glu Trp Tyr Thr Thr Val Pro Arg Tyr Ile Ala
195 200 205
Thr Asn Gly Tyr Leu Ile Ser Asn Phe Asp Glu Ser Ser Cys Val Phe
210 215 220
Val Ser Glu Ser Ala Ile Cys Ser Gln Asn Ser Leu Tyr Pro Met Ser
225 230 235 240
Pro Leu Leu Gln Gln Cys Ile Arg Gly Asp Thr Ser Ser Cys Ala Arg
245 250 255
Thr Leu Val Ser Gly Thr Met Gly Asn Lys Phe Ile Leu Ser Lys Gly
260 265 270
Asn Ile Val Ala Asn Cys Ala Ser Ile Leu Cys Lys Cys Tyr Ser Thr
275 280 285
Ser Thr Ile Ile Asn Gln Ser Pro Asp Lys Leu Leu Thr Phe Ile Ala
290 295 300
Ser Asp Thr Cys Pro Leu Val Glu Ile Asp Gly Ala Thr Ile Gln Val
305 310 315 320
Gly Gly Arg Gln Tyr Pro Asp Met Val Tyr Glu Gly Lys Val Ala Leu
325 330 335
Gly Pro Ala Ile Ser Leu Asp Arg Leu Asp Val Gly Thr Asn Leu Gly
340 345 350
Asn Ala Leu Lys Lys Leu Asp Asp Ala Lys Val Leu Ile Asp Ser Ser
355 360 365
Asn Gln Ile Leu Glu Thr Val Arg Arg Ser Ser Phe Asn Phe Gly Ser
370 375 380
Leu Leu Ser Val Pro Ile Leu Ser Cys Thr Ala Leu Ala Leu Leu Leu
385 390 395 400
Leu Ile Tyr Cys Cys Lys Arg Arg Tyr Gln Gln Thr Leu Lys Gln His
405 410 415
Thr Lys Val Asp Pro Ala Phe Lys Pro Asp Leu Thr Gly Thr Ser Lys
420 425 430
Ser Tyr Val Arg Ser Leu
435






436 amino acids


amino acid





unknown




protein




not provided



94
Phe Ile Gly Ala Ile Ile Gly Ser Val Ala Leu Gly Val Ala Thr Ala
1 5 10 15
Ala Gln Ile Thr Ala Ala Ser Ala Leu Ile Gln Ala Asn Gln Asn Ala
20 25 30
Ala Asn Ile Leu Arg Leu Lys Glu Ser Ile Thr Ala Thr Ile Glu Ala
35 40 45
Val His Glu Val Thr Asp Gly Leu Ser Gln Leu Ala Val Ala Val Gly
50 55 60
Lys Met Gln Gln Phe Val Asn Asp Gln Phe Asn Asn Thr Ala Gln Glu
65 70 75 80
Leu Asp Cys Ile Lys Ile Thr Gln Gln Val Gly Val Glu Leu Asn Leu
85 90 95
Tyr Leu Thr Glu Leu Thr Thr Val Phe Gly Pro Gln Ile Thr Ser Pro
100 105 110
Ala Leu Thr Gln Leu Thr Ile Gln Ala Leu Tyr Asn Ala Gly Gly Asn
115 120 125
Met Asp Tyr Leu Leu Thr Lys Leu Gly Val Gly Asn Asn Gln Leu Ser
130 135 140
Ser Leu Ile Gly Ser Gly Leu Ile Thr Gly Asn Pro Ile Leu Tyr Asp
145 150 155 160
Ser Gln Thr Gln Leu Leu Gly Ile Gln Val Thr Leu Pro Ser Val Gly
165 170 175
Asn Leu Asn Asn Met Arg Ala Thr Tyr Leu Glu Thr Leu Ser Val Ser
180 185 190
Thr Thr Lys Gly Phe Ala Ser Ala Leu Val Pro Lys Val Val Thr Gln
195 200 205
Val Gly Ser Val Ile Glu Glu Leu Asp Thr Ser Tyr Cys Ile Glu Thr
210 215 220
Asp Leu Asp Leu Tyr Cys Thr Arg Ile Val Thr Phe Pro Met Ser Pro
225 230 235 240
Gly Ile Tyr Ser Cys Leu Asn Gly Asn Thr Ser Ala Cys Met Tyr Ser
245 250 255
Lys Thr Glu Gly Ala Leu Thr Thr Pro Tyr Met Thr Leu Lys Gly Ser
260 265 270
Val Ile Ala Asn Cys Lys Met Thr Thr Cys Arg Cys Ala Asp Pro Pro
275 280 285
Gly Ile Ile Ser Gln Asn Tyr Gly Glu Ala Val Ser Leu Ile Asp Arg
290 295 300
His Ser Cys Asn Val Leu Ser Leu Asp Gly Ile Thr Leu Arg Leu Ser
305 310 315 320
Gly Glu Phe Asp Ala Thr Tyr Gln Lys Asn Ile Ser Ile Leu Asp Ser
325 330 335
Gln Val Ile Val Thr Gly Asn Leu Asp Ile Ser Thr Glu Leu Gly Asn
340 345 350
Val Asn Asn Ser Ile Ser Asn Ala Leu Asp Lys Leu Glu Glu Ser Asn
355 360 365
Ser Lys Leu Asp Lys Val Asn Val Lys Leu Thr Ser Thr Ser Ala Leu
370 375 380
Ile Thr Tyr Ile Ala Leu Thr Ala Ile Ser Leu Val Cys Gly Ile Leu
385 390 395 400
Ser Leu Val Leu Ala Cys Tyr Leu Met Tyr Lys Gln Lys Ala Gln Gln
405 410 415
Lys Thr Leu Leu Trp Leu Gly Asn Asn Thr Leu Gly Gln Met Arg Ala
420 425 430
Thr Thr Lys Met
435






430 amino acids


amino acid





unknown




protein




not provided



95
Phe Phe Gly Gly Val Ile Gly Thr Ile Ala Leu Gly Val Ala Thr Ser
1 5 10 15
Ala Gln Ile Thr Ala Ala Val Ala Leu Val Glu Ala Lys Gln Ala Arg
20 25 30
Ser Asp Ile Glu Lys Leu Lys Glu Ala Ile Arg Asp Thr Asn Lys Ala
35 40 45
Val Gln Ser Val Gln Ser Ser Ile Gly Asn Leu Ile Val Ala Ile Lys
50 55 60
Ser Val Gln Asp Tyr Val Asn Lys Glu Ile Val Pro Ser Ile Ala Arg
65 70 75 80
Leu Gly Cys Glu Ala Ala Gly Leu Gln Leu Gly Ile Ala Leu Thr Gln
85 90 95
His Tyr Ser Glu Leu Thr Asn Ile Phe Gly Asp Asn Ile Gly Ser Leu
100 105 110
Gln Glu Lys Gly Ile Lys Leu Gln Gly Ile Ala Ser Leu Tyr Arg Thr
115 120 125
Asn Ile Thr Glu Ile Phe Thr Thr Ser Thr Val Asp Lys Tyr Asp Ile
130 135 140
Tyr Asp Leu Leu Phe Thr Glu Ser Ile Lys Val Arg Val Ile Asp Val
145 150 155 160
Asp Leu Asn Asp Tyr Ser Ile Thr Leu Gln Val Arg Leu Pro Leu Leu
165 170 175
Thr Arg Leu Leu Asn Thr Gln Ile Tyr Arg Val Asp Ser Ile Ser Tyr
180 185 190
Asn Ile Gln Asn Arg Glu Trp Tyr Ile Pro Leu Pro Ser His Ile Met
195 200 205
Thr Lys Gly Ala Phe Leu Gly Gly Ala Asp Val Lys Glu Cys Ile Glu
210 215 220
Ala Phe Ser Ser Tyr Ile Cys Pro Ser Asp Pro Gly Phe Val Leu Asn
225 230 235 240
His Glu Met Glu Ser Cys Leu Ser Gly Asn Ile Ser Gln Cys Pro Arg
245 250 255
Thr Val Val Lys Ser Asp Ile Val Pro Arg Tyr Ala Phe Val Asn Gly
260 265 270
Gly Val Val Ala Asn Cys Ile Thr Thr Thr Cys Thr Cys Asn Gly Ile
275 280 285
Gly Asn Arg Ile Asn Gln Pro Pro Asp Gln Gly Val Lys Ile Ile Thr
290 295 300
His Lys Glu Cys Asn Thr Ile Gly Ile Asn Gly Met Leu Phe Asn Thr
305 310 315 320
Asn Lys Glu Gly Thr Leu Ala Phe Tyr Thr Pro Asn Asp Ile Thr Leu
325 330 335
Asn Asn Ser Val Ala Leu Asp Pro Ile Asp Ile Ser Ile Glu Leu Asn
340 345 350
Lys Ala Lys Ser Asp Leu Glu Glu Ser Lys Glu Trp Ile Arg Arg Ser
355 360 365
Asn Gln Lys Leu Asp Ser Ile Gly Asn Trp His Gln Ser Ser Thr Thr
370 375 380
Ile Ile Ile Val Leu Ile Met Ile Ile Ile Leu Phe Ile Ile Asn Val
385 390 395 400
Thr Ile Ile Ile Ile Ala Val Lys Tyr Tyr Arg Ile Gln Lys Arg Asn
405 410 415
Arg Val Asp Gln Asn Asp Lys Pro Tyr Val Leu Thr Asn Lys
420 425 430






221 amino acids


amino acid





unknown




protein




not provided



96
Gly Leu Phe Gly Ala Ile Ala Gly Phe Ile Glu Asn Gly Trp Glu Gly
1 5 10 15
Met Ile Asp Gly Trp Tyr Gly Phe Arg His Gln Asn Ser Glu Gly Thr
20 25 30
Gly Gln Ala Ala Asp Leu Lys Ser Thr Gln Ala Ala Ile Asp Gln Ile
35 40 45
Asn Gly Lys Leu Asn Arg Val Ile Glu Lys Thr Asn Glu Lys Phe His
50 55 60
Gln Ile Glu Lys Glu Phe Ser Glu Val Glu Gly Arg Ile Gln Asp Leu
65 70 75 80
Glu Lys Tyr Val Glu Asp Thr Lys Ile Asp Leu Trp Ser Tyr Asn Ala
85 90 95
Glu Leu Leu Val Ala Leu Glu Asn Gln His Thr Ile Asp Leu Thr Asp
100 105 110
Ser Glu Met Asn Lys Leu Phe Glu Lys Thr Arg Arg Gln Leu Arg Glu
115 120 125
Asn Ala Glu Glu Met Gly Asn Gly Cys Phe Lys Ile Tyr His Lys Cys
130 135 140
Asp Asn Ala Cys Ile Glu Ser Ile Arg Asn Gly Thr Tyr Asp His Asp
145 150 155 160
Val Tyr Arg Asp Glu Ala Leu Asn Asn Arg Phe Gln Ile Lys Gly Val
165 170 175
Glu Leu Lys Ser Gly Tyr Lys Asp Trp Ile Leu Trp Ile Ser Phe Ala
180 185 190
Ile Ser Cys Phe Leu Leu Cys Val Val Leu Leu Gly Phe Ile Met Trp
195 200 205
Ala Cys Gln Arg Gly Asn Ile Arg Cys Asn Ile Cys Ile
210 215 220






46 amino acids


amino acid





unknown




peptide




not provided



97
Tyr Thr Ser Val Ile Thr Ile Glu Leu Ser Asn Ile Lys Glu Asn Lys
1 5 10 15
Cys Asn Gly Ala Lys Val Lys Leu Ile Lys Gln Glu Leu Asp Lys Tyr
20 25 30
Lys Asn Ala Val Thr Glu Leu Gln Leu Leu Met Gln Ser Thr
35 40 45






54 amino acids


amino acid





unknown




peptide




not provided



98
Ala Ser Gly Val Ala Val Ser Lys Val Leu His Leu Glu Gly Glu Val
1 5 10 15
Asn Lys Ile Ala Leu Leu Ser Thr Asn Lys Ala Val Val Ser Leu Ser
20 25 30
Asn Gly Val Ser Val Leu Thr Ser Lys Val Leu Asp Leu Lys Asn Tyr
35 40 45
Ile Asp Lys Gln Leu Leu
50






53 amino acids


amino acid





unknown




peptide




not provided



99
Gly Glu Pro Ile Ile Asn Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp
1 5 10 15
Glu Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser
20 25 30
Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu His Asn Val Asn Ala
35 40 45
Gly Lys Ser Thr Thr
50






70 amino acids


amino acid





unknown




peptide




not provided



100
Gly Thr Ile Ala Leu Gly Val Ala Thr Ser Ala Gln Ile Thr Ala Ala
1 5 10 15
Val Ala Leu Val Glu Ala Lys Gln Ala Arg Ser Asp Ile Glu Lys Leu
20 25 30
Lys Glu Ala Ile Arg Asp Thr Asn Lys Ala Val Gln Ser Val Gln Ser
35 40 45
Ser Ile Gly Asn Leu Ile Val Ala Ile Lys Ser Val Gln Asp Tyr Val
50 55 60
Asn Lys Glu Ile Val Pro
65 70






56 amino acids


amino acid





unknown




peptide




not provided



101
Tyr Thr Pro Asn Asp Ile Thr Leu Asn Asn Ser Val Ala Leu Asp Pro
1 5 10 15
Ile Asp Ile Ser Ile Glu Leu Asn Lys Ala Lys Ser Asp Leu Glu Glu
20 25 30
Ser Lys Glu Trp Ile Arg Arg Ser Asn Gln Lys Leu Asp Ser Ile Gly
35 40 45
Asn Trp His Gln Ser Ser Thr Thr
50 55






249 amino acids


amino acid





unknown




protein




not provided



102
Arg Asn Lys Arg Gly Val Phe Val Leu Gly Phe Leu Gly Phe Leu Ala
1 5 10 15
Thr Ala Gly Ser Ala Met Gly Ala Ala Ser Xaa Xaa Xaa Xaa Ala Gln
20 25 30
Ser Arg Thr Leu Leu Ala Gly Ile Val Gln Gln Gln Gln Gln Leu Leu
35 40 45
Asp Val Val Lys Arg Gln Gln Glu Leu Leu Arg Leu Thr Val Trp Gly
50 55 60
Thr Lys Asn Leu Gln Thr Arg Val Thr Ala Ile Glu Lys Tyr Leu Lys
65 70 75 80
Asp Gln Ala Gln Leu Asn Ala Trp Gly Cys Ala Phe Arg Gln Val Cys
85 90 95
His Thr Thr Val Pro Trp Pro Asn Ala Ser Leu Thr Pro Asp Trp Asn
100 105 110
Asn Asp Thr Trp Gln Glu Trp Glu Arg Lys Val Asp Phe Leu Glu Glu
115 120 125
Asn Ile Thr Ala Leu Leu Glu Glu Ala Gln Ile Gln Gln Glu Lys Asn
130 135 140
Met Tyr Glu Leu Gln Lys Leu Asn Ser Trp Asp Val Phe Gly Asn Xaa
145 150 155 160
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
165 170 175
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Ile Tyr Ile Val Met Leu
180 185 190
Ala Lys Leu Arg Gln Gly Tyr Arg Pro Val Phe Ser Ser Pro Pro Ser
195 200 205
Tyr Phe Gln Xaa Thr His Thr Gln Gln Asp Pro Ala Leu Pro Thr Arg
210 215 220
Glu Gly Lys Glu Gly Asp Gly Gly Glu Gly Gly Gly Asn Ser Ser Trp
225 230 235 240
Pro Trp Gln Ile Glu Tyr Ile His Phe
245






856 amino acids


amino acid





unknown




protein




not provided



103
Met Thr Arg Arg Arg Val Leu Ser Val Val Val Leu Leu Ala Ala Leu
1 5 10 15
Ala Cys Arg Leu Gly Ala Gln Thr Pro Glu Gln Pro Ala Pro Pro Ala
20 25 30
Thr Thr Val Gln Pro Thr Ala Thr Arg Gln Gln Thr Ser Phe Pro Phe
35 40 45
Arg Val Cys Glu Leu Ser Ser His Gly Asp Leu Phe Arg Phe Ser Ser
50 55 60
Asp Ile Gln Cys Pro Ser Phe Gly Thr Arg Glu Asn His Thr Glu Gly
65 70 75 80
Leu Leu Met Val Phe Lys Asp Asn Ile Ile Pro Tyr Ser Phe Lys Val
85 90 95
Arg Ser Tyr Thr Lys Ile Val Thr Asn Ile Leu Ile Tyr Asn Gly Trp
100 105 110
Tyr Ala Asp Ser Val Thr Asn Arg His Glu Glu Lys Phe Ser Val Asp
115 120 125
Ser Tyr Glu Thr Asp Gln Met Asp Thr Ile Tyr Gln Cys Tyr Asn Ala
130 135 140
Val Lys Met Thr Lys Asp Gly Leu Thr Arg Val Tyr Val Asp Arg Asp
145 150 155 160
Gly Val Asn Ile Thr Val Asn Leu Lys Pro Thr Gly Gly Leu Ala Asn
165 170 175
Gly Val Arg Arg Tyr Ala Ser Gln Thr Glu Leu Tyr Asp Ala Pro Gly
180 185 190
Trp Leu Ile Trp Thr Tyr Arg Thr Arg Thr Thr Val Asn Cys Leu Ile
195 200 205
Thr Asp Met Met Ala Lys Ser Asn Ser Pro Phe Asp Phe Phe Val Thr
210 215 220
Thr Thr Gly Gln Thr Val Glu Met Ser Pro Phe Tyr Asp Gly Lys Asn
225 230 235 240
Lys Glu Thr Phe His Glu Arg Ala Asp Ser Phe His Val Arg Thr Asn
245 250 255
Tyr Lys Ile Val Asp Tyr Asp Asn Arg Gly Thr Asn Pro Gln Gly Glu
260 265 270
Arg Arg Ala Phe Leu Asp Lys Gly Thr Tyr Thr Leu Ser Trp Lys Leu
275 280 285
Glu Asn Arg Thr Ala Tyr Cys Pro Leu Gln His Trp Gln Thr Phe Asp
290 295 300
Ser Thr Ile Ala Thr Glu Thr Gly Lys Ser Ile His Phe Val Thr Asp
305 310 315 320
Glu Gly Thr Ser Ser Phe Val Thr Asn Thr Thr Val Gly Ile Glu Leu
325 330 335
Pro Asp Ala Phe Lys Cys Ile Glu Glu Gln Val Asn Lys Thr His Glu
340 345 350
Lys Tyr Glu Ala Val Gln Asp Arg Tyr Thr Lys Gly Gln Glu Ala Ile
355 360 365
Thr Tyr Phe Ile Thr Ser Gly Gly Leu Leu Leu Ala Trp Leu Pro Leu
370 375 380
Thr Pro Arg Ser Leu Ala Thr Val Lys Asn Leu Thr Glu Leu Thr Thr
385 390 395 400
Pro Thr Ser Ser Pro Pro Ser Ser Pro Ser Pro Pro Ala Pro Ser Ala
405 410 415
Ala Arg Gly Ser Thr Pro Ala Ala Val Leu Arg Arg Arg Arg Arg Asp
420 425 430
Ala Gly Asn Ala Thr Thr Pro Val Pro Pro Thr Ala Pro Gly Lys Ser
435 440 445
Leu Gly Thr Leu Asn Asn Pro Ala Thr Val Gln Ile Gln Phe Ala Tyr
450 455 460
Asp Ser Leu Arg Arg Gln Ile Asn Arg Met Leu Gly Asp Leu Ala Arg
465 470 475 480
Ala Trp Cys Leu Glu Gln Lys Arg Gln Asn Met Val Leu Arg Glu Leu
485 490 495
Thr Lys Ile Asn Pro Thr Thr Val Met Ser Ser Ile Tyr Gly Lys Ala
500 505 510
Val Ala Ala Lys Arg Leu Gly Asp Val Ile Ser Val Ser Gln Cys Val
515 520 525
Pro Val Asn Gln Ala Thr Val Thr Leu Arg Lys Ser Met Arg Val Pro
530 535 540
Gly Ser Glu Thr Met Cys Tyr Ser Arg Pro Leu Val Ser Phe Ser Phe
545 550 555 560
Ile Asn Asp Thr Lys Thr Tyr Glu Gly Gln Leu Gly Thr Asp Asn Glu
565 570 575
Ile Phe Leu Thr Lys Lys Met Thr Glu Val Cys Gln Ala Thr Ser Gln
580 585 590
Tyr Tyr Phe Gln Ser Gly Asn Glu Ile His Val Tyr Asn Asp Tyr His
595 600 605
His Phe Lys Thr Ile Glu Leu Asp Gly Ile Ala Thr Leu Gln Thr Phe
610 615 620
Ile Ser Leu Asn Thr Ser Leu Ile Glu Asn Ile Asp Phe Ala Ser Leu
625 630 635 640
Glu Leu Tyr Ser Arg Asp Glu Gln Arg Ala Ser Asn Val Phe Asp Leu
645 650 655
Glu Gly Ile Phe Arg Glu Tyr Asn Phe Gln Ala Gln Asn Ile Ala Gly
660 665 670
Leu Arg Lys Asp Leu Asp Asn Ala Val Ser Asn Gly Arg Asn Gln Phe
675 680 685
Val Asp Gly Leu Gly Glu Leu Met Asp Ser Leu Gly Ser Val Gly Gln
690 695 700
Ser Ile Thr Asn Leu Val Ser Thr Val Gly Gly Leu Phe Ser Ser Leu
705 710 715 720
Val Ser Gly Phe Ile Ser Phe Phe Lys Asn Pro Phe Gly Gly Met Leu
725 730 735
Ile Leu Val Leu Val Ala Gly Val Val Ile Leu Val Ile Ser Leu Thr
740 745 750
Arg Arg Thr Arg Gln Met Ser Gln Gln Pro Val Gln Met Leu Tyr Pro
755 760 765
Gly Ile Asp Glu Leu Ala Gln Gln His Ala Ser Gly Glu Gly Pro Gly
770 775 780
Ile Asn Pro Ile Ser Lys Thr Glu Leu Gln Ala Ile Met Leu Ala Leu
785 790 795 800
His Glu Gln Asn Gln Glu Gln Lys Arg Ala Ala Gln Arg Ala Ala Gly
805 810 815
Pro Ser Val Ala Ser Arg Ala Leu Gln Ala Ala Arg Asp Arg Phe Pro
820 825 830
Gly Leu Arg Arg Arg Arg Tyr His Asp Pro Glu Thr Ala Ala Ala Leu
835 840 845
Leu Gly Glu Ala Glu Thr Glu Phe
850 855






245 amino acids


amino acid





unknown




protein




not provided



104
Met Met Asp Pro Asn Ser Thr Ser Glu Asp Val Lys Phe Thr Pro Asp
1 5 10 15
Pro Tyr Gln Val Pro Phe Val Gln Ala Phe Asp Gln Ala Thr Arg Val
20 25 30
Tyr Gln Asp Leu Gly Gly Pro Ser Gln Ala Pro Leu Pro Cys Val Leu
35 40 45
Trp Pro Val Leu Pro Glu Pro Leu Pro Gln Gly Gln Leu Thr Ala Tyr
50 55 60
His Val Ser Thr Ala Pro Thr Gly Ser Trp Phe Ser Ala Pro Gln Pro
65 70 75 80
Ala Pro Glu Asn Ala Tyr Gln Ala Tyr Ala Ala Pro Gln Leu Phe Pro
85 90 95
Val Ser Asp Ile Thr Gln Asn Gln Gln Thr Asn Gln Ala Gly Gly Glu
100 105 110
Ala Pro Gln Pro Gly Asp Asn Ser Thr Val Gln Thr Ala Ala Ala Val
115 120 125
Val Phe Ala Cys Pro Gly Ala Asn Gln Gly Gln Gln Leu Ala Asp Ile
130 135 140
Gly Val Pro Gln Pro Ala Pro Val Ala Ala Pro Ala Arg Arg Thr Arg
145 150 155 160
Lys Pro Gln Gln Pro Glu Ser Leu Glu Glu Cys Asp Ser Glu Leu Glu
165 170 175
Ile Lys Arg Tyr Lys Asn Arg Val Ala Ser Arg Lys Cys Arg Ala Lys
180 185 190
Phe Lys Gln Leu Leu Gln His Tyr Arg Glu Val Ala Ala Ala Lys Ser
195 200 205
Ser Glu Asn Asp Arg Leu Arg Leu Leu Leu Lys Gln Met Cys Pro Ser
210 215 220
Leu Asp Val Asp Ser Ile Ile Pro Arg Thr Pro Asp Val Leu His Glu
225 230 235 240
Asp Leu Leu Asn Phe
245






