Compounds and Methods for Modulating GFAP

Information

  • Patent Application
  • 20240285669
  • Publication Number
    20240285669
  • Date Filed
    September 07, 2023
    a year ago
  • Date Published
    August 29, 2024
    2 months ago
Abstract
Provided are compounds, methods, and pharmaceutical compositions for reducing the amount or activity of GFAP RNA in a cell or subject, and in certain instances reducing the amount of GFAP in a cell or subject. Such compounds, methods, and pharmaceutical compositions are useful to ameliorate at least one symptom or hallmark of a leukodystrophy. Such symptoms and hallmarks include motor delays, cognitive delays, paroxysmal deterioration, seizures, vomiting, swallowing difficulties, ataxic gait, palatal myoclonus, autonomic dysfunction, and presence of intra-astrocytic inclusions called Rosenthal fibers. Such leukodystrophies include Alexander Disease.
Description
SEQUENCE LISTING

This application incorporates by reference a 2,616,122 byte xml file named “BIOL0353SEQ.xml,” created on Sep. 5, 2023, which is the sequence listing for this application.


FIELD

Provided are compounds, methods, and pharmaceutical compositions for reducing the amount or activity of GFAP RNA in a cell or subject, and in certain instances reducing the amount of glial fibrillary acidic protein (GFAP) in a cell or subject. Such compounds, methods, and pharmaceutical compositions are useful to ameliorate at least one symptom or hallmark of a leukodystrophy. Such symptoms and hallmarks include motor delays, cognitive delays, paroxysmal deterioration, seizures, vomiting, swallowing difficulties, ataxic gait, palatal myoclonus, autonomic dysfunction, and intra-astrocytic inclusions called Rosenthal fibers. Such leukodystrophies include Alexander Disease.


BACKGROUND

Alexander Disease (AxD) is a rare developmental disorder that affects ˜1/1,000,000 live births and is caused by a number of different autosomal dominant mutations in the gene encoding glial fibrillary acidic protein, GFAP. AxD is a typically fatal leukodystrophy with early onset (<age 4, Type I) or later onset (>age 4 Type II) forms (Prust et al., (2011) GFAP mutations, age at onset, and clinical subtypes in Alexander disease. Neurol 77; 1287-1294). Symptoms include motor and cognitive delays, paroxysmal deterioration, seizures, encephalopathy, macrocephaly, and intra-astrocytic inclusions called Rosenthal fibers.


There are no specific therapies for AxD, with current treatments being limited to supportive treatments for individual symptoms (e.g., antiepileptics to prevent seizures; Messing, et. al., “Strategies for treatment in Alexander Disease”, Neurotherapeutics: The Journal of the Am. Soc. For Expt. NeuroTher., 2016).


Currently there is a lack of acceptable options for treating leukody strophies such as AxD. It is therefore an object herein to provide compounds, methods, and pharmaceutical compositions for the treatment of such diseases.


SUMMARY OF THE INVENTION

Provided herein are compounds, methods and pharmaceutical compositions for reducing the amount or activity of GFAP RNA, and in certain embodiments reducing the expression of glial fibrillary acidic protein in a cell or subject. In certain embodiments, the subject has a leukodystrophy. In certain embodiments, the subject has Alexander Disease (AxD). In certain embodiments, compounds useful for reducing the amount or activity of GFAP RNA are oligomeric compounds. In certain embodiments, compounds useful for reducing the amount or activity of GFAP RNA are modified oligonucleotides. In certain embodiments, compounds useful for decreasing expression of glial fibrillary acidic protein are oligomeric compounds. In certain embodiments, compounds useful for decreasing expression of glial fibrillary acidic protein are modified oligonucleotides.


Also provided are methods useful for ameliorating at least one symptom or hallmark of a leukodystrophy. In certain embodiments, the leukodystrophy is Alexander Disease. In certain embodiments, the symptom or hallmark includes motor delays, cognitive delays, paroxysmal deterioration, seizures, vomiting, swallowing difficulties, ataxic gait, palatal myoclonus, autonomic dysfunction, and presence of intra-astrocytic inclusions called Rosenthal fibers.







DETAILED DESCRIPTION OF THE INVENTION

It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive. Herein, the use of the singular includes the plural unless specifically stated otherwise. As used herein, the use of “or” means “and/or” unless stated otherwise. Furthermore, the use of the term “including” as well as other forms, such as “includes” and “included”, is not limiting. Also, terms such as “element” or “component” encompass both elements and components comprising one unit and elements and components that comprise more than one subunit, unless specifically stated otherwise.


The section headings used herein are for organizational purposes only and are not to be construed as limiting the subject matter described. All documents, or portions of documents, cited in this application, including, but not limited to, patents, patent applications, articles, books, treatises, and GenBank, ENSEMBL, and NCBI reference sequence records, are hereby expressly incorporated-by-reference for the portions of the document discussed herein, as well as in their entirety.


Definitions

Unless specific definitions are provided, the nomenclature used in connection with, and the procedures and techniques of, analytical chemistry, synthetic organic chemistry, and medicinal and pharmaceutical chemistry described herein are those well-known and commonly used in the art. Where permitted, all patents, applications, published applications and other publications and other data referred to throughout in the disclosure are incorporated by reference herein in their entirety.


Unless otherwise indicated, the following terms have the following meanings:


Definitions

As used herein, “2′-deoxynucleoside” means a nucleoside comprising a 2′-H(H) deoxyfuranosylsugar moiety. In certain embodiments, a 2′-deoxy nucleoside is a 2′-β-Ddeoxynucleoside and comprises a 2′-β-D-deoxyribosyl sugar moiety, which has the β-D ribosyl configuration as found in naturally occurring deoxyribonucleic acids (DNA). In certain embodiments, a 2′-deoxynucleoside may comprise a modified nucleobase or may comprise an RNA nucleobase (uracil).


As used herein, “2′-MOE” or “2′-MOE sugar moiety” means a 2′-OCH2CH2OCH3 group in place of the 2′—OH group of a furanosyl sugar moiety. A “2′-MOE sugar moiety” means a sugar moiety with a 2′-OCH2CH2OCH3 group in place of the 2′—OH group of a furanosyl sugar moiety. Unless otherwise indicated, a 2′-MOE sugar moiety is in the β-D-ribosyl configuration. “MOE” means O-methoxyethyl.


As used herein, “2′-MOE nucleoside” means a nucleoside comprising a 2′-MOE sugar moiety.


As used herein, “2′-OMe” or “2′-O-methyl sugar moiety” means a 2′-OCH3 group in place of the 2′—OH group of a furanosyl sugar moiety. A “2′-O-methyl sugar moiety” or “2′-OMe sugar moiety” means a sugar moiety with a 2′-OCH3 group in place of the 2′—OH group of a furanosyl sugar moiety. Unless otherwise indicated, a 2′-OMe sugar moiety is in the β-D-ribosyl configuration.


As used herein, “2′-OMe nucleoside” means a nucleoside comprising a 2′-OMe sugar moiety.


As used herein, “2′-substituted nucleoside” means a nucleoside comprising a 2′-substituted sugar moiety. As used herein, “2′-substituted” in reference to a sugar moiety means a sugar moiety comprising at least one 2′-substituent group other than H or OH.


As used herein, “5-methylcytosine” means a cytosine modified with a methyl group attached to the 5 position. A 5-methylcytosine is a modified nucleobase.


As used herein, “administering” means providing a pharmaceutical agent to a subject.


As used herein, “antisense activity” means any detectable and/or measurable change attributable to the hybridization of an antisense compound to its target nucleic acid. In certain embodiments, antisense activity is a decrease in the amount or expression of a target nucleic acid or protein encoded by such target nucleic acid compared to target nucleic acid levels or target protein levels in the absence of the antisense compound.


As used herein, “antisense compound” means an oligomeric compound capable of achieving at least one antisense activity.


As used herein, “ameliorate” in reference to a treatment means improvement in at least one symptom or hallmark relative to the same symptom or hallmark in the absence of the treatment. In certain embodiments, amelioration is the reduction in the severity or frequency of a symptom or the delayed onset or slowing of progression in the severity or frequency of a symptom. In certain embodiments, the symptom or hallmark is motor delays, cognitive delays, paroxysmal deterioration, seizures, vomiting, swallowing difficulties, ataxic gait, palatal myoclonus, autonomic dysfunction, and presence of intra-astrocytic inclusions called Rosenthal fibers.


As used herein, “bicyclic nucleoside” or “BNA” means a nucleoside comprising a bicyclic sugar moiety.


As used herein, “bicyclic sugar” or “bicyclic sugar moiety” means a modified sugar moiety comprising two rings, wherein the second ring is formed via a bridge connecting two of the atoms in the first ring thereby forming a bicyclic structure. In certain embodiments, the first ring of the bicyclic sugar moiety is a furanosyl moiety. In certain embodiments, the furanosyl sugar moiety is a ribosyl moiety. In certain embodiments, the bicyclic sugar moiety does not comprise a furanosyl moiety.


As used herein, “cerebrospinal fluid” or “CSF” means the fluid filling the space around the brain and spinal cord. “Artificial cerebrospinal fluid” or “aCSF” means a prepared or manufactured fluid that has certain properties of cerebrospinal fluid.


As used herein, “cleavable moiety” means a bond or group of atoms that is cleaved under physiological conditions, for example, inside a cell, an animal, or a human.


As used herein, “complementary” in reference to an oligonucleotide means that at least 70% of the nucleobases of the oligonucleotide or one or more portions thereof and the nucleobases of another nucleic acid or one or more portions thereof are capable of hydrogen bonding with one another when the nucleobase sequence of the oligonucleotide and the other nucleic acid are aligned in opposing directions. As used herein, “complementary nucleobases” means nucleobases that are capable of forming hydrogen bonds with one another. Complementary nucleobase pairs include adenine (A) and thymine (T), adenine (A) and uracil (U), cytosine (C) and guanine (G), 5-methylcytosine (mC) and guanine (G). Complementary oligonucleotides and/or target nucleic acids need not have nucleobase complementarity at each nucleoside. Rather, some mismatches are tolerated. As used herein, “fully complementary” or “100% complementary” in reference to an oligonucleotide, or a portion thereof, means that the oligonucleotide, or portion thereof, is complementary to another oligonucleotide or target nucleic acid at each nucleobase of the shorter of the two oligonucleotides, or at each nucleoside if the oligonucleotides are the same length.


As used herein, “conjugate group” means a group of atoms that is directly or indirectly attached to an oligonucleotide. Conjugate groups include a conjugate moiety and a conjugate linker that attaches the conjugate moiety to the oligonucleotide.


As used herein, “conjugate linker” means a single bond or a group of atoms comprising at least one bond that connects a conjugate moiety to an oligonucleotide.


As used herein, “conjugate moiety” means a group of atoms that is attached to an oligonucleotide via a conjugate linker.


As used herein, “contiguous” in the context of an oligonucleotide refers to nucleosides, nucleobases, sugar moieties, or internucleoside linkages that are immediately adjacent to each other. For example. “contiguous nucleobases” means nucleobases that are immediately adjacent to each other in a sequence.


As used herein, “constrained ethyl” or “cEt” or “cEt modified sugar moiety” means a 4′ to 2′ bridge in place of the 2′OH-group of a ribosyl sugar moiety, wherein the bridge has the formula of 4′-CH(CH)—O-2′, and wherein the methyl group of the bridge is in the S configuration. A “cEt sugar moiety” is a bicyclic sugar moiety with a 4′ to 2′ bridge in place of the 2′OH-group of a ribosyl sugar moiety, wherein the bridge has the formula 4′-CH(CH3)—O-2′, and wherein the methyl group of the bridge is in the S configuration.


As used herein, “cEt nucleoside” means a nucleoside comprising a cEt sugar moiety.


As used herein, “chirally enriched population” means a plurality of molecules of identical molecular formula, wherein the number or percentage of molecules within the population that contain a particular stereochemical configuration at a particular chiral center is greater than the number or percentage of molecules expected to contain the same particular stereochemical configuration at the same particular chiral center within the population if the particular chiral center were stereorandom. Chirally enriched populations of molecules having multiple chiral centers within each molecule may contain one or more stereorandom chiral centers. In certain embodiments, the molecules are modified oligonucleotides. In certain embodiments, the molecules are compounds comprising modified oligonucleotides.


As used herein, “chirally controlled” in reference to an internucleoside linkage means chirality at that linkage is enriched for a particular stereochemical configuration.


As used herein, “deoxy region” means a region of 5-12 contiguous nucleotides, wherein at least 70% of the nucleosides are 2′-β-D-deoxynucleosides. In certain embodiments, each nucleoside is selected from a 2′-β-D-deoxynucleoside, a bicyclic nucleoside, and a 2′-substituted nucleoside. In certain embodiments, a deoxy region supports RNase H activity. In certain embodiments, a deoxy region is the gap or internal region of a gapmer.


As used herein, “gapmer” means a modified oligonucleotide comprising an internal region having a plurality of nucleosides that support RNase H cleavage positioned between external regions having one or more nucleosides, wherein the nucleosides comprising the internal region are chemically distinct from the nucleoside or nucleosides comprising the external regions. The internal region may be referred to as the “gap” and the external regions may be referred to as the “wings.” The internal region is a deoxy region. The positions of the internal region or gap refer to the order of the nucleosides of the internal region and are counted starting from the 5′-end of the internal region. Unless otherwise indicated. “gapmer” refers to a sugar motif. Unless otherwise indicated, the sugar moiety of each nucleoside of the gap is a 2′-β-D-deoxynucleoside. In certain embodiments, the gap comprises one 2′-substituted nucleoside at position 1, 2, 3, 4, or 5 of the gap, and the remainder of the nucleosides of the gap ar 2′-β-D-deoxynucleosides. As used herein, the term “MOE gapmer” indicates a gapmer having a gap comprising 2′-β-D-deoxynucleosides and wings comprising 2′-MOE nucleosides. As used herein, the term “mixed wing gapmer” indicates a gapmer having wings comprising modified nucleosides comprising at least two different sugar modifications. Unless otherwise indicated, a gapmer may comprise one or more modified internucleoside linkages and/or modified nucleobases and such modifications do not necessarily follow the gapmer pattern of the sugar modifications.


As used herein, “hotspot region” is a range of nucleobases on a target nucleic acid that is amenable to oligomeric compound-mediated reduction of the amount or activity of the target nucleic acid.


As used herein, “hybridization” means the pairing or annealing of complementary oligonucleotides and/or nucleic acids. While not limited to a particular mechanism, the most common mechanism of hybridization involves hydrogen bonding, which may be Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen bonding, between complementary nucleobases.


As used herein, “internucleoside linkage” means the covalent linkage between contiguous nucleosides in an oligonucleotide. As used herein, “modified internucleoside linkage” means any internucleoside linkage other than a phosphodiester internucleoside linkage. “Phosphorothioate internucleoside linkage or “PS internucleoside linkage” is a modified internucleoside linkage in which one of the non-bridging oxygen atoms of a phosphodiester internucleoside linkage is replaced with a sulfur atom.


As used herein, “leukodystrophy” means a disorder due to abnormalities in the myelin sheath of neurons.


As used herein, “linker-nucleoside” means a nucleoside that links, either directly or indirectly, an oligonucleotide to a conjugate moiety. Linker-nucleosides are located within the conjugate linker of an oligomeric compound. Linker-nucleosides are not considered part of the oligonucleotide portion of an oligomeric compound even if they are contiguous with the oligonucleotide.


As used herein, “non-bicyclic modified sugar moiety” means a modified sugar moiety that comprises a modification, such as a substituent, that does not form a bridge between two atoms of the sugar to form a second ring.


As used herein, “mismatch” or “non-complementary” means a nucleobase of a first oligonucleotide that is not complementary with the corresponding nucleobase of a second oligonucleotide or target nucleic acid when the first and second oligonucleotide are aligned.


As used herein, “motif” means the pattern of unmodified and/or modified sugar moieties, nucleobases, and/or internucleoside linkages, in an oligonucleotide.


As used herein, “nucleobase” means an unmodified nucleobase or a modified nucleobase. As used herein an “unmodified nucleobase” is adenine (A), thymine (T), cytosine (C), uracil (U), or guanine (G). As used herein, a “modified nucleobase” is a group of atoms other than unmodified A. T. C. U, or G capable of pairing with at least one unmodified nucleobase. A “5-methylcytosine” is a modified nucleobase. A universal base is a modified nucleobase that can pair with any one of the five unmodified nucleobases. As used herein, “nucleobase sequence” means the order of contiguous nucleobases in a target nucleic acid or oligonucleotide independent of any sugar or internucleoside linkage modification.


As used herein, “nucleoside” means a compound, or a fragment of a compound, comprising a nucleobase and a sugar moiety. The nucleobase and sugar moiety are each, independently, unmodified or modified. As used herein, “modified nucleoside” means a nucleoside comprising a modified nucleobase and/or a modified sugar moiety. Modified nucleosides include abasic nucleosides, which lack a nucleobase. “Linked nucleosides” are nucleosides that are connected in a contiguous sequence (i.e., no additional nucleosides are presented between those that are linked).


As used herein, “oligomeric compound” means an oligonucleotide and optionally one or more additional features, such as a conjugate group or terminal group. An oligomeric compound may be paired with a second oligomeric compound that is complementary to the first oligomeric compound or may be unpaired. A “singled-stranded oligomeric compound” is an unpaired oligomeric compound. The term “oligomeric duplex” means a duplex formed by two oligomeric compounds having complementary nucleobase sequences. Each oligomeric compound of an oligomeric duplex may be referred to as a “duplexed oligomeric compound.”


As used herein, “oligonucleotide” means a strand of linked nucleosides connected via internucleoside linkages, wherein each nucleoside and internucleoside linkage may be modified or unmodified. Unless otherwise indicated, oligonucleotides consist of 8-50 linked nucleosides. As used herein, “modified oligonucleotide” means an oligonucleotide, wherein at least one nucleoside or internucleoside linkage is modified. As used herein, “unmodified oligonucleotide” means an oligonucleotide that does not comprise any nucleoside modifications or internucleoside modifications.


As used herein, “pharmaceutically acceptable carrier or diluent” means any substance suitable for use in administering to a subject. Certain such carriers enable pharmaceutical compositions to be formulated as, for example, tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspension and lozenges for the oral ingestion by a subject.


In certain embodiments, a pharmaceutically acceptable carrier or diluent is sterile water, sterile saline, sterile buffer solution or sterile artificial cerebrospinal fluid.


As used herein, “pharmaceutically acceptable salts” means physiologically and pharmaceutically acceptable salts of compounds. Pharmaceutically acceptable salts retain the desired biological activity of the parent compound and do not impart undesired toxicological effects thereto.


As used herein, “pharmaceutical composition” means a mixture of substances suitable for administering to a subject. For example, a pharmaceutical composition may comprise an oligomeric compound and a sterile aqueous solution. In certain embodiments, a pharmaceutical composition shows activity in free uptake assay in certain cell lines.


As used herein, “prodrug” means a therapeutic agent in a form outside the body that is converted to a different form within a subject or cells thereof. Typically, conversion of a prodrug within the subject is facilitated by the action of an enzymes (e.g., endogenous or viral enzyme) or chemicals present in cells or tissues and/or by physiologic conditions.


As used herein, “reducing the amount or activity” refers to a reduction or blockade of the transcriptional expression or activity relative to the transcriptional expression or activity in an untreated or control sample and does not necessarily indicate a total elimination of transcriptional expression or activity.


As used herein, “RNA” means an RNA transcript and includes pre-mRNA and mature mRNA unless otherwise specified.


As used herein, “RNAi compound” means an antisense compound that acts, at least in part, through RISC or Ago2 to modulate a target nucleic acid and/or protein encoded by a target nucleic acid. RNAi compounds include, but are not limited to double-stranded siRNA, single-stranded RNA (ssRNA), and microRNA, including microRNA mimics. In certain embodiments, an RNAi compound modulates the amount, activity, and/or splicing of a target nucleic acid. The term RNAi compound excludes antisense compounds that act through RNase H.


As used herein, “self-complementary” in reference to an oligonucleotide means an oligonucleotide that at least partially hybridizes to itself.


As used herein, “standard in vitroassay” means the assay described in Example 1 and reasonable variations thereof.


As used herein, “standard in vivo assay” means the assay described in Example 7 and reasonable variations thereof.


As used herein, “stereomndom chiral center” in the context of a population of molecules of identical molecular formula means a chiral center having a random stereochemical configuration. For example, in a population of molecules comprising a stereorandom chiral center, the number of molecules having the (S) configuration of the stereorandom chiral center may be but is not necessarily the same as the number of molecules having the (R) configuration of the stereorandom chiral center. The stereochemical configuration of a chiral center is considered random when it is the result of a synthetic method that is not designed to control the stereochemical configuration. In certain embodiments, a stereorandom chiral center is a stereorandom phosphorothioate internucleoside linkage.


As used herein, “subject” means a human or non-human animal.


As used herein, “sugar moiety” means an unmodified sugar moiety or a modified sugar moiety. As used herein, “unmodified sugar moiety” means a 2′-OH(H) β-D-ribosyl moiety, as found in RNA (an “unmodified RNA sugar moiety”), or a 2′-H(H) β-D-deoxyribosyl sugar moiety, as found in DNA (an “unmodified DNA sugar moiety”). Unmodified sugar moieties have one hydrogen at each of the 1′, 3′, and 4′ positions, an oxygen at the 3′ position, and two hydrogens at the 5′ position. As used herein, “modified sugar moiety” or “modified sugar” means a modified furanosyl sugar moiety or a sugar surrogate.


As used herein, “sugar surrogate” means a modified sugar moiety having other than a furanosyl moiety that can link a nucleobase to another group, such as an internucleoside linkage, conjugate group, or terminal group in an oligonucleotide. Modified nucleosides comprising sugar surrogates can be incorporated into one or more positions within an oligonucleotide and such oligonucleotides are capable of hybridizing to complementary oligomeric compounds or target nucleic acids.


As used herein, “symptom or hallmark” means any physical feature or test result that indicates the existence or extent of a disease or disorder. In certain embodiments, a symptom is apparent to a subject or to a medical professional examining or testing said subject. In certain embodiments, a hallmark is apparent upon invasive diagnostic testing, including, but not limited to, post-mortem tests. In certain embodiments, a hallmark is apparent on a brain MRI scan.


As used herein, “target nucleic acid” and “target RNA” mean a nucleic acid that an antisense compound is designed to affect.


As used herein, “target region” means a portion of a target nucleic acid to which an oligomeric compound is designed to hybridize.


As used herein, “terminal group” means a chemical group or group of atoms that is covalently linked to a terminus of an oligonucleotide.


As used herein, “therapeutically effective amount” means an amount of a pharmaceutical agent that provides a therapeutic benefit to a subject. For example, a therapeutically effective amount improves a symptom or hallmark of a disease.


CERTAIN EMBODIMENTS

The present disclosure provides the following non-limiting numbered embodiments:


Embodiment 1: An oligomeric compound comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides wherein the nucleobase sequence of the modified oligonucleotide is at least 90% complementary to an equal length portion of a GFAP nucleic acid, and wherein the modified oligonucleotide comprises at least one modification selected from a modified sugar moiety and a modified internucleoside linkage.


Embodiment 2: An oligomeric compound comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and having a nucleobase sequence comprising at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, or 20 contiguous nucleobases of any of SEQ ID NOs: 20-2809 or 2813, wherein the modified oligonucleotide comprises at least one modification selected from a modified sugar moiety and a modified internucleoside linkage.


Embodiment 3: An oligomeric compound comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and having a nucleobase sequence comprising at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, or 18 contiguous nucleobases of any of SEQ ID NOs: 2816-2837, 2839-2846, 2850-2854, 2856, 2859, 2861-2863, 2866, 2873-2876, 2886-2888, 2891, wherein the modified oligonucleotide comprises at least one modification selected from a modified sugar moiety and a modified internucleoside linkage.


Embodiment 4: An oligomeric compound comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and having a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, or at least 20 contiguous nucleobases complementary to:

    • an equal length portion of nucleobases 9324-9348 of SEQ ID NO: 2;
    • an equal length portion of nucleobases 9459-9480 of SEQ ID NO: 2;
    • an equal length portion of nucleobases 9530-9580 of SEQ ID NO: 2;
    • an equal length portion of nucleobases 12006-12038 of SEQ ID NO: 2; or
    • an equal length portion of nucleobases 13038-13058 of SEQ ID NO: 2.
    • wherein the modified oligonucleotide comprises at least one modification selected from a modified sugar moiety and a modified internucleoside linkage.


Embodiment 5: An oligomeric compound comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and having a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, or at least 18 contiguous nucleobases of a sequence selected from:

    • SEQ ID Nos: 21, 1177, 2321, 2398, 2808-2809, 2840-2842, 2853-2854;
    • SEQ ID Nos: 555, 2093, 2170, 2813;
    • SEQ ID Nos: 20, 88, 166, 1331, 1408, 1485, 1637, 1713, 1714, 1789, 1790, 1637, 1638, 1865, 1866, 1941, 2018, 2095, 2172, 2249, 2326, 2403, 2480, 2557, 2633, 2709, 2785, 2816-2818, 2859, 2861, 2886-2887;
    • SEQ ID Nos: 815, 893, 971, 1049, 1269, 1270, 1346, 1423, 1499, 1500, 1660, 1736, 2655, 2731: or
    • SEQ ID Nos: 825, 1973.


Embodiment 6: The oligomeric compound of any of embodiments 1-5, wherein the modified oligonucleotide has a nucleobase sequence that is at least 80%, at least 85%, at least 90%, at least 95%, or 100% complementary to the nucleobase sequence of SEQ ID NO: 1, SEQ ID NO: 2 or SEQ ID NO: 3 when measured across the entire nucleobase sequence of the modified oligonucleotide.


Embodiment 7: The oligomeric compound of any of embodiments 1-6, wherein the modified oligonucleotide comprises at least one modified sugar moiety.


Embodiment 8: The oligomeric compound of embodiment 7, wherein the modified oligonucleotide comprises at least one bicyclic sugar moiety.


Embodiment 9: The oligomeric compound of embodiment 8, wherein the bicyclic sugar moiety has a 4′-2′ bridge, wherein the 4′-2′ bridge is selected from CH2—O—; and —CH(CH3)—O.


Embodiment 10: The oligomeric compound of any of embodiments 1-9, wherein the modified oligonucleotide comprises at least one non-bicyclic modified sugar moiety.


Embodiment 11: The oligomeric compound of embodiment 10, wherein the non-bicyclic modified sugar moiety is a 2′-MOE sugar moiety or a 2′-OMe sugar moiety.


Embodiment 12: The oligomeric compound of any of embodiments 1-11, wherein the modified oligonucleotide comprises at least one sugar surrogate.


Embodiment 13: The oligomeric compound of embodiment 12, wherein the sugar surrogate is any of morpholino, modified morpholino, PNA, THP, and F-HNA.


Embodiment 14: The oligomeric compound of any of embodiments 1-7 or 10-13, wherein the modified oligonucleotide does not comprise a bicyclic sugar moiety.


Embodiment 15: The oligomeric compound of any of embodiments 1-14, wherein the modified oligonucleotide is a gapmer.


Embodiment 16: The oligomeric compound of any of embodiments 1-15, wherein the modified oligonucleotide comprises:

    • a 5′-region consisting of 1-6 linked nucleosides;
    • a central region consisting of 6-10 linked nucleosides; and
    • a 3′-region consisting of 1-6 linked nucleosides; wherein
    • each of the 5′-region nucleosides and each of the 3′-region nucleosides comprises a modified sugar moiety and at least one of the central region nucleosides comprises a 2′-deoxyribosyl sugar moiety.


Embodiment 17: The oligomeric compound of embodiment 16, wherein the modified oligonucleotide comprises a 5′-region consisting of 6 linked nucleosides:

    • a central region consisting of 10 linked nucleosides; and
    • a 3′-region consisting of 4 linked nucleosides: wherein
    • each of the 5′-region nucleosides and each of the 3′-region nucleosides comprises a 2′-MOE modified sugar moiety, and each of the central region nucleosides comprises a 2′-deoxyribosyl sugar moiety.


Embodiment 18: The oligomeric compound of embodiment 16, wherein the modified oligonucleotide comprises:

    • a 5′-region consisting of 5 linked nucleosides;
    • a central region consisting of 10 linked nucleosides; and
    • a 3′-region consisting of 5 linked nucleosides; wherein
    • each of the 5′-region nucleosides and each of the 3′-region nucleosides comprises a 2′-MOE modified sugar moiety, and each of the central region nucleosides comprises a 2′-deoxyribosyl sugar moiety.


Embodiment 19: The oligomeric compound of embodiment 16, wherein the modified oligonucleotide comprises:

    • a 5′-region consisting of 4 linked nucleosides;
    • a central region consisting of 10 linked nucleosides; and
    • a 3′-region consisting of 6 linked nucleosides; wherein
    • each of the 5′-region nucleosides and each of the 3′-region nucleosides comprises a 2′-MOE modifred sugar moiety, and each of the central region nucleosides comprises a 2′-deoxyribosyl sugar moiety.


Embodiment 20: The oligomeric compound of embodiment 16, wherein the modified oligonucleotide comprises

    • a 5′-region consisting of 5 linked nucleosides;
    • a central region consisting of 8 linked nucleosides; and
    • a 3′-region consisting of 5 linked nucleosides; wherein
    • each of the 5′-region nucleosides and each of the 3′-region nucleosides comprises a 2′-MOE modified sugar moiety, and each of the central region nucleosides comprises a 2′-deoxyribosyl sugar moiety.


Embodiment 21: The oligomeric compound of any of embodiments 1-20, wherein the modified oligonucleotide comprises at least one modified internucleoside linkage.


Embodiment 22: The oligomeric compound of embodiment 21, wherein each internucleoside linkage of the modified oligonucleotide is a modified internucleoside linkage.


Embodiment 23: The oligomeric compound of embodiments 21 or 22, wherein the modified internucleoside linkage is a phosphorothioate internucleoside linkage.


Embodiment 24: The oligomeric compound of any one of embodiments 1-21, wherein the modified oligonucleotide comprises at least one phosphodiester internucleoside linkage.


Embodiment 25: The oligomeric compound of any of embodiments 21, 23, or 24, wherein each internucleoside linkage is either a phosphodiester internucleoside linkage or a phosphorothioate internucleoside linkage.


Embodiment 26: The oligomeric compound of any one of embodiments 1-21 or 23-25, wherein the modified oligonucleotide has an internucleoside linkage motif selected from among: sooosssssssssssooss, sooooossssssssssoss, soooossssssssssooss, sooosssssssssooss, or sooossssssssssoooss: wherein, s=a phosphothioate internucleoside linkage and o=a phosphodiester internucleoside linkage.


Embodiment 27: The oligomeric compound of any of embodiments 1-26, wherein the modified oligonucleotide comprises at least one modified nucleobase.


Embodiment 28: The oligomeric compound of embodiment 27, wherein the modified nucleobase is a 5-methylcytosine.


Embodiment 29: The oligomeric compound of any of embodiments 1-28, wherein the modified oligonucleotide consists of 12-30, 12-22, 12-20,14-18, 14-20, 15-17, 15-25, 16-20, 18-22 or 18-20 linked nucleosides.


Embodiment 30: The oligomeric compound of any of embodiments 1-29, wherein the modified oligonucleotide consists of 18 linked nucleosides.


Embodiment 31: The oligomeric compound of any of embodiments 1-30, wherein the modified oligonucleotide consists of 20 linked nucleosides.


Embodiment 32: The oligomeric compound of any of embodiments 1-31, consisting of the modified oligonucleotide.


Embodiment 33: An oligomeric duplex comprising an oligomeric compound of any of embodiments 1-31.


Embodiment 34: An antisense compound comprising or consisting of an oligomeric compound of any of embodiments 1-32 or an oligomeric duplex of embodiment 33.


Embodiment 35: A pharmaceutical composition comprising an oligomeric compound of any of embodiments 1-32 or an oligomeric duplex of embodiment 33 and a pharmaceutically acceptable carrier or diluent.


Embodiment 36: The pharmaceutical composition of embodiment 35, wherein the pharmaceutically acceptable diluent is artificial cerebral spinal fluid.


Embodiment 37: The pharmaceutical composition of embodiment 36, wherein the pharmaceutical composition consists of the modified oligonucleotide and phosphate buffered saline.


Embodiment 38: A method comprising administering to a subject a pharmaceutical composition of any of embodiments 35-37.


Embodiment 39: A method of treating a disease associated with GFAP comprising administering to an individual having or at risk for developing a disease associated with GFAP a therapeutically effective amount of a compound of any one of embodiments 1-34 or a pharmaceutical composition according to any of embodiments 35-37; and thereby treating the disease associated with GFAP.


Embodiment 40: The method of embodiment 39, wherein the GFAP-associated disease is Alexander Disease.


Embodiment 41: The method of any of embodiments 38-40, wherein at least one symptom or hallmark of the GFAP-associated disease is ameliorated.


Embodiment 42: The method of embodiment 41, wherein the symptom or hallmark is motor delays, cognitive delays, paroxysmal deterioration, seizures, vomiting, swallowing difficulties, ataxic gait, palatal myoclonus, autonomic dysfunction, or the presence of intra-astrocytic inclusions called Rosenthal fibers.


Embodiment 43: The method of any of embodiments 38-42, wherein GFAP levels in the individual are reduced.


Embodiment 44: A modified oligonucleotide according to the following chemical structure:




embedded image


or a salt thereof.


Embodiment 45: A modified oligonucleotide according to the following chemical structure:




embedded image


Embodiment 40: A modified oligonucleotide according to the following chemical structure:




embedded image


or a salt thereof.


Embodiment 47: A modified oligonucleotide according to the following chemical structure:




embedded image


Embodiment 48: A modified of oligonucleotide according to the Mowing chemical structure:




embedded image


or a salt thereof.


Embodiment 49: A modified oligonucleotide according to the following chemical structure:




embedded image


Embodiment 50: A modified oligonucleotide according to the following chemical structure:




embedded image


or a salt thereof.


Embodiment 51: A modified oligonucleotide according to the following chemical structure:




embedded image


Embodiment 52: A modified oligonucleotide according to the following chemical structure:




embedded image


or a salt thereof.


Embodiment 53: A modified oligonucleotide according to the following chemical structure:




embedded image


Embodiment 54: A modified oligonucleotide according to the following chemical structure:




embedded image


or a salt thereof.


Embodiment 55: A modified oligonucleotide according to the following chemical structure:




embedded image


Embodiment 56: The modified oligonucleotide of any one of embodiments 44, 46, 48, 50, 52, and 54, which is the sodium salt or potassium salt of the chemical structure.


Embodiment 57: A pharmaceutical composition comprising the modified oligonucleotide ofany of embodiments 44-56 and a pharmaceutically acceptable carrier or diluent.


Embodiment 58: The pharmaceutical composition of embodiment 57, wherein the pharmaceutically acceptable diluent is artificial cerebrospinal fluid.


Embodiment 59: The pharmaceutical composition of embodiment 58, wherein the pharmaceutical composition consists of the modified oligonucleotide and artificial cerebrospinal fluid.


Embodiment 60: A compound comprising a modified oligonucleotide according to the following chemical notation: mCesAeoGeoAeoTeoTdsAdsmCdsmCdsTdsmCdsTdsAdsmCdsTdsAeoGesTesmCe (SEQ ID NO: 2905), wherein:

    • A=an adenine nucleobase,
    • mC=a 5-methylcytosine nucleobase,
    • G=a guanine nucleobase,
    • T=a thymine nucleobase,
    • e=a 2′-β-D-MOE sugar moiety,
    • d=a 2′-β-D-deoxyribosyl sugar moiety,
    • s=a phosphorothioate internucleoside linkage, and
    • o=a phosphodiester internucleoside linkage.


Embodiment 61: A compound comprising a modified oligonucleotide according to the following chemical notation: mCesAeomCeoAeoTeoTeomCdsAdsmCdsTdsAdsAdsTdsAdsTdsTdsTeoAesAesmCe (SEQ ID NO: 2904), wherein

    • A=an adenine nucleobase,
    • mC=a 5-methylcytosine nucleobase,
    • G=a guanine nucleobase,
    • T=a thymine nucleobase,
    • e=a 2′-β-D-MOE sugar moiety,
    • d=a 2′-β-D-deoxyribosyl sugar moiety.
    • s=a phosphorothioate internucleoside linkage, and
    • o=a phosphodiester internucleoside linkage.


Embodiment 62: A compound comprising a modified oligonucleotide according to the following chemical notation: mCesmCeoAeoGeoTeoGdsTdsmCdsTdsTdsmCdsAdsmCdsTdsTdsTeoGeomCesTesmCe (SEQ ID NO: 2903), wherein:

    • A=an adenine nucleobase,
    • mC=a 5-methylcytosine nucleobase,
    • G=a guanine nucleobase,
    • T=a thymine nucleobase,
    • e=a 2′-β-D-MOE sugar moiety,
    • d=a 2′-β-D-deoxyribosyl sugar moiety,
    • s=a phosphorothioate internucleoside linkage, and
    • o=a phosphodiester internucleoside linkage.


Embodiment 63: A compound comprising a modified oligonucleotide according to the following chemical notation: GesmCeoAeoAeomCesAdsGdsTdsTdsTdsmCdsmCdsAdsTdsAdsAeomCeoAesAesmCe (SEQ ID NO: 2902), wherein:

    • A=an adenine nucleobase.
    • mC=a 5-methylcytosine nucleobase,
    • G=a guanine nucleobase,
    • T=a thymine nucleobase,
    • e=a 2′-β-D-MOE sugar moiety,
    • d=a 2′-β-D-deoxyribosyl sugar moiety,
    • s=a phosphorothioate internucleoside linkage, and
    • o=a phosphodiester internucleoside linkage.


Embodiment 64: A compound comprising a modified oligonucleotide according to the following chemical notation: TesGeoGeoTeomCeomCdsTdsAdsAdsAdsTdsAdsTdsTdsmCdsTeoAeoGesTesmCe (SEQ ID NO: 2906), wherein:

    • A=an adenine nucleobase.
    • mC=a 5-methylcytosine nucleobase,
    • G=a guanine nucleobase,
    • T=a thymine nucleobase,
    • e=a 2′-β-D-MOE sugar moiety,
    • d=a 2′-β-D-deoxyribosyl sugar moiety,
    • s=a phosphorothioate internucleoside linkage, and
    • o=a phosphodiester internucleoside linkage.


Embodiment 65: A compound comprising a modified oligonucleotide according to the following chemical notation: TesGeoGeomCeoAesGdsTdsAdsTdsTdsTdsAdsmCdsmCdsTeomCeoTesAesmCe (SEQ ID NO: 2901), wherein:

    • A=an adenine nucleobase,
    • mC=a 5-methylcytosine nucleobase,
    • G=a guanine nucleobase,
    • T=a thymine nucleobase,
    • e=a 2′-β-D-MOE sugar moiety,
    • d=a 2′-β-D-deoxyribosyl sugar moiety.
    • s=a phosphorothioate internucleoside linkage, and
    • o=a phosphodiester internucleoside linkage.


Embodiment 66: The compound of any of embodiments 60-65, comprising the modified oligonucleotide covalently linked to a conjugate group.


Embodiment 67: A pharmaceutical composition comprising a compound of any of embodiments 60-66, and a pharmaceutically acceptable diluent or carrier.


Embodiment 68: The pharmaceutical composition of embodiment 67, wherein the pharmaceutically acceptable diluent is artificial cerebrospinal fluid.


Embodiment 69: The pharmaceutical composition of embodiment 68, wherein the pharmaceutical composition consists of the compound and artificial cerebrospinal fluid.


Embodiment 70: A chirally enriched population of modified oligonucleotides of any of embodiments 60-65, wherein the population is enriched for modified oligonucleotides comprising at least one particular phosphorothioate internucleoside linkage having a particular stereochemical configuration.


Embodiment 71: The chirally enriched population of embodiment 70, wherein the population is enriched for modified oligonucleotides comprising at least one particular phosphorothioate internucleoside linkage having the (Sp) configuration.


Embodiment 72: The chirally enriched population of embodiment 70, wherein the population is enriched for modified oligonucleotides comprising at least one particular phosphorothioate internucleoside linkage having the (Sp) configuration.


Embodiment 73: The chirally enriched population of embodiment 70, wherein the population is enriched for modified oligonucleotides having a particular, independently selected stereochemical configuration at each phosphorothioate internucleoside linkage


Embodiment 74: The chirally enriched population of embodiment 70, wherein the population is enriched for modified oligonucleotides having the (Sp) configuration at each phosphorothioate internucleoside linkage.


Embodiment 75: The chirally enriched population of embodiment 70, wherein the population is enriched for modified oligonucleotides having the (Rp) configuration at each phosphothioate internucleoside linkage.


Embodiment 76: The chirally enriched population of embodiment 70, wherein the population is enriched for modified oligonucleotides having the (Rp) configuration at one particular phosphorothioate internucleoside linkage and the (Sp) configuration at each of the remaining phosphorothioate internucleoside linkages.


Embodiment 77: The chirally enriched population of embodiment 70 or embodiment 73 wherein the population is enriched for modified oligonucleotides having at least 3 contiguous phosphorothioate internucleoside linkages in the Sp, Sp, and Rp configurations, in the 5′ to 3′ direction.


Embodiment 78: A chirally enriched population of modified oligonucleotides of any of embodiments 44-55, wherein all of the phosphorothioate internucleoside linkages of the modified oligonucleotide are stereorandom.


Embodiment 79: A method comprising administering to an individual the pharmaceutical composition of any of embodiments 56-58 and 67-69.


Embodiment 80: A method of treating a disease associated with GFAP, comprising administering to an individual having or at risk of having a disease associated with GFAP a therapeutically effective amount of the pharmaceutical composition of any one of embodiments 56-58 and 67-69, thereby treating the disease associated with GFAP.


Embodiment 81: A method of reducing GFAP protein in the CSF of an individual having or at risk of having a disease associated with GFAP a therapeutically effective amount of a pharmaceutical composition of any one of embodiments 56-58 and 67-69, thereby reducing GFAP protein in the CSF.


Embodiment 82: The method of embodiment 80 or embodiment 81, wherein the disease is a neurodegenerative disease.


Embodiment 83: The method of any of embodiments 80-82, wherein the disease is Alexander disease.


Embodiment 84: The method of any of embodiments 80-83, wherein at least one symptom or hallmark of the disease is ameliorated.


Embodiment 85: The method of embodiment 84, wherein the symptom or hallmark is any of motor delays, cognitive delays, paroxysmal deterioration, seizures, vomiting, swallowing difficulties, ataxic gait, palatal myoclonus, autonomic dysfunction, or the presence of intra-astrocytic inclusions called Rosenthal fibers.


Embodiment 86: The method of am of embodiments 79-85, wherein the pharmaceutical composition is administered to the central nervous system or systemically.


Embodiment 87: The method of embodiment 86, wherein the pharmaceutical composition is administered to the central nervous system and systemically.


Embodiment 88: The method of any of embodiments 80-87, wherein the pharmaceutical composition is administered any of intrathecally, systemically, subcutaneously, or intramuscularly.


I. Certain Oligonucleotides

In certain embodiments, provided herein are oligomeric compounds comprising oligonucleotides, which consist of linked nucleosides. Oligonucleotides may be unmodified oligonucleotides (RNA or DNA) or may be modified oligonucleotides. Modified oligonucleotides comprise at least one modification relative to unmodified RNA or DNA. That is, modified oligonucleotides comprise at least one modified nucleoside (comprising a modified sugar moiety and/or a modified nucleobase) and/or at least one modified internucleoside linkage.


A. Certain Modified Nucleosides

Modified nucleosides comprise a modified sugar moiety or a modified nucleobase or both a modified sugar moiety and a modified nucleobase.


1. Certain Sugar Moieties

In certain embodiments, modified sugar moieties are non-bicyclic modified sugar moieties. In certain embodiments, modified sugar moieties are bicyclic or tricyclic sugar moieties. In certain embodiments, modified sugar moieties are sugar surrogates. Such sugar surrogates may comprise one or more substitutions corresponding to those of other types of modified sugar moieties.


In certain embodiments, modified sugar moieties are non-bicyclic modified sugar moieties comprising a furanosyl ring with one or more substituent groups none of which bridges two atoms of the furanosyl ring to form a bicyclic structure. Such non bridging substituents may be at any position of the furanosyl, including but not limited to substituents at the 2′, 4′, and/or 5′ positions. In certain embodiments one or more non-bridging substituent of non-bicyclic modified sugar moieties is branched. Examples of 2′-substituent groups suitable for non-bicyclic modified sugar moieties include but are not limited to: 2′-F, 2′-OCH3 (“OMe” or “O-methyl”), and 2′-O(CH2)2OCH (“MOE” or “O-methoxyethyl”). In certain embodiments, 2′-substituent groups are selected from among: halo, allyl, amino, azido, SH, CN, OCN, CF3, OCF3, O—C1-C10 alkoxy, O—C1-C10 substituted alkoxy, O—C1-C10 alkyl, O—C1-C10 substituted alkyl, S-alkyl, N(Rm)-alkyl, O-alkenyl, S-alkenyl, N(Rm)-alkenyl. O-alkynyl, S-alkynyl, N(Rm)-alkynyl, O-alkylenyl-O-alkyl, alkynyl, alkaryl, aralkyl, O-alkaryl, O-aralkyl, O(CH2)2SCH3, O(CH2)2ON(Rm)(Rn) or OCH2C(═O)—N(Rm)(Rn), where each Rm and Rn is, independently, H, an amino protecting group, or substituted or unsubstituted C1-C10 alkyl, and the 2′-substituent groups described in Cook et al. U.S. Pat. No. 6,531,584; Cook et al., U.S. Pat. No. 5,859,221; and Cook et al., U.S. Pat. No. 6,005,087. Certain embodiments of these 2′-substituent groups can be further substituted with one or more substituent groups independently selected from among: hydroxyl, amino, alkoxy, carboxy, benzyl, phenyl, nitro (NO2), thiol, thioalkoxy, thioalkyl, halogen, alkyl, aryl, alkenyl and alkynyl. Examples of 4′-substituent groups suitable for non-bicyclic modified sugar moieties include but are not limited to alkoxy (e.g., methoxy), alkyl, and those described in Manoharan et al., WO 2015/106128. Examples of 5′-substituent groups suitable for non-bicyclic modified sugar moieties include but are not limited to: 5′-methyl (R or S), 5′-vinyl, and 5′-methoxy. In certain embodiments, non-bicyclic modified sugar moieties comprise more than one non-bridging sugar substituent, for example, 2′-F-5′-methyl sugar moieties and the modified sugar moieties and modified nucleosides described in Migawa et al., WO 2008/101157 and Rajeev et al., US2013/0203836.


In certain embodiments, a 2′-substituted non-bicyclic modified nucleoside comprises a sugar moiety comprising a non-bridging 2′-substituent group selected from: F, NH2, N3, OCF3. OCH3, O(CH2)3NH2, CH2CH═CH2, OCH2CH═CH2, OCH2CH2OCH3, O(CH2)2SCH3, O(CH2)20N(Rm)(Rn), O(CH2)2O(CH2)2N(CH3)2, and N-substituted acetamide (OCH2C(═O)—N(Rm)(Rn)), where each Rm and Rn is, independently, H, an amino protecting group, or substituted or unsubstituted C1-C10 alkyl.


In certain embodiments, a 2′-substituted non-bicycic modified nucleoside comprises a sugar moiety comprising a non-bridging 2′-substituent group selected from: F, OCF3, OCH3, OCH2CH2OCH3, O(CH2)2SCH3, O(CH2)20N(CH3)2, O(CH2)2O(CH2)2N(CH3)2, and OCH2C(═O)—N(H)CH3 (“NMA”).


In certain embodiments, a 2′-substituted non-bicyclic modified nucleoside comprises a sugar moiety comprising a non-bridging 2′-substituent group selected from: F, OCH, and OCH2CH2OCH3.


In certain embodiments, modified furanosyl sugar moieties and nucleosides incorporating such modified furanosyl sugar moieties are further defined by isomeric configuration. For example, a 2′-deoxyfuranosyl sugar moiety may be in seven isomeric configurations other than the naturally occurring pi-D-deoxyribosyl configuration. Such modified sugar moieties are described in, e.g., WO 2019/157531, incorporated by reference herein. A 2′-modified sugar moiety has an additional stereocenter at the 2′-position relative to a 2′-deoxyfuranosyl sugar moiety; therefore, such sugar moieties have a total of sixteen possible isomeric configurations, 2′-modified sugar moieties described herein are in the 1-D-ribosyl isomeric configuration unless otherwise specified.


Certain modified sugar moieties comprise a substituent that bridges two atoms of the furanosyl ring to form a second ring, resulting in a bicyclic sugar moiety. In certain such embodiments, the bicyclic sugar moiety comprises a bridge between the 4′ and the 2′ furanose ring atoms. Examples of such 4′ to 2′ bridging sugar substituents include but are not limited to: 4′-CH2-2′, 4′—(CH2)2-2′, 4′—(CH2)3-2′, 4′-CH2—O-2′ (“LNA”), 4′-CH2—S-2′, 4′—(CH2)2—O-2′ (“ENA”), 4′-CH(CH3)—O-2′ (referred to as “constrained ethyl” or “cEt”), 4′-CH2—CH2-2′, 4′-CH2—N(R)-2′, 4′—CH(CH2OCH3)-2′ (“constrained MOE” or “cMOE”) and analogs thereof (see, e.g., Seth et al., U.S. Pat. No. 7,399,845, Bhat et al., U.S. Pat. No. 7,569,686, Swayze et al., U.S. Pat. No. 7,741,457, and Swayze et al., U.S. Pat. No. 8,022,193), 4′-C(CH3)(CH3)—O-2′ and analogs thereof (see, e.g., Seth et al., U.S. Pat. No. 8,278,283), 4′-CH2—N(OCH3)-2′ and analogs thereof (see, e.g., Prakash et al., U.S. Pat. No. 8,278,425), 4′-CH2—O—N(CH3)-2′ (see, e.g., Allerson et al., U.S. Pat. No. 7,696,345 and Allerson et al., U.S. Pat. No. 8,124,745), 4′-CH2—C(H)(CH3)-2′ (see, e.g., Zhou, et al., J. Org. Chem., 2009, 74, 118-134), 4′-CH2—C(═CH2)-2′ and analogs thereof (see e.g., Seth et al., U.S. Pat. No. 8,278,426), 4′-C(RaRb)—N(R)—O-2′, 4′—C(RaRb)—O—N(R)-2′, 4′-CH2—O—N(R)-2′, and 4′-CH2—N(R)—O-2′, wherein each R, Ra, and Rb is, independently, H, a protecting group, or C1-C12 alkyl (see, e.g. Imanishi et al., U.S. Pat. No. 7,427,672).


In certain embodiments, such 4′ to 2′ bridges independently comprise from 1 to 4 linked groups independently selected from: —[C(Ra)(Rb)]n—, —[C(Ra)(Rb)]n—O—, —C(Ra)═C(Rb)C—, C(Ra)=N—, —C(═NRa)—, —C(═O)—, —C(═S)—, —O—, —Si(Ra)2—, —S(═O)x—, and —N(Ra)—;

    • wherein:
    • x is 0, 1, or 2;
    • n is 1, 2, 3, or 4;
    • each Ra and Rb is, independently, H, a protecting group, hydroxyl, C1-C12 alkyl, substituted C1-C12 alkyl, C2-C12 alkenyl, substituted C2-C12 alkenyl, C2-C12 alkynyl, substituted C2-C12 alkynyl, C5-C20 aryl, substituted C5-C20 aryl, heterocycle radical, substituted heterocycle radical, heteroaryl, substituted heteroaryl, C5-C7 alicyclic radical, substituted C5-C7alicyclic radical, halogen, OJ1, NJ1J2, SJ1, N3, COOJ1, acyl (C(═O)—H), substituted acyl, CN, sulfonyl (S(═O)2-J1), or sulfoxy (S(═O)-J1); and
    • each J1 and J2 is, independently. H, C1-C12 alkyl, substituted C1-C12 alkyl, C2-C12 alkenyl, substituted C2-C12 alkenyl, C2-C12 alkynyl, substituted C2-C12 alkynyl, C5-C20 aryl, substituted C5-C20 aryl, acyl (C(═O)—H), substituted acyl, a heterocycle radical, a substituted heterocycle radical, C1-C12 aminoalkyl, substituted C1-C12 aminoalkyl, or a protecting group.


Additional bicyclic sugar moieties are known in the art, see, for example: Freier et al., Nucleic Acids Research, 1997, 25(22), 44294443, Albaek et al., J. Org. Chem., 2006, 71, 7731-7740, Singh et al. Chem. Commun., 1998, 4, 455-456: Koshkin et al., Tetrahedron, 1998, 54, 3607-3630; Kumar et al., Bioorg. Med. Chem. Lett., 1998, 8, 2219-2222; Singh et al., J. Org. Chem., 1998, 63, 10035-10039: Srivastava et al., J. Am. Chem. Soc., 2007, 129, 8362-8379; Wengel et al. U.S. Pat. No. 7,053,207: Imanishi et al., U.S. Pat. No. 6,268,490; Imanishi et al. U.S. Pat. No. 6,770,748; Imanishi et al. U.S. RE44,779: Wengel et al., U.S. Pat. No. 6,794,499; Wengel et al., U.S. Pat. No. 6,670,461: Wengel et al., U.S. Pat. No. 7,034,133; Wengel et al., U.S. Pat. No. 8,080,644; Wengel et al., U.S. Pat. No. 8,034,909: Wengel et al. U.S. Pat. No. 8,153,365: Wengel et al., U.S. Pat. No. 7,572,582; Ramasamy et al. U.S. Pat. No. 6,525,191; Torsten et al., WO 2004/106356; Wengel et al., WO 1999/014226; Seth et al. WO 2007/134181; Seth et al., U.S. Pat. No. 7,547,684; Seth et al. U.S. Pat. No. 7,666,854; Seth et al., U.S. Pat. No. 8,088,746; Seth et al. U.S. Pat. No. 7,750,131: Seth et al., U.S. Pat. No. 8,030,467; Seth et al., U.S. Pat. No. 8,268,980: Seth et al., U.S. Pat. No. 8,546,556; Seth et al., U.S. Pat. No. 8,530,640; Migawa et al. U.S. Pat. No. 9,012,421: Seth et al. U.S. Pat. No. 8,501,805; and U.S. Patent Publication Nos. Allerson et al. US2008/0039618 and Migawa et al. US2015/0191727.


In certain embodiments, bicyclic sugar moieties and nucleosides incorporating such bicyclic sugar moieties are further defined by isomeric configuration. For example, an LNA nucleoside (described herein) may be in the α-L configuration or in the β-D configuration.




embedded image


α-L-methyleneoxy (4′-CH2—O-2′) or α-L-LNA bicyclic nucleosides have been incorporated into oligonucleotides that showed antisense activity (Frieden et al., Nucleic Acid Research, 2003, 21,6365-6372). Herein, general descriptions of bicyclic nucleosides include both isomeric configurations. When the positions of specific bicyclic nucleosides (e.g., LNA or cEt) are identified in exemplified embodiments herein, they are in the β-D configuration, unless otherwise specified.


In certain embodiments, modified sugar moieties comprise one or more non-bridging sugar substituent and one or more bridging sugar substituent (e.g., 5′-substituted and 4′-2′ bridged sugars).


In certain embodiments, modified sugar moieties are sugar surrogates. In certain such embodiments, the oxygen atom of the sugar moiety is replaced, e.g., with a sulfur, carbon or nitrogen atom. In certain such embodiments, such modified sugar moieties also comprise bridging and/or non-bridging substituents as described herein. For example, certain sugar surrogates comprise a 4′-sulfur atom and a substitution at the 2′-position (see. e.g., Bhat et al. U.S. Pat. No. 7,875,733 and Bhat et al. U.S. Pat. No. 7,939,677) and/or the 5′ position.


In certain embodiments, sugar surrogates comprise rings having other than 5 atoms. For example, in certain embodiments, a sugar surrogate comprises a six-membered tetrahydropyran (“THP”). Such tetrahydropyrans may be further modified or substituted. Nucleosides comprising such modified tetrahydropyrans include but are not limited to hexitol nucleic acid (“HNA”), anitol nucleic acid (“ANA”), manitol nucleic acid (“MNA”) (see, e.g., Leumann, C J. Bioorg. & Med. Chem. 2002, 10, 841-854), fluoro HNA:




embedded image


(“F-HNA”, see e.g. Swayze et al., U.S. Pat. No. 8,088,904; Swayze et al. U.S. Pat. No. 8,440,803; Swayze et al. U.S. Pat. No. 8,796,437; and Swayze et al., U.S. Pat. No. 9,005,906; F-HNA can also be referred to as a F-THP or 3′-fluoro tetrahydropyran), and nucleosides comprising additional modified THP compounds having the formula:




embedded image


wherein, independently, for each of the modified THP nucleosides:

    • Bx is a nucleobase moiety;
    • T3 and T4 are each, independently, an internucleoside linking group linking the modified THP nucleoside to the remainder of an oligonucleotide or one of T3 and T4 is an internucleoside linking group linking the modified THP nucleoside to the remainder of an oligonucleotide and the other of T3 and T4 is H, a hydroxyl protecting group, a linked conjugate group, or a 5′ or 3′-terminal group;


      q1, q2, q3, q4, q5, q6 and q7 are each, independently, H, C1-C6 alkyl, substituted C1-C6 alkyl, C2-C6 alkenyl, substituted C2-C6 alkenyl, C2-C6 alkynyl, or substituted C2-C6 alkynyl; and
    • each of R1 and R2 is independently selected from among: hydrogen, halogen, substituted or unsubstituted alkoxy, NJ1J2, SJ1, N3, OC(=X)J1, OC(=X)NJ1J2, NJ3C(=X)NJ1J2, and CN, wherein X is O, S or NJ1, and each J1, J2, and J3 is, independently, H or C1-C6 alkyl.


In certain embodiments, modified THP nucleosides are provided wherein q1, q2, q3, q4, q5, q6 and q7 are each H.


In certain embodiments, at least one of q1, q2, q3, q4, q5, q6 and q7 is other than H, In certain embodiments, at least one of q1, q2, q3, q4, q5, q6 and q7 is methyl. In certain embodiments, modified THP nucleosides are provided wherein one of R, and R2 is F. In certain embodiments, R1 is F and R2 is H, in certain embodiments, R1 is methoxy and R2 is H, and in certain embodiments, R1 is methoxyethoxy and R2 is H.


In certain embodiments, sugar surrogates comprise rings having more than 5 atoms and more than one heteroatom. For example, nucleosides comprising morpholino sugar moieties and their use in oligonucleotides have been reported (see, e.g., Braasch et al. Biochemistry, 2002, 41, 45034510 and Summerton et al., U.S. Pat. No. 5,698,685; Summerton et al., U.S. Pat. No. 5,166,315; Summerton et al. U.S. Pat. No. 5,185,444; and Summerton et al., U.S. Pat. No. 5,034,506). As used here, the term “morpholino” means a sugar surrogate having the following structure:




embedded image


In certain embodiments, morpholinos may be modified, for example by adding or altering various substituent groups from the above morpholino structure. Such sugar surrogates are referred to herein as “modifed morpholinos.”


In certain embodiments, sugar surrogates comprise acyclic moieties. Examples of nucleosides and oligonucleotides comprising such acyclic sugar surrogates include but are not limited to: peptide nucleic acid (“PNA”), acyclic butyl nucleic acid (see, e.g., Kumar et al., Org. Biomol. Chem., 2013, 11, 5853-5865), and nucleosides and oligonucleotides described in Manoharan et al., WO2011/133876.


Many other bicyclic and tricyclic sugar and sugar surrogate ring systems are known in the art that can be used in modified nucleosides.


2. Certain Modified Nucleobases

In certain embodiments, modified oligonucleotides comprise one or more nucleosides comprising an unmodified nucleobase. In certain embodiments, modified oligonucleotides comprise one or more nucleoside comprising a modified nucleobase. In certain embodiments, modified oligonucleotides comprise one or more nucleoside that does not comprise a nucleobase, referred to as an abasic nucleoside.


In certain embodiments, modified nucleobases are selected from: 5-substituted pyrimidines, 6-azapyrimidines, alkyl or alkynyl substituted pyrimidines, alkyl substituted purines, and N-2. N-6 and 0-6 substituted purines. In certain embodiments, modified nucleobases are selected from: 2-aminopropyladenine, 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-N-methylguanine, 6-N-methyladenine, 2-propyladenine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-propynyl (—C≡C—CH3) uracil, 5-propynylcytosine, 6-azouracil, 6-azocytosine, 6-azothymine, 5-ribosyluracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl, 8-aza and other 8-substituted purines, 5-halo, particularly 5-bromo, 5-trifluoromethyl, 5-halouracil, and 5-halocytosine, 7-methylguanine, 7-methyladenine, 2-F-adenine, 2-aminoadenine, 7-deazaguanine, 7-deazaadenine, 3-deazaguanine, 3-deazaadenine, 6-N-benzoyladenine, 2-N-isobutyrvlguanine, 4-N-benzoylcytosine, 4-N-benzoyluracil, 5-methyl 4-N-benzoylcytosine, 5-methyl 4-N-benzoylumcil, universal bases, hydrophobic bases, promiscuous bases, size-expanded bases, and fluorinated bases. Further modified nucleobases include tricyclic pyrimidines, such as 1,3-diazaphenoxazine-2-one, 1,3-diazaphenothiazine-2-one and 9-(2-aminoethoxy)-1,3-diazaphenoxazine-2-one (G-clamp). Modified nucleobases may also include those in which the purine or pyrimidine base is replaced with other heterocycles, for example 7-deaza-adenine, 7-deazaguanosine, 2-aminopyridine and 2-pyridone. Further nucleobases include those disclosed in Merigan et al., U.S. Pat. No. 3,687,808, those disclosed in The Concise Encyclopedia Of Polymer Science And Engineering, Kroschwitz J. I., Ed., John Wiley & Sons, 1990, 858-859: Englisch et al., Angewandte Chemie, International Edition, 1991, 30,613; Sanghvi, Y. S., Chapter 15, Antisense Research and Applications, Crooke, S. T. and Lebleu, B., Eds., CRC Press, 1993, 273-288; and those disclosed in Chapters 6 and 15, Antisense Drug Technology, Crooke S. T., Ed., CRC Press, 2008, 163-166 and 442443.


Publications that teach the preparation of certain of the above noted modified nucleobases as well as other modified nucleobases include without limitation. Manoharan et al., US2003/0158403; Manoharan et al. US2003/0175906; Dinh et al., U.S. Pat. No. 4,845,205: Spielvogel et al., U.S. Pat. No. 5,130,302; Rogers et al. U.S. Pat. No. 5,134,066; Bischofberger et al., U.S. Pat. No. 5,175,273: Urdea et al., U.S. Pat. No. 5,367,066: Benner et al. U.S. Pat. No. 5,432,272: Matteucci et al. U.S. Pat. No. 5,434,257: Gmeiner et al., U.S. Pat. No. 5,457,187; Cook et al., U.S. Pat. No. 5,459,255; Froehler et al., U.S. Pat. No. 5,484,908; Matteucci et al., U.S. Pat. No. 5,502,177; Hawkins et al. U.S. Pat. No. 5,525,711; Haralambidis et al., U.S. Pat. No. 5,552,540; Cook et al., U.S. Pat. No. 5,587,469; Froehler et al. U.S. Pat. No. 5,594,121: Switzer et al. U.S. Pat. No. 5,596,091; Cook et al., U.S. Pat. No. 5,614,617; Froehler et al., U.S. Pat. No. 5,645,985: Cook et al., U.S. Pat. No. 5,681,941; Cook et al., U.S. Pat. No. 5,811,534: Cook et al., U.S. Pat. No. 5,750,692; Cook et al., U.S. Pat. No. 5,948,903: Cook et al., U.S. Pat. No. 5,587,470; Cook et al., U.S. Pat. No. 5,457,191: Matteucci et al., U.S. Pat. No. 5,763,588: Froehler et al., U.S. Pat. No. 5,830,653; Cook et al., U.S. Pat. No. 5,808,027: Cook et al., 6,166,199; and Matteucci et al., U.S. Pat. No. 6,005,096.


3. Certain Modified Internucleoside Linkages

In certain embodiments, nucleosides of modified oligonucleotides may be linked together using any internucleoside linkage. The two main classes of internucleoside linking groups are defined by the presence or absence of a phosphorus atom. Representative phosphorus-containing internucleoside linkages include but are not limited to phosphodiesters, which contain a phosphodiester bond (“P(O2)=O”) (also referred to as unmodified or naturally occurring linkages), phosphotriesters, methylphosphonates, phosphoramidates, phosphorothioates (“P(O2)=S”), and phosphorodithioates (“HS—P=S”). Representative non-phosphorus containing internucleoside linking groups include but are not limited to methylenemethylimino (—CH2—N(CH3)—O—CH2—), thiodiester, thionocarbamate (—O—C(═O)(NH)—S—); siloxane (—O—SiH2—O—); and N,N′-dimethylhydrazine (—CH2—N(CH3)—N(CH3)—). Modified internucleoside linkages, compared to naturally occurring phosphodiester internucleoside linkages, can be used to alter, typically increase, nuclease resistance of the oligonucleotide. In certain embodiments, internucleoside linkages having a chiral atom can be prepared as a racemic mixture, or as separate enantiomers. Methods of preparation of phosphorous-containing and non-phosphorous-containing internucleoside linkages are well known to those skilled in the art.