438 amino acids


amino acid





unknown




protein




not provided



105
Phe Ala Gly Val Val Leu Ala Gly Ala Ala Leu Gly Val Ala Thr Ala
1 5 10 15
Ala Gln Ile Thr Ala Gly Ile Ala Leu His Gln Ser Met Leu Asn Ser
20 25 30
Gln Ala Ile Asp Asn Leu Arg Ala Ser Leu Glu Thr Thr Asn Gln Ala
35 40 45
Ile Glu Ala Ile Arg Gln Ala Gly Gln Glu Met Ile Leu Ala Val Gln
50 55 60
Gly Val Gln Asp Tyr Ile Asn Asn Glu Leu Ile Pro Ser Met Asn Gln
65 70 75 80
Leu Ser Cys Asp Leu Ile Gly Gln Lys Leu Gly Leu Lys Leu Leu Arg
85 90 95
Tyr Tyr Thr Glu Ile Leu Ser Leu Phe Gly Pro Ser Leu Arg Asp Pro
100 105 110
Ile Ser Ala Glu Ile Ser Ile Gln Ala Leu Ser Tyr Ala Leu Gly Gly
115 120 125
Asp Ile Asn Lys Val Leu Glu Lys Leu Gly Tyr Ser Gly Gly Asp Leu
130 135 140
Leu Gly Ile Leu Glu Ser Arg Gly Ile Lys Ala Arg Ile Thr His Val
145 150 155 160
Asp Thr Glu Ser Tyr Phe Ile Val Leu Ser Ile Ala Tyr Pro Thr Leu
165 170 175
Ser Glu Ile Lys Gly Val Ile Val His Arg Leu Glu Gly Val Ser Tyr
180 185 190
Asn Ile Gly Ser Gln Glu Trp Tyr Thr Thr Val Pro Lys Tyr Val Ala
195 200 205
Thr Gln Gly Tyr Leu Ile Ser Asn Phe Asp Glu Ser Ser Cys Thr Phe
210 215 220
Met Pro Glu Gly Thr Val Cys Ser Gln Asn Ala Leu Tyr Pro Met Ser
225 230 235 240
Pro Leu Leu Gln Glu Cys Leu Arg Gly Ser Thr Lys Ser Cys Ala Arg
245 250 255
Thr Leu Val Ser Gly Ser Phe Gly Asn Arg Phe Ile Leu Ser Gln Gly
260 265 270
Asn Leu Ile Ala Asn Cys Ala Ser Ile Leu Cys Lys Cys Tyr Thr Thr
275 280 285
Gly Thr Ile Ile Asn Gln Asp Pro Asp Lys Ile Leu Thr Tyr Ile Ala
290 295 300
Ala Asp His Cys Pro Val Val Glu Val Asn Gly Val Thr Ile Gln Val
305 310 315 320
Gly Ser Arg Arg Tyr Pro Asp Ala Val Tyr Leu His Arg Ile Asp Leu
325 330 335
Gly Pro Pro Ile Ser Leu Glu Arg Leu Asp Val Gly Thr Asn Leu Gly
340 345 350
Asn Ala Ile Ala Lys Leu Glu Asp Ala Lys Glu Leu Leu Glu Ser Ser
355 360 365
Asp Gln Ile Leu Arg Ser Met Lys Gly Leu Ser Ser Thr Ser Ile Val
370 375 380
Tyr Ile Leu Ile Ala Val Cys Leu Gly Gly Leu Ile Gly Ile Pro Ala
385 390 395 400
Leu Ile Cys Cys Cys Arg Gly Arg Cys Asn Lys Lys Gly Glu Gln Val
405 410 415
Gly Met Ser Arg Pro Gly Leu Lys Pro Asp Leu Thr Gly Thr Ser Lys
420 425 430
Ser Tyr Val Arg Ser Leu
435






389 amino acids


amino acid





unknown




protein




not provided



106
Met Gly Gln Asn Leu Ser Thr Ser Asn Pro Leu Gly Phe Phe Pro Asp
1 5 10 15
His Gln Leu Asp Pro Ala Phe Arg Ala Asn Thr Ala Asn Pro Asp Trp
20 25 30
Asp Phe Asn Pro Asn Lys Asp Thr Trp Pro Asp Ala Asn Lys Val Gly
35 40 45
Ala Gly Ala Phe Gly Leu Gly Phe Thr Pro Pro His Gly Gly Leu Leu
50 55 60
Gly Trp Ser Pro Gln Ala Gln Gly Ile Leu Gln Thr Leu Pro Ala Asn
65 70 75 80
Pro Pro Pro Ala Ser Thr Asn Arg Gln Ser Gly Arg Gln Pro Thr Pro
85 90 95
Leu Ser Pro Pro Leu Arg Asn Thr His Pro Gln Ala Met Gln Trp Asn
100 105 110
Ser Thr Thr Phe His Gln Thr Leu Gln Asp Pro Arg Val Arg Gly Leu
115 120 125
Tyr Phe Pro Ala Gly Gly Ser Ser Ser Gly Thr Val Asn Pro Val Leu
130 135 140
Thr Thr Ala Ser Pro Leu Ser Ser Ile Phe Ser Arg Ile Gly Asp Pro
145 150 155 160
Ala Leu Asn Met Glu Asn Ile Thr Ser Gly Phe Leu Gly Pro Leu Leu
165 170 175
Val Leu Gln Ala Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro
180 185 190
Gln Ser Leu Asp Ser Trp Trp Thr Ser Leu Asn Phe Leu Gly Gly Thr
195 200 205
Thr Val Cys Leu Gly Gln Asn Ser Gln Ser Pro Thr Ser Asn His Ser
210 215 220
Pro Thr Ser Cys Pro Pro Thr Cys Pro Gly Tyr Arg Trp Met Cys Leu
225 230 235 240
Arg Arg Phe Ile Ile Phe Leu Phe Ile Leu Leu Leu Cys Leu Ile Phe
245 250 255
Leu Leu Val Leu Leu Asp Tyr Gln Gly Met Leu Pro Val Cys Pro Leu
260 265 270
Ile Pro Gly Ser Ser Thr Thr Ser Thr Gly Pro Cys Arg Thr Cys Met
275 280 285
Thr Thr Ala Gln Gly Thr Ser Met Tyr Pro Ser Cys Cys Cys Thr Lys
290 295 300
Pro Ser Asp Gly Asn Cys Thr Cys Ile Pro Ile Pro Ser Ser Trp Ala
305 310 315 320
Phe Gly Lys Phe Leu Trp Glu Trp Ala Ser Ala Arg Phe Ser Trp Leu
325 330 335
Ser Leu Leu Val Pro Phe Val Gln Trp Phe Val Gly Leu Ser Pro Thr
340 345 350
Val Trp Leu Ser Val Ile Trp Met Met Trp Tyr Trp Gly Pro Ser Leu
355 360 365
Tyr Ser Ile Leu Ser Pro Phe Leu Pro Leu Leu Pro Ile Phe Phe Cys
370 375 380
Leu Trp Val Tyr Ile
385






192 amino acids


amino acid





unknown




protein




not provided



107
Ala Ile Gln Leu Ile Pro Leu Phe Val Gly Leu Gly Ile Thr Thr Ala
1 5 10 15
Val Ser Thr Gly Ala Ala Gly Leu Gly Val Ser Ile Thr Gln Tyr Thr
20 25 30
Lys Leu Ser His Gln Leu Ile Ser Asp Val Gln Ala Ile Ser Ser Thr
35 40 45
Ile Gln Asp Leu Gln Asp Gln Val Asp Ser Leu Ala Glu Val Val Leu
50 55 60
Gln Asn Arg Arg Gly Leu Asp Leu Leu Thr Ala Glu Gln Gly Gly Ile
65 70 75 80
Cys Leu Ala Leu Gln Glu Lys Cys Cys Phe Tyr Ala Asn Lys Ser Gly
85 90 95
Ile Val Arg Asp Lys Ile Lys Asn Leu Gln Asp Asp Leu Glu Arg Arg
100 105 110
Arg Arg Gln Leu Ile Asp Asn Pro Phe Trp Thr Ser Phe His Gly Phe
115 120 125
Leu Pro Tyr Val Met Pro Leu Leu Gly Pro Leu Leu Cys Leu Leu Leu
130 135 140
Val Leu Ser Phe Gly Pro Ile Ile Phe Asn Lys Leu Met Thr Phe Ile
145 150 155 160
Lys His Gln Ile Glu Ser Ile Gln Ala Lys Pro Ile Gln Val His Tyr
165 170 175
His Arg Leu Glu Gln Glu Asp Ser Gly Gly Ser Tyr Leu Thr Leu Thr
180 185 190






154 amino acids


amino acid





unknown




protein




not provided



108
Met Lys Ala Gln Lys Gly Phe Thr Leu Ile Glu Leu Met Ile Val Val
1 5 10 15
Ala Ile Ile Gly Ile Leu Ala Ala Ile Ala Ile Pro Gln Tyr Gln Asp
20 25 30
Tyr Thr Ala Arg Thr Gln Val Thr Arg Ala Val Ser Glu Val Ser Ala
35 40 45
Leu Lys Thr Ala Ala Glu Ser Ala Ile Leu Glu Gly Lys Glu Ile Val
50 55 60
Ser Ser Ala Thr Pro Lys Asp Thr Gln Tyr Asp Ile Gly Phe Thr Glu
65 70 75 80
Ser Thr Leu Leu Asp Gly Ser Gly Lys Ser Gln Ile Gln Val Thr Asp
85 90 95
Asn Gln Asp Gly Thr Val Glu Leu Val Ala Thr Leu Gly Lys Ser Ser
100 105 110
Gly Ser Ala Ile Lys Gly Ala Val Ile Thr Val Ser Arg Lys Asn Asp
115 120 125
Gly Val Trp Asn Cys Lys Ile Thr Lys Thr Pro Thr Ala Trp Lys Pro
130 135 140
Asn Tyr Ala Pro Ala Asn Cys Pro Lys Ser
145 150






167 amino acids


amino acid





unknown




protein




not provided



109
Met Asn Thr Leu Gln Lys Gly Phe Thr Leu Ile Glu Leu Met Ile Val
1 5 10 15
Ile Ala Ile Val Gly Ile Leu Ala Ala Val Ala Leu Pro Ala Tyr Gln
20 25 30
Asp Tyr Thr Ala Arg Ala Gln Val Ser Glu Ala Ile Leu Leu Ala Glu
35 40 45
Gly Gln Lys Ser Ala Val Thr Glu Tyr Tyr Leu Asn His Gly Ile Trp
50 55 60
Pro Lys Asp Asn Thr Ser Ala Gly Val Ala Ser Ser Ser Ser Ile Lys
65 70 75 80
Gly Lys Tyr Val Lys Glu Val Lys Val Glu Asn Gly Val Val Thr Ala
85 90 95
Thr Met Asn Ser Ser Asn Val Asn Lys Glu Ile Gln Gly Lys Lys Leu
100 105 110
Ser Leu Trp Ala Lys Arg Gln Asp Gly Ser Val Lys Trp Phe Cys Gly
115 120 125
Gln Pro Val Thr Arg Asn Ala Lys Asp Asp Thr Val Thr Ala Asp Ala
130 135 140
Thr Gly Asn Asp Gly Lys Ile Asp Thr Lys His Leu Pro Ser Thr Cys
145 150 155 160
Arg Asp Asn Phe Asp Ala Ser
165






213 amino acids


amino acid





unknown




protein




not provided



110
Met Lys Lys Thr Leu Leu Gly Ser Leu Ile Leu Leu Ala Phe Ala Gly
1 5 10 15
Asn Val Gln Ala Asp Ile Asn Thr Glu Thr Ser Gly Lys Val Thr Phe
20 25 30
Phe Gly Lys Val Val Glu Asn Thr Cys Lys Val Lys Thr Glu His Lys
35 40 45
Asn Leu Ser Val Val Leu Asn Asp Val Gly Lys Asn Ser Leu Ser Thr
50 55 60
Lys Val Asn Thr Ala Met Pro Thr Pro Phe Thr Ile Thr Leu Gln Asn
65 70 75 80
Cys Asp Pro Thr Thr Ala Asn Gly Thr Ala Asn Lys Ala Asn Lys Val
85 90 95
Gly Leu Tyr Phe Tyr Ser Trp Lys Asn Val Asp Lys Glu Asn Asn Phe
100 105 110
Thr Leu Lys Asn Glu Gln Thr Thr Ala Asp Tyr Ala Thr Asn Val Asn
115 120 125
Ile Gln Leu Met Glu Ser Asn Gly Thr Lys Ala Ile Ser Val Val Gly
130 135 140
Lys Glu Thr Glu Asp Phe Met His Thr Asn Asn Asn Gly Val Ala Leu
145 150 155 160
Asn Gln Thr His Pro Asn Asn Ala His Ile Ser Gly Ser Thr Gln Leu
165 170 175
Thr Thr Gly Thr Asn Glu Leu Pro Leu His Phe Ile Ala Gln Tyr Tyr
180 185 190
Ala Thr Asn Lys Ala Thr Ala Gly Lys Val Gln Ser Ser Val Asp Phe
195 200 205
Gln Ile Ala Tyr Glu
210






234 amino acids


amino acid





unknown




protein




not provided



111
Met Asn Lys Lys Leu Leu Met Asn Phe Phe Ile Val Ser Pro Leu Leu
1 5 10 15
Leu Ala Thr Thr Ala Thr Asp Phe Thr Pro Val Pro Leu Ser Ser Asn
20 25 30
Gln Ile Ile Lys Thr Ala Lys Ala Ser Thr Asn Asp Asn Ile Lys Asp
35 40 45
Leu Leu Asp Trp Tyr Ser Ser Gly Ser Asp Thr Phe Thr Asn Ser Glu
50 55 60
Val Leu Asp Asn Ser Leu Gly Ser Met Arg Ile Lys Asn Thr Asp Gly
65 70 75 80
Ser Ile Ser Leu Ile Ile Phe Pro Ser Pro Tyr Tyr Ser Pro Ala Phe
85 90 95
Thr Lys Gly Glu Lys Val Asp Leu Asn Thr Lys Arg Thr Lys Lys Ser
100 105 110
Gln His Thr Ser Glu Gly Thr Tyr Ile His Phe Gln Ile Ser Gly Val
115 120 125
Thr Asn Thr Glu Lys Leu Pro Thr Pro Ile Glu Leu Pro Leu Lys Val
130 135 140
Lys Val His Gly Lys Asp Ser Pro Leu Lys Tyr Gly Pro Lys Phe Asp
145 150 155 160
Lys Lys Gln Leu Ala Ile Ser Thr Leu Asp Phe Glu Ile Arg His Gln
165 170 175
Leu Thr Gln Ile His Gly Leu Tyr Arg Ser Ser Asp Lys Thr Gly Gly
180 185 190
Tyr Trp Lys Ile Thr Met Asn Asp Gly Ser Thr Tyr Gln Ser Asp Leu
195 200 205
Ser Lys Lys Phe Glu Tyr Asn Thr Glu Lys Pro Pro Ile Asn Ile Asp
210 215 220
Glu Ile Lys Thr Ile Glu Ala Glu Ile Asn
225 230






257 amino acids


amino acid





unknown




protein




not provided



112
Met Lys Lys Thr Ala Phe Ile Leu Leu Leu Phe Ile Ala Leu Thr Leu
1 5 10 15
Thr Thr Ser Pro Leu Val Asn Gly Ser Glu Lys Ser Glu Glu Ile Asn
20 25 30
Glu Lys Asp Leu Arg Lys Lys Ser Glu Leu Gln Arg Asn Ala Leu Ser
35 40 45
Asn Leu Arg Gln Ile Tyr Tyr Tyr Asn Glu Lys Ala Ile Thr Glu Asn
50 55 60
Lys Glu Ser Asp Asp Gln Phe Leu Glu Asn Thr Leu Leu Phe Lys Gly
65 70 75 80
Phe Phe Thr Gly His Pro Trp Tyr Asn Asp Leu Leu Val Asp Leu Gly
85 90 95
Ser Lys Asp Ala Thr Asn Lys Tyr Lys Gly Lys Lys Val Asp Leu Tyr
100 105 110
Gly Ala Tyr Tyr Gly Tyr Gln Cys Ala Gly Gly Thr Pro Asn Lys Thr
115 120 125
Ala Cys Met Tyr Gly Gly Val Thr Leu His Asp Asn Asn Arg Leu Thr
130 135 140
Glu Glu Lys Lys Val Pro Ile Asn Leu Trp Ile Asp Gly Lys Gln Thr
145 150 155 160
Thr Val Pro Ile Asp Lys Val Lys Thr Ser Lys Lys Glu Val Thr Val
165 170 175
Gln Glu Leu Asp Leu Gln Ala Arg His Tyr Leu His Gly Lys Phe Gly
180 185 190
Leu Tyr Asn Ser Asp Ser Phe Gly Gly Lys Val Gln Arg Gly Leu Ile
195 200 205
Val Phe His Ser Ser Glu Gly Ser Thr Val Ser Tyr Asp Leu Phe Asp
210 215 220
Ala Gln Gly Gln Tyr Pro Asp Thr Leu Leu Arg Ile Tyr Arg Asp Asn
225 230 235 240
Lys Thr Ile Asn Ser Glu Asn Leu His Ile Asp Leu Tyr Leu Tyr Thr
245 250 255
Thr






257 amino acids


amino acid





unknown




protein




not provided



113
Met Lys Lys Thr Ala Phe Thr Leu Leu Leu Phe Ile Ala Leu Thr Leu
1 5 10 15
Thr Thr Ser Pro Leu Val Asn Gly Ser Glu Lys Ser Glu Glu Ile Asn
20 25 30
Glu Lys Asp Leu Arg Lys Lys Ser Glu Leu Gln Gly Thr Ala Leu Gly
35 40 45
Asn Leu Lys Gln Ile Tyr Tyr Tyr Asn Glu Lys Ala Lys Thr Glu Asn
50 55 60
Lys Glu Ser His Asp Gln Phe Leu Gln His Thr Ile Leu Phe Lys Gly
65 70 75 80
Phe Phe Thr Asp His Ser Trp Tyr Asn Asp Leu Leu Val Asp Phe Asp
85 90 95
Ser Lys Asp Ile Val Asp Lys Tyr Lys Gly Lys Lys Val Asp Leu Tyr
100 105 110
Gly Ala Tyr Tyr Gly Tyr Gln Cys Ala Gly Gly Thr Pro Asn Lys Thr
115 120 125
Ala Cys Met Tyr Gly Gly Val Thr Leu His Asp Asn Asn Arg Leu Thr
130 135 140
Glu Glu Lys Lys Val Pro Ile Asn Leu Trp Leu Asp Gly Lys Gln Asn
145 150 155 160
Thr Val Pro Leu Glu Thr Val Lys Thr Asn Lys Lys Asn Val Thr Val
165 170 175
Gln Glu Leu Asp Leu Gln Ala Arg Arg Tyr Leu Gln Glu Lys Tyr Asn
180 185 190
Leu Tyr Asn Ser Asp Val Phe Asp Gly Lys Val Gln Arg Gly Leu Ile
195 200 205
Val Phe His Thr Ser Thr Glu Pro Ser Val Asn Tyr Asp Leu Phe Gly
210 215 220
Ala Gln Gly Gln Tyr Ser Asn Thr Leu Leu Arg Ile Tyr Arg Asp Asn
225 230 235 240
Lys Thr Ile Asn Ser Glu Asn Met His Ile Asp Ile Tyr Leu Tyr Thr
245 250 255
Ser






254 amino acids


amino acid





unknown




protein




not provided



114
Met Lys Asn Ile Thr Phe Ile Phe Phe Ile Leu Leu Ala Ser Pro Leu
1 5 10 15
Tyr Ala Asn Gly Asp Arg Leu Tyr Arg Ala Asp Ser Arg Pro Pro Asp
20 25 30
Glu Ile Lys Arg Phe Arg Ser Leu Met Pro Arg Gly Asn Glu Tyr Phe
35 40 45
Asp Arg Gly Thr Gln Met Asn Ile Asn Leu Tyr Asp His Ala Arg Gly
50 55 60
Thr Gln Thr Gly Phe Val Arg Tyr Asp Asp Gly Tyr Val Ser Thr Ser
65 70 75 80
Leu Ser Leu Arg Ser Ala His Leu Ala Gly Gln Tyr Ile Leu Ser Gly
85 90 95
Tyr Ser Leu Thr Ile Tyr Ile Val Ile Ala Asn Met Phe Asn Val Asn
100 105 110
Asp Val Ile Ser Val Tyr Ser Pro His Pro Tyr Glu Gln Glu Val Ser
115 120 125
Ala Leu Gly Gly Ile Pro Tyr Ser Gln Ile Tyr Gly Trp Tyr Arg Val
130 135 140
Asn Phe Gly Val Ile Asp Glu Arg Leu His Arg Asn Arg Glu Tyr Arg
145 150 155 160
Asp Arg Tyr Tyr Arg Asn Leu Asn Ile Ala Pro Ala Glu Asp Gly Tyr
165 170 175
Arg Leu Ala Gly Phe Pro Pro Asp His Gln Ala Trp Arg Glu Glu Pro
180 185 190
Trp Ile His His Ala Pro Gln Gly Cys Gly Asp Ser Ser Arg Thr Ile
195 200 205
Thr Gly Asp Thr Cys Asn Glu Glu Thr Gln Asn Leu Ser Thr Ile Tyr
210 215 220
Leu Arg Glu Tyr Gln Ser Lys Val Lys Arg Gln Ile Phe Ser Asp Tyr
225 230 235 240
Gln Ser Glu Val Asp Ile Tyr Asn Arg Ile Arg Asp Glu Leu
245 250






380 amino acids


amino acid





unknown




protein




not provided



115
Met Met Phe Ser Gly Phe Asn Ala Asp Tyr Glu Ala Ser Ser Ser Arg
1 5 10 15
Cys Ser Ser Ala Ser Pro Ala Gly Asp Ser Leu Ser Tyr Tyr His Ser
20 25 30
Pro Ala Asp Ser Phe Ser Ser Met Gly Ser Pro Val Asn Ala Gln Asp
35 40 45
Phe Cys Thr Asp Leu Ala Val Ser Ser Ala Asn Phe Ile Pro Thr Val
50 55 60
Thr Ala Ile Ser Thr Ser Pro Asp Leu Gln Trp Leu Val Gln Pro Ala
65 70 75 80
Leu Val Ser Ser Val Ala Pro Ser Gln Thr Arg Ala Pro His Pro Phe
85 90 95
Gly Val Pro Ala Pro Ser Ala Gly Ala Tyr Ser Arg Ala Gly Val Val
100 105 110
Lys Thr Met Thr Gly Gly Arg Ala Gln Ser Ile Gly Arg Arg Gly Lys
115 120 125
Val Glu Gln Leu Ser Pro Glu Glu Glu Glu Lys Arg Arg Ile Arg Arg
130 135 140
Glu Arg Asn Lys Met Ala Ala Ala Lys Cys Arg Asn Arg Arg Arg Glu
145 150 155 160
Leu Thr Asp Thr Leu Gln Ala Glu Thr Asp Gln Leu Glu Asp Glu Lys
165 170 175
Ser Ala Leu Gln Thr Glu Ile Ala Asn Leu Leu Lys Glu Lys Glu Lys
180 185 190
Leu Glu Phe Ile Leu Ala Ala His Arg Pro Ala Cys Lys Ile Pro Asp
195 200 205
Asp Leu Gly Phe Pro Glu Glu Met Ser Val Ala Ser Leu Asp Leu Thr
210 215 220
Gly Gly Leu Pro Glu Val Ala Thr Pro Glu Ser Glu Glu Ala Phe Thr
225 230 235 240
Leu Pro Leu Leu Asn Asp Pro Glu Pro Lys Pro Ser Val Glu Pro Val
245 250 255
Lys Ser Ile Ser Ser Met Glu Leu Lys Thr Glu Pro Phe Asp Asp Phe
260 265 270
Leu Phe Pro Ala Ser Ser Arg Pro Ser Gly Ser Glu Thr Ala Arg Ser
275 280 285
Val Pro Asp Met Asp Leu Ser Gly Ser Phe Tyr Ala Leu Pro Leu Leu
290 295 300
Asn Asp Pro Glu Pro Lys Pro Ser Val Glu Pro Val Lys Ser Ile Ser
305 310 315 320
Ser Met Glu Leu Lys Thr Glu Pro Phe Asp Asp Phe Leu Phe Pro Ala
325 330 335
Ser Ser Arg Pro Ser Gly Ser Glu Thr Ala Arg Ser Val Pro Asp Met
340 345 350
Asp Leu Ser Gly Ser Phe Tyr Ala Gly Ser Ser Ser Asn Glu Pro Ser
355 360 365
Ser Asp Ser Leu Ser Ser Pro Thr Leu Leu Ala Leu
370 375 380






607 amino acids


amino acid





unknown




protein




not provided



116
Ser Gly Trp Glu Ser Tyr Tyr Lys Thr Glu Gly Asp Glu Glu Ala Glu
1 5 10 15
Glu Glu Gln Glu Glu Asn Leu Glu Ala Ser Gly Asp Tyr Lys Tyr Ser
20 25 30
Gly Arg Asp Ser Leu Ile Phe Leu Val Asp Ala Ser Lys Ala Met Phe
35 40 45
Glu Ser Gln Ser Glu Asp Glu Leu Thr Pro Phe Asp Met Ser Ile Gln
50 55 60
Cys Ile Gln Ser Val Tyr Ile Ser Lys Ile Ile Ser Ser Asp Arg Asp
65 70 75 80
Leu Leu Ala Val Val Phe Tyr Gly Thr Glu Lys Asp Lys Asn Ser Val
85 90 95
Asn Phe Lys Asn Ile Tyr Val Leu Gln Glu Leu Asp Asn Pro Gly Ala
100 105 110
Lys Arg Ile Leu Glu Leu Asp Gln Phe Lys Gly Gln Gln Gly Gln Lys
115 120 125
Arg Phe Gln Asp Met Met Gly His Gly Ser Asp Tyr Ser Leu Ser Glu
130 135 140
Val Leu Trp Val Cys Ala Asn Leu Phe Ser Asp Val Gln Phe Lys Met
145 150 155 160
Ser His Lys Arg Ile Met Leu Phe Thr Asn Glu Asp Asn Pro His Gly
165 170 175
Asn Asp Ser Ala Lys Ala Ser Arg Ala Arg Thr Lys Ala Gly Asp Leu
180 185 190
Arg Asp Thr Gly Ile Phe Leu Asp Leu Met His Leu Lys Lys Pro Gly
195 200 205
Gly Phe Asp Ile Ser Leu Phe Tyr Arg Asp Ile Ile Ser Ile Ala Glu
210 215 220
Asp Glu Asp Leu Arg Val His Phe Glu Glu Ser Ser Lys Leu Glu Asp
225 230 235 240
Leu Leu Arg Lys Val Arg Ala Lys Glu Thr Arg Lys Arg Ala Leu Ser
245 250 255
Arg Leu Lys Leu Lys Leu Asn Lys Asp Ile Val Ile Ser Val Gly Ile
260 265 270
Tyr Asn Leu Val Gln Lys Ala Leu Lys Pro Pro Pro Ile Lys Leu Tyr
275 280 285
Arg Glu Thr Asn Glu Pro Val Lys Thr Lys Thr Arg Thr Phe Asn Thr
290 295 300
Ser Thr Gly Gly Leu Leu Leu Pro Ser Asp Thr Lys Arg Ser Gln Ile
305 310 315 320
Tyr Gly Ser Arg Gln Ile Ile Leu Glu Lys Glu Glu Thr Glu Glu Leu
325 330 335
Lys Arg Phe Asp Asp Pro Gly Leu Met Leu Met Gly Phe Lys Pro Leu
340 345 350
Val Leu Leu Lys Lys His His Leu Arg Pro Ser Leu Phe Val Tyr Pro
355 360 365
Glu Glu Ser Leu Val Ile Gly Ser Ser Thr Leu Phe Ser Ala Leu Leu
370 375 380
Ile Lys Cys Leu Glu Lys Glu Val Ala Ala Leu Cys Arg Tyr Thr Pro
385 390 395 400
Arg Arg Asn Ile Pro Pro Tyr Phe Val Ala Leu Val Pro Gln Glu Glu
405 410 415
Glu Leu Asp Asp Gln Lys Ile Gln Val Thr Pro Pro Gly Phe Gln Leu
420 425 430
Val Phe Leu Pro Phe Ala Asp Asp Lys Arg Lys Met Pro Phe Thr Glu
435 440 445
Lys Ile Met Ala Thr Pro Glu Gln Val Gly Lys Met Lys Ala Ile Val
450 455 460
Glu Lys Leu Arg Phe Thr Tyr Arg Ser Asp Ser Phe Glu Asn Pro Val
465 470 475 480
Leu Gln Gln His Phe Arg Asn Leu Glu Ala Leu Ala Leu Asp Leu Met
485 490 495
Glu Pro Glu Gln Ala Val Asp Leu Thr Leu Pro Lys Val Glu Ala Met
500 505 510
Asn Lys Arg Leu Gly Ser Leu Val Asp Glu Phe Lys Glu Leu Val Tyr
515 520 525
Pro Pro Asp Tyr Asn Pro Glu Gly Lys Val Thr Lys Arg Lys His Asp
530 535 540
Asn Glu Gly Ser Gly Ser Lys Arg Pro Lys Val Glu Tyr Ser Glu Glu
545 550 555 560
Glu Leu Lys Thr His Ile Ser Lys Gly Thr Leu Gly Lys Phe Thr Val
565 570 575
Pro Met Leu Lys Glu Ala Cys Arg Ala Tyr Gly Leu Lys Ser Gly Leu
580 585 590
Lys Lys Gln Glu Leu Leu Glu Ala Leu Thr Lys His Phe Gln Asp
595 600 605






462 amino acids


amino acid





unknown




protein




not provided



117
Gly Gly Gly Ala Leu Ser Pro Gln His Ser Ala Val Thr Gln Gly Ser
1 5 10 15
Ile Ile Lys Asn Lys Glu Gly Met Asp Ala Lys Ser Leu Thr Ala Trp
20 25 30
Ser Arg Thr Leu Val Thr Phe Lys Asp Val Phe Val Asp Phe Thr Arg
35 40 45
Glu Glu Trp Lys Leu Leu Asp Thr Ala Gln Gln Ile Val Tyr Arg Asn
50 55 60
Val Met Leu Glu Asn Tyr Lys Asn Leu Val Ser Leu Gly Tyr Gln Leu
65 70 75 80
Thr Lys Pro Asp Val Ile Leu Arg Leu Glu Lys Gly Glu Glu Pro Trp
85 90 95
Leu Val Glu Arg Glu Ile His Gln Glu Thr His Pro Asp Ser Glu Thr
100 105 110
Ala Phe Glu Ile Lys Ser Ser Val Ser Ser Arg Ser Ile Phe Lys Asp
115 120 125
Lys Gln Ser Cys Asp Ile Lys Met Glu Gly Met Ala Arg Asn Asp Leu
130 135 140
Trp Tyr Leu Ser Leu Glu Glu Val Trp Lys Cys Arg Asp Gln Leu Asp
145 150 155 160
Lys Tyr Gln Glu Asn Pro Glu Arg His Leu Arg His Gln Leu Ile His
165 170 175
Thr Gly Glu Lys Pro Tyr Glu Cys Lys Glu Cys Gly Lys Ser Phe Ser
180 185 190
Arg Ser Ser His Leu Ile Gly His Gln Lys Thr His Thr Gly Glu Glu
195 200 205
Pro Tyr Glu Cys Lys Glu Cys Gly Lys Ser Phe Ser Trp Phe Ser His
210 215 220
Leu Val Thr His Gln Arg Thr His Thr Gly Asp Lys Leu Tyr Thr Cys
225 230 235 240
Asn Gln Cys Gly Lys Ser Phe Val His Ser Ser Arg Leu Ile Arg His
245 250 255
Gln Arg Thr His Thr Gly His Lys Pro Tyr Glu Cys Pro Glu Cys Gly
260 265 270
Lys Ser Phe Arg Gln Ser Thr His Leu Ile Leu His Gln Arg Thr His
275 280 285
Val Arg Val Arg Pro Tyr Glu Cys Asn Glu Cys Gly Lys Ser Tyr Ser
290 295 300
Gln Arg Ser His Leu Val Val His His Arg Ile His Thr Gly Leu Lys
305 310 315 320
Pro Phe Glu Cys Lys Asp Cys Gly Lys Cys Phe Ser Arg Ser Ser His
325 330 335
Leu Tyr Ser His Gln Arg Thr His Thr Gly Glu Lys Pro Tyr Glu Cys
340 345 350
His Asp Cys Gly Lys Ser Phe Ser Gln Ser Ser Ala Leu Ile Val His
355 360 365
Gln Arg Ile His Thr Gly Glu Lys Pro Tyr Glu Cys Cys Gln Cys Gly
370 375 380
Lys Ala Phe Ile Arg Lys Asn Asp Leu Ile Lys His Gln Arg Ile His
385 390 395 400
Val Gly Ala Glu Thr Tyr Lys Cys Asn Gln Cys Gly Ile Ile Phe Ser
405 410 415
Gln Asn Ser Pro Phe Ile Val His Gln Ile Ala His Thr Gly Glu Gln
420 425 430
Phe Leu Thr Cys Asn Gln Cys Gly Thr Ala Leu Val Asn Thr Ser Asn
435 440 445
Leu Ile Gly Tyr Gln Thr Asn His Ile Arg Glu Asn Ala Tyr
450 455 460






35 amino acids


amino acid





unknown




peptide




not provided



118
Pro Asp Ala Val Tyr Leu His Arg Ile Asp Leu Gly Pro Pro Ile Ser
1 5 10 15
Leu Glu Arg Leu Asp Val Gly Thr Asn Leu Gly Asn Ala Ile Ala Lys
20 25 30
Leu Glu Asp
35






34 amino acids


amino acid





unknown




peptide




not provided



119
Leu Glu Arg Leu Asp Val Gly Thr Asn Leu Gly Asn Ala Ile Ala Lys
1 5 10 15
Leu Glu Ala Lys Glu Leu Leu Glu Ser Ser Asp Gln Ile Leu Arg Ser
20 25 30
Met Lys






47 amino acids


amino acid





unknown




peptide




not provided



120
Thr Trp Gln Glu Trp Glu Arg Lys Val Asp Phe Leu Glu Glu Asn Ile
1 5 10 15
Thr Ala Leu Leu Glu Glu Ala Gln Ile Gln Gln Glu Lys Asn Met Tyr
20 25 30
Glu Leu Gln Lys Leu Asn Ser Trp Asp Val Phe Gly Asn Trp Phe
35 40 45






42 amino acids


amino acid





unknown




peptide




not provided



121
Ile Glu Leu Ser Asn Ile Lys Glu Asn Lys Cys Asn Gly Thr Asp Ala
1 5 10 15
Lys Val Lys Leu Ile Lys Gln Glu Leu Asp Lys Tyr Lys Asn Ala Val
20 25 30
Thr Glu Leu Gln Leu Leu Met Gln Ser Thr
35 40






27 amino acids


amino acid





unknown




peptide




not provided



122
Val Ser Lys Gly Tyr Ser Ala Leu Arg Thr Gly Trp Tyr Thr Ser Val
1 5 10 15
Ile Thr Ile Glu Leu Ser Asn Ile Lys Glu Asn
20 25






13 amino acids


amino acid





unknown




peptide




not provided



123
Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu His Asn Val
1 5 10






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


17


/product= “OTHER”
/note= “X represents U, the standard designation for
C-abu, a modified cysteine.”




124
Tyr Thr Ser Val Ile Thr Ile Glu Leu Ser Asn Ile Lys Glu Asn Lys
1 5 10 15
Xaa Asn Gly Thr Asp Ala Lys Val Lys Leu Ile Lys Gln Glu Leu Asp
20 25 30
Lys Tyr Lys
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


16


/product= “OTHER”
/note= “X represents U, the standard designation for
C-abu, a modified cysteine.”




125
Thr Ser Val Ile Thr Ile Glu Leu Ser Asn Ile Lys Glu Asn Lys Xaa
1 5 10 15
Asn Gly Thr Asp Ala Lys Val Lys Leu Ile Lys Gln Glu Leu Asp Lys
20 25 30
Tyr Lys Asn
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


15


/product= “OTHER”
/note= “X represents U, the standard designation for
C-abu, a modified cysteine.”




126
Ser Val Ile Thr Ile Glu Leu Ser Asn Ile Lys Glu Asn Lys Xaa Asn
1 5 10 15
Gly Thr Asp Ala Lys Val Lys Leu Ile Lys Gln Glu Leu Asp Lys Tyr
20 25 30
Lys Asn Ala
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/product= “OTHER”
/note= “X represents U, the standard designation for
C-abu, a modified cysteine.”




127
Ser Asn Ile Lys Glu Asn Lys Xaa Asn Gly Thr Asp Ala Lys Val Lys
1 5 10 15
Leu Ile Lys Gln Glu Leu Asp Lys Tyr Lys Asn Ala Val Thr Glu Leu
20 25 30
Gln Leu Leu
35






35 amino acids


amino acid





unknown




peptide




not provided




Modified-site


/product= “OTHER”
/note= “X represents U, the standard designation for
C-abu, a modified cysteine.”




128
Lys Glu Asn Lys Xaa Asn Gly Thr Asp Ala Lys Val Lys Leu Ile Lys
1 5 10 15
Gln Glu Leu Asp Lys Tyr Lys Asn Ala Val Thr Glu Leu Gln Leu Leu
20 25 30
Met Gln Ser
35






36 amino acids


amino acid





unknown




peptide




not provided




Modified-site


31


/product= “OTHER”
/note= “X represents U, the standard designation for
C-abu, a modified cysteine.”




129
Ala Val Ser Lys Gly Tyr Leu Ser Ala Leu Arg Thr Gly Trp Tyr Thr
1 5 10 15
Ser Val Ile Thr Ile Glu Leu Ser Asn Ile Lys Glu Asn Lys Xaa Asn
20 25 30
Gly Thr Asp Ala
35






27 amino acids


amino acid





unknown




peptide




not provided



130
Val Val Ser Leu Ser Asn Gly Val Ser Val Leu Thr Ser Lys Val Leu
1 5 10 15
Asp Leu Lys Asn Tyr Ile Asp Lys Gln Leu Leu
20 25






28 amino acids


amino acid





unknown




peptide




not provided



131
Leu Leu Ser Thr Asn Lys Ala Val Val Ser Leu Ser Asn Gly Val Ser
1 5 10 15
Val Leu Thr Ser Lys Val Leu Asp Leu Lys Asn Tyr
20 25






28 amino acids


amino acid





unknown




peptide




not provided



132
Val Leu His Leu Glu Gly Glu Val Asn Lys Ile Lys Ser Ala Leu Leu
1 5 10 15
Ser Thr Asn Lys Ala Val Val Ser Leu Ser Asn Gly
20 25






28 amino acids


amino acid





unknown




peptide




not provided



133
Leu Leu Ser Thr Asn Lys Ala Val Val Ser Leu Ser Asn Gly Val Ser
1 5 10 15
Val Leu Thr Ser Lys Val Leu Asp Leu Lys Asn Tyr
20 25






37 amino acids


amino acid





unknown




peptide




not provided



134
Ala Ser Gly Val Ala Val Ser Lys Val Leu His Leu Glu Gly Glu Val
1 5 10 15
Asn Lys Ile Lys Ser Ala Leu Leu Ser Thr Asn Lys Ala Val Val Ser
20 25 30
Leu Ser Asn Gly Val
35






35 amino acids


amino acid





unknown




peptide




not provided



135
Val Leu His Leu Glu Gly Glu Val Asn Lys Ile Lys Ser Ala Leu Leu
1 5 10 15
Ser Thr Asn Lys Ala Val Val Ser Leu Ser Asn Gly Val Ser Val Leu
20 25 30
Thr Ser Lys
35






28 amino acids


amino acid





unknown




peptide




not provided



136
Asn Asp Gln Lys Lys Leu Met Ser Asn Asn Val Gln Ile Val Arg Gln
1 5 10 15
Gln Ser Tyr Ser Ile Met Ser Ile Ile Lys Glu Glu
20 25






36 amino acids


amino acid





unknown




peptide




not provided



137
Ser Ile Ser Asn Ile Glu Thr Val Ile Glu Phe Gln Gln Lys Asn Asn
1 5 10 15
Arg Leu Leu Glu Ile Thr Arg Glu Phe Ser Val Asn Ala Gly Val Thr
20 25 30
Thr Pro Val Ser
35






35 amino acids


amino acid





unknown




peptide




not provided



138
Pro Ile Ile Asn Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe
1 5 10 15
Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala
20 25 30
Phe Ile Arg
35






29 amino acids


amino acid





unknown




peptide




not provided



139
Arg Met Lys Gln Leu Glu Asp Lys Val Glu Glu Leu Leu Ser Lys Leu
1 5 10 15
Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu His Asn Val
20 25






19 amino acids


amino acid





unknown




peptide




not provided



140
Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu His Asn Val Asn Ala Gly
1 5 10 15
Lys Ser Thr






19 amino acids


amino acid





unknown




peptide




not provided



141
Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu
1 5 10 15
Ala Phe Ile






21 amino acids


amino acid





unknown




peptide




not provided



142
Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu His Asn Val Asn
1 5 10 15
Ala Gly Lys Ser Thr
20






33 amino acids


amino acid





unknown




peptide




not provided



143
Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu
1 5 10 15
Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu His Asn Val Asn Ala Gly
20 25 30
Lys






33 amino acids


amino acid





unknown




peptide




not provided



144
Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe
1 5 10 15
Ile Arg Lys Ser Asp Glu Leu Leu His Asn Val Asn Ala Gly Lys Ser
20 25 30
Thr






35 amino acids


amino acid





unknown




peptide




not provided



145
Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu
1 5 10 15
Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu His Asn Val Asn Ala Gly
20 25 30
Lys Ser Thr
35






28 amino acids


amino acid





unknown




peptide




not provided



146
Ala Thr Ser Ala Gln Ile Thr Ala Ala Val Ala Leu Val Glu Ala Lys
1 5 10 15
Gln Ala Arg Ser Asp Ile Glu Lys Leu Lys Glu Ala
20 25






35 amino acids


amino acid





unknown




peptide




not provided



147
Ala Ala Val Ala Leu Val Glu Ala Lys Gln Ala Arg Ser Asp Ile Glu
1 5 10 15
Lys Leu Lys Glu Ala Ile Arg Asp Thr Asn Lys Ala Val Gln Ser Val
20 25 30
Gln Ser Ser
35






35 amino acids


amino acid





unknown




peptide




not provided



148
Ala Lys Gln Ala Arg Ser Asp Ile Glu Lys Leu Lys Glu Ala Ile Arg
1 5 10 15
Asp Thr Asn Lys Ala Val Gln Ser Val Gln Ser Ser Ile Gly Asn Leu
20 25 30
Ile Val Ala
35






28 amino acids


amino acid





unknown




peptide




not provided



149
Ile Arg Asp Thr Asn Lys Ala Val Gln Ser Val Gln Ser Ser Ile Gly
1 5 10 15
Asn Leu Ile Val Ala Ile Lys Ser Val Gln Asp Tyr
20 25






28 amino acids


amino acid





unknown




peptide




not provided



150
Ala Val Gln Ser Val Gln Ser Ser Ile Gly Asn Leu Ile Val Ala Ile
1 5 10 15
Lys Ser Val Gln Asp Tyr Val Asn Lys Glu Ile Val
20 25






28 amino acids


amino acid





unknown




peptide




not provided



151
Leu Lys Glu Ala Ile Arg Asp Thr Asn Lys Ala Val Gln Ser Val Gln
1 5 10 15
Ser Ser Ile Gly Asn Leu Ile Val Ala Ile Lys Ser
20 25






13 amino acids


amino acid





unknown




peptide




not provided



152
Glu Trp Ile Arg Arg Ser Asn Gln Lys Leu Asp Ser Ile
1 5 10






35 amino acids


amino acid





unknown




peptide




not provided



153
Ile Asp Ile Ser Ile Glu Leu Asn Lys Ala Lys Ser Asp Leu Glu Glu
1 5 10 15
Ser Lys Glu Trp Ile Lys Lys Ser Asn Gln Lys Leu Asp Ser Ile Gly
20 25 30
Asn Trp His
35






29 amino acids


amino acid





unknown




peptide




not provided



154
Arg Met Lys Gln Leu Glu Asp Lys Val Glu Glu Leu Leu Ser Lys Leu
1 5 10 15
Glu Trp Ile Arg Arg Ser Asn Gln Lys Leu Asp Ser Ile
20 25






35 amino acids


amino acid





unknown




peptide




not provided



155
Asp Gln Gln Ile Lys Gln Tyr Lys Arg Leu Leu Asp Arg Leu Ile Ile
1 5 10 15
Pro Leu Tyr Asp Gly Leu Arg Gln Lys Asp Val Ile Val Ser Asn Gln
20 25 30
Glu Ser Asn
35






36 amino acids


amino acid





unknown




peptide




not provided



156
Tyr Ser Glu Leu Thr Asn Ile Phe Gly Asp Asn Ile Gly Ser Leu Gln
1 5 10 15
Glu Lys Gly Ile Lys Leu Gln Gly Ile Ala Ser Leu Tyr Arg Thr Asn
20 25 30
Ile Thr Glu Ile
35






36 amino acids


amino acid





unknown




peptide




not provided



157
Thr Ser Ile Thr Leu Gln Val Arg Leu Pro Leu Leu Thr Arg Leu Leu
1 5 10 15
Asn Thr Gln Ile Tyr Arg Val Asp Ser Ile Ser Tyr Asn Ile Gln Asn
20 25 30
Arg Glu Trp Tyr
35






57 amino acids


amino acid





unknown




peptide




not provided



158
Asn Lys Ser Leu Glu Gln Ile Trp Asn Asn Met Thr Trp Met Glu Trp
1 5 10 15
Asp Arg Glu Ile Asn Asn Tyr Thr Ser Leu Ile His Ser Leu Ile Glu
20 25 30
Glu Gln Asn Gln Gln Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp
35 40 45
Lys Trp Ala Ser Leu Trp Asn Trp Phe
50 55






35 amino acids


amino acid





unknown




peptide




not provided



159
Trp Met Glu Trp Asp Arg Glu Ile Asn Asn Tyr Thr Ser Leu Ile Gly
1 5 10 15
Ser Leu Ile Glu Glu Ser Gln Asn Gln Gln Glu Lys Asn Glu Gln Glu
20 25 30
Leu Leu Glu
35






49 amino acids


amino acid





unknown




peptide




not provided



160
Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu Ser Gln Asn Gln Gln
1 5 10 15
Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu
20 25 30
Trp Asn Trp Phe Asn Ile Thr Asn Trp Leu Trp Leu Ile Lys Ile Phe
35 40 45
Ile






28 amino acids


amino acid





unknown




peptide




not provided



161
Glu Ala Ala Ala Arg Glu Ala Ala Ala Arg Glu Ala Ala Ala Arg Leu
1 5 10 15
Glu Leu Asp Lys Trp Ala Ser Leu Trp Asn Trp Phe
20 25






28 amino acids


amino acid





unknown




peptide




not provided



162
Arg Met Lys Gln Leu Glu Asp Lys Val Glu Glu Leu Leu Ser Lys Leu
1 5 10 15
Glu Leu Asp Lys Trp Ala Ser Leu Trp Asn Trp Phe
20 25






28 amino acids


amino acid





unknown




peptide




not provided



163
Phe Trp Asn Trp Leu Ser Ala Trp Lys Asp Leu Glu Leu Lys Ser Leu
1 5 10 15
Leu Glu Glu Val Lys Asp Glu Leu Gln Lys Met Arg
20 25






35 amino acids


amino acid





unknown




peptide




not provided



164
Arg Met Lys Gln Leu Glu Asp Lys Val Glu Glu Leu Leu Ser Lys Asn
1 5 10 15
Tyr His Leu Glu Asn Glu Leu Glu Leu Asp Lys Trp Ala Ser Leu Trp
20 25 30
Asn Trp Phe
35






30 amino acids


amino acid





unknown




peptide




not provided



165
Phe Trp Asn Trp Leu Ser Ala Trp Lys Asp Leu Glu Leu Tyr Pro Gly
1 5 10 15
Ser Leu Glu Leu Asp Lys Trp Ala Ser Leu Trp Asn Trp Phe
20 25 30






15 amino acids


amino acid





unknown




peptide




not provided



166
Cys Leu Glu Leu Asp Lys Trp Ala Ser Leu Trp Asn Trp Phe Cys
1 5 10 15






15 amino acids


amino acid





unknown




peptide




not provided



167
Cys Leu Glu Leu Asp Lys Trp Ala Ser Leu Ala Asn Trp Phe Cys
1 5 10 15






15 amino acids


amino acid





unknown




peptide




not provided



168
Cys Leu Glu Leu Asp Lys Trp Ala Ser Leu Trp Asn Phe Phe Cys
1 5 10 15






13 amino acids


amino acid





unknown




peptide




not provided



169
Leu Glu Leu Asp Lys Trp Ala Ser Leu Ala Asn Ala Phe
1 5 10






13 amino acids


amino acid





unknown




peptide




not provided



170
Leu Glu Leu Asp Lys Trp Ala Ser Leu Phe Asn Phe Phe
1 5 10






13 amino acids


amino acid





unknown




peptide




not provided



171
Leu Glu Leu Asp Lys Trp Ala Ser Leu Trp Asn Ala Phe
1 5 10






13 amino acids


amino acid





unknown




peptide




not provided



172
Leu Glu Leu Asp Lys Trp Ala Ser Leu Trp Asn Trp Ala
1 5 10






13 amino acids


amino acid





unknown




peptide




not provided



173
Leu Glu Leu Asp Lys Trp Ala Ser Ala Trp Asn Trp Phe
1 5 10






13 amino acids


amino acid





unknown




peptide




not provided



174
Leu Glu Leu Asp Lys Ala Ala Ser Leu Trp Asn Trp Phe
1 5 10






13 amino acids


amino acid





unknown




peptide




not provided



175
Leu Lys Leu Asp Lys Trp Ala Ser Leu Trp Asn Trp Phe
1 5 10






13 amino acids


amino acid





unknown




peptide




not provided



176
Leu Glu Leu Lys Lys Trp Ala Ser Leu Trp Asn Trp Phe
1 5 10






39 amino acids


amino acid





unknown




peptide




not provided



177
Cys Gly Gly Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu Ser Gln
1 5 10 15
Asn Gln Gln Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp
20 25 30
Ala Ser Leu Trp Asn Trp Phe
35






36 amino acids


amino acid





unknown




peptide




not provided



178
Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu Ser Gln Asn Gln Gln
1 5 10 15
Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu
20 25 30
Trp Asn Ala Phe
35






36 amino acids


amino acid





unknown




peptide




not provided



179
Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu Ser Gln Asn Gln Gln
1 5 10 15
Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu
20 25 30
Ala Asn Trp Phe
35






36 amino acids


amino acid





unknown




peptide




not provided



180
Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu Ser Gln Asn Gln Gln
1 5 10 15
Glu Lys Asn Glu Gln Gln Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu
20 25 30
Trp Asn Trp Phe
35






36 amino acids


amino acid





unknown




peptide




not provided



181
Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu Ser Gln Asn Gln Gln
1 5 10 15
Glu Lys Asn Glu Gln Glu Leu Leu Gln Leu Asp Lys Trp Ala Ser Leu
20 25 30
Trp Asn Trp Phe
35






36 amino acids


amino acid





unknown




peptide




not provided



182
Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu Ser Gln Asn Gln Gln
1 5 10 15
Glu Lys Asn Gln Gln Glu Leu Leu Gln Leu Asp Lys Trp Ala Ser Leu
20 25 30
Trp Asn Trp Phe
35






36 amino acids


amino acid





unknown




peptide




not provided



183
Tyr Thr Ser Leu Ile Gln Ser Leu Ile Glu Glu Ser Gln Asn Gln Gln
1 5 10 15
Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu
20 25 30
Trp Asn Trp Phe
35






36 amino acids


amino acid





unknown




peptide




not provided



184
Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu Ser Gln Gln Gln Gln
1 5 10 15
Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu
20 25 30
Trp Asn Trp Phe
35






36 amino acids


amino acid





unknown




peptide




not provided



185
Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu Ser Gln Asn Gln Gln
1 5 10 15
Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asn Lys Trp Ala Ser Leu
20 25 30
Trp Asn Trp Phe
35






36 amino acids


amino acid





unknown




peptide




not provided



186
Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Gln Ser Gln Asn Gln Gln
1 5 10 15
Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu
20 25 30
Trp Asn Trp Phe
35






36 amino acids


amino acid





unknown




peptide




not provided



187
Tyr Thr Ser Leu Ile His Ser Leu Ile Gln Glu Ser Gln Asn Gln Gln
1 5 10 15
Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu
20 25 30
Trp Asn Trp Phe
35






36 amino acids


amino acid





unknown




peptide




not provided



188
Tyr Thr Ser Leu Ile His Ser Leu Ile Gln Gln Ser Gln Asn Gln Gln
1 5 10 15
Gln Lys Asn Gln Gln Gln Leu Leu Gln Leu Asp Lys Trp Ala Ser Leu
20 25 30
Trp Asn Trp Phe
35






36 amino acids


amino acid





unknown




peptide




not provided



189
Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu Ser Gln Asn Gln Gln
1 5 10 15
Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu
20 25 30
Ala Asn Ala Ala
35






36 amino acids


amino acid





unknown




peptide




not provided



190
Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu Ser Gln Asn Gln Gln
1 5 10 15
Glu Lys Asn Glu Gln Gln Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu
20 25 30
Trp Asn Trp Phe
35