Representative internucleoside linkages having a chiral center include but are not limited to alkylphosphonates and phosphorothioates. Modified oligonucleotides comprising internucleoside linkages having a chiral center can be prepared as populations of modified oligonucleotides comprising stereorandom internucleoside linkages, or as populations of modified oligonucleotides comprising phosphorothioate internucleoside linkages in particular stereochemical configurations. In certain embodiments, populations of modified oligonucleotides comprise phosphorothioate internucleoside linkages wherein all of the phosphorothioate internucleoside linkages are stereorandom. Such modified oligonucleotides can be generated using synthetic methods that result in random selection of the stereochemical configuration of each phosphorothioate internucleoside linkage. Nonetheless, as is well understood by those of skill in the art, each individual phosphorothioate of each individual oligonucleotide molecule has a defined stereoconfiguration. In certain embodiments, populations of modified oligonucleotides are enriched for modified oligonucleotides comprising one or more particular phosphorothioate internucleoside linkage in a particular, independently selected stereochemical configuration. In certain embodiments, the particular configuration of the particular phosphorothioate internucleoside linkage is present in at least 65% of the molecules in the population. In certain embodiments, the particular configuration of the particular phosphorothioate internucleoside linkage is present in at least 70% of the molecules in the population. In certain embodiments, the particular configuration of the particular phosphorthioate internucleoside linkage is present in at least 80% of the molecules in the population. In certain embodiments, the particular configuration of the particular phosphorothioate internucleoside linkage is present in at least 90% of the molecules in the population. In certain embodiments, the particular configuration of the particular phosphorothioate internucleoside linkage is present in at least 99% of the molecules in the population. Such chirally enriched populations of modified oligonucleotides can be generated using synthetic methods known in the art. e.g., methods described in Oka et al., JACS 125, 8307 (2003). Wan et al. Nuc. Acid. Res. 42, 13456 (2014), and WO 2017/015555. In certain embodiments, a population of modified oligonucleotides is enriched for modified oligonucleotides having at least one indicated phosphoothioate in the (Sp) configuration. In certain embodiments, a population of modified oligonucleotides is enriched for modified oligonucleotides having at least one phosphothioate in the (Rp) configuration. In certain embodiments, modified oligonucleotides comprising (Rp) and/or (Sp) phosphorothioates comprise one or more of the following formulas, respectively, wherein “B” indicates a nucleobase:




embedded image


Unless otherwise indicated, chiral internucleoside linkages of modified oligonucleotides described herein can be stereorandom or in a particular stereochemical configuration.


Neutral internucleoside linkages include, without limitation, phosphotriesters, methylphosphonates. MMI (3′-CH2—N(CH3)—O-5′), amide-3 (3′-CH2—C(═O)—N(H)-5), amide 4 (3′-CH?-N(H)—C(═O)-5′), formacetal (3′-O—CH2—O-5′), methoxypropyl (MOP), and thioformacetal (3′-S—CH2—O-5′). Further neutral internucleoside linkages include nonionic linkages comprising siloxane (di alkylsiloxane), carboxylate ester, carboxamide, sulfide, sulfonate ester and amides (see for example: Carbohydrate Modifications in Antisense Research; Y. S. Sanghvi and P. D. Cook, Eds., ACS Symposium Series 580: Chapters 3 and 4, 40-65). Further neutral internucleoside linkages include nonionic linkages comprising mixed N. O, S and CH2 component parts.


B. Certain Motifs

In certain embodiments, modified oligonucleotides comprise one or more modified nucleosides comprising a modified sugar moiety. In certain embodiments, modified oligonucleotides comprise one or more modified nucleosides comprising a modified nucleobase. In certain embodiments, modified oligonucleotides comprise one or more modified internucleoside linkage. In such embodiments, the modified, unmodified, and differently modified sugar moieties, nucleobases, and/or internucleoside linkages of a modified oligonucleotide define a pattern or motif. In certain embodiments, the patterns of sugar moieties, nucleobases, and internucleoside linkages are each independent of one another. Thus, a modified oligonucleotide may be described by its sugar motif, nucleobase motif and/or internucleoside linkage motif (as used herein, nucleobase motif describes the modifications to the nucleobases independent of the sequence of nucleobases).


1. Certain Sugar Motifs

In certain embodiments, oligonucleotides comprise one or more type of modified sugar and/or unmodified sugar moiety arranged along the oligonucleotide or portion thereof in a defined pattern or sugar motif. In certain instances, such sugar motifs include but are not limited to any of the sugar modifications discussed herein.


In certain embodiments, modified oligonucleotides have a gapmer motif, which is defined by two external regions or “wings” and a central or internal region or “gap.” The three regions of a gapmer motif (the 5′-wing, the gap, and the 3′-wing) form a contiguous sequence of nucleosides wherein at least some of the sugar moieties of the nucleosides of each of the wings differ from at least some of the sugar moieties of the nucleosides of the gap.


Specifically, at least the sugar moieties of the nucleosides of each wing that are closest to the gap (the 3′-most nucleoside of the 5′-wing and the 5′-most nucleoside of the 3′-wing) differ from the sugar moiety of the neighboring gap nucleosides, thus defining the boundary between the wings and the gap (i.e., the wing/gap junction). In certain embodiments, the sugar moieties within the gap are the same as one another. In certain embodiments, the gap includes one or more nucleoside having a sugar moiety that differs from the sugar moiety of one or more other nucleosides of the gap. In certain embodiments, the sugar motifs of the two wings are the same as one another (symmetric gapmer). In certain embodiments, the sugar motif of the 5′-wing differs from the sugar motif of the 3′-wing (asymmetric gapmer).


In certain embodiments, the wings of a gapmer comprise 1-6 nucleosides. In certain embodiments, each nucleoside of each wing of a gapmer comprises a modified sugar moiety. In certain embodiments, at least one nucleoside of each wing of a gapmer comprises a modified sugar moiety. In certain embodiments, at least two nucleosides of each wing of a gapmer comprises a modified sugar moiety. In certain embodiments, at least three nucleosides of each wing of a gapmer comprises a modified sugar moiety. In certain embodiments, at least four nucleosides of each wing of a gapmer comprises a modified sugar moiety. In certain embodiments, at least five nucleosides of each wing of a gapmer comprises a modified sugar moiety.


In certain embodiments, the gap of a gapmer comprises 7-12 nucleosides. In certain embodiments, each nucleoside of the gap of a gapmer comprises a 2-deoxyribosyl sugar moiety. In certain embodiments, each nucleoside of the gap of a gapmer comprises a 2′-β-D-deoxyribosyl sugar moiety. In certain embodiments, at least one nucleoside of the gap of a gapmer comprises a modified sugar moiety. In certain embodiments, at least one nucleoside of the gap of a gapmer comprises a 2′-OMe sugar moiety.


In certain embodiments, the gapmer is a deoxy gapmer. In certain embodiments, the nucleosides on the gap side of each wing/gap junction comprise 2′-β-D-deoxyribosyl sugar moieties and the nucleosides on the wing sides of each wing/gap junction comprise modified sugar moieties. In certain embodiments, each nucleoside of the gap comprises a 2-deoxyribosyl sugar moiety. In certain embodiments, each nucleoside of each wing of a gapmer comprises a modified sugar moiety. In certain embodiments, one nucleoside of the gap comprises a modified sugar moiety and each remaining nucleoside of the gap comprises a 2-deoxyribosyl sugar moiety.


In certain embodiments, modified oligonucleotides comprise or consist of a portion having a fully modified sugar motif. In such embodiments, each nucleoside of the fully modified portion of the modified oligonucleotide comprises a modified sugar moiety. In certain embodiments, each nucleoside of the entire modified oligonucleotide comprises a modified sugar moiety. In certain embodiments, modified oligonucleotides comprise or consist of a portion having a fully modified sugar motif, wherein each nucleoside within the fully modified portion comprises the same modified sugar moiety, referred to herein as a uniformly modified sugar motif. In certain embodiments, a fully modified oligonucleotide is a uniformly modified oligonucleotide. In certain embodiments, each nucleoside of a uniformly modified oligonucleotide comprises the same 2′-modification.


Herein, the lengths (number of nucleosides) of the three regions of a gapmer may be provided using the notation [# of nucleosides in the 5′-wing]-[# of nucleosides in the gap]-[# of nucleosides in the 3′-wing]. Thus, a 5-10-5 gapmer consists of 5 linked nucleosides in each wing and 10 linked nucleosides in the gap. Where such nomenclature is followed by a specific modification, that modification is the modification in each sugar moiety of each wing and the gap nucleosides comprises a 2′-β-D-deoxyribosyl sugar moiety. Thus, a 5-10-5 MOE gapmer consists of 5 linked 2′-MOE nucleosides in the 5′-wing, 10 linked 2′-β-D-deoxynucleosides in the gap, and 5 linked 2′-MOE nucleosides in the 3′-wing. A 3-10-3 cEt gapmer consists of 3 linked cEt nucleosides in the 5′-wing, 10 linked 2′-β-D-deoxynucleosides in the gap, and 3 linked cEt nucleosides in the 3′-wing. A 5-8-5 gapmer consists of 5 linked nucleosides comprising a modified sugar moiety in the 5′-wing, 8 linked 2′-deoxynucleosides in the gap, and 5 linked nucleosides comprising a modified sugar moiety in the 3′-wing. A mixed wing gapmer has at least two different modified sugars in the 5′ and/or 3′ wing. A 5-8-5 or 5-8-4 mixed wing gapmer has at least two different modified sugar moieties in the 5′- and/or the 3′-wing.


In certain embodiments, modified oligonucleotides are 5-10-5 MOE gapmers. In certain embodiments, modified oligonucleotides are 4-10-6 MOE gapmers. In certain embodiments, modified oligonucleotides are 6-10-4 MOE gapmers. In certain embodiments, modified oligonucleotides are 5-8-5 MOE gapmers. In certain embodiments, modified oligonucleotides are X-Y-Z MOE gapmers, wherein X and Z are independently selected from 1, 2, 3, 4, 5, or 6 and Y is 7, 8, 9, 10, or 11.


In certain embodiments, modified oligonucleotides have the following sugar motif (5′ to 3′): meeemddddddddddnmmmmm, wherein ‘d’ represents a 2′-deoxyribosyl sugar moiety, ‘e’ represents a 2′-MOE sugar moiety, and ‘in’ represents a 2′-OMe sugar moiety.


2. Certain Nucleobase Motifs

In certain embodiments, oligonucleotides comprise modified and/or unmodified nucleobases arranged along the oligonucleotide or portion thereof in a defined pattern or motif. In certain embodiments, each nucleobase is modified. In certain embodiments, none of the nucleobases are modified. In certain embodiments, each purine or each pyrimidine is modified. In certain embodiments, each adenine is modified. In certain embodiments, each guanine is modified. In certain embodiments, each thymine is modified. In certain embodiments, each uracil is modified. In certain embodiments, each cytosine is modified. In certain embodiments, some or all of the cytosine nucleobases in a modified oligonucleotide are 5-methylcytosines. In certain embodiments, all of the cytosine nucleobases are 5-methylcytosines and all of the other nucleobases of the modified oligonucleotide are unmodified nucleobases.


In certain embodiments, modified oligonucleotides comprise a block of modified nucleobases. In certain such embodiments, the block is at the 3′-end of the oligonucleotide. In certain embodiments the block is within 3 nucleosides of the 3′-end of the oligonucleotide. In certain embodiments, the block is at the 5′-end of the oligonucleotide. In certain embodiments the block is within 3 nucleosides of the 5′-end of the oligonucleotide.


In certain embodiments, oligonucleotides having a gapmer motif comprise a nucleoside comprising a modified nucleobase. In certain such embodiments, one nucleoside comprising a modified nucleobase is in the central gap of an oligonucleotide having a gapmer motif. In certain such embodiments, the sugar moiety of the nucleoside is a 2′-deoxyribosyl sugar moiety. In certain embodiments, the modified nucleobase is selected from: a 2-thiopyrimidine and a 5-propynepyrimidine.


3. Certain Internucleoside Linkage Motifs

In certain embodiments, oligonucleotides comprise modified and/or unmodified internucleoside linkages arranged along the oligonucleotide or region thereof in a defined pattern or motif. In certain embodiments, each internucleoside linking group is a phosphodiester internucleoside linkage (P═O). In certain embodiments, each internucleoside linking group of a modified oligonucleotide is a phosphorothioate internucleoside linkage (P═S). In certain embodiments, each internucleoside linkage of a modified oligonucleotide is independently selected from a phosphorothioate internucleoside linkage and phosphodiester internucleoside linkage. In certain embodiments, each phosphorothioate internucleoside linkage is independently selected from a stereorandom phosphorothioate, a (Sp) phosphorothioate, and a (Rp) phosphorothioate. In certain embodiments, the sugar motif of a modified oligonucleotide is a gapmer and the internucleoside linkages within the gap are all modified. In certain such embodiments, some or all of the internucleoside linkages in the wings are unmodified phosphodiester internucleoside linkages. In certain embodiments, the terminal internucleoside linkages are modified. In certain embodiments, the sugar motif of a modified oligonucleotide is a gapmer, and the internucleoside linkage motif comprises at least one phosphodiester internucleoside linkage in at least one wing, wherein the at least one phosphodiester internucleoside linkage is not a terminal internucleoside linkage, and the remaining internucleoside linkages are phosphorothioate internucleoside linkages. In certain such embodiments, all of the phosphorothioate internucleoside linkages are stereorandom. In certain embodiments, all of the phosphorothioate internucleoside linkages in the wings are (Sp) phosphorothioates, and the gap comprises at least one Sp, Sp, Rp motif. In certain embodiments, populations of modified oligonucleotides are enriched for modified oligonucleotides comprising such internucleoside linkage motifs.


In certain embodiments, modified oligonucleotides have an internucleoside linkage motif of sooosssssssssssooss, wherein each “s” represents a phosphorothioate internucleoside linkage and each “o” represents a phosphodiester internucleoside linkage. In certain embodiments, modified oligonucleotides have an internucleoside linkage motif of (5′ to 3′): sooooossssssssssoss, wherein each “s” represents a phosphorothioate internucleoside linkage and each “o” represents a phosphodiester internucleoside linkage. In certain embodiments, modified oligonucleotides have an internucleoside linkage motif of (5′ to 3′): soooossssssssssooss, wherein each “s” represents a phosphorothioate internucleoside linkage and each “o” represents a phosphodiester internucleoside linkage. In certain embodiments, modified oligonucleotides have an internucleoside linkage motif of (5′ to 3′):sooosssssssssooss, wherein each “s” represents a phosphorothioate internucleoside linkage and each “o” represents a phosphodiester internucleoside linkage.


In certain embodiments, modified oligonucleotides have an internucleoside linkage motif of (5′ to 3′): sooossssssssssoooss, wherein each “s” represents a phosphorothioate internucleoside linkage and each “o” represents a phosphodiester internucleoside linkage. In certain embodiments, modified oligonucleotides have an internucleoside linkage motif of (5′ to 3′): sooosssssssssssssss, wherein each “s” represents a phosphorothioate internucleoside linkage and each “o” represents a phosphodiester internucleoside linkage.


C. Certain Lengths

It is possible to increase or decrease the length of an oligonucleotide without eliminating activity. For example, in Woolf et al. Proc. Natl. Acad. Sci. USA 89:7305-7309, 1992) a series of oligonucleotides 13-25 nucleobases in length were tested for their ability to induce cleavage of a target nucleic acid in an oocyte injection model. Oligonucleotides 25 nucleobases in length with 8 or II mismatch bases near the ends of the oligonucleotides were able to direct specific cleavage of the target nucleic acid, albeit to a lesser extent than the oligonucleotides that contained no mismatches. Similarly, target specific cleavage was achieved using 13 nucleobase oligonucleotides, including those with 1 or 3 mismatches.


In certain embodiments, oligonucleotides (including modified oligonucleotides) can have any of a variety of ranges of lengths. In certain embodiments, oligonucleotides consist of X to Y linked nucleosides, where X represents the fewest number of nucleosides in the range and Y represents the largest number nucleosides in the range. In certain such embodiments, X and Y are each independently selected from 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, and 50: provided that X≤Y. For example, in certain embodiments, oligonucleotides consist of 12 to 13, 12 to 14, 12 to 15, 12 to 16, 12 to 17, 12 to 18, 12 to 19, 12 to 20, 12 to 21, 12 to 22, 12 to 23, 12 to 24, 12 to 25, 12 to 26, 12 to 27, 12 to 28, 12 to 29, 12 to 30, 13 to 14, 13 to 15, 13 to 16, 13 to 17, 13 to 18, 13 to 19, 13 to 20, 13 to 21, 13 to 22, 13 to 23, 13 to 24, 13 to 25, 13 to 26, 13 to 27, 13 to 28, 13 to 29, 13 to 30, 14 to 15, 14 to 16, 14 to 17, 14 to 18, 14 to 19, 14 to 20, 14 to 21, 14 to 22, 14 to 23, 14 to 24, 14 to 25, 14 to 26, 14 to 27, 14 to 28, 14 to 29, 14 to 30, 15 to 16, 15 to 17, 15 to 18, 15 to 19, 15 to 20, 15 to 21, 15 to 22, 15 to 23, 15 to 24, 15 to 25, 15 to 26, 15 to 27, 15 to 28, 15 to 29, 15 to 30, 16 to 17, 16 to 18, 16 to 19, 16 to 20, 16 to 21, 16 to 22, 16 to 23, 16 to 24, 16 to 25, 16 to 26, 16 to 27, 16 to 28, 16 to 29, 16 to 30, 17 to 18, 17 to 19, 17 to 20, 17 to 21, 17 to 22, 17 to 23, 17 to 24, 17 to 25, 17 to 26, 17 to 27, 17 to 28, 17 to 29, 17 to 30, 18 to 19, 18 to 20, 18 to 21, 18 to 22, 18 to 23, 18 to 24, 18 to 25, 18 to 26, 18 to 27, 18 to 28, 18 to 29, 18 to 30, 19 to 20, 19 to 21, 19 to 22, 19 to 23, 19 to 24, 19 to 25, 19 to 26, 19 to 29, 19 to 28, 19 to 29, 19 to 30, 20 to 21, 20 to 22, 20 to 23, 20 to 24, 20 to 25, 20 to 26, 20 to 27, 20 to 28, 20 to 29, 20 to 30, 21 to 22, 21 to 23, 21 to 24, 21 to 25, 21 to 26, 21 to 27, 21 to 28, 21 to 29, 21 to 30, 22 to 23, 22 to 24, 22 to 25, 22 to 26, 22 to 27, 22 to 28, 22 to 29, 22 to 30, 23 to 24, 23 to 25, 23 to 26, 23 to 27, 23 to 28, 23 to 29, 23 to 30, 24 to 25, 24 to 26, 24 to 27, 24 to 28, 24 to 29, 24 to 30, 25 to 26, 25 to 27, 25 to 28, 25 to 29, 25 to 30, 26 to 27, 26 to 28, 26 to 29, 26 to 30, 27 to 28, 27 to 29, 27 to 30, 28 to 29, 28 to 30, or 29 to 30 linked nucleosides.


D. Certain Modified Oligonucleotides

In certain embodiments, the above modifications (sugar, nucleobase, internucleoside linkage) are incorporated into a modified oligonucleotide. In certain embodiments, modified oligonucleotides are characterized by their modification motifs and overall lengths. In certain embodiments, such parameters are each independent of one another. Thus, unless otherwise indicated, each internucleoside linkage of an oligonucleotide having a gapmer sugar motif may be modified or unmodified and may or may not follow the gapmer modification pattern of the sugar modifications. For example, the internucleoside linkages within the wing regions of a sugar gapmer may be the same or different from one another and may be the same or different from the internucleoside linkages of the gap region of the sugar motif. Likewise, such sugar gapmer oligonucleotides may comprise one or more modified nucleobase independent of the gapmer pattern of the sugar modifications. Unless otherwise indicated, all modifications are independent of nucleobase sequence.


E. Certain Populations of Modified Oligonucleotides

Populations of modified oligonucleotides in which all of the modified oligonucleotides of the population have the same molecular formula can be stereorandom populations or chirally enriched populations. All of the chiral centers of all of the modified oligonucleotides are stereorandom in a stereorandom population. In a chirally enriched population, at least one particular chiral center is not stereorandom in the modified oligonucleotides of the population. In certain embodiments, the modified oligonucleotides of a chirally enriched population are enriched for i-D ribosyl sugar moieties, and all of the phosphorothioate internucleoside linkages are stereorandom. In certain embodiments, the modified oligonucleotides of a chirally enriched population are enriched for both β-D ribosyl sugar moieties and at least one, particular phosphorothioate internucleoside linkage in a particular stereochemical configuration.


F. Nucleobase Sequence

In certain embodiments, oligonucleotides (unmodified or modified oligonucleotides) are further described by their nucleobase sequence. In certain embodiments oligonucleotides have a nucleobase sequence that is complementary to a second oligonucleotide or an identified reference nucleic acid, such as a target nucleic acid. In certain such embodiments, a portion of an oligonucleotide has a nucleobase sequence that is complementary to a second oligonucleotide or an identified reference nucleic acid, such as a target nucleic acid. In certain embodiments, the nucleobase sequence of a portion or entire length of an oligonucleotide is at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 95%, or 100% complementary to the second oligonucleotide or nucleic acid, such as a target nucleic acid.


II. Certain Oligomeric Compounds

In certain embodiments, provided herein are oligomeric compounds, which consist of an oligonucleotide (modified or unmodified) and optionally one or more conjugate groups and/or terminal groups. Conjugate groups consist of one or more conjugate moiety and a conjugate linker which links the conjugate moiety to the oligonucleotide. Conjugate groups may be attached to either or both ends of an oligonucleotide and/or at any internal position. In certain embodiments, conjugate groups are attached to the 2′-position of a nucleoside of a modified oligonucleotide. In certain embodiments, conjugate groups that are attached to either or both ends of an oligonucleotide are terminal groups. In certain such embodiments, conjugate groups or terminal groups are attached at the 3′ and/or 5′-end of oligonucleotides. In certain such embodiments, conjugate groups (or terminal groups) are attached at the 3′-end of oligonucleotides. In certain embodiments, conjugate groups are attached near the 3′-end of oligonucleotides. In certain embodiments, conjugate groups (or terminal groups) are attached at the 5′-end of oligonucleotides. In certain embodiments, conjugate groups are attached near the 5′-end of oligonucleotides.


Examples of terminal groups include but are not limited to conjugate groups, capping groups, phosphate moieties, protecting groups, abasic nucleosides, modified or unmodified nucleosides, and two or more nucleosides that are independently modified or unmodified.


A. Certain Conjugate Groups

In certain embodiments, oligonucleotides are covalently attached to one or more conjugate groups. In certain embodiments, conjugate groups modify one or more properties of the attached oligonucleotide, including but not limited to pharmacodynamics, pharmacokinetics, stability, binding, absorption, tissue distribution, cellular distribution, cellular uptake, charge and clearance. In certain embodiments, conjugate groups impart a new property on the attached oligonucleotide, e.g., fluorophores or reporter groups that enable detection of the oligonucleotide. Certain conjugate groups and conjugate moieties have been described previously, for example: cholesterol moiety (Letsinger et al., Proc.


Natl. Acad. Sci. USA, 1989, 86, 6553-6556), cholic acid (Manoharan et al., Bioorg. Med Chem. Lett., 1994, 4, 1053-1060), a thioether, e.g., hexyl-S-tritylthiol (Manoharan et al., Ann. N.Y. Acad Sci., 1992, 660, 306-309: Manoharan et al., Bioorg. Med. Chem. Lett., 1993, 3, 2765-2770), a thiocholesterol (Oberhauser et al., Nucl. Acids Res., 1992, 20, 533-538), an aliphatic chain, e.g., do-decan-diol or undecyl residues (Saison-Behmoards et al., EMBO J., 1991, 10, 1111-1118; Kabanov et al., FEBS Lett., 1990, 259, 327-330; Svinarchuk et al. Biochimie, 1993, 75,49-54), a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethyl-ammonium 1,2-di-O-hexadecyl-mc-glycero-3-H-phosphonate (Manoharan et al. Tetrahedron Lett., 1995, 36, 3651-3654; Shea et al., Nucl. Acids Res., 1990, 18, 3777-3783), a polyamine or a polyethylene glycol chain (Manoharan et al., Nucleosides & Nucleotides, 1995, 14, 969-973), or adamantane acetic acid a palmityl moiety (Mishra et al., Biochim. Biophys. Acta, 1995, 1264, 229-237), an octadecylamine or hexylamino-carbonyl-oxycholesterol moiety (Crooke et al. J. Pharmacol. Exp. Ther., 1996, 277, 923-937), a tocopherol group (Nishina et al., Molecular Therapy Nucleic Acids, 2015, 4, e220; and Nishina et al., Molecular Therapy, 2008, 16, 734-740), or a GaINAc cluster (e.g., WO2014/179620).


In certain embodiments, conjugate groups may be selected from any of a C22 alkyl, C20 alkyl, C16 alkyl, C10 alkyl, C21 alkyl, C19 alkyl, C18 alkyl, C15 alkyl, C14 alkyl, C13 alkyl, C12 alkyl, C11 alkyl, C9 alkyl, C8 alkyl, C7 alkyl, C6 alkyl, C5 alkyl, C22 alkenyl, C20 alkenyl, C16 alkenyl, C10 alkenyl, C21 alkenyl, C19 alkenyl, C18 alkenyl, C15 alkenyl, C14 alkenyl, C13 alkenyl, C12 alkenyl, C11 alkenyl, C9 alkenyl, C8 alkenyl, C7 alkenyl, C6 alkenyl, or C5 alkenyl.


In certain embodiments, conjugate groups may be selected from any of C22 alkyl, C20 alkyl, C16 alkyl, C10 alkyl, C21 alkyl, C19 alkyl, C18 alkyl, C15 alkyl, C14 alkyl, C13 alkyl, C12 alkyl, C11 alkyl, C9 alkyl, C8 alkyl, C7 alkyl, C6 alkyl, and C5 alkyl, where the alkyl chain has one or more unsaturated bonds.


1. Conjugate Moieties

Conjugate moieties include, without limitation, intercalators, reporter molecules, polyamines, polyamides, peptides, carbohydrates, vitamin moieties, polyethylene glycols, thioethers, polyethers, cholesterols, thiocholesterols, cholic acid moieties, folate, lipids, lipophilic groups, phospholipids, biotin, phenazine, phenanthridine, anthraquinone, adamantane, acridine, fluoresceins, rhodamines, coumarins, fluorophores, and dyes.


In certain embodiments, a conjugate moiety comprises an active dung substance, for example, aspirin, warfarin, phenylbutazone, ibuprofen, suprofen, fen-bufen, ketoprofen, (S)-(+)-pranoprofen, carprofen, dansylsarcosine, 2,3,5-triiodobenzoic acid, fingolimod, flufenamic acid, folinic acid, a benzothiadiazide, chlorothiazide, a diazepine, indo-methicin, a barbiturate, a cephalosporin, a sulfa drug, an antidiabetic, an antibacterial or an antibiotic.


2. Conjugate Linkers

Conjugate moieties are attached to oligonucleotides through conjugate linkers. In certain oligomeric compounds, the conjugate linker is a single chemical bond (i.e., the conjugate moiety is attached directly to an oligonucleotide through a single bond). In certain embodiments, the conjugate linker comprises a chain structure, such as a hydrocarbyl chain, or an oligomer of repeating units such as ethylene glycol, nucleosides, or amino acid units.


In certain embodiments, a conjugate linker comprises one or more groups selected from alkyl, amino, oxo, amide, disulfide, polyethylene glycol, ether, thioether, and hydroxylamino. In certain such embodiments, the conjugate linker comprises groups selected from alkyl, amino, oxo, amide and ether groups. In certain embodiments, the conjugate linker comprises groups selected from alkyl and amide groups. In certain embodiments, the conjugate linker comprises groups selected from alkyl and ether groups. In certain embodiments, the conjugate linker comprises at least one phosphorus moiety. In certain embodiments, the conjugate linker comprises at least one phosphate group. In certain embodiments, the conjugate linker includes at least one neutral linking group.


In certain embodiments, conjugate linkers, including the conjugate linkers described above, are bifunctional linking moieties. e.g., those known in the art to be useful for attaching conjugate groups to parent compounds, such as the oligonucleotides provided herein. In general, a bifunctional linking moiety comprises at least two functional groups. One of the functional groups is selected to bind to a particular site on a parent compound and the other is selected to bind to a conjugate group. Examples of functional groups used in a bifunctional linking moiety include but are not limited to electrophiles for reacting with nucleophilic groups and nucleophiles for reacting with electrophilic groups. In certain embodiments, bifunctional linking moieties comprise one or more groups selected from amino, hydroxyl, carboxylic acid, thiol, alkyl, alkenyl, and alkynyl.


Examples of conjugate linkers include but are not limited to pyrrolidine, 8-amino-3,6-dioxaoctanoic acid (ADO), succinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC) and 6-aminohexanoic acid (AHEX or AHA). Other conjugate linkers include but are not limited to substituted or unsubstituted C1-C10 alkyl, substituted or unsubstituted C2-C10 alkenyl or substituted or unsubstituted C2-C10 alkynyl, wherein a nonlimiting list of preferred substituent groups includes hydroxyl, amino, alkoxy, carboxy, benzyl, phenyl, nitro, thiol, thioalkoxy, halogen, alkyl, aryl, alkenyl and alkynyl.


In certain embodiments, conjugate linkers comprise 1-10 linker-nucleosides. In certain embodiments, conjugate linkers comprise 2-5 linker-nucleosides. In certain embodiments, conjugate linkers comprise exactly 3 linker-nucleosides. In certain embodiments, conjugate linkers comprise the TCA motif. In certain embodiments, such linker-nucleosides are modified nucleosides. In certain embodiments such linker-nucleosides comprise a modified sugar moiety. In certain embodiments, linker-nucleosides are unmodified. In certain embodiments, linker-nucleosides comprise an optionally protected heterocyclic base selected from a purine, substituted purine, pyrimidine or substituted pyrimidine. In certain embodiments, a cleavable moiety is a nucleoside selected from uracil, thymine, cytosine, 4-N-benzoylcytosine, 5-methylcytosine, 4-N-benzoyl-5-methylcytosine, adenine, 6-N-benzoyladenine, guanine and 2-N-isobutyrylguanine. It is typically desirable for linker-nucleosides to be cleaved from the oligomeric compound after it reaches a target tissue. Accordingly, linker-nucleosides are typically linked to one another and to the remainder of the oligomeric compound through cleavable bonds. In certain embodiments, such cleavable bonds are phosphodiester bonds.


Herein, linker-nucleosides are not considered to be part of the oligonucleotide. Accordingly, in embodiments in which an oligomeric compound comprises an oligonucleotide consisting of a specified number or range of linked nucleosides and/or a specified percent complementarity to a reference nucleic acid and the oligomeric compound also comprises a conjugate group comprising a conjugate linker comprising linker-nucleosides, those linker-nucleosides are not counted toward the length of the oligonucleotide and are not used in determining the percent complementarity of the oligonucleotide for the reference nucleic acid. For example, an oligomeric compound may comprise (1) a modified oligonucleotide consisting of 8-30 nucleosides and (2) a conjugate group comprising 1-10 linker-nucleosides that are contiguous with the nucleosides of the modified oligonucleotide. The total number of contiguous linked nucleosides in such an oligomeric compound is more than 30. Alternatively, an oligomeric compound may comprise a modified oligonucleotide consisting of 8-30 nucleosides and no conjugate group. The total number of contiguous linked nucleosides in such an oligomeric compound is no more than 30. Unless otherwise indicated conjugate linkers comprise no more than 10 linker-nucleosides. In certain embodiments, conjugate linkers comprise no more than 5 linker-nucleosides. In certain embodiments, conjugate linkers comprise no more than 3 linker-nucleosides. In certain embodiments, conjugate linkers comprise no more than 2 linker-nucleosides. In certain embodiments, conjugate linkers comprise no more than 1 linker-nucleoside.


In certain embodiments, it is desirable for a conjugate group to be cleaved from the oligonucleotide. For example, in certain circumstances oligomeric compounds comprising a particular conjugate moiety are better taken up by a particular cell type, but once the oligomeric compound has been taken up, it is desirable that the conjugate group be cleaved to release the unconjugated or parent oligonucleotide. Thus, certain conjugate linkers may comprise one or more cleavable moieties. In certain embodiments, a cleavable moiety is a cleavable bond. In certain embodiments, a cleavable moiety is a group of atoms comprising at least one cleavable bond. In certain embodiments, a cleavable moiety comprises a group of atoms having one, two, three, four, or more than four cleavable bonds. In certain embodiments, a cleavable moiety is selectively cleaved inside a cell or subcellular compartment, such as a lysosome. In certain embodiments, a cleavable moiety is selectively cleaved by endogenous enzymes, such as nucleases.


In certain embodiments, a cleavable bond is selected from among: an amide, an ester, an ether, one or both esters of a phosphodiester, a phosphate ester, a carbamate, or a disulfide. In certain embodiments, a cleavable bond is one or both of the esters of a phosphodiester. In certain embodiments, a cleavable moiety comprises a phosphate or phosphodiester. In certain embodiments, the cleavable moiety is a phosphate or phosphodiester internucleoside linkage between an oligonucleotide and a conjugate moiety or conjugate group.


In certain embodiments, a cleavable moiety comprises or consists of one or more linker-nucleosides. In certain such embodiments, the one or more linker-nucleosides are linked to one another and/or to the remainder of the oligomeric compound through cleavable bonds. In certain embodiments, such cleavable bonds are unmodified phosphodiester bonds. In certain embodiments, a cleavable moiety is 2′-deoxynucleoside that is attached to either the 3′ or 5′-terminal nucleoside of an oligonucleotide by a phosphodiester internucleoside linkage and covalently attached to the remainder of the conjugate linker or conjugate moiety by a phosphate or phosphorothioate internucleoside linkage. In certain such embodiments, the cleavable moiety is 2′-deoxyadenosine.


3. Cell-Targeting Moieties

In certain embodiments, a conjugate group comprises a cell-targeting moiety. In certain embodiments, a conjugate group has the general formula:




embedded image




    • wherein n is from 1 to about 3, m is 0 when n is 1, m is I when n is 2 or greater, j is 1 or 0, and k is 1 or 0.





In certain embodiments, n is 1, j is 1 and k is 0. In certain embodiments, n is 1, j is 0 and k is 1. In certain embodiments, n is 1, j is 1 and k is 1. In certain embodiments, n is 2, j is 1 and k is 0. In certain embodiments, n is 2, j is 0 and k is 1. In certain embodiments, n is 2, j is 1 and k is 1. In certain embodiments, n is 3, j is 1 and k is 0. In certain embodiments, n is 3, j is 0 and k is 1. In certain embodiments, n is 3, j is 1 and k is 1.


In certain embodiments, conjugate groups comprise cell-targeting moieties that have at least one tethered ligand. In certain embodiments, cell-targeting moieties comprise two tethered ligands covalently attached to a branching group. In certain embodiments, cell-targeting moieties comprise three tethered ligands covalently attached to a branching group.


B. Certain Terminal Groups

In certain embodiments, oligomeric compounds comprise one or more terminal groups. In certain such embodiments, oligomeric compounds comprise a stabilized 5′-phosphate. Stabilized 5′-phosphates include, but are not limited to 5′-phosphonates, including, but not limited to 5′-vinylphosphonates. In certain embodiments, terminal groups comprise one or more abasic nucleosides and/or inverted nucleosides. In certain embodiments, terminal groups comprise one or more 2′-linked nucleosides. In certain such embodiments, the 2′-linked nucleoside is an abasic nucleoside.


III. Oligomeric Duplexes

In certain embodiments, oligomeric compounds described herein comprise an oligonucleotide, having a nucleobase sequence complementary to that of a target nucleic acid. In certain embodiments, an oligomeric compound is paired with a second oligomeric compound to form an oligomeric duplex. Such oligomeric duplexes comprise a first oligomeric compound having a portion complementary to a target nucleic acid and a second oligomeric compound having a portion complementary to the first oligomeric compound. In certain embodiments, the first oligomeric compound of an oligomeric duplex comprises or consists of (1) a modified or unmodified oligonucleotide and optionally a conjugate group and (2) a second modified or unmodified oligonucleotide and optionally a conjugate group. Either or both oligomeric compounds of an oligomeric duplex may comprise a conjugate group. The oligonucleotides of each oligomeric compound of an oligomeric duplex may include non-complementary overhanging nucleosides.


IV. Antisense Activity

In certain embodiments, oligomeric compounds and oligomeric duplexes are capable of hybridizing to a target nucleic acid, resulting in at least one antisense activity; such oligomeric compounds and oligomeric duplexes are antisense compounds. In certain embodiments, antisense compounds have antisense activity when they reduce the amount or activity of a target nucleic acid by 25% or more in the standard cell assay. In certain embodiments, antisense compounds selectively affect one or more target nucleic acid. Such antisense compounds comprise a nucleobase sequence that hybridizes to one or more target nucleic acid, resulting in one or more desired antisense activity and does not hybridize to one or more non-target nucleic acid or does not hybridize to one or more non-target nucleic acid in such a way that results in significant undesired antisense activity.


In certain antisense activities, hybridization of an antisense compound to a target nucleic acid results in recruitment of a protein that cleaves the target nucleic acid. For example, certain antisense compounds result in RNase H mediated cleavage of the target nucleic acid. RNase H is a cellular endonuclease that cleaves the RNA strand of an RNA:DNA duplex. The DNA in such an RNA:DNA duplex need not be unmodified DNA. In certain embodiments, described herein are antisense compounds that are sufficiently “DNA-like” to elicit RNase H activity. In certain embodiments, one or more non-DNA-like nucleoside in the gap of a gapmer is tolerated.


In certain antisense activities, an antisense compound or a portion of an antisense compound is loaded into an RNA-induced silencing complex (RISC), ultimately resulting in cleavage of the target nucleic acid. For example, certain antisense compounds result in cleavage of the target nucleic acid by Argonaute. Antisense compounds that are loaded into RISC are RNAi compounds. RNAi compounds may be double-stranded (siRNA) or single-stranded (ssRNA).


In certain embodiments, hybrdization of an antisense compound to a target nucleic acid does not result in recruitment of a protein that cleaves that target nucleic acid. In certain embodiments, hybridization of the antisense compound to the target nucleic acid results in alteration of splicing of the target nucleic acid. In certain embodiments, hybridization of an antisense compound to a target nucleic acid results in inhibition of a binding interaction between the target nucleic acid and a protein or other nucleic acid. In certain embodiments, hybridization of an antisense compound to a target nucleic acid results in alteration of translation of the target nucleic acid.


Antisense activities may be observed directly or indirectly. In certain embodiments, observation or detection of an antisense activity involves observation or detection of a change in an amount of a target nucleic acid or protein encoded by such target nucleic acid, a change in the ratio of splice variants of a nucleic acid or protein and/or a phenotypic change in a cell or subject.


V. Certain Target Nucleic Acids

In certain embodiments, oligomeric compounds comprise or consist of an oligonucleotide comprising a portion that is complementary to a target nucleic acid. In certain embodiments, the target nucleic acid is an endogenous RNA molecule. In certain embodiments, the target nucleic acid encodes a protein. In certain such embodiments, the target nucleic acid is selected from: a mature mRNA and a pre-mRNA, including intronic, exonic and untranslated regions. In certain embodiments, the target nucleic acid is a mature mRNA. In certain embodiments, the target nucleic acid is a pre-mRNA. In certain embodiments, the target region is entirely within an intron. In certain embodiments, the target region spans an intron/exon junction. In certain embodiments, the target region is at least 50% within an intron.


A. Complementarity/Mismatches to the Target Nucleic Acid

It is possible to introduce mismatch bases without eliminating activity. For example, Gautschi et al (J. Natl. Cancer Inst, 93:463471, March 2001) demonstrated the ability of an oligonucleotide having 100% complementarity to the bcl-2 mRNA and having 3 mismatches to the bcl-xL mRNA to reduce the expression of both bcl-2 and bcl-xL in vitro and in vivo. Furthermore, this oligonucleotide demonstrated potent anti-tumor activity in vivo. Maher and Dolnick (Nuc. Acid. Res. 16:3341-3358, 1988) tested a series of tandem 14 nucleobase oligonucleotides, and a 28- and 42-nucleobase oligonucleotides comprised of the sequence of two or three of the tandem oligonucleotides, respectively, for their ability to arrest translation of human DHFR in a rabbit reticulocyte assay. Each of the three 14 nucleobase oligonucleotides alone was able to inhibit translation, albeit at a more modest level than the 28 or 42 nucleobase oligonucleotides.


In certain embodiments, oligonucleotides are complementary to the target nucleic acid over the entire length of the oligonucleotide. In certain embodiments, oligonucleotides are 99%, 95%, 90%, 85%, or 80% complementary to the target nucleic acid. In certain embodiments, oligonucleotides are at least 80% complementary to the target nucleic acid over the entire length of the oligonucleotide and comprise a portion that is 00%, or fully complementary to a target nucleic acid. In certain embodiments, the portion of full complementarity is 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, or 24 nucleobases in length.


In certain embodiments, oligonucleotides comprise one or more mismatched nucleobases relative to the target nucleic acid. In certain embodiments, antisense activity against the target is reduced by such mismatch, but activity against a non-target is reduced by a greater amount. Thus, in certain embodiments selectivity of the oligonucleotide is improved. In certain embodiments, the mismatch is specifically positioned within an oligonucleotide having a gapmer motif. In certain embodiments, the mismatch is at position 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11 from the 5′-end of the gap region. In certain embodiments, the mismatch is at position 1, 2, 3, 4, 5, or 6 from the 5′-end of the 5′ wing region or the 3′ wing region.


B. GFAP

In certain embodiments, oligomeric compounds comprise or consist of an oligonucleotide that is complementary to a target nucleic acid, wherein the target nucleic acid is a GFAP nucleic acid. In certain embodiments, GFAP nucleic acid has the sequence set forth in SEQ ID NO: 1 (GENBANK Accession No. NM_002055.4), SEQ ID NO: 2 (GENBANK Accession No. NC_000017.11 truncated from nucleotides 44903001 to 44919000), or SEQ ID NO: 3 (GENBANK Accession No. NM_001131019.2).


In certain embodiments, contacting a cell with an oligomeric compound complementary to any of SEQ ID NO: 1-3 reduces the amount of GFAP RNA and in certain embodiments reduces the amount of GFAP protein. In certain embodiments, the oligomeric compound consists of a modified oligonucleotide. In certain embodiments, contacting a cell with an oligomeric compound complementary to any of SEQ ID NO: 1-3 reduces the amount of GFAP RNA in a cell, and in certain embodiments reduces the amount of GFAP protein in a cell. In certain embodiments, the cell is in vitro. In certain embodiments, the cell is in a subject. In certain embodiments, the oligomeric compound consists of a modified oligonucleotide. In certain embodiments, contacting a cell in a subject with an oligomeric compound complementary to any of SEQ ID NO: 1-3 ameliorates one or more symptom or hallmark of a leukodystrophy. In certain embodiments, the leukodystrophy is AxD. In certain embodiments, the symptom or hallmark is selected from motor delays, cognitive delays, paroxysmal deterioration, seizures, vomiting, swallowing difficulties, ataxic gait, palatal myoclonus, autonomic dysfunction, and presence of intra-astrocytic inclusions called Rosenthal fibers.


In certain embodiments, an oligomeric compound complementary to any of SEQ ID NO: 1-3 is capable of reducing the detectable amount of GFAP RNA in vitro by at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, or at least 90% when administered according to the standard cell assay. In certain embodiments, an oligomeric compound complementary to SEQ ID NO: 1, SEQ ID NO: 2915, or SEQ ID NO: 2916 is capable of decreasing the amount of GFAP in vitro by at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, or at least 90% when administered according to the standard in vitro assay. In certain embodiments, an oligomeric compound complementary to SEQ ID NO: 1. SEQ ID NO: 2, or SEQ ID NO: 3 is capable of reducing the detectable amount of GFAP RNA in the CSF of a subject by at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, or at least 90%. In certain embodiments, an oligomeric compound complementary to SEQ ID NO: 1, SEQ ID NO: 2, or SEQ ID NO: 3 is capable of decreasing the detectable amount of GFAP in the CSF of a subject by at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, or at least 90%.


C. Certain Target Nucleic Acids in Certain Tissues

In certain embodiments, oligomeric compounds comprise or consist of an oligonucleotide comprising a portion that is complementary to a target nucleic acid, wherein the target nucleic acid is expressed in a pharmacologically relevant tissue. In certain embodiments, the pharmacologically relevant tissues are the cells and tissues that comprise the central nervous system (CNS). Such tissues include the brain and spinal cord. In certain embodiments, the pharmacologically relevant tissues include white matter tracts across the brain and spinal cord, such tissues include the corpus callosum, cortex, cerebellum, hippocampus, brain stem, striatum, and spinal cord. In certain embodiments, the pharmacologically relevant tissues include the cortex, cerebellum, hippocampus, brain stem, and spinal cord. In certain embodiments, the pharmacologically relevant cells are oligodendrocytes and oligodendrocyte progenitor cells. In certain embodiments, the pharmacologically relevant cells are Schwann cells or Schwann cell progenitors.


VI. Certain Pharmaceutical Compositions

In certain embodiments, described herein are pharmaceutical compositions comprising one or more oligomeric compounds. In certain embodiments, the one or more oligomeric compounds each consists of a modified oligonucleotide. In certain embodiments, the pharmaceutical composition comprises a pharmaceutically acceptable diluent or carrier. In certain embodiments, a pharmaceutical composition comprises or consists of a sterile saline solution and one or more oligomeric compound. In certain embodiments, the sterile saline is pharmaceutical grade saline. In certain embodiments, a pharmaceutical composition comprises or consists of one or more oligomeric compound and sterile water. In certain embodiments, the sterile water is pharmaceutical grade water. In certain embodiments, a pharmaceutical composition comprises or consists of one or more oligomeric compound and phosphate-buffered saline (PBS). In certain embodiments, the sterile PBS is pharmaceutical grade PBS. In certain embodiments, a pharmaceutical composition comprises or consists of one or more oligomeric compound and artificial cerebrospinal fluid (“artificial CSF” or “aCSF”). In certain embodiments, the artificial cerebrospinal fluid is pharmaceutical grade.


In certain embodiments, a pharmaceutical composition comprises a modified oligonucleotide and artificial cerebrospinal fluid. In certain embodiments, a pharmaceutical composition consists of a modified oligonucleotide and artificial cerebrospinal fluid. In certain embodiments, a pharmaceutical composition consists essentially of a modified oligonucleotide and artificial cerebrospinal fluid. In certain embodiments, the artificial cerebrospinal fluid is pharmaceutical grade.


In certain embodiments, pharmaceutical compositions comprise one or more oligomeric compound and one or more excipients. In certain embodiments, excipients are selected from water, salt solutions, alcohol, polyethylene glycols, gelatin, lactose, amylase, magnesium stearate, talc, silicic acid, viscous paraffin hydroxymethylcellulose and polyvinylpyrrolidone.


In certain embodiments, oligomeric compounds may be admixed with pharmaceutically acceptable active and/or inert substances for the preparation of pharmaceutical compositions or formulations. Compositions and methods for the formulation of pharmaceutical compositions depend on a number of criteria, including, but not limited to, route of administration, extent of disease, or dose to be administered.


In certain embodiments, pharmaceutical compositions comprising an oligomeric compound encompass any pharmaceutically acceptable salts of the oligomeric compound, esters of the oligomeric compound, or salts of such esters. In certain embodiments, pharmaceutical compositions comprising oligomeric compounds comprising one or more oligonucleotide, upon administration to a subject, including a human, are capable of providing (directly or indirectly) the biologically active metabolite or residue thereof. Accordingly, for example, the disclosure is also drawn to pharmaceutically acceptable salts of oligomeric compounds, prodrugs, pharmaceutically acceptable salts of such prodrugs, and other bioequivalents. Suitable pharmaceutically acceptable salts include, but are not limited to, sodium and potassium salts. In certain embodiments, prodrugs comprise one or more conjugate group attached to an oligonucleotide, wherein the conjugate group is cleaved by endogenous nucleases within the body.


Lipid moieties have been used in nucleic acid therapies in a variety of methods. In certain such methods, the nucleic acid, such as an oligomeric compound, is introduced into preformed liposomes or lipoplexes made of mixtures of cationic lipids and neutral lipids. In certain methods, DNA complexes with mono- or poly-cationic lipids are formed without the presence of a neutral lipid. In certain embodiments, a lipid moiety is selected to increase distribution of a pharmaceutical agent to a particular cell or tissue. In certain embodiments, a lipid moiety is selected to increase distribution of a pharmaceutical agent to fat tissue. In certain embodiments, a lipid moiety is selected to increase distribution of a pharmaceutical agent to muscle tissue.


In certain embodiments, pharmaceutical compositions comprise a delivery system. Examples of delivery systems include, but are not limited to, liposomes and emulsions. Certain delivery systems are useful for preparing certain pharmaceutical compositions including those comprising hydrophobic compounds. In certain embodiments, certain organic solvents such as dimethylsulfoxide are used.


In certain embodiments, pharmaceutical compositions comprise one or more tissue-specific delivery molecules designed to deliver the one or more pharmaceutical agents comprising an oligomeric compound provided herein to specific tissues or cell types. For example, in certain embodiments, pharmaceutical compositions include liposomes coated with a tissue-specific antibody.


In certain embodiments, pharmaceutical compositions comprise a co-solvent system. Certain of such co-solvent systems comprise, for example, benzil alcohol, a nonpolar surfactant, a water-miscible organic polymer, and an aqueous phase. In certain embodiments, such co-solvent systems are used for hydrophobic compounds. A non-limiting example of such a co-solvent system is the VPD co-solvent system, which is a solution of absolute ethanol comprising 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant Polysorbate 80™ 65% w/v polyethylene glycol 300. The proportions of such co-solvent systems may be varied considerably without significantly altering their solubility and toxicity characteristics. Furthermore, the identity of co-solvent components may be varied: for example, other surfactants may be used instead of Polysorbate 80™: the fraction size of polyethylene glycol may be varied; other biocompatible polymers may replace polyethylene glycol, e.g., polyvinyl pyrrolidone; and other sugars or polysaccharides may substitute for dextrose.


In certain embodiments, pharmaceutical compositions are prepared for oral administration. In certain embodiments, pharmaceutical compositions are prepared for buccal administration. In certain embodiments, a pharmaceutical composition is prepared for administration by injection (e.g., intravenous, subcutaneous, intramuscular, intrathecal (IT), intracerebroventricular (ICV), intraneural, perineural, etc.). In certain of such embodiments, a pharmaceutical composition comprises a carrier and is formulated in aqueous solution, such as water or physiologically compatible buffers such as Hanks's solution. Ringer's solution, or physiological saline buffer. In certain embodiments, other ingredients are included (e.g., ingredients that aid in solubility or serve as preservatives). In certain embodiments, injectable suspensions are prepared using appropriate liquid carriers, suspending agents and the like. Certain pharmaceutical compositions for injection are presented in unit dosage form. e.g., in ampoules or in multi-dose containers. Certain pharmaceutical compositions for injection are suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Certain solvents suitable for use in pharmaceutical compositions for injection include, but are not limited to, lipophilic solvents and fatty oils, such as sesame oil, synthetic fatty acid esters, such as ethyl oleate or triglycerides, and liposomes.


Under certain conditions, certain compounds disclosed herein act as acids. Although such compounds may be drawn or described in protonated (free acid) form, or ionized and in association with a cation (salt) form, aqueous solutions of such compounds exist in equilibrium among such forms. For example, a phosphate linkage of an oligonucleotide in aqueous solution exists in equilibrium among free acid, anion and salt forms. Unless otherwise indicated, compounds described herein are intended to include all such forms. Moreover, certain oligonucleotides have several such linkages, each of which is in equilibrium. Thus, oligonucleotides in solution exist in an ensemble of forms at multiple positions all at equilibrium. The term “oligonucleotide” is intended to include all such forms. Drawn structures necessarily depict a single form. Nevertheless, unless otherwise indicated, such drawings are likewise intended to include corresponding forms. Herein, a structure depicting the free acid of a compound followed by the term “or salt thereof” expressly includes all such forms that may be fully or partially protonated/de-protonated/in association with a cation. In certain instances, one or more specific cation is identified.


In certain embodiments, modified oligonucleotides or oligomeric compounds are in aqueous solution with sodium. In certain embodiments, modified oligonucleotides or oligomeric compounds are in aqueous solution with potassium. In certain embodiments, modified oligonucleotides or oligomeric compounds are in PBS. In certain embodiments, modified oligonucleotides or oligomeric compounds are in water. In certain such embodiments, the pH of the solution is adjusted with NaOH and/or HCl to achieve a desired pH.


Herein, certain specific doses are described. A dose may be in the form of a dosage unit. For clarity, a dose (or dosage unit) of a modified oligonucleotide or an oligomeric compound in milligrams indicates the mass of the free acid form of the modified oligonucleotide or oligomeric compound. As described above, in aqueous solution, the free acid is in equilibrium with anionic and salt forms. However, for the purpose of calculating dose, it is assumed that the modified oligonucleotide or oligomeric compound exists as a solvent-free, sodium-acetate free, anhydrous, free acid. For example, where a modified oligonucleotide or an oligomeric compound is in solution comprising sodium (e.g., saline), the modified oligonucleotide or oligomeric compound may be partially or fully de-protonated and in association with Na+ ions. However, the mass of the protons are nevertheless counted toward the weight of the dose, and the mass of the Na+ ions are not counted toward the weight of the dose. Thus, for example, a dose, or dosage unit, of 10 mg of Compound No. 1362458, equals the number of fully protonated molecules that weighs 10 mg. This would be equivalent to 10.47 mg of solvent-free, sodium acetate-free, anhydrous sodiated Compound No. 1362458. When an oligomeric compound comprises a conjugate group, the mass of the conjugate group is included in calculating the dose of such oligomeric compound. If the conjugate group also has an acid, the conjugate group is likewise assumed to be fully protonated for the purpose of calculating dose.


VH. Certain Compositions
1. Compound No. 1166998

In certain embodiments, Compound No. 1166998 is characterized as a 6-104 MOE gapmer having a sequence (from 5′ to 3′) of CAGTATTACCTCTACTAGTC (SEQ ID NO: 2905), wherein each of nucleosides 1-6 and 17-20 (from 5′ to 3′) are 2′-β-D-MOE nucleosides and each of nucleosides 7-16 are 2′-β-D-deoxynucleosides, wherein the internucleoside linkages between nucleosides 2 to 3, 3 to 4, 4 to 5, 5 to 6, 6 to 7, and 17 to 18 are phosphodiester internucleoside linkages and the internucleoside linkages between nucleosides 1 to 2, 7 to 8, 8 to 9, 9 to 10, 10 to 11, 11 to 12, 12 to 13, 13 to 14, 14 to 15, 15 to 16, 16 to 17, 18 to 19, and 19 to 20 are phosphorothioate internucleoside linkages, and wherein each cytosine is a 5-methylcytosine.


In certain embodiments, Compound No. 1166998 is represented by the following chemical notation: mCesAeoGeoTeoAeoTeoTdsAdsmCdsmCdsTdsmCdsTdsAdsmCdsTdsAeoGesTesmCe (SEQ ID NO: 2905), wherein:

    • A=an adenine nucleobase,
    • mC=a 5-methylcytosine nucleobase,
    • G=a guanine nucleobase,
    • T=a thymine nucleobase,
    • e=a 2′-β-D-MOE sugar moiety.
    • d=a 2′-β-D-deoxyribosyl sugar moiety,
    • s=a phosphorothioate internucleoside linkage, and
    • o=a phosphodiester internucleoside linkage.


In certain embodiments, Compound No. 1166998 is represented by the following chemical structure:




embedded image


Structure 1. Compound No. 1166998

In certain embodiments, the sodium salt of Compound No. 1100998 is represented by the following chemical structure:




embedded image


Structure 2. The sodium salt of Compound No. 1166998


2. Compound No. 1166985

In certain embodiments. Compound No. 1166985 is characterized as a 6-104 MOE gapmer having a sequence (from 5′ to 3′) of CACATTCACTAATATTTAAC (SEQ ID NO: 2904), wherein each of nucleosides 1-6 and 17-20 (from 5′ to 3′) are 2′-β-D-MOE nucleosides and each of nucleosides 7-16 are 2′-1-D-deoxynucleosides, wherein the internucleoside linkages between nucleosides 2 to 3, 3 to 4, 4 to 5, 5 to 6, 6 to 7, and 17 to 18 are phosphodiester internucleoside linkages and the internucleoside linkages between nucleosides 1 to 2, 7 to 8, 8 to 9, 9 to 10, 10 to 11, 11 to 12, 12 to 13, 13 to 14, 14 to 15, 15 to 16, 16 to 17, 18 to 19, and 19 to 20 are phosphorothioate internucleoside linkages, and wherein each cytosine is a 5-methylcytosine.


In certain embodiments, Compound No. 1166985 is represented by the following chemical notation: mCesAeomCeoAeoTeoTeomCdsAdsmCdsAdsmCdsTdsAdsAdsTdsAdsTdsTdsTdsTeoAesAesmCe (SEQ ID NO: 2904), wherein:

    • A=an adenine nucleobase.
    • mC=a 5-methylcytosine nucleobase.
    • G=a guanine nucleobase,
    • T=a thymine nucleobase,
    • e=a 2′-β-D-MOE sugar moiety,
    • d=a 2′-β-D-deoxyribosyl sugar moiety,
    • s=a phosphorothioate internucleoside linkage, and
    • o=a phosphodiester internucleoside linkage.


In certain embodiments, Compound No. 1160985 is represented by the following chemical structure:




embedded image


Structure 3. Compound No. 1166985

In certain embodiments, the sodium salt of Compound No. 1160985 is represented by the following chemical structure:




embedded image


Structure 4. The sodium salt of Compound No. 1166985


3. Compound No. 1166954

In certain embodiments. Compound No. 1166954 is characterized as a 5-10-5 MOE gapmer having a sequence (from 5′ to 3′) of CCAGTGTCTTCACTTTGCTC (SEQ ID NO: 2903), wherein each of nucleosides 1-5 and 16-20 (from 5′ to 3′) are 2′-β-D-MOE nucleosides and each of nucleosides 6-15 are 2′-1-D-deoxynucleosides, wherein the internucleoside linkages between nucleosides 2 to 3, 3 to 4, 4 to 5, 5 to 6, 16 to 17, and 17 to 18 are phosphodiester internucleoside linkages and the internucleoside linkages between nucleosides 1 to 2, 6 to 7, 7 to 8, 8 to 9, 9 to 10, 10 to 11, 11 to 12, 12 to 13, 13 to 14, 14 to 15, 15 to 16, 18 to 19, and 19 to 20 are phosphorothioate internucleoside linkages, and wherein each cytosine is a 5-methylcytosine.


In certain embodiments, Compound No. 1166954 is represented by the following chemical notation: mCesmCeoAeoGeoTeoGdsTdsmCdsTdsTdsmCdsAdsmCdsTdsTdsTeoGeomCesTesmCe (SEQ ID NO: 2903), wherein:

    • A=an adenine nucleobase,
    • mC=a 5-methylcytosine nucleobase,
    • G=a guanine nucleobase,
    • T=a thymine nucleobase,
    • e=a 2′-β-D-MOE sugar moiety,
    • d=a 2′-β-D-deoxyribosyl sugar moiety,
    • s=a phosphorothioate internucleoside linkage, and
    • o=a phosphodiester internucleoside linkage.


In certain embodiments, Compound No. 1160954 is represented by the following chemical structure:




embedded image


Structure 5: Compound No. 11669154

In certain embodiments, the sodium salt of Compound No. 1160954 is represented by the following chemical structure:




embedded image


Structure 6: The sodium salt of Compound No. 1166914


4. Compound No. 1072813

In certain embodiments. Compound No. 1072813 is characterized as a 5-10-5 MOE gapmer having a sequence (from 5′ to 3′) of GCAACAGTTTCCATAACAAC (SEQ ID NO: 2902), wherein each of nucleosides 1-5 and 16-20 (from 5′ to 3′) are 2′-β-D-MOE nucleosides and each of nucleosides 6-15 are 2′-1-D-deoxynucleosides, wherein the internucleoside linkages between nucleosides 2 to 3, 3 to 4, 4 to 5, 16 to 17, and 17 to 18 are phosphodiester internucleoside linkages and the internucleoside linkages between nucleosides 1 to 2, 5 to 6, 6 to 7, 7 to 8, 8 to 9, 9 to 10, 10 to 11, 11 to 12, 12 to 13, 13 to 14, 14 to 15, 15 to 16, 18 to 19, and 19 to 20 are phosphorothioate internucleoside linkages, and wherein each cytosine is a 5-methylcytosine.


In certain embodiments, Compound No. 1072813 is represented by the following chemical notation-GesmCeoAeoAeomCesAdsGdsTdsTdsTdsmCdsmCdsAdsTdsAdsAeomCeoAesAesmCe (SEQ ID NO: 2902), wherein:

    • A=an adenine nucleobase,
    • mC=a 5-methylcytosine nucleobase,
    • G=a guanine nucleobase,
    • T=a thymine nucleobase,
    • e=a 2′-β-D-MOE sugar moiety,
    • d=a 2′-β-D-deoxyribosyl sugar moiety,
    • s=a phosphothioate internucleoside linkage, and
    • o=a phosphodiester internucleoside linkage.


In certain embodiments, Compound No. 1072813 is represented by the following chemical structure:




embedded image


Structure 7: Compound No. 1072813

In certain embodiments, the sodium salt of Compound No. 1072813 is represented by the following chemical structure:




embedded image


Structure 8: The sodium salt of Compound No. 1072813


5. Compound No. 1199983

In certain embodiments. Compound No. 1199983 is characterized as a 5-10-5 MOE gapmer having a sequence (from 5′ to 3′) of TGGTCCTAAATATTCTAGTC (SEQ ID NO: 2906), wherein each of nucleosides 1-5 and 16-20 (from 5′ to 3′) are 2′-β-D-MOE nucleosides and each of nucleosides 6-15 are 2′-1-D-deoxynucleosides, wherein the internucleoside linkages between nucleosides 2 to 3, 3 to 4, 4 to 5, 5 to 6, 16 to 17, and 17 to 18 are phosphodiester internucleoside linkages and the internucleoside linkages between nucleosides 1 to 2, 6 to 7, 7 to 8, 8 to 9, 9 to 10, 10 to 11, 11 to 12, 12 to 13, 13 to 14, 14 to 15, 15 to 16, 18 to 19, and 19 to 20 are phosphorothioate internucleoside linkages, and wherein each cytosine is a 5-methylcytosine.


In certain embodiments, Compound No. 1199983 is represented by the following chemical notation: TesGeoGeoTeomCeomCdsTdsAdsAdsAdsTdsAdsTdsTdsTdsmCdsTeoAeoGesTesmCe (SEQ ID NO: 2906), wherein:

    • A=an adenine nucleobase,
    • mC=a 5-methylcytosine nucleobase,
    • G=a guanine nucleobase,
    • T=a thymine nucleobase,
    • e=a 2′-β-D-MOE sugar moiety,
    • d=a 2′-β-D-deoxyribosyl sugar moiety,
    • s=a phosphorothioate internucleoside linkage, and
    • o=a phosphodiester internucleoside linkage.


In certain embodiments, Compound No. 1199983 is represented by the following chemical structure:




embedded image


Structure 9: Compound No. 1199983

In certain embodiments, the sodium salt of Compound No. 1199983 is represented by the following chemical structure:




embedded image


Structure 10: The sodium salt or Compound No. 1199993


6. Compound No. 1166721

In certain embodiments. Compound No. 1166721 is characterized as a 5-8-5 MOE gapmer having a sequence (from 5′ to 3′) of TGGTCCTAAATATTCTAGTC (SEQ ID NO: 2901), wherein each of nucleosides 1-5 and 14-18 (from 5′ to 3′) are 2′-β-D-MOE nucleosides and each of nucleosides 6-15 are 2′-1-D-deoxynucleosides, wherein the internucleoside linkages between nucleosides 2 to 3, 3 to 4, 4 to 5, 14 to 15 and 15 to 16 are phosphodiester internucleoside linkages and the internucleoside linkages between nucleosides 1 to 2, 5 to 6, 6 to 7, 7 to 8, 8 to 9, 9 to 10, 10 to 11, 11 to 12, 12 to 13, 13 to 14, 16 to 17, and 17 to 18 are phosphorothioate internucleoside linkages, and wherein each cytosine is a 5-methylcytosine.