36 amino acids


amino acid





unknown




peptide




not provided



191
Tyr Thr Ser Leu Ile Gln Ser Leu Ile Glu Glu Ser Gln Asn Gln Gln
1 5 10 15
Glu Lys Asn Glu Gln Gln Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu
20 25 30
Trp Asn Trp Phe
35






36 amino acids


amino acid





unknown




peptide




not provided



192
Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu Ser Gln Asn Gln Gln
1 5 10 15
Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu
20 25 30
Phe Asn Phe Phe
35






36 amino acids


amino acid





unknown




peptide




not provided



193
Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu Ser Gln Asn Leu Gln
1 5 10 15
Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu
20 25 30
Trp Asn Trp Phe
35






36 amino acids


amino acid





unknown




peptide




not provided



194
Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu Ser Gln Asn Gln Gln
1 5 10 15
Glu Lys Leu Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu
20 25 30
Trp Asn Trp Phe
35






36 amino acids


amino acid





unknown




peptide




not provided



195
Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu Ser Gln Asn Gln Gln
1 5 10 15
Glu Lys Asn Glu Gln Glu Leu Leu Glu Phe Asp Lys Trp Ala Ser Leu
20 25 30
Trp Asn Trp Phe
35






36 amino acids


amino acid





unknown




peptide




not provided



196
Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu Ser Gln Asn Gln Gln
1 5 10 15
Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Pro Ala Ser Leu
20 25 30
Trp Asn Trp Phe
35






36 amino acids


amino acid





unknown




peptide




not provided



197
Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu Ser Gln Asn Gln Gln
1 5 10 15
Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Pro
20 25 30
Trp Asn Trp Phe
35






36 amino acids


amino acid





unknown




peptide




not provided



198
Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu Ser Gln Asn Gln Gln
1 5 10 15
Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu
20 25 30
Trp Asn Ser Phe
35






36 amino acids


amino acid





unknown




peptide




not provided



199
Leu Leu Asp Asn Phe Glu Ser Thr Trp Glu Gln Ser Lys Glu Leu Trp
1 5 10 15
Glu Gln Gln Glu Ile Ser Ile Gln Asn Leu His Lys Ser Ala Leu Gln
20 25 30
Glu Tyr Trp Asn
35






36 amino acids


amino acid





unknown




peptide




not provided



200
Leu Ser Asn Leu Leu Gln Ile Ser Asn Asn Ser Asp Glu Trp Leu Glu
1 5 10 15
Ala Leu Glu Ile Glu His Glu Lys Trp Lys Leu Thr Gln Trp Gln Ser
20 25 30
Tyr Glu Gln Phe
35






63 amino acids


amino acid





unknown




peptide




not provided



201
Met Thr Leu Thr Val Gln Ala Arg Gln Leu Leu Ser Gly Ile Val Gln
1 5 10 15
Gln Gln Asn Asn Leu Leu Arg Ala Ile Glu Ala Gln Gln His Leu Leu
20 25 30
Gln Leu Thr Val Trp Gly Ile Lys Gln Leu Gln Ala Arg Ile Leu Ala
35 40 45
Val Glu Arg Tyr Leu Lys Asp Gln Gln Leu Leu Gly Ile Trp Gly
50 55 60






45 amino acids


amino acid





unknown




peptide




not provided



202
Ser Glu Leu Glu Ile Lys Arg Tyr Lys Asn Arg Val Ala Ser Arg Lys
1 5 10 15
Cys Arg Ala Lys Phe Gln Leu Leu Gln His Tyr Arg Glu Val Ala Ala
20 25 30
Ala Lys Ser Ser Glu Asn Asp Arg Leu Arg Leu Leu Leu
35 40 45






45 amino acids


amino acid





unknown




peptide




not provided



203
Ala Ser Arg Lys Cys Arg Ala Lys Phe Lys Gln Leu Leu Gln His Tyr
1 5 10 15
Arg Glu Val Ala Ala Ala Lys Ser Ser Glu Asn Asp Arg Leu Arg Leu
20 25 30
Leu Leu Lys Gln Met Cys Pro Ser Leu Asp Val Asp Ser
35 40 45






35 amino acids


amino acid





unknown




peptide




not provided



204
Leu Leu Gln His Tyr Arg Glu Val Ala Ala Ala Lys Ser Ser Glu Asn
1 5 10 15
Asp Arg Leu Arg Leu Leu Leu Lys Gln Met Cys Pro Ser Leu Asp Val
20 25 30
Asp Ser Ile
35






45 amino acids


amino acid





unknown




peptide




not provided



205
Leu Gln His Tyr Arg Glu Val Ala Ala Ala Lys Ser Ser Glu Asn Asp
1 5 10 15
Arg Leu Arg Leu Leu Leu Lys Gln Met Cys Pro Ser Leu Asp Val Asp
20 25 30
Ser Ile Ile Pro Arg Thr Pro Asp Val Leu His Glu Asp
35 40 45






35 amino acids


amino acid





unknown




peptide




not provided



206
Ser Ser Glu Asn Asp Arg Leu Arg Leu Leu Leu Lys Gln Met Cys Pro
1 5 10 15
Ser Leu Asp Val Asp Ser Ile Ile Pro Arg Thr Pro Asp Val Leu His
20 25 30
Glu Asp Leu
35






37 amino acids


amino acid





unknown




peptide




not provided



207
Ser Glu Asn Asp Arg Leu Arg Leu Leu Leu Lys Gln Met Cys Pro Ser
1 5 10 15
Leu Asp Val Asp Ser Ile Ile Pro Arg Thr Pro Asp Val Leu His Glu
20 25 30
Asp Leu Leu Asn Phe
35






46 amino acids


amino acid





unknown




peptide




not provided



208
Pro Leu Leu Val Leu Gln Ala Gly Phe Phe Leu Leu Thr Arg Ile Leu
1 5 10 15
Thr Ile Pro Gln Ser Leu Asp Ser Trp Trp Thr Ser Leu Asn Phe Leu
20 25 30
Gly Gly Thr Thr Val Cys Leu Gly Gln Asn Ser Gln Ser Pro
35 40 45






57 amino acids


amino acid





unknown




peptide




not provided



209
Pro Gly Tyr Arg Trp Met Cys Leu Arg Arg Phe Ile Ile Phe Leu Phe
1 5 10 15
Ile Leu Leu Leu Cys Leu Ile Phe Leu Leu Val Leu Leu Asp Tyr Gln
20 25 30
Gly Met Leu Pro Val Cys Pro Leu Ile Pro Gly Ser Ser Thr Ser Thr
35 40 45
Gly Pro Cys Arg Thr Cys Met Thr Thr
50 55






33 amino acids


amino acid





unknown




peptide




not provided



210
Tyr Thr Ser Val Ile Thr Ile Glu Leu Ser Asn Ile Lys Glu Asn Lys
1 5 10 15
Cys Asn Gly Ala Lys Val Lys Leu Ile Lys Gln Glu Leu Asp Lys Tyr
20 25 30
Lys






33 amino acids


amino acid





unknown




peptide




not provided



211
Thr Ser Val Ile Thr Ile Glu Leu Ser Asn Ile Lys Glu Asn Lys Cys
1 5 10 15
Asn Gly Ala Lys Val Lys Leu Ile Lys Gln Glu Leu Asp Lys Tyr Lys
20 25 30
Asn






33 amino acids


amino acid





unknown




peptide




not provided



212
Ser Val Ile Thr Ile Glu Leu Ser Asn Ile Lys Glu Asn Lys Cys Asn
1 5 10 15
Gly Ala Lys Val Lys Leu Ile Lys Gln Glu Leu Asp Lys Tyr Lys Asn
20 25 30
Ala






33 amino acids


amino acid





unknown




peptide




not provided



213
Val Ile Thr Ile Glu Leu Ser Asn Ile Lys Glu Asn Lys Cys Asn Gly
1 5 10 15
Ala Lys Val Lys Leu Ile Lys Gln Glu Leu Asp Lys Tyr Lys Asn Ala
20 25 30
Val






33 amino acids


amino acid





unknown




peptide




not provided



214
Ile Thr Ile Glu Leu Ser Asn Ile Lys Glu Asn Lys Cys Asn Gly Ala
1 5 10 15
Lys Val Lys Leu Ile Lys Gln Glu Leu Asp Lys Tyr Lys Asn Ala Val
20 25 30
Thr






33 amino acids


amino acid





unknown




peptide




not provided



215
Thr Ile Glu Leu Ser Asn Ile Lys Glu Asn Lys Cys Asn Gly Ala Lys
1 5 10 15
Val Lys Leu Ile Lys Gln Glu Leu Asp Lys Tyr Lys Asn Ala Val Thr
20 25 30
Glu






33 amino acids


amino acid





unknown




peptide




not provided



216
Ile Glu Leu Ser Asn Ile Lys Glu Asn Lys Cys Asn Gly Ala Lys Val
1 5 10 15
Lys Leu Ile Lys Gln Glu Leu Asp Lys Tyr Lys Asn Ala Val Thr Glu
20 25 30
Leu






33 amino acids


amino acid





unknown




peptide




not provided



217
Glu Leu Ser Asn Ile Lys Glu Asn Lys Cys Asn Gly Ala Lys Val Lys
1 5 10 15
Leu Ile Lys Gln Glu Leu Asp Lys Tyr Lys Asn Ala Val Thr Glu Leu
20 25 30
Gln






33 amino acids


amino acid





unknown




peptide




not provided



218
Leu Ser Asn Ile Lys Glu Asn Lys Cys Asn Gly Ala Lys Val Lys Leu
1 5 10 15
Ile Lys Gln Glu Leu Asp Lys Tyr Lys Asn Ala Val Thr Glu Leu Gln
20 25 30
Leu






33 amino acids


amino acid





unknown




peptide




not provided



219
Ser Asn Ile Lys Glu Asn Lys Cys Asn Gly Ala Lys Val Lys Leu Ile
1 5 10 15
Lys Gln Glu Leu Asp Lys Tyr Lys Asn Ala Val Thr Glu Leu Gln Leu
20 25 30
Leu






33 amino acids


amino acid





unknown




peptide




not provided



220
Asn Ile Lys Glu Asn Lys Cys Asn Gly Ala Lys Val Lys Leu Ile Lys
1 5 10 15
Gln Glu Leu Asp Lys Tyr Lys Asn Ala Val Thr Glu Leu Gln Leu Leu
20 25 30
Met






33 amino acids


amino acid





unknown




peptide




not provided



221
Ile Lys Glu Asn Lys Cys Asn Gly Ala Lys Val Lys Leu Ile Lys Gln
1 5 10 15
Glu Leu Asp Lys Tyr Lys Asn Ala Val Thr Glu Leu Gln Leu Leu Met
20 25 30
Gln






33 amino acids


amino acid





unknown




peptide




not provided



222
Lys Glu Asn Lys Cys Asn Gly Ala Lys Val Lys Leu Ile Lys Gln Glu
1 5 10 15
Leu Asp Lys Tyr Lys Asn Ala Val Thr Glu Leu Gln Leu Leu Met Gln
20 25 30
Ser






33 amino acids


amino acid





unknown




peptide




not provided



223
Glu Asn Lys Cys Asn Gly Ala Lys Val Lys Leu Ile Lys Gln Glu Leu
1 5 10 15
Asp Lys Tyr Lys Asn Ala Val Thr Glu Leu Gln Leu Leu Met Gln Ser
20 25 30
Thr






28 amino acids


amino acid





unknown




peptide




not provided



224
Ile Glu Leu Ser Asn Ile Lys Glu Asn Lys Cys Asn Gly Thr Asp Ala
1 5 10 15
Lys Val Lys Leu Ile Lys Gln Glu Leu Asp Lys Tyr
20 25






28 amino acids


amino acid





unknown




peptide




not provided



225
Glu Asn Lys Cys Asn Gly Thr Asp Ala Lys Val Lys Leu Ile Lys Gln
1 5 10 15
Glu Leu Asp Lys Tyr Lys Asn Ala Val Thr Glu Leu
20 25






28 amino acids


amino acid





unknown




peptide




not provided



226
Asp Ala Lys Val Lys Leu Ile Lys Gln Glu Leu Asp Lys Tyr Lys Asn
1 5 10 15
Ala Val Thr Glu Leu Gln Leu Leu Met Gln Ser Thr
20 25






28 amino acids


amino acid





unknown




peptide




not provided



227
Cys Asn Gly Thr Asp Ala Lys Val Lys Leu Ile Lys Gln Glu Leu Asp
1 5 10 15
Lys Tyr Lys Asn Ala Val Thr Glu Leu Gln Leu Leu
20 25






35 amino acids


amino acid





unknown




peptide




not provided



228
Ser Asn Ile Lys Glu Asn Lys Cys Asn Gly Thr Asp Ala Lys Val Lys
1 5 10 15
Leu Ile Lys Gln Glu Leu Asp Lys Tyr Lys Asn Ala Val Thr Glu Leu
20 25 30
Gln Leu Leu
35






33 amino acids


amino acid





unknown




peptide




not provided



229
Ala Ser Gly Val Ala Val Ser Lys Val Leu His Leu Glu Gly Glu Val
1 5 10 15
Asn Lys Ile Ala Leu Leu Ser Thr Asn Lys Ala Val Val Ser Leu Ser
20 25 30
Asn






33 amino acids


amino acid





unknown




peptide




not provided



230
Ser Gly Val Ala Val Ser Lys Val Leu His Leu Glu Gly Glu Val Asn
1 5 10 15
Lys Ile Ala Leu Leu Ser Thr Asn Lys Ala Val Val Ser Leu Ser Asn
20 25 30
Gly






33 amino acids


amino acid





unknown




peptide




not provided



231
Gly Val Ala Val Ser Lys Val Leu His Leu Glu Gly Glu Val Asn Lys
1 5 10 15
Ile Ala Leu Leu Ser Thr Asn Lys Ala Val Val Ser Leu Ser Asn Gly
20 25 30
Val






33 amino acids


amino acid





unknown




peptide




not provided



232
Val Ala Val Ser Lys Val Leu His Leu Glu Gly Glu Val Asn Lys Ile
1 5 10 15
Ala Leu Leu Ser Thr Asn Lys Ala Val Val Ser Leu Ser Asn Gly Val
20 25 30
Ser






33 amino acids


amino acid





unknown




peptide




not provided



233
Ala Val Ser Lys Val Leu His Leu Glu Gly Glu Val Asn Lys Ile Ala
1 5 10 15
Leu Leu Ser Thr Asn Lys Ala Val Val Ser Leu Ser Asn Gly Val Ser
20 25 30
Val






33 amino acids


amino acid





unknown




peptide




not provided



234
Val Ser Lys Val Leu His Leu Glu Gly Glu Val Asn Lys Ile Ala Leu
1 5 10 15
Leu Ser Thr Asn Lys Ala Val Val Ser Leu Ser Asn Gly Val Ser Val
20 25 30
Leu






33 amino acids


amino acid





unknown




peptide




not provided



235
Ser Lys Val Leu His Leu Glu Gly Glu Val Asn Lys Ile Ala Leu Leu
1 5 10 15
Ser Thr Asn Lys Ala Val Val Ser Leu Ser Asn Gly Val Ser Val Leu
20 25 30
Thr






33 amino acids


amino acid





unknown




peptide




not provided



236
Lys Val Leu His Leu Glu Gly Glu Val Asn Lys Ile Ala Leu Leu Ser
1 5 10 15
Thr Asn Lys Ala Val Val Ser Leu Ser Asn Gly Val Ser Val Leu Thr
20 25 30
Ser






33 amino acids


amino acid





unknown




peptide




not provided



237
Val Leu His Leu Glu Gly Glu Val Asn Lys Ile Ala Leu Leu Ser Thr
1 5 10 15
Asn Lys Ala Val Val Ser Leu Ser Asn Gly Val Ser Val Leu Thr Ser
20 25 30
Lys






33 amino acids


amino acid





unknown




peptide




not provided



238
Leu His Leu Glu Gly Glu Val Asn Lys Ile Ala Leu Leu Ser Thr Asn
1 5 10 15
Lys Ala Val Val Ser Leu Ser Asn Gly Val Ser Val Leu Thr Ser Lys
20 25 30
Val






33 amino acids


amino acid





unknown




peptide




not provided



239
His Leu Glu Gly Glu Val Asn Lys Ile Ala Leu Leu Ser Thr Asn Lys
1 5 10 15
Ala Val Val Ser Leu Ser Asn Gly Val Ser Val Leu Thr Ser Lys Val
20 25 30
Leu






33 amino acids


amino acid





unknown




peptide




not provided



240
Leu Glu Gly Glu Val Asn Lys Ile Ala Leu Leu Ser Thr Asn Lys Ala
1 5 10 15
Val Val Ser Leu Ser Asn Gly Val Ser Val Leu Thr Ser Lys Val Leu
20 25 30
Asp






33 amino acids


amino acid





unknown




peptide




not provided



241
Glu Gly Glu Val Asn Lys Ile Ala Leu Leu Ser Thr Asn Lys Ala Val
1 5 10 15
Val Ser Leu Ser Asn Gly Val Ser Val Leu Thr Ser Lys Val Leu Asp
20 25 30
Leu






33 amino acids


amino acid





unknown




peptide




not provided



242
Gly Glu Val Asn Lys Ile Ala Leu Leu Ser Thr Asn Lys Ala Val Val
1 5 10 15
Ser Leu Ser Asn Gly Val Ser Val Leu Thr Ser Lys Val Leu Asp Leu
20 25 30
Lys






33 amino acids


amino acid





unknown




peptide




not provided



243
Glu Val Asn Lys Ile Ala Leu Leu Ser Thr Asn Lys Ala Val Val Ser
1 5 10 15
Leu Ser Asn Gly Val Ser Val Leu Thr Ser Lys Val Leu Asp Leu Lys
20 25 30
Asn






33 amino acids


amino acid





unknown




peptide




not provided



244
Val Asn Lys Ile Ala Leu Leu Ser Thr Asn Lys Ala Val Val Ser Leu
1 5 10 15
Ser Asn Gly Val Ser Val Leu Thr Ser Lys Val Leu Asp Leu Lys Asn
20 25 30
Tyr






33 amino acids


amino acid





unknown




peptide




not provided



245
Asn Lys Ile Ala Leu Leu Ser Thr Asn Lys Ala Val Val Ser Leu Ser
1 5 10 15
Asn Gly Val Ser Val Leu Thr Ser Lys Val Leu Asp Leu Lys Asn Tyr
20 25 30
Ile






33 amino acids


amino acid





unknown




peptide




not provided



246
Lys Ile Ala Leu Leu Ser Thr Asn Lys Ala Val Val Ser Leu Ser Asn
1 5 10 15
Gly Val Ser Val Leu Thr Ser Lys Val Leu Asp Leu Lys Asn Tyr Ile
20 25 30
Asp






33 amino acids


amino acid





unknown




peptide




not provided



247
Ile Ala Leu Leu Ser Thr Asn Lys Ala Val Val Ser Leu Ser Asn Gly
1 5 10 15
Val Ser Val Leu Thr Ser Lys Val Leu Asp Leu Lys Asn Tyr Ile Asp
20 25 30
Lys






33 amino acids


amino acid





unknown




peptide




not provided



248
Ala Leu Leu Ser Thr Asn Lys Ala Val Val Ser Leu Ser Asn Gly Val
1 5 10 15
Ser Val Leu Thr Ser Lys Val Leu Asp Leu Lys Asn Tyr Ile Asp Lys
20 25 30
Gln






33 amino acids


amino acid





unknown




peptide




not provided



249
Leu Leu Ser Thr Asn Lys Ala Val Val Ser Leu Ser Asn Gly Val Ser
1 5 10 15
Val Leu Thr Ser Lys Val Leu Asp Leu Lys Asn Tyr Ile Asp Lys Gln
20 25 30
Leu






33 amino acids


amino acid





unknown




peptide




not provided



250
Leu Ser Thr Asn Lys Ala Val Val Ser Leu Ser Asn Gly Val Ser Val
1 5 10 15
Leu Thr Ser Lys Val Leu Asp Leu Lys Asn Tyr Ile Asp Lys Gln Leu
20 25 30
Leu






35 amino acids


amino acid





unknown




peptide




not provided



251
Ser Gly Val Ala Val Ser Lys Val Leu His Leu Glu Gly Glu Val Asn
1 5 10 15
Lys Ile Lys Ser Ala Leu Leu Ser Thr Asn Lys Ala Val Val Ser Leu
20 25 30
Ser Asn Gly
35






27 amino acids


amino acid





unknown




peptide




not provided



252
Val Val Ser Leu Ser Asn Gly Val Ser Val Leu Thr Ser Lys Val Leu
1 5 10 15
Asp Leu Lys Asn Tyr Ile Asp Lys Gln Leu Leu
20 25






28 amino acids


amino acid





unknown




peptide




not provided



253
Val Asn Lys Ile Lys Ser Ala Leu Leu Ser Thr Asn Lys Ala Val Val
1 5 10 15
Ser Leu Ser Asn Gly Val Ser Val Leu Thr Ser Lys
20 25






28 amino acids


amino acid





unknown




peptide




not provided



254
Asp Glu Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln
1 5 10 15
Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu
20 25






35 amino acids


amino acid





unknown




peptide




not provided



255
Ile Ile Asn Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp
1 5 10 15
Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe
20 25 30
Ile Arg Lys
35






35 amino acids


amino acid





unknown




peptide




not provided



256
Ile Asn Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala
1 5 10 15
Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile
20 25 30
Arg Lys Ser
35






35 amino acids


amino acid





unknown




peptide




not provided



257
Asn Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser
1 5 10 15
Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg
20 25 30
Lys Ser Asp
35






35 amino acids


amino acid





unknown




peptide




not provided



258
Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile
1 5 10 15
Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys
20 25 30
Ser Asp Glu
35






35 amino acids


amino acid





unknown




peptide




not provided



259
Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile Ser
1 5 10 15
Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser
20 25 30
Asp Glu Leu
35






35 amino acids


amino acid





unknown




peptide




not provided



260
Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile Ser Gln
1 5 10 15
Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp
20 25 30
Glu Leu Leu
35






35 amino acids


amino acid





unknown




peptide




not provided



261
Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile Ser Gln Val
1 5 10 15
Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu
20 25 30
Leu Leu His
35






35 amino acids


amino acid





unknown




peptide




not provided



262
Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile Ser Gln Val Asn
1 5 10 15
Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu
20 25 30
Leu His Asn
35






35 amino acids


amino acid





unknown




peptide




not provided



263
Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile Ser Gln Val Asn Glu
1 5 10 15
Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu
20 25 30
His Asn Val
35






35 amino acids


amino acid





unknown




peptide




not provided



264
Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys
1 5 10 15
Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu His
20 25 30
Asn Val Asn
35






35 amino acids


amino acid





unknown




peptide




not provided



265
Pro Ser Asp Glu Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile
1 5 10 15
Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu His Asn
20 25 30
Val Asn Ala
35






35 amino acids


amino acid





unknown




peptide




not provided



266
Ser Asp Glu Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn
1 5 10 15
Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu His Asn Val
20 25 30
Asn Ala Gly
35






35 amino acids


amino acid





unknown




peptide




not provided



267
Asp Glu Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln
1 5 10 15
Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu His Asn Val Asn
20 25 30
Ala Gly Lys
35






35 amino acids


amino acid





unknown




peptide




not provided



268
Glu Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser
1 5 10 15
Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu His Asn Val Asn Ala
20 25 30
Gly Lys Ser
35






35 amino acids


amino acid





unknown




peptide




not provided



269
Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu
1 5 10 15
Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu His Asn Val Asn Ala Gly
20 25 30
Lys Ser Thr
35






35 amino acids


amino acid





unknown




peptide




not provided



270
Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala
1 5 10 15
Phe Ile Arg Lys Ser Asp Glu Leu Leu His Asn Val Asn Ala Gly Lys
20 25 30
Ser Thr Thr
35






12 amino acids


amino acid





unknown




peptide




not provided



271
Glu Leu Leu His Asn Val Asn Ala Gly Lys Ser Thr
1 5 10






15 amino acids


amino acid





unknown




peptide




not provided



272
Lys Ser Asp Glu Leu Leu His Asn Val Asn Ala Gly Lys Ser Thr
1 5 10 15






17 amino acids


amino acid





unknown




peptide




not provided



273
Ile Arg Lys Ser Asp Glu Leu Leu His Asn Val Asn Ala Gly Lys Ser
1 5 10 15
Thr






21 amino acids


amino acid





unknown




peptide




not provided



274
Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu
1 5 10 15
Ala Phe Ile Arg Lys
20






31 amino acids


amino acid





unknown




peptide




not provided



275
Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu
1 5 10 15
Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu His Asn Val Asn Ala
20 25 30






29 amino acids


amino acid





unknown




peptide




not provided



276
Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu
1 5 10 15
Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu His Asn Val
20 25






27 amino acids


amino acid





unknown




peptide




not provided



277
Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu
1 5 10 15
Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu His
20 25






25 amino acids


amino acid





unknown




peptide




not provided



278
Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu
1 5 10 15
Ala Phe Ile Arg Lys Ser Asp Glu Leu
20 25






23 amino acids


amino acid





unknown




peptide




not provided



279
Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu
1 5 10 15
Ala Phe Ile Arg Lys Ser Asp
20






31 amino acids


amino acid





unknown




peptide




not provided



280
Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg
1 5 10 15
Lys Ser Asp Glu Leu Leu His Asn Val Asn Ala Gly Lys Ser Thr
20 25 30






29 amino acids


amino acid





unknown




peptide




not provided



281
Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser
1 5 10 15
Asp Glu Leu Leu His Asn Val Asn Ala Gly Lys Ser Thr
20 25






27 amino acids


amino acid





unknown




peptide




not provided



282
Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu
1 5 10 15
Leu Leu His Asn Val Asn Ala Gly Lys Ser Thr
20 25






25 amino acids


amino acid





unknown




peptide




not provided



283
Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu
1 5 10 15
His Asn Val Asn Ala Gly Lys Ser Thr
20 25






23 amino acids


amino acid





unknown




peptide




not provided



284
Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu His Asn
1 5 10 15
Val Asn Ala Gly Lys Ser Thr
20






35 amino acids


amino acid





unknown




peptide




not provided



285
Ala Leu Gly Val Ala Thr Ser Ala Gln Ile Thr Ala Ala Val Ala Leu
1 5 10 15
Val Glu Ala Lys Gln Ala Arg Ser Asp Ile Glu Lys Leu Lys Glu Ala
20 25 30
Ile Arg Asp
35






35 amino acids


amino acid





unknown




peptide




not provided



286
Leu Gly Val Ala Thr Ser Ala Gln Ile Thr Ala Ala Val Ala Leu Val
1 5 10 15
Glu Ala Lys Gln Ala Arg Ser Asp Ile Glu Lys Leu Lys Glu Ala Ile
20 25 30
Arg Asp Thr
35






35 amino acids


amino acid





unknown




peptide




not provided



287
Gly Val Ala Thr Ser Ala Gln Ile Thr Ala Ala Val Ala Leu Val Glu
1 5 10 15
Ala Lys Gln Ala Arg Ser Asp Ile Glu Lys Leu Lys Glu Ala Ile Arg
20 25 30
Asp Thr Asn
35






35 amino acids


amino acid





unknown




peptide




not provided



288
Val Ala Thr Ser Ala Gln Ile Thr Ala Ala Val Ala Leu Val Glu Ala
1 5 10 15
Lys Gln Ala Arg Ser Asp Ile Glu Lys Leu Lys Glu Ala Ile Arg Asp
20 25 30
Thr Asn Lys
35






35 amino acids


amino acid





unknown




peptide




not provided



289
Ala Thr Ser Ala Gln Ile Thr Ala Ala Val Ala Leu Val Glu Ala Lys
1 5 10 15
Gln Ala Arg Ser Asp Ile Glu Lys Leu Lys Glu Ala Ile Arg Asp Thr
20 25 30
Asn Lys Ala
35






35 amino acids


amino acid





unknown




peptide




not provided



290
Thr Ser Ala Gln Ile Thr Ala Ala Val Ala Leu Val Glu Ala Lys Gln
1 5 10 15
Ala Arg Ser Asp Ile Glu Lys Leu Lys Glu Ala Ile Arg Asp Thr Asn
20 25 30
Lys Ala Val
35






35 amino acids


amino acid





unknown




peptide




not provided



291
Ser Ala Gln Ile Thr Ala Ala Val Ala Leu Val Glu Ala Lys Gln Ala
1 5 10 15
Arg Ser Asp Ile Glu Lys Leu Lys Glu Ala Ile Arg Asp Thr Asn Lys
20 25 30
Ala Val Gln
35






35 amino acids


amino acid





unknown




peptide




not provided



292
Ala Gln Ile Thr Ala Ala Val Ala Leu Val Glu Ala Lys Gln Ala Arg
1 5 10 15
Ser Asp Ile Glu Lys Leu Lys Glu Ala Ile Arg Asp Thr Asn Lys Ala
20 25 30
Val Gln Ser
35






35 amino acids


amino acid





unknown




peptide




not provided



293
Gln Ile Thr Ala Ala Val Ala Leu Val Glu Ala Lys Gln Ala Arg Ser
1 5 10 15
Asp Ile Glu Lys Leu Lys Glu Ala Ile Arg Asp Thr Asn Lys Ala Val
20 25 30
Gln Ser Val
35






35 amino acids


amino acid





unknown




peptide




not provided



294
Ile Thr Ala Ala Val Ala Leu Val Glu Ala Lys Gln Ala Arg Ser Asp
1 5 10 15
Ile Glu Lys Leu Lys Glu Ala Ile Arg Asp Thr Asn Lys Ala Val Gln
20 25 30
Ser Val Gln
35






35 amino acids


amino acid





unknown




peptide




not provided



295
Thr Ala Ala Val Ala Leu Val Glu Ala Lys Gln Ala Arg Ser Asp Ile
1 5 10 15
Glu Lys Leu Lys Glu Ala Ile Arg Asp Thr Asn Lys Ala Val Gln Ser
20 25 30
Val Gln Ser
35






35 amino acids


amino acid





unknown




peptide




not provided



296
Ala Ala Val Ala Leu Val Glu Ala Lys Gln Ala Arg Ser Asp Ile Glu
1 5 10 15
Lys Leu Lys Glu Ala Ile Arg Asp Thr Asn Lys Ala Val Gln Ser Val
20 25 30
Gln Ser Ser
35






35 amino acids


amino acid





unknown




peptide




not provided



297
Ala Val Ala Leu Val Glu Ala Lys Gln Ala Arg Ser Asp Ile Glu Lys
1 5 10 15
Leu Lys Glu Ala Ile Arg Asp Thr Asn Lys Ala Val Gln Ser Val Gln
20 25 30
Ser Ser Ile
35






35 amino acids


amino acid





unknown




peptide




not provided



298
Val Ala Leu Val Glu Ala Lys Gln Ala Arg Ser Asp Ile Glu Lys Leu
1 5 10 15
Lys Glu Ala Ile Arg Asp Thr Asn Lys Ala Val Gln Ser Val Gln Ser
20 25 30
Ser Ile Gly
35






35 amino acids


amino acid





unknown




peptide




not provided



299
Ala Leu Val Glu Ala Lys Gln Ala Arg Ser Asp Ile Glu Lys Leu Lys
1 5 10 15
Glu Ala Ile Arg Asp Thr Asn Lys Ala Val Gln Ser Val Gln Ser Ser
20 25 30
Ile Gly Asn
35






35 amino acids


amino acid





unknown




peptide




not provided



300
Leu Val Glu Ala Lys Gln Ala Arg Ser Asp Ile Glu Lys Leu Lys Glu
1 5 10 15
Ala Ile Arg Asp Thr Asn Lys Ala Val Gln Ser Val Gln Ser Ser Ile
20 25 30
Gly Asn Leu
35






35 amino acids


amino acid





unknown




peptide




not provided



301
Val Glu Ala Lys Gln Ala Arg Ser Asp Ile Glu Lys Leu Lys Glu Ala
1 5 10 15
Ile Arg Asp Thr Asn Lys Ala Val Gln Ser Val Gln Ser Ser Ile Gly
20 25 30
Asn Leu Ile
35






35 amino acids


amino acid





unknown




peptide




not provided



302
Glu Ala Lys Gln Ala Arg Ser Asp Ile Glu Lys Leu Lys Glu Ala Ile
1 5 10 15
Arg Asp Thr Asn Lys Ala Val Gln Ser Val Gln Ser Ser Ile Gly Asn
20 25 30
Leu Ile Val
35






35 amino acids


amino acid





unknown




peptide




not provided



303
Ala Lys Gln Ala Arg Ser Asp Ile Glu Lys Leu Lys Glu Ala Ile Arg
1 5 10 15
Asp Thr Asn Lys Ala Val Gln Ser Val Gln Ser Ser Ile Gly Asn Leu
20 25 30
Ile Val Ala
35






35 amino acids


amino acid





unknown




peptide




not provided



304
Lys Gln Ala Arg Ser Asp Ile Glu Lys Leu Lys Glu Ala Ile Arg Asp
1 5 10 15
Thr Asn Lys Ala Val Gln Ser Val Gln Ser Ser Ile Gly Asn Leu Ile
20 25 30
Val Ala Ile
35






35 amino acids


amino acid





unknown




peptide




not provided



305
Gln Ala Arg Ser Asp Ile Glu Lys Leu Lys Glu Ala Ile Arg Asp Thr
1 5 10 15
Asn Lys Ala Val Gln Ser Val Gln Ser Ser Ile Gly Asn Leu Ile Val
20 25 30
Ala Ile Lys
35






35 amino acids


amino acid





unknown




peptide




not provided



306
Ala Arg Ser Asp Ile Glu Lys Leu Lys Glu Ala Ile Arg Asp Thr Asn
1 5 10 15
Lys Ala Val Gln Ser Val Gln Ser Ser Ile Gly Asn Leu Ile Val Ala
20 25 30
Ile Lys Ser
35






35 amino acids


amino acid





unknown




peptide




not provided



307
Arg Ser Asp Ile Glu Lys Leu Lys Glu Ala Ile Arg Asp Thr Asn Lys
1 5 10 15
Ala Val Gln Ser Val Gln Ser Ser Ile Gly Asn Leu Ile Val Ala Ile
20 25 30
Lys Ser Val
35






35 amino acids


amino acid





unknown




peptide




not provided



308
Ser Asp Ile Glu Lys Leu Lys Glu Ala Ile Arg Asp Thr Asn Lys Ala
1 5 10 15
Val Gln Ser Val Gln Ser Ser Ile Gly Asn Leu Ile Val Ala Ile Lys
20 25 30
Ser Val Gln
35






35 amino acids


amino acid





unknown




peptide




not provided



309
Asp Ile Glu Lys Leu Lys Glu Ala Ile Arg Asp Thr Asn Lys Ala Val
1 5 10 15
Gln Ser Val Gln Ser Ser Ile Gly Asn Leu Ile Val Ala Ile Lys Ser
20 25 30
Val Gln Asp
35






35 amino acids


amino acid





unknown




peptide




not provided



310
Ile Glu Lys Leu Lys Glu Ala Ile Arg Asp Thr Asn Lys Ala Val Gln
1 5 10 15
Ser Val Gln Ser Ser Ile Gly Asn Leu Ile Val Ala Ile Lys Ser Val
20 25 30
Gln Asp Tyr
35






35 amino acids


amino acid





unknown




peptide




not provided



311
Glu Lys Leu Lys Glu Ala Ile Arg Asp Thr Asn Lys Ala Val Gln Ser
1 5 10 15
Val Gln Ser Ser Ile Gly Asn Leu Ile Val Ala Ile Lys Ser Val Gln
20 25 30
Asp Tyr Val
35






35 amino acids


amino acid





unknown




peptide




not provided



312
Lys Leu Lys Glu Ala Ile Arg Asp Thr Asn Lys Ala Val Gln Ser Val
1 5 10 15
Gln Ser Ser Ile Gly Asn Leu Ile Val Ala Ile Lys Ser Val Gln Asp
20 25 30
Tyr Val Asn
35






35 amino acids


amino acid





unknown




peptide




not provided



313
Leu Lys Glu Ala Ile Arg Asp Thr Asn Lys Ala Val Gln Ser Val Gln
1 5 10 15
Ser Ser Ile Gly Asn Leu Ile Val Ala Ile Lys Ser Val Gln Asp Tyr
20 25 30
Val Asn Lys
35






35 amino acids


amino acid





unknown




peptide




not provided



314
Lys Glu Ala Ile Arg Asp Thr Asn Lys Ala Val Gln Ser Val Gln Ser
1 5 10 15
Ser Ile Gly Asn Leu Ile Val Ala Ile Lys Ser Val Gln Asp Tyr Val
20 25 30
Asn Lys Glu
35






35 amino acids


amino acid





unknown




peptide




not provided



315
Glu Ala Ile Arg Asp Thr Asn Lys Ala Val Gln Ser Val Gln Ser Ser
1 5 10 15
Ile Gly Asn Leu Ile Val Ala Ile Lys Ser Val Gln Asp Tyr Val Asn
20 25 30
Lys Glu Ile
35






35 amino acids


amino acid





unknown




peptide




not provided



316
Ala Ile Arg Asp Thr Asn Lys Ala Val Gln Ser Val Gln Ser Ser Ile
1 5 10 15
Gly Asn Leu Ile Val Ala Ile Lys Ser Val Gln Asp Tyr Val Asn Lys
20 25 30
Glu Ile Val
35






35 amino acids


amino acid





unknown




peptide




not provided



317
Ile Arg Asp Thr Asn Lys Ala Val Gln Ser Val Gln Ser Ser Ile Gly
1 5 10 15
Asn Leu Ile Val Ala Ile Lys Ser Val Gln Asp Tyr Val Asn Lys Glu
20 25 30
Ile Val Pro
35






28 amino acids


amino acid





unknown




peptide




not provided



318
Ala Ala Val Ala Leu Val Glu Ala Lys Gln Ala Arg Ser Asp Ile Glu
1 5 10 15
Lys Leu Lys Glu Ala Ile Arg Asp Thr Asn Lys Ala
20 25






28 amino acids


amino acid





unknown




peptide




not provided



319
Ala Lys Gln Ala Arg Ser Asp Ile Glu Lys Leu Lys Glu Ala Ile Arg
1 5 10 15
Asp Thr Asn Lys Ala Val Gln Ser Val Gln Ser Ser
20 25






28 amino acids


amino acid





unknown




peptide




not provided



320
Ile Glu Lys Leu Lys Glu Ala Ile Arg Asp Thr Asn Lys Ala Val Gln
1 5 10 15
Ser Val Gln Ser Ser Ile Gly Asn Leu Ile Val Ala
20 25






35 amino acids


amino acid





unknown




peptide




not provided



321
Tyr Thr Pro Asn Asp Ile Thr Leu Asn Asn Ser Val Ala Leu Asp Pro
1 5 10 15
Ile Asp Ile Ser Ile Glu Leu Asn Lys Ala Lys Ser Asp Leu Glu Glu
20 25 30
Ser Lys Glu
35






35 amino acids


amino acid





unknown




peptide




not provided



322
Thr Pro Asn Asp Ile Thr Leu Asn Asn Ser Val Ala Leu Asp Pro Ile
1 5 10 15
Asp Ile Ser Ile Glu Leu Asn Lys Ala Lys Ser Asp Leu Glu Glu Ser
20 25 30
Lys Glu Trp
35






35 amino acids


amino acid





unknown




peptide




not provided



323
Pro Asn Asp Ile Thr Leu Asn Asn Ser Val Ala Leu Asp Pro Ile Asp
1 5 10 15
Ile Ser Ile Glu Leu Asn Lys Ala Lys Ser Asp Leu Glu Glu Ser Lys
20 25 30
Glu Trp Ile
35






35 amino acids


amino acid





unknown




peptide




not provided



324
Asn Asp Ile Thr Leu Asn Asn Ser Val Ala Leu Asp Pro Ile Asp Ile
1 5 10 15
Ser Ile Glu Leu Asn Lys Ala Lys Ser Asp Leu Glu Glu Ser Lys Glu
20 25 30
Trp Ile Arg
35






35 amino acids


amino acid





unknown




peptide




not provided



325
Asp Ile Thr Leu Asn Asn Ser Val Ala Leu Asp Pro Ile Asp Ile Ser
1 5 10 15
Ile Glu Leu Asn Lys Ala Lys Ser Asp Leu Glu Glu Ser Lys Glu Trp
20 25 30
Ile Arg Arg
35






35 amino acids


amino acid





unknown




peptide




not provided



326
Ile Thr Leu Asn Asn Ser Val Ala Leu Asp Pro Ile Asp Ile Ser Ile
1 5 10 15
Glu Leu Asn Lys Ala Lys Ser Asp Leu Glu Glu Ser Lys Glu Trp Ile
20 25 30
Arg Arg Ser
35






35 amino acids


amino acid





unknown




peptide




not provided



327
Thr Leu Asn Asn Ser Val Ala Leu Asp Pro Ile Asp Ile Ser Ile Glu
1 5 10 15
Leu Asn Lys Ala Lys Ser Asp Leu Glu Glu Ser Lys Glu Trp Ile Arg
20 25 30
Arg Ser Asn
35






35 amino acids


amino acid





unknown




peptide




not provided



328
Leu Asn Asn Ser Val Ala Leu Asp Pro Ile Asp Ile Ser Ile Glu Leu
1 5 10 15
Asn Lys Ala Lys Ser Asp Leu Glu Glu Ser Lys Glu Trp Ile Arg Arg
20 25 30
Ser Asn Gln
35






35 amino acids


amino acid





unknown




peptide




not provided



329
Asn Asn Ser Val Ala Leu Asp Pro Ile Asp Ile Ser Ile Glu Leu Asn
1 5 10 15
Lys Ala Lys Ser Asp Leu Glu Glu Ser Lys Glu Trp Ile Arg Arg Ser
20 25 30
Asn Gln Lys
35






35 amino acids


amino acid





unknown




peptide




not provided



330
Asn Ser Val Ala Leu Asp Pro Ile Asp Ile Ser Ile Glu Leu Asn Lys
1 5 10 15
Ala Lys Ser Asp Leu Glu Glu Ser Lys Glu Trp Ile Arg Arg Ser Asn
20 25 30
Gln Lys Leu
35






35 amino acids


amino acid





unknown




peptide




not provided



331
Ser Val Ala Leu Asp Pro Ile Asp Ile Ser Ile Glu Leu Asn Lys Ala
1 5 10 15
Lys Ser Asp Leu Glu Glu Ser Lys Glu Trp Ile Arg Arg Ser Asn Gln
20 25 30
Lys Leu Asp
35






35 amino acids


amino acid





unknown




peptide




not provided



332
Val Ala Leu Asp Pro Ile Asp Ile Ser Ile Glu Leu Asn Lys Ala Lys
1 5 10 15
Ser Asp Leu Glu Glu Ser Lys Glu Trp Ile Arg Arg Ser Asn Gln Lys
20 25 30
Leu Asp Ser
35






35 amino acids


amino acid





unknown




peptide




not provided



333
Ala Leu Asp Pro Ile Asp Ile Ser Ile Glu Leu Asn Lys Ala Lys Ser
1 5 10 15
Asp Leu Glu Glu Ser Lys Glu Trp Ile Arg Arg Ser Asn Gln Lys Leu
20 25 30
Asp Ser Ile
35






35 amino acids


amino acid





unknown




peptide




not provided



334
Leu Asp Pro Ile Asp Ile Ser Ile Glu Leu Asn Lys Ala Lys Ser Asp
1 5 10 15
Leu Glu Glu Ser Lys Glu Trp Ile Arg Arg Ser Asn Gln Lys Leu Asp
20 25 30
Ser Ile Gly
35






35 amino acids


amino acid





unknown




peptide




not provided



335
Asp Pro Ile Asp Ile Ser Ile Glu Leu Asn Lys Ala Lys Ser Asp Leu
1 5 10 15
Glu Glu Ser Lys Glu Trp Ile Arg Arg Ser Asn Gln Lys Leu Asp Ser
20 25 30
Ile Gly Asn
35






35 amino acids


amino acid





unknown




peptide




not provided



336
Pro Ile Asp Ile Ser Ile Glu Leu Asn Lys Ala Lys Ser Asp Leu Glu
1 5 10 15
Glu Ser Lys Glu Trp Ile Arg Arg Ser Asn Gln Lys Leu Asp Ser Ile
20 25 30
Gly Asn Trp
35






35 amino acids


amino acid





unknown




peptide




not provided



337
Ile Asp Ile Ser Ile Glu Leu Asn Lys Ala Lys Ser Asp Leu Glu Glu
1 5 10 15
Ser Lys Glu Trp Ile Arg Arg Ser Asn Gln Lys Leu Asp Ser Ile Gly
20 25 30
Asn Trp His
35






35 amino acids


amino acid





unknown




peptide




not provided



338
Asp Ile Ser Ile Glu Leu Asn Lys Ala Lys Ser Asp Leu Glu Glu Ser
1 5 10 15
Lys Glu Trp Ile Arg Arg Ser Asn Gln Lys Leu Asp Ser Ile Gly Asn
20 25 30
Trp His Gln
35






35 amino acids


amino acid





unknown




peptide




not provided



339
Ile Ser Ile Glu Leu Asn Lys Ala Lys Ser Asp Leu Glu Glu Ser Lys
1 5 10 15
Glu Trp Ile Arg Arg Ser Asn Gln Lys Leu Asp Ser Ile Gly Asn Trp
20 25 30
His Gln Ser
35






35 amino acids


amino acid





unknown




peptide




not provided



340
Ser Ile Glu Leu Asn Lys Ala Lys Ser Asp Leu Glu Glu Ser Lys Glu
1 5 10 15
Trp Ile Arg Arg Ser Asn Gln Lys Leu Asp Ser Ile Gly Asn Trp His
20 25 30
Gln Ser Ser
35






35 amino acids


amino acid





unknown




peptide




not provided



341
Ile Glu Leu Asn Lys Ala Lys Ser Asp Leu Glu Glu Ser Lys Glu Trp
1 5 10 15
Ile Arg Arg Ser Asn Gln Lys Leu Asp Ser Ile Gly Asn Trp His Gln
20 25 30
Ser Ser Thr
35






35 amino acids


amino acid





unknown




peptide




not provided



342
Glu Leu Asn Lys Ala Lys Ser Asp Leu Glu Glu Ser Lys Glu Trp Ile
1 5 10 15
Arg Arg Ser Asn Gln Lys Leu Asp Ser Ile Gly Asn Trp His Gln Ser
20 25 30
Ser Thr Thr
35






34 amino acids


amino acid





unknown




peptide




not provided



343
Asp Ala Val Tyr Leu His Arg Ile Asp Leu Gly Pro Pro Ile Ser Leu
1 5 10 15
Glu Arg Leu Asp Val Gly Thr Asn Leu Gly Asn Ala Ile Ala Lys Leu
20 25 30
Glu Ala






34 amino acids


amino acid





unknown




peptide




not provided



344
Ala Val Tyr Leu His Arg Ile Asp Leu Gly Pro Pro Ile Ser Leu Glu
1 5 10 15
Arg Leu Asp Val Gly Thr Asn Leu Gly Asn Ala Ile Ala Lys Leu Glu
20 25 30
Ala Lys






34 amino acids


amino acid





unknown




peptide




not provided



345
Val Tyr Leu His Arg Ile Asp Leu Gly Pro Pro Ile Ser Leu Glu Arg
1 5 10 15
Leu Asp Val Gly Thr Asn Leu Gly Asn Ala Ile Ala Lys Leu Glu Ala
20 25 30
Lys Glu






34 amino acids


amino acid





unknown




peptide




not provided



346
Tyr Leu His Arg Ile Asp Leu Gly Pro Pro Ile Ser Leu Glu Arg Leu
1 5 10 15
Asp Val Gly Thr Asn Leu Gly Asn Ala Ile Ala Lys Leu Glu Ala Lys
20 25 30
Glu Leu






34 amino acids


amino acid





unknown




peptide




not provided



347
Leu His Arg Ile Asp Leu Gly Pro Pro Ile Ser Leu Glu Arg Leu Asp
1 5 10 15
Val Gly Thr Asn Leu Gly Asn Ala Ile Ala Lys Leu Glu Ala Lys Glu
20 25 30
Leu Leu






34 amino acids


amino acid





unknown




peptide




not provided



348
His Arg Ile Asp Leu Gly Pro Pro Ile Ser Leu Glu Arg Leu Asp Val
1 5 10 15
Gly Thr Asn Leu Gly Asn Ala Ile Ala Lys Leu Glu Ala Lys Glu Leu
20 25 30
Leu Glu






34 amino acids


amino acid





unknown




peptide




not provided



349
Arg Ile Asp Leu Gly Pro Pro Ile Ser Leu Glu Arg Leu Asp Val Gly
1 5 10 15
Thr Asn Leu Gly Asn Ala Ile Ala Lys Leu Glu Ala Lys Glu Leu Leu
20 25 30
Glu Ser






34 amino acids


amino acid





unknown




peptide




not provided



350
Ile Asp Leu Gly Pro Pro Ile Ser Leu Glu Arg Leu Asp Val Gly Thr
1 5 10 15
Asn Leu Gly Asn Ala Ile Ala Lys Leu Glu Ala Lys Glu Leu Leu Glu
20 25 30
Ser Ser






34 amino acids


amino acid





unknown




peptide




not provided



351
Asp Leu Gly Pro Pro Ile Ser Leu Glu Arg Leu Asp Val Gly Thr Asn
1 5 10 15
Leu Gly Asn Ala Ile Ala Lys Leu Glu Ala Lys Glu Leu Leu Glu Ser
20 25 30
Ser Asp






34 amino acids


amino acid





unknown




peptide




not provided



352
Leu Gly Pro Pro Ile Ser Leu Glu Arg Leu Asp Val Gly Thr Asn Leu
1 5 10 15
Gly Asn Ala Ile Ala Lys Leu Glu Ala Lys Glu Leu Leu Glu Ser Ser
20 25 30
Asp Gln






34 amino acids


amino acid





unknown




peptide




not provided



353
Gly Pro Pro Ile Ser Leu Glu Arg Leu Asp Val Gly Thr Asn Leu Gly
1 5 10 15
Asn Ala Ile Ala Lys Leu Glu Ala Lys Glu Leu Leu Glu Ser Ser Asp
20 25 30
Gln Ile






34 amino acids


amino acid





unknown




peptide




not provided



354
Pro Pro Ile Ser Leu Glu Arg Leu Asp Val Gly Thr Asn Leu Gly Asn
1 5 10 15
Ala Ile Ala Lys Leu Glu Ala Lys Glu Leu Leu Glu Ser Ser Asp Gln
20 25 30
Ile Leu






34 amino acids


amino acid





unknown




peptide




not provided



355
Pro Ile Ser Leu Glu Arg Leu Asp Val Gly Thr Asn Leu Gly Asn Ala
1 5 10 15
Ile Ala Lys Leu Glu Ala Lys Glu Leu Leu Glu Ser Ser Asp Gln Ile
20 25 30
Leu Arg






34 amino acids


amino acid





unknown




peptide




not provided



356
Ile Ser Leu Glu Arg Leu Asp Val Gly Thr Asn Leu Gly Asn Ala Ile
1 5 10 15
Ala Lys Leu Glu Ala Lys Glu Leu Leu Glu Ser Ser Asp Gln Ile Leu
20 25 30
Arg Ser






34 amino acids


amino acid





unknown




peptide




not provided



357
Ser Leu Glu Arg Leu Asp Val Gly Thr Asn Leu Gly Asn Ala Ile Ala
1 5 10 15
Lys Leu Glu Ala Lys Glu Leu Leu Glu Ser Ser Asp Gln Ile Leu Arg
20 25 30
Ser Met






35 amino acids


amino acid





unknown




peptide




not provided



358
Thr Trp Gln Glu Trp Glu Arg Lys Val Asp Phe Leu Glu Glu Asn Ile
1 5 10 15
Thr Ala Leu Leu Glu Glu Ala Gln Ile Gln Gln Glu Lys Asn Met Tyr
20 25 30
Glu Leu Gln
35






35 amino acids


amino acid





unknown




peptide




not provided



359
Trp Gln Glu Trp Glu Arg Lys Val Asp Phe Leu Glu Glu Asn Ile Thr
1 5 10 15
Ala Leu Leu Glu Glu Ala Gln Ile Gln Gln Glu Lys Asn Met Tyr Glu
20 25 30
Leu Gln Lys
35