In certain embodiments, Compound No. 1166721 is represented by the following chemical notation-TesGeoGeomCeoAdsGdsTdsAdsTdsTdsAdsmCdsmCdsTeomCeoTesAesmCe


(SEQ ID NO: 2901), wherein:

    • A=an adenine nucleobase,
    • mC=a 5-methylcytosine nucleobase,
    • G=a guanine nucleobase,
    • T=a thymine nucleobase,
    • e=a 2′-β-D-MOE sugar moiety,
    • d=a 2′-β-D-deoxyribosyl sugar moiety.
    • s=a phosphorothioate internucleoside linkage, and
    • o=a phosphodiester internucleoside linkage.


In certain embodiments, Compound No. 1160721 is represented by the following chemical structure:




embedded image


Structure 11: Compound No. 1166721

In certain embodiments, the sodium salt of Compound No. 1166721 is represented by the following chemical structure:




embedded image


Structure 12: The sodium salt of Compound No. 1166721


VIII. Certain Hotspot Regions

In certain embodiments, nucleobases in the ranges specified below comprise a hotspot region of GFAP nucleic acid. In certain embodiments, modified oligonucleotides that are complementary to a hotspot region of GFAP nucleic acid achieve an average of more than 50% reduction of GFAP RNA in vitro in the standard cell assay. In certain embodiments, modified oligonucleotides that are complementary to a hotspot region of GFAP nucleic acid achieve an average of 75% or greater reduction of GFAP RNA in vivo in the standard in vivo assay.


1. Nucleobases 9324-9348 of SEQ ID NO: 2 In certain embodiments, nucleobases 9324-9348 of SEQ ID NO: 2 comprise a hotspot region. In certain embodiments, modified oligonucleotides are complementary to a portion of nucleobases 9324-9348 of SEQ ID NO: 2. In certain embodiments, modified oligonucleosides are 20nucleobases in length. In certain embodiments, modified oligonucleotides are 18 nucleobases in length. In certain embodiments, modified oligonucleotides are gapmers. In certain embodiments, the gapmers are MOE gapmers. In certain embodiments, the internucleoside linkages of the modified oligonucleotides are phosphoothioate internucleoside linkages and phosphodiester internucleoside linkages. In certain embodiments, the phosphodiester (“o”) and phosphorthioate (“s”) internucleoside linkages are arranged in order from 5′ to 3′: In certain embodiments, modified nucleotides have an internucleoside linkage motif of sooosssssssssssooss, sooooossssssssssoss, soooossssssssssooss, sooosssssssssooss, or sooossssssssssoooss, wherein each “s” represents a phosphorothioate internucleoside linkage and each “o” represents a phosphodiester internucleoside linkage.


The nucleobase sequences of SEQ ID Nos: 21, 1177, 2321, 2398, 2808-2809, 2840-2842, and 2853-2854 are complementary to a portion of nucleobases 9324-9348 of SEQ ID NO: 2.


The nucleobase sequence of Compound Nos.: 1048181-1048182, 1104071-1104072, 1166746-1166748, 1166803-1166808, 1166894-1166899, 1166985-1166990, 1174016, and 1174018 are complementary to a portion of nucleobases 9324-9348 of SEQ ID NO: 2.


In certain embodiments, modified oligonucleotides complementary to a portion of nucleobases 9324-9348 of SEQ ID NO: 2 achieve at least 7% reduction of GFAP RNA in vitro in the standard cell assay. In certain embodiments, modified oligonucleotides complementary to a portion of nucleobases 9324-9348 of SEQ ID NO: 2 achieve an average of 42% reduction of GFAP RNA in vitro in the standard cell assay. In certain embodiments, modified oligonucleotides complementary to a portion of nucleobases 9324-9348 of SEQ ID NO: 2 achieve an average of 81% reduction of GFAP RNA in vivo in the standard in vivo assay.


2. Nucleobases 9459-9480 of SEO ID NO: 2

In certain embodiments, nucleobases 9459-9480 of SEQ ID NO: 2 comprise a hotspot region. In certain embodiments, modified oligonucleotides are complementary to a portion of nucleobases 9459-9480 of SEQ ID NO: 2. In certain embodiments, modified oligonucleotides are 20 nucleobases in length. In certain embodiments, modified oligonucleotides are 18 nucleobases in length. In certain embodiments, modified oligonucleotides are gapmers. In certain embodiments, the gapmers are MOE gapmers. In certain embodiments, the internucleoside linkages of the modified oligonucleotides are phosphorothioate internucleoside linkages and phosphodiester internucleoside linkages. In certain embodiments, the phosphodiester (“o”) and phosphorothioate (“s”) internucleoside linkages are arranged in order from 5′ to 3′: In certain embodiments, modified nucleotides have an internucleoside linkage motif of sooosssssssssssooss or soooossssssssssooss, wherein each “s” represents a phosphorothioate internucleoside linkage and each “o” represents a phosphodiester internucleoside linkage.


The nucleobase sequences of SEQ ID Nos: 555, 2093, 2170, and 2813 are complementary to a portion of nucleobases 9459-9480 of SEQ ID NO: 2.


The nucleobase sequence of Compound Nos.: 1048190, 1104116-1104117, and 1199982-1199984 are complementary to a portion of nucleobases 9459-9480 of SEQ ID NO: 2.


In certain embodiments, modified oligonucleotides complementary to a portion of nucleobases 9459-9480 of SEQ ID NO: 2 achieve at least 26% reduction of GFAP RNA in vitro in the standard cell assay. In certain embodiments, modified oligonucleotides complementary to a portion of nucleobases 9459-9480 of SEQ ID NO: 2 achieve an average of 42% reduction of GFAP RNA in vitro in the standard cell assay. In certain embodiments, modified oligonucleotides complementary to a portion of nucleobases 9459-9480 of SEQ ID NO: 2 achieve an average of 91% reduction of GFAP RNA in vivo in the standard in vivo assay.


3. Nucleobases 9530-9580 of SEO ID NO: 2

In certain embodiments, nucleobases 9530-9580 of SEQ ID NO: 2 comprise a hotspot region. In certain embodiments, modified oligonucleotides are complementary to a portion of nucleobases 9530-9580 of SEQ ID NO: 2. In certain embodiments, modified oligonucleotides are 20 nucleobases in length. In certain embodiments, modified oligonucleotides are 18 nucleobases in length. In certain embodiments, modified oligonucleotides are gapmers. In certain embodiments, the gapmers are MOE gapmers. In certain embodiments, the internucleoside linkages of the modified oligonucleotides are phosphorothioate internucleoside linkages and phosphodiester internucleoside linkages. In certain embodiments, the phosphodiester (“o”) and phosphorothioate (“s”) internucleoside linkages are arranged in order from 5′ to 3′: In certain embodiments, modified nucleotides have an internucleoside linkage motif of sooosssssssssssooss, sooooossssssssssoss, soooossssssssssooss, sooosssssssssooss, or sooossssssssssoooss, wherein each “s” represents a phosphorothioate internucleoside linkage and each “o” represents a phosphodiester internucleoside linkage.


The nucleobase sequences of SEQ ID Nos.: 20, 88, 166, 1331, 1408, 1485, 1637, 1713, 1714, 1789, 1790, 1637, 1638, 1865, 1866, 1941, 2018, 2095, 2172, 2249, 2326, 2403, 2480, 2557, 2633, 2709, 2785, 2816-2818, 2859, 2861, and 2886-2887 are complementary to a portion of nucleobases 9530-9580 of SEQ ID NO: 2.


The nucleobase sequence of Compound Nos.: 1048200-1048201, 1073062-1073064, 1104142-1104161, 1166719-1166721, 1166816-1166823, 1166826, 1166907-1166920, 1166998-1167011, 1174024, 1174026, and 1174029-1174030 are complementary to a portion of nucleobases 9530-9580 of SEQ ID NO: 2.


In certain embodiments, modified oligonucleotides complementary to a portion of nucleobases 9530-9580 of SEQ ID NO: 2 achieve at least 27% reduction of GFAP RNA in vitro in the standard cell assay. In certain embodiments, modified oligonucleotides complementary to a portion of nucleobases 9530-9580 of SEQ ID NO: 2 achieve an average of 52% reduction of GFAP RNA in vitro in the standard cell assay. In certain embodiments, modified oligonucleotides complementary to a portion of nucleobases 9530-9580 of SEQ ID NO: 2 achieve an average of 82% reduction of GFAP RNA in vivo in the standard in vivo assay.


4. Nucleobases 12006-12038 of SEO ID NO: 2

In certain embodiments, nucleobases 12006-12038 of SEQ ID NO: 2 comprise a hotspot region. In certain embodiments, modified oligonucleotides are complementary to a portion of nucleobases 12006-12038 of SEQ ID NO: 2.


In certain embodiments, modified oligonucleotides are 20 nucleobases in length. In certain embodiments, modified oligonucleotides are 18 nucleobases in length. In certain embodiments, modified oligonucleotides are gapmers. In certain embodiments, the gapmers are MOE gapmers. In certain embodiments, the internucleoside linkages of the modified oligonucleotides are phosphorothioate internucleoside linkages and phosphodiester internucleoside linkages. In certain embodiments, the phosphodiester (“o”) and phosphorothioate (“s”) internucleoside linkages are arranged in order from 5′ to 3′: In certain embodiments, modified nucleotides have an internucleoside linkage motif of sooosssssssssssooss, wherein each “s” represents a phosphoothioate internucleoside linkage and each “o” represents a phosphodiester internucleoside linkage.


The nucleobase sequences of SEQ ID Nos.: 815, 893, 971, 1049, 1269, 1270, 1346, 1423, 1499, 1500, 1660, 1736, 2655, and 2731 are complementary to a portion of nucleobases 12006-12038 of SEQ ID NO: 2.


The nucleobase sequence of Compound Nos.: 1047362-1047365, 1072813-1072818, and 1103276-1103279 are complementary to a portion of nucleobases 12006-12038 of SEQ ID NO: 2.


In certain embodiments, modified oligonucleotides complementary to a portion of nucleobases 12006-12038 of SEQ ID NO: 2 achieve at least 29% reduction of GFAP RNA in vitro in the standard cell assay. In certain embodiments, modified oligonucleotides complementary to a portion of nucleobases 12006-12038 of SEQ ID NO: 2 achieve an average of 52% reduction of GFAP RNA in vitro in the standard cell assay. In certain embodiments, modified oligonucleotides complementary to a portion of nucleobases 12006-12038 of SEQ ID NO: 2 achieve an average of 82% reduction of GFAP RNA in vivo in the standard in vivo assay.


5. Nucleobases 13038-13058 of SEO ID NO: 2

In certain embodiments, nucleobases 13038-13058 of SEQ ID NO: 2 comprise a hotspot region. In certain embodiments, modified oligonucleotides are complementary to a portion of nucleobases 13038-13058 of SEQ ID NO: 2. In certain embodiments, modified oligonucleotides are 20 nucleobases in length. In certain embodiments, modified oligonucleotides are 18 nucleobases in length. In certain embodiments, modified oligonucleotides are gapmers. In certain embodiments, the gapmers are MOE gapmers. In certain embodiments, the internucleoside linkages of the modified oligonucleotides are phosphorothioate internucleoside linkages and phosphodiester internucleoside linkages. In certain embodiments, the phosphodiester (“o”) and phosphorothioate (“s”) internucleoside linkages are arranged in order from 5′ to 3′: In certain embodiments, modified nucleotides have an internucleoside linkage motif of sooosssssssssssooss, sooooossssssssssoss, or soooossssssssssooss, wherein each “s” represents a phosphorothioate internucleoside linkage and each “o” represents a phosphodiester internucleoside linkage.


The nucleobase sequences of SEQ ID Nos.: 825 and 1973 are complementary to a portion of nucleobases 13038-13058 of SEQ ID NO: 2.


The nucleobase sequence of Compound Nos.: 1047522, 1166954, and 1167046 are complementary to a portion of nucleobases 13038-13058 of SEQ ID NO: 2.


In certain embodiments, modified oligonucleotides complementary to a portion of nucleobases 13038-13058 of SEQ ID NO: 2 achieve at least 27% reduction of GFAP RNA in vitro in the standard cell assay. In certain embodiments, modified oligonucleotides complementary to a portion of nucleobases 13038-13058 of SEQ ID NO: 2 achieve an average of 41% reduction of GFAP RNA in vitro in the standard cell assay. In certain embodiments, modified oligonucleotides complementary to a portion of nucleobases 13038-13058 of SEQ ID NO: 2 achieve an average of 84% reduction of GFAP RNA in vivo in the standard in vivo assay.


6. Additional Hotspot Regions

In certain embodiments, the ranges described in the Table below comprise hotspot regions. Each hotspot region begins with the nucleobase of SEQ ID NO: 2 identified in the “Start Site SEQ ID NO: 2” column and ends with the nucleobase of SEQ ID NO: 2 identified in the “Stop Site SEQ ID NO: 2” column. In certain embodiments, modified oligonucleotides are complementary within any of the hotspot regions 1-14, as defined in the table below. In certain embodiments, modified oligonucleotides are 18 nucleobases in length. In certain embodiments, modified oligonucleotides are 20 nucleobases in length. In certain embodiments, modified oligonucleotides are gapmers. In certain embodiments, modified oligonucleotides are 5-8-5, 5-10-3, 4-10-6, 6-104, or 5-10-5 MOE gapmers.


The nucleobase sequence of compounds listed in the “Compound No, in range” column in the table below are complementary to SEQ ID NO: 2 within the specified hotspot region. The nucleobase sequence of the oligonucleotides listed in the “SEQ ID NO: in range” column in the table below are complementary to the target sequence. SEQ ID NO: 2, within the specified hotspot region.


In certain embodiments, modified oligonucleotides complementary to nucleobases within the hotspot region achieve at least “Min. % Red, in vitro” (minimum % reduction, relative to untreated control cells) of GFAP RNA in vitro in the standard cell assay, as indicated in the table below. In certain embodiments, modified oligonucleotides complementary to nucleobases within the hotspot region achieve an average of “Avg.% Red, in vitro” (average % reduction, relative to untreated control cells) of GFAP RNA in vitro in the standard cell assay, as indicated in the table below. In certain embodiments, modified oligonucleotides complementary to nucleobases within the hotspot region achieve a maximum of “Max. % Red, in vitro” (maximum % reduction, relative to untreated control cells) of GFAP RNA in vitro in the standard cell assay, as indicated in the table below. In certain embodiments, modified oligonucleotides complementary to nucleobases within the hotspot region achieve an average of “Avg. % Red, in vivo” (average % reduction, relative to PBS-treated animals) of GFAP RNA in vivo in the standard in vivo assay, as indicated in the table below.









TABLE 1







GFAP Hotspots
















Start
Start
Min. %
Max. %
Avg. %
Avg. %





Site
Site
Red.
Red.
Red.
Red.


Hotspot
SEQ ID
SEQ ID
in
In
in
in

SEQ ID NOs: in


ID
NO: 2
NO: 2
vitro
vitro
vitro
vivo
Compound No. in Range
Range


















1
9324
9348
7
78
42
81
1048181-1048182,
21, 1177, 2321, 2398,









1104071-1104072,
2808-2809, 2840-









1166746-1166748,
2842, 2853-2854









1166803-1166808,









1166894-1166899,









1166985-1166990,









1174016, 1174018


2
9459
9480
26
65
42
91
1048190, 1104116-
555, 2093, 2170,









1104117, 1199982-1199984
2813


3
9530
9580
18
82
52
82
1048199-1048201,
20, 88, 166, 1331,









1073062-1073064,
1408, 1485, 1637,









1104142-1104161,
1713, 1714, 1789,









1166719-1166721,
1790, 1637, 1638,









1166816-1166823,
1865, 1866, 1941,









1166826, 1166907-
2018, 2095, 2172,









1166920, 1166998-
2249, 2326, 2403,









1167011, 1174024,
2480, 2557, 2633,









1174026, 1174029-1174030
2709, 2785, 2816-










2818, 2859, 2861,










2886-2887


4
12006
12038
29
75
52
82
1047362-1047365,
815, 893, 971, 1049









1072813-1072818,
1269, 1270, 1346,









1103276-1103279
1423, 1499, 1500,










1660, 1736, 2655,










2731


5
13038
13058
27
56
41
84
1047522, 1166954, 1167046
825, 1973


6
8530
8557
14
79
52
89
1047706-1047708,
213, 291, 369, 1601,









1103567-1103571
1753, 1829, 1905,










1982


7
8731
8754
44
64
53
88
1047733-1047735,
1072, 1149, 1227,









1103591, 1103592,
2291, 2368









1174050, 1174051,









1174056, 1174058,









1174062, 1174063


8
8749
8807
25
92
52
75
1047601-1047610,
51, 129, 207, 752,









1072854-1072868,
830, 908, 986, 1064,









1103462-1103472,
1141, 1219, 1279,









1166738-1166740,
1280-1282, 1356-









1166742, 1166744,
1359, 1433-1436,









1166793-1166795,
1510-1512, 1595,









1166798-1166800,
1671, 1747, 2206,









1166885-1166890,
2283, 2360, 2437,









1166975, 1166982,
2514, 2590, 2666,









1174012-1174013
2742, 2835-2837,










2839, 2850-2851,










2866


9
9511
9536
32
90
55
86
1048197, 1073060,
1100, 1484, 1864,









1104129-1104133,
1940, 2017, 2094,









1166749-1166751,
2171, 2819-2821,









1166809-1166810,
2856









1166812-1166813,









1166900-1166903,









1166991-1166994, 1174020


10
9565
9602
20
75
53
82
1048202-1048204,
244, 322, 400, 1562,









1073065, 1104165-
1639, 1715, 1791,









1104179, 1166757-
1867, 1943, 2020,









1166760, 1166831,
2173, 2250, 2327,









1166835, 1166926-
2404, 2481, 2558,









1166929, 1167012,
2634, 2710, 2786,









1167017, 1167018,
2873-2876, 2888,









1174031, 1174034
2891


11
11155
11184
37
82
69
85
1073093-1073095,
1339, 1569, 2028,









1104307-1104312,
2105, 2182, 2259,









1167024-1167027,
2336, 2413, 2822-









1166761-1166763,
2824, 2863









1166842-1166843,









1166845-1166847,









1166933-1166934,









1167024-1167027, 1174037


12
12044
12067
49
67
58
85
1047372-1047374,
348, 426, 504, 1425,









1072824-1072825,
1502









1166852, 1167033-1167036


13
12080
12108
45
88
68
79
1047384-1047388,
37, 115, 193, 271,









1072834-1072835, 1103284-
349, 1274, 1351,









1103285, 1166948, 1167040
2041, 2118


14
13333
13367
53
93
75
89
1047579-104592, 1072849-
50, 283, 361, 439,









1072850, 1166775-
517, 595, 673, 751,









1166787, 1166867,
829, 907, 985, 1063,









1166869-1166875,
1140, 1218, 1278,









1166877-1166878,
1508, 2825-2833,









1167050-1167051,
2843-2846









1167053-1167060









Nonlimiting Disclosure and Incorporation by Reference

Each of the literature and patent publications listed herein is incorporated by reference in its entirety.


While certain compounds, compositions and methods described herein have been described with specificity in accordance with certain embodiments, the following examples serve only to illustrate the compounds described herein and are not intended to limit the same. Each of the references, GenBank accession numbers, and the like recited in the present application is incorporated herein by reference in its entirety.


Although the sequence listing accompanying this filing identifies each sequence as either “RNA” or “DNA” as required, in reality, those sequences may be modified with any combination of chemical modifications. One of skill in the art will readily appreciate that such designation as “RNA” or “DNA” to describe modified oligonucleotides is, in certain instances, arbitrary. For example, an oligonucleotide comprising a nucleoside comprising a 2′-OH sugar moiety and a thymine base could be described as a DNA having a modified sugar moiety (2′-OH in place of one 2′-H of DNA) or as an RNA having a modified base (thymine (methylated uracil) in place of a uracil of RNA). Accordingly, nucleic acid sequences provided herein, including, but not limited to those in the sequence listing, are intended to encompass nucleic acids containing any combination of natural or modified RNA and/or DNA, including, but not limited to such nucleic acids having modified nucleobases. By way of further example and without limitation, an oligomeric compound having the nucleobase sequence “ATCGATCG” encompasses any oligomeric compounds having such nucleobase sequence, whether modified or unmodified, including, but not limited to, such compounds comprising RNA bases, such as those having sequence “AUCGAUCG” and those having some DNA bases and some RNA bases such as “AUCGATCG” and oligomeric compounds having other modified nucleobases, such as “ATmCGAUCG,” wherein mC indicates a cytosine base comprising a methyl group at the 5-position.


Certain compounds described herein (e.g., modified oligonucleotides) have one or more asymmetric center and thus give rise to enantiomers, diastereomers, and other stereoisomeric configurations that may be defined, in terms of absolute stereochemistry, as (R) or (S), as a or β such as for sugar anomers, or as (D) or (L), such as for amino acids, etc. Compounds provided herein that are drawn or described as having certain stereoisomeric configurations include only the indicated compounds. Compounds provided herein that are drawn or described with undefined stereochemistry include all such possible isomers, including their stereorandom and optically pure forms, unless specified otherwise. Likewise, all cis- and trans-isomers and tautomeric forms of the compounds herein are also included unless otherwise indicated. Oligomeric compounds described herein include chirally pure or enriched mixtures as well as racemic mixtures. For example, oligomeric compounds having a plurality of phosphorothioate internucleoside linkages include such compounds in which chirality of the phosphorothioate internucleoside linkages is controlled or is random. Unless otherwise indicated, compounds described herein are intended to include corresponding salt forms.


The compounds described herein include variations in which one or more atoms are replaced with a non-radioactive isotope or radioactive isotope of the indicated element. For example, compounds herein that comprise hydrogen atoms encompass all possible deuterium substitutions for each of the 1H hydrogen atoms. Isotopic substitutions encompassed by the compounds herein include but are not limited to: 2H or 3H in place of 1H, 13C or 14C in place of 12C, 15N in place of 14N, 17O or 18O in place of 16O, and 33S, 34S, 35S, or 36S in place of 32S. In certain embodiments, non-radioactive isotopic substitutions may impart new properties on the oligomeric compound that are beneficial for use as a therapeutic or research tool. In certain embodiments, radioactive isotopic substitutions may make the compound suitable for research or diagnostic purposes such as imaging.


EXAMPLES

The following examples illustrate certain embodiments of the present disclosure and are not limiting. Moreover, where specific embodiments are provided, the inventors have contemplated generic application of those specific embodiments.


Example 1: Effect of 5-10-5 MOE Gapmer Modified Oligonucleotides on Human GFAP RNA in vitro, Single Dose

Modified oligonucleotides complementary to human GFAP nucleic acid were designed and tested for their single dose effects on GFAP RNA in vitro. The modified oligonucleotides were tested in a series of experiments that had similar culture conditions.


The modified oligonucleotides in the tables below are 5-10-5 MOE gapmers with mixed PO/PS internucleoside linkages. The gapmers are 20 nucleosides in length, wherein the central gap segment consists of ten 2′-β-D-deoxynucleosides and the 5′ and 3′ wing segments each consists of five 2′-MOE modified nucleosides. The sugarmotif for the gapmers is (from 5′ to 3′): eeeeeddddddddddeecee; wherein ‘d’ represents a 2′-β-D-deoxyribosyl sugar moiety, and ‘e’ represents a 2′-MOE sugar moiety. The internucleoside linkage motif for the gapmers is (from 5′ to 3′): sooosssssssssssooss; wherein each ‘o’ represents a phosphodiester internucleoside linkage and each ‘s’ represents a phosphorothioate internucleoside linkage. Each cytosine residue is a 5-methylcytosine.


“Start site” indicates the 5′-most nucleoside to which the modified oligonucleotide is complementary in the target nucleic acid sequence. “Stop site” indicates the 3′-most nucleoside to which the modified oligonucleotide is complementary in the target nucleic acid sequence. Each modified oligonucleotide listed in the Tables below is 100% complementary to SEQ ID NO: 1 (GENBANK Accession No. NM_002055.4), or SEQ ID NO: 2 (GENBANK Accession No. NC_000017.11 truncated from nucleotides 44903001 to 44919000). ‘N/A’ indicates that the modified oligonucleotide is not 100% complementary to that particular target nucleic acid sequence.


Cultured U251 cells were treated with modified oligonucleotide at a concentration of 4,000 nM using free uptake at a density of 10.000 cells per well. After a treatment period of approximately 48 hours, total RNA was isolated from the cells and GFAP RNA levels were measured by quantitative real-time RTPCR. GFAP RNA levels were measured by human GFAP primer probe set RTS37485 (forward sequence CTGGAGGTTGAGAGGGACA, designated herein as SEQ ID NO: 11; reverse sequence GCTTCATCTGCTTCCTGTCT, designated herein as SEQ ID NO: 12; probe sequence CTGGAGCTTCTGCCTCACAGTGG, designated herein as SEQ ID NO: 13). GFAP RNA levels were normalized to total RNA content, as measured by RIBOGREEN®. Reduction of GFAP RNA is presented in the tables below as percent GFAP RNA amount relative to untreated control cells. Each table represents results from an individual assay plate. The values marked with an asterisk (*) indicate that the modified oligonucleotide is complementary to the amplicon region of the primer probe set. Additional assays may be used to measure the potency and efficacy of the modified oligonucleotides complementary to the amplicon region.









TABLE 2







Reduction of GFAP RNA by 5-10-5 MOE gapmers with mixed PO/PS internucleoside linkages


in U251 cells















SEQ
SEQ








ID
ID
SEQ
SEQ






NO: 1
NO: 1
ID NO:
ID NO:

GFAP
SEQ


Compound
Start
Stop
2 Start
2 Stop

RNA
NO


No.
Site
Site
Site
Site
Sequence (5′ to 3′)
(% control)
ID

















1047144
17
36
3465
3484
CGAGGGCTTTATGAAGGAGT
 80
22





1047160
131
150
3579
3598
GCCAGGAGCCAGGCCCCCCA
 67
23





1047176
248
267
3696
3715
GGCCCGGGTCTCCTTGAAGC
109
24





1047192
488
507
3936
3955
GTCCTGTGCCAGATTGTCCC
  7*
25





1047208
579
598
N/A
N/A
CATCTGCTTCCTGTCTATAG
  6*
26





1047224
649
668
5238
5257
CTCAAGAACCGGATCTCCTC
105
27





1047240
813
832
5699
5718
ACTCTTCGGCTTCATGCATG
 69
28





1047256
1029
1048
7601
7620
GCGCCTCCTGATAACTGGCC
 80
29





1047272
1251
1270
10865
10884
CTTCTGACACAGACTTGGTG
 92
30





1047288
1298
1317
10912
10931
ATCCCGCATCTCCACGGTCT
 90
31





1047304
1351
1370
11640
11659
CTGCCTCACATCACATCCTT
 87
32





1047320
1416
1435
11705
11724
CGGAGCAACTATCCTGCTTC
102
33





1047336
1617
1636
11906
11925
AAGCTGCTGGCCATGCCCCT
 87
34





1047352
1664
1683
11953
11972
TGCCCCCCGCCCTCCTCCCC
 83
35





1047368
1736
1755
12025
12044
GAGAGAACCTCCATCTCTGG
 47
36





1047384
1791
1810
12080
12099
TCAGTTTTCCTCCAGCAGCC
 55
37





1047400
1854
1873
12143
12162
GACAAAACAAGCCTCTGGCC
 66
38





1047416
2036
2055
12325
12344
CGTCCCCACCCATCTTAGAC
 60
39





1047432
2180
2199
12469
12488
GTGCTGAGAATCAAGCTCCC
 93
40





1047448
2237
2256
12526
12545
CCCCCTCTATCCCTCCCAGC
 11
41





1047464
2280
2299
12569
12588
CTGGGCTTGACCTCTCTGTA
 63
42





1047480
2379
2398
12668
12687
TGGTCACCCACAACCCCTAC
 81
43





1047496
2457
2476
12746
12765
CCCTTTCTCTCCTGTTTCAG
 79
44





1047512
2486
2505
12775
12794
AAGTCATGCCCTGCCCCCAT
 45
45





1047528
2780
2799
13069
13088
GCACCCGGCCTCCAGGCTGC
 76
46





1047544
2861
2880
13150
13169
GGCACAGATCCCACCAGTCT
106
47





1047560
2903
2922
13192
13211
GAGAGGAGAACCCTGAAGTG
 72
48





1047576
3035
3054
13324
13343
CCTCAGCGACTAAAGGCAGC
 77
49





1047592
3058
3077
13347
13366
GCGCAGCATTTGTCTTTATT
 47
50





1047608
N/A
N/A
8777
8796
GCTTTTGAGATATCTTGTGA
  8
51





1047624
N/A
N/A
9031
9050
GTTTAATGTACAGTTACTCT
 71
52





1047640
N/A
N/A
9070
9089
CCAAGGACTCACCACCTTTA
 75
53





1047656
N/A
N/A
9202
9221
AGGGATGAAAGAATAAAGCA
 92
54





1047672
N/A
N/A
8381
8400
CCTGCTGTACTGACCTCGAA
 94
55





1047688
N/A
N/A
8456
8475
ATCCTCAGTCCCAGTCTGGA
 54
56





1047704
N/A
N/A
8504
8523
CTGCAGTGTCACGAAGGCCC
 74
57





1047720
N/A
N/A
8637
8656
TGTCAAGCTCTCACCCAGTT
 77
58





1047736
N/A
N/A
8737
8756
TTGGTGCTTTTGCCCCCTGT
 56
59





1047752
N/A
N/A
4093
4112
GGATAGTGCCCCATCAAGAG
109
60





1047768
N/A
N/A
4264
4283
AGTCACAAAGCCCAGCCATG
 95
61





1047784
N/A
N/A
4322
4341
GCTTCCAACTCCTCCTTTAT
101
62





1047800
N/A
N/A
4359
4378
CAGAATCCAATCTCCCTCAT
106
63





1047816
N/A
N/A
4405
4424
GCTTTGCGCCCAGACCTGCC
 68
64





1047832
N/A
N/A
4525
4544
ATTCCTCTGATCCCAGGTAA
 52
65





1047848
N/A
N/A
4704
4723
CCTTAACTCATTACTAAGGT
 69
66





1047864
N/A
N/A
4806
4825
GAGACCACCCCCACCCAGGA
 70
67





1047880
N/A
N/A
4868
4887
GTCCAGGCTCTTCTGAGGAC
 66
68





1047896
N/A
N/A
5007
5026
GTGGCCATCAATCCTTTCCT
103
69





1047912
N/A
N/A
5117
5136
CCCCAGGCTCCTTCTCCCCA
 74
70





1047928
N/A
N/A
5388
5407
TGTCTCTACCTGCCAATCTC
100
71





1047944
N/A
N/A
5521
5540
CTCAGGGTACAGGCCACAGC
 90
72





1047960
N/A
N/A
5791
5810
ACCCTCCTTCCCCCATTCTC
 94
73





1047976
N/A
N/A
5934
5953
AGCTACTACTAATAATAGCA
 98
74





1047992
N/A
N/A
6023
6042
ACTTCGGCTCTCTCATCTGT
 75
75





1048008
N/A
N/A
6146
6165
AACCCAAAACAGACTGGCAG
 79
76





1048024
N/A
N/A
6281
6300
CCCACACTACATATAAGCTC
105
77





1048040
N/A
N/A
6329
6348
CCTGTCCTGCCTAGCCCAAA
 71
78





1048056
N/A
N/A
6417
6436
GGGCCCTGCCTCTCTGTGCT
 81
79





1048072
N/A
N/A
6544
6563
ATAGCCCTTTCTCCCCTGCC
 86
80





1048088
N/A
N/A
6959
6978
AATCCAGAACCTTCCACACT
114
81





1048104
N/A
N/A
7073
7092
TGGGACTTTTCCCAACAACT
 93
82





1048120
N/A
N/A
7412
7431
CGCCCTCGACCCAGGTCCTC
 57
83





1048136
N/A
N/A
7907
7926
AGTGACTGCCTGCTATGTGT
 94
84





1048152
N/A
N/A
7989
8008
TTGGAGGGTGACCCAAGTCC
 81
85





1048168
N/A
N/A
8235
8254
ACGCCCTTTTCCTTGCCAGG
 74
86





1048184
N/A
N/A
9373
9392
TAGCTCCCCCCTCCCCCCGC
 52
87





1048200
N/A
N/A
9534
9553
GCAGTATTACCTCTACTAGT
 45
88





1048216
N/A
N/A
9610
9629
CCTGTCCCCTTTCCTCTTTC
 74
89





1048232
N/A
N/A
9791
9810
CCACCAACCAGCCACATGAC
 98
90





1048248
N/A
N/A
9826
9845
ATCAGGAGACCAGAGCTCAA
 78
91





1048264
N/A
N/A
10622
10641
GGCCTGGCTTCATTTCAGCC
 66
92





1048280
N/A
N/A
10734
10753
AGTATGAGAACCTATGCAAC
 80
93





1048296
N/A
N/A
10793
10812
GGGCATGAGCCATCCTCTCC
 35
94





1048312
N/A
N/A
10942
10961
GACTGGGCCCAAATCCCTCC
 87
95





1048328
N/A
N/A
11063
11082
CCTTGCTCTCCTCCAGAATT
 67
96





1048344
N/A
N/A
11227
11246
GCTACTAACTTTAATTCTCT
 41
97





1048360
N/A
N/A
11321
11340
CCTCTTCCCATTCCCCTGGT
 62
98





1048376
N/A
N/A
11488
11507
GGTCTTACTTTTCTTGATAG
 72
99
















TABLE 3







Reduction of GFAP RNA by 5-10-5 MOE gapmers with mixed PO/PS internucleoside linkages


in U251 cells















SEQ
SEQ








ID
ID
SEQ
SEQ






NO: 1
NO: 1
ID NO:
ID NO:

GFAP
SEQ


Compound
Start
Stop
2 Start
2 Stop

RNA
NO


No.
Site
Site
Site
Site
Sequence (5′ to 3′)
(% control)
ID

















1047145
18
37
3466
3485
GCGAGGGCTTTATGAAGGAG
 99
100





1047161
133
152
3581
3600
CGGCCAGGAGCCAGGCCCCC
 82
101





1047177
267
286
3715
3734
TCATCTCTGCCCGCTCACTG
 88
102





1047193
490
509
3938
3957
AGGTCCTGTGCCAGATTGTC
  8*
103





1047209
585
604
N/A
N/A
TGGCTTCATCTGCTTCCTGT
  5*
104





1047225
651
670
5240
5259
TCCTCAAGAACCGGATCTCC
 37
105





1047241
821
840
5707
5726
GCGGTACCACTCTTCGGCTT
 77
106





1047257
1051
1070
7623
7642
CCCTCTTCCTCCAGCCGCGC
 35
107





1047273
1252
1271
10866
10885
CCTTCTGACACAGACTTGGT
 86
108





1047289
1305
1324
10919
10938
CCTCTCCATCCCGCATCTCC
 87
109





1047305
1352
1371
11641
11660
CCTGCCTCACATCACATCCT
 66
110





1047321
1417
1436
11706
11725
GCGGAGCAACTATCCTGCTT
 96
111





1047337
1631
1650
11920
11939
CCTCATTCTAACGCAAGCTG
 58
112





1047353
1665
1684
11954
11973
GTGCCCCCCGCCCTCCTCCC
 46
113





1047369
1739
1758
12028
12047
TCCGAGAGAACCTCCATCTC
 72
114





1047385
1792
1811
12081
12100
CTCAGTTTTCCTCCAGCAGC
 50
115





1047401
1876
1895
12165
12184
TCCCACCTCATAAAAACCAA
 94
116





1047417
2059
2078
12348
12367
GGTGACTGCCCCAGGTGGCA
 68
117





1047433
2181
2200
12470
12489
AGTGCTGAGAATCAAGCTCC
 75
118





1047449
2238
2257
12527
12546
CCCCCCTCTATCCCTCCCAG
 60
119





1047465
2310
2329
12599
12618
GTCCCCTCCAGTCTGCACGG
 49
120





1047481
2380
2399
12669
12688
CTGGTCACCCACAACCCCTA
 82
121





1047497
2458
2477
12747
12766
CCCCTTTCTCTCCTGTTTCA
 29
122





1047513
2491
2510
12780
12799
GGACAAAGTCATGCCCTGCC
 85
123





1047529
2781
2800
13070
13089
AGCACCCGGCCTCCAGGCTG
 86
124





1047545
2862
2881
13151
13170
GGGCACAGATCCCACCAGTC
 65
125





1047561
2924
2943
13213
13232
CCCTTCTTCGGCCTTAGAGG
 62
126





1047577
3040
3059
13329
13348
TTTTTCCTCAGCGACTAAAG
 49
127





1047593
3060
3079
13349
13368
GGGCGCAGCATTTGTCTTTA
 59
128





1047609
N/A
N/A
8778
8797
GGCTTTTGAGATATCTTGTG
 13
129





1047625
N/A
N/A
9036
9055
TGCCAGTTTAATGTACAGTT
 72
130





1047641
N/A
N/A
9072
9091
ACCCAAGGACTCACCACCTT
 89
131





1047657
N/A
N/A
9212
9231
ATGGAGCCTCAGGGATGAAA
 69
132





1047673
N/A
N/A
8382
8401
CCCTGCTGTACTGACCTCGA
 91
133





1047689
N/A
N/A
8460
8479
CCTGATCCTCAGTCCCAGTC
 82
134





1047705
N/A
N/A
8506
8525
CGCTGCAGTGTCACGAAGGC
 63
135





1047721
N/A
N/A
8643
8662
GGCAGATGTCAAGCTCTCAC
 83
136





1047737
N/A
N/A
3963
3982
TCCTCACTTCTGCCTCACAG
 66
137





1047753
N/A
N/A
4095
4114
AAGGATAGTGCCCCATCAAG
 69
138





1047769
N/A
N/A
4265
4284
CAGTCACAAAGCCCAGCCAT
 64
139





1047785
N/A
N/A
4324
4343
CCGCTTCCAACTCCTCCTTT
 49
140





1047801
N/A
N/A
4361
4380
CCCAGAATCCAATCTCCCTC
 85
141





1047817
N/A
N/A
4419
4438
AGGCAGTCACCTGTGCTTTG
 96
142





1047833
N/A
N/A
4526
4545
GATTCCTCTGATCCCAGGTA
 63
143





1047849
N/A
N/A
4705
4724
GCCTTAACTCATTACTAAGG
 82
144





1047865
N/A
N/A
4807
4826
AGAGACCACCCCCACCCAGG
 91
145





1047881
N/A
N/A
4910
4929
TGGTTTCATCCTGGAGCCTG
 60
146





1047897
N/A
N/A
5012
5031
GGTGGGTGGCCATCAATCCT
 71
147





1047913
N/A
N/A
5168
5187
CATCTGCTTCCTGGAGTGGC
 31
148





1047929
N/A
N/A
5400
5419
TCTTTCATTTCCTGTCTCTA
 81
149





1047945
N/A
N/A
5561
5580
CCCGAACCTCCTGACCAGGG
117
150





1047961
N/A
N/A
5800
5819
GCTTCCTCCACCCTCCTTCC
 75
151





1047977
N/A
N/A
5935
5954
CAGCTACTACTAATAATAGC
104
152





1047993
N/A
N/A
6040
6059
TTAGTTAACCTCTCTGGACT
 79
153





1048009
N/A
N/A
6147
6166
TAACCCAAAACAGACTGGCA
101
154





1048025
N/A
N/A
6282
6301
TCCCACACTACATATAAGCT
 83
155





1048041
N/A
N/A
6330
6349
GCCTGTCCTGCCTAGCCCAA
 80
156





1048057
N/A
N/A
6464
6483
GCCACTCACACTCCTCAGCT
 79
157





1048073
N/A
N/A
6548
6567
TCTAATAGCCCTTTCTCCCC
 88
158





1048089
N/A
N/A
6961
6980
AGAATCCAGAACCTTCCACA
 88
159





1048105
N/A
N/A
7074
7093
CTGGGACTTTTCCCAACAAC
 86
160





1048121
N/A
N/A
7418
7437
AGGCCCCGCCCTCGACCCAG
 95
161





1048137
N/A
N/A
7915
7934
AAACATCTAGTGACTGCCTG
 87
162





1048153
N/A
N/A
8061
8080
AAGGAGGCAGAAGAGATGGG
 59
163





1048169
N/A
N/A
8286
8305
CTGGGACACCCCTAGGCTGG
 68
164





1048185
N/A
N/A
9374
9393
TTAGCTCCCCCCTCCCCCCG
 84
165





1048201
N/A
N/A
9536
9555
TGGCAGTATTACCTCTACTA
 43
166





1048217
N/A
N/A
9611
9630
TCCTGTCCCCTTTCCTCTTT
 63
167





1048233
N/A
N/A
9792
9811
GCCACCAACCAGCCACATGA
 89
168





1048249
N/A
N/A
10005
10024
CTGTAATCCCCTTACTCGGG
 94
169





1048265
N/A
N/A
10636
10655
CTGCTCTGTCTTCTGGCCTG
 65
170





1048281
N/A
N/A
10735
10754
GAGTATGAGAACCTATGCAA
 53
171





1048297
N/A
N/A
10794
10813
AGGGCATGAGCCATCCTCTC
 78
172





1048313
N/A
N/A
10944
10963
CTGACTGGGCCCAAATCCCT
 95
173





1048329
N/A
N/A
11074
11093
ACATTCAGTTTCCTTGCTCT
 89
174





1048345
N/A
N/A
11228
11247
AGCTACTAACTTTAATTCTC
 82
175





1048361
N/A
N/A
11330
11349
GCCAAATCCCCTCTTCCCAT
 19
176





1048377
N/A
N/A
11491
11510
CCAGGTCTTACTTTTCTTGA
 85
177
















TABLE 4







Reduction of GFAP RNA by 5-10-5 MOE gapmers with mixed PO/PS internucleoside linkages


in U251 cells















SEQ
SEQ








ID
ID
SEQ
SEQ






NO: 1
NO: 1
ID NO:
ID NO:

GFAP
SEQ


Compound
Start
Stop
2 Start
2 Stop

RNA
NO


No.
Site
Site
Site
Site
Sequence (5′ to 3′)
(% control)
ID

















1047146
58
77
3506
3525
CTCCTCTCCATCCTGCTCTG
 94
178





1047162
138
157
3586
3605
GACGGCGGCCAGGAGCCAGG
115
179





1047178
274
293
3722
3741
AGCTCCATCATCTCTGCCCG
117
180





1047194
495
514
3943
3962
TGGCCAGGTCCTGTGCCAGA
 67*
181





1047210
588
607
5177
5196
GGGTGGCTTCATCTGCTTCC
 18*
182





1047226
656
675
5245
5264
GATCTTCCTCAAGAACCGGA
 62
183





1047242
822
841
5708
5727
AGCGGTACCACTCTTCGGCT
113
184





1047258
1052
1071
7624
7643
CCCCTCTTCCTCCAGCCGCG
 16
185





1047274
1253
1272
10867
10886
GCCTTCTGACACAGACTTGG
113
186





1047290
1309
1328
N/A
N/A
ATGACCTCTCCATCCCGCAT
108
187





1047306
1353
1372
11642
11661
TCCTGCCTCACATCACATCC
 75
188





1047322
1499
1518
11788
11807
GCAAGCTGACCTAGGGACAG
 68
189





1047338
1632
1651
11921
11940
TCCTCATTCTAACGCAAGCT
 68
190





1047354
1666
1685
11955
11974
GGTGCCCCCCGCCCTCCTCC
 90
191





1047370
1740
1759
12029
12048
CTCCGAGAGAACCTCCATCT
 77
192





1047386
1793
1812
12082
12101
TCTCAGTTTTCCTCCAGCAG
 33
193





1047402
1888
1907
12177
12196
AGCATAGGGATATCCCACCT
 63
194





1047418
2063
2082
12352
12371
GGCAGGTGACTGCCCCAGGT
106
195





1047434
2182
2201
12471
12490
AAGTGCTGAGAATCAAGCTC
103
196





1047450
2239
2258
12528
12547
GCCCCCCTCTATCCCTCCCA
103
197





1047466
2329
2348
12618
12637
CTCCTCCATCTCTACCAGCG
 52
198





1047482
2381
2400
12670
12689
ACTGGTCACCCACAACCCCT
 79
199





1047498
2461
2480
12750
12769
CATCCCCTTTCTCTCCTGTT
 74
200





1047514
2532
2551
12821
12840
CGGCCTGGTATGACACAGCA
 91
201





1047530
2782
2801
13071
13090
GAGCACCCGGCCTCCAGGCT
 80
202





1047546
2864
2883
13153
13172
CTGGGCACAGATCCCACCAG
107
203





1047562
2927
2946
13216
13235
GGACCCTTCTTCGGCCTTAG
 69
204





1047578
3043
3062
13332
13351
TTATTTTTCCTCAGCGACTA
 75
205





1047594
3062
3081
13351
13370
AAGGGCGCAGCATTTGTCTT
 86
206





1047610
N/A
N/A
8782
8801
GTGAGGCTTTTGAGATATCT
 33
207





1047626
N/A
N/A
9038
9057
TCTGCCAGTTTAATGTACAG
114
208





1047642
N/A
N/A
9078
9097
CTGCGCACCCAAGGACTCAC
 96
209





1047658
N/A
N/A
9257
9276
CCTGAGGGAAGAATCCTCTG
 86
210





1047674
N/A
N/A
8390
8409
CCACGAGGCCCTGCTGTACT
111
211





1047690
N/A
N/A
8461
8480
CCCTGATCCTCAGTCCCAGT
 82
212





1047706
N/A
N/A
8534
8553
CCCTGGTATGATAGGCTCTG
 62
213





1047722
N/A
N/A
8645
8664
AGGGCAGATGTCAAGCTCTC
110
214





1047738
N/A
N/A
3968
3987
TCCCCTCCTCACTTCTGCCT
 91
215





1047754
N/A
N/A
4097
4116
GCAAGGATAGTGCCCCATCA
 94
216





1047770
N/A
N/A
4268
4287
CCACAGTCACAAAGCCCAGC
 84
217





1047786
N/A
N/A
4325
4344
TCCGCTTCCAACTCCTCCTT
107
218





1047802
N/A
N/A
4362
4381
CCCCAGAATCCAATCTCCCT
 84
219





1047818
N/A
N/A
4477
4496
CCACCGCTTCACAGCTGTGC
 77
220





1047834
N/A
N/A
4528
4547
GGGATTCCTCTGATCCCAGG
 93
221





1047850
N/A
N/A
4706
4725
TGCCTTAACTCATTACTAAG
 64
222





1047866
N/A
N/A
4809
4828
ACAGAGACCACCCCCACCCA
 63
223





1047882
N/A
N/A
4959
4978
CTGACCTGTCTATAGGCAGC
 89*
224





1047898
N/A
N/A
5085
5104
GCCTTACCCCTCCTTCTGGG
100
225





1047914
N/A
N/A
5268
5287
TGCCCTGGCCTCACCTCCTC
 98
226





1047930
N/A
N/A
5401
5420
GTCTTTCATTTCCTGTCTCT
 55
227





1047946
N/A
N/A
5562
5581
TCCCGAACCTCCTGACCAGG
117
228





1047962
N/A
N/A
5803
5822
CCAGCTTCCTCCACCCTCCT
137
229





1047978
N/A
N/A
5936
5955
TCAGCTACTACTAATAATAG
 91
230





1047994
N/A
N/A
6077
6096
AACTCTACCACTTAGGAGCT
130
231





1048010
N/A
N/A
6148
6167
GTAACCCAAAACAGACTGGC
 85
232





1048026
N/A
N/A
6283
6302
CTCCCACACTACATATAAGC
 82
233





1048042
N/A
N/A
6331
6350
TGCCTGTCCTGCCTAGCCCA
 72
234





1048058
N/A
N/A
6467
6486
TCTGCCACTCACACTCCTCA
 95
235





1048074
N/A
N/A
6549
6568
TTCTAATAGCCCTTTCTCCC
 83
236





1048090
N/A
N/A
6990
7009
TCAGCAAGCGAATGAATGAA
157
237





1048106
N/A
N/A
7075
7094
GCTGGGACTTTTCCCAACAA
 91
238





1048122
N/A
N/A
7449
7468
AGGCCCCGCCTCTAGCCCGG
110
239





1048138
N/A
N/A
7920
7939
TCATCAAACATCTAGTGACT
 91
240





1048154
N/A
N/A
8112
8131
TCTATCTGAAGGAAGATGGA
 90
241





1048170
N/A
N/A
8329
8348
GTGATCCTGAAAGAAAGCAG
 68
242





1048186
N/A
N/A
9375
9394
TTTAGCTCCCCCCTCCCCCC
126
243





1048202
N/A
N/A
9566
9585
TGCTTTAGTGACCTGTGACT
 74
244





1048218
N/A
N/A
9614
9633
CTTTCCTGTCCCCTTTCCTC
134
245





1048234
N/A
N/A
9793
9812
AGCCACCAACCAGCCACATG
 83
246





1048250
N/A
N/A
10006
10025
CCTGTAATCCCCTTACTCGG
 92
247





1048266
N/A
N/A
10652
10671
GCTGCCAGAGTCCTGGCTGC
 81
248





1048282
N/A
N/A
10742
10761
CCATCATGAGTATGAGAACC
 88
249





1048298
N/A
N/A
10814
10833
GAGGCCTCTCATGGACTTTC
 84
250





1048314
N/A
N/A
10953
10972
AGCCAGAGCCTGACTGGGCC
 80
251





1048330
N/A
N/A
11080
11099
GGAATTACATTCAGTTTCCT
 72
252





1048346
N/A
N/A
11268
11287
CTCCCCATCCCCAACTGTGT
107
253





1048362
N/A
N/A
11331
11350
CGCCAAATCCCCTCTTCCCA
106
254





1048378
N/A
N/A
11492
11511
CCCAGGTCTTACTTTTCTTG
 80
255
















TABLE 5







Reduction of GFAP RNA by 5-10-5 MOE gapmers with mixed PO/PS internucleoside linkages


in U251 cells















SEQ
SEQ








ID
ID
SEQ
SEQ






NO: 1
NO: 1
ID NO:
ID NO:

GFAP
SEQ


Compound
Start
Stop
2 Start
2 Stop

RNA
NO


No.
Site
Site
Site
Site
Sequence (5′ to 3′)
(% control)
ID

















1047147
61
80
3509
3528
CGTCTCCTCTCCATCCTGCT
 74
256





1047163
139
158
3587
3606
AGACGGCGGCCAGGAGCCAG
100
257





1047179
275
294
3723
3742
GAGCTCCATCATCTCTGCCC
116
258





1047195
500
519
3948
3967
CACAGTGGCCAGGTCCTGTG
 70*
259





1047211
589
608
5178
5197
AGGGTGGCTTCATCTGCTTC
 37*
260





1047227
657
676
5246
5265
GGATCTTCCTCAAGAACCGG
 90
261





1047243
823
842
5709
5728
GAGCGGTACCACTCTTCGGC
 83
262





1047259
1054
1073
7626
7645
TGCCCCTCTTCCTCCAGCCG
 63
263





1047275
1254
1273
10868
10887
GGCCTTCTGACACAGACTTG
116
264





1047291
1311
1330
N/A
N/A
TAATGACCTCTCCATCCCGC
 91
265





1047307
1354
1373
11643
11662
GTCCTGCCTCACATCACATC
 88
266





1047323
1524
1543
11813
11832
CCTGATACTGACGGAGCCTA
 56
267





1047339
1633
1652
11922
11941
CTCCTCATTCTAACGCAAGC
116
268





1047355
1668
1687
11957
11976
TAGGTGCCCCCCGCCCTCCT
 68
269





1047371
1754
1773
12043
12062
ACAGTTCCCAGATACTCCGA
 80
270





1047387
1794
1813
12083
12102
GTCTCAGTTTTCCTCCAGCA
 12
271





1047403
1966
1985
12255
12274
CCAATCTATAATCCCAGCTA
 89
272





1047419
2065
2084
12354
12373
TGGGCAGGTGACTGCCCCAG
110
273





1047435
2192
2211
12481
12500
CAGATCCCCCAAGTGCTGAG
 87
274





1047451
2240
2259
12529
12548
AGCCCCCCTCTATCCCTCCC
 97
275





1047467
2335
2354
12624
12643
TGCCTCCTCCTCCATCTCTA
 72
276





1047483
2384
2403
12673
12692
GCAACTGGTCACCCACAACC
 49
277





1047499
2462
2481
12751
12770
ACATCCCCTTTCTCTCCTGT
 77
278





1047515
2675
2694
12964
12983
TTTGTGTGTGAGTAAGAAGG
 49
279





1047531
2785
2804
13074
13093
CCTGAGCACCCGGCCTCCAG
 80
280





1047547
2865
2884
13154
13173
TCTGGGCACAGATCCCACCA
 85
281





1047563
2928
2947
13217
13236
AGGACCCTTCTTCGGCCTTA
 70
282





1047579
3044
3063
13333
13352
TTTATTTTTCCTCAGCGACT
 47
283





1047611
N/A
N/A
8826
8845
TTCCATTTACAATCTGGTGA
 93
285





1047627
N/A
N/A
9040
9059
GCTCTGCCAGTTTAATGTAC
128
286





1047643
N/A
N/A
9079
9098
ACTGCGCACCCAAGGACTCA
 77
287





1047659
N/A
N/A
9283
9302
ACTTTATTCACTGCAAGAGC
 65
288





1047675
N/A
N/A
8398
8417
TGCCCTTCCCACGAGGCCCT
 53
289





1047691
N/A
N/A
8462
8481
GCCCTGATCCTCAGTCCCAG
 92
290





1047707
N/A
N/A
8535
8554
ACCCTGGTATGATAGGCTCT
 46
291





1047723
N/A
N/A
8662
8681
CTCAGGGATCTGCAGACAGG
 81
292





1047739
N/A
N/A
3969
3988
ATCCCCTCCTCACTTCTGCC
 85*
293





1047755
N/A
N/A
4119
4138
GTCCCTCCCATCATGTTGGG
 83
294





1047771
N/A
N/A
4270
4289
GCCCACAGTCACAAAGCCCA
 68
295





1047787
N/A
N/A
4327
4346
TCTCCGCTTCCAACTCCTCC
109
296





1047803
N/A
N/A
4363
4382
ACCCCAGAATCCAATCTCCC
 81
297





1047819
N/A
N/A
4503
4522
ACCTTTTGAAATGAATTTTA
 65
298





1047835
N/A
N/A
4588
4607
CTCCTGCACTTGAAGGCACA
101
299





1047851
N/A
N/A
4707
4726
TTGCCTTAACTCATTACTAA
 77
300





1047867
N/A
N/A
4811
4830
TCACAGAGACCACCCCCACC
 97
301





1047883
N/A
N/A
4964
4983
CCTCCCTGACCTGTCTATAG
103*
302





1047899
N/A
N/A
5086
5105
TGCCTTACCCCTCCTTCTGG
 76
303





1047915
N/A
N/A
5270
5289
TCTGCCCTGGCCTCACCTCC
102
304





1047931
N/A
N/A
5403
5422
TTGTCTTTCATTTCCTGTCT
 67
305





1047947
N/A
N/A
5563
5582
TTCCCGAACCTCCTGACCAG
131
306





1047963
N/A
N/A
5804
5823
CCCAGCTTCCTCCACCCTCC
 58
307





1047979
N/A
N/A
5937
5956
ATCAGCTACTACTAATAATA
128
308





1047995
N/A
N/A
6078
6097
CAACTCTACCACTTAGGAGC
 97
309





1048011
N/A
N/A
6150
6169
CAGTAACCCAAAACAGACTG
 85
310





1048027
N/A
N/A
6284
6303
GCTCCCACACTACATATAAG
 48
311





1048043
N/A
N/A
6352
6371
CTTCTCTTCCTGTCCACAGC
 93
312





1048059
N/A
N/A
6471
6490
GGCTTCTGCCACTCACACTC
 85
313





1048075
N/A
N/A
6550
6569
GTTCTAATAGCCCTTTCTCC
124
314





1048091
N/A
N/A
6991
7010
GTCAGCAAGCGAATGAATGA
 85
315





1048107
N/A
N/A
7109
7128
CAGCACCCCAGTTAACCCCA
 73
316





1048123
N/A
N/A
7450
7469
CAGGCCCCGCCTCTAGCCCG
 88
317





1048139
N/A
N/A
7928
7947
CCATTCAGTCATCAAACATC
 76
318





1048155
N/A
N/A
8120
8139
GGCGCATGTCTATCTGAAGG
 76
319





1048171
N/A
N/A
8330
8349
GGTGATCCTGAAAGAAAGCA
103
320





1048187
N/A
N/A
9391
9410
TGCAAGTAAAAAGTAATTTA
 69
321





1048203
N/A
N/A
9568
9587
TGTGCTTTAGTGACCTGTGA
 31
322





1048219
N/A
N/A
9619
9638
GGTCCCTTTCCTGTCCCCTT
 53
323





1048235
N/A
N/A
9794
9813
TAGCCACCAACCAGCCACAT
 97
324





1048251
N/A
N/A
10007
10026
ACCTGTAATCCCCTTACTCG
 89
325





1048267
N/A
N/A
10657
10676
GTGCTGCTGCCAGAGTCCTG
 35
326





1048283
N/A
N/A
10750
10769
CCCCCTCCCCATCATGAGTA
100
327





1048299
N/A
N/A
10841
10860
GGCTGGTTTCTGCAGATGTG
 87
328





1048315
N/A
N/A
10954
10973
CAGCCAGAGCCTGACTGGGC
188
329





1048331
N/A
N/A
11086
11105
GGAAACGGAATTACATTCAG
130
330





1048347
N/A
N/A
11269
11288
CCTCCCCATCCCCAACTGTG
 99
331





1048363
N/A
N/A
11332
11351
ACGCCAAATCCCCTCTTCCC
 93
332





1048379
N/A
N/A
11501
11520
CCCCGACTTCCCAGGTCTTA
 91
333
















TABLE 6







Reduction of GFAP RNA by 5-10-5 MOE gapmers with mixed PO/PS internucleoside linkages


in U251 cells















SEQ
SEQ








ID
ID
SEQ
SEQ






NO: 1
NO: 1
ID NO:
ID NO:

GFAP
SEQ


Compound
Start
Stop
2 Start
2 Stop

RNA
NO


No.
Site
Site
Site
Site
Sequence (5′ to 3′)
(% control)
ID

















1047148
112
131
3560
3579
ACCATCATCTCCCCTGAGGA
116
334





1047164
150
169
3598
3617
TGCCAGGACCCAGACGGCGG
 96
335





1047180
277
296
3725
3744
TTGAGCTCCATCATCTCTGC
123
336





1047196
503
522
3951
3970
CCTCACAGTGGCCAGGTCCT
 27*
337





1047212
615
634
5204
5223
TCTTCCTCTCCAGATCCAGA
 77
338





1047228
658
677
5247
5266
TGGATCTTCCTCAAGAACCG
 75
339





1047244
824
843
5710
5729
GGAGCGGTACCACTCTTCGG
 74
340





1047260
1058
1077
7630
7649
GCTCTGCCCCTCTTCCTCCA
 82
341





1047276
1255
1274
10869
10888
TGGCCTTCTGACACAGACTT
137
342





1047292
1312
1331
N/A
N/A
TTAATGACCTCTCCATCCCG
 81
343





1047308
1356
1375
11645
11664
GGGTCCTGCCTCACATCACA
 69
344





1047324
1526
1545
11815
11834
GGCCTGATACTGACGGAGCC
 73
345





1047340
1634
1653
11923
11942
CCTCCTCATTCTAACGCAAG
 63
346





1047356
1672
1691
11961
11980
GTAGTAGGTGCCCCCCGCCC
 84
347





1047372
1755
1774
12044
12063
CACAGTTCCCAGATACTCCG
 49
348





1047388
1795
1814
12084
12103
AGTCTCAGTTTTCCTCCAGC
 24
349





1047404
1999
2018
12288
12307
GGAGAACAACCCTCTGAGCT
 75
350





1047420
2101
2120
12390
12409
CACTTGAGTCATCGCTCAGG
107
351





1047436
2193
2212
12482
12501
ACAGATCCCCCAAGTGCTGA
 73
352





1047452
2241
2260
12530
12549
CAGCCCCCCTCTATCCCTCC
 88
353





1047468
2337
2356
12626
12645
ATTGCCTCCTCCTCCATCTC
 93
354





1047484
2395
2414
12684
12703
AGAGGCCAAGTGCAACTGGT
 80
355





1047500
2463
2482
12752
12771
TACATCCCCTTTCTCTCCTG
 47
356





1047516
2699
2718
12988
13007
CACTACCTAGAATACTGGGT
 92
357





1047532
2794
2813
13083
13102
CGTGTCAGCCCTGAGCACCC
129
358





1047548
2866
2885
13155
13174
CTCTGGGCACAGATCCCACC
141
359





1047564
2931
2950
13220
13239
GGAAGGACCCTTCTTCGGCC
 67
360





1047580
3045
3064
13334
13353
CTTTATTTTTCCTCAGCGAC
 35
361





1047612
N/A
N/A
8827
8846
GTTCCATTTACAATCTGGTG
 60
363





1047628
N/A
N/A
9053
9072
TTACCACTAACAAGCTCTGC
 76
364





1047644
N/A
N/A
9081
9100
CCACTGCGCACCCAAGGACT
 89
365





1047660
N/A
N/A
9290
9309
ACATAAAACTTTATTCACTG
 74
366





1047676
N/A
N/A
8399
8418
GTGCCCTTCCCACGAGGCCC
176
367





1047692
N/A
N/A
8463
8482
TGCCCTGATCCTCAGTCCCA
 81
368





1047708
N/A
N/A
8536
8555
TACCCTGGTATGATAGGCTC
 60
369





1047724
N/A
N/A
8669
8688
GTGCTTGCTCAGGGATCTGC
 56
370





1047740
N/A
N/A
3971
3990
CCATCCCCTCCTCACTTCTG
 85*
371





1047756
N/A
N/A
4120
4139
GGTCCCTCCCATCATGTTGG
 76
372





1047772
N/A
N/A
4272
4291
CTGCCCACAGTCACAAAGCC
103
373





1047788
N/A
N/A
4328
4347
TTCTCCGCTTCCAACTCCTC
133
374





1047804
N/A
N/A
4364
4383
CACCCCAGAATCCAATCTCC
 78
375





1047820
N/A
N/A
4507
4526
AACCACCTTTTGAAATGAAT
118
376





1047836
N/A
N/A
4596
4615
CACATGTCCTCCTGCACTTG
108
377





1047852
N/A
N/A
4708
4727
TTTGCCTTAACTCATTACTA
 91
378





1047868
N/A
N/A
4812
4831
GTCACAGAGACCACCCCCAC
108
379





1047884
N/A
N/A
4965
4984
ACCTCCCTGACCTGTCTATA
 83
380





1047900
N/A
N/A
5087
5106
TTGCCTTACCCCTCCTTCTG
102
381





1047916
N/A
N/A
5282
5301
AGCTTTCCTCCCTCTGCCCT
 92
382





1047932
N/A
N/A
5405
5424
GTTTGTCTTTCATTTCCTGT
 82
383





1047948
N/A
N/A
5564
5583
GTTCCCGAACCTCCTGACCA
103
384





1047964
N/A
N/A
5805
5824
TCCCAGCTTCCTCCACCCTC
 78
385





1047980
N/A
N/A
5938
5957
TATCAGCTACTACTAATAAT
106
386





1047996
N/A
N/A
6079
6098
CCAACTCTACCACTTAGGAG
 96
387





1048012
N/A
N/A
6151
6170
TCAGTAACCCAAAACAGACT
124
388





1048028
N/A
N/A
6285
6304
GGCTCCCACACTACATATAA
134
389





1048044
N/A
N/A
6353
6372
TCTTCTCTTCCTGTCCACAG
 93
390





1048060
N/A
N/A
6473
6492
GTGGCTTCTGCCACTCACAC
129
391





1048076
N/A
N/A
6556
6575
CCCTGGGTTCTAATAGCCCT
 89
392





1048092
N/A
N/A
6993
7012
TGGTCAGCAAGCGAATGAAT
 81
393





1048108
N/A
N/A
7111
7130
AGCAGCACCCCAGTTAACCC
104
394





1048124
N/A
N/A
7451
7470
CCAGGCCCCGCCTCTAGCCC
 89
395





1048140
N/A
N/A
7932
7951
CCATCCATTCAGTCATCAAA
 70
396





1048156
N/A
N/A
8142
8161
GGCTTGAGTGTTATCTGGGA
 74
397





1048172
N/A
N/A
8332
8351
ATGGTGATCCTGAAAGAAAG
 87
398





1048188
N/A
N/A
9392
9411
ATGCAAGTAAAAAGTAATTT
 61
399





1048204
N/A
N/A
9581
9600
TCTGCCATTTATCTGTGCTT
 61
400





1048220
N/A
N/A
9621
9640
TAGGTCCCTTTCCTGTCCCC
 60
401





1048236
N/A
N/A
9795
9814
TTAGCCACCAACCAGCCACA
106
402





1048252
N/A
N/A
10009
10028
GCACCTGTAATCCCCTTACT
 76
403





1048268
N/A
N/A
10658
10677
AGTGCTGCTGCCAGAGTCCT
 80
404





1048284
N/A
N/A
10751
10770
CCCCCCTCCCCATCATGAGT
 82
405





1048300
N/A
N/A
10921
10940
TACCTCTCCATCCCGCATCT
109
406





1048316
N/A
N/A
10976
10995
TGGCCTTGAGAATCCCTGGG
 99
407





1048332
N/A
N/A
11090
11109
CTGAGGAAACGGAATTACAT
 83
408





1048348
N/A
N/A
11272
11291
AGCCCTCCCCATCCCCAACT
121
409





1048364
N/A
N/A
11333
11352
TACGCCAAATCCCCTCTTCC
 92
410





1048380
N/A
N/A
11504
11523
AGTCCCCGACTTCCCAGGTC
116
411
















TABLE 7







Reduction of GFAP RNA by 5-10-5 MOE gapmers with mixed PO/PS internucleoside linkages


in U251 cells















SEQ
SEQ








ID
ID
SEQ
SEQ






NO: 1
NO: 1
ID NO:
ID NO:

GFAP
SEQ


Compound
Start
Stop
2 Start
2 Stop

RNA
NO


No.
Site
Site
Site
Site
Sequence (5′ to 3′)
(% control)
ID

















1047149
113
132
3561
3580
CACCATCATCTCCCCTGAGG
102
412





1047165
151
170
3599
3618
GTGCCAGGACCCAGACGGCG
120
413





1047181
279
298
3727
3746
CATTGAGCTCCATCATCTCT
 92
414





1047197
525
544
N/A
N/A
TGGTTTCATCCTGGAGCTTC
 39*
415





1047213
617
636
5206
5225
AATCTTCCTCTCCAGATCCA
 79
416





1047229
659
678
5248
5267
GTGGATCTTCCTCAAGAACC
 83
417





1047245
825
844
5711
5730
TGGAGCGGTACCACTCTTCG
 77
418





1047261
1060
1079
7632
7651
AGGCTCTGCCCCTCTTCCTC
 78
419





1047277
1257
1276
10871
10890
GGTGGCCTTCTGACACAGAC
 98
420





1047293
1313
1332
N/A
N/A
CTTAATGACCTCTCCATCCC
105
421





1047309
1357
1376
11646
11665
TGGGTCCTGCCTCACATCAC
154
422





1047325
1529
1548
11818
11837
GCAGGCCTGATACTGACGGA
 46
423





1047341
1635
1654
11924
11943
TCCTCCTCATTCTAACGCAA
 53
424





1047357
1684
1703
11973
11992
GTGGAGGGCGATGTAGTAGG
 42
425





1047373
1756
1775
12045
12064
GCACAGTTCCCAGATACTCC
 33
426





1047389
1812
1831
12101
12120
CTTCCCTTTCCTGTCTGAGT
 64
427





1047405
2003
2022
12292
12311
TCTAGGAGAACAACCCTCTG
160
428





1047421
2103
2122
12392
12411
GACACTTGAGTCATCGCTCA
 63
429





1047437
2194
2213
12483
12502
AACAGATCCCCCAAGTGCTG
 85
430





1047453
2242
2261
12531
12550
GCAGCCCCCCTCTATCCCTC
173
431





1047469
2341
2360
12630
12649
CCCAATTGCCTCCTCCTCCA
 53
432





1047485
2407
2426
12696
12715
TTCCCACAATCCAGAGGCCA
101
433





1047501
2464
2483
12753
12772
ATACATCCCCTTTCTCTCCT
 63
434





1047517
2701
2720
12990
13009
GGCACTACCTAGAATACTGG
 73
435





1047533
2833
2852
13122
13141
GTCTGCTCAGTCAAAGCAGA
 93
436





1047549
2877
2896
13166
13185
CCCAGTCCCATCTCTGGGCA
134
437





1047565
2932
2951
13221
13240
GGGAAGGACCCTTCTTCGGC
 66
438





1047581
3046
3065
13335
13354
TCTTTATTTTTCCTCAGCGA
 41
439





1047613
N/A
N/A
8828
8847
CGTTCCATTTACAATCTGGT
 47
441





1047629
N/A
N/A
9056
9075
CCTTTACCACTAACAAGCTC
161
442





1047645
N/A
N/A
9086
9105
CAGCTCCACTGCGCACCCAA
 85
443





1047661
N/A
N/A
9300
9319
AGAGCAGGGAACATAAAACT
 69
444





1047677
N/A
N/A
8400
8419
AGTGCCCTTCCCACGAGGCC
 85
445





1047693
N/A
N/A
8464
8483
TTGCCCTGATCCTCAGTCCC
117
446





1047709
N/A
N/A
8547
8566
CCACCTAGAAGTACCCTGGT
 75
447





1047725
N/A
N/A
8688
8707
GAAAACACTCAGAAGGGCAG
101
448





1047741
N/A
N/A
3972
3991
CCCATCCCCTCCTCACTTCT
133
449





1047757
N/A
N/A
4122
4141
CTGGTCCCTCCCATCATGTT
136
450





1047773
N/A
N/A
4273
4292
GCTGCCCACAGTCACAAAGC
126
451





1047789
N/A
N/A
4334
4353
TCAACCTTCTCCGCTTCCAA
 66
452





1047805
N/A
N/A
4369
4388
TTCTTCACCCCAGAATCCAA
123
453





1047821
N/A
N/A
4508
4527
TAACCACCTTTTGAAATGAA
 75
454





1047837
N/A
N/A
4657
4676
CTGCTCACACAGGCGCATCC
 97
455





1047853
N/A
N/A
4709
4728
TTTTGCCTTAACTCATTACT
142
456





1047869
N/A
N/A
4813
4832
TGTCACAGAGACCACCCCCA
 87
457





1047885
N/A
N/A
4968
4987
TCCACCTCCCTGACCTGTCT
 84
458





1047901
N/A
N/A
5090
5109
GCCTTGCCTTACCCCTCCTT
 86
459





1047917
N/A
N/A
5284
5303
TGAGCTTTCCTCCCTCTGCC
 93
460





1047933
N/A
N/A
5417
5436
TAGTGTCTTTCTGTTTGTCT
 82
461





1047949
N/A
N/A
5565
5584
AGTTCCCGAACCTCCTGACC
 74
462





1047965
N/A
N/A
5806
5825
CTCCCAGCTTCCTCCACCCT
101
463





1047981
N/A
N/A
5939
5958
GTATCAGCTACTACTAATAA
137
464





1047997
N/A
N/A
6080
6099
TCCAACTCTACCACTTAGGA
112
465





1048013
N/A
N/A
6152
6171
CTCAGTAACCCAAAACAGAC
 79
466





1048029
N/A
N/A
6287
6306
CTGGCTCCCACACTACATAT
 86
467





1048045
N/A
N/A
6354
6373
TTCTTCTCTTCCTGTCCACA
 92
468





1048061
N/A
N/A
6474
6493
AGTGGCTTCTGCCACTCACA
 88
469





1048077
N/A
N/A
6557
6576
ACCCTGGGTTCTAATAGCCC
104
470





1048093
N/A
N/A
7008
7027
ACCTAGCACAACACCTGGTC
 77
471





1048109
N/A
N/A
7318
7337
GCGCTCACCGTGCCGCGCAG
 85
472





1048125
N/A
N/A
7497
7516
GAGCCCCGACCCGACTTGGG
 55
473





1048141
N/A
N/A
7943
7962
GTTGAATCCATCCATCCATT
 73
474





1048157
N/A
N/A
8195
8214
AGCTTTTTCCCCAGCAGCCA
 91
475





1048173
N/A
N/A
8333
8352
AATGGTGATCCTGAAAGAAA
 80
476





1048189
N/A
N/A
9415
9434
AGCTAAGAATCATTTCAGGG
 77
477





1048205
N/A
N/A
9584
9603
CTCTCTGCCATTTATCTGTG
 67
478





1048221
N/A
N/A
9622
9641
ATAGGTCCCTTTCCTGTCCC
 67
479





1048237
N/A
N/A
9796
9815
CTTAGCCACCAACCAGCCAC
123
480





1048253
N/A
N/A
10010
10029
CGCACCTGTAATCCCCTTAC
 97
481





1048269
N/A
N/A
10666
10685
ATCCCAATAGTGCTGCTGCC
 79
482





1048285
N/A
N/A
10755
10774
CGCACCCCCCTCCCCATCAT
109
483





1048301
N/A
N/A
10925
10944
TCCTTACCTCTCCATCCCGC
106
484





1048317
N/A
N/A
10993
11012
GGCTTTCCTCCATGGCCTGG
 93
485





1048333
N/A
N/A
11092
11111
GACTGAGGAAACGGAATTAC
 86
486





1048349
N/A
N/A
11278
11297
ATGGAAAGCCCTCCCCATCC
 86
487





1048365
N/A
N/A
11334
11353
ATACGCCAAATCCCCTCTTC
105
488





1048381
N/A
N/A
11505
11524
AAGTCCCCGACTTCCCAGGT
 79
489
















TABLE 8







Reduction of GFAP RNA by 5-10-5 MOE gapmers with mixed PO/PS internucleoside linkages


in U251 cells















SEQ
SEQ








ID
ID
SEQ
SEQ






NO: 1
NO: 1
ID NO:
ID NO:

GFAP
SEQ


Compound
Start
Stop
2 Start
2 Stop

RNA
NO


No.
Site
Site
Site
Site
Sequence (5′ to 3′)
(% control)
ID

















1047150
115
134
3563
3582
CCCACCATCATCTCCCCTGA
 93
490





1047166
156
175
3604
3623
GGCGGGTGCCAGGACCCAGA
 79
491





1047182
358
377
3806
3825
AGCTGGTTCAGCTCAGCAGC
114
492





1047198
528
547
4913
4932
GGTTGGTTTCATCCTGGAGC
 19*
493





1047214
619
638
5208
5227
TCAATCTTCCTCTCCAGATC
115
494





1047230
680
699
N/A
N/A
GAGTTCCCGAACCTCCTCCT
 85
495





1047246
838
857
N/A
N/A
AGGTCTGCAAACTTGGAGCG
 90
496





1047262
1064
1083
7636
7655
CTTGAGGCTCTGCCCCTCTT
 88
497





1047278
1258
1277
10872
10891
AGGTGGCCTTCTGACACAGA
 94
498





1047294
1314
1333
N/A
N/A
CCTTAATGACCTCTCCATCC
154
499





1047310
1358
1377
11647
11666
GTGGGTCCTGCCTCACATCA
 88
500





1047326
1530
1549
11819
11838
GGCAGGCCTGATACTGACGG
103
501





1047342
1636
1655
11925
11944
TTCCTCCTCATTCTAACGCA
 66
502





1047358
1685
1704
11974
11993
TGTGGAGGGCGATGTAGTAG
 50
503





1047374
1757
1776
12046
12065
GGCACAGTTCCCAGATACTC
 40
504





1047390
1813
1832
12102
12121
CCTTCCCTTTCCTGTCTGAG
 81
505





1047406
2004
2023
12293
12312
GTCTAGGAGAACAACCCTCT
 96
506





1047422
2112
2131
12401
12420
GTGGACTGAGACACTTGAGT
 54
507





1047438
2201
2220
12490
12509
CGTACACAACAGATCCCCCA
 61
508





1047454
2243
2262
12532
12551
GGCAGCCCCCCTCTATCCCT
 57
509





1047470
2342
2361
12631
12650
TCCCAATTGCCTCCTCCTCC
 66
510





1047486
2413
2432
12702
12721
CCTTAATTCCCACAATCCAG
147
511





1047502
2465
2484
12754
12773
GATACATCCCCTTTCTCTCC
 67
512





1047518
2702
2721
12991
13010
GGGCACTACCTAGAATACTG
 43
513





1047534
2843
2862
13132
13151
CTGCTCACCAGTCTGCTCAG
 97
514





1047550
2878
2897
13167
13186
TCCCAGTCCCATCTCTGGGC
106
515





1047566
2933
2952
13222
1324
AGGGAAGGACCCTTCTTCGG
 71
516





1047582
3047
3066
13336
13355
GTCTTTATTTTTCCTCAGCG
  9
517





1047614
N/A
N/A
8850
8869
GCAGCTAACCGCGAGCCGGC
132
519





1047630
N/A
N/A
9057
9076
ACCTTTACCACTAACAAGCT
 89
520





1047646
N/A
N/A
9088
9107
AGCAGCTCCACTGCGCACCC
116
521





1047662
N/A
N/A
9311
9330
ATTTAACATTAAGAGCAGGG
 45
522





1047678
N/A
N/A
8401
8420
CAGTGCCCTTCCCACGAGGC
110
523





1047694
N/A
N/A
8467
8486
CCTTTGCCCTGATCCTCAGT
 77
524





1047710
N/A
N/A
8549
8568
CCCCACCTAGAAGTACCCTG
 99
525





1047726
N/A
N/A
8689
8708
AGAAAACACTCAGAAGGGCA
169
526





1047742
N/A
N/A
3973
3992
CCCCATCCCCTCCTCACTTC
100
527





1047758
N/A
N/A
4124
4143
TTCTGGTCCCTCCCATCATG
 77
528





1047774
N/A
N/A
4277
4296
GCTCGCTGCCCACAGTCACA
123
529





1047790
N/A
N/A
4338
4357
GACATCAACCTTCTCCGCTT
 67
530





1047806
N/A
N/A
4375
4394
CTCACTTTCTTCACCCCAGA
156
531





1047822
N/A
N/A
4510
4529
GGTAACCACCTTTTGAAATG
 91
532





1047838
N/A
N/A
4659
4678
TTCTGCTCACACAGGCGCAT
148
533





1047854
N/A
N/A
4712
4731
GGCTTTTGCCTTAACTCATT
 72
534





1047870
N/A
N/A
4815
4834
GCTGTCACAGAGACCACCCC
 93
535





1047886
N/A
N/A
4971
4990
CCCTCCACCTCCCTGACCTG
 59
536





1047902
N/A
N/A
5092
5111
CAGCCTTGCCTTACCCCTCC
 70
537





1047918
N/A
N/A
5285
5304
TTGAGCTTTCCTCCCTCTGC
 80
538





1047934
N/A
N/A
5429
5448
TTCCGTCTCCCTTAGTGTCT
105
539





1047950
N/A
N/A
5566
5585
GAGTTCCCGAACCTCCTGAC
 70
540





1047966
N/A
N/A
5813
5832
GGATATTCTCCCAGCTTCCT
 90
541





1047982
N/A
N/A
5945
5964
AGAACAGTATCAGCTACTAC
106
542





1047998
N/A
N/A
6085
6104
GGAAATCCAACTCTACCACT
106
543





1048014
N/A
N/A
6153
6172
GCTCAGTAACCCAAAACAGA
 96
544





1048030
N/A
N/A
6288
6307
CCTGGCTCCCACACTACATA
116
545





1048046
N/A
N/A
6356
6375
CCTTCTTCTCTTCCTGTCCA
133
546





1048062
N/A
N/A
6486
6505
TGCTCAGACACCAGTGGCTT
109
547





1048078
N/A
N/A
6567
6586
GCCTGGCCTCACCCTGGGTT
 88
548





1048094
N/A
N/A
7023
7042
CTGCCAGACCTCAGCACCTA
 81
549





1048110
N/A
N/A
7322
7341
GGCCGCGCTCACCGTGCCGC
109
550





1048126
N/A
N/A
7498
7517
GGAGCCCCGACCCGACTTGG
124
551





1048142
N/A
N/A
7944
7963
GGTTGAATCCATCCATCCAT
105
552





1048158
N/A
N/A
8196
8215
TAGCTTTTTCCCCAGCAGCC
 89
553





1048174
N/A
N/A
8334
8353
GAATGGTGATCCTGAAAGAA
 81
554





1048190
N/A
N/A
9462
9481
AGTGGTCCTAAATATTCTAG
 66
555





1048206
N/A
N/A
9585
9604
TCTCTCTGCCATTTATCTGT
 91
556





1048222
N/A
N/A
9623
9642
CATAGGTCCCTTTCCTGTCC
 71
557





1048238
N/A
N/A
9799
9818
CAACTTAGCCACCAACCAGC
120
558





1048254
N/A
N/A
10576
10595
GGCTTTCTGAAAACCCAGCA
 72
559





1048270
N/A
N/A
10673
10692
CCCCCAAATCCCAATAGTGC
117
560





1048286
N/A
N/A
10756
10775
TCGCACCCCCCTCCCCATCA
106
561





1048302
N/A
N/A
10926
10945
CTCCTTACCTCTCCATCCCG
120
562





1048318
N/A
N/A
10994
11013
AGGCTTTCCTCCATGGCCTG
 91
563





1048334
N/A
N/A
11110
11129
TAGAACAGCCTATGGAGGGA
 52
564





1048350
N/A
N/A
11300
11319
GTTTCCTTTTACCAAGCTGG
 34
565





1048366
N/A
N/A
11335
11354
GATACGCCAAATCCCCTCTT
 94
566





1048382
N/A
N/A
11508
11527
GGGAAGTCCCCGACTTCCCA
 92
567
















TABLE 9







Reduction of GFAP RNA by 5-10-5 MOE


gapmers with mixed PO/PS internucleoside


linkages in U251 cells















SEQ
SEQ
SEQ
SEQ






ID
ID
ID
ID






NO: 1
NO: 1
NO: 2
NO: 2

GFAP RNA
SEQ


Compound
Start
Stop
Start
Stop

(%
ID


No.
Site
Site
Site
Site
Sequence (5′ to 3′)
control)
NO

















1047151
116
135
3564
3583
CCCCACCATCATCTCCCCTG
89
568





1047167
173
192
3621
3640
CATTCGAGCCAGGGAGAGGC
82
569





1047183
372
391
3820
3839
GCTCCTTGGCCCGCAGCTGG
147 
570





1047199
529
548
4914
4933
AGGTTGGTTTCATCCTGGAG
 47*
571





1047215
620
639
5209
5228
CTCAATCTTCCTCTCCAGAT
93
572





1047231
683
702
5569
5588
CTGGAGTTCCCGAACCTCCT
113 
573





1047247
943
962
7300
7319
AGAGACTCCAGGTCGCAGGT
104 
574





1047263
1098
1117
7670
7689
CCTGGTACTOCTGCAAGTGG
139 
575





1047279
1260
1279
10874
10893
TGAGGTGGCCTTCTGACACA
106 
576





1047295
1319
1338
N/A
N/A
GGACTCCTTAATGACCTCTC
77
577





1047311
1370
1389
11659
11678
AGAGGCCACCAGGTGGGTCC
88
578





1047327
1531
1550
11820
11839
TGGCAGGCCTGATACTGACG
71
579





1047343
1637
1656
11926
11945
CTTCCTCCTCATTCTAACGC
68
580





1047359
1714
1733
12003
12022
ACAGTTTCCATAACAACAGG
137 
581





1047375
1760
1779
12049
12068
AAAGGCACAGTTCCCAGATA
106 
582





1047391
1814
1833
12103
12122
GCCTTCCCTTTOCTGTCTGA
34
583





1047407
2005
2024
12294
12313
AGTCTAGGAGAACAACCCTC
113 
584





1047423
2138
2157
12427
12446
GATGGCATCCCTGGATGGCA
113 
585





1047439
2219
2238
12508
12527
GCACCTCATCCCTCTCCACG
75
586





1047455
2244
2263
12533
12552
AGGCAGCCCCCCTCTATCCC
77
587





1047471
2343
2362
12632
12651
ATCCCAATTGCCTCCTCCTC
96
588





1047487
2414
2433
12703
12722
TCCTTAATTCCCACAATCCA
105 
589





1047503
2466
2485
12755
12774
GGATACATCCCCTTTCTCTC
48
590





1047519
2727
2746
13016
13035
GCCTCAGTTTTACAATTGTA
90
591





1047535
2844
2863
13133
13152
TCTGCTCACCAGTCTGCTCA
92
592





1047551
2880
2899
13169
13188
CCTCCCAGTCCCATCTCTGG
90
593





1047567
2937
2956
13226
13245
GGAGAGGGAAGGACCCTTCT
105 
594





1047583
3048
3067
13337
13356
TGTCTTTATTTTTCCTCAGC
10
595





1047615
N/A
N/A
8851
8870
GGCAGCTAACCGCGAGCCGG
92
597





1047631
N/A
N/A
9058
9077
CACCTTTACCACTAACAAGC
105 
598





1047647
N/A
N/A
9089
9108
GAGCAGCTCCACTGCGCACC
87
599





1047663
N/A
N/A
9312
9331
TATTTAACATTAAGAGCAGG
106 
600





1047679
N/A
N/A
8402
8421
CCAGTGCCCTTCCCACGAGG
78
601





1047695
N/A
N/A
8469
8488
TCCCTTTGCCCTGATCCTCA
74
602





1047711
N/A
N/A
8551
8570
AGCCCCACCTAGAAGTACCC
86
603





1047727
N/A
N/A
8690
8709
CAGAAAACACTCAGAAGGGC
93
604





1047743
N/A
N/A
3974
3993
TCCCCATCCCCTCCTCACTT
92
605





1047759
N/A
N/A
4126
4145
GTTTCTGGTCCCTCCCATCA
98
606





1047775
N/A
N/A
4278
4297
AGCTCGCTGCCCACAGTCAC
170 
607





1047791
N/A
N/A
4339
4358
GGACATCAACCTTCTCCGCT
98
608





1047807
N/A
N/A
4376
4395
CCTCACTTTCTTCACCCCAG
104 
609





1047823
N/A
N/A
4512
4531
CAGGTAACCACCTTTTGAAA
82
610





1047839
N/A
N/A
4661
4680
GCTTCTGCTCACACAGGCGC
96
611





1047855
N/A
N/A
4713
4732
GGGCTTTTGCCTTAACTCAT
89
612





1047871
N/A
N/A
4833
4852
TCAGTCTCCCTTGAGGCAGC
87
613





1047887
N/A
N/A
4972
4991
CCCCTCCACCTCCCTGACCT
109 
614





1047903
N/A
N/A
5093
5112
TCAGCCTTGCCTTACCCCTC
96
615





1047919
N/A
N/A
5286
5305
GTTGAGCTTTCCTCCCTCTG
82
616





1047935
N/A
N/A
5434
5453
TCTCTTTCCGTCTCCCTTAG
83
617





1047951
N/A
N/A
5724
5743
GGCAGGGCTACCTTGGAGCG
98
618





1047967
N/A
N/A
5814
5833
AGGATATTCTCCCAGCTTCC
74
619





1047983
N/A
N/A
5946
5965
CAGAACAGTATCAGCTACTA
76
620





1047999
N/A
N/A
6086
6105
TGGAAATCCAACTCTACCAC
122 
621





1048015
N/A
N/A
6154
6173
GGCTCAGTAACCCAAAACAG
82
622





1048031
N/A
N/A
6290
6309
TTCCTGGCTCCCACACTACA
106 
623





1048047
N/A
N/A
6362
6381
GCCCTCCCTTCTTCTCTTCC
84
624





1048063
N/A
N/A
6487
6506
CTGCTCAGACACCAGTGGCT
111 
625





1048079
N/A
N/A
6569
6588
TCGCCTGGCCTCACCCTGGG
101 
626





1048095
N/A
N/A
7024
7043
GCTGCCAGACCTCAGCACCT
192 
627





1048111
N/A
N/A
7328
7347
TGCCCTGGCCGCGCTCACCG
82
628





1048127
N/A
N/A
7502
7521
CCGCGGAGCCCCGACCCGAC
90
629





1048143
N/A
N/A
7945
7964
TGGTTGAATCCATOCATCCA
117 
630





1048159
N/A
N/A
8197
8216
CTAGCTTTTTCCCCAGCAGC
100 
631





1048175
N/A
N/A
9316
9335
CTAATATTTAACATTAAGAG
128 
632





1048191
N/A
N/A
9463
9482
TAGTGGTCCTAAATATTCTA
106 
633





1048207
N/A
N/A
9586
9605
TTCTCTCTGCCATTTATCTG
70
634





1048223
N/A
N/A
9625
9644
CACATAGGTCCCTTTCCTGT
74
635





1048239
N/A
N/A
9800
9819
CCAACTTAGCCACCAACCAG
96
636





1048255
N/A
N/A
10577
10596
TGGCTTTCTGAAAACCCAGC
83
637





1048271
N/A
N/A
10674
10693
GCCCCCAAATOCCAATAGTG
116 
638





1048287
N/A
N/A
10757
10776
ATCGCACCCCCCTCCCCATC
142 
639





1048303
N/A
N/A
10928
10947
CCCTCCTTACCTCTCCATCC
117 
640





1048319
N/A
N/A
10996
11015
CCAGGCTTTCCTCCATGGCC
88
641





1048335
N/A
N/A
11111
11130
TTAGAACAGCCTATGGAGGG
115 
642





1048351
N/A
N/A
11301
11320
AGTTTCCTTTTACCAAGCTG
54
643





1048367
N/A
N/A
11337
11356
CGGATACGCCAAATCCCCTC
101 
644





1048383
N/A
N/A
11539
11558
CAGGTCCACCACCACGAGGC
138 
645
















TABLE 10







Reduction of GFAP RNA by 5-10-5 MOE gapmers


with mixed PO/PS internucleoside linkages


in U251 cells















SEQ
SEQ
SEQ
SEQ






ID
ID
ID
ID






NO: 1
NO: 1
NO: 2
NO: 2

GFAP RNA
SEQ


Compound
Start
Stop
Start
Stop

(%
ID


No.
Site
Site
Site
Site
Sequence (5′ to 3′)
control)
NO

















1047152
117
136
3565
3584
CCCCCACCATCATCTCCCCT
104 
646





1047168
175
194
3623
3642
GGCATTCGAGCCAGGGAGAG
90
647





1047184
435
454
3883
3902
GTTGATCGAGCCGCAGCCGC
104 
648





1047200
530
549
4915
4934
CAGGTTGGTTTCATCCTGGA
 56*
649





1047216
621
640
5210
5229
ACTCAATCTTCCTCTCCAGA
95
650





1047232
684
703
5570
5589
CCTGGAGTTCCCGAACCTCC
126 
651





1047248
946
965
7303
7322
CGCAGAGACTCCAGGTCGCA
104 
652





1047264
1100
1119
7672
7691
GTCCTGGTACTCCTGCAAGT
89
653





1047280
1273
1292
10887
10906
ACGATGTTCCTCTTGAGGTG
96
654





1047296
1320
1339
N/A
N/A
TGGACTOCTTAATGACCTCT
101 
655





1047312
1372
1391
11661
11680
GCAGAGGCCACCAGGTGGGT
64
656





1047328
1580
1599
11869
11888
GGTGAGTTTCTTGTTAGTTG
29
657





1047344
1638
1657
11927
11946
CCTTCCTCCTCATTCTAACG
73
658





1047360
1715
1734
12004
12023
AACAGTTTCCATAACAACAG
115 
659





1047376
1761
1780
12050
12069
CAAAGGCACAGTTCCCAGAT
94
660





1047392
1815
1834
12104
12123
GGCCTTCCCTTTCCTGTCTG
104 
661





1047408
2021
2040
12310
12329
TAGACTGATCAGGGTCAGTC
125 
662





1047424
2148
2167
12437
12456
CGTGCCCACAGATGGCATCC
87
663





1047440
2222
2241
12511
12530
CCAGCACCTCATCCCTCTCC
111 
664





1047456
2246
2265
12535
12554
CCAGGCAGCCCCCCTCTATC
87
665





1047472
2345
2364
12634
12653
CCATCCCAATTGCCTCCTCC
76
666





1047488
2417
2436
12706
12725
ACTTCCTTAATTCCCACAAT
103 
667





1047504
2468
2487
12757
12776
ATGGATACATCCCCTTTCTC
73
668





1047520
2728
2747
13017
13036
TGCCTCAGTTTTACAATTGT
109 
669





1047536
2845
2864
13134
13153
GTCTGCTCACCAGTCTGCTC
110 
670





1047552
2883
2902
13172
13191
GGCCCTOCCAGTCCCATCTC
85
671





1047568
2956
2975
13245
13264
AAAGGACACCAAGTCTTGGG
69
672





1047584
3049
3068
13338
13357
TTGTCTTTATTTTTCCTCAG
11
673





1047616
N/A
N/A
8852
8871
AGGCAGCTAACCGCGAGCCG
94
675





1047632
N/A
V/A
9059
9078
CCACCTTTACCACTAACAAG
89
676





1047648
N/A
N/A
9101
9120
TCAGAGGCCCCAGAGCAGCT
86
677





1047664
N/A
N/A
9314
9333
AATATTTAACATTAAGAGCA
105 
678





1047680
N/A
N/A
8404
8423
CTCCAGTGCCCTTCCCACGA
86
679





1047696
N/A
N/A
8471
8490
GATCCCTTTGCCCTGATCCT
76
680





1047712
N/A
N/A
8554
8573
GCAAGCCCCACCTAGAAGTA
76
681





1047728
N/A
N/A
8691
8710
ACAGAAAACACTCAGAAGGG
92
682





1047744
N/A
N/A
3984
4003
AGGCCCCCCTTCCCCATCCC
79
683





1047760
N/A
N/A
4138
4157
GGCCCTGGGCCTGTTTCTGG
86
684





1047776
N/A
N/A
4279
4298
GAGCTCGCTGCCCACAGTCA
119 
685





1047792
N/A
N/A
4340
4359
TGGACATCAACCTTCTOCGC
102 
686





1047808
N/A
N/A
4377
4396
CCCTCACTTTCTTCACCCCA
71
687





1047824
N/A
N/A
4513
4532
CCAGGTAACCACCTTTTGAA
104 
688





1047840
N/A
N/A
4686
4705
GTGCCTTATCAGGGTTGGTG
64
689





1047856
N/A
N/A
4714
4733
TGGGCTTTTGCCTTAACTCA
79
690





1047872
N/A
N/A
4835
4854
CCTCAGTCTCCCTTGAGGCA
104 
691





1047888
N/A
N/A
4976
4995
CCCTCCCCTCCACCTCCCTG
79
692





1047904
N/A
N/A
5094
5113
CTCAGCCTTGCCTTACCCCT
121 
693





1047920
N/A
N/A
5313
5332
TCTCCCTCTCTCAGTTGCAA
80
694





1047936
N/A
N/A
5436
5455
TGTCTCTTTCCGTCTCCCTT
76
695





1047952
N/A
N/A
5738
5757
CAGGCTGGCCCACAGGCAGG
96
696





1047968
N/A
V/A
5815
5834
GAGGATATTCTCCCAGCTTC
83
697





1047984
N/A
N/A
5993
6012
CACCTACTTCATAGTAAGGT
144 
698





1048000
N/A
N/A
6088
6107
GTTGGAAATCCAACTCTACC
75
699





1048016
N/A
N/A
6155
6174
AGGCTCAGTAACCCAAAACA
97
700





1048032
N/A
N/A
6298
6317
CAGTGTCTTTCCTGGCTCCC
72
701





1048048
N/A
N/A
6363
6382
GGCCCTCCCTTCTTCTCTTC
106 
702





1048064
N/A
N/A
6491
6510
CACCCTGCTCAGACACCAGT
112 
703





1048080
N/A
N/A
6570
6589
CTCGCCTGGCCTCACCCTGG
80
704





1048096
N/A
N/A
7028
7047
GCGGGCTGCCAGACCTCAGC
82
705





1048112
N/A
V/A
7335
7354
CCCGTCCTGCCCTGGCCGCG
92
706





1048128
N/A
N/A
7833
7852
AAAAAGACTCAGTCCCTGAA
103 
707





1048144
N/A
N/A
7946
7965
TTGGTTGAATCCATCCATCC
68
708





1048160
N/A
N/A
8198
8217
CCTAGCTTTTTCCCCAGCAG
71
709





1048176
N/A
N/A
9317
9336
ACTAATATTTAACATTAAGA
69
710





1048192
N/A
N/A
9465
9484
TCTAGTGGTCCTAAATATTC
108 
711





1048208
N/A
N/A
9593
9612
TTCCTACTTCTCTCTGCCAT
80
712





1048224
N/A
N/A
9633
9652
GCTCAATACACATAGGTCCC
82
713





1048240
N/A
N/A
9801
9820
CCCAACTTAGCCACCAACCA
120 
714





1048256
N/A
N/A
10578
10597
CTGGCTTTCTGAAAACCCAG
119 
715





1048272
N/A
N/A
0675
10694
AGCCCCCAAATCCCAATAGT
116 
716





1048288
N/A
N/A
10759
10778
CCATCGCACCCCCCTCCCCA
88
717





1048304
N/A
N/A
10929
10948
TCCCTCCTTACCTCTCCATC
73
718





1048320
N/A
N/A
10997
11016
CCCAGGCTTTCCTCCATGGC
113 
719





1048336
N/A
V/A
11112
11131
CTTAGAACAGCCTATGGAGG
74
720





1048352
N/A
N/A
11302
11321
TAGTTTCCTTTTACCAAGCT
97
721





1048368
N/A
N/A
11338
11357
GCGGATACGCCAAATCCCCT
74
722





1048384
N/A
N/A
11541
11560
CCCAGGTCCACCACCACGAG
105 
723
















TABLE 11







Reduction of GFAP RNA by 5-10-5 MOE gapmers


with mixed PO/PS internucleoside linkages


in U251 cells















SEQ
SEQ
SEQ
SEQ






ID
ID
ID
ID






NO: 1
NO: 1
NO: 2
NO: 2

GFAP RNA
SEQ


Compound
Start
Stop
Start
Stop

(%
ID


No.
Site
Site
Site
Site
Sequence (5′ to 3′)
control)
NO

















1047153
119
138
356
3586
GCCCCCCACCATCATCTCCC
88
724





1047169
210
229
3658
3677
CCAGGGAGAAATCCACCCGG
81
725





1047185
440
459
3888
3907
GGTGAGTTGATCGAGCCGCA
70
726





1047201
539
558
4924
4943
TTCCAGCCTCAGGTTGGTTT
 29*
727





1047217
627
646
5216
5235
CCAGCGACTCAATCTTCCTC
99
728





1047233
703
722
5589
5608
TGCTGTCGGGCCAGCTGCTC
118 
729





1047249
990
1009
7562
7581
CCTCCTGCTCGCGCATCTGC
93
730





1047265
1101
1120
7673
7692
GGTCCTGGTACTCCTGCAAG
129 
731





1047281
1274
1293
10888
10907
CACGATGTTCCTCTTGAGGT
104 
732





1047297
1321
1340
N/A
N/A
TTGGACTCCTTAATGACCTC
110 
733





1047313
1393
1412
11682
11701
TCGGGCCCCTCATGAGACGG
99
734





1047329
1605
1624
11894
11913
ATGCCCCTCCAGACTGCCCC
109 
735





1047345
1640
1659
11929
11948
CTCCTTCCTCCTCATTCTAA
89
736





1047361
1716
1735
12005
12024
CAACAGTTTCCATAACAACA
62
737





1047377
1770
1789
12059
12078
GAGGAAACTCAAAGGCACAG
82
738





1047393
1816
1835
12105
12124
GGGCCTTCCCTTTCCTGTCT
64
739





1047409
2024
2043
12313
12332
TCTTAGACTGATCAGGGTCA
124 
740





1047425
2166
2185
12455
12474
GCTCCCACCTGCCCACAGCG
79
741





1047441
2224
2243
12513
12532
TCCCAGCACCTCATCCCTCT
109 
742





1047457
2247
2266
12536
12555
GCCAGGCAGCCCCCCTCTAT
100 
743





1047473
2369
2388
12658
12677
CAACCCCTACTTGTATGCCT
73
744





1047489
2429
2448
12718
12737
AGAGGATGAGTCACTTCCTT
116 
745





1047505
2469
2488
12758
12777
CATGGATACATCCCCTTTCT
83
746





1047521
2748
2767
13037
13056
CAGTGTCTTCACTTTGCTCG
69
747





1047537
2846
2865
13135
13154
AGTCTGCTCACCAGTCTGCT
103 
748





1047553
2884
2903
13173
13192
GGGCCCTCCCAGTCCCATCT
105 
749





1047569
2957
2976
13246
13265
GAAAGGACACCAAGTCTTGG
117 
750





1047585
3050
3069
13339
13358
TTTGTCTTTATTTTTCCTCA
20
751





1047601
N/A
N/A
8751
8770
GATTTTCCCCGTCTTTGGTG
38
752





1047617
N/A
N/A
8901
8920
GTGAGGCTCACTOCCTGTCA
95
753





1047633
N/A
N/A
9060
9079
ACCACCTTTACCACTAACAA
108 
754





1047649
N/A
N/A
9107
9126
GCTTGCTCAGAGGCCCCAGA
59
755





1047665
N/A
N/A
9315
9334
TAATATTTAACATTAAGAGC
135 
756





1047681
N/A
N/A
8406
8425
GACTCCAGTGCCCTTCCCAC
109 
757





1047697
N/A
N/A
8473
8492
TGGATCCCTTTGCCCTGATC
90
758





1047713
N/A
N/A
8557
8576
GCTGCAAGCCCCACCTAGAA
69
759





1047729
N/A
N/A
8692
8711
AACAGAAAACACTCAGAAGG
97
760





1047745
N/A
N/A
3985
4004
AAGGCCCCCCTTCCCCATCC
109 
761





1047761
N/A
N/A
4158
4177
TGCGGGCATCAGATCCCCGG
138 
762





1047777
N/A
N/A
4313
4332
TCCTCCTTTATATGGACACA
111 
763





1047793
N/A
N/A
4341
4360
ATGGACATCAACCTTCTCCG
74
764





1047809
N/A
N/A
4378
4397
TCCCTCACTTTCTTCACCCC
100 
765





1047825
N/A
N/A
4514
4533
CCCAGGTAACCACCTTTTGA
92
766





1047841
N/A
N/A
4689
4708
AAGGTGCCTTATCAGGGTTG
74
767





1047857
N/A
N/A
4716
4735
TGTGGGCTTTTGCCTTAACT
103 
768





1047873
N/A
N/A
4841
4860
TACCTGCCTCAGTCTCCCTT
130 
769





1047889
N/A
N/A
4998
5017
AATCCTTTCCTCCCTCCCCT
129 
770





1047905
N/A
N/A
5103
5122
TCCCCATTCCTCAGCCTTGC
112 
771





1047921
N/A
N/A
5317
5336
TGTCTCTCCCTCTCTCAGTT
88
772





1047937
N/A
N/A
5438
5457
CTTGTCTCTTTCCGTCTCCC
105 
773





1047953
N/A
N/A
5739
5758
GCAGGCTGGCCCACAGGCAG
83
774





1047969
N/A
N/A
5816
5835
AGAGGATATTCTCCCAGCTT
80
775





1047985
N/A
N/A
5994
6013
GCACCTACTTCATAGTAAGG
65
776





1048001
N/A
N/A
6089
6108
AGTTGGAAATCCAACTCTAC
88
777





1048017
N/A
N/A
6157
6176
AGAGGCTCAGTAACCCAAAA
90
778





1048033
N/A
N/A
6306
6325
CCCCTCTACAGTGTCTTTCC
101 
779





1048049
N/A
N/A
6364
6383
TGGCCCTCCCTTCTTCTCTT
89
780





1048065
N/A
N/A
6497
6516
GGCCCTCACCCTGCTCAGAC
143 
781





104808
N/A
N/A
6571
6590
CCTCGCCTGGCCTCACCCTG
116 
782





1048097
N/A
N/A
7056
7075
ACTGTGACCCATGGATGCGG
98
783





1048113
N/A
N/A
7343
7362
CGCCCGTCCCCGTCCTGCCC
92
784





1048129
N/A
N/A
7835
7854
TGAAAAAGACTCAGTCCCTG
103 
785





1048145
N/A
N/A
7947
7966
ATTGGTTGAATCCATCCATC
106 
786





1048161
N/A
N/A
8199
8218
TCCTAGCTTTTTCCCCAGCA
92
787





1048177
N/A
N/A
9318
9337
CACTAATATTTAACATTAAG
120 
788





1048193
N/A
N/A
9475
9494
GACATGCATATCTAGTGGTC
64
789





1048209
N/A
N/A
9595
9614
CTTTCCTACTTCTCTCTGCC
107 
790





1048225
N/A
N/A
9634
9653
TGCTCAATACACATAGGTCC
95
791





1048241
N/A
N/A
9806
9825
GAAGTCCCAACTTAGCCACC
101 
792





1048257
N/A
N/A
10579
10598
CCTGGCTTTCTGAAAACCCA
70
793





1048273
N/A
N/A
10683
10702
GGCTGGAGAGCCCCCAAATC
144 
794





1048289
N/A
N/A
10766
10785
GGCTTCCCCATCGCACCCCC
117 
795





1048305
N/A
N/A
10930
10949
ATCCCTCCTTACCTCTCCAT
106 
796





1048321
N/A
N/A
10998
11017
CCCCAGGCTTTCCTCCATGG
81
797





1048337
N/A
N/A
11113
11132
CCTTAGAACAGCCTATGGAG
162 
798





1048353
N/A
N/A
11305
11324
TGGTAGTTTCCTTTTACCAA
89
799





1048369
N/A
N/A
11339
11358
GGCGGATACGCCAAATCCCC
93
800





1048385
N/A
N/A
11547
11566
ACAGACCCCAGGTOCACCAC
104 
801
















TABLE 12







Reduction of GFAP RNA by 5-10-5 MOE gapmers


with mixed PO/PS internucleoside linkages


in U251 cells















SEQ
SEQ
SEQ
SEQ






ID
ID
ID
ID






NO: 1
NO: 1
NO: 2
NO: 2

GFAP RNA
SEQ


Compound
Start
Stop
Start
Stop

(%
ID


No.
Site
Site
Site
Site
Sequence (5′ to 3′)
control)
NO

















1047154
120
139
3568
3587
GGCCCCCCACCATCATCTCC
97
802





1047170
226
245
3674
3693
GCATTGAGTGCCCCAGCCAG
128 
803





1047186
471
490
3919
3938
CCCTCTCAACCTCCAGCCGG
  3*
804





1047202
541
560
4926
4945
GCTTCCAGCCTCAGGTTGGT
 18*
805





1047218
628
647
5217
5236
TCCAGCGACTCAATCTTCCT
100 
806





1047234
723
742
5609
5628
CGTCAAGCTCCACATGGACC
144 
807





1047250
1017
1036
7589
7608
AACTGGCCGCCTCCCGCACG
127 
808





1047266
1206
1225
8355
8374
GGTTGGAGAAGGTCTGCACG
77
809





1047282
1275
1294
10889
10908
CCACGATGTTCCTCTTGAGG
157 
810





1047298
1322
1341
11611
11630
CTTGGACTCCTTAATGACCT
64
811





1047314
1395
1414
11684
11703
GCTCGGGCCCCTCATGAGAC
100 
812





1047330
1606
1625
11895
11914
CATGCCCCTCCAGACTGCCC
106 
813





1047346
1657
1676
11946
11965
CGCCCTCCTCCCCTTCTCTC
79
814





1047362
1718
1737
12007
12026
GGCAACAGTTTCCATAACAA
31
815





1047378
1771
1790
12060
12079
TGAGGAAACTCAAAGGCACA
79
816





1047394
1835
1854
12124
12143
CAGGGCTACCTTGTCTGTGG
40
817





1047410
2025
2044
12314
12333
ATCTTAGACTGATCAGGGTC
67
818





1047426
2167
2186
12456
12475
AGCTCCCACCTGCCCACAGC
94
819





1047442
2226
2245
12515
12534
CCTCCCAGCACCTCATCCCT
97
820





1047458
2268
2287
12557
12576
TCTCTGTACCCACAGCTGGG
84
821





1047474
2371
2390
12660
12679
CACAACCCCTACTTGTATGC
61
822





1047490
2442
2461
12731
12750
TTCAGCATCTTCAAGAGGAT
92
823





1047506
2470
2489
12759
12778
CCATGGATACATCCCCTTTC
151 
824





1047522
2749
2768
13038
13057
CCAGTGTCTTCACTTTGCTC
44
825





1047538
2847
2866
13136
13155
CAGTCTGCTCACCAGTCTGC
103 
826





1047554
2885
2904
13174
13193
TGGGCCCTCCCAGTCCCATC
172 
827





1047570
2958
2977
13247
13266
GGAAAGGACACCAAGTCTTG
90
828





1047586
3051
3070
13340
13359
ATTTGTCTTTATTTTTCCTC
32
829





1047602
N/A
N/A
8754
8773
TGTGATTTTCCCCGTCTTTG
54
830





1047618
N/A
N/A
8902
8921
GGTGAGGCTCACTCCCTGTC
65
831





1047634
N/A
N/A
9061
9080
CACCACCTTTACCACTAACA
88
832





1047650
N/A
N/A
9109
9128
CTGCTTGCTCAGAGGCCCCA
115 
833





1047666
N/A
N/A
8372
8391
CTGACCTCGAATCTGCAGGT
84
834





1047682
N/A
N/A
8412
8431
GGGCAGGACTCCAGTGCCCT
118 
835





1047698
N/A
N/A
8474
8493
CTGGATCCCTTTGCCCTGAT
100 
836





1047714
N/A
N/A
8626
8645
CACCCAGITCTGCTGTOGAA
94
837





1047730
N/A
N/A
8696
8715
CAAAAACAGAAAACACTCAG
160 
838





1047746
N/A
N/A
3987
4006
ACAAGGCCCCCCTTCCCCAT
57
839





1047762
N/A
N/A
4215
4234
CACTGCTTTCCCCAGTAGGG
48
840





1047778
N/A
N/A
4314
4333
CTCCTCCTTTATATGGACAC
96
841





1047794
N/A
N/A
4345
4364
CCTCATGGACATCAACCTTC
92
842





1047810
N/A
N/A
4379
4398
TTCCCTCACTTTCTTCACCC
102 
843





1047826
N/A
N/A
4515
4534
TCCCAGGTAACCACCTTTTG
76
844





1047842
N/A
N/A
4691
4710
CTAAGGTGCCTTATCAGGGT
78
845





1047858
N/A
N/A
4794
4813
ACCCAGGACCAGTAGAGCAG
84
846





1047874
N/A
N/A
4843
4862
AATACCTGCCTCAGTCTCCC
106 
847





1047890
N/A
N/A
4999
5018
CAATCCTTTCCTCCCTCCCC
109 
848





1047906
N/A
N/A
5104
5123
CTCCCCATTCCTCAGCCTTG
90
849





1047922
N/A
N/A
5334
5353
CTCAGCTTCTCTGTCTCTGT
123 
850





1047938
N/A
N/A
5465
5484
CCCCTCGGCCAGGAGTTCGA
123 
851





1047954
N/A
N/A
5781
5800
CCCCATTCTCTTGTACAGAG
98
852





1047970
N/A
N/A
5817
5836
GAGAGGATATTCTCCCAGCT
151 
853





1047986
N/A
N/A
6001
6020
AAGAACAGCACCTACTTCAT
85
854





1048002
N/A
N/A
6090
6109
GAGTTGGAAATCCAACTCTA
97
855





1048018
N/A
N/A
6159
6178
GTAGAGGCTCAGTAACCCAA
51
856





1048034
N/A
N/A
6310
6329
ATGCCCCCTCTACAGTGTCT
71
857





1048050
N/A
N/A
6366
6385
AATGGCCCTCCCTTCTTCTC
177 
858





1048066
N/A
N/A
6503
6522
CCATCGGGCCCTCACCCTGC
110 
859





1048082
N/A
N/A
6951
6970
ACCTTCCACACTGACAGCTG
169 
860





1048098
N/A
N/A
7058
7077
CAACTGTGACCCATGGATGC
78
861





1048114
N/A
N/A
7349
7368
CTGCTCCGCCCGTCCCCGTC
120 
862





1048130
N/A
N/A
7836
7855
CTGAAAAAGACTCAGTCCCT
118 
863





1048146
N/A
N/A
7949
7968
ATATTGGTTGAATCCATCCA
102 
864





1048162
N/A
N/A
8211
8230
TCTAACTCCATCTCCTAGCT
98
865





1048178
N/A
N/A
9319
9338
TCACTAATATTTAACATTAA
84
866





1048194
N/A
N/A
9492
9511
GCTGAATTAAGTCCTGAGAC
55
867





1048210
N/A
N/A
9596
9615
TCTTTCCTACTTCTCTCTGC
82
868





1048226
N/A
N/A
9662
9681
AGGCTGTTAAACATGTGGCA
71
869





1048242
N/A
N/A
9807
9826
AGAAGTCCCAACTTAGCCAC
85
870





1048258
N/A
N/A
10580
10599
ACCTGGCTTTCTGAAAACCC
79
871





1048274
N/A
N/A
10698
10717
AGGCTCTTCCAAACGGGCTG
103 
872





1048290
N/A
N/A
10768
10787
CCGGCTTCCCCATCGCACCC
81
873





1048306
N/A
N/A
10931
10950
AATCCCTCCTTACCTCTCCA
116 
874





1048322
N/A
N/A
11004
11023
TGCCAGCCCCAGGCTTTCCT
66
875





1048338
N/A
N/A
11117
11136
CTCCCCTTAGAACAGCCTAT
88
876





1048354
N/A
N/A
11306
11325
CTGGTAGTTTCCTTTTACCA
113 
877





1048370
N/A
N/A
11340
11359
TGGCGGATACGCCAAATCCC
75
878





1048386
N/A
N/A
11555
11574
GAGTTCACACAGACCCCAGG
85
879
















TABLE 13







Reduction of GFAP RNA by 5-10-5 MOE gapmers


with mixed PO/PS internucleoside linkages


in U251 cells















SEQ
SEQ
SEQ
SEQ






ID
ID
ID
ID






NO: 1
NO: 1
NO: 2
NO: 2

GFAP RNA
SEQ


Compound
Start
Stop
Start
Stop

(%
ID


No.
Site
Site
Site
Site
Sequence (5′ to 3′)
control)
NO

















1047155
121
140
3569
3588
AGGCCCCCCACCATCATCTC
124 
880





1047171
228
247
3676
3695
CAGCATTGAGTGCCCCAGCC
104 
881





1047187
472
491
3920
3939
TCCCTCTCAACCTCCAGCCG
  7*
882





1047203
542
561
4927
4946
GGCTTCCAGCCTCAGGTTGG
 18*
883





1047219
629
648
5218
5237
CTCCAGCGACTCAATCTTCC
86
884





1047235
761
780
5647
5666
GATCTCTTTCAGGGCTGCGG
51
885





1047251
1019
1038
7591
7610
ATAACTGGCCGCCTCCCGCA
143 
886





1047267
1223
1242
N/A
N/A
GGTTTCTCGAATCTGCAGGT
65
887





1047283
1280
1299
10894
10913
CTTCACCACGATGTTCCTCT
73
888





1047299
1323
1342
11612
11631
GCTTGGACTCCTTAATGACC
91
889





1047315
1396
1415
11685
11704
TGCTCGGGCCCCTCATGAGA
84
890





1047331
1607
1626
11896
11915
CCATGCCCCTCCAGACTGCC
66
891





1047347
1658
1677
11947
11966
CCGCCCTCCTCCCCTTCTCT
73
892





1047363
1721
1740
12010
12029
TCTGGCAACAGTTTCCATAA
66
893





1047379
1772
1791
12061
12080
CTGAGGAAACTCAAAGGCAC
100 
894





1047395
1837
1856
12126
12145
GCCAGGGCTACCTTGTCTGT
80
895





1047411
2026
2045
12315
12334
CATCTTAGACTGATCAGGGT
72
896





1047427
2169
2188
12458
12477
CAAGCTOCCACCTGCCCACA
111 
897





1047443
2232
2251
12521
12540
TCTATCCCTOCCAGCACCTC
80
898





1047459
2269
2288
12558
12577
CTCTCTGTACCCACAGCTGG
85
899





1047475
2372
2391
12661
12680
CCACAACCCCTACTTGTATG
69
900





1047491
2443
2462
12732
12751
TTTCAGCATCTTCAAGAGGA
121 
901





1047507
2471
2490
12760
12779
CCCATGGATACATCCCCTTT
79
902





1047523
2751
2770
13040
13059
AGCCAGTGTCTTCACTTTGC
60
903





1047539
2855
2874
13144
13163
GATCCCACCAGTCTGCTCAC
84
904





1047555
2886
2905
13175
13194
GTGGGCCCTCCCAGTCCCAT
81
905





1047571
3010
3029
13299
13318
TGCCCTGAAGATTAGCAGCA
103 
906





1047587
3052
3071
13341
13360
CATTTGTCTTTATTTTTCCT
14
907





1047603
N/A
N/A
8755
8774
TTGTGATTTTCCCCGTCTTT
75
908





1047619
N/A
N/A
8969
8988
ACGCAGTCCAGGCCCTTTAG
57
909





1047635
N/A
N/A
9063
9082
CTCACCACCTTTACCACTAA
113 
910





1047651
N/A
N/A
9128
9147
AGAGGTGAGACAGAGGCTGC
112 
911





1047667
N/A
N/A
8374
8393
TACTGACCTCGAATCTGCAG
85
912





1047683
N/A
N/A
8432
8451
CCTACAGGCCCTGGAGGAGG
85
913





1047699
N/A
N/A
8476
8495
AGCTGGATCCCTTTGCCCTG
97
914





1047715
N/A
N/A
8630
8649
CTCTCACCCAGTTCTGCTGT
77
915





1047731
N/A
N/A
8723
8742
CCCTGTAGTGACAAGCAGTT
84
916





1047747
N/A
N/A
3997
4016
CCTTCTGCTCACAAGGCCCC
93
917





1047763
N/A
N/A
4257
4276
AAGCCCAGCCATGAATGAAA
83
918





1047779
N/A
N/A
4316
4335
AACTCCTCCTTTATATGGAC
91
919





1047795
N/A
N/A
4353
4372
CCAATCTCCCTCATGGACAT
66
920





1047811
N/A
N/A
4386
4405
CTGCTCTTTCCCTCACTTTC
103 
921





1047827
N/A
N/A
4516
4535
ATCCCAGGTAACCACCTTTT
85
922





1047843
N/A
N/A
4692
4711
ACTAAGGTGCCTTATCAGGG
117 
923





1047859
N/A
N/A
4795
4814
CACCCAGGACCAGTAGAGCA
56
924





1047875
N/A
N/A
4848
4867
ACTTGAATACCTGCCTCAGT
85
925





1047891
N/A
N/A
5001
5020
ATCAATCCTTTCCTCCCTCC
102 
926





1047907
N/A
N/A
5107
5126
CTTCTCCCCATTCCTCAGCC
56
927





1047923
N/A
N/A
5349
5368
AGTGTCTCTCTCAGTCTCAG
83
928





1047939
N/A
N/A
5477
5496
CTCTTCTGCCTGCCCCTCGG
101 
929





1047955
N/A
N/A
5783
5802
TCCCCCATTCTCTTGTACAG
49
930





1047971
N/A
N/A
5818
5837
GGAGAGGATATTCTCCCAGC
93
931





1047987
N/A
N/A
6007
6026
CTGTCAAAGAACAGCACCTA
112 
932





1048003
N/A
N/A
6091
6110
AGAGTTGGAAATCCAACTCT
92
933





1048019
N/A
N/A
6201
6220
GGTCAGACACCTCTCTGTGT
82
934





1048035
N/A
N/A
6321
6340
GCCTAGCCCAAATGCCCCCT
71
935





1048051
N/A
N/A
6384
6403
GCTCTGTCCTCCACTAGGAA
97
936





1048067
N/A
N/A
6504
6523
CCCATCGGGCCCTCACCCTG
88
937





1048083
N/A
N/A
6954
6973
AGAACCTTCCACACTGACAG
76
938





1048099
N/A
N/A
7060
7079
AACAACTGTGACCCATGGAT
74
939





1048115
N/A
N/A
7351
7370
CCCTGCTCCGCCCGTCCCCG
98
940





1048131
N/A
N/A
7837
7856
GCTGAAAAAGACTCAGTOCC
84
941





1048147
N/A
N/A
7973
7992
GTCCTTGGCCTTGAGGCCTA
95
942





1048163
N/A
N/A
8213
8232
AGTCTAACTCCATCTCCTAG
88
943





1048179
N/A
N/A
9322
9341
CATTCACTAATATTTAACAT
110 
944





1048195
N/A
N/A
9507
9526
GTTAGCCTTTCTGATGCTGA
53
945





1048211
N/A
N/A
9597
9616
CTCTTTCCTACTTCTCTCTG
91
946





1048227
N/A
N/A
9708
9727
GGCCTACTTCTCTAGGTGGG
82
947





1048243
N/A
N/A
9808
9827
AAGAAGTOCCAACTTAGCCA
141 
948





1048259
N/A
N/A
10602
10621
CCTCTGCAAGCCCTGGCCTG
95
949





1048275
N/A
N/A
10699
10718
TAGGCTCTTCCAAACGGGCT
89
950





1048291
N/A
N/A
10769
10788
CCCGGCTTCCCCATCGCACC
79
951





1048307
N/A
N/A
10934
10953
CCAAATCCCTCCTTACCTCT
156 
952





1048323
N/A
N/A
11017
11036
GGAACCTTCTATGTGCCAGC
74
953





1048339
N/A
N/A
11132
11151
GCTTTGGTACCAAGGCTCCC
192 
954





1048355
N/A
N/A
11307
11326
CCTGGTAGTTTCCTTTTACC
52
955





1048371
N/A
N/A
11379
11398
GCTGGAGTAAGATGAGCTOC
86
956





1048387
N/A
N/A
11570
11589
CAGTGCAACAGTTAGGAGTT
66
957
















TABLE 14







Reduction of GFAP RNA by 5-10-5 MOE gapmers


with mixed PO/PS internucleoside linkages


in U251 cells















SEQ
SEQ
SEQ
SEQ






ID
ID
ID
ID






NO: 1
NO: 1
NO: 2
NO: 2

GFAP RNA
SEQ


Compound
Start
Stop
Start
Stop

(%
ID


No.
Site
Site
Site
Site
Sequence (5′ to 3′)
control)
NO

















1047156
122
141
3570
3589
CAGGCCCCCCACCATCATCT
90
958





1047172
237
256
3685
3704
CCTTGAAGCCAGCATTGAGT
89
959





1047188
473
492
3921
3940
GTCCCTCTCAACCTCCAGCC
  6*
960





1047204
545
564
4930
4949
CTCGGCTTCCAGCCTCAGGT
 37*
961





1047220
634
653
5223
5242
TCCTCCTCCAGCGACTCAAT
94
962





1047236
766
785
5652
5671
GTGCGGATCTCTTTCAGGGC
63
963





1047252
1020
1039
7592
7611
GATAACTGGCCGCCTCCCGC
113 
964





1047268
1225
1244
N/A
N/A
CTGGTTTCTCGAATCTGCAG
83
965





1047284
1283
1302
10897
10916
GGTCTTCACCACGATGTTCC
94
966





1047300
1345
1364
11634
11653
CACATCACATOCTTGTGCTC
75
967





1047316
1398
1417
11687
11706
TCTGCTCGGGCCCCTCATGA
96
968





1047332
1608
1627
11897
11916
GCCATGCCCCTCCAGACTGC
73
969





1047348
1659
1678
11948
11967
CCCGCCCTCCTCCCCTTCTC
107 
970





1047364
1723
1742
12012
12031
TCTCTGGCAACAGTTTCCAT
65
971





1047380
1773
1792
12062
12081
CCTGAGGAAACTCAAAGGCA
92
972





1047396
1838
1857
12127
12146
GGCCAGGGCTACCTTGTCTG
67
973





1047412
2027
2046
12316
12335
CCATCTTAGACTGATCAGGG
76
974





1047428
2170
2189
12459
12478
TCAAGCTOCCACCTGCCCAC
127 
975





1047444
2233
2252
12522
12541
CTCTATCCCTCCCAGCACCT
42
976





1047460
2270
2289
12559
12578
CCTCTCTGTACCCACAGCTG
94
977





1047476
2373
2392
12662
12681
CCCACAACCCCTACTTGTAT
115 
978





1047492
2449
2468
12738
12757
CTCCTGTTTCAGCATCTTCA
45
979





1047508
2472
2491
12761
12780
CCCCATGGATACATCCCCTT
86
980





1047524
2759
2778
13048
13067
GGAATATGAGCCAGTGTCTT
63
981





1047540
2857
2876
13146
13165
CAGATCCCACCAGTCTGCTC
89
982





1047556
2889
2908
13178
13197
GAAGTGGGCCCTOCCAGTCC
113 
983





1047572
3011
3030
13300
13319
GTGCCCTGAAGATTAGCAGC
85
984





1047588
3053
3072
13342
13361
GCATTTGTCTTTATTTTTCC
11
985





1047604
N/A
N/A
8756
8775
CTTGTGATTTTCCCCGTCTT
74
986





1047620
N/A
N/A
8972
8991
ATGACGCAGTCCAGGCCCTT
78
987





1047636
N/A
N/A
9064
9083
ACTCACCACCTTTACCACTA
85
988





1047652
N/A
N/A
9129
9148
AAGAGGTGAGACAGAGGCTG
66
989





1047668
N/A
N/A
8375
8394
GTACTGACCTCGAATCTGCA
96
990





1047684
N/A
N/A
8437
8456
AGCAACCTACAGGCCCTGGA
116 
991





1047700
N/A
N/A
8477
8496
GAGCTGGATCCCTTTGCCCT
82
992





1047716
N/A
N/A
8631
8650
GCTCTCACCCAGTTCTGCTG
83
993





1047732
N/A
N/A
8725
8744
CCCCCTGTAGTGACAAGCAG
71
994





1047748
N/A
N/A
4051
4070
GAGGTTCGGCCCCTCCCTGA
68
995





1047764
N/A
N/A
4258
4277
AAAGCCCAGCCATGAATGAA
111 
996





1047780
N/A
N/A
4317
4336
CAACTCCTCCTTTATATGGA
104 
997





1047796
N/A
N/A
4355
4374
ATCCAATCTCCCTCATGGAC
78
998





1047812
N/A
N/A
4388
4407
GCCTGCTCTTTCCCTCACTT
98
999





1047828
N/A
N/A
4520
4539
TCTGATCCCAGGTAACCACC
81
1000





1047844
N/A
N/A
4693
4712
TACTAAGGTGCCTTATCAGG
92
1001





1047860
N/A
N/A
4800
4819
ACCCCCACCCAGGACCAGTA
94
1002





1047876
N/A
N/A
4851
4870
GACACTTGAATACCTGCCTC
89
1003





1047892
N/A
N/A
5002
5021
CATCAATCCTTTOCTOCCTC
79
1004





1047908
N/A
N/A
5109
5128
TCCTTCTCCCCATTCCTCAG
88
1005





1047924
N/A
N/A
5355
5374
TCTCTGAGTGTCTCTCTCAG
92
1006





1047940
N/A
N/A
5478
5497
CCTCTTCTGCCTGCCCCTCG
111 
1007





1047956
N/A
N/A
5784
5803
TTCCCCCATTCTCTTGTACA
98
1008





1047972
N/A
N/A
5836
5855
GGTGAAAGTCAGTCACCTGG
90
1009





1047988
N/A
N/A
6009
6028
ATCTGTCAAAGAACAGCACC
96
1010





1048004
N/A
N/A
6092
6111
TAGAGTTGGAAATCCAACTC
92
1011





1048020
N/A
N/A
6211
6230
ACACCTTCCAGGTCAGACAC
71
1012





1048036
N/A
N/A
6322
6341
TGCCTAGCCCAAATGCCCCC
111 
1013





1048052
N/A
N/A
6386
6405
AGGCTCTGTCCTCCACTAGG
87
1014





1048068
N/A
N/A
6513
6532
CCTCCCAGCCCCATCGGGCC
146 
1015





1048084
N/A
N/A
6955
6974
CAGAACCTTCCACACTGACA
123 
1016





1048100
N/A
N/A
7065
7084
TTCCCAACAACTGTGACCCA
69
1017





1048116
N/A
N/A
7387
7406
TGGCCCTTCTCCCCTGGCAT
122 
1018





1048132
N/A
N/A
7840
7859
AAGGCTGAAAAAGACTCAGT
82
1019





1048148
N/A
N/A
7982
8001
GTGACCCAAGTCCTTGGCCT
85
1020





1048164
N/A
N/A
8217
8236
GGAAAGTCTAACTCCATCTC
93
1021





1048180
N/A
N/A
9323
9342
ACATTCACTAATATTTAACA
91
1022





1048196
N/A
N/A
9510
9529
CTGGTTAGCCTTTCTGATGC
51
1023





1048212
N/A
N/A
9599
9618
TCCTCTTTCCTACTTCTCTC
73
1024





1048228
N/A
N/A
9709
9728
GGGCCTACTTCTCTAGGTGG
48
1025





1048244
N/A
N/A
9813
9832
AGCTCAAGAAGTCCCAACTT
87
1026





1048260
N/A
N/A
10616
10635
GCTTCATTTCAGCCCCTCTG
82
1027





1048276
N/A
N/A
10700
10719
CTAGGCTCTTCCAAACGGGC
94
1028





1048292
N/A
N/A
10771
10790
TGCCCGGCTTCCCCATCGCA
98
1029





1048308
N/A
N/A
10936
10955
GCCCAAATCCCTCCTTACCT
95
1030





1048324
N/A
N/A
11021
11040
GCTGGGAACCTTCTATGTGC
64
1031





1048340
N/A
N/A
11133
11152
GGCTTTGGTACCAAGGCTOC
89
1032





1048356
N/A
N/A
11309
11328
CCCCTGGTAGTTTCCTTTTA
94
1033





1048372
N/A
N/A
11433
11452
TGGTGAGATAACACTGGGAA
51
1034





1048388
N/A
N/A
11571
11590
ACAGTGCAACAGTTAGGAGT
73
1035
















TABLE 15







Reduction of GFAP RNA by 5-10-5 MOE gapmers


with mixed PO/PS internucleoside linkages


in U251 cells















SEQ
SEQ
SEQ
SEQ






ID
ID
ID
ID






NO: 1
NO: 1
NO: 2
NO: 2

GFAP RNA
SEQ


Compound
Start
Stop
Start
Stop

(%
ID


No.
Site
Site
Site
Site
Sequence (5′ to 3′)
control)
NO

















1047157
123
142
3571
3590
CCAGGCCCCCCACCATCATC
116 
1036





1047173
239
258
3687
3706
CTCCTTGAAGCCAGCATTGA
95
1037





1047189
474
493
3922
3941
TGTCCCTCTCAACCTCCAGC
 11*
1038





1047205
547
566
4932
4951
TTCTCGGCTTCCAGCCTCAG
 31*
1039





1047221
637
656
5226
5245
ATCTCCTCCTCCAGCGACTC
83
1040





1047237
786
805
5672
5691
ACGCCATTGCCTCATACTGC
104 
1041





1047253
1021
1040
7593
7612
TGATAACTGGCCGCCTCCCG
94
1042





1047269
1227
1246
N/A
N/A
GGCTGGTTTCTCGAATCTGC
92
1043





1047285
1285
1304
10899
10918
ACGGTCTTCACCACGATGTT
86
1044





1047301
1346
1365
11635
11654
TCACATCACATCCTTGTGCT
79
1045





1047317
1406
1425
11695
11714
ATCCTGCTTCTGCTCGGGCC
98
1046





1047333
1610
1629
11899
11918
TGGCCATGCCCCTCCAGACT
74
1047





1047349
1660
1679
11949
11968
CCCCGCCCTCCTCCCCTTCT
98
1048





1047365
1724
1743
12013
12032
ATCTCTGGCAACAGTTTCCA
60
1049





1047381
1774
1793
12063
12082
GCCTGAGGAAACTCAAAGGC
91
1050





1047397
1839
1858
12128
12147
TGGCCAGGGCTACCTTGTCT
82
1051





1047413
2033
2052
12322
12341
CCCCACCCATCTTAGACTGA
84
1052





1047429
2172
2191
12461
12480
AATCAAGCTCCCACCTGCCC
45
1053





1047445
2234
2253
12523
12542
CCTCTATCCCTCCCAGCACC
104 
1054





1047461
2275
2294
12564
12583
CTTGACCTCTCTGTACCCAC
67
1055





1047477
2375
2394
12664
12683
CACCCACAACCCCTACTTGT
97
1056





1047493
2450
2469
12739
12758
TCTCCTGTTTCAGCATCTTC
58
1057





1047509
2478
2497
12767
12786
CCCTGCCCCCATGGATACAT
76
1058





1047525
2765
2784
13054
13073
GCTGCAGGAATATGAGCCAG
84
1059





1047541
2858
2877
13147
13166
ACAGATCCCACCAGTCTGCT
98
1060





1047557
2890
2909
13179
13198
TGAAGTGGGCCCTCCCAGTC
87
1061





1047573
3016
3035
13305
13324
CAGCAGTGCCCTGAAGATTA
45
1062





1047589
3054
3073
13343
13362
AGCATTTGTCTTTATTTTTC
17
1063





1047605
N/A
N/A
8757
8776
CCTTGTGATTTTCCCCGTCT
64
1064





1047621
N/A
N/A
9023
9042
TACAGTTACTCTGTACCACG
118 
1065





1047637
N/A
N/A
9065
9084
GACTCACCACCTTTACCACT
87
1066





1047653
N/A
N/A
9199
9218
GATGAAAGAATAAAGCAGAG
102 
1067





1047669
N/A
N/A
8376
8395
TGTACTGACCTCGAATCTGC
90
1068





1047685
N/A
N/A
8439
8458
GGAGCAACCTACAGGCCCTG
104 
1069





1047701
N/A
N/A
8478
8497
AGAGCTGGATCCCTTTGCCC
87
1070





1047717
N/A
N/A
8632
8651
AGCTCTCACCCAGITCTGCT
62
1071





1047733
N/A
N/A
8731
8750
CTTTTGCCCCCTGTAGTGAC
56
1072





1047749
N/A
N/A
4088
4107
GTGCCCCATCAAGAGGTAGG
147 
1073





1047765
N/A
N/A
4260
4279
ACAAAGCCCAGCCATGAATG
142 
1074





1047781
N/A
N/A
4318
4337
CCAACTCCTCCTTTATATGG
74
1075





1047797
N/A
N/A
4356
4375
AATCCAATCTCCCTCATGGA
93
1076





1047813
N/A
N/A
4390
4409
CTGCCTGCTCTTTCCCTCAC
99
1077





1047829
N/A
N/A
4521
4540
CTCTGATCCCAGGTAACCAC
96
1078





1047845
N/A
N/A
4700
4719
AACTCATTACTAAGGTGCCT
101 
1079





1047861
N/A
N/A
4801
4820
CACCCCCACCCAGGACCAGT
90
1080





1047877
N/A
N/A
4852
4871
GGACACTTGAATACCTGCCT
84
1081





1047893
N/A
N/A
5003
5022
CCATCAATCCTTTCCTCCCT
82
1082





1047909
N/A
N/A
5112
5131
GGCTCCTTCTCCCCATTCCT
92
1083





1047925
N/A
N/A
5368
5387
TGTTTCTCTCCTCTCTCTGA
113 
1084





1047941
N/A
N/A
5484
5503
TTGTGTCCTCTTCTGCCTGC
93
1085





1047957
N/A
N/A
5786
5805
CCTTCCCCCATTCTCTTGTA
87
1086





1047973
N/A
N/A
5842
5861
TTCTCTGGTGAAAGTCAGTC
95
1087





1047989
N/A
N/A
6012
6031
CTCATCTGTCAAAGAACAGC
102 
1088





1048005
N/A
N/A
6110
6129
CTCCCAAGTGAGATGTGCTA
112 
1089





1048021
N/A
N/A
6212
6231
CACACCTTCCAGGTCAGACA
70
1090





1048037
N/A
N/A
6323
6342
CTGCCTAGCCCAAATGCCCC
86
1091





1048053
N/A
N/A
6396
6415
TTCTGCCTCCAGGCTCTGTC
117 
1092





1048069
N/A
N/A
6519
6538
GGAGGTCCTCCCAGCCCCAT
94
1093





1048085
N/A
N/A
6956
6975
CCAGAACCTTCCACACTGAC
79
1094





1048101
N/A
N/A
7069
7088
ACTTTTCCCAACAACTGTGA
84
1095





1048117
N/A
N/A
7388
7407
CTGGCCCTTCTCCCCTGGCA
81
1096





1048133
N/A
N/A
7841
7860
CAAGGCTGAAAAAGACTCAG
121 
1097





1048149
N/A
N/A
7985
8004
AGGGTGACCCAAGTCCTTGG
89
1098





1048165
N/A
N/A
8219
8238
CAGGAAAGTCTAACTCCATC
80
1099





1048181
N/A
N/A
9324
9343
CACATTCACTAATATTTAAC
93
21





1048197
N/A
N/A
9512
9531
GCCTGGTTAGCCTTTCTGAT
59
1100





1048213
N/A
N/A
9604
9623
CCCTTTCCTCTTTCCTACTT
71
1101





1048229
N/A
N/A
9727
9746
TGTAAAATAAGGATGATGGG
101 
1102





1048245
N/A
N/A
9816
9835
CAGAGCTCAAGAAGTOCCAA
101 
1103





1048261
N/A
N/A
10617
10636
GGCTTCATTTCAGCCCCTCT
73
1104





1048277
N/A
N/A
10702
10721
GCCTAGGCTCTTCCAAACGG
105 
1105





1048293
N/A
N/A
10784
10803
CCATCCTCTCCCATGCCCGG
100 
1106





1048309
N/A
N/A
10937
10956
GGCCCAAATCCCTCCTTACC
118 
1107





1048325
N/A
N/A
11058
11077
CTCTCCTCCAGAATTCCCTG
76
1108





1048341
N/A
N/A
11149
11168
TAGGATCCCATCTAGTGGCT
51
1109





1048357
N/A
N/A
11316
11335
TCCCATTCCCCTGGTAGTTT
57
1110





1048373
N/A
N/A
11435
11454
GGTGGTGAGATAACACTGGG
88
1111





1048389
N/A
N/A
11608
11627
GGACTCCTTAATGACCTGCA
53
1112
















TABLE 16







Reduction of GFAP RNA by 5-10-5 MOE gapmers


with mixed PO/PS internucleoside linkages


in U251 cells















SEQ
SEQ
SEQ
SEQ






ID
ID
ID
ID






NO: 1
NO: 1
NO: 2
NO: 2

GFAP RNA
SEQ


Compound
Start
Stop
Start
Stop

(%
ID


No.
Site
Site
Site
Site
Sequence (5′ to 3′)
control)
NO

















1047158
124
143
3572
3591
GCCAGGCCCCCCACCATCAT
102 
1113





1047174
240
259
3688
3707
TCTCCTTGAAGCCAGCATTG
109 
1114





1047190
477
496
3925
3944
GATTGTCCCTCTCAACCTCC
 17*
1115





1047206
563
582
4948
4967
ATAGGCAGCCAGGTTGTTCT
 35*
1116





1047222
638
657
5227
5246
GATCTCCTCCTCCAGCGACT
75
1117





1047238
809
828
5695
5714
TTCGGCTTCATGCATGTTGC
123 
1118





1047254
1026
1045
7598
7617
CCTCCTGATAACTGGCCGCC
117 
1119





1047270
1228
1247
N/A
N/A
AGGCTGGTTTCTCGAATCTG
117 
1120





1047286
1286
1305
10900
10919
CACGGTCTTCACCACGATGT
89
1121





1047302
1348
1367
11637
11656
CCTCACATCACATCCTTGTG
103 
1122





1047318
1413
1432
11702
11721
AGCAACTATCCTGCTTCTGC
58
1123





1047334
1612
1631
11901
11920
GCTGGCCATGCCCCTCCAGA
114 
1124





1047350
1661
1680
11950
11969
CCCCCGCCCTCCTCCCCTTC
90
1125





1047366
1731
1750
12020
12039
AACCTCCATCTCTGGCAACA
59
1126





1047382
1782
1801
12071
12090
CTCCAGCAGCCTGAGGAAAC
131 
1127





1047398
1844
863
12133
12152
GCCTCTGGCCAGGGCTACCT
100 
1128





1047414
2034
2053
12323
12342
TCCCCACCCATCTTAGACTG
113 
1129





1047430
2178
2197
12467
12486
GCTGAGAATCAAGCTOCCAC
54
1130





1047446
2235
2254
12524
12543
CCCTCTATCCCTCCCAGCAC
100 
1131





1047462
2278
2297
12567
12586
GGGCTTGACCTCTCTGTACC
73
1132





1047478
2376
2395
12665
12684
TCACCCACAACCCCTACTTG
81
1133





1047494
2451
2470
12740
12759
CTCTCCTGTTTCAGCATCTT
61
1134





1047510
2481
2500
12770
12789
ATGCCCTGCCCCCATGGATA
83
1135





1047526
2777
2796
13066
13085
CCCGGCCTCCAGGCTGCAGG
89
1136





1047542
2859
2878
13148
13167
CACAGATCCCACCAGTCTGC
85
1137





1047558
2901
2920
13190
13209
GAGGAGAACCCTGAAGTGGG
95
1138





1047574
3018
3037
13307
13326
AGCAGCAGTGCCCTGAAGAT
78
1139





1047590
3055
3074
13344
13363
CAGCATTTGTCTTTATTTTT
21
1140





1047606
N/A
N/A
8758
8777
ACCTTGTGATTTTCCCCGTC
70
1141





1047622
N/A
N/A
9024
9043
GTACAGTTACTCTGTACCAC
138 
1142





1047638
N/A
N/A
9066
9085
GGACTCACCACCTTTACCAC
68
1143





1047654
N/A
N/A
9200
9219
GGATGAAAGAATAAAGCAGA
85
1144





1047670
N/A
N/A
8377
8396
CTGTACTGACCTCGAATCTG
93
1145





1047686
N/A
N/A
8443
8462
GTCTGGAGCAACCTACAGGC
79
1146





1047702
N/A
N/A
8495
8514
CACGAAGGCCCCCAGGGAGA
77
1147





1047718
N/A
N/A
8633
8652
AAGCTCTCACCCAGTTCTGC
108 
1148





1047734
N/A
N/A
8733
8752
TGCTTTTGCCCCCTGTAGTG
47
1149





1047750
N/A
N/A
4090
4109
TAGTGCCCCATCAAGAGGTA
88
1150





1047766
N/A
N/A
4262
4281
TCACAAAGCCCAGCCATGAA
89
1151





1047782
N/A
N/A
4319
4338
TCCAACTCCTCCTTTATATG
85
1152





1047798
N/A
N/A
4357
4376
GAATCCAATCTCCCTCATGG
94
1153





1047814
N/A
N/A
4396
4415
CCAGACCTGCCTGCTCTTTC
89
1154





1047830
N/A
N/A
4523
4542
TCCTCTGATCCCAGGTAACC
76
1155





1047846
N/A
N/A
4701
4720
TAACTCATTACTAAGGTGCC
79
1156





1047862
N/A
N/A
4804
4823
GACCACCCCCACCCAGGACC
105 
1157





1047878
N/A
N/A
4853
4872
AGGACACTTGAATACCTGCC
56
1158





1047894
N/A
N/A
5004
5023
GCCATCAATCCTTTCCTCCC
100 
1159





1047910
N/A
N/A
5113
5132
AGGCTOCTTCTCCCCATTCC
90
1160





1047926
N/A
N/A
5379
5398
CTGCCAATCTCTGTTTCTCT
85
1161





1047942
N/A
N/A
5496
5515
TTCCCCACGCCATTGTGTCC
76
1162





1047958
N/A
N/A
5787
5806
TCCTTCCCCCATTCTCTTGT
121 
1163





1047974
N/A
N/A
5851
5870
CCATCTCACTTCTCTGGTGA
82
1164





1047990
N/A
N/A
6019
6038
CGGCTCTCTCATCTGTCAAA
43
1165





1048006
N/A
N/A
6115
6134
GCAGGCTCCCAAGTGAGATG
99
1166





1048022
N/A
N/A
6221
6240
CGTCAATATCACACCTTCCA
96
1167





1048038
N/A
N/A
6324
6343
CCTGCCTAGCCCAAATGCCC
119 
1168





1048054
N/A
N/A
6400
6419
GCTTTTCTGCCTCCAGGCTC
77
1169





1048070
N/A
N/A
6539
6558
CCTTTCTCCCCTGCCTGCAG
89
1170





1048086
N/A
N/A
6957
6976
TCCAGAACCTTCCACACTGA
82
1171





1048102
N/A
N/A
7070
7089
GACTTTTCCCAACAACTGTG
84
1172





1048118
N/A
N/A
7390
7409
CCCTGGCCCTTCTCCCCTGG
76
1173





1048134
N/A
N/A
7842
7861
ACAAGGCTGAAAAAGACTCA
83
1174





1048150
N/A
N/A
7986
8005
GAGGGTGACCCAAGTCCTTG
110 
1175





1048166
N/A
N/A
8221
8240
GCCAGGAAAGTCTAACTCCA
75
1176





1048182
N/A
N/A
9326
9345
GTCACATTCACTAATATTTA
44
1177





1048198
N/A
N/A
9525
9544
CCTCTACTAGTCAGCCTGGT
65
1178





1048214
N/A
N/A
9606
9625
TCCCCTTTCCTCTTTCCTAC
75
1179





1048230
N/A
N/A
9772
9791
CTCTGGGCAAGTTAATTGAC
122 
1180





1048246
N/A
N/A
9818
9837
ACCAGAGCTCAAGAAGTCCC
83
1181





1048262
N/A
N/A
10618
10637
TGGCTTCATTTCAGCCCCTC
81
1182





1048278
N/A
N/A
10710
10729
CAGAGAGAGCCTAGGCTCTT
95
1183





1048294
N/A
N/A
10788
10807
TGAGCCATCCTCTCCCATGC
125 
1184





1048310
N/A
N/A
10940
10959
CTGGGCCCAAATCCCTCCTT
83
1185





1048326
N/A
N/A
11060
11079
TGCTCTCCTCCAGAATTCCC
123 
1186





1048342
N/A
N/A
11223
11242
CTAACTTTAATTCTCTTTCT
114 
1187





1048358
N/A
N/A
11317
11336
TTCCCATTCCCCTGGTAGTT
89
1188





1048374
N/A
N/A
11436
11455
GGGTGGTGAGATAACACTGG
106 
1189





1048390
N/A
N/A
11609
11628
TGGACTCCTTAATGACCTGC
68
1190
















TABLE 17







Reduction of GFAP RNA by 5-10-5 MOE gapmers


with mixed PO/PS internucleoside linkages


in U251 cells















SEQ
SEQ
SEQ
SEQ






ID
ID
ID
ID






NO: 1
NO: 1
NO: 2
NO: 2

GFAP RNA
SEQ


Compound
Start
Stop
Start
Stop

(%
ID


No.
Site
Site
Site
Site
Sequence (5′ to 3′)
control)
NO

















1047159
126
145
3574
3593
GAGCCAGGCCCCCCACCATC
104 
1191





1047175
244
263
3692
3711
CGGGTCTCCTTGAAGCCAGC
125 
1192





1047191
480
499
3928
3947
CCAGATTGTCCCTCTCAACC
 15*
1193





1047207
574
593
N/A
N/A
GCTTCCTGTCTATAGGCAGC
 37*
1194





1047223
639
658
5228
5247
GGATCTCCTCCTCCAGCGAC
79
1195





1047239
811
830
5697
5716
TCTTCGGCTTCATGCATGTT
98
1196





1047255
1028
1047
7600
7619
CGCCTCCTGATAACTGGCCG
105 
1197





1047271
1241
1260
10855
10874
AGACTTGGTGTCCAGGCTGG
79
1198





1047287
1289
1308
0903
10922
CTCCACGGTCTTCACCACGA
138 
1199





1047303
1349
1368
11638
11657
GCCTCACATCACATCCTTGT
113 
1200





1047319
1414
1433
11703
11722
GAGCAACTATCCTGCTTCTG
68
1201





1047335
1615
1634
11904
11923
GCTGCTGGCCATGCCCCTCC
123 
1202





1047351
1663
1682
11952
11971
GCCCCCCGCCCTCCTCCCCT
73
1203





1047367
1734
1753
12023
12042
GAGAACCTCCATCTCTGGCA
67
1204





1047383
1790
1809
12079
12098
CAGTTTTCCTCCAGCAGCCT
109 
11





1047399
1853
1872
12142
12161
ACAAAACAAGCCTCTGGCCA
90
1206





1047415
2035
2054
12324
12343
GTCCCCACCCATCTTAGACT
76
1207





1047431
2179
2198
12468
12487
TGCTGAGAATCAAGCTCCCA
91
1208





1047447
2236
2255
12525
12544
CCCCTCTATCCCTOCCAGCA
83
1209





1047463
2279
2298
12568
12587
TGGGCTTGACCTCTCTGTAC
103 
1210





1047479
2377
2396
12666
12685
GTCACCCACAACCCCTACTT
88
1211





1047495
2456
2475
2745
12764
CCTTTCTCTCCTGTTTCAGC
54
1212





1047511
2482
2501
12771
12790
CATGCCCTGCCCCCATGGAT
83
1213





1047527
2779
2798
13068
13087
CACCCGGCCTCCAGGCTGCA
106 
1214





1047543
2860
2879
13149
13168
GCACAGATCCCACCAGTCTG
108 
1215





1047559
2902
2921
13191
13210
AGAGGAGAACCCTGAAGTGG
120 
1216





1047575
3034
3053
13323
13342
CTCAGCGACTAAAGGCAGCA
59
1217





1047591
3056
3075
13345
13364
GCAGCATTTGTCTTTATTTT
22
1218





1047607
N/A
N/A
8760
8779
TGACCTTGTGATTTTCCCCG
59
1219





1047623
N/A
N/A
9025
9044
TGTACAGTTACTCTGTACCA
103 
1220





1047639
N/A
N/A
9067
9086
AGGACTCACCACCTTTACCA
77
1221





1047655
N/A
N/A
9201
9220
GGGATGAAAGAATAAAGCAG
67
1222





1047671
N/A
N/A
8378
8397
GCTGTACTGACCTCGAATCT
94
1223





1047687
N/A
N/A
8453
8472
CTCAGTCCCAGTCTGGAGCA
123 
1224





1047703
N/A
N/A
8502
8521
GCAGTGTCACGAAGGCCCCC
89
1225





1047719
N/A
N/A
8635
8654
TCAAGCTCTCACCCAGTTCT
96
1226





1047735
N/A
N/A
8735
8754
GGTGCTTTTGCCCCCTGTAG
55
1227





1047751
N/A
N/A
4091
4110
ATAGTGCCCCATCAAGAGGT
135 
1228





1047767
N/A
N/A
4263
4282
GTCACAAAGCCCAGCCATGA
122 
1229





1047783
N/A
N/A
4321
4340
CTTCCAACTCCTCCTTTATA
95
1230





1047799
N/A
N/A
4358
4377
AGAATCCAATCTCCCTCATG
67
1231





1047815
N/A
N/A
4399
4418
CGCCCAGACCTGCCTGCTCT
94
1232





1047831
N/A
N/A
4524
4543
TTCCTCTGATCCCAGGTAAC
86
1233





1047847
N/A
N/A
4702
4721
TTAACTCATTACTAAGGTGC
87
1234





1047863
N/A
N/A
4805
4824
AGACCACCCCCACCCAGGAC
96
1235





1047879
N/A
N/A
4866
4885
CCAGGCTCTTCTGAGGACAC
119 
1236





1047895
N/A
N/A
5005
5024
GGCCATCAATCCTTTCCTCC
81
1237





1047911
N/A
N/A
5115
5134
CCAGGCTCCTTCTCCCCATT
92
1238





1047927
N/A
N/A
5385
5404
CTCTACCTGCCAATCTCTGT
86
1239





1047943
N/A
N/A
5497
5516
GTTCCCCACGCCATTGTGTC
78
1240





1047959
N/A
N/A
5788
5807
CTCCTTCCCCCATTCTCTTG
104 
1241





1047975
N/A
N/A
5933
5952
GCTACTACTAATAATAGCAA
99
1242





1047991
N/A
N/A
6021
6040
TTCGGCTCTCTCATCTGTCA
80
1243





1048007
N/A
N/A
6117
6136
ATGCAGGCTCCCAAGTGAGA
88
1244





1048023
N/A
N/A
6280
6299
CCACACTACATATAAGCTCT
163 
1245





1048039
N/A
N/A
6325
6344
TCCTGCCTAGCCCAAATGCC
100 
1246





1048055
N/A
N/A
6403
6422
TGTGCTTTTCTGCCTCCAGG
52
1247





1048071
N/A
N/A
6543
6562
TAGCCCTTTCTCCCCTGCCT
77
1248





1048087
N/A
N/A
6958
6977
ATCCAGAACCTTCCACACTG
88
1249





1048103
N/A
V/A
7072
7091
GGGACTTTTOCCAACAACTG
68
1250





1048119
N/A
N/A
7393
7412
CGTCCCTGGCCCTTCTCCCC
77
1251





1048135
N/A
N/A
7843
7862
CACAAGGCTGAAAAAGACTC
94
1252





1048151
N/A
N/A
7987
8006
GGAGGGTGACCCAAGTCCTT
35
1253





1048167
N/A
N/A
8222
8241
TGCCAGGAAAGTCTAACTCC
77
1254





1048183
N/A
N/A
9362
9381
TCCCCCCGCCCCGCCCGAGA
88
1255





1048199
N/A
N/A
9533
9552
CAGTATTACCTCTACTAGTC
64
20





1048215
N/A
N/A
9609
9628
CTGTCCCCTTTCCTCTTTCC
98
1256





1048231
N/A
N/A
9788
9807
CCAACCAGCCACATGACTCT
91
1257





1048247
N/A
N/A
9825
9844
TCAGGAGACCAGAGCTCAAG
93
1258





1048263
N/A
N/A
10620
10639
CCTGGCTTCATTTCAGCCCC
87
1259





1048279
N/A
N/A
10711
10730
GCAGAGAGAGCCTAGGCTCT
143 
1260





1048295
N/A
N/A
10792
10811
GGCATGAGCCATCCTCTCCC
123 
1261





1048311
N/A
N/A
10941
10960
ACTGGGCCCAAATCCCTCCT
104 
1262





1048327
N/A
N/A
11061
11080
TTGCTCTCCTCCAGAATTCC
97
1263





1048343
N/A
N/A
11226
11245
CTACTAACTTTAATTCTCTT
97
1264





1048359
N/A
N/A
11318
11337
CTTCCCATTCCCCTGGTAGT
86
1265





1048375
N/A
N/A
11487
11506
GTCTTACTTTTCTTGATAGT
94
1266





1048391
N/A
N/A
11610
11629
TTGGACTCCTTAATGACCTG
86
1267









Example 2: Effect of 5-10-5 MOE Gapmer Modified Oligonucleotides on Human GFAP RNA In Vitro, Single Dose

Modified oligonucleotides complementary to human GFAP nucleic acid were designed and tested for their single dose effects on GFAP RNA in vitro. The modified oligonucleotides were tested in a series of experiments that had similar culture conditions.


The modified oligonucleotides in the tables below are 5-10-5 MOE gapmers with mixed PO/PS internucleoside linkages. The gapmers are 20 nucleosides in length, wherein the central gap segment consists of ten 2′-β-D-deoxynucleosides and the 5′ and 3′ wing segments each consists of five 2′-β-D-MOE modified nucleosides. The sugar motif for the gapmers is (from 5′ to 3′): eeeeeddddddddddeeeee: wherein ‘d’ represents a 2′-β-D-deoxyribosyl sugar moiety, and ‘e’ represents a 2′-β-D-MOE sugar moiety. The internucleoside linkage motif for the gapmers is (from 5′ to 3′): sooosssssssssssooss; wherein each ‘o’ represents a phosphodiester internucleoside linkage and each ‘s’ represents a phosphorothioate internucleoside linkage. Each cytosine residue is a 5-methylcytosine.


“Start site” indicates the 5′-most nucleoside to which the modified oligonucleotide is complementary in the target nucleic acid sequence. “Stop site” indicates the 3′-most nucleoside to which the modified oligonucleotide is complementary in the target nucleic acid sequence. Each modified oligonucleotide listed in the Tables below is 100% complementary to SEQ ID NO: 1, SEQ ID NO: 2, or SEQ ID NO: 3 (GENBANK Accession No. NM_001131019.2). ‘N/A’ indicates that the modified oligonucleotide is not 100% complementary to that particular gene sequence.


Cultured U251 cells were treated with modified oligonucleotide at a concentration of 4,000 nM using free uptake at a density of 10,000 cells per well. After a treatment period of appromximately 48 hours, total RNA was isolated from the cells and GFAP RNA levels were measured by quantitative real-time RTPCR. Human GFAP primer probe set RTS37485, described in Example 1 above, was used to measure RNA levels. GFAP RNA levels were nonnalized to total RNA content, as measured by RIBOGREENX. Results are presented in the tables below as percent GFAP RNA levels relative to untreated control cells. The values marked with an asterisk (*) indicate that the modified oligonucleotide is complementary to the amplicon region of the primer probe set. Additional assays may be used to measure the potency and efficacy of the modified oligonucleotides complementary to the amplicon region.









TABLE 18







Reduction of GFAP RNA by 5-10-5 MOE gapmers


with mixed PO/PS internucleoside linkages


in U251 cells















SEQ ID
SEQ ID
SEQ ID
SEQ ID






NO: 1
NO: 1
NO: 2
NO: 2

GFAP
SEQ


Compound
Start
Stop
Start
Stop

(%
ID


No.
Site
Site
Site
Site
Sequence (5′ to 3′)
UTC)
NO

















1047582
3047
3066
13336
13355
GTCTTTATTTTTCCTCAGCG
8
517





1072810
1708
1727
11997
12016
TCCATAACAACAGGAATCAG
65
1268





1072814
1719
1738
12008
12027
TGGCAACAGTTTCCATAACA
31
1269





1072818
1728
1747
12017
12036
CTCCATCTCTGGCAACAGTT
42
1270





1072822
1752
1771
12041
12060
AGTTCCCAGATACTCCGAGA
56
1271





1072826
1763
1782
12052
12071
CTCAAAGGCACAGTTCCCAG
56
1272





1072830
1786
1805
12075
12094
TTTCCTCCAGCAGCCTGAGG
79
1273





1072834
1796
1815
12085
12104
GAGTCTCAGTTTTCCTCCAG
18
1274





1072838
2173
2192
12462
12481
GAATCAAGCTCCCACCTGCC
87
1275





1072842
2177
2196
12466
12485
CTGAGAATCAAGCTCCCACC
94
1276





1072846
3039
3058
13328
13347
TTTTCCTCAGCGACTAAAGG
48
1277





1072850
3059
3078
13348
13367
GGCGCAGCATTTGTCTTTAT
45
1278





1072854
N/A
N/A
8768
8787
ATATCTTGTGACCTTGTGAT
53
1279





1072858
N/A
N/A
8774
8793
TTTGAGATATCTTGTGACCT
66
1280





1072862
N/A
N/A
8780
8799
GAGGCTTTTGAGATATCTTG
28
1281





1072866
N/A
N/A
8785
8804
ATTGTGAGGCTTTTGAGATA
66
1282





1072870
N/A
N/A
7980
7999
GACCCAAGTCCTTGGCCTTG
81
1283





1072874
N/A
N/A
7990
8009
TTTGGAGGGTGACCCAAGTC
78
1284





1072878
N/A
N/A
7997
8016
CTCTTAGTTTGGAGGGTGAC
61
1285





1072882
N/A
N/A
11296
11315
CCTTTTACCAAGCTGGAAAT
73
1286





1072886
N/A
N/A
11303
11322
GTAGTTTCCTTTTACCAAGC
34
1287





1072890
N/A
N/A
4033
4052
GAGACTTCTCGGGCACTOCT
75
1288





1072894
N/A
N/A
4133
4152
TGGGCCTGTTTCTGGTCCCT
63
1289





1072898
N/A
N/A
4208
4227
TTCCCCAGTAGGGAGGTGCT
100
1290





1072902
N/A
N/A
4285
4304
ATAGGTGAGCTCGCTGCCCA
82
1291





1072906
N/A
N/A
4297
4316
CACAGGCTCAGAATAGGTGA
68
1292





1072910
N/A
N/A
4458
4477
CAAGTCAAAGTAACTTGATG
80
1293





1072914
N/A
N/A
4492
4511
TGAATTTTATTATGACCACC
64
1294





1072918
N/A
N/A
4564
4583
CATGTCCTGTCAGCTCAGTG
61
1295





1072922
N/A
N/A
4638
4657
CACAAGCATACACTCACTGT
84
1296





1072926
N/A
N/A
4677
4696
CAGGGTTGGTGCACCTGCTT
74
1297





1072930
N/A
N/A
4748
4767
TAGACAGAGGACTTGTCTGG
96
1298





1072934
N/A
N/A
4826
4845
CCCTTGAGGCAGCTGTCACA
87
1299





1072938
N/A
N/A
5049
5068
CATTGCTCTGGCGGGCTGAG
89
1300





1072942
N/A
N/A
5296
5315
CAATCTCTGTGTTGAGCTTT
70
1301





1072946
N/A
N/A
5396
5415
TCATTTCCTGTCTCTACCTG
85
1302





1072950
N/A
N/A
5549
5568
GACCAGGGTGAGAGAAGCGG
78
1303





1072954
N/A
N/A
5745
5764
GAGGAGGCAGGCTGGCCCAC
84
1304





1072958
N/A
N/A
5900
5919
AATAATGGGTACTTTTGAAA
88
1305





1072962
N/A
N/A
5986
6005
TTCATAGTAAGGTAATCCAT
75
1306





1072966
N/A
N/A
6032
6051
CCTCTCTGGACTTCGGCTCT
81
1307





1072970
N/A
N/A
6240
6259
GGCACTATGTTTGGGTGCAC
85
1308





1072974
N/A
N/A
6302
6321
TCTACAGTGTCTTTCCTGGC
67
1309





1072978
N/A
N/A
6446
6465
CTAGGTGCCCTGGCTAGGCT
72
1310





1072982
N/A
N/A
6524
6543
TGCAGGGAGGTCCTCCCAGC
96
1311





1072986
N/A
N/A
6901
6920
GCGAGCGGAGGCCTGGGTGT
26
1312





1072990
N/A
N/A
6942
6961
ACTGACAGCTGCATCTGCGG
79
1313





1072994
N/A
N/A
6985
7004
AAGCGAATGAATGAACAGTG
69
1314





1072998
N/A
N/A
7079
7098
CCTGGCTGGGACTTTTCCCA
84
1315





1073002
N/A
N/A
7119
7138
GGGAGGTGAGCAGCACCCCA
84
1316





1073006
N/A
N/A
7358
7377
TGGCCGTCCCTGCTCCGCCC
96
1317





1073010
N/A
N/A
7510
7529
GGCCGGTCCCGCGGAGCCCC
86
1318





1073014
N/A
N/A
7521
7540
GGGATGGAGCCGGCCGGTCC
77
1319





1073018
N/A
N/A
7785
7804
AGCAGGGAGACTTCCCCAGG
85
1320





1073022
N/A
N/A
7827
7846
ACTCAGTCCCTGAAGGGAGC
90
1321





1073026
N/A
N/A
7898
7917
CTGCTATGTGTGAGGCAGGC
83
1322





1073030
N/A
N/A
8027
8046
CAATCTTGGCTGGGAAGATG
90
1323





1073034
N/A
N/A
8048
8067
AGATGGGTGAGGTGAGGAGT
33
1324





1073038
N/A
N/A
8231
8250
CCTTTTCCTTGCCAGGAAAG
76
1325





1073042
N/A
N/A
9380
9399
AGTAATTTAGCTCCCCCCTC
76
1326





1073046
N/A
N/A
9410
9429
AGAATCATTTCAGGGCCAAT
67
1327





1073050
N/A
N/A
9438
9457
GAAGAAGAGGAATTTTGTTC
82
1328





1073054
N/A
N/A
9486
9505
TTAAGTCCTGAGACATGCAT
55
1329





1073058
N/A
N/A
9500
9519
TTTCTGATGCTGAATTAAGT
88
1330





1073062
N/A
N/A
9543
9562
TAGGATTTGGCAGTATTACC
62
1331





1073066
N/A
N/A
9649
9668
TGTGGCACATATTAGTGCTC
76
1332





1073070
N/A
N/A
10001
10020
AATCCCCTTACTCGGGAGTC
76
1333





1073074
N/A
N/A
10551
10570
TTGAAATCAGGAGACCAGGA
73
1334





1073078
N/A
N/A
10567
10586
AAAACCCAGCACGGTATTGA
73
1335





1073082
N/A
N/A
10715
10734
CCGAGCAGAGAGAGCCTAGG
88
1336





1073086
N/A
N/A
10805
10824
CATGGACTTTCAGGGCATGA
90
1337





1073090
N/A
N/A
11105
11124
CAGCCTATGGAGGGACTGAG
88
1338





1073094
N/A
N/A
11165
11184
AAGAGAGAGTGTGTATTAGG
63
1339





1073098
N/A
N/A
11208
11227
TTTCTCTCCCTGGCAAGCAA
65
1340





1073102
N/A
N/A
11256
11275
AACTGTGTCTGCTAGAGTTG
66
1341





1073106
N/A
N/A
11386
11405
GTAAGCTGCTGGAGTAAGAT
45
1342





1073110
N/A
N/A
11472
11491
ATAGTAACCACAGCTGOCTT
81
1343





1073114
N/A
N/A
11516
11535
GTAACCTTGGGAAGTCCCCG
75
1344
















TABLE 19







Reduction of GFAP RNA by 5-10-5 MOE gapmers


with mixed PO/PS internucleoside linkages


in U251 cells















SEQ ID
SEQ ID
SEQ ID
SEQ ID






NO: 1
NO: 1
NO: 2
NO: 2

GFAP
SEQ


Compound
Start
Stop
Start
Stop

(%
ID


No.
Site
Site
Site
Site
Sequence (5′ to 3′)
UTC)
NO

















1047582
3047
3066
13336
13355
GTCTTTATTTTTCCTCAGCG
7
517





1072811
1711
1730
12000
12019
GTTTCCATAACAACAGGAAT
82
1345





1072815
1720
1739
12009
12028
CTGGCAACAGTTTCCATAAC
40
1346





1072819
1746
1765
12035
12054
CAGATACTCCGAGAGAACCT
75
1347





1072823
1753
1772
12042
12061
CAGTTOCCAGATACTCCGAG
65
1348





1072827
1766
1785
12055
12074
AAACTCAAAGGCACAGTTCC
99
1349





1072831
1787
1806
12076
12095
TTTTCCTCCAGCAGCCTGAG
85
1350





1072835
1797
1816
12086
12105
TGAGTCTCAGTTTTCCTCCA
18
1351





1072839
2174
2193
12463
12482
AGAATCAAGCTCCCACCTGC
82
1352





1072843
3036
3055
13325
13344
TCCTCAGCGACTAAAGGCAG
54
1353





1072847
3041
3060
13330
13349
ATTTTTCCTCAGCGACTAAA
55
1354





1072851
3061
3080
13350
13369
AGGGCGCAGCATTTGTCTTT
55
1355





1072855
N/A
N/A
8771
8790
GAGATATCTTGTGACCTTGT
37
1356





1072859
N/A
N/A
8775
8794
TTTTGAGATATCTTGTGACC
60
1357





1072863
N/A
N/A
8781
8800
TGAGGCTTTTGAGATATCTT
34
1358





1072867
N/A
N/A
8786
8805
TATTGTGAGGCTTTIGAGAT
60
1359





1072871
N/A
N/A
7983
8002
GGTGACCCAAGTCCTTGGCC
76
1360





1072875
N/A
N/A
7991
8010
GTTTGGAGGGTGACCCAAGT
70
1361





1072879
N/A
N/A
11290
11309
ACCAAGCTGGAAATGGAAAG
70
1362





1072883
N/A
N/A
11297
11316
TCCTTTTACCAAGCTGGAAA
83
1363





1072887
N/A
N/A
11304
11323
GGTAGTTTCCTTTTACCAAG
49
1364





1072891
N/A
N/A
4035
4054
CTGAGACTTCTCGGGCACTC
87
1365





1072895
N/A
N/A
4162
4181
GGCATGCGGGCATCAGATCC
87
1366





1072899
N/A
N/A
4221
4240
CTCCTGCACTGCTTTCCCCA
64
1367





1072903
N/A
N/A
4287
4306
GAATAGGTGAGCTCGCTGCC
89
1368





1072907
N/A
N/A
4304
4323
ATATGGACACAGGCTCAGAA
79
1369





1072911
N/A
N/A
4463
4482
CTGTGCAAGTCAAAGTAACT
76
1370





1072915
N/A
N/A
4493
4512
ATGAATTTTATTATGACCAC
67
1371





1072919
N/A
N/A
4581
4600
ACTTGAAGGCACACATGCAT
70
1372





1072923
N/A
N/A
4648
4667
CAGGCGCATCCACAAGCATA
88
1373





1072927
N/A
N/A
4732
4751
CTGGAGGATGAGCAGATGTG
57
1374





1072931
N/A
N/A
4779
4798
AGCAGCAGGAGGATTAAGGG
68
1375





1072935
N/A
N/A
4827
4846
TCCCTTGAGGCAGCTGTCAC
96
1376





1072939
N/A
N/A
5058
5077
GGAGCAGCACATTGCTCTGG
80
1377





1072943
N/A
N/A
5299
5318
TTGCAATCTCTGTGTTGAGC
55
1378





1072947
N/A
N/A
5452
5471
AGTTCGAATGCTCTCTTGTC
78
1379





1072951
N/A
N/A
5715
5734
ACCTTGGAGCGGTACCACTC
111
1380





1072955
N/A
N/A
5828
5847
TCAGTCACCTGGAGAGGATA
58
138





1072959
N/A
N/A
5918
5937
AGCAATAGTAGCAGTAATAA
82
1382





1072963
N/A
N/A
5987
6006
CTTCATAGTAAGGTAATCCA
84
1383





1072967
N/A
N/A
6122
6141
ATGGAATGCAGGCTCCCAAG
71
1384





1072971
N/A
N/A
6251
6270
TGTTCTCTACGGGCACTATG
58
1385





1072975
N/A
N/A
6374
6393
CCACTAGGAATGGCCCTCCC
61
1386





1072979
N/A
N/A
6451
6470
CTCAGCTAGGTGCCCTGGCT
80
1387





1072983
N/A
N/A
6561
6580
CCTCACCCTGGGTTCTAATA
83
1388





1072987
N/A
N/A
6903
6922
AGGCGAGCGGAGGCCTGGGT
97
1389





1072991
N/A
N/A
6944
6963
ACACTGACAGCTGCATCTGC
79
1390





1072995
N/A
N/A
6997
7016
CACCTGGTCAGCAAGCGAAT
78
139





1072999
N/A
N/A
7082
7101
GGCCCTGGCTGGGACTTTTC
79
1392





1073003
N/A
N/A
7125
7144
AAATCAGGGAGGTGAGCAGC
46
1393





1073007
N/A
N/A
7382
7401
CTTCTCCCCTGGCATCTCCT
77
1394





1073011
N/A
N/A
7517
7536
TGGAGOCGGCCGGTCCCGCG
87
1395





1073015
N/A
N/A
7757
7776
TGAGGGCTCACCGGTTCTCC
81
1396





1073019
N/A
N/A
7789
7808
AGGCAGCAGGGAGACTTCCC
88
1397





1073023
N/A
N/A
7855
7874
AAGGGATCTGCACACAAGGC
79
1398





1073027
N/A
N/A
7924
7943
TCAGTCATCAAACATCTAGT
78
1399





1073031
N/A
N/A
8028
8047
CCAATCTTGGCTGGGAAGAT
66
1400





1073035
N/A
N/A
8051
8070
AAGAGATGGGTGAGGTGAGG
36
1401





1073039
N/A
N/A
8274
8293
TAGGCTGGGTCTTGGTGCGG
76
1402





1073043
N/A
N/A
9381
9400
AAGTAATTTAGCTCCCCCCT
76
1403





1073047
N/A
N/A
9411
9430
AAGAATCATTTCAGGGCCAA
54
1404





1073051
N/A
N/A
9440
9459
CAGAAGAAGAGGAATTTTGT
70
1405





1073055
N/A
N/A
9487
9506
ATTAAGTCCTGAGACATGCA
64
1406





1073059
N/A
N/A
9502
9521
CCTTTCTGATGCTGAATTAA
72
1407





1073063
N/A
N/A
9552
9571
GTGACTATCTAGGATTTGGC
23
1408





1073067
N/A
N/A
9685
9704
GAGGAGACAATTAACTAAAA
64
1409





1073071
N/A
N/A
10125
10144
TCGAAAGCAGGCAAGCAAGC
99
1410





1073075
N/A
N/A
10552
10571
ATTGAAATCAGGAGACCAGG
66
1411





1073079
N/A
N/A
10612
10631
CATTTCAGCCCCTCTGCAAG
77
1412





1073083
N/A
N/A
10724
10743
CCTATGCAACCGAGCAGAGA
95
1413





1073087
N/A
N/A
10848
10867
GTGTCCAGGCTGGTTTCTGC
82
1414





1073091
N/A
N/A
11124
11143
ACCAAGGCTCCCCTTAGAAC
59
1415





1073095
N/A
N/A
11166
11185
AAAGAGAGAGTGTGTATTAG
78
1416





1073099
N/A
N/A
11210
11229
TCTTTCTCTCCCTGGCAAGC
73
1417





1073103
N/A
N/A
11283
11302
TGGAAATGGAAAGCCCTCCC
78
1418





1073107
N/A
N/A
11391
11410
GAGTGGTAAGCTGCTGGAGT
42
1419





1073111
N/A
N/A
11474
11493
TGATAGTAACCACAGCTGCC
92
1420





1073115
N/A
N/A
11518
11537
GTGTAACCTTGGGAAGTCCC
77
1421
















TABLE 20







Reduction of GFAP RNA by 5-10-5 MCE gapmers with mixed PO/PS internucleoside linkages in U251 cells















SEQ ID
SEQ
SEQ ID
SEQ ID






NO: 1
ID NO:
NO: 2
NO: 2


SEQ


Compound
Start
1 Stop
Start
Stop

GFAP
ID


No.
Site
Site
Site
Site
Sequence (5′ to 3′)
(% UTC)
NO

















1047582
3047
3066
13336
13355
GTCTTTATTTTTCCTCAGCG
7
517





1072812
1713
1732
12002
12021
CAGTTTCCATAACAACAGGA
58
1422





1072816
1722
1741
12011
12030
CTCTGGCAACAGTTTCCATA
69
1423





1072820
1749
1768
12038
12057
TCCCAGATACTCCGAGAGAA
73
1424





1072824
1758
1777
12047
12066
AGGCACAGTTCCCAGATACT
36
1425





1072828
1784
1803
12073
12092
TCCTCCAGCAGCCTGAGGAA
71
1426





1072832
1788
1807
12077
12096
GTTTTCCTCCAGCAGCCTGA
64
1427





1072836
2168
2187
12457
12476
AAGCTCCCACCTGCCCACAG
73
1428





1072840
2175
2194
12464
12483
GAGAATCAAGCTCCCACCTG
74
1429





1072844
3037
3056
13326
13345
TTCCTCAGCGACTAAAGGCA
61
1430





1072848
3042
3061
13331
13350
TATTTTTCCTCAGCGACTAA
69
1431





1072852
3063
3082
13352
13371
GAAGGGCGCAGCATTTGTCT
57
1432





1072856
N/A
N/A
8772
8791
TGAGATATCTTGTGACCTTG
43
1433





1072860
N/A
N/A
8776
8795
CTTTTGAGATATCTTGTGAC
62
1434





1072864
N/A
N/A
8783
8802
TGTGAGGCTTTTGAGATATC
43
1435





1072868
N/A
N/A
8788
8807
CGTATTGTGAGGCTTTTGAG
20
1436





1072872
N/A
N/A
7984
8003
GGGTGACCCAAGTCCTTGGC
14
1437





1072876
N/A
N/A
7992
8011
AGTTTGGAGGGTGACCCAAG
61
1438





1072880
N/A
N/A
11293
11312
TTTACCAAGCTGGAAATGGA
83
1439





1072884
N/A
N/A
11298
11317
TTCCTTTTACCAAGCTGGAA
77
1440





1072888
N/A
N/A
11310
11329
TCCCCTGGTAGTTTCCTTTT
85
1441





1072892
N/A
N/A
4055
4074
CAGGGAGGTTCGGCCCCTCC
83
1442





1072896
N/A
N/A
4174
4193
CTCCTGGCAGAAGGCATGCG
75
1443





1072900
N/A
N/A
4231
4250
GGCCCCGCTGCTCCTGCACT
105
1444





1072904
N/A
N/A
4289
4308
CAGAATAGGTGAGCTCGCTG
83
1445





1072908
N/A
N/A
4307
4326
TTTATATGGACACAGGCTCA
83
1446





1072912
N/A
N/A
4482
4501
TATGACCACCGCTTCACAGC
95
1447





1072916
N/A
N/A
4558
4577
CTGTCAGCTCAGTGAAGCGC
86
1448





1072920
N/A
N/A
4628
4647
CACTCACTGTTGCACACACA
89
1449





1072924
N/A
N/A
4651
4670
ACACAGGCGCATCCACAAGC
98
1450





1072928
N/A
N/A
4739
4758
GACTTGTCTGGAGGATGAGC
73
1451





1072932
N/A
N/A
4785
4804
CAGTAGAGCAGCAGGAGGAT
82
1452





1072936
N/A
N/A
4882
4901
GGACACATTCCTGGGTCCAG
100
1453





1072940
N/A
N/A
5142
5161
GGTGAGGAGTAGAGGGCCAC
88
1454





1072944
N/A
N/A
5307
5326
TCTCTCAGTTGCAATCTCTG
84
1455





1072948
N/A
N/A
5453
5472
GAGTTCGAATGCTCTCTTGT
75
1456





1072952
N/A
N/A
5730
5749
CCCACAGGCAGGGCTACCTT
89
1457





1072956
N/A
N/A
5891
5910
TACTTTTGAAAGCAATAGTG
77
1458





1072960
N/A
N/A
5953
5972
CTTAGAACAGAACAGTATCA
101
1459





1072964
N/A
N/A
6028
6047
TCTGGACTTCGGCTCTCTCA
55
1460





1072968
N/A
N/A
6140
6159
AAACAGACTGGCAGAGGCAT
59
1461





1072972
N/A
N/A
6260
6279
GAGCTGTGGTGTTCTCTACG
58
1462





1072976
N/A
N/A
6380
6399
TGTCCTCCACTAGGAATGGC
76
1463





1072980
N/A
N/A
6459
6478
TCACACTCCTCAGCTAGGTG
32
1464





1072984
N/A
N/A
6563
6582
GGCCTCACCCTGGGTTCTAA
76
1465





1072988
N/A
N/A
6905
6924
TTAGGCGAGCGGAGGCCTGG
95
1466





1072992
N/A
N/A
6945
6964
CACACTGACAGCTGCATCTG
90
1467





1072996
N/A
N/A
7003
7022
GCACAACACCTGGTCAGCAA
73
1468





1073000
N/A
N/A
7085
7104
GTTGGCCCTGGCTGGGACTT
63
1469





1073004
N/A
N/A
7126
7145
GAAATCAGGGAGGTGAGCAG
63
1470





1073008
N/A
N/A
7475
7494
GGTTTCGAGGCCCGGCCCCC
73
1471





1073012
N/A
N/A
7518
7537
ATGGAGCCGGCCGGTCCCGC
92
1472





1073016
N/A
N/A
7762
7781
TGTGATGAGGGCTCACCGGT
65
1473





1073020
N/A
N/A
7797
7816
CTACCGTGAGGCAGCAGGGA
86
1474





1073024
N/A
N/A
7876
7895
TGTGCTGGGCATTGAGGTGG
64
1475





1073028
N/A
N/A
7967
7986
GGCCTTGAGGCCTAATCAAT
78
1476





1073032
N/A
N/A
8045
8064
TGGGTGAGGTGAGGAGTCCA
73
1477





1073036
N/A
N/A
8057
8076
AGGCAGAAGAGATGGGTGAG
67
1478





1073040
N/A
N/A
9355
9374
GCCCCGCCCGAGAGAGAAAA
92
1479





1073044
N/A
N/A
9407
9426
ATCATTTCAGGGCCAATGCA
66
1480





1073048
N/A
N/A
9423
9442
TGTTCCTTAGCTAAGAATCA
58
1481





1073052
N/A
N/A
9442
9461
TCCAGAAGAAGAGGAATTTT
94
1482





1073056
N/A
N/A
9488
9507
AATTAAGTCCTGAGACATGC
51
1483





1073060
N/A
N/A
9517
9536
AGTCAGCCTGGTTAGCCTTT
36
1484





1073064
N/A
N/A
9560
9579
AGTGACCTGTGACTATCTAG
35
1485





1073068
N/A
N/A
9889
9908
TCTGCCGAAGGAAGGAAGGA
77
1486





1073072
N/A
N/A
10129
10148
TCCGTCGAAAGCAGGCAAGC
83
1487





1073076
N/A
N/A
10555
10574
GGTATTGAAATCAGGAGACC
59
1488





1073080
N/A
N/A
10662
10681
CAATAGTGCTGCTGCCAGAG
54
1489





1073084
N/A
N/A
10727
10746
GAACCTATGCAACCGAGCAG
56
1490





1073088
N/A
N/A
11008
11027
TATGTGCCAGCCCCAGGCTT
89
1491





1073092
N/A
N/A
11128
11147
TGGTACCAAGGCTCCCCTTA
74
1492





1073096
N/A
N/A
11187
11206
GCCCCCGAGTTTGAGGGTGA
90
1493





1073100
N/A
N/A
11240
11259
GTTGGAAGTGAAAGCTACTA
58
1494





1073104
N/A
N/A
11365
11384
AGCTCCCACTGTGGTTGGAG
87
1495





1073108
N/A
N/A
11399
11418
TGCCTGGCGAGTGGTAAGCT
91
1496





1073112
N/A
N/A
11476
11495
CTTGATAGTAACCACAGCTG
63
1497





1073116
N/A
N/A
11561
11580
AGTTAGGAGTTCACACAGAC
72
1498
















TABLE 21







Reduction of GFAP RNA by 5-10-5 MCE gapmers with mixed PO/PS internucleoside linkages in U251 cells















SEQ ID
SEQ
SEQ ID
SEQ ID






NO: 1
ID NO:
NO: 2
NO: 2


SEQ


Compound
Start
1 Stop
Start
Stop

GFAP
ID


No.
Site
Site
Site
Site
Sequence (5′ to 3′)
(% UTC)
NO

















1047582
3047
3066
13336
13355
GTCTTTATTTTTCCTCAGCG
8
517





1072813
1717
1736
12006
12025
GCAACAGTTTCCATAACAAC
32
1499





1072817
1725
1744
12014
12033
CATCTCTGGCAACAGTTTCC
62
1500





1072821
1751
1770
12040
12059
GTTCCCAGATACTCCGAGAG
53
1501





1072825
1759
1778
12048
12067
AAGGCACAGTTCCCAGATAC
51
1502





1072829
1785
1804
12074
12093
TTCCTCCAGCAGCCTGAGGA
89
1503





1072833
1789
1808
12078
12097
AGTTTTCCTCCAGCAGCCTG
46
1504





1072837
2171
2190
12460
12479
ATCAAGCTCCCACCTGCCCA
64
1505





1072841
2176
2195
12465
12484
TGAGAATCAAGCTCCCACCT
90
1506





1072845
3038
3057
13327
13346
TTTCCTCAGCGACTAAAGGC
52
1507





1072849
3057
3076
13346
13365
CGCAGCATTTGTCTTTATTT
26
1508





1072853
3064
3083
13353
13372
GGAAGGGCGCAGCATTTGTC
43
1509





1072857
N/A
N/A
8773
8792
TTGAGATATCTTGTGACCTT
32
1510





1072861
N/A
N/A
8779
8798
AGGCTTTTGAGATATCTTGT
35
1511





1072865
N/A
N/A
8784
8803
TTGTGAGGCTTTTGAGATAT
47
1512





1072869
N/A
N/A
7977
7996
CCAAGTCCTTGGCCTTGAGG
93
1513





1072873
N/A
N/A
7988
8007
TGGAGGGTGACCCAAGTCCT
107
1514





1072877
N/A
N/A
7994
8013
TTAGTTTGGAGGGTGACCCA
68
1515





1072881
N/A
N/A
11295
11314
CTTTTACCAAGCTGGAAATG
103
1516





1072885
N/A
N/A
11299
11318
TTTCCTTTTACCAAGCTGGA
80
1517





1072889
N/A
N/A
4027
4046
TCTCGGGCACTCCTTCTTGG
96
1518





1072893
N/A
N/A
4084
4103
CCCATCAAGAGGTAGGGAGG
66
1519





1072897
N/A
N/A
4183
4202
GACCCTGGACTCCTGGCAGA
83
1520





1072901
N/A
N/A
4253
4272
CCAGCCATGAATGAAACACA
82
1521





1072905
N/A
N/A
4293
4312
GGCTCAGAATAGGTGAGCTC
67
1522





1072909
N/A
N/A
4435
4454
GTCACAAGCTGGTGGCAGGC
69
1523





1072913
N/A
N/A
4487
4506
TTTATTATGACCACCGCTTC
92
1524





1072917
N/A
N/A
4563
4582
ATGTCCTGTCAGCTCAGTGA
50
1525





1072921
N/A
N/A
4632
4651
CATACACTCACTGTTGCACA
83
1526





1072925
N/A
N/A
4669
4688
GTGCACCTGCTTCTGCTCAC
111
1527





1072929
N/A
N/A
4741
4760
AGGACTTGTCTGGAGGATGA
47
1528





1072933
N/A
N/A
4822
4841
TGAGGCAGCTGTCACAGAGA
102
1529





1072937
N/A
N/A
4904
4923
CATCCTGGAGCCTGGAGTGG
87
1530





1072941
N/A
N/A
5295
5314
AATCTCTGTGTTGAGCTTTC
56
1531





1072945
N/A
N/A
5308
5327
CTCTCTCAGTTGCAATCTCT
75
1532





1072949
N/A
N/A
5460
5479
CGGCCAGGAGTTCGAATGCT
81
1533





1072953
N/A
N/A
5733
5752
TGGCCCACAGGCAGGGCTAC
83
1534





1072957
N/A
N/A
5895
5914
TGGGTACTTTTGAAAGCAAT
75
1535





1072961
N/A
N/A
5965
5984
AAAAGCACAGGGCTTAGAAC
76
1536





1072965
N/A
N/A
6031
6050
CTCTCTGGACTTCGGCTCTC
88
1537





1072969
N/A
N/A
6167
6186
GGCATATGGTAGAGGCTCAG
56
1538





1072973
N/A
N/A
6270
6289
TATAAGCTCTGAGCTGTGGT
37
1539





1072977
N/A
N/A
6443
6462
GGTGCCCTGGCTAGGCTAGC
77
1540





1072981
N/A
N/A
6460
6479
CTCACACTCCTCAGCTAGGT
77
1541





1072985
N/A
N/A
6897
6916
GCGGAGGCCTGGGTGTTTTG
75
1542





1072989
N/A
N/A
6908
6927
GTCTTAGGCGAGCGGAGGCC
90
1543





1072993
N/A
N/A
6972
6991
AACAGTGCCACAGAATCCAG
91
1544





1072997
N/A
N/A
7051
7070
GACCCATGGATGCGGGCAGG
68
1545





1073001
N/A
N/A
7086
7105
CGTTGGCCCTGGCTGGGACT
71
1546





1073005
N/A
N/A
7201
7220
TCTGTCAGGTCTGCAAACTA
83
1547





1073009
N/A
N/A
7479
7498
GGGAGGTTTCGAGGCCCGGC
41
1548





1073013
N/A
N/A
7520
7539
GGATGGAGCCGGCCGGTCCC
81
1549





1073017
N/A
N/A
7764
7783
GCTGTGATGAGGGCTCACCG
68
1550





1073021
N/A
N/A
7818
7837
CTGAAGGGAGCAAGATGAGC
82
1551





1073025
N/A
N/A
7878
7897
ACTGTGCTGGGCATTGAGGT
77
1552





1073029
N/A
N/A
8005
8024
GAGTATGCCTCTTAGTTTGG
63
1553





1073033
N/A
N/A
8046
8065
ATGGGTGAGGTGAGGAGTCC
36
1554





1073037
N/A
N/A
8078
8097
GTGGTGAAGAAAGTTCCAAG
88
1555





1073041
N/A
N/A
9356
9375
CGCCCCGCCCGAGAGAGAAA
64
1556





1073045
N/A
N/A
9409
9428
GAATCATTTCAGGGCCAATG
27
1557





1073049
N/A
N/A
9425
9444
TTTGTTCCTTAGCTAAGAAT
62
1558





1073053
N/A
N/A
9444
9463
AGTCCAGAAGAAGAGGAATT
68
1559





1073057
N/A
N/A
9497
9516
CTGATGCTGAATTAAGTCCT
50
1560





1073061
N/A
N/A
9519
9538
CTAGTCAGCCTGGTTAGCCT
57
1561





1073065
N/A
N/A
9577
9596
CCATTTATCTGTGCTTTAGT
39
1562





1073069
N/A
N/A
9892
9911
CGCTCTGCCGAAGGAAGGAA
61
1563





1073073
N/A
N/A
10548
10567
AAATCAGGAGACCAGGAGGG
59
1564





1073077
N/A
N/A
10561
10580
CAGCACGGTATTGAAATCAG
42
1565





1073081
N/A
N/A
10692
10711
TTCCAAACGGGCTGGAGAGC
84
1566





1073085
N/A
N/A
10804
10823
ATGGACTTTCAGGGCATGAG
64
1567





1073089
N/A
N/A
11097
11116
GGAGGGACTGAGGAAACGGA
68
1568





1073093
N/A
N/A
11157
11176
GTGTGTATTAGGATCCCATC
24
1569





1073097
N/A
N/A
11193
11212
AGCAAGGCCCCCGAGTTTGA
81
1570





1073101
N/A
N/A
11246
11265
GCTAGAGTTGGAAGTGAAAG
67
1571





1073105
N/A
N/A
11368
11387
ATGAGCTCCCACTGTGGTTG
72
1572





1073109
N/A
N/A
11427
11446
GATAACACTGGGAAAGCATT
91
1573





1073113
N/A
N/A
11514
11533
AACCTTGGGAAGTCCCCGAC
85
1574





1073117
N/A
N/A
11563
11582
ACAGTTAGGAGTTCACACAG
75
1575
















TABLE 22







Reduction of GFAP RNA by 5-10-5 MCE gapmers with mixed PO/PS internucleoside linkages in U251 cells















SEQ ID
SEQ
SEQ ID
SEQ ID






NO: 1
ID NO:
NO: 2
NO: 2


SEQ


Compound
Start
1 Stop
Start
Stop

GFAP
ID


No.
Site
Site
Site
Site
Sequence (5′ to 3′)
(% UTC)
NO

















1047582
3047
3066
13336
13355
GTCTTTATTTTTCCTCAGCG
5
517





1103152
41
60
3489
3508
CTGGCTCTGCTCGCTCCTGG
91
1576





1103168
272
291
3720
3739
CTCCATCATCTCTGCCCGCT
106
1577





1103184
565
584
4950
4969
CTATAGGCAGCCAGGTTGTT
69*
1578





1103200
760
779
5646
5665
ATCTCTTTCAGGGCTGCGGT
65
1579





1103216
1062
1081
7634
7653
TGAGGCTCTGCCCCTCTTCC
111
1580





1103232
1335
1354
11624
11643
CCTTGTGCTCCTGCTTGGAC
88
1581





1103248
1527
1546
11816
11835
AGGCCTGATACTGACGGAGC
79
1582





1103264
1669
1688
11958
11977
GTAGGTGCCCCCCGCCCTCC
90
1583





1103280
1733
1752
12022
12041
AGAACCTCCATCTCTGGCAA
62
1584





1103296
1860
1879
12149
12168
CCAAAAGACAAAACAAGCCT
75
1585





1103312
1886
1905
12175
12194
CATAGGGATATCCCACCTCA
111
1586





1103328
2094
2113
12383
12402
GTCATCGCTCAGGAGGTCCT
69
1587





1103344
2231
2250
12520
12539
CTATCCCTCCCAGCACCTCA
109
1588





1103360
2427
2446
12716
12735
AGGATGAGTCACTTCCTTAA
73
1589





1103376
2484
2503
12773
12792
GTCATGCCCTGCCCCCATGG
90
1590





1103392
2512
2531
12801
12820
AGGAAGAGGCCTTTAGAAAT
68
1591





1103408
2672
2691
12961
12980
GTGTGTGAGTAAGAAGGGAC
55
1592





1103424
2724
2743
13013
13032
TCAGTTTTACAATTGTAAAA
83
1593





1103440
2899
2918
13188
13207
GGAGAACCCTGAAGTGGGCC
76
1594





1103472
N/A
N/A
8787
8806
GTATTGTGAGGCTTTTGAGA
43
1595





1103488
N/A
N/A
8899
8918
GAGGCTCACTCCCTGTCAAG
60
1596





1103504
N/A
N/A
9045
9064
AACAAGCTCTGCCAGTTTAA
66
1597





1103520
N/A
N/A
9234
9253
TGAGTCAGCACTGAGCTGAG
95
1598





1103536
N/A
N/A
9270
9289
CAAGAGCTGCGGTCCTGAGG
59
1599





1103552
N/A
N/A
9310
9329
TTTAACATTAAGAGCAGGGA
63
1600





1103568
N/A
N/A
8532
8551
CTGGTATGATAGGCTCTGGC
86
1601





1103584
N/A
N/A
8650
8669
CAGACAGGGCAGATGTCAAG
92
1602





1103600
N/A
N/A
3999
4018
CCCCTTCTGCTCACAAGGCC
121
1603





1103616
N/A
N/A
4160
4179
CATGCGGGCATCAGATCCCC
89
1604





1103632
N/A
N/A
4275
4294
TCGCTGCCCACAGTCACAAA
104
1605





1103648
N/A
N/A
4407
4426
GTGCTTTGCGCCCAGACCTG
105
1606





1103664
N/A
N/A
4496
4515
GAAATGAATTTTATTATGAC
106
1607





1103680
N/A
N/A
4640
4659
TCCACAAGCATACACTCACT
81
1608





1103696
N/A
N/A
4837
4856
TGCCTCAGTCTCCCTTGAGG
107
1609





1103712
N/A
N/A
5100
5119
CCATTCCTCAGCCTTGCCTT
98
1610





1103728
N/A
N/A
5346
5365
GTCTCTCTCAGTCTCAGCTT
78
1611





1103744
N/A
N/A
5413
5432
GTCTTTCTGTTTGTCTTTCA
57
1612





1103760
N/A
N/A
5487
5506
CCATTGTGTCCTCTTCTGCC
102
1613





1103776
N/A
N/A
5776
5795
TTCTCTTGTACAGAGCAAGA
79
1614





1103792
N/A
N/A
5860
5879
CTGGGCAAGCCATCTCACTT
86
1615





1103808
N/A
N/A
5941
5960
CAGTATCAGCTACTACTAAT
80
1616





1103824
N/A
N/A
5978
5997
AAGGTAATCCATGAAAAGCA
84
1617





1103840
N/A
N/A
6024
6043
GACTTCGGCTCTCTCATCTG
82
1618





1103856
N/A
N/A
6204
6223
CCAGGTCAGACACCTCTCTG
81
1619





1103872
N/A
N/A
6267
6286
AAGCTCTGAGCTGTGGTGTT
33
1620





1103888
N/A
N/A
6315
6334
CCCAAATGCCCCCTCTACAG
93
1621





1103904
N/A
N/A
6414
6433
CCCTGCCTCTCTGTGCTTTT
92
1622





1103920
N/A
N/A
6517
6536
AGGTCCTCCCAGCCCCATCG
108
1623





1103936
N/A
N/A
6947
6966
TCCACACTGACAGCTGCATC
92
1624





1103952
N/A
N/A
7030
7049
TAGCGGGCTGCCAGACCTCA
102
1625





1103968
N/A
N/A
7326
7345
CCCTGGCCGCGCTCACCGTG
96
1626





1103984
N/A
N/A
7421
7440
TTCAGGCCCCGCCCTCGACC
81
1627





1104000
N/A
N/A
7814
7833
AGGGAGCAAGATGAGCTCTA
120
1628





1104016
N/A
N/A
7940
7959
GAATCCATCCATCCATTCAG
86
1629





1104032
N/A
N/A
8038
8057
GGTGAGGAGTCCAATCTTGG
76
1630





1104048
N/A
N/A
8080
8099
AAGTGGTGAAGAAAGTTCCA
108
1631





1104064
N/A
N/A
8251
8270
CATCATGACAACTTGAACGC
98
1632





1104080
N/A
N/A
9364
9383
CCTCCCCCCGCCCCGCCCGA
111
1633





1104096
N/A
N/A
9414
9433
GCTAAGAATCATTTCAGGGC
40
1634





1104112
N/A
N/A
9455
9474
CTAAATATTCTAGTCCAGAA
97
1635





1104128
N/A
N/A
9509
9528
TGGTTAGCCTTTCTGATGCT
84
1636





1104144
N/A
N/A
9535
9554
GGCAGTATTACCTCTACTAG
28
1637





1104160
N/A
N/A
9559
9578
GTGACCTGTGACTATCTAGG
47
1638





1104176
N/A
N/A
9579
9598
TGCCATTTATCTGTGCTTTA
50
1639





1104192
N/A
N/A
9665
9684
TAAAGGCTGTTAAACATGTG
51
1640





1104208
N/A
N/A
9785
9804
ACCAGCCACATGACTCTGGG
83
1641





1104224
N/A
N/A
10558
10577
CACGGTATTGAAATCAGGAG
47
1642





1104240
N/A
N/A
10654
10673
CTGCTGCCAGAGTCCTGGCT
88
1643





1104256
N/A
N/A
10753
10772
CACCCCCCTCCCCATCATGA
89
1644





1104272
N/A
N/A
10818
10837
AGAGGAGGCCTCTCATGGAC
96
1645





1104288
N/A
N/A
11083
11102
AACGGAATTACATTCAGTTT
81
1646





1104304
N/A
N/A
11152
11171
TATTAGGATCCCATCTAGTG
103
1647





1104320
N/A
N/A
11230
11249
AAAGCTACTAACTTTAATTC
81
1648





1104336
N/A
N/A
11288
11307
CAAGCTGGAAATGGAAAGCC
83
1649





1104352
N/A
N/A
11390
11409
AGTGGTAAGCTGCTGGAGTA
85
1650





1104368
N/A
N/A
11499
11518
CCGACTTCCCAGGTCTTACT
78
1651
















TABLE 23







Reduction of GFAP RNA by 5-10-5 MCE gapmers with mixed PO/PS internucleoside linkages in U251 cells















SEQ ID
SEQ
SEQ ID
SEQ ID






NO: 1
ID NO:
NO: 2
NO: 2


SEQ


Compound
Start
1 Stop
Start
Stop

GFAP
ID


No.
Site
Site
Site
Site
Sequence (5′ to 3′)
(% UTC)
NO

















1047582
3047
3066
13336
13355
GTCTTTATTTTTCCTCAGCG
6
517





1103150
20
39
3468
3487
ATGCGAGGGCTTTATGAAGG
82
1652





1103166
264
283
3712
3731
TCTCTGCCCGCTCACTGGCC
126
1653





1103182
549
568
4934
4953
TGTTCTCGGCTTCCAGCCTC
40*
1654





1103198
758
777
5644
5663
CTCTTTCAGGGCTGCGGTGA
35
1655





1103214
1049
1068
7621
7640
CTCTTCCTCCAGCCGCGCCA
70
1656





1103230
1327
1346
11616
11635
TCCTGCTTGGACTCCTTAAT
69
1657





1103246
1501
1520
11790
11809
CAGCAAGCTGACCTAGGGAC
39
1658





1103262
1662
1681
11951
11970
CCCCCCGCCCTCCTCCCCTT
91
1659





1103278
1729
1748
12018
12037
CCTCCATCTCTGGCAACAGT
34
1660





1103294
1858
1877
12147
12166
AAAAGACAAAACAAGCCTCT
81
1661





1103310
1884
1903
12173
12192
TAGGGATATCCCACCTCATA
74
1662





1103326
2061
2080
12350
12369
CAGGTGACTGCCCCAGGTGG
73
1663





1103342
2228
2247
12517
12536
TCCCTCCCAGCACCTCATCC
80
1664





1103358
2424
2443
12713
12732
ATGAGTCACTTCCTTAATTC
58
1665





1103374
2467
2486
12756
12775
TGGATACATCCCCTTTCTCT
59
1666





1103390
2510
2529
12799
12818
GAAGAGGCCTTTAGAAATGG
76
1667





1103406
2668
2687
12957
12976
GTGAGTAAGAAGGGACCGCA
82
1668





1103422
2717
2736
13006
13025
TACAATTGTAAAATAGGGCA
90
1669





1103438
2849
2868
13138
13157
ACCAGTCTGCTCACCAGTCT
74
1670





1103470
N/A
N/A
8769
8788
GATATCTTGTGACCTTGTGA
34
1671





1103486
N/A
N/A
8897
8916
GGCTCACTCCCTGTCAAGCT
100
1672





1103502
N/A
N/A
9043
9062
CAAGCTCTGCCAGTTTAATG
30
1673





1103518
N/A
N/A
9224
9243
CTGAGCTGAGCGATGGAGCC
71
1674





1103534
N/A
N/A
9263
9282
TGCGGTCCTGAGGGAAGAAT
76
1675





1103550
N/A
N/A
9308
9327
TAACATTAAGAGCAGGGAAC
77
1676





1103566
N/A
N/A
8500
8519
AGTGTCACGAAGGCCCCCAG
49
1677





1103582
N/A
N/A
8584
8603
GGACCAGGGCCTAGCAGGAC
69
1678





1103598
N/A
N/A
3993
4012
CTGCTCACAAGGCCCCCCTT
92
1679





1103614
N/A
N/A
4049
4068
GGTTCGGCCCCTCCCTGAGA
69
1680





1103630
N/A
N/A
4250
4269
GCCATGAATGAAACACAGGG
66
1681





1103646
N/A
N/A
4391
4410
CCTGCCTGCTCTTTCCCTCA
76
1682





1103662
N/A
N/A
4490
4509
AATTTTATTATGACCACCGC
110
1683





1103678
N/A
N/A
4635
4654
AAGCATACACTCACTGTTGC
78
1684





1103694
N/A
N/A
4817
4836
CAGCTGTCACAGAGACCACC
100
1685





1103710
N/A
N/A
5097
5116
TTCCTCAGCCTTGCCTTACC
78
1686





1103726
N/A
N/A
5305
5324
TCTCAGTTGCAATCTCTGTG
87
1687





1103742
N/A
N/A
5398
5417
TTTCATTTCCTGTCTCTACC
89
1688





1103758
N/A
N/A
5481
5500
TGTCCTCTTCTGCCTGCCCC
94
1689





1103774
N/A
N/A
5726
5745
CAGGCAGGGCTACCTTGGAG
87
1690





1103790
N/A
N/A
5849
5868
ATCTCACTTCTCTGGTGAAA
95
1691





1103806
N/A
N/A
5923
5942
ATAATAGCAATAGTAGCAGT
103
1692





1103822
N/A
N/A
5974
5993
TAATCCATGAAAAGCACAGG
84
1693





1103838
N/A
N/A
6020
6039
TCGGCTCTCTCATCTGTCAA
53
1694





1103854
N/A
N/A
6199
6218
TCAGACACCTCTCTGTGTCC
86
1695





1103870
N/A
N/A
6257
6276
CTGTGGTGTTCTCTACGGGC
78
1696





1103886
N/A
N/A
6313
6332
CAAATGCCCCCTCTACAGTG
105
1697





1103902
N/A
N/A
6408
6427
CTCTCTGTGCTTTTCTGCCT
71
1698





1103918
N/A
N/A
6501
6520
ATCGGGCCCTCACCCTGCTC
107
1699





1103934
N/A
N/A
6904
6923
TAGGCGAGCGGAGGCCTGGG
90
1700





1103950
N/A
N/A
7017
7036
GACCTCAGCACCTAGCACAA
82
1701





1103966
N/A
N/A
7314
7333
TCACCGTGCCGCGCAGAGAC
101
1702





1103982
N/A
N/A
7416
7435
GCCCCGCCCTCGACCCAGGT
88
1703





1103998
N/A
N/A
7805
7824
GATGAGCTCTACCGTGAGGC
71
1704





1104014
N/A
N/A
7922
7941
AGTCATCAAACATCTAGTGA
46
1705





1104030
N/A
N/A
8035
8054
GAGGAGTCCAATCTTGGCTG
67
1706





1104046
N/A
N/A
8075
8094
GTGAAGAAAGTTCCAAGGAG
93
1707





1104062
N/A
N/A
8228
8247
TTTCCTTGCCAGGAAAGTCT
81
1708





1104078
N/A
N/A
9359
9378
CCCCGCCCCGCCCGAGAGAG
36
1709





1104094
N/A
N/A
9412
9431
TAAGAATCATTTCAGGGCCA
71
1710





1104110
N/A
N/A
9452
9471
AATATTCTAGTCCAGAAGAA
103
1711





1104126
N/A
N/A
9506
9525
TTAGCCTTTCTGATGCTGAA
58
1712





1104142
N/A
N/A
9530
9549
TATTACCTCTACTAGTCAGC
65
1713





1104158
N/A
N/A
9557
9576
GACCTGTGACTATCTAGGAT
18
1714





1104174
N/A
N/A
9576
9595
CATTTATCTGTGCTTTAGTG
37
1715





1104190
N/A
N/A
9660
9679
GCTGTTAAACATGTGGCACA
74
1716





1104206
N/A
N/A
9706
9725
CCTACTTCTCTAGGTGGGAG
65
1717





1104222
N/A
N/A
10556
10575
CGGTATTGAAATCAGGAGAC
47
1718





1104238
N/A
N/A
10610
10629
TTTCAGCCCCTCTGCAAGCC
68
1719





1104254
N/A
N/A
10747
10766
CCTCCCCATCATGAGTATGA
92
1720





1104270
N/A
N/A
10816
10835
AGGAGGCCTCTCATGGACTT
93
172





1104286
N/A
N/A
11078
11097
AATTACATTCAGTTTCCTTG
88
1722





1104302
N/A
N/A
11150
11169
TTAGGATCCCATCTAGTGGC
60
1723





1104318
N/A
N/A
11225
11244
TACTAACTTTAATTCTCTTT
49
1724





1104334
N/A
N/A
11280
11299
AAATGGAAAGCCCTCCCCAT
98
1725





1104350
N/A
N/A
11388
11407
TGGTAAGCTGCTGGAGTAAG
55
1726





1104366
N/A
N/A
11494
11513
TTCCCAGGTCTTACTTTTCT
76
1727
















TABLE 24







Reduction of GFAP RNA by 5-10-5 MCE gapmers with mixed PO/PS internucleoside linkages in U251 cells















SEQ ID
SEQ
SEQ ID
SEQ ID






NO: 1
ID NO:
NO: 2
NO: 2


SEQ


Compound
Start
1 Stop
Start
Stop

GFAP
ID


No.
Site
Site
Site
Site
Sequence (5′ to 3′)
(% UTC)
NO

















1047582
3047
3066
13336
13355
GTCTTTATTTTTCCTCAGCG
6
517





1103151
39
58
3487
3506
GGCTCTGCTCGCTCCTGGGA
108
1728





1103167
269
288
3717
3736
CATCATCTCTGCCCGCTCAC
93
1729





1103183
553
572
4938
4957
AGGTTGTTCTCGGCTTCCAG
55*
1730





1103199
759
778
5645
5664
TCTCTTTCAGGGCTGCGGTG
54
1731





1103215
1050
1069
7622
7641
CCTCTTCCTCCAGCCGCGCC
64
1732





1103231
1334
1353
11623
11642
CTTGTGCTCCTGCTTGGACT
53
1733





1103247
1518
1537
11807
11826
ACTGACGGAGCCTAGGGCAG
61
1734





1103263
1667
1686
11956
11975
AGGTGCCCCCCGCCCTCCTC
98
1735





1103279
1730
1749
12019
12038
ACCTCCATCTCTGGCAACAG
25
1736





1103295
1859
1878
12148
12167
CAAAAGACAAAACAAGCCTC
73
1737





1103311
1885
1904
12174
12193
ATAGGGATATCCCACCTCAT
75
1738





1103327
2086
2105
12375
12394
TCAGGAGGTCCTTCTGGGAT
67
1739





1103343
2230
2249
12519
12538
TATCCCTCCCAGCACCTCAT
63
1740





1103359
2425
2444
12714
12733
GATGAGTCACTTCCTTAATT
35
1741





1103375
2483
2502
12772
12791
TCATGCCCTGCCCCCATGGA
69
1742





1103391
2511
2530
12800
12819
GGAAGAGGCCTTTAGAAATG
74
1743





1103407
2670
2689
12959
12978
GTGTGAGTAAGAAGGGACCG
46
1744





1103423
2722
2741
13011
13030
AGTTTTACAATTGTAAAATA
88
1745





1103439
2868
2887
13157
13176
ATCTCTGGGCACAGATCCCA
93
1746





1103471
N/A
N/A
8770
8789
AGATATCTTGTGACCTTGTG
35
1747





1103487
N/A
N/A
8898
8917
AGGCTCACTCCCTGTCAAGC
62
1748





1103503
N/A
N/A
9044
9063
ACAAGCTCTGCCAGTTTAAT
51
1749





1103519
N/A
N/A
9225
9244
ACTGAGCTGAGCGATGGAGC
65
1750





1103535
N/A
N/A
9266
9285
AGCTGCGGTCCTGAGGGAAG
59
1751





1103551
N/A
N/A
9309
9328
TTAACATTAAGAGCAGGGAA
68
1752





1103567
N/A
N/A
8530
8549
GGTATGATAGGCTCTGGCTA
21
1753





1103583
N/A
N/A
8649
8668
AGACAGGGCAGATGTCAAGC
90
1754





1103599
N/A
N/A
3994
4013
TCTGCTCACAAGGCCCCCCT
56
1755





1103615
N/A
N/A
4053
4072
GGGAGGTTCGGCCCCTCCCT
94
1756





1103631
N/A
N/A
4251
4270
AGCCATGAATGAAACACAGG
115
1757





1103647
N/A
N/A
4401
4420
TGCGCCCAGACCTGCCTGCT
75
1758





1103663
N/A
N/A
4495
4514
AAATGAATTTTATTATGACC
80
1759





1103679
N/A
N/A
4636
4655
CAAGCATACACTCACTGTTG
69
1760





1103695
N/A
N/A
4820
4839
AGGCAGCTGTCACAGAGACC
95
1761





1103711
N/A
N/A
5099
5118
CATTCCTCAGCCTTGCCTTA
95
1762





1103727
N/A
N/A
5311
5330
TCCCTCTCTCAGTTGCAATC
79
1763





1103743
N/A
N/A
5412
5431
TCTTTCTGTTTGTCTTTCAT
71
1764





1103759
N/A
N/A
5482
5501
GTGTCCTCTTCTGCCTGCCC
59
1765





1103775
N/A
N/A
5775
5794
TCTCTTGTACAGAGCAAGAA
110
1766





1103791
N/A
N/A
5853
5872
AGCCATCTCACTTCTCTGGT
67
1767





1103807
N/A
N/A
5930
5949
ACTACTAATAATAGCAATAG
82
1768





1103823
N/A
N/A
5975
5994
GTAATCCATGAAAAGCACAG
97
1769





1103839
N/A
N/A
6022
6041
CTTCGGCTCTCTCATCTGTC
76
1770





1103855
N/A
N/A
6203
6222
CAGGTCAGACACCTCTCTGT
76
1771





1103871
N/A
N/A
6265
6284
GCTCTGAGCTGTGGTGTTCT
88
1772





1103887
N/A
N/A
6314
6333
CCAAATGCCCCCTCTACAGT
92
1773





1103903
N/A
N/A
6409
6428
CCTCTCTGTGCTTTTCTGCC
60
1774





1103919
N/A
N/A
6516
6535
GGTCCTCCCAGCCCCATCGG
79
1775





1103935
N/A
N/A
6906
6925
CTTAGGCGAGCGGAGGCCTG
85
1776





1103951
N/A
N/A
7021
7040
GCCAGACCTCAGCACCTAGC
65
1777





1103967
N/A
N/A
7316
7335
GCTCACCGTGCCGCGCAGAG
76
1778





1103983
N/A
N/A
7420
7439
TCAGGCCCCGCCCTCGACCC
88
1779





1103999
N/A
N/A
7806
7825
AGATGAGCTCTACCGTGAGG
66
1780





1104015
N/A
N/A
7930
7949
ATCCATTCAGTCATCAAACA
90
1781





1104031
N/A
N/A
8037
8056
GTGAGGAGTCCAATCTTGGC
77
1782





1104047
N/A
N/A
8076
8095
GGTGAAGAAAGTTCCAAGGA
59
1783





1104063
N/A
N/A
8229
8248
TTTTCCTTGCCAGGAAAGTC
76
1784





1104079
N/A
N/A
9360
9379
CCCCCGCCCCGCCCGAGAGA
103
1785





1104095
N/A
N/A
9413
9432
CTAAGAATCATTTCAGGGCC
65
1786





1104111
N/A
N/A
9454
9473
TAAATATTCTAGTCCAGAAG
87
1787





1104127
N/A
N/A
9508
9527
GGTTAGCCTTTCTGATGCTG
30
1788





1104143
N/A
N/A
9531
9550
GTATTACCTCTACTAGTCAG
56
1789





1104159
N/A
N/A
9558
9577
TGACCTGTGACTATCTAGGA
29
1790





1104175
N/A
N/A
9578
9597
GCCATTTATCTGTGCTTTAG
10
1791





104191
N/A
N/A
9664
9683
AAAGGCTGTTAAACATGTGG
39
1792





1104207
N/A
N/A
9707
9726
GCCTACTTCTCTAGGTGGGA
69
1793





1104223
N/A
N/A
10557
10576
ACGGTATTGAAATCAGGAGA
55
1794





1104239
N/A
N/A
10639
10658
TGGCTGCTCTGTCTTCTGGC
52
1795





1104255
N/A
N/A
10748
10767
CCCTCCCCATCATGAGTATG
79
1796





1104271
N/A
N/A
10817
10836
GAGGAGGCCTCTCATGGACT
95
1797





1104287
N/A
N/A
11082
11101
ACGGAATTACATTCAGTTTC
77
1798





1104303
N/A
N/A
11151
11170
ATTAGGATCCCATCTAGTGG
68
1799





1104319
N/A
N/A
11229
11248
AAGCTACTAACTTTAATTCT
92
1800





1104335
N/A
N/A
11281
11300
GAAATGGAAAGCCCTCCCCA
113
1801





1104351
N/A
N/A
11389
11408
GTGGTAAGCTGCTGGAGTAA
60
1802





1104367
N/A
N/A
11498
11517
CGACTTCCCAGGTCTTACTT
74
1803
















TABLE 25







Reduction of GFAP RNA by 5-10-5 MCE gapmers with mixed PO/PS internucleoside linkages in U251 cells















SEQ ID
SEQ
SEQ ID
SEQ ID






NO: 1
ID NO:
NO: 2
NO: 2


SEQ


Compound
Start
1 Stop
Start
Stop

GFAP
ID


No.
Site
Site
Site
Site
Sequence (5′ to 3′)
(% UTC)
NO

















1047582
3047
3066
13336
13355
GTCTTTATTTTTCCTCAGCG
7
517





1103153
44
63
3492
3511
GCTCTGGCTCTGCTCGCTCC
83
1804





1103169
354
373
3802
3821
GGTTCAGCTCAGCAGCCAGC
85
1805





1103185
566
585
4951
4970
TCTATAGGCAGCCAGGTTGT
73*
1806





1103201
762
781
5648
5667
GGATCTCTTTCAGGGCTGCG
90
1807





1103217
1185
1204
N/A
N/A
GAATGGTGATCCGGTTCTCC
23
1808





1103233
1350
1369
11639
11658
TGCCTCACATCACATCCTTG
98
1809





1103249
1528
1547
11817
11836
CAGGCCTGATACTGACGGAG
103
1810





1103265
1670
1689
11959
11978
AGTAGGTGCCCCCCGCCCTC
74
1811





1103281
1750
1769
12039
12058
TTCCCAGATACTCCGAGAGA
65
1812





1103297
1861
1880
12150
12169
ACCAAAAGACAAAACAAGCC
113
1813





1103313
1887
1906
12176
12195
GCATAGGGATATCCCACCTC
95
1814





1103329
2097
2116
12386
12405
TGAGTCATCGCTCAGGAGGT
47
1815





1103345
2331
2350
12620
12639
TCCTCCTCCATCTCTACCAG
44
1816





1103361
2431
2450
12720
12739
CAAGAGGATGAGTCACTTCC
49
1817





1103377
2485
2504
12774
12793
AGTCATGCCCTGCCCCCATG
46
1818





1103393
2516
2535
12805
12824
AGCAAGGAAGAGGCCTTTAG
68
1819





1103409
2673
2692
12962
12981
TGTGTGTGAGTAAGAAGGGA
30
1820





1103425
2725
2744
13014
13033
CTCAGTTTTACAATTGTAAA
71
1821





1103441
2905
2924
13194
13213
GGGAGAGGAGAACCCTGAAG
98
1822





1103473
N/A
N/A
8813
8832
CTGGTGAGCCTGTATTGGTA
68
1823





1103489
N/A
N/A
8975
8994
AAAATGACGCAGTCCAGGCC
108
1824





1103505
N/A
N/A
9046
9065
TAACAAGCTCTGCCAGTTTA
92
1825





1103521
N/A
N/A
9238
9257
GAACTGAGTCAGCACTGAGC
124
1826





1103537
N/A
N/A
9279
9298
TATTCACTGCAAGAGCTGCG
111
1827





1103553
N/A
N/A
9313
9332
ATATTTAACATTAAGAGCAG
84
1828





1103569
N/A
N/A
8533
8552
CCTGGTATGATAGGCTCTGG
56
1829





1103585
N/A
N/A
8655
8674
ATCTGCAGACAGGGCAGATG
113
1830





1103601
N/A
N/A
4001
4020
AGCCCCTTCTGCTCACAAGG
74
1831





1103617
N/A
N/A
4172
4191
CCTGGCAGAAGGCATGCGGG
120
1832





1103633
N/A
N/A
4295
4314
CAGGCTCAGAATAGGTGAGC
80
1833





1103649
N/A
N/A
4410
4429
CCTGTGCTTTGCGCCCAGAC
92
1834





1103665
N/A
N/A
4505
$524
CCACCTTTTGAAATGAATTT
63
1835





1103681
N/A
N/A
4641
4660
ATCCACAAGCATACACTCAC
62
1836





1103697
N/A
N/A
4845
4864
TGAATACCTGCCTCAGTCTC
68
1837





1103713
N/A
N/A
5101
5120
CCCATTCCTCAGCCTTGCCT
95
1838





1103729
N/A
N/A
5351
5370
TGAGTGTCTCTCTCAGTCTC
132
1839





1103745
N/A
N/A
5420
5439
CCTTAGTGTCTTTCTGTTTG
69
1840





1103761
N/A
N/A
5489
5508
CGCCATTGTGTCCTCTTCTG
86
1841





1103777
N/A
N/A
5778
5797
CATTCTCTTGTACAGAGCAA
105
1842





1103793
N/A
N/A
5861
5880
CCTGGGCAAGCCATCTCACT
119
1843





1103809
N/A
N/A
5943
5962
AACAGTATCAGCTACTACTA
80
1844





1103825
N/A
N/A
5979
5998
TAAGGTAATCCATGAAAAGC
101
1845





1103841
N/A
N/A
6108
6127
CCCAAGTGAGATGTGCTAGA
118
1846





1103857
N/A
N/A
6205
6224
TCCAGGTCAGACACCTCTCT
97
1847





1103873
N/A
N/A
6268
6287
TAAGCTCTGAGCTGTGGTGT
51
1848





1103889
N/A
N/A
6316
6335
GCCCAAATGCCCCCTCTACA
73
1849





1103905
N/A
N/A
6415
6434
GCCCTGCCTCTCTGTGCTTT
64
1850





1103921
N/A
N/A
6522
6541
CAGGGAGGTCCTCCCAGCCC
101
1851





1103937
N/A
N/A
6948
6967
TTCCACACTGACAGCTGCAT
76
1852





1103953
N/A
N/A
7077
7096
TGGCTGGGACTTTTCCCAAC
113
1853





1103969
N/A
N/A
7330
7349
CCTGCCCTGGCCGCGCTCAC
87
1854





1103985
N/A
N/A
7423
7442
CGTTCAGGCCCCGCCCTCGA
78
1855





1104001
N/A
N/A
7815
7834
AAGGGAGCAAGATGAGCTCT
77
1856





1104017
N/A
N/A
7956
7975
CTAATCAATATTGGTTGAAT
87
1857





1104033
N/A
N/A
8039
8058
AGGTGAGGAGTCCAATCTTG
82
1858





1104049
N/A
N/A
8082
8101
GAAAGTGGTGAAGAAAGTTC
109
1859





1104065
N/A
N/A
8252
8271
CCATCATGACAACTTGAACG
110
1860





1104081
N/A
N/A
9377
9396
AATTTAGCTCCCCCCTCCCC
83
1861





1104097
N/A
N/A
9417
9436
TTAGCTAAGAATCATTTCAG
125
1862





1104113
N/A
N/A
9456
9475
CCTAAATATTCTAGTCCAGA
47
1863





1104129
N/A
N/A
9511
9530
CCTGGTTAGCCTTTCTGATG
47
1864





1104145
N/A
N/A
9537
9556
TTGGCAGTATTACCTCTACT
19
1865





1104161
N/A
N/A
9561
9580
TAGTGACCTGTGACTATCTA
47
1866





1104177
N/A
N/A
9580
9599
CTGCCATTTATCTGTGCTTT
52
1867





1104193
N/A
N/A
9672
9691
ACTAAAATAAAGGCTGTTAA
67
1868





1104209
N/A
N/A
9786
9805
AACCAGCCACATGACTCTGG
91
1869





1104225
N/A
N/A
10559
10578
GCACGGTATTGAAATCAGGA
30
1870





1104241
N/A
N/A
10655
10674
GCTGCTGCCAGAGTCCTGGC
69
1871





1104257
N/A
N/A
10761
10780
CCCCATCGCACCCCCCTCCC
103
1872





1104273
N/A
N/A
10843
10862
CAGGCTGGTTTCTGCAGATG
92
1873





1104289
N/A
N/A
11084
11103
AAACGGAATTACATTCAGTT
67
1874





1104305
N/A
N/A
11153
11172
GTATTAGGATCCCATCTAGT
58
1875





1104321
N/A
N/A
11231
11250
GAAAGCTACTAACTTTAATT
60
1876





1104337
N/A
N/A
11308
11327
CCCTGGTAGTTTCCTTTTAC
55
1877





1104353
N/A
N/A
11392
11411
CGAGTGGTAAGCTGCTGGAG
69
1878





1104369
N/A
N/A
11512
11531
CCTTGGGAAGTCCCCGACTT
78
1879
















TABLE 26







Reduction of GFAP RNA by 5-10-5 MCE gapmers with mixed PO/PS internucleoside linkages in U251 cells















SEQ ID
SEQ
SEQ ID
SEQ ID






NO: 1
ID NO:
NO: 2
NO: 2


SEQ


Compound
Start
1 Stop
Start
Stop

GFAP
ID


No.
Site
Site
Site
Site
Sequence (5′ to 3′)
(% UTC)
NO

















1047582
3047
3066
13336
13355
GTCTTTATTTTTCCTCAGCG
6
517





1103154
109
128
3557
3576
ATCATCTCCCCTGAGGAGAC
139
1880





1103170
376
395
3824
3843
GTGGGCTCCTTGGCCCGCAG
89
1881





1103186
576
595
N/A
N/A
CTGCTTCCTGTCTATAGGCA
30*
1882





1103202
763
782
5649
5668
CGGATCTCTTTCAGGGCTGC
38
1883





1103218
1202
1221
8351
8370
GGAGAAGGTCTGCACGGGAA
43
1884





1103234
1355
1374
11644
11663
GGTCCTGCCTCACATCACAT
87
1885





1103250
1532
1551
11821
11840
CTGGCAGGCCTGATACTGAC
93
1886





1103266
1679
1698
11968
11987
GGGCGATGTAGTAGGTGCCC
100
1887





1103282
1762
1781
12051
12070
TCAAAGGCACAGTTCCCAGA
89
1888





1103298
1862
1881
12151
12170
AACCAAAAGACAAAACAAGC
80
1889





1103314
1889
1908
12178
12197
CAGCATAGGGATATCCCACC
86
1890





1103330
2098
2117
12387
12406
TTGAGTCATCGCTCAGGAGG
49
1891





1103346
2332
2351
12621
12640
CTCCTCCTCCATCTCTACCA
81
1892





1103362
2436
2455
12725
12744
ATCTTCAAGAGGATGAGTCA
116
1893





1103378
2487
2506
12776
12795
AAAGTCATGCCCTGCCCCCA
74
1894





1103394
2526
2545
12815
12834
GGTATGACACAGCAAGGAAG
59
1895





1103410
2674
2693
12963
12982
TTGTGTGTGAGTAAGAAGGG
52
1896





1103426
2730
2749
13019
13038
CGTGCCTCAGTTTTACAATT
73
1897





1103442
2963
2982
13252
13271
TGGAGGGAAAGGACACCAAG
79
1898





1103458
N/A
N/A
8740
8759
TCTTTGGTGCTTTTGCCCCC
50
1899





1103474
N/A
N/A
8814
8833
TCTGGTGAGCCTGTATTGGT
66
1900





1103490
N/A
N/A
8978
8997
GGGAAAATGACGCAGTCCAG
80
1901





1103506
N/A
N/A
9076
9095
GCGCACCCAAGGACTCACCA
115
1902





1103522
N/A
N/A
9240
9259
CTGAACTGAGTCAGCACTGA
90
1903





1103538
N/A
N/A
9285
9304
AAACTTTATTCACTGCAAGA
57
1904





1103570
N/A
N/A
8537
8556
GTACCCTGGTATGATAGGCT
22
1905





1103586
N/A
N/A
8684
8703
ACACTCAGAAGGGCAGTGCT
115
1906





1103602
N/A
N/A
4002
4021
CAGCCCCTTCTGCTCACAAG
77
1907





1103618
N/A
N/A
4181
4200
CCCTGGACTCCTGGCAGAAG
98
1908





1103634
N/A
N/A
4336
4355
CATCAACCTTCTCCGCTTCC
75
1909





1103650
N/A
N/A
4411
4430
ACCTGTGCTTTGCGCCCAGA
92
1910





1103666
N/A
N/A
4566
4585
TGCATGTCCTGTCAGCTCAG
122
1911





1103682
N/A
N/A
4645
4664
GCGCATCCACAAGCATACAC
113
1912





1103698
N/A
N/A
4846
4865
TTGAATACCTGCCTCAGTCT
104
1913





1103714
N/A
N/A
$140
5159
TGAGGAGTAGAGGGCCACTG
64
1914





1103730
N/A
N/A
5353
5372
TCTGAGTGTCTCTCTCAGTC
135
1915





1103746
N/A
N/A
5422
5441
TCCCTTAGTGTCTTTCTGTT
101
1916





1103762
N/A
N/A
5494
5513
CCCCACGCCATTGTGTCCTC
85
1917





1103778
N/A
N/A
5780
5799
CCCATTCTCTTGTACAGAGC
72
1918





1103794
N/A
N/A
5862
5881
CCCTGGGCAAGCCATCTCAC
80
1919





1103810
N/A
N/A
5948
5967
AACAGAACAGTATCAGCTAC
82
1920





1103826
N/A
N/A
5980
5999
GTAAGGTAATCCATGAAAAG
73
1921





1103842
N/A
N/A
6112
6131
GGCTCCCAAGTGAGATGTGC
118
1922





1103858
N/A
N/A
6207
6226
CTTCCAGGTCAGACACCTCT
75
1923





1103874
N/A
N/A
6269
6288
ATAAGCTCTGAGCTGTGGTG
50
1924





1103890
N/A
N/A
6317
6336
AGCCCAAATGCCCCCTCTAC
77
1925





1103906
N/A
N/A
6449
6468
CAGCTAGGTGCCCTGGCTAG
131
1926





1103922
N/A
N/A
6531
6550
CCCTGCCTGCAGGGAGGTCC
69
1927





1103938
N/A
N/A
6970
6989
CAGTGCCACAGAATCCAGAA
94
1928





1103954
N/A
N/A
7104
7123
CCCCAGTTAACCCCAGGACG
130
1929





1103970
N/A
N/A
7337
7356
TCCCCGTCCTGCCCTGGCCG
65
1930





1103986
N/A
N/A
7454
7473
GCCCCAGGCCCCGCCTCTAG
174
1931





1104002
N/A
N/A
7824
7843
CAGTCCCTGAAGGGAGCAAG
113
1932





1104018
N/A
N/A
7958
7977
GCCTAATCAATATTGGTTGA
71
1933





1104034
N/A
N/A
8041
8060
TGAGGTGAGGAGTCCAATCT
69
1934





1104050
N/A
N/A
8107
8126
CTGAAGGAAGATGGAAAAGG
78
1935





1104066
N/A
N/A
8254
8273
GGCCATCATGACAACTTGAA
105
1936





1104082
N/A
N/A
9378
9397
TAATTTAGCTCCCCCCTCCC
106
1937





1104098
N/A
N/A
9418
9437
CTTAGCTAAGAATCATTTCA
96
1938





1104114
N/A
N/A
9457
9476
TCCTAAATATTCTAGTCCAG
63
1939





1104130
N/A
N/A
9513
9532
AGCCTGGTTAGCCTTTCTGA
68
1940





1104146
N/A
N/A
9538
9557
TTTGGCAGTATTACCTCTAC
73
1941





1104162
N/A
N/A
9562
9581
TTAGTGACCTGTGACTATCT
92
1942





1104178
N/A
N/A
9582
9601
CTCTGCCATTTATCTGTGCT
48
1943





1104194
N/A
N/A
9675
9694
TTAACTAAAATAAAGGCTGT
132
1944





1104210
N/A
N/A
9810
9829
TCAAGAAGTCCCAACTTAGC
74
1945





1104226
N/A
N/A
10560
10579
AGCACGGTATTGAAATCAGG
77
1946





1104242
N/A
N/A
10656
10675
TGCTGCTGCCAGAGTCCTGG
89
1947





1104258
N/A
N/A
10773
10792
CATGCCCGGCTTCCCCATCG
98
1948





1104274
N/A
N/A
10923
10942
CTTACCTCTCCATCCCGCAT
100
1949





1104290
N/A
N/A
11088
11107
GAGGAAACGGAATTACATTC
95
1950





1104306
N/A
N/A
11154
11173
TGTATTAGGATCCCATCTAG
135
1951





1104322
N/A
N/A
11232
11251
TGAAAGCTACTAACTTTAAT
75
1952





1104338
N/A
N/A
11312
11331
ATTCCCCTGGTAGTTTCCTT
97
1953





1104354
N/A
N/A
11393
11412
GCGAGTGGTAAGCTGCTGGA
57
1954





1104370
N/A
N/A
11523
11542
AGGCTGTGTAACCTTGGGAA
75
1955
















TABLE 27







Reduction of GFAP RNA by 5-10-5 MCE gapmers with mixed PO/PS internucleoside linkages in U251 cells















SEQ ID
SEQ
SEQ ID
SEQ ID






NO: 1
ID NO:
NO: 2
NO: 2


SEQ


Compound
Start
1 Stop
Start
Stop

GFAP
ID


No.
Site
Site
Site
Site
Sequence (5′ to 3′)
(% UTC)
NO

















1047582
3047
306
13336
13355
GTCTTTATTTTTCCTCAGCG
7
517





1103155
110
129
3558
3577
CATCATCTCCCCTGAGGAGA
90
1956





1103171
380
399
3828
3847
CTTGGTGGGCTCCTTGGCCC
103
1957





1103187
577
596
N/A
N/A
TCTGCTTCCTGTCTATAGGC
33*
1958





1103203
764
783
5650
5669
GCGGATCTCTTTCAGGGCTG
65
1959





1103219
1220
1239
N/A
N/A
TTCTCGAATCTGCAGGTTGG
111
1960





1103235
1361
1380
11650
11669
CAGGTGGGTCCTGCCTCACA
147
1961





1103251
1533
1552
11822
11841
TCTGGCAGGCCTGATACTGA
134
1962





1103267
1681
1700
11970
11989
GAGGGCGATGTAGTAGGTGC
66
1963





1103283
1768
1787
12057
12076
GGAAACTCAAAGGCACAGTT
72
1964





1103299
1870
1889
12159
12178
CTCATAAAAACCAAAAGACA
128
1965





1103315
1890
1909
12179
12198
GCAGCATAGGGATATCCCAC
89
1966





1103331
2107
2126
12396
12415
CTGAGACACTTGAGTCATCG
45
1967





1103347
2334
2353
12623
12642
GCCTCCTCCTCCATCTCTAC
53
1968





1103363
2440
2459
12729
12748
CAGCATCTTCAAGAGGATGA
109
1969





1103379
2488
2507
12777
12796
CAAAGTCATGCCCTGCCCCC
94
1970





1103395
2527
2546
12816
12835
TGGTATGACACAGCAAGGAA
48
1971





1103411
2676
2695
12965
12984
TTTTGTGTGTGAGTAAGAAG
43
1972





1103427
2750
2769
13039
13058
GCCAGTGTCTTCACTTTGCT
73
1973





1103443
3013
3032
13302
13321
CAGTGCCCTGAAGATTAGCA
68
1974





1103459
N/A
N/A
8741
8760
GTCTTTGGTGCTTTTGCCCC
51
1975





1103475
N/A
N/A
8815
8834
ATCTGGTGAGCCTGTATTGG
45
1976





1103491
N/A
N/A
8979
8998
TGGGAAAATGACGCAGTCCA
61
1977





1103507
N/A
N/A
9091
9110
CAGAGCAGCTCCACTGCGCA
127
1978





1103523
N/A
N/A
9241
9260
TCTGAACTGAGTCAGCACTG
84
1979





1103539
N/A
N/A
9286
9305
AAAACTTTATTCACTGCAAG
64
1980





1103555
N/A
N/A
8369
8388
ACCTCGAATCTGCAGGTTGG
130
1981





1103571
N/A
N/A
8538
8557
AGTACCCTGGTATGATAGGC
33
1982





1103587
N/A
N/A
8714
8733
GACAAGCAGTTAAAAAAACA
62
1983





1103603
N/A
N/A
4003
4022
TCAGCCCCTTCTGCTCACAA
58
1984





1103619
N/A
N/A
4210
4229
CTTTCCCCAGTAGGGAGGTG
86
1985





1103635
N/A
N/A
4343
4362
TCATGGACATCAACCTTCTC
87
1986





1103651
N/A
N/A
4414
4433
GTCACCTGTGCTTTGCGCCC
107
1987





1103667
N/A
N/A
4568
4587
CATGCATGTCCTGTCAGCTC
72
1988





1103683
N/A
N/A
4646
4665
GGCGCATCCACAAGCATACA
112
1989





1103699
N/A
N/A
4855
4874
TGAGGACACTTGAATACCTG
67
1990





1103715
N/A
N/A
5163
5182
GCTTCCTGGAGTGGCAGGAG
109*
1991





1103731
N/A
N/A
5362
538
TCTCCTCTCTCTGAGTGTCT
69
1992





1103747
N/A
N/A
5424
5443
TCTCCCTTAGTGTCTTTCTG
65
1993





1103763
N/A
N/A
5499
5518
GGGTTCCCCACGCCATTGTG
109
1994





1103779
N/A
N/A
5782
5801
CCCCCATTCTCTTGTACAGA
136
1995





1103795
N/A
N/A
5881
5900
AGCAATAGTGCCTGTGTGAC
69
1996





1103811
N/A
N/A
5949
5968
GAACAGAACAGTATCAGCTA
91
1997





1103827
N/A
N/A
5981
6000
AGTAAGGTAATCCATGAAAA
109
1998





1103843
N/A
N/A
6113
6132
AGGCTCCCAAGTGAGATGTG
89
1999





1103859
N/A
N/A
6214
6233
ATCACACCTTCCAGGTCAGA
68
2000





1103875
N/A
N/A
6271
6290
ATATAAGCTCTGAGCTGTGG
87
2001





1103891
N/A
N/A
6318
6337
TAGCCCAAATGCCCCCTCTA
101
2002





1103907
N/A
N/A
6454
6473
CTCCTCAGCTAGGTGCCCTG
66
2003





1103923
N/A
N/A
6534
6553
CTCCCCTGCCTGCAGGGAGG
124
2004





1103939
N/A
N/A
6975
6994
ATGAACAGTGCCACAGAATC
124
2005





1103955
N/A
N/A
7105
7124
ACCCCAGTTAACCCCAGGAC
90
2006





1103971
N/A
N/A
7339
7358
CGTCCCCGTCCTGCCCTGGC
93
2007





1103987
N/A
N/A
7473
7492
TTTCGAGGCCCGGCCCCCGG
78
2008





1104003
N/A
N/A
7829
7848
AGACTCAGTCCCTGAAGGGA
89
2009





1104019
N/A
N/A
7959
7978
GGCCTAATCAATATTGGTTG
80
2010





1104035
N/A
N/A
8043
8062
GGTGAGGTGAGGAGTCCAAT
62
2011





1104051
N/A
N/A
8116
8135
CATGTCTATCTGAAGGAAGA
159
2012





1104067
N/A
N/A
8283
8302
GGACACCCCTAGGCTGGGTC
121
2013





1104083
N/A
N/A
9384
9403
AAAAAGTAATTTAGCTCCCC
108
2014





1104099
N/A
N/A
9419
9438
CCTTAGCTAAGAATCATTTC
76
2015





1104115
N/A
N/A
9458
9477
GTCCTAAATATTCTAGTCCA
55
2016





1104131
N/A
N/A
9514
9533
CAGCCTGGTTAGCCTTTCTG
38
2017





1104147
N/A
N/A
9539
9558
ATTTGGCAGTATTACCTCTA
51
2018





1104163
N/A
N/A
9563
9582
TTTAGTGACCTGTGACTATC
108
2019





1104179
N/A
N/A
9583
9602
TCTCTGCCATTTATCTGTGC
48
2020





1104195
N/A
N/A
9676
9695
ATTAACTAAAATAAAGGCTG
90
202





1104211
N/A
N/A
9811
9830
CTCAAGAAGTCCCAACTTAG
83
2022





1104227
N/A
N/A
10562
10581
CCAGCACGGTATTGAAATCA
50
2023





1104243
N/A
N/A
10659
10678
TAGTGCTGCTGCCAGAGTCC
54
2024





1104259
N/A
N/A
10777
10796
CTCCCATGCCCGGCTTCCCC
147
2025





1104275
N/A
N/A
10981
11000
TGGCCTGGCCTTGAGAATCC
108
2026





1104291
N/A
N/A
11100
11119
TATGGAGGGACTGAGGAAAC
107
2027





1104307
N/A
N/A
11155
11174
GTGTATTAGGATCCCATCTA
19
2028





1104323
N/A
N/A
11233
11252
GTGAAAGCTACTAACTTTAA
51
2029





1104339
N/A
N/A
11325
11344
ATCCCCTCTTCCCATTCCCC
128
2030





1104355
N/A
N/A
11394
11413
GGCGAGTGGTAAGCTGCTGG
99
2031





1104371
N/A
N/A
11525
11544
CGAGGCTGTGTAACCTTGGG
99
2032
















TABLE 28







Reduction of GFAP RNA by 5-10-5 MCE gapmers with mixed PO/PS internucleoside linkages in U251 cells















SEQ ID
SEQ
SEQ ID
SEQ ID






NO: 1
ID NO:
NO: 2
NO: 2


SEQ


Compound
Start
1 Stop
Start
Stop

GFAP
ID


No.
Site
Site
Site
Site
Sequence (5′ to 3′)
(% UTC)
NO

















1047582
3047
3066
13336
13355
GTCTTTATTTTTCCTCAGCG
14
517





1103156
142
161
3590
3609
CCCAGACGGCGGCCAGGAGC
113
2033





1103172
408
427
3856
3875
GCAGCTCAGCCTGGTAGACG
92
2034





1103188
582
601
N/A
N/A
CTTCATCTGCTTCCTGTCTA
23*
2035





1103204
829
848
N/A
N/A
AACTTGGAGCGGTACCACTC
106
2036





1103220
1249
1268
10863
10882
TCTGACACAGACTTGGTGTC
110
2037





1103236
1397
1416
11686
11705
CTGCTCGGGCCCCTCATGAG
18
2038





1103252
1534
1553
11823
11842
GTCTGGCAGGCCTGATACTG
84
2039





1103268
1682
1701
11971
11990
GGAGGGCGATGTAGTAGGTG
31
2040





1103284
1798
1817
12087
12106
CTGAGTCTCAGTTTTCCTCC
48
2041





1103300
1871
1890
12160
12179
CCTCATAAAAACCAAAAGAC
76
2042





1103316
1891
1910
12180
12199
GGCAGCATAGGGATATCCCA
74
2043





1103332
2108
2127
12397
12416
ACTGAGACACTTGAGTCATC
77
2044





1103348
2339
2358
12628
12647
CAATTGCCTCCTCCTCCATC
9]
2045





1103364
2444
2463
12733
12752
GTTTCAGCATCTTCAAGAGG
63
2046





1103380
2489
2508
12778
12797
ACAAAGTCATGCCCTGCCCC
89
2047





1103396
2528
2547
12817
12836
CTGGTATGACACAGCAAGGA
67
2048





1103412
2677
2696
12966
12985
ATTTTGTGTGTGAGTAAGAA
49
2049





1103428
2752
2771
13041
13060
GAGCCAGTGTCTTCACTTTG
38
2050





1103444
3014
3033
13303
13322
GCAGTGCCCTGAAGATTAGC
88
2051





1103460
N/A
N/A
8746
8765
TCCCCGTCTTTGGTGCTTTT
74
2052





1103476
N/A
N/A
8823
8842
CATTTACAATCTGGTGAGCC
103
2053





1103492
N/A
N/A
8981
9000
CCTGGGAAAATGACGCAGTC
88
2054





1103508
N/A
N/A
9103
9122
GCTCAGAGGCCCCAGAGCAG
117
2055





1103524
N/A
N/A
9242
9261
CTCTGAACTGAGTCAGCACT
93
2056





1103540
N/A
N/A
9288
9307
ATAAAACTTTATTCACTGCA
82
2057





1103556
N/A
N/A
8397
8416
GCCCTTCCCACGAGGCCCTG
102
2058





1103572
N/A
N/A
8540
8559
GAAGTACCCTGGTATGATAG
80
2059





1103588
N/A
N/A
8715
8734
TGACAAGCAGTTAAAAAAAC
98
2060





1103604
N/A
N/A
4004
4023
TTCAGCCCCTTCTGCTCACA
97
2061





1103620
N/A
N/A
4212
423
TGCTTTCCCCAGTAGGGAGG
52
2062





1103636
N/A
N/A
4351
4370
AATCTCCCTCATGGACATCA
102
2063





1103652
N/A
N/A
4421
4440
GCAGGCAGTCACCTGTGCTT
84
2064





1103668
N/A
N/A
4576
4595
AAGGCACACATGCATGTCCT
103
2065





1103684
N/A
N/A
4663
4682
CTGCTTCTGCTCACACAGGC
109
2066





1103700
N/A
N/A
4856
4875
CTGAGGACACTTGAATACCT
120
2067





1103716
N/A
N/A
5165
5184
CTGCTTCCTGGAGTGGCAGG
123*
2068





1103732
N/A
N/A
5363
5382
CTCTCCTCTCTCTGAGTGTC
100
2069





1103748
N/A
N/A
5432
5451
TCTTTCCGTCTCCCTTAGTG
94
2070





1103764
N/A
N/A
5518
5537
AGGGTACAGGCCACAGCTGG
101
2071





1103780
N/A
N/A
5785
5804
CTTCCCCCATTCTCTTGTAC
106
2072





1103796
N/A
N/A
5883
5902
AAAGCAATAGTGCCTGTGTG
80
2073





1103812
N/A
N/A
5950
5969
AGAACAGAACAGTATCAGCT
96
2074





1103828
N/A
N/A
5982
6001
TAGTAAGGTAATCCATGAAA
110
2075





1103844
N/A
N/A
6126
6145
AGGCATGGAATGCAGGCTCC
103
2076





1103860
N/A
N/A
6215
6234
TATCACACCTTCCAGGTCAG
102
2077





1103876
N/A
N/A
6272
6291
CATATAAGCTCTGAGCTGTG
91
2078





1103892
N/A
N/A
6319
6338
CTAGCCCAAATGCCCCCTCT
103
2079





1103908
N/A
N/A
6456
6475
CACTCCTCAGCTAGGTGCCC
104
2080





1103924
N/A
N/A
6535
6554
TCTCCCCTGCCTGCAGGGAG
111
2081





1103940
N/A
N/A
6977
6996
GAATGAACAGTGCCACAGAA
94
2082





1103956
N/A
N/A
7106
7125
CACCCCAGTTAACCCCAGGA
102
2083





1103972
N/A
N/A
7340
7359
CCGTCCCCGTCCTGCCCTGG
90
2084





1103988
N/A
N/A
7474
7493
GTTTCGAGGCCCGGCCCCCG
117
2085





1104004
N/A
N/A
7831
7850
AAAGACTCAGTCCCTGAAGG
119
2086





1104020
N/A
N/A
7960
7979
AGGCCTAATCAATATTGGTT
112
2087





1104036
N/A
N/A
8044
8063
GGGTGAGGTGAGGAGTCCAA
68
2088





1104052
N/A
N/A
8117
8136
GCATGTCTATCTGAAGGAAG
94
2089





1104068
N/A
N/A
8289
8308
TGCCTGGGACACCCCTAGGC
122
2090





1104084
N/A
N/A
9385
9404
TAAAAAGTAATTTAGCTCCC
91
2091





1104100
N/A
N/A
9427
9446
ATTTTGTTCCTTAGCTAAGA
96
2092





1104116
N/A
N/A
9459
9478
GGTCCTAAATATTCTAGTCC
35
2093





1104132
N/A
N/A
9515
9534
TCAGCCTGGTTAGCCTTTCT
37
2094





1104148
N/A
N/A
9540
9559
GATTTGGCAGTATTACCTCT
52
2095





1104164
N/A
N/A
9564
9583
CTTTAGTGACCTGTGACTAT
84
2096





1104180
N/A
N/A
9588
9607
ACTTCTCTCTGCCATTTATC
110
2097





1104196
N/A
N/A
9677
9696
AATTAACTAAAATAAAGGCT
108
2098





1104212
N/A
N/A
9820
9839
AGACCAGAGCTCAAGAAGTC
119
2099





1104228
N/A
N/A
10563
10582
CCCAGCACGGTATTGAAATC
84
2100





1104244
N/A
N/A
10660
10679
ATAGTGCTGCTGCCAGAGTC
88
2101





1104260
N/A
N/A
10779
10798
CTCTCCCATGCCCGGCTTCC
112
2102





1104276
N/A
N/A
10983
11002
CATGGCCTGGCCTTGAGAAT
31
2103





1104292
N/A
N/A
11115
11134
CCCCTTAGAACAGCCTATGG
111
2104





1104308
N/A
N/A
11156
11175
TGTGTATTAGGATCCCATCT
41
2105





1104324
N/A
N/A
11234
11253
AGTGAAAGCTACTAACTTTA
78
2106





1104340
N/A
N/A
11326
11345
AATCCCCTCTTCCCATTCCC
105
2107





1104356
N/A
N/A
11396
11415
CTGGCGAGTGGTAAGCTGCT
91
2108





1104372
N/A
N/A
11535
11554
TCCACCACCACGAGGCTGTG
101
2109
















TABLE 29







Reduction of GFAP RNA by 5-10-5 MCE gapmers with mixed PO/PS internucleoside linkages in U251 cells















SEQ ID
SEQ
SEQ ID
SEQ ID






NO: 1
ID NO:
NO: 2
NO: 2


SEQ


Compound
Start
1 Stop
Start
Stop

GFAP
ID


No.
Site
Site
Site
Site
Sequence (5′ to 3′)
(% UTC)
NO

















1047582
3047
3066
13336
13355
GTCTTTATTTTTCCTCAGCG
8
517





1103157
158
177
3606
3625
GAGGCGGGTGCCAGGACCCA
45
2110





1103173
409
428
3857
3876
CGCAGCTCAGCCTGGTAGAC
97
2111





1103189
636
655
5225
5244
TCTCCTCCTCCAGCGACTCA
92
2112





1103205
843
862
N/A
N/A
CTGTCAGGTCTGCAAACTTG
74
2113





1103221
1263
1282
10877
10896
TCTTGAGGTGGCCTTCTGAC
104
2114





1103237
1399
1418
11688
11707
TTCTGCTCGGGCCCCTCATG
75
2115





1103253
1544
1563
11833
11852
GGTGGGTGCCGTCTGGCAGG
34
2116





1103269
1683
1702
11972
11991
TGGAGGGCGATGTAGTAGGT
58
2117





1103285
1800
1819
12089
12108
GTCTGAGTCTCAGTTTTCCT
25
2118





1103301
1872
1891
12161
12180
ACCTCATAAAAACCAAAAGA
116
2119





1103317
1893
1912
12182
12201
TAGGCAGCATAGGGATATCC
101
2120





1103333
2110
2129
12399
12418
GGACTGAGACACTTGAGTCA
96
2121





1103349
2348
2367
12637
12656
GCGCCATCCCAATTGCCTCC
98
2122





1103365
2446
2465
12735
12754
CTGTTTCAGCATCTTCAAGA
41
2123





1103381
2493
2512
12782
12801
TGGGACAAAGTCATGCCCTG
105
2124





1103397
2530
2549
12819
12838
GCCTGGTATGACACAGCAAG
85
2125





1103413
2697
2716
12986
13005
CTACCTAGAATACTGGGTAC
110
2126





1103429
2753
2772
13042
13061
TGAGCCAGTGTCTTCACTTT
70
2127





1103445
3015
3034
13304
13323
AGCAGTGCCCTGAAGATTAG
86
2128





1103461
N/A
N/A
8748
8767
TTTCCCCGTCTTTGGTGCTT
77
2129





1103477
N/A
N/A
8824
8843
CCATTTACAATCTGGTGAGC
61
2130





1103493
N/A
N/A
8982
9001
TCCTGGGAAAATGACGCAGT
114
2131





1103509
N/A
N/A
9142
9161
TCCCAGTGACAGGAAGAGGT
105
2132





1103525
N/A
N/A
9245
9264
ATCCTCTGAACTGAGTCAGC
93
2133





1103541
N/A
N/A
9292
9311
GAACATAAAACTTTATTCAC
110
2134





1103557
N/A
N/A
8403
8422
TCCAGTGCCCTTCCCACGAG
104
2135





1103573
N/A
N/A
8542
8561
TAGAAGTACCCTGGTATGAT
110
2136





1103589
N/A
N/A
8728
8747
TTGCCCCCTGTAGTGACAAG
103
2137





1103605
N/A
N/A
4005
4024
ATTCAGCCCCTTCTGCTCAC
106
2138





1103621
V/A
N/A
4213
4232
CTGCTTTCCCCAGTAGGGAG
94
2139





1103637
N/A
N/A
4367
4386
CTTCACCCCAGAATCCAATC
124
2140





1103653
N/A
N/A
4423
4442
TGGCAGGCAGTCACCTGTGC
130
2141





1103669
N/A
N/A
4577
4596
GAAGGCACACATGCATGTCC
103
2142





1103685
N/A
N/A
4665
4684
ACCTGCTTCTGCTCACACAG
96
2143





1103701
N/A
N/A
4858
4877
TTCTGAGGACACTTGAATAC
128
2144





1103717
N/A
N/A
5166
5185
TCTGCTTCCTGGAGTGGCAG
111*
2145





1103733
N/A
N/A
5364
5383
TCTCTCCTCTCTCTGAGTGT
100
2146





1103749
N/A
N/A
5440
5459
CTCTTGTCTCTTTCCGTCTC
105
2147





1103765
N/A
N/A
5535
5554
AAGCGGTACCAGGGCTCAGG
62
2148





1103781
N/A
N/A
5810
5829
TATTCTCCCAGCTTCCTCCA
112
2149





1103797
N/A
N/A
5888
5907
TTTTGAAAGCAATAGTGCCT
94
2150





1103813
N/A
N/A
5951
5970
TAGAACAGAACAGTATCAGC
92
2151





1103829
N/A
N/A
5989
6008
TACTTCATAGTAAGGTAATC
112
2152





1103845
N/A
N/A
6144
6163
CCCAAAACAGACTGGCAGAG
79
2153





1103861
N/A
N/A
6216
6235
ATATCACACCTTCCAGGTCA
87
2154





1103877
N/A
N/A
6273
6292
ACATATAAGCTCTGAGCTGT
105
2155





1103893
N/A
N/A
6333
6352
CGTGCCTGTCCTGCCTAGCC
90
2156





1103909
N/A
N/A
6457
6476
ACACTCCTCAGCTAGGTGCC
87
2157





1103925
N/A
N/A
6536
6555
TTCTCCCCTGCCTGCAGGGA
120
2158





1103941
N/A
N/A
6978
6997
TGAATGAACAGTGCCACAGA
112
2159





1103957
N/A
N/A
7107
7126
GCACCCCAGTTAACCCCAGG
93
2160





1103973
N/A
N/A
7341
7360
CCCGTCCCCGTCCTGCCCTG
98
2161





1103989
N/A
N/A
7476
7495
AGGTTTCGAGGCCCGGCCCC
93
2162





1104005
N/A
N/A
7851
7870
GATCTGCACACAAGGCTGAA
99
2163





1104021
N/A
N/A
7961
7980
GAGGCCTAATCAATATTGGT
111
2164





1104037
N/A
N/A
8047
8066
GATGGGTGAGGTGAGGAGTC
40
2165





1104053
N/A
N/A
8118
8137
CGCATGTCTATCTGAAGGAA
90
2166





1104069
N/A
N/A
8325
8344
TCCTGAAAGAAAGCAGAGGG
114
2167





1104085
N/A
N/A
9386
9405
GTAAAAAGTAATTTAGCTCC
127
2168





1104101
N/A
N/A
9428
9447
AATTTTGTTCCTTAGCTAAG
125
2169





1104117
N/A
N/A
9460
9479
TGGTCCTAAATATTCTAGTC
74
2170





1104133
N/A
N/A
9516
9535
GTCAGCCTGGTTAGCCTTTC
30
2171





1104149
N/A
N/A
9541
9560
GGATTTGGCAGTATTACCTC
52
2172





1104165
N/A
N/A
9565
9584
GCTTTAGTGACCTGTGACTA
43
2173





1104181
N/A
N/A
9589
9608
TACTTCTCTCTGCCATTTAT
75
2174





1104197
N/A
N/A
9678
9697
CAATTAACTAAAATAAAGGC
130
2175





1104213
N/A
N/A
9828
9847
GGATCAGGAGACCAGAGCTC
118
2176





1104229
N/A
N/A
10564
10583
ACCCAGCACGGTATTGAAAT
105
2177





1104245
N/A
N/A
10670
10689
CCAAATCCCAATAGTGCTGC
80
2178





1104261
N/A
N/A
10782
10801
ATCCTCTCCCATGCCCGGCT
87
2179





1104277
N/A
N/A
11006
11025
TGTGCCAGCCCCAGGCTTTC
125
2180





1104293
N/A
N/A
11119
11138
GGCTCCCCTTAGAACAGCCT
115
2181





1104309
N/A
N/A
11158
11177
AGTGTGTATTAGGATCCCAT
18
2182





1104325
N/A
N/A
11235
11254
AAGTGAAAGCTACTAACTTT
102
2183





1104341
N/A
N/A
11327
11346
AAATCCCCTCTTCCCATTCC
110
2184





1104357
N/A
N/A
11428
11447
AGATAACACTGGGAAAGCAT
97
2185





1104373
N/A
N/A
11537
11556
GGTCCACCACCACGAGGCTG
108
2186
















TABLE 30







Reduction of GFAP RNA by 5-10-5 MCE gapmers with mixed PO/PS internucleoside linkages in U251 cells