35 amino acids


amino acid





unknown




peptide




not provided



360
Gln Glu Trp Glu Arg Lys Val Asp Phe Leu Glu Glu Asn Ile Thr Ala
1 5 10 15
Leu Leu Glu Glu Ala Gln Ile Gln Gln Glu Lys Asn Met Tyr Glu Leu
20 25 30
Gln Lys Leu
35






35 amino acids


amino acid





unknown




peptide




not provided



361
Glu Trp Glu Arg Lys Val Asp Phe Leu Glu Glu Asn Ile Thr Ala Leu
1 5 10 15
Leu Glu Glu Ala Gln Ile Gln Gln Glu Lys Asn Met Tyr Glu Leu Gln
20 25 30
Lys Leu Asn
35






35 amino acids


amino acid





unknown




peptide




not provided



362
Trp Glu Arg Lys Val Asp Phe Leu Glu Glu Asn Ile Thr Ala Leu Leu
1 5 10 15
Glu Glu Ala Gln Ile Gln Gln Glu Lys Asn Met Tyr Glu Leu Gln Lys
20 25 30
Leu Asn Ser
35






35 amino acids


amino acid





unknown




peptide




not provided



363
Glu Arg Lys Val Asp Phe Leu Glu Glu Asn Ile Thr Ala Leu Leu Glu
1 5 10 15
Glu Ala Gln Ile Gln Gln Glu Lys Asn Met Tyr Glu Leu Gln Lys Leu
20 25 30
Asn Ser Trp
35






35 amino acids


amino acid





unknown




peptide




not provided



364
Arg Lys Val Asp Phe Leu Glu Glu Asn Ile Thr Ala Leu Leu Glu Glu
1 5 10 15
Ala Gln Ile Gln Gln Glu Lys Asn Met Tyr Glu Leu Gln Lys Leu Asn
20 25 30
Ser Trp Asp
35






35 amino acids


amino acid





unknown




peptide




not provided



365
Lys Val Asp Phe Leu Glu Glu Asn Ile Thr Ala Leu Leu Glu Glu Ala
1 5 10 15
Gln Ile Gln Gln Glu Lys Asn Met Tyr Glu Leu Gln Lys Leu Asn Ser
20 25 30
Trp Asp Val
35






35 amino acids


amino acid





unknown




peptide




not provided



366
Val Asp Phe Leu Glu Glu Asn Ile Thr Ala Leu Leu Glu Glu Ala Gln
1 5 10 15
Ile Gln Gln Glu Lys Asn Met Tyr Glu Leu Gln Lys Leu Asn Ser Trp
20 25 30
Asp Val Phe
35






35 amino acids


amino acid





unknown




peptide




not provided



367
Asp Phe Leu Glu Glu Asn Ile Thr Ala Leu Leu Glu Glu Ala Gln Ile
1 5 10 15
Gln Gln Glu Lys Asn Met Tyr Glu Leu Gln Lys Leu Asn Ser Trp Asp
20 25 30
Val Phe Gly
35






35 amino acids


amino acid





unknown




peptide




not provided



368
Phe Leu Glu Glu Asn Ile Thr Ala Leu Leu Glu Glu Ala Gln Ile Gln
1 5 10 15
Gln Glu Lys Asn Met Tyr Glu Leu Gln Lys Leu Asn Ser Trp Asp Val
20 25 30
Phe Gly Asn
35






35 amino acids


amino acid





unknown




peptide




not provided



369
Asn Lys Ser Leu Glu Gln Ile Trp Asn Asn Met Thr Trp Met Glu Trp
1 5 10 15
Asp Arg Glu Ile Asn Asn Tyr Thr Ser Leu Ile His Ser Leu Ile Glu
20 25 30
Glu Gln Asn
35






35 amino acids


amino acid





unknown




peptide




not provided



370
Lys Ser Leu Glu Gln Ile Trp Asn Asn Met Thr Trp Met Glu Trp Asp
1 5 10 15
Arg Glu Ile Asn Asn Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu
20 25 30
Gln Asn Gln
35






35 amino acids


amino acid





unknown




peptide




not provided



371
Ser Leu Glu Gln Ile Trp Asn Asn Met Thr Trp Met Glu Trp Asp Arg
1 5 10 15
Glu Ile Asn Asn Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu Gln
20 25 30
Asn Gln Gln
35






35 amino acids


amino acid





unknown




peptide




not provided



372
Leu Glu Gln Ile Trp Asn Asn Met Thr Trp Met Glu Trp Asp Arg Glu
1 5 10 15
Ile Asn Asn Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu Gln Asn
20 25 30
Gln Gln Glu
35






35 amino acids


amino acid





unknown




peptide




not provided



373
Glu Gln Ile Trp Asn Asn Met Thr Trp Met Glu Trp Asp Arg Glu Ile
1 5 10 15
Asn Asn Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu Gln Asn Gln
20 25 30
Gln Glu Lys
35






35 amino acids


amino acid





unknown




peptide




not provided



374
Gln Ile Trp Asn Asn Met Thr Trp Met Glu Trp Asp Arg Glu Ile Asn
1 5 10 15
Asn Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu Gln Asn Gln Gln
20 25 30
Glu Lys Asn
35






35 amino acids


amino acid





unknown




peptide




not provided



375
Ile Trp Asn Asn Met Thr Trp Met Glu Trp Asp Arg Glu Ile Asn Asn
1 5 10 15
Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu Gln Asn Gln Gln Glu
20 25 30
Lys Asn Glu
35






35 amino acids


amino acid





unknown




peptide




not provided



376
Trp Asn Asn Met Thr Trp Met Glu Trp Asp Arg Glu Ile Asn Asn Tyr
1 5 10 15
Thr Ser Leu Ile His Ser Leu Ile Glu Glu Gln Asn Gln Gln Glu Lys
20 25 30
Asn Glu Gln
35






35 amino acids


amino acid





unknown




peptide




not provided



377
Asn Asn Met Thr Trp Met Glu Trp Asp Arg Glu Ile Asn Asn Tyr Thr
1 5 10 15
Ser Leu Ile His Ser Leu Ile Glu Glu Gln Asn Gln Gln Glu Lys Asn
20 25 30
Glu Gln Glu
35






35 amino acids


amino acid





unknown




peptide




not provided



378
Asn Met Thr Trp Met Glu Trp Asp Arg Glu Ile Asn Asn Tyr Thr Ser
1 5 10 15
Leu Ile His Ser Leu Ile Glu Glu Gln Asn Gln Gln Glu Lys Asn Glu
20 25 30
Gln Glu Leu
35






35 amino acids


amino acid





unknown




peptide




not provided



379
Met Thr Trp Met Glu Trp Asp Arg Glu Ile Asn Asn Tyr Thr Ser Leu
1 5 10 15
Ile His Ser Leu Ile Glu Glu Gln Asn Gln Gln Glu Lys Asn Glu Gln
20 25 30
Glu Leu Leu
35






46 amino acids


amino acid





unknown




peptide




not provided



380
Met Thr Trp Met Glu Trp Asp Arg Glu Ile Asn Asn Tyr Thr Ser Leu
1 5 10 15
Ile His Ser Leu Ile Glu Glu Gln Asn Gln Gln Glu Lys Asn Glu Gln
20 25 30
Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu Trp Asn Trp
35 40 45






35 amino acids


amino acid





unknown




peptide




not provided



381
Thr Trp Met Glu Trp Asp Arg Glu Ile Asn Asn Tyr Thr Ser Leu Ile
1 5 10 15
His Ser Leu Ile Glu Glu Gln Asn Gln Gln Glu Lys Asn Glu Gln Glu
20 25 30
Leu Leu Glu
35






35 amino acids


amino acid





unknown




peptide




not provided



382
Trp Met Glu Trp Asp Arg Glu Ile Asn Asn Tyr Thr Ser Leu Ile His
1 5 10 15
Ser Leu Ile Glu Glu Gln Asn Gln Gln Glu Lys Asn Glu Gln Glu Leu
20 25 30
Leu Glu Leu
35






34 amino acids


amino acid





unknown




peptide




not provided



383
Trp Met Glu Trp Asp Arg Glu Ile Asn Asn Tyr Thr Ser Leu Ile His
1 5 10 15
Ser Leu Ile Glu Glu Gln Asn Gln Gln Glu Lys Asn Glu Gln Glu Leu
20 25 30
Leu Glu






35 amino acids


amino acid





unknown




peptide




not provided



384
Met Glu Trp Asp Arg Glu Ile Asn Asn Tyr Thr Ser Leu Ile His Ser
1 5 10 15
Leu Ile Glu Glu Gln Asn Gln Gln Glu Lys Asn Glu Gln Glu Leu Leu
20 25 30
Glu Leu Asp
35






35 amino acids


amino acid





unknown




peptide




not provided



385
Glu Trp Asp Arg Glu Ile Asn Asn Tyr Thr Ser Leu Ile His Ser Leu
1 5 10 15
Ile Glu Glu Gln Asn Gln Gln Glu Lys Asn Glu Gln Glu Leu Leu Glu
20 25 30
Leu Asp Lys
35






29 amino acids


amino acid





unknown




peptide




not provided



386
Glu Trp Asp Arg Glu Ile Asn Asn Tyr Thr Ser Leu Ile His Ser Leu
1 5 10 15
Ile Glu Glu Gln Asn Gln Gln Glu Lys Asn Glu Gln Glu
20 25






32 amino acids


amino acid





unknown




peptide




not provided



387
Glu Trp Asp Arg Glu Ile Asn Asn Tyr Thr Ser Leu Ile His Ser Leu
1 5 10 15
Ile Glu Glu Gln Asn Gln Gln Glu Lys Asn Glu Gln Glu Gly Gly Cys
20 25 30






35 amino acids


amino acid





unknown




peptide




not provided



388
Trp Asp Arg Glu Ile Asn Asn Tyr Thr Ser Leu Ile His Ser Leu Ile
1 5 10 15
Glu Glu Gln Asn Gln Gln Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu
20 25 30
Asp Lys Trp
35






35 amino acids


amino acid





unknown




peptide




not provided



389
Asp Arg Glu Ile Asn Asn Tyr Thr Ser Leu Ile His Ser Leu Ile Glu
1 5 10 15
Glu Gln Asn Gln Gln Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp
20 25 30
Lys Trp Ala
35






35 amino acids


amino acid





unknown




peptide




not provided



390
Arg Glu Ile Asn Asn Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu
1 5 10 15
Gln Asn Gln Gln Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys
20 25 30
Trp Ala Ser
35






35 amino acids


amino acid





unknown




peptide




not provided



391
Glu Ile Asn Asn Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu Gln
1 5 10 15
Asn Gln Gln Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp
20 25 30
Ala Ser Leu
35






35 amino acids


amino acid





unknown




peptide




not provided



392
Ile Asn Asn Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu Gln Asn
1 5 10 15
Gln Gln Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala
20 25 30
Ser Leu Trp
35






34 amino acids


amino acid





unknown




peptide




not provided



393
Ile Asn Asn Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu Gln Asn
1 5 10 15
Gln Gln Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala
20 25 30
Ser Leu






27 amino acids


amino acid





unknown




peptide




not provided



394
Ile Asn Asn Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu Gln Asn
1 5 10 15
Gln Gln Glu Lys Asn Glu Gln Glu Leu Leu Glu
20 25






25 amino acids


amino acid





unknown




peptide




not provided



395
Ile Asn Asn Tyr Thr Ser Leu Ile Gly Ser Leu Ile Glu Glu Gln Asn
1 5 10 15
Gln Gln Glu Lys Asn Glu Gln Glu Leu
20 25






35 amino acids


amino acid





unknown




peptide




not provided



396
Asn Asn Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu Gln Asn Gln
1 5 10 15
Gln Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser
20 25 30
Leu Trp Asn
35






35 amino acids


amino acid





unknown




peptide




not provided



397
Asn Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu Gln Asn Gln Gln
1 5 10 15
Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu
20 25 30
Trp Asn Trp
35






34 amino acids


amino acid





unknown




peptide




not provided



398
Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu Gln Asn Gln Gln Glu
1 5 10 15
Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu Trp
20 25 30
Asn Trp






36 amino acids


amino acid





unknown




peptide




not provided



399
Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu Ser Gln Asn Gln Gln
1 5 10 15
Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu
20 25 30
Trp Asn Trp Phe
35






36 amino acids


amino acid





unknown




peptide




not provided



400
Thr Ser Leu Ile His Ser Leu Ile Glu Glu Ser Gln Asn Gln Gln Glu
1 5 10 15
Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu Trp
20 25 30
Asn Trp Phe Asn
35






36 amino acids


amino acid





unknown




peptide




not provided



401
Ser Leu Ile His Ser Leu Ile Glu Glu Ser Gln Asn Gln Gln Glu Lys
1 5 10 15
Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu Trp Asn
20 25 30
Trp Phe Asn Ile
35






36 amino acids


amino acid





unknown




peptide




not provided



402
Leu Ile His Ser Leu Ile Glu Glu Ser Gln Asn Gln Gln Glu Lys Asn
1 5 10 15
Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu Trp Asn Trp
20 25 30
Phe Asn Ile Thr
35






36 amino acids


amino acid





unknown




peptide




not provided



403
Ile His Ser Leu Ile Glu Glu Ser Gln Asn Gln Gln Glu Lys Asn Glu
1 5 10 15
Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu Trp Asn Trp Phe
20 25 30
Asn Ile Thr Asn
35






36 amino acids


amino acid





unknown




peptide




not provided



404
His Ser Leu Ile Glu Glu Ser Gln Asn Gln Gln Glu Lys Asn Glu Gln
1 5 10 15
Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu Trp Asn Trp Phe Asn
20 25 30
Ile Thr Asn Trp
35






36 amino acids


amino acid





unknown




peptide




not provided



405
Ser Leu Ile Glu Glu Ser Gln Asn Gln Gln Glu Lys Asn Glu Gln Glu
1 5 10 15
Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu Trp Asn Trp Phe Asn Ile
20 25 30
Thr Asn Trp Leu
35






36 amino acids


amino acid





unknown




peptide




not provided



406
Leu Ile Glu Glu Ser Gln Asn Gln Gln Glu Lys Asn Glu Gln Glu Leu
1 5 10 15
Leu Glu Leu Asp Lys Trp Ala Ser Leu Trp Asn Trp Phe Asn Ile Thr
20 25 30
Asn Trp Leu Trp
35






36 amino acids


amino acid





unknown




peptide




not provided



407
Ile Glu Glu Ser Gln Asn Gln Gln Glu Lys Asn Glu Gln Glu Leu Leu
1 5 10 15
Glu Leu Asp Lys Trp Ala Ser Leu Trp Asn Trp Phe Asn Ile Thr Asn
20 25 30
Trp Leu Trp Leu
35






36 amino acids


amino acid





unknown




peptide




not provided



408
Glu Glu Ser Gln Asn Gln Gln Glu Lys Asn Glu Gln Glu Leu Leu Glu
1 5 10 15
Leu Asp Lys Trp Ala Ser Leu Trp Asn Trp Phe Asn Ile Thr Asn Trp
20 25 30
Leu Trp Leu Ile
35






36 amino acids


amino acid





unknown




peptide




not provided



409
Glu Ser Gln Asn Gln Gln Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu
1 5 10 15
Asp Lys Trp Ala Ser Leu Trp Asn Trp Phe Asn Ile Thr Asn Trp Leu
20 25 30
Trp Leu Ile Lys
35






36 amino acids


amino acid





unknown




peptide




not provided



410
Ser Gln Asn Gln Gln Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp
1 5 10 15
Lys Trp Ala Ser Leu Trp Asn Trp Phe Asn Ile Thr Asn Trp Leu Trp
20 25 30
Leu Ile Lys Ile
35






36 amino acids


amino acid





unknown




peptide




not provided



411
Gln Asn Gln Gln Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys
1 5 10 15
Trp Ala Ser Leu Trp Asn Trp Phe Asn Ile Thr Asn Trp Leu Trp Leu
20 25 30
Ile Lys Ile Phe
35






36 amino acids


amino acid





unknown




peptide




not provided



412
Asn Gln Gln Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp
1 5 10 15
Ala Ser Leu Trp Asn Trp Phe Asn Ile Thr Asn Trp Leu Trp Leu Ile
20 25 30
Lys Ile Phe Ile
35






36 amino acids


amino acid





unknown




peptide




not provided



413
Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu Ser Gln Asn Gln Gln
1 5 10 15
Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu
20 25 30
Trp Asn Trp Phe
35






18 amino acids


amino acid





unknown




peptide




not provided



414
Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu Ser Gln Asn Gln Gln
1 5 10 15
Glu Lys






23 amino acids


amino acid





unknown




peptide




not provided



415
Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu Ser Gln Asn Gln Gln
1 5 10 15
Glu Lys Asn Glu Gln Glu Leu
20






35 amino acids


amino acid





unknown




peptide




not provided



416
Thr Ser Leu Ile His Ser Leu Ile Glu Glu Ser Gln Asn Gln Gln Glu
1 5 10 15
Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu Trp
20 25 30
Asn Trp Phe
35






33 amino acids


amino acid





unknown




peptide




not provided



417
Leu Ile His Ser Leu Ile Glu Glu Ser Gln Asn Gln Gln Glu Lys Asn
1 5 10 15
Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu Trp Asn Trp
20 25 30
Phe






32 amino acids


amino acid





unknown




peptide




not provided



418
Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu Ser Gln Asn Gln Gln
1 5 10 15
Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu
20 25 30






29 amino acids


amino acid





unknown




peptide




not provided



419
Leu Ile Glu Glu Ser Gln Asn Gln Gln Glu Lys Asn Glu Gln Glu Leu
1 5 10 15
Leu Glu Leu Asp Lys Trp Ala Ser Leu Trp Asn Trp Phe
20 25






26 amino acids


amino acid





unknown




peptide




not provided



420
Glu Ser Gln Asn Gln Gln Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu
1 5 10 15
Asp Lys Trp Ala Ser Leu Trp Asn Trp Phe
20 25






23 amino acids


amino acid





unknown




peptide




not provided



421
Asn Gln Gln Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp
1 5 10 15
Ala Ser Leu Trp Asn Trp Phe
20






20 amino acids


amino acid





unknown




peptide




not provided



422
Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu
1 5 10 15
Trp Asn Trp Phe
20






18 amino acids


amino acid





unknown




peptide




not provided



423
Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu Trp Asn
1 5 10 15
Trp Phe






17 amino acids


amino acid





unknown




peptide




not provided



424
Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu Trp Asn Trp
1 5 10 15
Phe






16 amino acids


amino acid





unknown




peptide




not provided



425
Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu Trp Asn Trp Phe
1 5 10 15






15 amino acids


amino acid





unknown




peptide




not provided



426
Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu Trp Asn Trp Phe
1 5 10 15






14 amino acids


amino acid





unknown




peptide




not provided



427
Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu Trp Asn Trp Phe
1 5 10






13 amino acids


amino acid





unknown




peptide




not provided



428
Leu Glu Leu Asp Lys Trp Ala Ser Leu Trp Asn Trp Phe
1 5 10






28 amino acids


amino acid





unknown




peptide




not provided



429
Lys Val Glu Glu Leu Leu Ser Lys Asn Tyr His Leu Glu Asn Glu Leu
1 5 10 15
Glu Leu Asp Lys Trp Ala Ser Leu Trp Asn Trp Phe
20 25






15 amino acids


amino acid





unknown




peptide




not provided



430
Cys Leu Glu Leu Asp Lys Trp Ala Ser Leu Trp Asn Trp Phe Cys
1 5 10 15






15 amino acids


amino acid





unknown




peptide




not provided



431
Cys Leu Glu Leu Asp Lys Trp Ala Ser Leu Ala Asn Trp Phe Cys
1 5 10 15






15 amino acids


amino acid





unknown




peptide




not provided



432
Cys Leu Glu Leu Asp Lys Trp Ala Ser Leu Trp Asn Phe Phe Cys
1 5 10 15






13 amino acids


amino acid





unknown




peptide




not provided



433
Leu Glu Leu Asp Lys Trp Ala Ser Leu Ala Asn Trp Phe
1 5 10






12 amino acids


amino acid





unknown




peptide




not provided



434
Glu Leu Asp Lys Trp Ala Ser Leu Trp Asn Trp Phe
1 5 10






11 amino acids


amino acid





unknown




peptide




not provided



435
Leu Asp Lys Trp Ala Ser Leu Trp Asn Trp Phe
1 5 10






10 amino acids


amino acid





unknown




peptide




not provided



436
Asp Lys Trp Ala Ser Leu Trp Asn Trp Phe
1 5 10






28 amino acids


amino acid





unknown




peptide




not provided



437
Met Thr Leu Thr Val Gln Ala Arg Gln Leu Leu Ser Gln Ile Val Gln
1 5 10 15
Gln Gln Asn Asn Leu Leu Arg Ala Ile Glu Ala Gln
20 25






28 amino acids


amino acid





unknown




peptide




not provided



438
Gln Ala Arg Gln Leu Leu Ser Gln Ile Val Gln Gln Gln Asn Asn Leu
1 5 10 15
Leu Arg Ala Ile Glu Ala Gln Gln Asn Leu Leu Gln
20 25






28 amino acids


amino acid





unknown




peptide




not provided



439
Arg Gln Leu Leu Ser Gln Ile Val Gln Gln Gln Asn Asn Leu Leu Arg
1 5 10 15
Ala Ile Glu Ala Gln Gln Asn Leu Leu Gln Leu Thr
20 25






28 amino acids


amino acid





unknown




peptide




not provided



440
Val Gln Gln Gln Asn Asn Leu Leu Arg Ala Ile Glu Ala Gln Gln Asn
1 5 10 15
Leu Leu Gln Leu Thr Val Trp Gln Ile Lys Gln Leu
20 25






38 amino acids


amino acid





unknown




peptide




not provided



441
Asn Asn Leu Leu Arg Ala Ile Glu Ala Gln Gln Asn Leu Leu Gln Leu
1 5 10 15
Thr Val Trp Gln Ile Lys Gln Leu Gln Ala Arg Ile Leu Ala Val Glu
20 25 30
Arg Tyr Leu Lys Asp Gln
35






19 amino acids


amino acid





unknown




peptide




not provided



442
Gln Ile Lys Gln Leu Gln Ala Arg Ile Leu Ala Val Glu Arg Tyr Leu
1 5 10 15
Lys Asp Gln






28 amino acids


amino acid





unknown




peptide




not provided



443
Leu Arg Ala Ile Glu Ala Gln Gln Asn Leu Leu Gln Leu Thr Val Trp
1 5 10 15
Gln Ile Lys Gln Leu Gln Ala Arg Ile Leu Ala Val
20 25






27 amino acids


amino acid





unknown




peptide




not provided



444
Leu Arg Ala Ile Glu Ala Gln Gln Asn Leu Leu Gln Leu Thr Val Trp
1 5 10 15
Gln Ile Lys Gln Leu Ala Arg Ile Leu Ala Val
20 25






28 amino acids


amino acid





unknown




peptide




not provided



445
Gln Asn Leu Leu Gln Leu Thr Val Trp Gln Ile Lys Gln Leu Gln Ala
1 5 10 15
Arg Ile Leu Ala Val Glu Arg Tyr Leu Lys Asp Gln
20 25






28 amino acids


amino acid





unknown




peptide




not provided



446
Val Trp Gln Ile Lys Gln Leu Gln Ala Arg Ile Leu Ala Val Glu Arg
1 5 10 15
Tyr Leu Lys Asp Gln Gln Leu Leu Gln Ile Trp Gln
20 25






35 amino acids


amino acid





unknown




peptide




not provided



447
Ser Glu Leu Glu Ile Lys Arg Tyr Lys Asn Arg Val Ala Ser Arg Lys
1 5 10 15
Cys Arg Ala Lys Phe Lys Gln Leu Leu Gln His Tyr Arg Glu Val Ala
20 25 30
Ala Ala Lys
35






35 amino acids


amino acid





unknown




peptide




not provided



448
Glu Leu Glu Ile Lys Arg Tyr Lys Asn Arg Val Ala Ser Arg Lys Cys
1 5 10 15
Arg Ala Lys Phe Lys Gln Leu Leu Gln His Tyr Arg Glu Val Ala Ala
20 25 30
Ala Lys Ser
35






35 amino acids


amino acid





unknown




peptide




not provided



449
Leu Glu Ile Lys Arg Tyr Lys Asn Arg Val Ala Ser Arg Lys Cys Arg
1 5 10 15
Ala Lys Phe Lys Gln Leu Leu Gln His Tyr Arg Glu Val Ala Ala Ala
20 25 30
Lys Ser Ser
35






35 amino acids


amino acid





unknown




peptide




not provided



450
Glu Ile Lys Arg Tyr Lys Asn Arg Val Ala Ser Arg Lys Cys Arg Ala
1 5 10 15
Lys Phe Lys Gln Leu Leu Gln His Tyr Arg Glu Val Ala Ala Ala Lys
20 25 30
Ser Ser Glu
35






35 amino acids


amino acid





unknown




peptide




not provided



451
Ile Lys Arg Tyr Lys Asn Arg Val Ala Ser Arg Lys Cys Arg Ala Lys
1 5 10 15
Phe Lys Gln Leu Leu Gln His Tyr Arg Glu Val Ala Ala Ala Lys Ser
20 25 30
Ser Glu Asn
35






35 amino acids


amino acid





unknown




peptide




not provided



452
Lys Arg Tyr Lys Asn Arg Val Ala Ser Arg Lys Cys Arg Ala Lys Phe
1 5 10 15
Lys Gln Leu Leu Gln His Tyr Arg Glu Val Ala Ala Ala Lys Ser Ser
20 25 30
Glu Asn Asp
35






35 amino acids


amino acid





unknown




peptide




not provided



453
Arg Tyr Lys Asn Arg Val Ala Ser Arg Lys Cys Arg Ala Lys Phe Lys
1 5 10 15
Gln Leu Leu Gln His Tyr Arg Glu Val Ala Ala Ala Lys Ser Ser Glu
20 25 30
Asn Asp Arg
35






35 amino acids


amino acid





unknown




peptide




not provided



454
Tyr Lys Asn Arg Val Ala Ser Arg Lys Cys Arg Ala Lys Phe Lys Gln
1 5 10 15
Leu Leu Gln His Tyr Arg Glu Val Ala Ala Ala Lys Ser Ser Glu Asn
20 25 30
Asp Arg Leu
35






35 amino acids


amino acid





unknown




peptide




not provided



455
Lys Asn Arg Val Ala Ser Arg Lys Cys Arg Ala Lys Phe Lys Gln Leu
1 5 10 15
Leu Gln His Tyr Arg Glu Val Ala Ala Ala Lys Ser Ser Glu Asn Asp
20 25 30
Arg Leu Arg
35






35 amino acids


amino acid





unknown




peptide




not provided



456
Asn Arg Val Ala Ser Arg Lys Cys Arg Ala Lys Phe Lys Gln Leu Leu
1 5 10 15
Gln His Tyr Arg Glu Val Ala Ala Ala Lys Ser Ser Glu Asn Asp Arg
20 25 30
Leu Arg Leu
35






35 amino acids


amino acid





unknown




peptide




not provided



457
Arg Val Ala Ser Arg Lys Cys Arg Ala Lys Phe Lys Gln Leu Leu Gln
1 5 10 15
His Tyr Arg Glu Val Ala Ala Ala Lys Ser Ser Glu Asn Asp Arg Leu
20 25 30
Arg Leu Leu
35






35 amino acids


amino acid





unknown




peptide




not provided



458
Val Ala Ser Arg Lys Cys Arg Ala Lys Phe Lys Gln Leu Leu Gln His
1 5 10 15
Tyr Arg Glu Val Ala Ala Ala Lys Ser Ser Glu Asn Asp Arg Leu Arg
20 25 30
Leu Leu Leu
35






35 amino acids


amino acid





unknown




peptide




not provided



459
Ala Ser Arg Lys Cys Arg Ala Lys Phe Lys Gln Leu Leu Gln His Tyr
1 5 10 15
Arg Glu Val Ala Ala Ala Lys Ser Ser Glu Asn Asp Arg Leu Arg Leu
20 25 30
Leu Leu Lys
35






35 amino acids


amino acid





unknown




peptide




not provided



460
Ser Arg Lys Cys Arg Ala Lys Phe Lys Gln Leu Leu Gln His Tyr Arg
1 5 10 15
Glu Val Ala Ala Ala Lys Ser Ser Glu Asn Asp Arg Leu Arg Leu Leu
20 25 30
Leu Lys Gln
35






35 amino acids


amino acid





unknown




peptide




not provided



461
Arg Lys Cys Arg Ala Lys Phe Lys Gln Leu Leu Gln His Tyr Arg Glu
1 5 10 15
Val Ala Ala Ala Lys Ser Ser Glu Asn Asp Arg Leu Arg Leu Leu Leu
20 25 30
Lys Gln Met
35






35 amino acids


amino acid





unknown




peptide




not provided



462
Lys Cys Arg Ala Lys Phe Lys Gln Leu Leu Gln His Tyr Arg Glu Val
1 5 10 15
Ala Ala Ala Lys Ser Ser Glu Asn Asp Arg Leu Arg Leu Leu Leu Lys
20 25 30
Gln Met Cys
35






35 amino acids


amino acid





unknown




peptide




not provided



463
Cys Arg Ala Lys Phe Lys Gln Leu Leu Gln His Tyr Arg Glu Val Ala
1 5 10 15
Ala Ala Lys Ser Ser Glu Asn Asp Arg Leu Arg Leu Leu Leu Lys Gln
20 25 30
Met Cys Pro
35






35 amino acids


amino acid





unknown




peptide




not provided



464
Arg Ala Lys Phe Lys Gln Leu Leu Gln His Tyr Arg Glu Val Ala Ala
1 5 10 15
Ala Lys Ser Ser Glu Asn Asp Arg Leu Arg Leu Leu Leu Lys Gln Met
20 25 30
Cys Pro Ser
35






35 amino acids


amino acid





unknown




peptide




not provided



465
Ala Lys Phe Lys Gln Leu Leu Gln His Tyr Arg Glu Val Ala Ala Ala
1 5 10 15
Lys Ser Ser Glu Asn Asp Arg Leu Arg Leu Leu Leu Lys Gln Met Cys
20 25 30
Pro Ser Leu
35






35 amino acids


amino acid





unknown




peptide




not provided



466
Lys Phe Lys Gln Leu Leu Gln His Tyr Arg Glu Val Ala Ala Ala Lys
1 5 10 15
Ser Ser Glu Asn Asp Arg Leu Arg Leu Leu Leu Lys Gln Met Cys Pro
20 25 30
Ser Leu Asp
35






35 amino acids


amino acid





unknown




peptide




not provided



467
Phe Lys Gln Leu Leu Gln His Tyr Arg Glu Val Ala Ala Ala Lys Ser
1 5 10 15
Ser Glu Asn Asp Arg Leu Arg Leu Leu Leu Lys Gln Met Cys Pro Ser
20 25 30
Leu Asp Val
35






35 amino acids


amino acid





unknown




peptide




not provided



468
Lys Gln Leu Leu Gln His Tyr Arg Glu Val Ala Ala Ala Lys Ser Ser
1 5 10 15
Glu Asn Asp Arg Leu Arg Leu Leu Leu Lys Gln Met Cys Pro Ser Leu
20 25 30
Asp Val Asp
35






35 amino acids


amino acid





unknown




peptide




not provided



469
Gln Leu Leu Gln His Tyr Arg Glu Val Ala Ala Ala Lys Ser Ser Glu
1 5 10 15
Asn Asp Arg Leu Arg Leu Leu Leu Lys Gln Met Cys Pro Ser Leu Asp
20 25 30
Val Asp Ser
35






35 amino acids


amino acid





unknown




peptide




not provided



470
Leu Gln His Tyr Arg Glu Val Ala Ala Ala Lys Ser Ser Glu Asn Asp
1 5 10 15
Arg Leu Arg Leu Leu Leu Lys Gln Met Cys Pro Ser Leu Asp Val Asp
20 25 30
Ser Ile Ile
35






35 amino acids


amino acid





unknown




peptide




not provided



471
Gln His Tyr Arg Glu Val Ala Ala Ala Lys Ser Ser Glu Asn Asp Arg
1 5 10 15
Leu Arg Leu Leu Leu Lys Gln Met Cys Pro Ser Leu Asp Val Asp Ser
20 25 30
Ile Ile Pro
35






35 amino acids


amino acid





unknown




peptide




not provided



472
His Tyr Arg Glu Val Ala Ala Ala Lys Ser Ser Glu Asn Asp Arg Leu
1 5 10 15
Arg Leu Leu Leu Lys Gln Met Cys Pro Ser Leu Asp Val Asp Ser Ile
20 25 30
Ile Pro Arg
35






35 amino acids


amino acid





unknown




peptide




not provided



473
Tyr Arg Glu Val Ala Ala Ala Lys Ser Ser Glu Asn Asp Arg Leu Arg
1 5 10 15
Leu Leu Leu Lys Gln Met Cys Pro Ser Leu Asp Val Asp Ser Ile Ile
20 25 30
Pro Arg Thr
35






35 amino acids


amino acid





unknown




peptide




not provided



474
Arg Glu Val Ala Ala Ala Lys Ser Ser Glu Asn Asp Arg Leu Arg Leu
1 5 10 15
Leu Leu Lys Gln Met Cys Pro Ser Leu Asp Val Asp Ser Ile Ile Pro
20 25 30
Arg Thr Pro
35






35 amino acids


amino acid





unknown




peptide




not provided



475
Glu Val Ala Ala Ala Lys Ser Ser Glu Asn Asp Arg Leu Arg Leu Leu
1 5 10 15
Leu Lys Gln Met Cys Pro Ser Leu Asp Val Asp Ser Ile Ile Pro Arg
20 25 30
Thr Pro Asp
35






35 amino acids


amino acid





unknown




peptide




not provided



476
Val Ala Ala Ala Lys Ser Ser Glu Asn Asp Arg Leu Arg Leu Leu Leu
1 5 10 15
Lys Gln Met Cys Pro Ser Leu Asp Val Asp Ser Ile Ile Pro Arg Thr
20 25 30
Pro Asp Val
35






35 amino acids


amino acid





unknown




peptide




not provided



477
Ala Ala Ala Lys Ser Ser Glu Asn Asp Arg Leu Arg Leu Leu Leu Lys
1 5 10 15
Gln Met Cys Pro Ser Leu Asp Val Asp Ser Ile Ile Pro Arg Thr Pro
20 25 30
Asp Val Leu
35






35 amino acids


amino acid





unknown




peptide




not provided



478
Ala Ala Lys Ser Ser Glu Asn Asp Arg Leu Arg Leu Leu Leu Lys Gln
1 5 10 15
Met Cys Pro Ser Leu Asp Val Asp Ser Ile Ile Pro Arg Thr Pro Asp
20 25 30
Val Leu His
35






35 amino acids


amino acid





unknown




peptide




not provided



479
Ala Lys Ser Ser Glu Asn Asp Arg Leu Arg Leu Leu Leu Lys Gln Met
1 5 10 15
Cys Pro Ser Leu Asp Val Asp Ser Ile Ile Pro Arg Thr Pro Asp Val
20 25 30
Leu His Glu
35






35 amino acids


amino acid





unknown




peptide




not provided



480
Lys Ser Ser Glu Asn Asp Arg Leu Arg Leu Leu Leu Lys Gln Met Cys
1 5 10 15
Pro Ser Leu Asp Val Asp Ser Ile Ile Pro Arg Thr Pro Asp Val Leu
20 25 30
His Glu Asp
35






35 amino acids


amino acid





unknown




peptide




not provided



481
Ser Glu Asn Asp Arg Leu Arg Leu Leu Leu Lys Gln Met Cys Pro Ser
1 5 10 15
Leu Asp Val Asp Ser Ile Ile Pro Arg Thr Pro Asp Val Leu His Glu
20 25 30
Asp Leu Leu
35






35 amino acids


amino acid





unknown




peptide




not provided



482
Glu Asn Asp Arg Leu Arg Leu Leu Leu Lys Gln Met Cys Pro Ser Leu
1 5 10 15
Asp Val Asp Ser Ile Ile Pro Arg Thr Pro Asp Val Leu His Glu Asp
20 25 30
Leu Leu Asn
35






35 amino acids


amino acid





unknown




peptide




not provided



483
Asn Asp Arg Leu Arg Leu Leu Leu Lys Gln Met Cys Pro Ser Leu Asp
1 5 10 15
Val Asp Ser Ile Ile Pro Arg Thr Pro Asp Val Leu His Glu Asp Leu
20 25 30
Leu Asn Phe
35






35 amino acids


amino acid





unknown




peptide




not provided



484
Pro Leu Leu Val Leu Gln Ala Gly Phe Phe Leu Leu Thr Arg Ile Leu
1 5 10 15
Thr Ile Pro Gln Ser Leu Asp Ser Trp Trp Thr Ser Leu Asn Phe Leu
20 25 30
Gly Gly Thr
35






35 amino acids


amino acid





unknown




peptide




not provided



485
Leu Leu Val Leu Gln Ala Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr
1 5 10 15
Ile Pro Gln Ser Leu Asp Ser Trp Trp Thr Ser Leu Asn Phe Leu Gly
20 25 30
Gly Thr Thr
35






35 amino acids


amino acid





unknown




peptide




not provided



486
Leu Val Leu Gln Ala Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile
1 5 10 15
Pro Gln Ser Leu Asp Ser Trp Trp Thr Ser Leu Asn Phe Leu Gly Gly
20 25 30
Thr Thr Val
35






35 amino acids


amino acid





unknown




peptide




not provided



487
Val Leu Gln Ala Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro
1 5 10 15
Gln Ser Leu Asp Ser Trp Trp Thr Ser Leu Asn Phe Leu Gly Gly Thr
20 25 30
Thr Val Cys
35






35 amino acids


amino acid





unknown




peptide




not provided



488
Leu Gln Ala Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln
1 5 10 15
Ser Leu Asp Ser Trp Trp Thr Ser Leu Asn Phe Leu Gly Gly Thr Thr
20 25 30
Val Cys Leu
35






35 amino acids


amino acid





unknown




peptide




not provided



489
Gln Ala Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser
1 5 10 15
Leu Asp Ser Trp Trp Thr Ser Leu Asn Phe Leu Gly Gly Thr Thr Val
20 25 30
Cys Leu Gly
35






35 amino acids


amino acid





unknown




peptide




not provided



490
Ala Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser Leu
1 5 10 15
Asp Ser Trp Trp Thr Ser Leu Asn Phe Leu Gly Gly Thr Thr Val Cys
20 25 30
Leu Gly Gln
35






35 amino acids


amino acid





unknown




peptide




not provided



491
Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser Leu Asp
1 5 10 15
Ser Trp Trp Thr Ser Leu Asn Phe Leu Gly Gly Thr Thr Val Cys Leu
20 25 30
Gly Gln Asn
35






35 amino acids


amino acid





unknown




peptide




not provided



492
Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser Leu Asp Ser
1 5 10 15
Trp Trp Thr Ser Leu Asn Phe Leu Gly Gly Thr Thr Val Cys Leu Gly
20 25 30
Gln Asn Ser
35






35 amino acids


amino acid





unknown




peptide




not provided



493
Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser Leu Asp Ser Trp
1 5 10 15
Trp Thr Ser Leu Asn Phe Leu Gly Gly Thr Thr Val Cys Leu Gly Gln
20 25 30
Asn Ser Gln
35






35 amino acids


amino acid





unknown




peptide




not provided



494
Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser Leu Asp Ser Trp Trp
1 5 10 15
Thr Ser Leu Asn Phe Leu Gly Gly Thr Thr Val Cys Leu Gly Gln Asn
20 25 30
Ser Gln Ser
35






35 amino acids


amino acid





unknown




peptide




not provided



495
Pro Gly Tyr Arg Trp Met Cys Leu Arg Arg Phe Ile Ile Phe Leu Phe
1 5 10 15
Ile Leu Leu Leu Cys Leu Ile Phe Leu Leu Val Leu Leu Asp Tyr Gln
20 25 30
Gly Met Leu
35






35 amino acids


amino acid





unknown




peptide




not provided



496
Gly Tyr Arg Trp Met Cys Leu Arg Arg Phe Ile Ile Phe Leu Phe Ile
1 5 10 15
Leu Leu Leu Cys Leu Ile Phe Leu Leu Val Leu Leu Asp Tyr Gln Gly
20 25 30
Met Leu Pro
35






35 amino acids


amino acid





unknown




peptide




not provided



497
Tyr Arg Trp Met Cys Leu Arg Arg Phe Ile Ile Phe Leu Phe Ile Leu
1 5 10 15
Leu Leu Cys Leu Ile Phe Leu Leu Val Leu Leu Asp Tyr Gln Gly Met
20 25 30
Leu Pro Val
35






35 amino acids


amino acid





unknown




peptide




not provided



498
Arg Trp Met Cys Leu Arg Arg Phe Ile Ile Phe Leu Phe Ile Leu Leu
1 5 10 15
Leu Cys Leu Ile Phe Leu Leu Val Leu Leu Asp Tyr Gln Gly Met Leu
20 25 30
Pro Val Cys
35






35 amino acids


amino acid





unknown




peptide




not provided



499
Trp Met Cys Leu Arg Arg Phe Ile Ile Phe Leu Phe Ile Leu Leu Leu
1 5 10 15
Cys Leu Ile Phe Leu Leu Val Leu Leu Asp Tyr Gln Gly Met Leu Pro
20 25 30
Val Cys Pro
35






35 amino acids


amino acid





unknown




peptide




not provided



500
Met Cys Leu Arg Arg Phe Ile Ile Phe Leu Phe Ile Leu Leu Leu Cys
1 5 10 15
Leu Ile Phe Leu Leu Val Leu Leu Asp Tyr Gln Gly Met Leu Pro Val
20 25 30
Cys Pro Leu
35






35 amino acids


amino acid





unknown




peptide




not provided



501
Cys Leu Arg Arg Phe Ile Ile Phe Leu Phe Ile Leu Leu Leu Cys Leu
1 5 10 15
Ile Phe Leu Leu Val Leu Leu Asp Tyr Gln Gly Met Leu Pro Val Cys
20 25 30
Pro Leu Ile
35






35 amino acids


amino acid





unknown




peptide




not provided



502
Leu Arg Arg Phe Ile Ile Phe Leu Phe Ile Leu Leu Leu Cys Leu Ile
1 5 10 15
Phe Leu Leu Val Leu Leu Asp Tyr Gln Gly Met Leu Pro Val Cys Pro
20 25 30
Leu Ile Pro
35






35 amino acids


amino acid





unknown




peptide




not provided



503
Arg Arg Phe Ile Ile Phe Leu Phe Ile Leu Leu Leu Cys Leu Ile Phe
1 5 10 15
Leu Leu Val Leu Leu Asp Tyr Gln Gly Met Leu Pro Val Cys Pro Leu
20 25 30
Ile Pro Gly
35






35 amino acids


amino acid





unknown




peptide




not provided



504
Arg Phe Ile Ile Phe Leu Phe Ile Leu Leu Leu Cys Leu Ile Phe Leu
1 5 10 15
Leu Val Leu Leu Asp Tyr Gln Gly Met Leu Pro Val Cys Pro Leu Ile
20 25 30
Pro Gly Ser
35






35 amino acids


amino acid





unknown




peptide




not provided



505
Phe Ile Ile Phe Leu Phe Ile Leu Leu Leu Cys Leu Ile Phe Leu Leu
1 5 10 15
Val Leu Leu Asp Tyr Gln Gly Met Leu Pro Val Cys Pro Leu Ile Pro
20 25 30
Gly Ser Ser
35






35 amino acids


amino acid





unknown




peptide




not provided



506
Ile Ile Phe Leu Phe Ile Leu Leu Leu Cys Leu Ile Phe Leu Leu Val
1 5 10 15
Leu Leu Asp Tyr Gln Gly Met Leu Pro Val Cys Pro Leu Ile Pro Gly
20 25 30
Ser Ser Thr
35






35 amino acids


amino acid





unknown




peptide




not provided



507
Ile Phe Leu Phe Ile Leu Leu Leu Cys Leu Ile Phe Leu Leu Val Leu
1 5 10 15
Leu Asp Tyr Gln Gly Met Leu Pro Val Cys Pro Leu Ile Pro Gly Ser
20 25 30
Ser Thr Ser
35






35 amino acids


amino acid





unknown




peptide




not provided



508
Phe Leu Phe Ile Leu Leu Leu Cys Leu Ile Phe Leu Leu Val Leu Leu
1 5 10 15
Asp Tyr Gln Gly Met Leu Pro Val Cys Pro Leu Ile Pro Gly Ser Ser
20 25 30
Thr Ser Thr
35






35 amino acids


amino acid





unknown




peptide




not provided



509
Leu Phe Ile Leu Leu Leu Cys Leu Ile Phe Leu Leu Val Leu Leu Asp
1 5 10 15
Tyr Gln Gly Met Leu Pro Val Cys Pro Leu Ile Pro Gly Ser Ser Thr
20 25 30
Ser Thr Gly
35






35 amino acids


amino acid





unknown




peptide




not provided



510
Phe Ile Leu Leu Leu Cys Leu Ile Phe Leu Leu Val Leu Leu Asp Tyr
1 5 10 15
Gln Gly Met Leu Pro Val Cys Pro Leu Ile Pro Gly Ser Ser Thr Ser
20 25 30
Thr Gly Pro
35






35 amino acids


amino acid





unknown




peptide




not provided



511
Ile Leu Leu Leu Cys Leu Ile Phe Leu Leu Val Leu Leu Asp Tyr Gln
1 5 10 15
Gly Met Leu Pro Val Cys Pro Leu Ile Pro Gly Ser Ser Thr Ser Thr
20 25 30
Gly Pro Cys
35






35 amino acids


amino acid





unknown




peptide




not provided



512
Leu Leu Leu Cys Leu Ile Phe Leu Leu Val Leu Leu Asp Tyr Gln Gly
1 5 10 15
Met Leu Pro Val Cys Pro Leu Ile Pro Gly Ser Ser Thr Ser Thr Gly
20 25 30
Pro Cys Arg
35






35 amino acids


amino acid





unknown




peptide




not provided



513
Leu Leu Cys Leu Ile Phe Leu Leu Val Leu Leu Asp Tyr Gln Gly Met
1 5 10 15
Leu Pro Val Cys Pro Leu Ile Pro Gly Ser Ser Thr Ser Thr Gly Pro
20 25 30
Cys Arg Thr
35






35 amino acids


amino acid





unknown




peptide




not provided



514
Leu Cys Leu Ile Phe Leu Leu Val Leu Leu Asp Tyr Gln Gly Met Leu
1 5 10 15
Pro Val Cys Pro Leu Ile Pro Gly Ser Ser Thr Ser Thr Gly Pro Cys
20 25 30
Arg Thr Cys
35






35 amino acids


amino acid





unknown




peptide




not provided



515
Cys Leu Ile Phe Leu Leu Val Leu Leu Asp Tyr Gln Gly Met Leu Pro
1 5 10 15
Val Cys Pro Leu Ile Pro Gly Ser Ser Thr Ser Thr Gly Pro Cys Arg
20 25 30
Thr Cys Met
35






35 amino acids


amino acid





unknown




peptide




not provided



516
Leu Ile Phe Leu Leu Val Leu Leu Asp Tyr Gln Gly Met Leu Pro Val
1 5 10 15
Cys Pro Leu Ile Pro Gly Ser Ser Thr Ser Thr Gly Pro Cys Arg Thr
20 25 30
Cys Met Thr
35






35 amino acids


amino acid





unknown




peptide




not provided



517
Ile Phe Leu Leu Val Leu Leu Asp Tyr Gln Gly Met Leu Pro Val Cys
1 5 10 15
Pro Leu Ile Pro Gly Ser Ser Thr Ser Thr Gly Pro Cys Arg Thr Cys
20 25 30
Met Thr Thr
35