SEQ ID
SEQ
SEQ ID
SEQ ID






NO: 1
ID NO:
NO: 2
NO: 2


SEQ


Compound
Start
1 Stop
Start
Stop

GFAP
ID


No.
Site
Site
Site
Site
Sequence (5′ to 3′)
(% UTC)
NO

















1047582
3047
3066
13336
13355
GTCTTTATTTTTCCTCAGCG
7
517





1103158
206
225
3654
3673
GGAGAAATCCACCCGGGTCG
155
2187





1103174
410
429
3858
3877
TCGCAGCTCAGCCTGGTAGA
127
2188





1103190
648
667
5237
5256
TCAAGAACCGGATCTCCTCC
63
2189





1103206
926
945
7283
7302
GGTCAAGGACTGCAACTGGC
96
2190





1103222
1270
1289
10884
10903
ATGTTCCTCTTGAGGTGGCC
86
2191





1103238
1400
1419
11689
11708
CTTCTGCTCGGGCCCCTCAT
59
2192





1103254
1573
1592
11862
11881
TTCTTGTTAGTTGGAGTTGC
33
2193





1103270
1686
1705
11975
11994
ATGTGGAGGGCGATGTAGTA
49
2194





1103286
1809
1828
12098
12117
CCCTTTCCTGTCTGAGTCTC
72
2195





1103302
1873
1892
12162
12181
CACCTCATAAAAACCAAAAG
100
2196





1103318
1996
2015
12285
12304
GAACAACCCTCTGAGCTGGG
57
2197





1103334
2124
2143
12413
12432
ATGGCAGCTCAGGTGGACTG
54
2198





1103350
2364
2383
12653
12672
CCTACTTGTATGCCTAGCGC
75
2199





1103366
2447
2466
12736
12755
CCTGTTTCAGCATCTTCAAG
42
2200





1103382
2494
2513
12783
12802
ATGGGACAAAGTCATGCCCT
98
2201





1103398
2567
2586
12856
12875
AAGAAGCAGCAGTCCCAGGG
75
2202





1103414
2700
2719
2989
13008
GCACTACCTAGAATACTGGG
76
2203





1103430
2754
2773
13043
13062
ATGAGCCAGTGTCTTCACTT
37
2204





1103446
3017
3036
13306
13325
GCAGCAGTGCCCTGAAGATT
29
2205





1103462
N/A
N/A
8749
8768
TTTTCCCCGTCTTTGGTGCT
56
2206





1103478
N/A
N/A
8825
8844
TCCATTTACAATCTGGTGAG
41
2207





1103494
N/A
N/A
8983
9002
TTCCTGGGAAAATGACGCAG
97
2208





1103510
N/A
N/A
9144
9163
CCTCCCAGTGACAGGAAGAG
104
2209





1103526
N/A
N/A
9246
9265
AATCCTCTGAACTGAGTCAG
54
2210





1103542
N/A
N/A
9293
9312
GGAACATAAAACTTTATTCA
69
2211





1103558
N/A
N/A
8405
8424
ACTCCAGTGCCCTTCCCACG
27
2212





1103574
N/A
N/A
8543
8562
CTAGAAGTACCCTGGTATGA
95
2213





1103590
N/A
N/A
8730
8749
TTTTGCCCCCTGTAGTGACA
67
2214





1103606
N/A
N/A
4038
4057
TCCCTGAGACTTCTCGGGCA
110
2215





1103622
N/A
N/A
4214
4233
ACTGCTTTCCCCAGTAGGGA
77
2216





1103638
N/A
N/A
4371
4390
CTTTCTTCACCCCAGAATCC
139
2217





1103654
N/A
N/A
4424
4443
GTGGCAGGCAGTCACCTGTG
83
2218





1103670
N/A
N/A
4578
4597
TGAAGGCACACATGCATGTC
105
2219





1103686
N/A
N/A
4666
4685
CACCTGCTTCTGCTCACACA
158
2220





1103702
N/A
N/A
4960
4979
CCTGACCTGTCTATAGGCAG
92*
2221





1103718
N/A
N/A
5167
5186
ATCTGCTTCCTGGAGTGGCA
102*
2222





1103734
N/A
N/A
5365
5384
TTCTCTCCTCTCTCTGAGTG
102
2223





1103750
N/A
N/A
5442
5461
CTCTCTTGTCTCTTTCCGTC
69
2224





1103766
N/A
N/A
5536
5555
GAAGCGGTACCAGGGCTCAG
95
2225





1103782
N/A
N/A
5811
5830
ATATTCTCCCAGCTTCCTCC
92
2226





1103798
N/A
N/A
5893
5912
GGTACTTTTGAAAGCAATAG
47
2227





1103814
N/A
N/A
5955
5974
GGCTTAGAACAGAACAGTAT
87
2228





1103830
N/A
N/A
5996
6015
CAGCACCTACTTCATAGTAA
54
2229





1103846
N/A
N/A
6156
6175
GAGGCTCAGTAACCCAAAAC
60
2230





1103862
N/A
N/A
6217
6236
AATATCACACCTTCCAGGTC
130
2231





1103878
N/A
N/A
6275
6294
CTACATATAAGCTCTGAGCT
127
2232





1103894
N/A
N/A
6369
6388
AGGAATGGCCCTCCCTTCTT
93
2233





1103910
N/A
N/A
6458
6477
CACACTCCTCAGCTAGGTGC
75
2234





1103926
N/A
N/A
6541
6560
GCCCTTTCTCCCCTGCCTGC
106
2235





1103942
N/A
N/A
6980
6999
AATGAATGAACAGTGCCACA
113
2236





1103958
N/A
N/A
7114
7133
GTGAGCAGCACCCCAGTTAA
117
2237





1103974
N/A
N/A
7345
7364
TCCGCCCGTCCCCGTCCTGC
119
2238





1103990
N/A
N/A
7477
7496
GAGGTTTCGAGGCCCGGCCC
129
2239





1104006
N/A
N/A
7852
7871
GGATCTGCACACAAGGCTGA
112
2240





1104022
N/A
N/A
7962
7981
TGAGGCCTAATCAATATTGG
96
2241





1104038
N/A
N/A
8050
8069
AGAGATGGGTGAGGTGAGGA
36
2242





1104054
N/A
N/A
8140
8159
CTTGAGTGTTATCTGGGAGG
61
2243





1104070
N/A
N/A
8336
8355
GGGAATGGTGATCCTGAAAG
53
2244





1104086
N/A
N/A
9388
9407
AAGTAAAAAGTAATTTAGCT
87
2245





1104102
N/A
N/A
9429
9448
GAATTTTGTTCCTTAGCTAA
80
2246





1104118
N/A
N/A
9477
9496
GAGACATGCATATCTAGTGG
23
2247





1104134
N/A
N/A
9518
9537
TAGTCAGCCTGGTTAGCCTT
63
2248





1104150
N/A
N/A
9547
9566
TATCTAGGATTTGGCAGTAT
58
2249





1104166
N/A
N/A
9567
9586
GTGCTTTAGTGACCTGTGAC
25
2250





1104182
N/A
N/A
9591
9610
CCTACTTCTCTCTGCCATTT
75
2251





1104198
N/A
N/A
9679
9698
ACAATTAACTAAAATAAAGG
95
2252





1104214
N/A
N/A
10003
10022
GTAATCCCCTTACTCGGGAG
84
2253





1104230
N/A
N/A
10565
10584
AACCCAGCACGGTATTGAAA
117
2254





1104246
N/A
N/A
10671
10690
CCCAAATCCCAATAGTGCTG
59
2255





1104262
N/A
N/A
10786
10805
AGCCATCCTCTCCCATGCCC
130
2256





1104278
N/A
N/A
11010
11029
TCTATGTGCCAGCCCCAGGC
83
2257





1104294
N/A
N/A
11120
11139
AGGCTCCCCTTAGAACAGCC
75
2258





1104310
N/A
N/A
11159
11178
GAGTGTGTATTAGGATCCCA
18
2259





1104326
N/A
N/A
11237
11256
GGAAGTGAAAGCTACTAACT
46
2260





1104342
N/A
N/A
11329
11348
CCAAATCCCCTCTTCCCATT
81
2261





1104358
N/A
N/A
11430
11449
TGAGATAACACTGGGAAAGC
89
2262





1104374
N/A
N/A
11543
11562
ACCCCAGGTCCACCACCACG
101
2263
















TABLE 31







Reduction of GFAP RNA by 5-10-5 MOE gapmers with mixed PO/PS internucleoside linkages in U251 cells















SEQ ID
SEQ
SEQ ID
SEQ ID






NO: 1
ID NO:
NO: 2
NO: 2


SEQ


Compound
Start
1 Stop
Start
Stop

GFAP
ID


No.
Site
Site
Site
Site
Sequence (5′ to 3′)
(% UTC)
NO

















1047582
3047
3066
13336
13355
GTCTTTATTTTTCCTCAGCG
7
517





1103159
218
237
3666
3685
TGCCCCAGCCAGGGAGAAAT
93
2264





1103175
411
430
3859
3878
CTCGCAGCTCAGCCTGGTAG
69
2265





1103191
652
671
5241
5260
TTCCTCAAGAACCGGATCTC
79
2266





1103207
930
949
7287
7306
CGCAGGTCAAGGACTGCAAC
84
2267





1103223
1271
1290
10885
10904
GATGTTCCTCTTGAGGTGGC
94
2268





1103239
1401
1420
11690
11709
GCTTCTGCTCGGGCCCCTCA
52
2269





1103255
1575
1594
11864
11883
GTTTCTTGTTAGTTGGAGTT
19
2270





1103271
1687
1706
11976
11995
GATGTGGAGGGCGATGTAGT
69
2271





1103287
1811
1830
12100
12119
TTCCCTTTCCTGTCTGAGTC
56
2272





1103303
1874
1893
12163
12182
CCACCTCATAAAAACCAAAA
89
2273





1103319
1997
2016
12286
12305
AGAACAACCCTCTGAGCTGG
61
2274





1103335
2183
2202
12472
12491
CAAGTGCTGAGAATCAAGCT
87
2275





1103351
2398
2417
12687
12706
TCCAGAGGCCAAGTGCAACT
57
2276





1103367
2448
2467
12737
12756
TCCTGTTTCAGCATCTTCAA
61
2277





1103383
2495
2514
12784
12803
AATGGGACAAAGTCATGCCC
88
2278





1103399
2629
2648
12918
12937
AAAAGCAGCCGGTCACTATG
100
2279





1103415
2703
2722
12992
13011
AGGGCACTACCTAGAATACT
71
2280





1103431
2789
2808
13078
13097
CAGCCCTGAGCACCCGGCCT
106
2281





1103447
3019
3038
13308
13327
CAGCAGCAGTGCCCTGAAGA
38
2282





1103463
N/A
N/A
8750
8769
ATTTTCCCCGTCTTTGGTGC
65
2283





1103479
N/A
N/A
8855
8874
GGCAGGCAGCTAACCGCGAG
80
2284





1103495
N/A
N/A
8984
9003
GTTCCTGGGAAAATGACGCA
89
2285





1103511
N/A
N/A
9146
9165
GCCCTCCCAGTGACAGGAAG
96
2286





1103527
N/A
N/A
9249
9268
AAGAATCCTCTGAACTGAGT
85
2287





1103543
N/A
N/A
9294
9313
GGGAACATAAAACTTTATTC
42
2288





1103559
N/A
N/A
8407
8426
GGACTCCAGTGCCCTTCOCA
90
2289





1103575
N/A
N/A
8544
8563
CCTAGAAGTACCCTGGTATG
64
2290





1103591
N/A
N/A
8732
8751
GCTTTTGCCCCCTGTAGTGA
36
2291





1103607
N/A
N/A
4039
4058
CTCCCTGAGACTTCTCGGGC
129
2292





1103623
N/A
N/A
4216
4235
GCACTGCTTTCCCCAGTAGG
88
2293





1103639
N/A
N/A
4372
4391
ACTTTCTTCACCCCAGAATC
101
2294





1103655
N/A
N/A
4456
4475
AGTCAAAGTAACTTGATGGG
90
2295





1103671
N/A
N/A
4579
4598
TTGAAGGCACACATGCATGT
102
2296





1103687
N/A
N/A
4728
4747
AGGATGAGCAGATGTGGGCT
77
2297





1103703
N/A
N/A
4961
4980
CCCTGACCTGTCTATAGGCA
105*
2298





1103719
N/A
N/A
5169
5188
TCATCTGCTTCCTGGAGTGG
49*
2299





1103735
N/A
N/A
5366
5385
TTTCTCTCCTCTCTCTGAGT
95
2300





1103751
N/A
N/A
5446
5465
AATGCTCTCTTGTCTCTTTC
83
2301





1103767
N/A
N/A
5537
5556
AGAAGCGGTACCAGGGCTCA
100
2302





1103783
N/A
N/A
5830
5849
AGTCAGTCACCTGGAGAGGA
79
2303





1103799
N/A
N/A
5898
5917
TAATGGGTACTTTTGAAAGC
100
2304





1103815
N/A
N/A
5956
5975
GGGCTTAGAACAGAACAGTA
74
2305





1103831
N/A
N/A
5997
6016
ACAGCACCTACTTCATAGTA
113
2306





1103847
N/A
N/A
6158
6177
TAGAGGCTCAGTAACCCAAA
74
2307





1103863
N/A
N/A
6218
6237
CAATATCACACCTTCCAGGT
72
2308





1103879
N/A
N/A
6277
6296
CACTACATATAAGCTCTGAG
93
2309





1103895
N/A
N/A
6370
6389
TAGGAATGGCCCTCCCTTCT
91
2310





1103911
N/A
N/A
6461
6480
ACTCACACTCCTCAGCTAGG
100
2311





1103927
N/A
N/A
6546
6565
TAATAGCCCTTTCTCCCCTG
93
2312





1103943
N/A
N/A
6982
7001
CGAATGAATGAACAGTGCCA
108
2313





1103959
N/A
N/A
7120
7139
AGGGAGGTGAGCAGCACCCC
103
2314





1103975
N/A
N/A
7347
7366
GCTCCGCCCGTCCCCGTCCT
66
2315





1103991
N/A
N/A
7478
7497
GGAGGTTTCGAGGCCCGGCC
117
2316





1104007
N/A
N/A
7853
7872
GGGATCTGCACACAAGGCTG
49
2317





1104023
N/A
N/A
7963
7982
TTGAGGCCTAATCAATATTG
110
2318





1104039
N/A
N/A
8052
8071
GAAGAGATGGGTGAGGTGAG
36
2319





1104055
N/A
N/A
8193
8212
CTTTTTCCCCAGCAGCCAAC
125
2320





1104071
N/A
N/A
9325
9344
TCACATTCACTAATATTTAA
74
2321





1104087
N/A
N/A
9389
9408
CAAGTAAAAAGTAATTTAGC
120
2322





1104103
N/A
N/A
9433
9452
AGAGGAATTTTGTTCCTTAG
98
2323





1104119
N/A
N/A
9481
9500
TCCTGAGACATGCATATCTA
82
2324





1104135
N/A
N/A
9520
9539
ACTAGTCAGCCTGGTTAGCC
66
2325





1104151
N/A
N/A
9549
9568
ACTATCTAGGATTTGGCAGT
36
2326





1104167
N/A
N/A
9569
9588
CTGTGCTTTAGTGACCTGTG
42
2327





1104183
N/A
N/A
9636
9655
AGTGCTCAATACACATAGGT
58
2328





1104199
N/A
N/A
9680
9699
GACAATTAACTAAAATAAAG
87
2329





1104215
N/A
N/A
0131
10150
ACTCCGTCGAAAGCAGGCAA
91
2330





1104231
N/A
N/A
10566
10585
AAACCCAGCACGGTATTGAA
71
2331





1104247
N/A
N/A
0694
10713
TCTTCCAAACGGGCTGGAGA
98
2332





1104263
N/A
N/A
10790
10809
CATGAGCCATCCTCTCCCAT
70
2333





1104279
N/A
N/A
11023
11042
TTGCTGGGAACCTTCTATGT
97
2334





1104295
N/A
N/A
11121
11140
AAGGCTCCCCTTAGAACAGC
64
2335





1104311
N/A
N/A
11160
11179
AGAGTGTGTATTAGGATCCC
31
2336





1104327
N/A
N/A
11242
11261
GAGTTGGAAGTGAAAGCTAC
67
2337





1104343
N/A
N/A
11342
11361
CGTGGCGGATACGCCAAATC
96
2338





1104359
N/A
N/A
11431
11450
GTGAGATAACACTGGGAAAG
65
2339





1104375
N/A
N/A
11552
11571
TTCACACAGACCCCAGGTCC
96
2340
















TABLE 32







Reduction of GFAP RNA by 5-10-5 MOE gapmers with mixed PO/PS internucleoside linkages in U251 cells















SEQ ID
SEQ
SEQ ID
SEQ ID






NO: 1
ID NO:
NO: 2
NO: 2


SEQ


Compound
Start
1 Stop
Start
Stop

GFAP
ID


No.
Site
Site
Site
Site
Sequence (5′ to 3′)
(% UTC)
NO

















1047582
3047
3066
13336
13355
GTCTTTATTTTTCCTCAGCG
6
517





1103160
221
240
3669
3688
GAGTGCCCCAGCCAGGGAGA
119
2341





1103176
442
461
3890
3909
GCGGTGAGTTGATCGAGCCG
86
2342





1103192
653
672
5242
5261
CTTCCTCAAGAACCGGATCT
81
2343





1103208
932
951
7289
7308
GTCGCAGGTCAAGGACTGCA
100
2344





1103224
1293
1312
10907
10926
GCATCTCCACGGTCTTCACC
85
2345





1103240
1403
1422
11692
11711
CTGCTTCTGCTCGGGCCCCT
80
2346





1103256
1577
1596
11866
11885
GAGTTTCTTGTTAGTTGGAG
9
2347





1103272
1700
1719
11989
12008
AACAGGAATCAGGGATGTGG
35
2348





1103288
1836
1855
12125
12144
CCAGGGCTACCTTGTCTGTG
90
2349





1103304
1878
1897
12167
12186
TATCCCACCTCATAAAAACC
88
2350





1103320
2001
2020
12290
12309
TAGGAGAACAACCCTCTGAG
62
2351





1103336
2185
2204
12474
12493
CCCAAGTGCTGAGAATCAAG
53
2352





1103352
2400
2419
12689
12708
AATCCAGAGGCCAAGTGCAA
95
2353





1103368
2452
2471
12741
12760
TCTCTCCTGTTTCAGCATCT
22
2354





1103384
2496
2515
12785
12804
AAATGGGACAAAGTCATGCC
98
2355





1103400
2637
2656
12926
12945
GCTTAGGGAAAAGCAGCCGG
51
2356





1103416
2704
2723
12993
13012
TAGGGCACTACCTAGAATAC
75
2357





1103432
2791
2810
13080
13099
GTCAGCCCTGAGCACCCGGC
116
2358





1103448
3021
3040
13310
13329
GGCAGCAGCAGTGCCCTGAA
38
2359





1103464
N/A
N/A
8752
8771
TGATTTTCCCCGTCTTTGGT
58
2360





1103480
N/A
N/A
8866
8885
CGTGTCTGAGAGGCAGGCAG
76
2361





1103496
N/A
N/A
8989
9008
CTGCAGTTCCTGGGAAAATG
70
2362





1103512
N/A
N/A
9147
9166
GGCCCTCCCAGTGACAGGAA
68
2363





1103528
N/A
N/A
9250
9269
GAAGAATCCTCTGAACTGAG
64
2364





1103544
N/A
N/A
9295
9314
AGGGAACATAAAACTTTATT
57
2365





1103560
N/A
N/A
8408
8427
AGGACTCCAGTGCCCTTCCC
57
2366





1103576
N/A
N/A
8546
8565
CACCTAGAAGTACCCTGGTA
101
2367





1103592
N/A
N/A
8734
8753
GTGCTTTTGCCCCCTGTAGT
43
2368





1103608
N/A
N/A
4040
4059
CCTCCCTGAGACTTCTCGGG
86
2369





1103624
N/A
N/A
4217
4236
TGCACTGCTTTCCCCAGTAG
102
2370





1103640
N/A
N/A
4373
4392
CACTTTCTTCACCCCAGAAT
135
2371





1103656
N/A
N/A
4465
4484
AGCTGTGCAAGTCAAAGTAA
80
2372





1103672
N/A
N/A
4584
4603
TGCACTTGAAGGCACACATG
59
2373





1103688
N/A
N/A
4729
4748
GAGGATGAGCAGATGTGGGC
65
2374





1103704
N/A
N/A
4962
4981
TCCCTGACCTGTCTATAGGC
95*
2375





1103720
N/A
N/A
5170
5189
TTCATCTGCTTCCTGGAGTG
72*
2376





1103736
N/A
N/A
5381
5400
ACCTGCCAATCTCTGTTTCT
94
2377





1103752
N/A
N/A
5447
5466
GAATGCTCTCTTGTCTCTTT
54
2378





1103768
N/A
N/A
5541
5560
TGAGAGAAGCGGTACCAGGG
79
2379





1103784
N/A
N/A
5832
5851
AAAGTCAGTCACCTGGAGAG
87
2380





1103800
N/A
N/A
5907
5926
CAGTAATAATAATGGGTACT
67
2381





1103816
N/A
N/A
5957
5976
AGGGCTTAGAACAGAACAGT
50
2382





1103832
N/A
N/A
6005
6024
GTCAAAGAACAGCACCTACT
121
2383





1103848
N/A
N/A
6160
6179
GGTAGAGGCTCAGTAACCCA
68
2384





1103864
N/A
N/A
6219
6238
TCAATATCACACCTTCCAGG
80
2385





1103880
N/A
N/A
6278
6297
ACACTACATATAAGCTCTGA
109
2386





1103896
N/A
N/A
6382
6401
TCTGTCCTCCACTAGGAATG
120
2387





1103912
N/A
N/A
6462
6481
CACTCACACTCCTCAGCTAG
85
2388





1103928
N/A
N/A
6554
6573
CTGGGTTCTAATAGCCCTTT
77
2389





1103944
N/A
N/A
6983
7002
GCGAATGAATGAACAGTGCC
75
2390





1103960
N/A
N/A
7122
7141
TCAGGGAGGTGAGCAGCACC
111
2391





1103976
N/A
N/A
7354
7373
CGTCCCTGCTCCGCCCGTCC
93
2392





1103992
N/A
N/A
7504
7523
TCCCGCGGAGCCCCGACCCG
90
2393





1104008
N/A
N/A
7857
7876
GGAAGGGATCTGCACACAAG
59
2394





1104024
N/A
N/A
7965
7984
CCTTGAGGCCTAATCAATAT
80
2395





1104040
N/A
N/A
8053
8072
AGAAGAGATGGGTGAGGTGA
85
2396





1104056
N/A
N/A
8201
8220
TCTCCTAGCTTTTTCCCCAG
131
2397





1104072
N/A
N/A
9327
9346
CGTCACATTCACTAATATTT
22
2398





1104088
N/A
N/A
9395
9414
CCAATGCAAGTAAAAAGTAA
92
2399





1104104
N/A
N/A
9434
9453
AAGAGGAATTTTGTTCCTTA
72
2400





1104120
N/A
N/A
9483
9502
AGTCCTGAGACATGCATATC
77
2401





1104136
N/A
N/A
9521
9540
TACTAGTCAGCCTGGTTAGC
69
2402





1104152
N/A
N/A
9550
9569
GACTATCTAGGATTTGGCAG
22
2403





1104168
N/A
N/A
9570
9589
TCTGTGCTTTAGTGACCTGT
56
2404





1104184
N/A
N/A
9637
9656
TAGTGCTCAATACACATAGG
58
2405





1104200
N/A
N/A
9681
9700
AGACAATTAACTAAAATAAA
85
2406





1104216
N/A
N/A
10132
10151
GACTCCGTCGAAAGCAGGCA
63
2407





1104232
N/A
N/A
10570
10589
CTGAAAACCCAGCACGGTAT
142
2408





1104248
N/A
N/A
10695
10714
CTCTTCCAAACGGGCTGGAG
69
2409





1104264
N/A
N/A
10791
10810
GCATGAGCCATCCTCTCCCA
121
2410





1104280
N/A
N/A
11024
11043
GTTGCTGGGAACCTTCTATG
34
2411





1104296
N/A
N/A
11122
11141
CAAGGCTCCCCTTAGAACAG
56
2412





1104312
N/A
N/A
11162
11181
AGAGAGTGTGTATTAGGATC
37
2413





1104328
N/A
N/A
11243
11262
AGAGTTGGAAGTGAAAGCTA
73
2414





1104344
N/A
N/A
11370
11389
AGATGAGCTCCCACTGTGGT
74
2415





1104360
N/A
N/A
11432
11451
GGTGAGATAACACTGGGAAA
48
2416





1104376
N/A
N/A
11553
11572
GTTCACACAGACCCCAGGTC
96
2417
















TABLE 33







Reduction of GFAP RNA by 5-10-5 MOE gapmers with mixed PO/PS internucleoside linkages in U251 cells















SEQ ID
SEQ
SEQ ID
SEQ ID






NO: 1
ID NO:
NO: 2
NO: 2


SEQ


Compound
Start
1 Stop
Start
Stop

GFAP
ID


No.
Site
Site
Site
Site
Sequence (5′ to 3′)
(% UTC)
NO

















1047582
3047
3066
13336
13355
GTCTTTATTTTTCCTCAGCG
5
517





1103161
222
241
3670
3689
TGAGTGCCCCAGCCAGGGAG
168
2418





1103177
443
462
3891
3910
GGCGGTGAGTTGATCGAGCC
101
2419





1103193
654
673
5243
5262
TCTTCCTCAAGAACCGGATC
68
2420





1103209
948
967
7305
7324
CGCGCAGAGACTCCAGGTCG
112
2421





1103225
1295
1314
10909
10928
CCGCATCTCCACGGTCTTCA
74
2422





1103241
1409
1428
11698
11717
ACTATCCTGCTTCTGCTCGG
41
2423





1103257
1578
1597
11867
11886
TGAGTTTCTTGTTAGTTGGA
24
2424





1103273
1702
1721
11991
12010
ACAACAGGAATCAGGGATGT
94
2425





1103289
1840
1859
12129
12148
CTGGCCAGGGCTACCTTGTC
95
2426





1103305
1879
1898
12168
12187
ATATCCCACCTCATAAAAAC
108
2427





1103321
2013
2032
12302
12321
TCAGGGTCAGTCTAGGAGAA
63
2428





1103337
2189
2208
12478
12497
ATCCCCCAAGTGCTGAGAAT
96
2429





1103353
2403
2422
12692
12711
CACAATCCAGAGGCCAAGTG
70
2430





1103369
2453
2472
12742
12761
TTCTCTCCTGTTTCAGCATC
32
2431





1103385
2497
2516
12786
12805
GAAATGGGACAAAGTCATGC
79
2432





1103401
2638
2657
12927
12946
GGCTTAGGGAAAAGCAGCCG
140
2433





1103417
2705
2724
12994
13013
ATAGGGCACTACCTAGAATA
117
2434





1103433
2792
2811
13081
13100
TGTCAGCCCTGAGCACCCGG
64
2435





1103449
3031
3050
13320
13339
AGCGACTAAAGGCAGCAGCA
64
2436





1103465
N/A
N/A
8753
8772
GTGATTTTCCCCGTCTTTGG
26
2437





1103481
N/A
N/A
8892
8911
ACTCCCTGTCAAGCTGGGCA
110
2438





1103497
N/A
N/A
8991
9010
CACTGCAGTTCCTGGGAAAA
92
2439





1103513
N/A
N/A
9170
9189
TCCAGGCACAGCGAGACCCA
121
2440





1103529
N/A
N/A
9251
9270
GGAAGAATCCTCTGAACTGA
86
2441





1103545
N/A
N/A
9296
9315
CAGGGAACATAAAACTTTAT
135
2442





1103561
N/A
N/A
8409
8428
CAGGACTCCAGTGCCCTTCC
97
2443





1103577
N/A
N/A
8548
8567
CCCACCTAGAAGTACCCTGG
72
2444





1103593
N/A
N/A
8736
8755
TGGTGCTTTTGCCCCCTGTA
84
2445





1103609
N/A
N/A
4044
4063
GGCCCCTCCCTGAGACTTCT
161
2446





1103625
N/A
N/A
4218
4237
CTGCACTGCTTTCCCCAGTA
123
2447





1103641
N/A
N/A
4381
4400
CTTTCCCTCACTTTCTTCAC
135
2448





1103657
N/A
N/A
4479
4498
GACCACCGCTTCACAGCTGT
118
2449





1103673
N/A
N/A
4594
4613
CATGTCCTCCTGCACTTGAA
66
2450





1103689
N/A
N/A
4745
4764
ACAGAGGACTTGTCTGGAGG
77
2451





1103705
N/A
N/A
4963
4982
CTCCCTGACCTGTCTATAGG
97*
2452





1103721
N/A
N/A
5171
5190
CTTCATCTGCTTCCTGGAGT
78*
2453





1103737
N/A
N/A
5382
5401
TACCTGCCAATCTCTGTTTC
79
2454





1103753
N/A
N/A
5449
5468
TCGAATGCTCTCTTGTCTCT
92
2455





1103769
N/A
N/A
5543
5562
GGTGAGAGAAGCGGTACCAG
141
2456





1103785
N/A
N/A
5834
5853
TGAAAGTCAGTCACCTGGAG
102
2457





1103801
N/A
N/A
5908
5927
GCAGTAATAATAATGGGTAC
69
2458





1103817
N/A
N/A
5958
5977
CAGGGCTTAGAACAGAACAG
61
2459





1103833
N/A
N/A
6014
6033
CTCTCATCTGTCAAAGAACA
87
2460





1103849
N/A
N/A
6161
6180
TGGTAGAGGCTCAGTAACCC
60
2461





1103865
N/A
N/A
6246
6265
TCTACGGGCACTATGTTTGG
79
2462





1103881
N/A
N/A
6279
6298
CACACTACATATAAGCTCTG
188
2463





1103897
N/A
N/A
6398
6417
TTTTCTGCCTCCAGGCTCTG
93
2464





1103913
N/A
N/A
6469
6488
CTTCTGCCACTCACACTCCT
101
2465





1103929
N/A
N/A
6806
6825
GTCAGTGGCACAATCCCGGG
76
2466





1103945
N/A
N/A
6987
7006
GCAAGCGAATGAATGAACAG
76
2467





1103961
N/A
N/A
7123
7142
ATCAGGGAGGTGAGCAGCAC
51
2468





1103977
N/A
N/A
7360
7379
GGTGGCCGTCCCTGCTCCGC
89
2469





1103993
N/A
N/A
7760
7779
TGATGAGGGCTCACCGGTTC
77
2470





1104009
N/A
N/A
7896
7915
GCTATGTGTGAGGCAGGCAC
138
2471





1104025
N/A
N/A
7979
7998
ACCCAAGTCCTTGGOCTTGA
79
2472





1104041
N/A
N/A
8054
8073
CAGAAGAGATGGGTGAGGTG
71
2473





1104057
N/A
N/A
8202
8221
ATCTCCTAGCTTTTTCCCCA
147
2474





1104073
N/A
N/A
9345
9364
AGAGAGAAAAATATAACACG
90
2475





1104089
N/A
N/A
9401
9420
TCAGGGCCAATGCAAGTAAA
53
2476





1104105
N/A
N/A
9436
9455
AGAAGAGGAATTTTGTTCCT
68
2477





1104121
N/A
N/A
9484
9503
AAGTCCTGAGACATGCATAT
64
2478





1104137
N/A
N/A
9522
9541
CTACTAGTCAGCCTGGTTAG
68
2479





1104153
N/A
N/A
9551
9570
TGACTATCTAGGATTTGGCA
38
2480





1104169
N/A
N/A
9571
9590
ATCTGTGCTTTAGTGACCTG
80
2481





1104185
N/A
N/A
9638
9657
TTAGTGCTCAATACACATAG
75
2482





1104201
N/A
N/A
9682
9701
GAGACAATTAACTAAAATAA
86
2483





1104217
N/A
N/A
10133
10152
AGACTCCGTCGAAAGCAGGC
78
2484





1104233
N/A
N/A
10571
10590
TCTGAAAACCCAGCACGGTA
116
2485





1104249
N/A
N/A
10696
10715
GCTCTTCCAAACGGGCTGGA
116
2486





1104265
N/A
N/A
10795
10814
CAGGGCATGAGCCATCCTCT
101
2487





1104281
N/A
N/A
11056
11075
CTCCTCCAGAATTCCCTGGG
140
2488





1104297
N/A
N/A
11130
11149
TTTGGTACCAAGGCTCCCCT
72
2489





1104313
N/A
N/A
11178
11197
TTTGAGGGTGAGAAAGAGAG
82
2490





1104329
N/A
N/A
11259
11278
CCCAACTGTGTCTGCTAGAG
47
2491





1104345
N/A
N/A
11371
11390
AAGATGAGCTCCCACTGTGG
111
2492





1104361
N/A
N/A
11434
11453
GTGGTGAGATAACACTGGGA
43
2493





1104377
N/A
N/A
11557
11576
AGGAGTTCACACAGACCCCA
92
2494
















TABLE 34







Reduction of GFAP RNA by 5-10-5 MOE gapmers with mixed PO/PS internucleoside linkages in U251 cells















SEQ ID
SEQ
SEQ ID
SEQ ID






NO: 1
ID NO:
NO: 2
NO: 2


SEQ


Compound
Start
1 Stop
Start
Stop

GFAP
ID


No.
Site
Site
Site
Site
Sequence (5′ to 3′)
(% UTC)
NO

















1047582
3047
3066
13336
13355
GTCTTTATTTTTCCTCAGCG
6
517





1103162
224
243
3672
3691
ATTGAGTGCCCCAGCCAGGG
94
2495





1103178
468
487
3916
3935
TCTCAACCTCCAGCCGGGCG
23*
2496





1103194
687
706
5573
5592
GCTCCTGGAGTTCCCGAACC
139
2497





1103210
949
968
7306
7325
CCGCGCAGAGACTCCAGGTC
98
2498





1103226
1316
1335
N/A
N/A
CTCCTTAATGACCTCTCCAT
95
2499





1103242
1419
1438
11708
11727
AGGCGGAGCAACTATCCTGC
150
2500





1103258
1579
1598
11868
11887
GTGAGTTTCTTGTTAGTTGG
35
2501





1103274
1706
1725
11995
12014
CATAACAACAGGAATCAGGG
49
2502





1103290
1846
1865
12135
12154
AAGCCTCTGGCCAGGGCTAC
113
2503





1103306
1880
1899
12169
12188
GATATCCCACCTCATAAAAA
98
2504





1103322
2015
2034
12304
12323
GATCAGGGTCAGTCTAGGAG
46
2505





1103338
2196
2215
12485
12504
ACAACAGATCCCCCAAGTGC
89
2506





1103354
2405
2424
12694
12713
CCCACAATCCAGAGGCCAAG
79
2507





1103370
2454
2473
12743
12762
TTTCTCTCCTGTTTCAGCAT
31
2508





1103386
2498
2517
12787
12806
AGAAATGGGACAAAGTCATG
102
2509





1103402
2643
2662
12932
12951
CCCTTGGCTTAGGGAAAAGC
102
2510





1103418
2706
2725
12995
13014
AATAGGGCACTACCTAGAAT
130
2511





1103434
2793
2812
13082
13101
GTGTCAGCCCTGAGCACCCG
73
2512





1103450
3032
3051
13321
13340
CAGCGACTAAAGGCAGCAGC
76
2513





1103466
N/A
N/A
8759
8778
GACCTTGTGATTTTCCCCGT
55
2514





1103482
N/A
N/A
8893
8912
CACTCCCTGTCAAGCTGGGC
112
2515





1103498
N/A
N/A
9028
9047
TAATGTACAGTTACTCTGTA
80
2516





1103514
N/A
N/A
9206
9225
CCTCAGGGATGAAAGAATAA
56
2517





1103530
N/A
N/A
9252
9271
GGGAAGAATCCTCTGAACTG
83
2518





1103546
N/A
N/A
9297
9316
GCAGGGAACATAAAACTTTA
132
2519





1103562
N/A
N/A
8441
8460
CTGGAGCAACCTACAGGCCC
103
2520





1103578
N/A
N/A
8550
8569
GCCCCACCTAGAAGTACCCT
83
2521





1103594
N/A
N/A
8738
8757
TTTGGTGCTTTTGCCCCCTG
76
2522





1103610
N/A
N/A
4045
4064
CGGCCCCTCCCTGAGACTTC
92
2523





1103626
N/A
N/A
4219
4238
CCTGCACTGCTTTCCCCAGT
124
2524





1103642
N/A
N/A
4384
4403
GCTCTTTCCCTCACTTTCTT
111
2525





1103658
N/A
N/A
4480
4499
TGACCACCGCTTCACAGCTG
66
2526





1103674
N/A
N/A
4598
4617
CGCACATGTCCTCCTGCACT
122
2527





1103690
N/A
N/A
4746
4765
GACAGAGGACTTGTCTGGAG
69
2528





1103706
N/A
N/A
4966
4985
CACCTCCCTGACCTGTCTAT
165*
2529





1103722
N/A
N/A
5173
5192
GGCTTCATCTGCTTCCTGGA
11*
2530





1103738
N/A
N/A
5390
5409
CCTGTCTCTACCTGCCAATC
93
2531





1103754
N/A
N/A
5456
5475
CAGGAGTTCGAATGCTCTCT
77
2532





1103770
N/A
N/A
5555
5574
CCTCCTGACCAGGGTGAGAG
91
2533





1103786
N/A
N/A
5838
5857
CTGGTGAAAGTCAGTCACCT
84
2534





1103802
N/A
N/A
5909
5928
AGCAGTAATAATAATGGGTA
122
2535





1103818
N/A
N/A
5960
5979
CACAGGGCTTAGAACAGAAC
101
2536





1103834
N/A
N/A
6015
6034
TCTCTCATCTGTCAAAGAAC
81
2537





1103850
N/A
N/A
6162
6181
ATGGTAGAGGCTCAGTAACC
66
2538





1103866
N/A
N/A
6247
6266
CTCTACGGGCACTATGTTTG
72
2539





1103882
N/A
N/A
6286
6305
TGGCTCCCACACTACATATA
89
2540





1103898
N/A
N/A
6401
6420
TGCTTTTCTGCCTCCAGGCT
82
2541





1103914
N/A
N/A
6476
6495
CCAGTGGCTTCTGCCACTCA
92
2542





1103930
N/A
N/A
6898
6917
AGCGGAGGCCTGGGTGTTTT
74
2543





1103946
N/A
N/A
6988
7007
AGCAAGCGAATGAATGAACA
116
2544





1103962
N/A
N/A
7124
7143
AATCAGGGAGGTGAGCAGCA
71
2545





1103978
N/A
N/A
7384
7403
CCCTTCTCCCCTGGCATCTC
130
2546





1103994
N/A
N/A
7792
7811
GTGAGGCAGCAGGGAGACTT
80
2547





1104010
N/A
N/A
7904
7923
GACTGCCTGCTATGTGTGAG
118
2548





1104026
N/A
N/A
7981
8000
TGACCCAAGTCCTTGGCCTT
109
2549





1104042
N/A
N/A
8056
8075
GGCAGAAGAGATGGGTGAGG
75
2550





1104058
N/A
N/A
8207
8226
ACTCCATCTCCTAGCTTTTT
95
2551





1104074
N/A
N/A
9347
9366
CGAGAGAGAAAAATATAACA
129
2552





1104090
N/A
N/A
9403
9422
TTTCAGGGCCAATGCAAGTA
49
2553





1104106
N/A
N/A
9447
9466
TCTAGTCCAGAAGAAGAGGA
76
2554





1104122
N/A
N/A
9494
9513
ATGCTGAATTAAGTCCTGAG
38
2555





1104138
N/A
N/A
9523
9542
TCTACTAGTCAGCCTGGTTA
68
2556





1104154
N/A
N/A
9553
9572
TGTGACTATCTAGGATTTGG
68
2557





1104170
N/A
N/A
9572
9591
TATCTGTGCTTTAGTGACCT
53
2558





1104186
N/A
N/A
9639
9658
ATTAGTGCTCAATACACATA
101
2559





1104202
N/A
N/A
9683
9702
GGAGACAATTAACTAAAATA
94
2560





1104218
N/A
N/A
10135
10154
TAAGACTCCGTCGAAAGCAG
131
2561





1104234
N/A
N/A
10572
10591
TTCTGAAAACCCAGCACGGT
110
2562





1104250
N/A
N/A
10708
10727
GAGAGAGCCTAGGCTCTTCC
70
2563





1104266
N/A
N/A
10796
10815
TCAGGGCATGAGCCATCCTC
60
2564





1104282
N/A
N/A
11065
11084
TTCCTTGCTCTCCTCCAGAA
156
2565





1104298
N/A
N/A
11144
11163
TCCCATCTAGTGGCTTTGGT
48
2566





1104314
N/A
N/A
11212
11231
TCTCTTTCTCTCCCTGGCAA
74
2567





1104330
N/A
N/A
11264
11283
CCATCCCCAACTGTGTCTGC
64
2568





1104346
N/A
N/A
11381
11400
CTGCTGGAGTAAGATGAGCT
99
2569





1104362
N/A
N/A
11478
11497
TTCTTGATAGTAACCACAGC
53
2570





1104378
N/A
N/A
11558
11577
TAGGAGTTCACACAGACCCC
164
2571
















TABLE 35







Reduction of GFAP RNA by 5-10-5 MOE gapmers with mixed PO/PS internucleoside linkages in U251 cells















SEQ ID
SEQ
SEQ ID
SEQ ID






NO: 1
ID NO:
NO: 2
NO: 2


SEQ


Compound
Start
1 Stop
Start
Stop

GFAP
ID


No.
Site
Site
Site
Site
Sequence (5′ to 3′)
(% UTC)
NO

















1047582
3047
3066
13336
13355
GTCTTTATTTTTCCTCAGCG
8
517





1103163
233
252
3681
3700
GAAGCCAGCATTGAGTGCCC
109
2572





1103179
484
503
3932
3951
TGTGCCAGATTGTCCCTCTC
13*
2573





1103195
713
732
5599
5618
CACATGGACCTGCTGTCGGG
107
2574





1103211
951
970
7308
7327
TGCCGCGCAGAGACTCCAGG
90
2575





1103227
1317
1336
N/A
N/A
ACTCCTTAATGACCTCTCCA
151
2576





1103243
1434
1453
11723
11742
GAAATGTGCCAGCAGAGGCG
96
2577





1103259
1581
1600
11870
11889
GGGTGAGTTTCTTGTTAGTT
15
2578





1103275
1712
1731
12001
12020
AGTTTCCATAACAACAGGAA
91
2579





1103291
1851
1870
12140
12159
AAAACAAGCCTCTGGCCAGG
115
2580





1103307
1881
1900
12170
12189
GGATATCCCACCTCATAAAA
107
2581





1103323
2030
2049
12319
12338
CACCCATCTTAGACTGATCA
116
2582





1103339
2197
2216
12486
12505
CACAACAGATCCCCCAAGTG
110
2583





1103355
2409
2428
12698
12717
AATTCCCACAATCCAGAGGC
72
2584





1103371
2455
2474
12744
12763
CTTTCTCTCCTGTTTCAGCA
20
2585





1103387
2506
2525
12795
12814
AGGCCTTTAGAAATGGGACA
76
2586





1103403
2656
2675
12945
12964
GGACCGCAAGAGGCCCTTGG
83
2587





1103419
2707
2726
12996
13015
AAATAGGGCACTACCTAGAA
100
2588





1103435
2831
2850
13120
13139
CTGCTCAGTCAAAGCAGAGT
99
2589





1103467
N/A
N/A
8765
8784
TCTTGTGACCTTGTGATTTT
55
2590





1103483
N/A
N/A
8894
8913
TCACTCCCTGTCAAGCTGGG
130
2591





1103499
N/A
N/A
9029
9048
TTAATGTACAGTTACTCTGT
98
2592





1103515
N/A
N/A
9214
9233
CGATGGAGCCTCAGGGATGA
57
2593





1103531
N/A
N/A
9253
9272
AGGGAAGAATCCTCTGAACT
59
2594





1103547
N/A
N/A
9298
9317
AGCAGGGAACATAAAACTTT
79
2595





1103563
N/A
N/A
8458
8477
TGATCCTCAGTCCCAGTCTG
95
2596





1103579
N/A
N/A
8552
8571
AAGCCCCACCTAGAAGTACC
131
2597





1103595
N/A
N/A
3965
3984
CCTCCTCACTTCTGCCTCAC
77*
2598





1103611
N/A
N/A
4046
4065
TCGGCCCCTCCCTGAGACTT
74
2599





1103627
N/A
N/A
4220
4239
TCCTGCACTGCTTTCCCCAG
80
2600





1103643
N/A
N/A
4385
4404
TGCTCTTTCCCTCACTTTCT
119
2601





1103659
N/A
N/A
4484
4503
ATTATGACCACCGCTTCACA
54
2602





1103675
N/A
N/A
4603
4622
ACACACGCACATGTCCTCCT
157
2603





1103691
N/A
N/A
4751
4770
CCTTAGACAGAGGACTTGTC
90
2604





1103707
N/A
N/A
4967
4986
CCACCTCCCTGACCTGTCTA
102*
2605





1103723
N/A
N/A
5301
5320
AGTTGCAATCTCTGTGTTGA
105
2606





1103739
N/A
N/A
5391
5410
TCCTGTCTCTACCTGCCAAT
81
2607





1103755
N/A
N/A
5457
5476
CCAGGAGTTCGAATGCTCTC
97
2608





1103771
N/A
N/A
5557
5576
AACCTCCTGACCAGGGTGAG
87
2609





1103787
N/A
N/A
5839
5858
TCTGGTGAAAGTCAGTCACC
99
2610





1103803
N/A
N/A
5910
5929
TAGCAGTAATAATAATGGGT
53
2611





1103819
N/A
N/A
5967
5986
TGAAAAGCACAGGGCTTAGA
118
2612





1103835
N/A
N/A
6016
6035
CTCTCTCATCTGTCAAAGAA
64
2613





1103851
N/A
N/A
6164
6183
ATATGGTAGAGGCTCAGTAA
70
2614





1103867
N/A
N/A
6253
6272
GGTGTTCTCTACGGGCACTA
87
2615





1103883
N/A
N/A
6289
6308
TCCTGGCTCCCACACTACAT
109
2616





1103899
N/A
N/A
6402
6421
GTGCTTTTCTGCCTCCAGGC
32
2617





1103915
N/A
N/A
6489
6508
CCCTGCTCAGACACCAGTGG
157
2618





1103931
N/A
N/A
6899
6918
GAGCGGAGGCCTGGGTGTTT
123
2619





1103947
N/A
N/A
7005
7024
TAGCACAACACCTGGTCAGC
92
2620





1103963
N/A
N/A
7127
7146
GGAAATCAGGGAGGTGAGCA
58
2621





1103979
N/A
N/A
7385
7404
GCCCTTCTCCCCTGGCATCT
83
2622





1103995
N/A
N/A
7799
7818
CTCTACCGTGAGGCAGCAGG
97
2623





1104011
N/A
N/A
7909
7928
CTAGTGACTGCCTGCTATGT
112
2624





1104027
N/A
N/A
8007
8026
GGGAGTATGCCTCTTAGTTT
55
2625





1104043
N/A
N/A
8071
8090
AGAAAGTTOCAAGGAGGCAG
112
2626





1104059
N/A
N/A
8208
8227
AACTCCATCTCCTAGCTTTT
85
2627





1104075
N/A
N/A
9348
9367
CCGAGAGAGAAAAATATAAC
66
2628





1104091
N/A
N/A
9404
9423
ATTTCAGGGCCAATGCAAGT
85
2629





1104107
N/A
N/A
9448
9467
TTCTAGTCCAGAAGAAGAGG
72
2630





1104123
N/A
N/A
9495
9514
GATGCTGAATTAAGTCCTGA
41
2631





1104139
N/A
N/A
9527
9546
TACCTCTACTAGTCAGCCTG
78
2632





1104155
N/A
N/A
9554
9573
CTGTGACTATCTAGGATTTG
70
2633





1104171
N/A
N/A
9573
9592
TTATCTGTGCTTTAGTGACC
54
2634





1104187
N/A
N/A
9642
9661
CATATTAGTGCTCAATACAC
59
2635





1104203
N/A
N/A
9703
9722
ACTTCTCTAGGTGGGAGAGA
58
2636





1104219
N/A
N/A
10136
10155
GTAAGACTCCGTCGAAAGCA
99
2637





1104235
N/A
N/A
10573
10592
TTTCTGAAAACCCAGCACGG
132
2638





1104251
N/A
N/A
10730
10749
TGAGAACCTATGCAACCGAG
62
2639





1104267
N/A
N/A
10798
10817
TTTCAGGGCATGAGCCATCC
140
2640





1104283
N/A
N/A
11070
11089
TCAGTTTCCTTGCTCTCCTC
82
2641





1104299
N/A
N/A
11146
11165
GATCCCATCTAGTGGCTTTG
39
2642





1104315
N/A
N/A
11213
11232
TTCTCTTTCTCTCCCTGGCA
85
2643





1104331
N/A
N/A
11265
11284
CCCATCCCCAACTGTGTCTG
73
2644





1104347
N/A
N/A
11384
11403
AAGCTGCTGGAGTAAGATGA
122
2645





1104363
N/A
N/A
11483
11502
TACTTTTCTTGATAGTAACC
74
2646





1104379
N/A
N/A
11559
11578
TTAGGAGTTCACACAGACCC
85
2647
















TABLE 36







Reduction of GFAP RNA by 5-10-5 MOE gapmers with mixed PO/PS internucleoside linkages in U251 cells















SEQ ID
SEQ
SEQ ID
SEQ ID






NO: 1
ID NO:
NO: 2
NO: 2


SEQ


Compound
Start
1 Stop
Start
Stop

GFAP
ID


No.
Site
Site
Site
Site
Sequence (5′ to 3′)
(% UTC)
NO

















1047582
3047
3066
13336
13355
GTCTTTATTTTTCCTCAGCG
10
517





1103164
254
273
3702
3721
CTCACTGGCCCGGGTCTCCT
133
2648





1103180
485
504
3933
3952
CTGTGCCAGATTGTCCCTCT
16*
2649





1103196
714
733
5600
5619
CCACATGGACCTGCTGTCGG
121
2650





1103212
1046
1065
7618
7637
TTCCTCCAGCCGCGCCAGCG
135
2651





1103228
1324
1343
11613
11632
TGCTTGGACTCCTTAATGAC
97
2652





1103244
1436
1455
11725
11744
GGGAAATGTGCCAGCAGAGG
39
2653





1103260
1601
1620
11890
11909
CCCTCCAGACTGCCCCTTGG
95
2654





1103276
1726
1745
12015
12034
CCATCTCTGGCAACAGTTTC
71
2655





1103292
1856
1875
12145
12164
AAGACAAAACAAGCCTCTGG
88
2656





1103308
1882
1901
12171
12190
GGGATATCCCACCTCATAAA
88
2657





1103324
2031
2050
12320
12339
CCACCCATCTTAGACTGATC
100
2658





1103340
2198
2217
12487
12506
ACACAACAGATCCCCCAAGT
90
2659





1103356
2410
2429
12699
12718
TAATTCCCACAATCCAGAGG
115
2660





1103372
2459
2478
12748
12767
TCCCCTTTCTCTCCTGTTTC
101
2661





1103388
2508
2527
12797
12816
AGAGGCCTTTAGAAATGGGA
102
2662





1103404
2662
2681
12951
12970
AAGAAGGGACCGCAAGAGGC
83
2663





1103420
2715
2734
13004
13023
CAATTGTAAAATAGGGCACT
115
2664





1103436
2835
2854
13124
13143
CAGTCTGCTCAGTCAAAGCA
121
2665





1103468
N/A
N/A
8766
8785
ATCTTGTGACCTTGTGATTT
75
2666





1103484
N/A
N/A
8895
8914
CTCACTCCCTGTCAAGCTGG
98
2667





1103500
N/A
N/A
9033
9052
CAGTTTAATGTACAGTTACT
90
2668





1103516
N/A
N/A
9215
9234
GCGATGGAGCCTCAGGGATG
28
2669





1103532
N/A
N/A
9254
9273
GAGGGAAGAATCCTCTGAAC
86
2670





1103548
N/A
N/A
9305
9324
CATTAAGAGCAGGGAACATA
85
2671





1103564
N/A
N/A
8492
8511
GAAGGCCCCCAGGGAGAGCT
72
2672





1103580
N/A
N/A
8553
8572
CAAGCCCCACCTAGAAGTAC
107
2673





1103596
N/A
N/A
3966
3985
CCCTCCTCACTTCTGCCTCA
98*
2674





1103612
N/A
N/A
4047
4066
TTCGGCCCCTCCCTGAGACT
77
2675





1103628
N/A
N/A
4227
4246
CCGCTGCTCCTGCACTGCTT
123
2676





1103644
N/A
N/A
4387
4406
CCTGCTCTTTCCCTCACTTT
110
2677





1103660
N/A
N/A
4485
4504
TATTATGACCACCGCTTCAC
85
2678





1103676
N/A
N/A
4604
4623
CACACACGCACATGTCCTCC
106
2679





1103692
N/A
N/A
4754
4773
GGGCCTTAGACAGAGGACTT
97
2680





1103708
N/A
N/A
4970
4989
CCTCCACCTCCCTGACCTGT
91*
2681





1103724
N/A
N/A
5302
5321
CAGTTGCAATCTCTGTGTTG
127
2682





1103740
N/A
N/A
5392
5411
TTCCTGTCTCTACCTGCCAA
153
2683





1103756
N/A
N/A
5475
5494
CTTCTGCCTGCCCCTCGGCC
109
2684





1103772
N/A
N/A
5558
5577
GAACCTCCTGACCAGGGTGA
116
2685





1103788
N/A
N/A
5840
5859
CTCTGGTGAAAGTCAGTCAC
112
2686





1103804
N/A
N/A
5911
5930
GTAGCAGTAATAATAATGGG
93
2687





1103820
N/A
N/A
5969
5988
CATGAAAAGCACAGGGCTTA
94
2688





1103836
N/A
N/A
6017
6036
GCTCTCTCATCTGTCAAAGA
59
2689





1103852
N/A
N/A
6197
6216
AGACACCTCTCTGTGTCCTG
60
2690





1103868
N/A
N/A
6255
6274
GTGGTGTTCTCTACGGGCAC
95
2691





1103884
N/A
N/A
6308
6327
GCCCCCTCTACAGTGTCTTT
85
2692





1103900
N/A
N/A
6405
6424
TCTGTGCTTTTCTGCCTCCA
59
2693





1103916
N/A
N/A
6493
6512
CTCACCCTGCTCAGACACCA
105
2694





1103932
N/A
N/A
6900
6919
CGAGCGGAGGCCTGGGTGTT
59
2695





1103948
N/A
N/A
7006
7025
CTAGCACAACACCTGGTCAG
106
2696





1103964
N/A
N/A
7195
7214
AGGTCTGCAAACTAGGTGGG
93
2697





1103980
N/A
N/A
7414
7433
CCCGCCCTCGACCCAGGTCC
121
2698





1103996
N/A
N/A
7802
7821
GAGCTCTACCGTGAGGCAGC
101
2699





1104012
N/A
N/A
7911
7930
ATCTAGTGACTGCCTGCTAT
95
2700





1104028
N/A
N/A
8031
8050
AGTCCAATCTTGGCTGGGAA
80
2701





1104044
N/A
N/A
8073
8092
GAAGAAAGTTCCAAGGAGGC
94
2702





1104060
N/A
N/A
8209
8228
TAACTCCATCTCCTAGCTTT
89
2703





1104076
N/A
N/A
9349
9368
CCCGAGAGAGAAAAATATAA
99
2704





1104092
N/A
N/A
9406
9425
TCATTTCAGGGCCAATGCAA
63
2705





1104108
N/A
N/A
9450
9469
TATTCTAGTCCAGAAGAAGA
127
2706





1104124
N/A
N/A
9504
9523
AGCCTTTCTGATGCTGAATT
52
2707





1104140
N/A
N/A
9528
9547
TTACCTCTACTAGTCAGCCT
75
2708





1104156
N/A
N/A
9555
9574
CCTGTGACTATCTAGGATTT
52
2709





1104172
N/A
N/A
9574
9593
TTTATCTGTGCTTTAGTGAC
50
2710





1104188
N/A
N/A
9651
9670
CATGTGGCACATATTAGTGC
97
2711





1104204
N/A
N/A
9704
9723
TACTTCTCTAGGTGGGAGAG
83
2712





1104220
N/A
N/A
10137
10156
AGTAAGACTCCGTCGAAAGC
124
2713





1104236
N/A
N/A
10574
10593
CTTTCTGAAAACCCAGCACG
87
2714





1104252
N/A
N/A
10731
10750
ATGAGAACCTATGCAACCGA
68
2715





1104268
N/A
N/A
10807
10826
CTCATGGACTTTCAGGGCAT
84
2716





1104284
N/A
N/A
11076
11095
TTACATTCAGTTTCCTTGCT
108
2717





1104300
N/A
N/A
11147
11166
GGATCCCATCTAGTGGCTTT
94
2718





1104316
N/A
N/A
11222
11241
TAACTTTAATTCTCTTTCTC
135
2719





1104332
N/A
N/A
11266
11285
CCCCATCCCCAACTGTGTCT
80
2720





1104348
N/A
N/A
11385
11404
TAAGCTGCTGGAGTAAGATG
92
2721





1104364
N/A
N/A
11484
11503
TTACTTTTCTTGATAGTAAC
89
2722





1104380
N/A
N/A
11573
11592
GCACAGTGCAACAGTTAGGA
38
2723
















TABLE 37







Reduction of GFAP RNA by 5-10-5 MOE gapmers with mixed PO/PS internucleoside linkages in U251 cells















SEQ ID
SEQ
SEQ ID
SEQ ID






NO: 1
ID NO:
NO: 2
NO: 2


SEQ


Compound
Start
1 Stop
Start
Stop

GFAP
ID


No.
Site
Site
Site
Site
Sequence (5′ to 3′)
(% UTC)
NO

















1047582
3047
3066
3336
13355
GTCTTTATTTTTCCTCAGCG
6
517





1103165
261
280
3709
3728
CTGCCCGCTCACTGGCCCGG
98
2724





1103181
505
524
3953
3972
TGCCTCACAGTGGCCAGGTC
45*
2725





1103197
756
775
5642
5661
CTTTCAGGGCTGCGGTGAGG
99
2726





1103213
1048
1067
7620
7639
TCTTCCTCCAGCCGCGCCAG
53
2727





1103229
1325
1344
11614
11633
CTGCTTGGACTCCTTAATGA
73
2728





1103245
1497
1516
11786
11805
AAGCTGACCTAGGGACAGAG
106
2729





1103261
1602
1621
11891
11910
CCCCTCCAGACTGCCCCTTG
73
2730





1103277
1727
1746
12016
12035
TCCATCTCTGGCAACAGTTT
48
2731





1103293
1857
1876
12146
12165
AAAGACAAAACAAGCCTCTG
71
2732





1103309
1883
1902
12172
12191
AGGGATATCCCACCTCATAA
159
2733





1103325
2057
2076
12346
12365
TGACTGCCCCAGGTGGCAGG
116
2734





1103341
2199
2218
12488
12507
TACACAACAGATCCCCCAAG
86
2735





1103357
2411
2430
12700
12719
TTAATTCCCACAATCCAGAG
104
2736





1103373
2460
2479
12749
12768
ATCCCCTTTCTCTCCTGTTT
76
2737





1103389
2509
2528
12798
12817
AAGAGGCCTTTAGAAATGGG
71
2738





1103405
2663
2682
12952
12971
TAAGAAGGGACCGCAAGAGG
81
2739





1103421
2716
2735
13005
13024
ACAATTGTAAAATAGGGCAC
81
2740





1103437
2837
2856
13126
13145
ACCAGTCTGCTCAGTCAAAG
90
2741





1103469
N/A
N/A
8767
8786
TATCTTGTGACCTTGTGATT
54
2742





1103485
N/A
N/A
8896
8915
GCTCACTCCCTGTCAAGCTG
76
2743





1103501
N/A
N/A
9042
9061
AAGCTCTGCCAGTTTAATGT
57
2744





1103517
N/A
N/A
9216
9235
AGCGATGGAGCCTCAGGGAT
83
2745





1103533
N/A
N/A
9255
9274
TGAGGGAAGAATCCTCTGAA
92
2746





1103549
N/A
N/A
9306
9325
ACATTAAGAGCAGGGAACAT
105
2747





1103565
N/A
N/A
8499
8518
GTGTCACGAAGGCCCCCAGG
72
2748





1103581
N/A
N/A
8556
8575
CTGCAAGCCCCACCTAGAAG
94
2749





1103597
N/A
N/A
3989
4008
TCACAAGGCCCCCCTTCCCC
98
2750





1103613
N/A
N/A
4048
4067
GTTCGGCCCCTOCCTGAGAC
90
2751





1103629
N/A
N/A
4228
4247
CCCGCTGCTCCTGCACTGCT
83
2752





1103645
N/A
N/A
4389
4408
TGCCTGCTCTTTCCCTCACT
88
2753





1103661
N/A
N/A
4489
4508
ATTTTATTATGACCACCGCT
97
2754





1103677
N/A
N/A
4625
4644
TCACTGTTGCACACACACAC
124
2755





1103693
N/A
N/A
4775
4794
GCAGGAGGATTAAGGGTTGG
76
2756





1103709
N/A
N/A
5010
5029
TGGGTGGCCATCAATCCTTT
97
2757





1103725
N/A
N/A
5303
5322
TCAGTTGCAATCTCTGTGTT
65
2758





1103741
N/A
N/A
5394
5413
ATTTCCTGTCTCTACCTGCC
95
2759





1103757
N/A
N/A
5480
5499
GTCCTCTTCTGCCTGCCCCT
90
2760





1103773
N/A
N/A
5722
5741
CAGGGCTACCTTGGAGCGGT
71
2761





1103789
N/A
N/A
5848
5867
TCTCACTTCTCTGGTGAAAG
82
2762





1103805
N/A
N/A
5912
5931
AGTAGCAGTAATAATAATGG
86
2763





1103821
N/A
N/A
5973
5992
AATCCATGAAAAGCACAGGG
88
2764





1103837
N/A
N/A
6018
6037
GGCTCTCTCATCTGTCAAAG
24
2765





1103853
N/A
N/A
6198
6217
CAGACACCTCTCTGTGTOCT
108
2766





1103869
N/A
N/A
6256
6275
TGTGGTGTTCTCTACGGGCA
62
2767





1103885
N/A
N/A
6312
6331
AAATGCCCCCTCTACAGTGT
110
2768





1103901
N/A
N/A
6406
6425
CTCTGTGCTTTTCTGCCTCC
67
2769





1103917
N/A
N/A
6500
6519
TCGGGCCCTCACCCTGCTCA
92
2770





1103933
N/A
N/A
6902
6921
GGCGAGCGGAGGCCTGGGTG
12
2771





1103949
N/A
N/A
7016
7035
ACCTCAGCACCTAGCACAAC
90
2772





1103965
N/A
N/A
7197
7216
TCAGGTCTGCAAACTAGGTG
72
2773





1103981
N/A
N/A
7415
7434
CCCCGCCCTCGACCCAGGTC
131
2774





1103997
N/A
N/A
7804
7823
ATGAGCTCTACCGTGAGGCA
88
2775





1104013
N/A
N/A
7913
7932
ACATCTAGTGACTGOCTGCT
94
2776





1104029
N/A
N/A
8034
8053
AGGAGTCCAATCTTGGCTGG
74
2777





1104045
N/A
N/A
8074
8093
TGAAGAAAGTTCCAAGGAGG
95
2778





1104061
N/A
N/A
8215
8234
AAAGTCTAACTCCATCTCCT
131
2779





1104077
N/A
N/A
9358
9377
CCCGCCCCGCCCGAGAGAGA
83
2780





1104093
N/A
N/A
9408
9427
AATCATTTCAGGGCCAATGC
24
2781





1104109
N/A
N/A
9451
9470
ATATTCTAGTCCAGAAGAAG
123
2782





1104125
N/A
N/A
9505
9524
TAGCCTTTCTGATGCTGAAT
57
2783





1104141
N/A
N/A
9529
9548
ATTACCTCTACTAGTCAGCC
59
2784





1104157
N/A
N/A
9556
9575
ACCTGTGACTATCTAGGATT
82
2785





1104173
N/A
N/A
9575
9594
ATTTATCTGTGCTTTAGTGA
41
2786





1104189
N/A
N/A
9652
9671
ACATGTGGCACATATTAGTG
98
2787





1104205
N/A
N/A
9705
9724
CTACTTCTCTAGGTGGGAGA
79
2788





1104221
N/A
N/A
10138
10157
GAGTAAGACTCCGTCGAAAG
89
2789





1104237
N/A
N/A
10608
10627
TCAGCCCCTCTGCAAGCCCT
85
2790





1104253
N/A
N/A
10732
10751
TATGAGAACCTATGCAACCG
72
2791





1104269
N/A
N/A
10808
10827
TCTCATGGACTTTCAGGGCA
112
2792





1104285
N/A
N/A
11077
11096
ATTACATTCAGTTTCCTTGC
103
2793





1104301
N/A
N/A
11148
11167
AGGATCCCATCTAGTGGCTT
91
2794





1104317
N/A
N/A
11224
11243
ACTAACTTTAATTCTCTTTC
96
2795





1104333
N/A
N/A
11274
11293
AAAGCCCTCCCCATCCCCAA
128
2796





1104349
N/A
N/A
11387
11406
GGTAAGCTGCTGGAGTAAGA
26
2797





1104365
N/A
N/A
11485
11504
CTTACTTTTCTTGATAGTAA
36
2798





1104381
N/A
N/A
11605
11624
CTCCTTAATGACCTGCAGGG
74
2799
















TABLE 38







Reduction of GFAP RNA by 5-10-5 MOE gapmers with


mixed PO/PS internucleoside linkages in U251 cells













SEQ
SEQ






ID
ID






NO:
NO:






3
3


SEQ


Compound
Start
Stop

GFAP
ID


Number
Site
Site
Sequence (5′ to 3′)
(% UTC)
NO















1103451
1220
1239
CCCTCGAATCTGCAGGTTGG
94
2800





1103452
1227
1246
TTTTGCCCCCTCGAATCTGC
106
2801





1103453
1228
1247
CTTTTGCCCCCTCGAATCTG
84
2802





1103454
1229
1248
GCTTTTGCCCCCTCGAATCT
95
2803





1103455
1231
1250
GTGCTTTTGCCCCCTCGAAT
59
2804





1103456
1233
1252
TGGTGCTTTTGCCCCCTCGA
92
2805





1103457
1235
1254
TTTGGTGCTTTTGCCCCCTC
60
2806





1103554
1813
1832
TTAATATTTAACATTAAGAG
77
2807





1047595
1222
1241
CCCCCTCGAATCTGCAGGTT
109
284





1047596
1223
1242
GCCCCCTCGAATCTGCAGGT
107
362





1047597
1225
1244
TTGCCCCCTCGAATCTGCAG
65
440





1047598
1230
1249
TGCTTTTGCCCCCTCGAATC
115
518





1047599
1232
1251
GGTGCTTTTGCCCCCTCGAA
43
596





1047600
1234
1253
TTGGTGCTTTTGCCCCCTCG
86
674









Example 3: Effect of Modified Oligonucleotides on Human GFAP RNA In Vitro, Multiple Doses

Modified oligonucleotides selected from the examples above were tested at various doses in U251 cells. Cultured U251 cells at a density of 10,000 cells per well were treated using free uptake with various concentrations of modified oligonucleotide as specified in the tables below. After a treatment period of approximately 48 hours, total RNA was isolated from the cells and GFAP RNA levels were measured by quantitative real-time RTPCR. Human GFAP primer probe set RTS37485 was used to measure RNA levels, as described above. GFAP RNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent of GFAP RNA, relative to untreated control cells (% control). Where possible, the half maximal inhibitory concentration (IC50) of each modified oligonucleotide was calculated using a linear regression on a log/linear plot of the data in Excel. In some cases, an IC50 could not be reliably calculated and the data point is marked as “NC”. Modified oligonucleotides marked with an asterisk (*) indicate that the modified oligonucleotide is complementary to the amplicon region of the primer probe set. Additional assays may be used to measure the potency and efficacy of the modified oligonucleotides complementary to the amplicon region.