Claims
  • 1. An isolated peptide consisting of:(a) an amino acid sequence of a 16 to 39 amino acid residue region of a human parainfluenza virus protein, wherein said region is identified by: (i) 4 or 5 heptad repeats of an ALLMOTI5 sequence search motif; (ii) 4 or 5 heptad repeats of a 107×178×4 sequence search motif; or (iii) a PLZIP sequence search motif, and (b) an amino terminal X, and a carboxy terminal Z in which: X comprises an amino group, an acetyl group, a 9-fluorenylmethoxy-carbonyl group, a hydrophobic group, a macromolecular carrier group; and Z comprises a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group.
  • 2. The peptide of claim 1, wherein the region of the human parainfluenza virus protein is a region of 28 amino acid residues identified by 4 heptad repeats of the ALLMOTI5 sequence search motif.
  • 3. The peptide of claim 1, wherein the region of the human parainfluenza virus protein is a region of 35 amino acid residues identified by 5 heptad repeats of the ALLMOTI5 sequence search motif.
  • 4. The peptide of claim 1, wherein the region of the human parainfluenza virus protein is a region of 28 amino acid residues identified by 4 heptad repeats of the 107×178×4 sequence search motif.
  • 5. The peptide of claim 1, wherein the region of the human parainfluenza virus protein is a region of 35 amino acid residues identified by 5 heptad repeats of the 107×178×4 sequence search motif.
  • 6. The peptide of claim 1, wherein the region of the human parainfluenza virus protein is a region identified by a PLZIP sequence search motif.
  • 7. An isolated peptide having the formula:X-TLNNSVALDPIDISIELNKAKSDLEESKEWIRRSN-Z (SEQ ID NO:33); X-LNNSVALDPIDISIELNKAKSDLEESKEWIRRSNQ-Z (SEQ ID NO:34); X-NNSVALDPIDISIELNKAKSDLEESKEWIRRSNQK-Z (SEQ ID NO:35); X-NSVALDPIDISIELNKAKSDLEESKEWIRRSNQKL-Z (SEQ ID NO:36); X-SVALDPIDISIELNKAKSDLEESKEWIRRSNQKLD-Z (SEQ ID NO:37); X-VALDPIDISIELNKAKSDLEESKEWIRRSNQKLDS-Z (SEQ ID NO:38); X-ALDPIDISIELNKAKSDLEESKEWIRRSNQKLDSI-Z (SEQ ID NO:39); X-LDPIDISIELNKAKSDLEESKEWIRRSNQKLDSIG-Z (SEQ ID NO:40); X-DPIDISIELNKAKSDLEESKEWIRRSNQKLDSIGN-Z (SEQ ID NO:41); X-PIDISIELNKAKSDLEESKEWIRRSNQKLDSIGNW-Z (SEQ ID NO:42); X-IDISIELNKAKSDLEESKEWIRRSNQKLDSIGNWH-Z (SEQ ID NO:43); X-DISIELNKAKSDLEESKEWIRRSNQKLDSIGNWHQ-Z (SEQ ID NO:44); X-ISIELNKAKSDLEESKEWIRRSNQKLDSIGNWHQS-Z (SEQ ID NO:45); X-SIELNKAKSDLEESKEWIRRSNQKLDSIGNWHQSS-Z (SEQ ID NO:46); X-IELNKAKSDLEESKEWIRRSNQKLDSIGNWHQSST-Z (SEQ ID NO:47); X-ELNKAKSDLEESKEWIRRSNQKLDSIGNWHQSSTT-Z (SEQ ID NO:48); X-TAAVALVEAKQARSDIEKLKEAIRDTNKAVQSVQS-Z (SEQ ID NO:49); X-AVALVEAKQARSDIEKLKEAIRDTNKAVQSVQSSI-Z (SEQ ID NO:50); X-LVEAKQARSDIEKLKEAIRDTNKAVQSVQSSIGNL-Z (SEQ ID NO:51); X-VEAKQARSDIEKLKEAIRDTNKAVQSVQSSIGNLI-Z (SEQ ID NO:52); X-EAKQARSDIEKLKEAIRDTNKAVQSVQSSIGNLIV-Z (SEQ ID NO:53); X-AKQARSDIEKLKEAIRDTNKAVQSVQSSIGNLIVA-Z (SEQ ID NO:54); X-KQARSDIEKLKEAIRDTNKAVQSVQSSIGNLIVAI-Z (SEQ ID NO:55); X-QARSDIEKLKEAIRDTNKAVQSVQSSIGNLIVAIK-Z (SEQ ID NO:56); X-ARSDIEKLKEAIRDTNKAVQSVQSSIGNLIVAIKS-Z (SEQ ID NO:57); X-RSDIEKLKEAIRDTNKAVQSVQSSIGNLIVAIKSV-Z (SEQ ID NO:58); X-SDIEKLKEAIRDTNKAVQSVQSSIGNLIVAIKSVQ-Z (SEQ ID NO:59); X-KLKEAIRDTNKAVQSVQSSIGNLIVAIKSVQDYVN-Z (SEQ ID NO:60); X-LKEAIRDTNKAVQSVQSSIGNLIVAIKSVQDYVNK-Z (SEQ ID NO:61); or X-AIRDTNKAVQSVQSSIGNLIVAIKSVQDYVNKEIV-Z (SEQ ID NO:62)  in which: amino acid residues are presented by the single-letter code; X comprises an amino group, an acetyl group, a 9-fluorenylmethoxy-carbonyl group, a hydrophobic group, or a macromolecular carrier group; Z comprises a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group.
  • 8. The peptide of claim 7, wherein the peptide has the formula:X-TLNNSVALDPIDISIELNKAKSDLEESKEWIRRSN-Z (SEQ ID NO:33).
  • 9. The peptide of claim 7, wherein the peptide has the formula:X-LNNSVALDPIDISIELNKAKSDLEESKEWIRRSNQ-Z (SEQ ID NO:34).
  • 10. The peptide of claim 7, wherein the peptide has the formula:X-NNSVALDPIDISIELNKAKSDLEESKEWIRRSNQK-Z (SEQ ID NO:35).
  • 11. The peptide of claim 7, wherein the peptide has the formula:X-NSVALDPIDISIELNKAKSDLEESKEWIRRSNQKL-Z (SEQ ID NO:36).
  • 12. The peptide of claim 7, wherein the peptide has the formula:X-SVALDPIDISIELNKAKSDLEESKEWIRRSNQKLD-Z (SEQ ID NO:37).
  • 13. The peptide of claim 7, wherein the peptide has the formula:X-VALDPIDISIELNKAKSDLEESKEWIRRSNQKLDS-Z (SEQ ID NO:38).
  • 14. The peptide of claim 7, wherein the peptide has the formula:X-ALDPIDISIELNKAKSDLEESKEWIRRSNQKLDSI-Z (SEQ ID NO:39).
  • 15. The peptide of claim 7, wherein the peptide has the formula:X-LDPIDISIELNKAKSDLEESKEWIRRSNQKLDSIG-Z (SEQ ID NO:40).
  • 16. The peptide of claim 7, wherein the peptide has the formula:X-DPIDISIELNKAKSDLEESKEWIRRSNQKLDSIGN-Z (SEQ ID NO:41).
  • 17. The peptide of claim 7, wherein the peptide has the formula:X-PIDISIELNKAKSDLEESKEWIRRSNQKLDSIGNW-Z (SEQ ID NO:42).
  • 18. The peptide of claim 7, wherein the peptide has the formula:X-IDISIELNKAKSDLEESKEWIRRSNQKLDSIGNWH-Z (SEQ ID NO:43).
  • 19. The peptide of claim 7, wherein the peptide has the formula:X-DISIELNKAKSDLEESKEWIRRSNQKLDSIGNWHQ-Z (SEQ ID NO:44).
  • 20. The peptide of claim 7, wherein the peptide has the formula:X-ISIELNKAKSDLEESKEWIRRSNQKLDSIGNWHQS-Z (SEQ ID NO:45).
  • 21. The peptide of claim 7, wherein the peptide has the formula:X-SIELNKAKSDLEESKEWIRRSNQKLDSIGNWHQSS-Z (SEQ ID NO:46).
  • 22. The peptide of claim 7, wherein the peptide has the formula:X-IELNKAKSDLEESKEWIRRSNQKLDSIGNWHQSST-Z (SEQ ID NO:47).
  • 23. The peptide of claim 7, wherein the peptide has the formula:X-ELNKAKSDLEESKEWIRRSNQKLDSIGNWHQSSTT-Z (SEQ ID NO:48).
  • 24. The peptide of claim 7, wherein the peptide has the formula:X-TAAVALVEAKQARSDIEKLKEAIRDTNKAVQSVQS-Z (SEQ ID NO:49).
  • 25. The peptide of claim 7, wherein the peptide has the formula:X-AVALVEAKQARSDIEKLKEAIRDTNKAVQSVQSSI-Z (SEQ ID NO:50).
  • 26. The peptide of claim 7, wherein the peptide has the formula:X-LVEAKQARSDIEKLKEAIRDTNKAVQSVQSSIGNL-Z (SEQ ID NO:51).
  • 27. The peptide of claim 7, wherein the peptide has the formula:X-VEAKQARSDIEKLKEAIRDTNKAVQSVQSSIGNLI-Z (SEQ ID NO:52).
  • 28. The peptide of claim 7, wherein the peptide has the formula:X-EAKQARSDIEKLKEAIRDTNKAVQSVQSSIGNLIV-Z (SEQ ID NO:53).
  • 29. The peptide of claim 7, wherein the peptide has the formula:X-AKQARSDIEKLKEAIRDTNKAVQSVQSSIGNLIVA-Z (SEQ ID NO:54).
  • 30. The peptide of claim 7, wherein the peptide has the formula:X-KQARSDIEKLKEAIRDTNKAVQSVQSSIGNLIVAI-Z (SEQ ID NO:55).
  • 31. The peptide of claim 7, wherein the peptide has the formula:X-QARSDIEKLKEAIRDTNKAVQSVQSSIGNLIVAIK-Z (SEQ ID NO:56).
  • 32. The peptide of claim 7, wherein the peptide has the formula:X-ARSDIEKLKEAIRDTNKAVQSVQSSIGNLIVAIKS-Z (SEQ ID NO:57).
  • 33. The peptide of claim 7, wherein the peptide has the formula:X-RSDIEKLKEAIRDTNKAVQSVQSSIGNLIVAIKSV-Z (SEQ ID NO:58).
  • 34. The peptide of claim 7, wherein the peptide has the formula:X-SDIEKLKEAIRDTNKAVQSVQSSIGNLIVAIKSVQ-Z (SEQ ID NO:59).
  • 35. The peptide of claim 7, wherein the peptide has the formula:X-KLKEAIRDTNKAVQSVQSSIGNLIVAIKSVQDYVN-Z (SEQ ID NO:60).
  • 36. The peptide of claim 7, wherein the peptide has the formula:X-LKEAIRDTNKAVQSVQSSIGNLIVAIKSVQDYVNK-Z (SEQ ID NO:61).
  • 37. The peptide of claim 7, wherein the peptide has the formula:X-AIRDTNKAVQSVQSSIGNLIVAIKSVQDYVNKEIV-Z (SEQ ID NO:62).
  • 38. The peptide of claim 1 or 7 wherein X is a hydrophobic group.
  • 39. The peptide of claim 38 wherein the hydrophobic group X is carbobenzoxyl, dansyl, or t-butyloxycarbonyl.
  • 40. The peptide of claim 1 or 7 wherein Z is a hydrophobic group.
  • 41. The peptide of claim 40 wherein the hydrophobic group Z is t-butyloxycarbonyl.
  • 42. The peptide of claim 1 or 7 wherein X is a macromolecular carrier group.
  • 43. The peptide of claim 42 wherein the macromolecular carrier group is a lipid-fatty acid conjugate, a polyethylene glycol, or a carbohydrate moiety.
  • 44. The peptide of claim 1 or 7 wherein Z is a macromolecular carrier group.
  • 45. The peptide of claim 44 wherein the macromolecular carrier group Z is a lipid-fatty acid conjugate, a polyethylene glycol, or a carbohydrate moiety.
  • 46. The peptide of claim 42, wherein the macromolecular group X is a peptide group.
  • 47. The peptide of claim 44, wherein the macromolecular group Z is a peptide group.
  • 48. The isolated peptide of claim 1 or 7 wherein X is an acetyl group.
  • 49. The isolated peptide of claim 1 or 7 wherein Z is an amido group.
  • 50. The isolated peptide of claim 1 or 7 whereinX is an acetyl group, and Z is an amido group.
  • 51. An isolated peptide consisting of:(a) an amino acid sequence of a 16 to 39 amino acid residue region of a human parainfluenza virus protein, wherein said region is identified by: (i) 4 or 5 heptad repeats of an ALLMOTI5 sequence search motif, (ii) 4 or 5 heptad repeats of a 107×78×4 sequence search motif, or (iii) a PLZIP sequence search motif; (b) an amino terminal insertion of about 2 to about 50 human parainfluenza virus protein amino acid residues amino to the region of the human parainfluenza virus protein identified by the sequence search motif; and (c) an amino terminal X and a carboxy terminal Z, in which X comprises an amino group, an acetyl group, a 9-fluorenylmethoxy-carbonyl group, a hydrophobic group, or a macromolecular carrier group, and Z comprises a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group.
  • 52. The isolated peptide of claim 51 wherein X is a hydrophobic group.
  • 53. The isolated peptide of claim 52 wherein the hydrophobic group X is carbobenzoxyl, dansyl or t-butyloxycarbonyl.
  • 54. The isolated peptide of claim 51 wherein Z is a hydrophobic group.
  • 55. The isolated peptide of claim 54 wherein the hydrophobic group Z is t-butyloxycarbonyl.
  • 56. The isolated peptide of claim 51 wherein X is a macromolecular carrier group.
  • 57. The isolated peptide of claim 56 wherein the macromolecular carrier group X is a lipid-fatty acid conjugate, a polyethylene glycol or a carbohydrate moiety.
  • 58. The isolated peptide of claim 56 wherein the macromolecular carrier group X is a peptide group.
  • 59. The isolated peptide of claim 51 wherein Z is a macromolecular carrier group.
  • 60. The isolated peptide of claim 59 wherein the macromolecular carrier group Z is a lipid-fatty acid conjugate, a polyethylene glycol, or a carbohydrate moiety.
  • 61. The isolated peptide of claim 59 wherein the macromolecular carrier group Z is a peptide group.
  • 62. The isolated peptide of claim 51 wherein X is an acetyl group.
  • 63. The isolated peptide of claim 51 wherein Z is an amido group.
  • 64. The isolated peptide of claim 51 whereinX is an acetyl group, and X is an amido group.
  • 65. The isolated peptide of claim 51 wherein the region of the human parainfluenza virus protein is a region of 28 amino acid residues identified by 4 heptad repeats of the ALLMOTI5 sequence search motif.
  • 66. The isolated peptide of claim 51 wherein the region of the human parainfluenza virus protein is a region of 35 amino acid residues identified by 5 heptad repeats of the ALLMOTI5 sequence search motif.
  • 67. The isolated peptide of claim 51 wherein the region of the human parainfluenza virus protein is a region of 28 amino acid residues identified by 4 heptad repeats of the 107×178×4 sequence search motif.
  • 68. The isolated peptide of claim 51 wherein the region of the human parainfluenza virus protein is a region of 35 amino acid residues identified by 5 heptad repeats of the 107×178×4 sequence search motif.
  • 69. The isolated peptide of claim 51 wherein the region of the human parainfluenza virus is a region identified by a PLZIP sequence search motif.
  • 70. An isolated peptide consisting of:(a) an amino acid sequence of a 16 to 39 amino acid residue region of a human parainfluenza virus protein, wherein said region is identified by: (i) 4 or 5 heptad repeats of an ALLMOTI5 sequence search motif, (ii) 4 or 5 heptad repeats of a 107×178×4 sequence search motif, or (iii) a PLZIP sequence search motif; (b) an carboxy terminal insertion of about 2 to about 50 human parainfluenza virus protein amino acid residues carboxy to the region of the human parainfluenza virus protein identified by the sequence search motif; and (c) an amino terminal X and a carboxy terminal Z, in which X comprises an amino group, an acetyl group, a 9-fluorenylmethoxy-carbonyl group, a hydrophobic group, or a macromolecular carrier group, and Z comprises a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group.
  • 71. The isolated peptide of claim 70 wherein X is a hydrophobic group.
  • 72. The isolated peptide of claim 71 wherein the hydrophobic group X is carbobenzoxyl, dansyl or t-butyloxycarbonyl.
  • 73. The isolated peptide of claim 70 wherein Z is a hydrophobic group.
  • 74. The isolated peptide of claim 73 wherein the hydrophobic group Z is t-butyloxycarbonyl.
  • 75. The isolated peptide of claim 70 wherein X is a macromolecular carrier group.
  • 76. The isolated peptide of claim 75 wherein the macromolecular carrier group X is a lipid-fatty acid coniugate, a polyethylene glycol or a carbohydrate moiety.
  • 77. The peptide of claim 75 wherein the macromolecular carrier group X is a peptide group.
  • 78. The isolated peptide of claim 70 wherein Z is a macromolecular carrier group.
  • 79. The isolated peptide of claim 78 wherein the macromolecular carrier group Z is a lipid-fatty acid conjugate, a polyethylene glycol, or a carbohydrate moiety.
  • 80. The isolated peptide of claim 78 wherein the macromolecular carrier group Z is a peptide group.
  • 81. The isolated peptide of claim 70 wherein X is an acetyl group.
  • 82. The isolated peptide of claim 70 wherein Z is an amido group.
  • 83. The isolated peptide of claim 70 whereinX is an acetyl group, and X is an amido group.
  • 84. The isolated peptide of claim 70 wherein the region of the human parainfluenza virus protein is a region of 28 amino acid residues identified by 4 heptad repeats of the ALLMOTI5 sequence search motif.
  • 85. The isolated peptide of claim 70 wherein the region of the human parainfluenza virus protein is a region of 35 amino acid residues identified by 5 heptad repeats of the ALLMOTI5 sequence search motif.
  • 86. The isolated peptide of claim 70 wherein the region of the human parainfluenza virus protein is a region of 28 amino acid residues identified by 4 heptad repeats of the 107×178×4 sequence search motif.
  • 87. The isolated peptide of claim 70 wherein the region of the human parainfluenza virus protein is a region of 35 amino acid residues identified by 5 heptad repeats of the 107×178×4 sequence search motif.
  • 88. The isolated peptide of claim 70 wherein the region of the human parainfluenza virus is a region identified by a PLZIP sequence search motif.
  • 89. An isolated peptide consisting of:(a) an amino acid sequence of a 16 to 39 amino acid residue region of a human parainfluenza virus protein, wherein said region is identified by: (i) 4 or 5 heptad repeats of an ALLMOTI5 sequence search motif, (ii) 4 or 5 heptad repeats of a 107×178×4 sequence search motif, or (iii) a PLZIP sequence search motif; (b) an amino terminal insertion of about 2 to about 50 human parainfluenza virus protein amino acid residues amino to the region of the human parainfluenza virus protein identified by the sequence search motif; (c) an carboxy terminal insertion of about 2 to about 50 human parainfluenza virus protein amino acid residues carboxy to the region of the human parainfluenza virus protein identified by the sequence search motif, and (d) an amino terminal X and a carboxy terminal Z, in which X comprises an amino group, an acetyl group, a 9-fluorenylmethoxy-carbonyl group, a hydrophobic group, or a macromolecular carrier group, and Z comprises a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group.
  • 90. The isolated peptide of claim 89 wherein X is a hydrophobic group.
  • 91. The isolated peptide of claim 90 wherein the hydrophobic group X is carbobenzoxyl, dansyl or t-butyloxycarbonyl.
  • 92. The isolated peptide of claim 89 wherein Z is a hydrophobic group.
  • 93. The isolated peptide of claim 92 wherein the hydrophobic group Z is t-butyloxycarbonyl.
  • 94. The isolated peptide of claim 89 wherein X is a macromolecular carrier group.
  • 95. The isolated peptide of claim 94 wherein the macromolecular carrier group X is a lipid-fatty acid conjugate, a polyethylene glycol or a carbohydrate moiety.
  • 96. The isolated peptide of claim 94 wherein the macromolecular carrier group X is a peptide group.
  • 97. The isolated peptide of claim 89 wherein Z is a macromolecular carrier group.
  • 98. The isolated peptide of claim 97 wherein the macromolecular carrier group Z is a lipid-fatty acid conjugates a polyethylene glycol, or a carbohydrate moiety.
  • 99. The isolated peptide of claim 97 wherein the macromolecular carrier group Z is a peptide group.
  • 100. The isolated peptide of claim 89 wherein X is an acetyl group.
  • 101. The isolated peptide of claim 89 wherein Z is an amido group.
  • 102. The isolated peptide of claim 89 whereinX is an acetyl group, and X is an amido group.
  • 103. The isolated peptide of claim 89 wherein the region of the human parainfluenza virus protein is a region of 28 amino acid residues identified by 4 heptad repeats of the ALLMOTI5 sequence search motif.
  • 104. The isolated peptide of claim 89 wherein the region of the human parainfluenza virus protein is a region of 35 amino acid residues identified by 5 heptad repeats of the ALLMOTI5 sequence search motif.
  • 105. The isolated peptide of claim 89 wherein the region of the human parainfluenza virus protein is a region of 28 amino acid residues identified by 4 heptad repeats of the 107×178×4 sequence search motif.
  • 106. The isolated peptide of claim 89 wherein the region of the human parainfluenza virus protein is a region of 35 amino acid residues identified by 5 heptad repeats of the 107×178×4 sequence search motif.
  • 107. The isolated peptide of claim 89 wherein the region of the human parainfluenza virus is a region identified by a PLZIP sequence search motif.
Parent Case Info

This is a division of Ser. No. 08/470,896, filed Jun. 6, 1995, which is a Continuation-In-Part of Ser. No. 08/360,107 filed Dec. 20, 1994, now U.S. Pat. No. 6,017,536, which is a Continuation-In-Part of Ser. No. 08/255,208 filed Jun. 7, 1994, which is a Continuation-In-Part of Ser. No. 08/073,028 filed Jun. 7, 1993, now U.S. Pat. No. 5,464,833, each of which is incorporated herein by reference in its entirety.

Government Interests

This invention was made with Government support under Grant No. AI-30411-02 awarded by the National Institutes of Health. The Government has certain rights in the invention.

US Referenced Citations (5)
Number Name Date Kind
4659669 Kleid et al. Apr 1987
4707358 Kieff et al. Nov 1987
5116725 Vaughan et al. May 1992
5141867 Ivanoff et al. Aug 1992
5284764 Wathen Feb 1994
Foreign Referenced Citations (10)
Number Date Country
0323157 Dec 1988 EP
0 362 927 Apr 1990 EP
2677346 Dec 1992 FR
WO 8808429 Nov 1988 WO
WO 8902935 Apr 1989 WO
WO 9007119 Jun 1990 WO
WO 9109872 Jul 1991 WO
WO 9200997 Jan 1992 WO
WO 9222654 Dec 1992 WO
9306218 Apr 1993 WO
Non-Patent Literature Citations (44)
Entry
Gallaher et al., 1989, “A General Model for the Transmembrane Proteins for HIV and Other Retroviruses”, AIDS Res. And Human Retroviruses 5:431-440.
Jiang et al., 1993, “Inhibition of HIV-1 Infection by a Fusion Domain Binding Peptide from the HIV-1 Envelope Glycoprotein gp41”, Biochem. Biophys. Res. Comm. 195:533-538.
Kingsbury, 1990, “Paramyxoviridae and Their Replication”, in Virology, 2nd Edition, Fields et al., eds., Raven Press, New York, p. 951.
Okamoto et al., 1988, “Typing Hepatitis B Virus by Homology in Nucleotide Sequence: Comparison of Surface Antigen Subtypes”, J. Gen. Virol. 69:2575-2583.
Richardson et al., 1986, “The Nucleotide Sequence of the mRNA Encoding the Fusion Protein of Measles Virus (Edmonston Strain): A Comparison of Fusion Proteins from Several Different Paramyxoviruses”, Virol. 155:508-523.
Staden, 1994, “Searching for Motifs in Protein Sequences”, Chapter 12 in: Methods in Molecular Biology, vol. 25, Griffin et al., eds., Humana Press, Inc., Totowa, NJ, p. 131-139.
Staden, 1994, “Using Patterns to Analyze Protein Sequences”, Chapter 13 in: Methods in Molecular Biology, vol. 25, Griffin et al., eds., Humana Press, Inc., Totowa, NJ, p. 141-154.
Staden, 1990, “Searching for Patterns in Protein and Nucleic Acid Sequences”, Meth. Enzymol. 183:193-211.
Tyler et al., 1990, “Identification of Sites Within gp41 That Serve as Targets for Antibody-Dependent Cellular Cytotoxicity by Using Human Monoclonal Antibodies”, J. Immunol. 145:3276-3282.
Wild et al., 1994, “Peptides Corresponding to a Predictive α-Helical Domain of Human Immunodeficiency Virus Type 1 gp41 Are Potent Inhibitors of Virus Infection”, Proc. Natl. Acad. Sci. USA 91:9770-9774.
Wild et al., 1993, “A Synthetic Peptide from HIV-1 gp41 Is a Potent Inhibitor of Virus-Mediated Cell-Cell Fusion”, AIDS Res. And Human Retroviruses 9:1051-1053.
Ohgimoto et al, Virology 177:116-123, 1990.*
Paterson et al. Expression at the cell surface of biologically active fusion and hemaglutinin/neuramimidase proteins of the paramyxovirus simian virus 5 from cloned CDNA, Proc. Natl. Acad. Sci. 82:7520-7524 (1985).*
Wild et al., 1992, “A synthetic peptide inhibitor of human immunodeficiency virus replication: Correlation between solution structure and viral inhibition”, Proc. Natl. Acad. Sci. USA 89:10537-10541.
Mitsuya et al., 1991, “Targeted therapy of human immunodeficiency virus-related disease”, FASEB J. 5:2369-2381.
Hammarskjold and Rekosh, 1989, “The molecular biology of the human immunodeficiency virus”, Biochem. Biophys. Acta 989:269-280.
Guyader et al., 1987, “Genome organization and transactivation of the human immunodeficiency virus type 2”, Nature 326:662-669.
Clavel et al., 1986, “Isolation of a new human retrovirus from west african patients with AIDS”, Science 233:343-346.
Maddon et al., 1986, “The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain”, Cell 47:333-348.
McDougal et al., 1986, “Binding of HTLV-III/LAV to T4 + T cells by a complex of the 110k viral protein and the T4 molecule”, Science 231:382-385.
Barin et al., 1985, “Virus envelope protein of HTLV-III represents major target antigen for antibodies in AIDS patients”, Science 228:1094-1096.
Dalgleish et al., 1984, “The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus”, Nature 312:763-767.
Gallo et al., 1984, “Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS”, Science 224:500-503.
Klatzmann et al., 1984, “T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV”, Nature 312:767-768.
Teich et al., 1984, Pathogenesis of lentivirus, in “RNA Tumor Viruses”, Weiss et al., eds., CSH-Press, pp. 949-956.
Barre-Sinoussi et al., 1983, “Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS)”, Science 220:868-870.
Chen, 1994, “Functional role of the zipper motif region of human immunodeficiency virus type 1 transmembrane protein gp41”, J. Virology 68:2002-2010.
Carr and Kim, 1993, “Aspring loaded mechanism for the conformational change of influenza hemagglutinin”, Cell 73:823-832.
Songyang et al., 1993, “SH2 domains recognize specific phosphopeptide sequences”, Cell 72:767-778.
Lam et al., 1991, “The new type of synthetic peptide library for identifying ligand-binding activity”, Nature 354:82-84.
Lupas et al., “Predicting coiled coils from protein sequences”, Science 252:1162-1165.
Xu et al., 1991, “Epitope mapping of two immunodominant domains of gp41, the transmembrane protein of human immunodeficiency virus type 1, using ten human monoclonal antibodies”, J. Virology 65:4832-4838.
Chambers et al., 1990, “Heptad repeat sequences are located adjacent to hydrophobic regions in several types of virus fusion glycoproteins”, J. Gen. Virology 71:3075-3080.
Malim et al., 1988, “Immunodeficiency virus rev trans-activator modulates the expression of the viral regulatory genes”, Nature 355:181-183.
Suzuki et al., 1995, “Viral Interleukin 10 (IK-10), the Human Herpes Virus 4 Cellular IL-10 Homologue, Induces Local Anergy to Allogenic and Syngeneic Tumors”, J of Experimental Medicine 182:477-486.
Wild et al., 1994, “Propensity for a Leucine Zipper-Like Domain of Human Immunodeficiency Virus Type 1 gp41 to Form Oligomers Correlates With a Role in Virus-Induced Fusion Rather Than Assembly of the Glycoprotein Complex”, Proc. Natl. Acad. Sci. USA 91:12676-80.
Bousse et al., 1994, “Regions on the Hemagglutinin-Neuraminidase Proteins of Human Parainfluenza Virus Type-1 and Sendai Virus Important for Membrane Fusion”, Virology 204:506-514.
Wang et al., 1993, “Ion Channel Activity of Influenza A Virus M2 Protein: Characterization of the Amantidine Block”, J of Virology 67:5585-94.
Lazinski et al., 1993, “Relating Structure to Function in the Hepatitis Delta Virus Antigen”, J of Virology 67:2672-80.
White, J.M., 1992, “Membrane Fusion”, Science 258:917-924.
Daar et al., 1990, “High concentrations of recombinant soluble CD4 are required to neutralize primary human immunodeficiency virus type 1 isolates”, Proc. Natl. Acad. Sci. USA 87:6574-6579.
Erickson et al., 1980, “Design, Activity and 2.8 Å Crystal Structure of a C2 Symmetric Inhibitor Complexed to HIV-1 Protease”, Science 249:527-533.
Smith et al., 1987, “Blocking of HIV-1 Infectivity by a Soluble, Secreted Form of the CD4 Antigen”, Science 238:1704-1707.
Collins et al., 1984, “Nucleotide Sequence of the Gene Encoding the Fusion (F) Glycoprotein of Human Respiratory Syncytial Virus”, Proc. Natl. Acad. Sci. USA 81:7683-87.
Continuation in Parts (3)
Number Date Country
Parent 08/360107 Dec 1994 US
Child 08/470896 US
Parent 08/255208 Jun 1994 US
Child 08/360107 US
Parent 08/073028 Jun 1993 US
Child 08/255208 US