TABLE 39







Dose-dependent percent of human GFAP RNA compared to untreated


control in U251 cells by modified oligonucleotides









Compound
GFAP RNA (% control)
IC50












No.
125 nM
500 nM
2000 nM
8000 nM
(μM)















1047225
76
57
47
42
2.0


1047257
60
51
39
33
0.5


1047258
51
50
38
29
0.2


1047386
99
82
41
26
1.9


1047387
109
73
33
13
1.3


1047448
85
122
99
94
NC


1047466
107
82
77
46
7.8


1047497
120
117
107
136
NC


1047512
116
112
97
87
NC


1047584
94
54
23
10
0.8


1047608
125
133
79
52
NC


1047609
88
82
57
33
3.0


1047610
92
75
43
19
1.5


1047913
98
72
49
25
1.9


1048203
120
95
57
31
3.3


1048267
99
100
93
70
NC


1048296
99
91
73
72
NC


1048344
77
97
88
86
NC


1048361
92
115
85
109
NC
















TABLE 40







Dose-dependent percent of human GFAP RNA compared to untreated


control in U251 cells by modified oligonucleotides









Compound
GFAP RNA (% control)
IC50












No.
125 nM
500 nM
2000 nM
8000 nM
(μM)















1047325
81
86
76
67
NC


1047357
74
63
47
22
1.1


1047372
145
143
125
99
NC


1047373
105
73
43
21
1.7


1047374
150
122
84
46
7.3


1047388
108
116
62
32
4.2


1047500
100
105
74
60
NC


1047515
93
95
81
65
NC


1047518
125
99
81
51
NC


1047579
92
113
81
53
NC


1047580
96
88
58
41
4.3


1047581
73
60
32
17
0.7


1047582
72
29
12
7
0.3


1047584
100
60
23
11
0.6


1047613
107
107
79
44
NC


1047662
99
86
83
47
NC


1047707
100
126
91
75
NC


1048027
82
83
59
56
NC


1048350
104
85
57
36
3.4
















TABLE 41







Dose-dependent percent of human GFAP RNA compared to


untreated control in U251 cells by modified oligonucleotides









Compound
GFAP RNA (% control)
IC50












No.
125 nM
500 nM
2000 nM
8000 nM
(μM)















1047235
80
81
68
57
NC


1047328
91
79
55
39
3.5


1047362
110
77
52
20
2.0


1047391
87
79
61
45
5.5


1047394
78
74
52
36
2.6


1047503
92
94
80
59
NC


1047522
81
81
63
50
NC


1047583
97
54
19
12
0.8


1047584
81
50
19
10
0.6


1047585
85
73
38
18
1.2


1047586
75
64
41
23
1.1


1047587
92
66
41
19
1.3


1047599
92
94
83
78
NC


1047601
103
89
68
50
NC


1047762
99
84
70
71
NC


1047955
95
104
86
92
NC


1048018
85
84
74
51
NC


1048351
98
97
75
59
NC


1048355
114
114
90
61
NC
















TABLE 42







Dose-dependent percent of human GFAP RNA compared to


untreated control in U251 cells by modified oligonucleotides









Compound
GFAP RNA (% control)
IC50












No.
125 nM
500 nM
2000 nM
8000 nM
(μM)















1047429
80
58
32
15
0.8


1047444
80
98
83
73
NC


1047492
92
99
79
58
NC


1047573
80
74
59
44
4.7


1047584
87
53
20
8
0.7


1047588
69
49
24
14
0.5


1047589
101
79
47
24
2.0


1047590
70
55
35
24
0.7


1047591
92
67
34
21
1.2


1047734
86
75
69
60
NC


1047990
75
75
58
40
4.1


1048055
103
96
61
42
5.0


1048151
94
76
23
16
1.1


1048182
85
76
56
35
2.9


1048195
105
104
87
87
NC


1048196
94
91
73
62
NC


1048228
91
81
87
93
NC


1048341
80
71
61
46
6.1


1048372
94
88
84
59
NC
















TABLE 43







Dose-dependent percent of human GFAP RNA compared to untreated


control in U251 cells by modified oligonucleotides









Compound
GFAP RNA (% control)
IC50












No.
125 nM
500 nM
2000 nM
8000 nM
(μM)















1047321
94
91
84
79
NC


1047337
94
89
68
61
NC


1047368
86
82
79
81
NC


1047385
86
80
63
58
NC


1047432
89
84
75
89
NC


1047465
82
67
62
49
7.3


1047469
104
95
73
58
NC


1047513
106
100
96
80
NC


1047576
82
83
63
49
NC


1047584
88
63
31
14
1.0


1047625
86
80
73
55
NC


1047675
101
88
92
82
NC


1047688
99
100
96
100
NC


1047705
100
92
78
68
NC


1047866
90
81
71
78
NC


1048125
103
91
86
84
NC


1048187
100
88
82
74
NC


1048188
99
64
80
81
NC


1048201
80
65
41
23
1.2
















TABLE 44







Dose-dependent percent of human GFAP RNA compared to untreated


control in U251 cells by modified oligonucleotides









Compound
GFAP RNA (% control)
IC50












No.
125 nM
500 nM
2000 nM
8000 nM
(μM)















1047298
87
83
74
75
NC


1047474
102
93
94
87
NC


1047523
88
76
61
42
4.6


1047582
79
37
18
12
0.4


1047584
100
72
43
20
1.6


1047607
92
85
68
56
NC


1047717
106
110
92
80
NC


1047746
108
110
106
110
NC


1047790
91
86
81
70
NC


1047799
104
100
95
93
NC


1047840
92
88
75
58
NC


1047859
96
87
87
78
NC


1047886
84
79
68
68
NC


1047907
97
90
80
71
NC


1048093
97
89
93
90
NC


1048144
101
93
99
108
NC


1048207
97
82
76
74
NC


1048223
91
77
77
68
NC


1048350
104
80
57
44
4.4
















TABLE 45







Dose-dependent percent of human GFAP RNA compared to


untreated control in U251 cells by modified oligonucleotides









Compound
GFAP RNA (% control)
IC50












No.
370 nM
1111 nM
3333 nM
10000 nM
(μM)















1047582
25
11
7
5
NC


1072814
62
45
22
14
0.7


1072815
86
57
42
28
2.3


1072818
78
54
33
16
1.5


1072834
33
22
13
8
NC


1072835
54
30
15
9
NC


1072855
64
44
27
16
0.8


1072862
59
40
20
9
0.6


1072863
83
54
35
20
1.7


1072868
80
50
23
9
1.2


1072872
21
13
9
7
NC


1072886
88
60
42
21
2.2


1072986
84
68
22
11
1.7


1073003
93
79
71
52
NC


1073034
97
80
30
30
2.9


1073035
78
80
41
27
2.8


1073063
53
29
15
7
NC


1073106
87
76
57
39
5.2


1073107
79
65
58
33
3.7
















TABLE 46







Dose-dependent percent of human GFAP RNA compared to


untreated control in U251 cells by modified oligonucleotides









Compound
GFAP RNA (% control)
IC50












No.
370 nM
1111 nM
3333 nM
10000 nM
(μM)















1047582
36
15
8
6
NC


1072813
69
58
36
17
1.4


1072824
85
63
38
23
2.2


1072849
66
32
21
14
0.6


1072853
116
98
70
24
5.1


1072856
90
57
32
14
1.8


1072857
66
45
32
17
1.0


1072861
68
45
28
16
1.0


1072864
87
62
43
22
2.3


1072973
101
74
40
13
2.5


1072980
39
45
27
16
NC


1073009
87
75
83
35
8.2


1073033
87
44
19
24
1.4


1073045
60
43
24
12
0.7


1073060
68
43
28
16
0.9


1073064
61
41
31
19
0.7


1073065
69
61
36
18
1.5


1073077
95
70
44
23
2.8


1073093
57
33
20
10
0.5
















TABLE 47







Dose-dependent percent of human GFAP RNA compared to


untreated control in U251 cells by modified oligonucleotides









Compound
GFAP RNA (% control)
IC50












No.
370 nM
1111 nM
3333 nM
10000 nM
(μM)















1047582
70
30
9
5
0.6


1103198
91
86
82
73
NC


1103246
102
84
81
62
NC


1103278
89
96
72
51
NC


1103279
86
69
43
30
2.9


1103359
82
75
55
39
5.0


1103470
86
88
73
55
NC


1103471
68
63
45
36
2.6


1103502
104
93
75
51
NC


1103567
88
66
45
23
2.5


1104014
91
91
56
56
NC


1104078
92
100
103
92
NC


1104127
67
52
42
33
1.6


1104144
93
63
34
16
2.1


1104158
50
51
55
23
1.0


1104159
65
59
40
25
1.6


1104174
91
93
63
43
7.9


1104175
69
46
23
13
0.9


1104191
84
76
52
34
4.0
















TABLE 48







Dose-dependent percent of human GFAP RNA compared to


untreated control in U251 cells by modified oligonucleotides









Compound
GFAP RNA (% control)
IC50












No.
370 nM
1111 nM
3333 nM
10000 nM
(μM)















1047582
66
30
11
6
0.6


1103202
79
79
54
43
6.0


1103217
77
38
16
5
0.9


1103218
92
74
50
33
3.7


1103330
84
79
56
51
NC


1103345
112
125
111
149
NC


1103377
115
134
142
151
NC


1103409
82
93
70
45
NC


1103570
79
64
43
24
2.3


1103571
101
74
61
34
4.6


1103872
93
79
28
21
2.4


1103970
88
78
75
74
NC


1104096
109
112
65
47
9.2


1104131
87
79
54
44
6.1


1104145
99
89
65
39
6.7


1104161
102
90
75
52
NC


1104178
72
67
57
53
NC


1104225
87
82
57
39
5.4


1104307
97
87
57
32
4.7
















TABLE 49







Dose-dependent percent of human GFAP RNA compared to


untreated control in U251 cells by modified oligonucleotides









Compound
GFAP RNA (% control)
IC50












No.
370 nM
1111 nM
3333 nM
10000 nM
(μM)















1047582
58
29
10
7
0.4


1103236
81
62
27
12
1.6


1103253
68
56
36
37
1.8


1103268
86
62
37
30
2.4


1103285
91
79
56
29
4.0


1103300
100
98
83
81
NC


1103365
83
86
64
42
8.2


1103428
87
73
50
26
3.2


1103491
86
70
70
55
NC


1103620
90
62
65
73
NC


1104037
77
92
66
38
7.8


1104116
85
63
42
23
2.3


1104118
99
74
38
20
2.6


1104132
107
79
53
35
4.5


1104133
70
67
43
29
2.3


1104165
91
86
59
32
4.8


1104276
94
71
18
15
1.9


1104309
73
60
36
20
1.6


1104310
82
57
30
13
1.6
















TABLE 50







Dose-dependent percent of human GFAP RNA compared to


untreated control in U251 cells by modified oligonucleotides









Compound
GFAP RNA (% control)
IC50












No.
370 nM
1111 nM
3333 nM
10000 nM
(μM)















1047582
69
30
11
7
0.6


1103241
87
71
60
50
NC


1103257
75
83
47
26
3.1


1103258
81
70
44
23
2.4


1103272
94
91
52
26
4.0


1103369
88
78
59
38
5.4


1103370
83
88
59
44
8.0


1103400
95
101
87
76
NC


1103448
91
73
49
32
3.6


1103465
88
68
47
31
3.1


1103592
96
111
75
48
NC


1103722*
21
24
21
19
NC


1103816
108
118
95
76
NC


1104072
111
83
63
17
3.8


1104122
84
73
65
48
NC


1104153
78
83
55
50
NC


1104280
111
84
55
25
3.9


1104312
91
71
52
32
3.7


1104361
87
81
65
42
7.4
















TABLE 51







Dose-dependent percent of human GFAP RNA compared to


untreated control in U251 cells by modified oligonucleotides









Compound
GFAP RNA (% control)
IC50












No.
370 nM
1111 nM
3333 nM
10000 nM
(μM)















1047582
60
36
12
8
0.5


1103244
99
79
55
42
5.7


1103259
85
70
42
26
2.6


1103322
87
82
66
46
9.5


1103371
86
97
64
38
7.3


1103516
104
123
90
69
NC


1103837
82
62
40
26
2.2


1103899
94
87
68
48
NC


1103932
74
83
68
64
NC


1103933
79
63
11
9
1.3


1104093
90
61
33
24
2.1


1104123
91
114
81
61
NC


1104156
83
86
71
55
NC


1104173
87
89
60
42
7.2


1104298
105
102
80
57
NC


1104299
101
109
84
72
NC


1104349
104
71
57
35
4.3


1104365
95
75
63
40
5.8


1104380
95
83
61
45
7.3
















TABLE 52







Dose-dependent percent of human GFAP RNA compared to


untreated control in U251 cells by modified oligonucleotides









Compound
GFAP RNA (% control)
IC50












No.
370 nM
1111 nM
3333 nM
10000 nM
(μM)















1047582
63
26
10
6
0.5


1103254
93
85
62
37
5.8


1103255
59
49
23
14
0.8


1103256
84
54
22
10
1.4


1103366
105
79
58
58
NC


1103368
92
79
44
21
2.9


1103430
97
86
60
42
6.3


1103446
84
79
51
36
4.3


1103447
88
79
49
32
3.7


1103478
90
95
62
46
9.1


1103558
82
92
59
32
5.2


1103591
73
69
51
31
3.0


1104038
68
51
31
36
1.4


1104039
80
68
43
36
3.1


1104151
80
65
46
28
2.6


1104152
94
71
47
22
2.8


1104166
94
70
45
27
3.0


1104311
70
60
40
22
1.7


1104326
97
85
64
52
NC









Example 4: Tolerability of Modified Oligonudeotides Complementary to Human GFAP in Wild-Type Mice, 3 Hour Study

Modified oligonucleotides described above were tested in wild-type female C57/B16 mice to assess the tolerability of the oligonucleotides. Wild-type female C57/B16 mice each received a single ICV dose of 700 μg of modified oligonucleotide listed in the table below. Each treatment group consisted of 4 mice. A group of 4 mice received PBS as a negative control for each experiment (identified in separate tables below). At 3 hours post-injection, mice were evaluated according to seven different criteria. The criteria are (1) the mouse was bright, alert, and responsive; (2) the mouse was standing or hunched without stimuli; (3) the mouse showed any movement without stimuli; (4) the mouse demonstrated forward movement after it was lifted; (5) the mouse demonstrated any movement after it was lifted; (6) the mouse responded to tail pinching; (7) regular breathing. For each of the 7 criteria, a mouse was given a subscore of 0 if it met the criteria and 1 if it did not (the functional observational battery score or FOB). After all 7 criteria were evaluated, the scores were summed for each mouse and averaged within each treatment group. The results are presented in the tables below.









TABLE 53







Tolerability scores in


mice at 700 μg dose










Compound
3 hr.



No.
FOB







PBS
0



1047198
3



1047258
3



1047328
7



1047362
0



1047373
0



1047386
4



1047387
0



1047388
2



1047391
5



1047580
0



1047582
5



1047583
2



1047584
1



1047585
0



1047586
0



1047587
0



1047588
0



1047589
1



1047590
2



1047591
4



1047610
5



1048203
5



1048267
6



1048350
4

















TABLE 54







Tolerability scores in


mice at 700 μg dose










Compound
3 hr.



No.
FOB







PBS
0



1047257
5



1047357
7



1047374
5



1047394
6



1047429
0



1047444
2



1047448
0



1047492
2



1047497
2



1047500
1



1047518
5



1047573
1



1047581
1



1047599
1



1047601
6



1047608
2



1047609
5



1047913
1



1047990
2



1048027
2



1048151
4



1048182
0



1048296
3



1048361
0

















TABLE 55







Tolerability scores in


mice at 700 μg dose










Compound
3 hr.



No.
FOB







PBS
0



1047211
2



1047223
0



1047225
1



1047298
0



1047306
0



1047316
2



1047352
4



1047353
2



1047402
2



1047432
0



1047522
0



1047523
2



1047532
2



1047579
2



1047598
4



1047602
5



1047662
4



1047679
2



1047711
2



1047811
0



1047884
3



1048201
1



1048204
0



1048227
1

















TABLE 56







Tolerability scores in


mice at 700 μg dose










Compound
3 hr.



No.
FOB







PBS
0



1072813
0



1072814
1



1072818
4



1072834
4



1072835
0



1072849
5



1072855
4



1072856
6



1072857
4



1072861
6



1072862
4



1072863
3



1072868
7



1072872
5



1072886
1



1072980
1



1072986
6



1073033
5



1073045
6



1073060
6



1073063
6



1073064
6



1073065
6



1073093
6

















TABLE 57







Tolerability scores in


mice at 700 μg dose










Compound
3 hr.



No.
FOB







PBS
0



1103217
5



1103368
3



1103370
3



1103371
3



1103465
6



1103502
5



1103516
7



1103567
5



1103837
4



1103899
2



1104093
5



1104118
6



1104133
6



1104145
2



1104152
5



1104158
3



1104166
5



1104168
4



1104175
6



1104307
4



1104309
5



1104310
6



1104311
5



1104349
7

















TABLE 58







Tolerability scores in


mice at 700 μg dose










Compound
3 hr.



No.
FOB







PBS
0



1103202
5



1103218
7



1103253
7



1103255
7



1103256
7



1103257
6



1103258
7



1103259
6



1103268
1



1103279
6



1103285
7



1103411
7



1103471
6



1103570
6



1103722
1



1103872
4



1103933
7



1104038
7



1104116
1



1104127
3



1104144
3



1104159
5



1104276
1










Example 5: Design of MOE Gapmer Modified Oligonucleotides with Mixed PO/PS Internucleoside Linkages Complementary to a Human GFAP Nucleic Acid

Modified oligonucleotides complementary to human GFAP nucleic acid were designed. The modified oligonucleotides in the table below are 6-104 MOE gapmers. The gapmers are 20 nucleosides in length and have a central gap segment that consists of ten 2′-β-D-deoxynucleosides, a 5′ wing segment that consists of six 2′-β-D-MOE nucleosides, and a 3′ wing segment that consists of four 2′-β-D-MOE nucleosides. The sugar motif of the gapmers is (from 5′ to 3): eeeeeeddddddddddeeee: wherein ‘d’ represents a 2′-β-D-deoxyribosyl sugar moiety, and ‘e’ represents a 2′-β-D-MOE sugar moiety. The gapmers have an internucleoside linkage motif of (from 5′ to 3′): sooooossssssssssoss; wherein each “s” represents a phosphorothioate internucleoside linkage and each “o” represents a phosphodiester internucleoside linkage. Each cytosine nucleoside is a 5-methylcytosine.









TABLE 59







6-10-4 MOE gapmers with mixed PO/PS internucleoside linkages complementary to human GFAP















SEQ ID
SEQ ID
SEQ ID
SEQ ID





No: 1
No: 1
No: 2
No: 2



Compound

Start
Stop
Start
Stop
SEQ ID


No.
SEQUENCE (5′ to 3′)
Site
Site
Site
Site
No.
















1166991
CAGCCTGGTTAGCCTTTCTG
N/A
N/A
9514
9533
2017





1166992
TCAGCCTGGTTAGCCTTTCT
N/A
N/A
9515
9534
2094





1166993
GTCAGCCTGGTTAGCCTTTC
N/A
N/A
9516
9535
2171





1166994
AGTCAGCCTGGTTAGCCTTT
N/A
N/A
9517
9536
1484





1166996
CTAGTCAGCCTGGTTAGCCT
N/A
N/A
9519
9538
1561





1166997
ACTAGTCAGCCTGGTTAGCC
N/A
N/A
9520
9539
2325





1166998
CAGTATTACCTCTACTAGTC
N/A
N/A
9533
9552
20





1166999
GCAGTATTACCTCTACTAGT
N/A
N/A
9534
9553
88





1167000
GGCAGTATTACCTCTACTAG
N/A
N/A
9535
9554
1637





1167001
TGGCAGTATTACCTCTACTA
N/A
N/A
9536
9555
166





1167002
TTGGCAGTATTACCTCTACT
N/A
N/A
9537
9556
1865





1167003
TTTGGCAGTATTACCTCTAC
N/A
N/A
9538
9557
1941





1167004
ATTTGGCAGTATTACCTCTA
N/A
N/A
9539
9558
2018





1167024
GTGTATTAGGATCCCATCTA
N/A
N/A
11155
11174
2028





1167025
TGTGTATTAGGATCCCATCT
N/A
N/A
11156
11175
2105





1167026
GTGTGTATTAGGATCCCATC
N/A
N/A
11157
11176
1569





1167027
AGTGTGTATTAGGATCCCAT
N/A
N/A
11158
11177
2182





1167050
CTTTATTTTTCCTCAGCGAC
3045
3064
13334
13353
361





1167051
TCTTTATTTTTCCTCAGCGA
3046
3065
13335
13354
439





1167053
TGTCTTTATTTTTCCTCAGC
3048
3067
13337
13356
595





1167054
TTGTCTTTATTTTTCCTCAG
3049
3068
13338
13357
673





1167055
TTTGTCTTTATTTTTCCTCA
3050
3069
13339
13358
751





1167056
ATTTGTCTTTATTTTTCCTC
3051
3070
13340
13359
829





1166975
TTGTGATTTTCCCCGTCTTT
N/A
N/A
8755
8774
908





1166984
ACATTCACTAATATTTAACA
N/A
N/A
9323
9342
1022





1166985
CACATTCACTAATATTTAAC
N/A
N/A
9324
9343
21





1166986
TCACATTCACTAATATTTAA
N/A
N/A
9325
9344
2321





1166987
GTCACATTCACTAATATTTA
N/A
N/A
9326
9345
1177





1166988
CGTCACATTCACTAATATTT
N/A
N/A
9327
9346
2398





1166989
ACGTCACATTCACTAATATT
N/A
N/A
9328
9347
2808





1166990
CACGTCACATTCACTAATAT
N/A
N/A
9329
9348
2809





1167057
CATTTGTCTTTATTTTTCCT
3052
3071
13341
13360
907





1167059
AGCATTTGTCTTTATTTTTC
3054
3073
13343
13362
1063





1167060
CAGCATTTGTCTTTATTTTT
3055
3074
13344
13363
1140





1166982
GCTTTTGAGATATCTTGTGA
N/A
N/A
8777
8796
51





1167007
TGACTATCTAGGATTTGGCA
N/A
N/A
9551
9570
2480





1167011
CCTGTGACTATCTAGGATTT
N/A
N/A
9555
9574
2709





1167012
TTTATCTGTGCTTTAGTGAC
N/A
N/A
9574
9593
2710





1167017
TGCCATTTATCTGTGCTTTA
N/A
N/A
9579
9598
1639





1167018
CTGCCATTTATCTGTGCTTT
N/A
N/A
9580
9599
1867





1174062
GCTTTTGCCCCCTGTAGTGA
N/A
N/A
8732
8751
2291





1174063
GTGCTTTTGCCCCCTGTAGT
N/A
N/A
8734
8753
2368





1174065
TGGTGCTTTTGCCCCCTGTA
N/A
N/A
8736
8755
2445





1174066
TTGGTGCTTTTGCCCCCTGT
N/A
N/A
8737
8756
59





1167033
GCACAGTTCCCAGATACTOC
1756
1775
12045
12064
426





1167034
GGCACAGTTCCCAGATACTC
1757
1776
12046
12065
504





1167035
AGGCACAGTTCCCAGATACT
1758
1777
12047
12066
1425





1167036
AAGGCACAGTTCCCAGATAC
1759
1778
12048
12067
1502





1167037
AAAGGCACAGTTCCCAGATA
1760
1779
12049
12068
582





1167040
CTCAGTTTTCCTCCAGCAGC
1792
1811
12081
12100
115





1167046
GCCAGTGTCTTCACTTTGCT
2750
2769
13039
13058
1973





1167058
GCATTTGTCTTTATTTTTCC
3053
3072
13342
13361
985









Modified oligonucleotides in the table below are 5-10-5 MOE gapmers with mixed PO/PS internucleoside linkages. The gapmers are 20 nucleosides in length, wherein the central gap segment consists of ten 2′β-D-deoxynucleosides and the 5′ and 3′ wing segments each consists of five 2′-β-D-MOE modified nucleosides. The sugar motif for the gapmers is (from 5′ to 3′): eeeeeddddddddddeeeee; wherein ‘d’ represents a 2′-β-D-deoxyribose sugar moiety, and ‘e’ represents a 2′-β-D-MOE sugar moeity. The gapmers have an internucleoside linkage motif of (from 5′ to 3′): soooossssssssssooss; wherein each “s” represents a phosphorothioate internucleoside linkage and each “o” represents a phosphodiester internucleoside linkage. Each cytosine nucleoside is a 5-methylcytosine.









TABLE 60







5-10-5 MOE gapmers with a mixed PO/PS internucleoside linkages complementary to human GFAP















SEQ ID
SEQ ID
SEQ ID
SEQ ID





No: 1
No: 1
No: 2
No: 2



Compound

Start
Stop
Start
Stop
SEQ ID


No.
SEQUENCE (5′ to 3′)
Site
Site
Site
Site
No.
















1166900
CAGCCTGGTTAGCCTTTCTG
N/A
N/A
9514
9533
2017





1166901
TCAGCCTGGTTAGCCTTTCT
N/A
N/A
9515
9534
2094





1166902
GTCAGCCTGGTTAGCCTTTC
N/A
N/A
9516
9535
2171





1166903
AGTCAGCCTGGTTAGCCTTT
N/A
N/A
9517
9536
1484





1166904
TAGTCAGCCTGGTTAGCCTT
N/A
N/A
9518
9537
2248





1166905
CTAGTCAGCCTGGTTAGCCT
N/A
N/A
9519
9538
1561





1166906
ACTAGTCAGCCTGGTTAGCC
N/A
N/A
9520
9539
2325





1166907
CAGTATTACCTCTACTAGTC
N/A
N/A
9533
9552
20





1166909
GGCAGTATTACCTCTACTAG
N/A
N/A
9535
9554
1637





1166910
TGGCAGTATTACCTCTACTA
N/A
N/A
9536
9555
166





1166911
TTGGCAGTATTACCTCTACT
N/A
N/A
9537
9556
1865





1166912
TTTGGCAGTATTACCTCTAC
N/A
N/A
9538
9557
1941





1166913
ATTTGGCAGTATTACCTCTA
N/A
N/A
9539
9558
2018





1166932
TGTATTAGGATCCCATCTAG
N/A
N/A
11154
11173
1951





1166933
GTGTATTAGGATCCCATCTA
N/A
N/A
11155
11174
2028





1166934
TGTGTATTAGGATCCCATCT
N/A
N/A
11156
11175
2105





1166885
CTTGTGATTTTCCCCGTCTT
N/A
N/A
8756
8775
986





1166886
CCTTGTGATTTTCCCCGTCT
N/A
N/A
8757
8776
1064





1166887
TTGAGATATCTTGTGACCTT
N/A
N/A
8773
8792
1510





1166888
TTTGAGATATCTTGTGACCT
N/A
N/A
8774
8793
1280





1166890
CTTTTGAGATATCTTGTGAC
N/A
N/A
8776
8795
1434





1166893
ACATTCACTAATATTTAACA
N/A
N/A
9323
9342
1022





1166894
CACATTCACTAATATTTAAC
N/A
N/A
9324
9343
21





1166895
TCACATTCACTAATATTTAA
N/A
N/A
9325
9344
2321





1166896
GTCACATTCACTAATATTTA
N/A
N/A
9326
9345
1177





1166897
CGTCACATTCACTAATATTT
N/A
N/A
9327
9346
2398





1166898
ACGTCACATTCACTAATATT
N/A
N/A
9328
9347
2808





1166899
CACGTCACATTCACTAATAT
N/A
N/A
9329
9348
2809





1166916
TGACTATCTAGGATTTGGCA
N/A
N/A
9551
9570
2480





1166920
CCTGTGACTATCTAGGATTT
N/A
N/A
9555
9574
2709





1166926
TGCCATTTATCTGTGCTTTA
N/A
N/A
9579
9598
1639





1166927
CTGCCATTTATCTGTGCTTT
N/A
N/A
9580
9599
1867





1166928
TCTGCCATTTATCTGTGCTT
N/A
N/A
9581
9600
400





1166929
CTCTGCCATTTATCTGTGCT
N/A
N/A
9582
9601
1943





1174056
GCTTTTGCCCCCTGTAGTGA
N/A
N/A
8732
8751
2291





1174058
GGTGCTTTTGCCCCCTGTAG
N/A
N/A
8735
8754
1227





1174059
TGGTGCTTTTGCCCCCTGTA
N/A
N/A
8736
8755
2445





1174060
TTGGTGCTTTTGCCCCCTGT
N/A
N/A
8737
8756
59





1174061
TTTGGTGCTTTTGCCCCCTG
N/A
N/A
8738
8757
2522





1166940
ACAGTTCCCAGATACTCCGA
1754
1773
12043
12062
270





1166946
AAAGGCACAGTTCCCAGATA
1760
1779
12049
12068
582





1166948
TCAGTTTTCCTCCAGCAGCC
1791
1810
12080
12099
37





1166954
CCAGTGTCTTCACTTTGCTC
2749
2768
13038
13057
825





1199982
GGTCCTAAATATTCTAGTCC
N/A
N/A
9459
9478
2093





1199983
TGGTCCTAAATATTCTAGTC
N/A
N/A
9460
9479
2170





1199984
GTGGTCCTAAATATTCTAGT
N/A
N/A
9461
9480
2813









The modified oligonucleotides in the table below are 4-10-6 MOE gapmers. The gapmers are 20 nucleosides in length and have a central gap segment that consists of ten 2′-β-D-deoxynucleosides, a 5′ wing segment that consists of four 2′-β-D-MOE nucleosides, and a 3′ wing segment that consists of six 2′-β-D-MOE nucleosides. The sugar motif of the gapmers is (from 5′ to 3): eceeeddddddddddkeeecee; wherein ‘d’ represents a 2′-β-D-deoxyribosyl sugar moiety, and ‘e’ represents a 2′-β-D-MOE sugar moiety. The gapmers have an internucleoside linkage motif of (from 5′ to 3′): sooossssssssssoooss; wherein “s” represents a phosphonothioate internucleoside linkage and “o” represents a phosphodiester internucleoside linkage. Each cytosine nucleoside is a 5-methylcytosine.









TABLE 61







4-10-6 MOE gapmers with a mixed PO/PS internucleoside linkages complementary to human GFAP















SEQ ID
SEQ ID
SEQ ID
SEQ ID





No: 1
No: 1
No: 2
No: 2



Compound

Start
Stop
Start
Stop
SEQ ID


No.
SEQUENCE (5′ to 3′)
Site
Site
Site
Site
No.
















1166809
CAGCCTGGTTAGCCTTTCTG
N/A
N/A
9514
9533
2017





1166810
TCAGCCTGGTTAGCCTTTCT
N/A
N/A
9515
9534
2094





1166812
AGTCAGCCTGGTTAGCCTTT
N/A
N/A
9517
9536
1484





1166813
TAGTCAGCCTGGTTAGCCTT
N/A
N/A
9518
9537
2248





1166814
CTAGTCAGCCTGGTTAGCCT
N/A
N/A
9519
9538
1561





1166815
ACTAGTCAGCCTGGTTAGCC
N/A
N/A
9520
9539
2325





1166816
CAGTATTACCTCTACTAGTC
N/A
N/A
9533
9552
20





1166817
GCAGTATTACCTCTACTAGT
N/A
N/A
9534
9553
88





1166818
GGCAGTATTACCTCTACTAG
N/A
N/A
9535
9554
1637





1166819
TGGCAGTATTACCTCTACTA
N/A
N/A
9536
9555
166





1166820
TTGGCAGTATTACCTCTACT
N/A
N/A
9537
9556
1865





1166821
TTTGGCAGTATTACCTCTAC
N/A
N/A
9538
9557
1941





1166822
ATTTGGCAGTATTACCTCTA
N/A
N/A
9539
9558
2018





1166841
TGTATTAGGATCCCATCTAG
N/A
N/A
11154
11173
1951





1166842
GTGTATTAGGATCCCATCTA
N/A
N/A
11155
11174
2028





1166843
TGTGTATTAGGATCCCATCT
N/A
N/A
11156
11175
2105





1166845
AGTGTGTATTAGGATCCCAT
N/A
N/A
11158
11177
2182





1166846
GAGTGTGTATTAGGATCCCA
N/A
N/A
11159
11178
2259





1166847
AGAGTGTGTATTAGGATCCC
N/A
N/A
11160
11179
2336





1166869
TCTTTATTTTTCCTCAGCGA
3046
3065
13335
13354
439





1166870
GTCTTTATTTTTCCTCAGCG
3047
3066
13336
13355
517





1166871
TGTCTTTATTTTTCCTCAGC
3048
3067
13337
13356
595





1166872
TTGTCTTTATTTTTCCTCAG
3049
3068
13338
13357
673





1166873
TTTGTCTTTATTTTTCCTCA
3050
3069
13339
13358
751





1166874
ATTTGTCTTTATTTTTCCTC
3051
3070
13340
13359
829





1166793
TTGTGATTTTCCCCGTCTTT
N/A
N/A
8755
8774
908





1166794
CTTGTGATTTTCCCCGTCTT
N/A
N/A
8756
8775
986





1166795
CCTTGTGATTTTCCCCGTCT
N/A
N/A
8757
8776
1064





1166798
TTTTGAGATATCTTGTGACC
N/A
N/A
8775
8794
1357





1166799
CTTTTGAGATATCTTGTGAC
N/A
N/A
8776
8795
1434





1166800
GCTTTTGAGATATCTTGTGA
N/A
N/A
8777
8796
51





1166802
ACATTCACTAATATTTAACA
N/A
N/A
9323
9342
1022





1166803
CACATTCACTAATATTTAAC
N/A
N/A
9324
9343
21





1166804
TCACATTCACTAATATTTAA
N/A
N/A
9325
9344
2321





1166805
GTCACATTCACTAATATTTA
N/A
N/A
9326
9345
1177





1166806
CGTCACATTCACTAATATTT
N/A
N/A
9327
9346
2398





1166807
ACGTCACATTCACTAATATT
N/A
N/A
9328
9347
2808





1166808
CACGTCACATTCACTAATAT
N/A
N/A
9329
9348
2809





1166867
TTTATTTTTCCTCAGCGACT
3044
3063
13333
13352
283





1166875
CATTTGTCTTTATTTTTCCT
3052
3071
13341
13360
907





1166877
AGCATTTGTCTTTATTTTTC
3054
3073
13343
13362
1063





1166878
CAGCATTTGTCTTTATTTTT
3055
3074
13344
13363
1140





1166823
ACTATCTAGGATTTGGCAGT
N/A
N/A
9549
9568
2326





1166826
GTGACTATCTAGGATTTGGC
N/A
N/A
9552
9571
1408





1166831
ATTTATCTGTGCTTTAGTGA
N/A
N/A
9575
9594
2786





1166835
TGCCATTTATCTGTGCTTTA
N/A
N/A
9579
9598
1639





1174050
GCTTTTGCCCCCTGTAGTGA
N/A
N/A
8732
8751
2291





1174051
GTGCTTTTGCCCCCTGTAGT
N/A
N/A
8734
8753
2368





1174053
TGGTGCTTTTGCCCCCTGTA
N/A
N/A
8736
8755
2445





1174054
TTGGTGCTTTTGCCCCCTGT
N/A
N/A
8737
8756
59





1166852
GGCACAGTTCCCAGATACTC
1757
1776
12046
12065
504









The modified oligonucleotides in the table below are 5-8-5 MOE gapmers. The gapmers are 20 nucleosides in length and have a central gap segment that consists of eight 2′-β-D-deoxynucleosides, a 5′ wing segment that consists of five 2′-β-D-MOE nucleosides, and a 3′ wing segment that consists of five 2′-β-D-MOE nucleosides. The sugar motif of the gapmers is (from 5′ to 3′): eeeeeddddddddeeee; wherein ‘d’ represnts a 2′-β-D-deoxyribosyl sugar moiety, and ‘e’ represents a 2′-β-D-MOE sugar moiety. The gapmers have an internucleoside linkage motif of (from 5′ to 3′): sooosssssssssooss; wherein each “s” represents a phosphorthioate internucleoside linkage and each “o” represents a phosphodiester internucleoside linkage. Each cytosine nucleobase is a 5-methylcytosine.









TABLE 62







5-8-5 MOE gapmers with a mixed PO/PS internucleoside linkages complementary to human GFAP















SEQ ID
SEQ ID
SEQ ID
SEQ ID





No: 1
No: 1
No: 2
No: 2



Compound

Start
Stop
Start
Stop
SEQ ID


No.
SEQUENCE (5′ to 3′)
Site
Site
Site
Site
No.
















1166719
GCAGTATTACCTCTACTA
N/A
N/A
9536
9553
2816





1166720
GGCAGTATTACCTCTACT
N/A
N/A
9537
9554
2817





1166721
TGGCAGTATTACCTCTAC
N/A
N/A
9538
9555
2818





1166749
TCAGCCTGGTTAGCCTTT
N/A
N/A
9517
9534
2819





1166750
GTCAGCCTGGTTAGCCTT
N/A
N/A
9518
9535
2820





1166751
AGTCAGCCTGGTTAGCCT
N/A
N/A
9519
9536
2821





1166761
GTGTATTAGGATCCCATC
N/A
N/A
11157
11174
2822





1166762
TGTGTATTAGGATCCCAT
N/A
N/A
11158
11175
2823





1166763
GTGTGTATTAGGATCCCA
N/A
N/A
11159
11176
2824





1166775
TTATTTTTCCTCAGCGAC
3045
3062
13334
1335}
2825





1166776
TTTATTTTTCCTCAGCGA
3046
3063
13335
13352
2826





1166777
CTTTATTTTTCCTCAGCG
3047
3064
13336
13353
2827





1166778
TCTTTATTTTTCCTCAGC
3048
3065
13337
13354
2828





1166779
GTCTTTATTTTTCCTCAG
3049
3066
13338
13355
2829





1166780
TGTCTTTATTTTTCCTCA
3050
3067
13339
13356
2830





1166781
TTGTCTTTATTTTTCCTC
3051
3068
13340
13357
2831





1166782
TTTGTCTTTATTTTTCCT
3052
3069
13341
13358
2832





1166783
ATTTGTCTTTATTTTTCC
3053
3070
13342
13359
2833





1166738
GTGATTTTCCCCGTCTTT
N/A
N/A
8755
8772
2835





1166739
TGTGATTTTCCCCGTCTT
N/A
N/A
8756
8773
2836





1166740
GAGATATCTTGTGACCTT
N/A
N/A
8773
8790
2837





1166742
TTGAGATATCTTGTGACC
N/A
N/A
8775
8792
2839





1166746
CACATTCACTAATATTTA
N/A
N/A
9326
9343
2840





1166747
TCACATTCACTAATATTT
N/A
N/A
9327
9344
2841





1166748
GTCACATTCACTAATATT
N/A
N/A
9328
9345
2842





1166784
CATTTGTCTTTATTTTTC
3054
3071
13343
13360
2843





1166785
GCATTTGTCTTTATTTTT
3055
3072
13344
13361
2844





1166786
AGCATTTGTCTTTATTTT
3056
3073
13345
13362
2845





1166787
CAGCATTTGTCTTTATTT
3057
3074
13346
13363
2846





1174012
TTGTGATTTTCCCCGTCT
N/A
N/A
8757
8774
2850





1174013
TTTGAGATATCTTGTGAC
N/A
N/A
8776
8793
2851





1174015
ATTCACTAATATTTAACA
N/A
N/A
9323
9340
2852





1174016
CATTCACTAATATTTAAC
N/A
N/A
9324
9341
2853





1174018
CGTCACATTCACTAATAT
N/A
N/A
9329
9346
2854





1174020
AGCCTGGTTAGCCTTTCT
N/A
N/A
9515
9532
2856





1174024
AGTATTACCTCTACTAGT
N/A
N/A
9534
9551
2859





1174026
TTGGCAGTATTACCTCTA
N/A
N/A
9539
9556
2861





1174036
TATTAGGATCCCATCTAG
N/A
N/A
11154
11171
2862





1174037
GTATTAGGATCCCATCTA
N/A
N/A
11155
11172
2863





1166744
GCTTTTGAGATATCTTGT
N/A
N/A
8779
8796
2866





1166757
CCATTTATCTGTGCTTTA
N/A
N/A
9579
9596
2873





1166758
TGCCATTTATCTGTGCTT
N/A
N/A
9581
9598
2874





1166759
CTGCCATTTATCTGTGCT
N/A
N/A
9582
9599
2875





1166760
TCTGCCATTTATCTGTGC
N/A
N/A
9583
9600
2876





1174029
ACTATCTAGGATTTGGCA
N/A
N/A
9551
9568
2886





1174030
TGTGACTATCTAGGATTT
N/A
N/A
9555
9572
2887





1174031
TATCTGTGCTTTAGTGAC
N/A
N/A
9574
9591
2888





1174034
GCCATTTATCTGTGCTTT
N/A
N/A
9580
9597
2891









Example 6: Tolerability of Modified Oligonucleotides Complementary to Human GFAP in Wild-Type Mice, 3 Hour Study

Modified oligonucleotides described above were tested in wild-type female C57/B16 mice to assess the tolerability of the oligonucleotides. Wild-type female C57/B16 mice each received a single ICV dose of 700 μg of modified oligonucleotide listed in the table below. Each treatment group consisted of 4 mice. A group of 4 mice received PBS as a negative control for each experiment (identified in separate tables below). At 3 hours post-injection, mice were evaluated according to seven different criteria. The criteria are (1) the mouse was bright, alert, and responsive: (2) the mouse was standing or hunched without stimuli: (3) the mouse showed any movement without stimuli: (4) the mouse demonstrated forward movement after it was lifted; (5) the mouse demonstrated any movement after it was lifted; (6) the mouse responded to tail pinching: (7) regular breathing. For each of the 7 criteria, a mouse was given a subs orc of 0 if it met the criteria and 1 if it did not (the functional observational battery score or FOB). After all 7 criteria were evaluated, the scores were summed for each mouse and averaged within each treatment group. The results are presented in the tables below.









TABLE 63







Tolerability scores in


mice at 700 μg dose










Compound
3 hr.



No.
FOB







PBS
0



1166719
1



1166720
0



1166721
0



1166749
3



1166750
1



1166751
2



1166761
4



1166762
4



1166763
3



1166775
0



1166776
1



1166777
4



1166778
1



1166779
4



1166780
1



1166781
0



1166782
0



1166783
0



1166809
4



1166810
4



1166812
3



1166813
3

















TABLE 64







Tolerability scores in mice at 700 μg dose










Compound
3 hr.



No.
FOB







PBS
0



1166814
4



1166815
2



1166816
1



1166817
1



1166818
3



1166819
1



1166820
1



1166821
1



1166822
3



1166841
3



1166842
3



1166843
3



1166845
5



1166846
4



1166847
5



1166869
1



1166870
3



1166871
2



1166872
2



1166873
1



1166874
0



1166900
5

















TABLE 65







Tolerability scores in mice at 700 μg dose










Compound
3 hr.



No.
FOB







PBS
0



1166901
4



1166902
5



1166903
4



1166904
4



1166905
2



1166906
2



1166907
0



1166909
3



1166910
1



1166911
0



1166912
1



1166913
2



1166932
4



1166933
2



1166934
3



1166991
4



1166992
4



1166993
4



1166994
3

















TABLE 66







Tolerability scores in mice at 700 μg dose










Compound
3 hr.



No.
FOB







PBS
0



1166996
4



1166997
4



1166998
0



1166999
0



1167000
3



1167001
0



1167002
0



1167003
0



1167004
0



1167024
4



1167025
3



1167026
4



1167027
4



1167050
1



1167051
0



1167053
1



1167054
4



1167055
0



1167056
0

















TABLE 67







Tolerability scores in mice at 700 μg dose










Compound
3 hr.



No.
FOB







PBS
0



1166738
0



1166739
0



1166740
4



1166742
3



1166746
0



1166747
0



1166748
0



1166784
0



1166785
1



1166786
3



1166787
3



1166793
0



1166794
0



1166795
1



1166797
4



1166798
3

















TABLE 68







Tolerability scores in mice at 700 μg dose










Compound
3 hr.



No.
FOB







PBS
0



1166799
1



1166802
0



1166803
0



1166804
0



1166805
0



1166806
0



1166807
0



1166808
0



1166867
0



1166877
1



1166878
2



1166885
3



1166886
0



1166887
3



1166888
3



1166890
0



1166893
0

















TABLE 69







Tolerability scores in mice at 700 μg dose










Compound
3 hr.



No.
FOB







PBS
0



1166894
0



1166895
0



1166896
0



1166897
0



1166898
0



1166899
0



1166984
0



1166985
0



1166986
0



1166987
0



1166988
0



1166990
0

















TABLE 70







Tolerability scores in mice at 700 μg dose










Compound
3 hr.



No.
FOB







PBS
0



1167057
0



1167059
1



1167060
1



1174012
2



1174013
3



1174015
0



1174016
0



1174018
0



1174020
4



1174024
3



1174026
0



1174036
3



1174037
2

















TABLE 71







Tolerability scores in mice at 700 μg dose










Compound
3 hr.



No.
FOB







PBS
0



1166744
3



1166757
4



1166758
3



1166759
1



1166760
3



1166800
1



1166823
2



1166826
3



1166831
2



1166875
0



1166975
4



1166989
0

















TABLE 72







Tolerability scores in mice at 700 ug dose










Compound
3 hr.



No.
FOB







PBS
0



1166835
0



1166916
3



1166920
2



1166926
1



1166927
2



1166928
1



1166929
0



1166982
2

















TABLE 73







Tolerability scores in mice at 700 μg dose










Compound
3 hr.



No.
FOB







PBS
0



1167007
2



1167011
1



1167012
3



1167017
2



1167018
1



1174029
4

















TABLE 74







Tolerability scores in mice at 700 μg dose










Compound
3 hr.



No.
FOB







PBS
0



1174030
3



1174031
3



1174034
1



1174050
3



1174051
3



1174053
1



1174054
1



1174056
4



1174058
3



1174059
0



1174060
0



1174061
2



1174062
3



1174063
3



1174065
1



1174066
1

















TABLE 75







Tolerability scores in mice at 700 μg dose










Compound
3 hr.



No.
FOB







PBS
0



1166852
1

















TABLE 76







Tolerability scores in mice at 700 μg dose










Compound
3 hr.



No.
FOB







PBS
0



1166940
2



1166946
2



1166948
2

















TABLE 77







Tolerability scores in mice at 700 μg dose










Compound
3 hr.



No.
FOB







PBS
0



1166954
0



1167033
0



1167034
1



1167035
1



1167036
2



1167037
2



1167040
2

















TABLE 78







Tolerability scores in mice at 700 μg dose










Compound
3 hr.



No.
FOB







PBS
0



1167046
3



1167058
1

















TABLE 79







Tolerability scores in mice at 700 μg dose











3 hr.



Compound No.
FOB







PBS
0



1199982
1



1199983
1



1199984
1










Example 7: Activity of Modified Oligonucleotides Complementary to Human GFAP in Transgenic Mice

Modified oligonucleotides described above were tested in human GFAP transgenic mouse model. Transgenic mice (line 73.7) was previously described in Messing A., et al., Fatal encephalopathy with astrocyte inclusions in GFAP transgenic mice, Am J Pathos, 1998, 152(2):391-398.


Treatment

The GFAP transgenic mice were divided into groups of 34 mice each. Each mouse received a single ICV bolus of 300 μg of modified oligonucleotide. A group of 34 mice received PBS as a negative control.


RNA Analysis

One week post treatment, mice were sacrificed and RNA was extracted from cortical brain tissue, and/or spinal cord for RTPCR analysis to measure amount of GFAP RNA using primer probe set RTS38621 ((forward sequence AGTTGCAGTCCTTGACCTG, designated herein as SEQ ID NO: 14; reverse sequence CAGCGCCTCCTGATAACTG, designated herein as SEQ ID NO: 15; probe sequence ACGAGTCCCTGGAGAGGCAGATG, designated herein as SEQ ID NO: 16), which is a human specific primer-probe set that recognizes all isoforms of GFAP. Results are presented as percent human GFAP RNA relative to PBS control, normalized to mouse peptidylprolyl isomerase A (PPIA), also known as cyclophilin A. Mouse PPIA was amplified using primer probe set m_cyclo24 (forward sequence TCGCCGCTTGCTGCA, designated herein as SEQ ID NO: 17; reverse sequence ATCGGCCGTGATGTCGA, designated herein as SEQ ID NO: 18; probe sequence CCATGGTCAACCCCACCGTGTTC, designated herein as SEQ ID NO: 19). In some cases, RTPCR value is not defined for a certain sample, and is labeled N.D. (Not Defined).


As shown in the table below, treatment with modified oligonucleotides resulted in reduction of GFAP RNA in comparison to the PBS control.









TABLE 80







Reduction of human GFAP RNA in transgenic mice










GFAP RNA (% control)










Compound No.
SPINAL CORD
CORTEX












PBS
100
100


1047198
44
44


1047362
15
21


1047373
10
16


1047374
8
16


1047386
14
19


1047394
48
43


1047429
N.D.
N.D.


1047448
37
45


1047500
23
26


1047580
12
15


1047582
5
8


1047583
6
9


1047584
6
7


1047585
8
7


1047586
12
11


1047587
13
13


1047589
9
13


1047590
16
16


1047591
14
17


1047610
33
31


1048203
26
27


1048350
28
24
















TABLE 81







Reduction of human GFAP RNA in transgenic mice










GFAP RNA (% control)










Compound No.
SPINAL CORD
CORTEX












PBS
100
100


1047211
71
66


1047225
65
61


1047298
34
27


1047316
29
24


1047402
30
25


1047432
28
29


1047518
49
34


1047522
23
19


1047532
40
30


1047579
27
17


1047581
11
10


1047598
77
50


1047599
21
15


1047601
47
30


1047602
N.D.
N.D.


1047609
27
18


1047662
34
27


1047679
58
54
















TABLE 82







Reduction of human GFAP RNA in transgenic mice










GFAP RNA (% control)










Compound No.
SPINAL CORD
CORTEX












PBS
100
100


1047711
45
38


1047884
57
62


1047913
75
66


1048027
64
53


1048151
69
64


1048182
14
10


1048201
6
7


1048204
21
18


1048227
42
28


1072855
N.D.
N.D.


1072856
N.D.
N.D.


1072857
28
14


1072861
28
23


1072862
53
33


1072863
51
28


1072886
42
26


1072980
40
25


1072986
98
88


1073033
100
80


1073045
36
24


1073060
19
16


1073063
19
15


1073064
29
20


1073065
16
15


1073093
11
8
















TABLE 83







Reduction of human GFAP RNA in transgenic mice










GFAP RNA (% control)










Compound No.
SPINAL CORD
CORTEX












PBS
100
100


1103217
56
43


1103465
31
19


1103502
47
31


1103516
42
27


1103567
23
18


1104093
13
12


1104118
N.D.
N.D.


1104145
8
6


1104152
27
17


1104166
17
13


1104175
15
8
















TABLE 84







Reduction of human GFAP RNA in transgenic mice










GFAP RNA (% control)










Compound No.
SPINAL CORD
CORTEX












PBS
100
100


1072813
15
18


1072814
15
19


1103202
34
36


1103218
48
33


1103253
56
36


1103255
N.D.
N.D.


1103256
35
41


1103257
46
43


1103258
N.D.
N.D.


1103259
82
71


1103268
N.D.
N.D.


1104307
13
14


1104309
10
11


1104311
11
18


1104349
N.D.
N.D.
















TABLE 85







Reduction of human GFAP RNA in transgenic mice










GFAP RNA (% control)










Compound No.
SPINAL CORD
CORTEX












PBS
100
100


1103279
20
14


1103285
16
9


1103411
65
32


1103471
32
39


1103570
6
4


1103872
42
18


1104116
6
3


1104127
15
10


1104144
17
8


1104159
17
10


1104276
53
41


1166719
41
31


1166720
12
8


1166721
7
8


1166749
13
11


1166750
10
7


1166751
12
9


1166761
12
5
















TABLE 86







Reduction of human GFAP RNA in transgenic mice











GFAP RNA




(% control)



Compound No.
CORTEX














PBS
100



1166762
18



1166763
13



1166775
21



1166776
30



1166777
13



1166778
6



1166779
7



1166780
9



1166781
7



1166782
12



1166783
17



1166809
13



1166810
16



1166812
23



1166813
21



1166814
29



1166815
42



1166816
31



1166817
37



1166818
14



1166819
9



1166820
12



1166821
15



1166822
20



1166841
47

















TABLE 87







Reduction of human GFAP RNA in transgenic mice










GFAP RNA (% control)










Compound No.
SPINAL CORD
CORTEX












PBS
100
100


1166842
19
14


1166843
37
21


1166845
17
19


1166846
12
18


1166847
13
19


1166869
10
11


1166870
6
7


1166871
5
7


1166872
10
9


1166873
14
14


1166874
9
10


1166900
14
20


1166901
11
13


1166902
12
15


1166903
17
19


1166904
26
30


1166905
24
28


1166906
50
56


1166907
28
32
















TABLE 88







Reduction of human GFAP RNA in transgenic mice











GFAP RNA




(% control)



Compound No.
CORTEX














PBS
100



1166909
30



1166910
8



1166911
7



1166912
15



1166913
12



1166932
41



1166933
13



1166934
18



1166991
14



1166992
11



1166993
9



1166994
10



1166996
21



1166997
30



1166998
13



1166999
11



1167000
15

















TABLE 89







Reduction of human GFAP RNA in transgenic mice











GFAP RNA




(% control)



Compound No.
CORTEX














PBS
100



1167001
9



1167002
7



1167003
8



1167004
13



1167024
18



1167025
11



1167026
14



1167027
13



1167050
11



1167051
10



1167053
7



1167054
5



1167055
6



1167056
6

















TABLE 90







Reduction of human GFAP RNA in transgenic mice











GFAP RNA




(% control)



Compound No.
CORTEX














PBS
100



1166738
27



1166739
27



1166740
26



1166742
43



1166746
94



1166747
23



1166748
20



1166784
30



1166785
13



1166786
19



1166787
19



1166793
23



1166794
32



1166795
51



1166798
25



1166799
33



1166802
38



1166803
31



1166804
29



1166805
7



1166806
23



1166807
19



1166808
14



1166867
13



1166877
7



1166878
13



1166885
20



1166886
25

















TABLE 91







Reduction of human GFAP RNA in transgenic mice











GFAP RNA




(% control)



Compound No.
CORTEX














PBS
100



1166887
12



1166888
16



1166890
38



1166893
39



1166894
20



1166895
11



1166896
8



1166897
6



1166898
8



1166899
11



1166984
24



1166985
9



1166986
13



1166987
7



1166988
5



1166990
9



1167057
7



1167059
5



1167060
8



1174012
9



1174013
33



1174015
107

















TABLE 92







Reduction of human GFAP RNA in transgenic mice











GFAP RNA




(% control)



Compound No.
CORTEX














PBS
100



1166744
14



1166757
7



1166758
34



1166759
9



1166760
16



1166800
8



1166823
7



1166826
6



1166831
16



1166835
47



1166875
7



1166916
14



1166920
18



1166975
6



1166989
4



1174016
66



1174018
11



1174020
12



1174024
52



1174026
7



1174036
43



1174037
24

















TABLE 93







Reduction of human GFAP RNA in transgenic mice











GFAP RNA




(% control)



Compound No.
CORTEX














PBS
100



1166926
14



1166927
15



1166928
13



1166929
15



1166982
11



1167007
44



1167011
21



1167012
23



1167017
8



1167018
11



1174029
32



1174030
75



1174031
35



1174034
17



1174050
10



1174051
15



1174053
22



1174054
40



1174056
7



1174058
14



1174059
14



1174060
19



1174061
17



1174062
12



1174063
12

















TABLE 94







Reduction of human GFAP


RNA in transgenic mice











GFAP RNA



Compound
(% control)



No.
CORTEX














PBS
100



1166852
15



1166940
16



1166946
34



1166948
41



1166954
16



1167033
9



1167034
11



1167035
15



1167036
19



1167037
25



1167040
15

















TABLE 95







Reduction of human GFAP


RNA in transgenic mice











GFAP RNA



Compound
(% control)



No.
CORTEX














PBS
100



1167046
14



1167058
5



1174065
10



1174066
13



1199982
4



1199983
13



1199984
16










Example 8: Tolerability of Modified Oligonucleotides Complementary to Human GFAP in Rats, 3 mg Dose

Modified oligonucleotides described above were tested in rats to assess the tolerability of the oligonucleotides. Sprague Dawley rats each received a single intrathecal (IT) dose of 3 mg of oligonucleotide listed in the table below. Each treatment group consisted of 24 rats. A group of 24 rats received PBS as a negative control. At 3 hours post-injection, movement in 7 different parts of the body were evaluated for each rat. The 7 body parts are (1) the rat's tail: (2) the rat's posterior posture; (3) the rat's hind limbs: (4) the rat's hind paws: (5) the rat's forepaws: (6) the rat's anterior posture; (7) the rat's head. For each of the 7 different body parts, each rat was given a sub-score of 0 if the body part was moving or 1 if the body part was paralyzed (the functional observational battery score or FOB). After each of the 7 body parts were evaluated, the sub-scores were summed for each rat and then averaged for each group. For example, if a rat's tail, head, and all other evaluated body parts were moving 3 hours after the 3 mg IT dose, it would get a summed score of 0. If another rat was not moving its tail 3 hours after the 3 mg IT dose but all other evaluated body parts were moving, it would receive a score of 1. Results are presented as the average score for each treatment group.









TABLE 96







Tolerability scores


in rats at 3 mg dose










Compound
FOB



No.
3 hr







PBS
0



1047198
4



1047362
3



1047386
5



1047580
2



1047583
1



1047584
2



1047585
0



1047586
0



1047587
0



1047589
2



1047590
2



1047591
4



1048350
3

















TABLE 97







Tolerability scores


in rats at 3 mg dose










Compound
FOB



No.
3 hr







PBS
0



1047429
2



1047448
1



1047500
3



1047581
2



1047599
2



1047609
5



1047913
4



1048027
3



1048151
2

















TABLE 98







Tolerability scores


in rats at 3 mg dose










Compound
FOB



No.
3 hr







PBS
0



1047316
4



1047402
3



1047522
0



1047532
3



1047579
4



1048201
2



1048204
0

















TABLE 99







Tolerability scores


in rats at 3 mg dose










Compound
FOB



No.
3 hr







PBS
0



1047298
3



1072813
0



1072814
4



1072855
4



1072857
4



1104116
0



1104145
2



1104175
4



1166721
0



1166750
4



1166751
4



1166871
2

















TABLE 100







Tolerability scores


in rats at 3 mg dose










Compound
FOB



No.
3 hr







PBS
0



1166720
1



1166775
2



1166778
2



1166780
2



1166781
1



1166782
1



1166783
1



1166819
2



1166820
3



1166821
3



1166842
4



1166869
2



1166872
2



1166873
0



1166874
0

















TABLE 101







Tolerability scores


in rats at 3 mg dose










Compound
FOB



No.
3 hr







PBS
0



1166748
0



1166785
2



1166793
1



1166805
1



1166806
2



1166807
0



1166910
3



1166911
2



1166912
3



1166933
3



1166998
2



1167050
4



1167053
3



1167055
2



1167056
1

















TABLE 102







Tolerability scores in


rats at 3 mg dose










Compound
FOB



No.
3 hr







PBS
0



1166808
0



1166867
1



1166877
2



1166878
3



1166894
1



1166895
0



1166896
2



1166897
2



1166898
0



1166899
0



1166985
0



1166990
0

















TABLE 103







Tolerability scores


in rats at 3 mg dose










Compound
FOB



No.
3 hr







PBS
0



1166759
2



1166760
2



1166800
3



1166823
4



1166831
5



1166875
1



1166920
3



1166926
2



1166927
2



1166928
2



1166982
3



1166986
1



1166987
1



1166988
5



1166989
1



1167001
3

















TABLE 104







Tolerability scores


in rats at 3 mg dose










Compound
FOB



No.
3 hr







PBS
0



1167002
2



1167003
3



1167017
3



1167018
3



1167057
1



1167059
2



1167060
2



1174012
3



1174018
3



1174026
2



1174034
3



1174059
1



1174060
1



1174061
4

















TABLE 105







Tolerability scores


in rats at 3 mg dose










Compound
FOB



No.
3 hr







PBS
0



1166852
3



1166940
2



1166946
2



1166948
3



1166954
2

















TABLE 106







Tolerability scores


in rats at 3 mg dose










Compound
FOB



No.
3 hr







PBS
0



1167033
4



1167034
3



1167035
3



1167036
2



1167037
2



1167040
3



1167046
3



1167058
2

















TABLE 107







Tolerability scores


in rats at 3 mg dose










Compound
FOB



No.
3 hr







PBS
0



1174065
1



1174066
2



1199982
1



1199983
1



1199984
2










Example 9: Potency of Modified Oligonucleotides Complementary to Human GFAP in Transgenic Mice

Modified oligonucleotides described above were tested in human GFAP transgenic mouse model. Transgenic mice (line 73.7) was previously described in Messing A., et al., Fatal encephalopathy with astrocyte inclusions in GFAP transgenic mice, Am J Pathos, 1998, 152(2):391-398.


Treatment

The GFAP transgenic mice were divided into groups of 4 mice each. Each mouse received a single ICV bolus of modified oligonucleotide at the doses indicated in tables below. A group of 4-8 mice received PBS as a negative control.


RNA Analysis

Two weeks post treatment, mice were sacrificed, and RNA was extracted from the cortex, spinal cord, and brainstem for RTPCR analysis of RNA expression of GFAP using primer probe set RTS38621, described in Example 6 above. Results are presented as percent change of RNA, relative to PBS control, normalized to mouse PPIA. The half maximal effective dose (ED50) of each modified oligonucleotide was calculated using GraphPad Prism 6 software (GraphPad Software, San Diego. CA). ED50 values were calculated from dose and individual animal GFAP mRNA levels using custom equation Motulsky: Agonist vs response—Variable slope (four parameters) Y=Bottom+(Top-Bottom)/(1+(10∧log EC50/X)∧HillSlope), with the following constraints: bottom>lowest value in data set in order to compare across ASOs (3, 5, and 3 for cortex, spinal cord, and brainstem, respectively), top=100, HillSlope<−1 and >−2.


As shown in the table below, treatment with modified oligonucleotides resulted in dose-responsive reduction of GFAP RNA in comparison to the PBS control.









TABLE 108







Reduction of human GFAP RNA


(all isoforms) in transgenic mice














GFAP






RNA (%




Compound
Dose
control)
ED50



No.
(μg)
CORTEX
(μg)
















PBS
N/A
100
N/A



1104145
1
77
8




3
74





10
53





30
19





100
8

















TABLE 109







Reduction of human GFAP RNA (all isoforms) in transgenic mice










GFAP RNA (% control)
ED50 (μg)














Compound
Dose

SPINAL
BRAIN

SPINAL
BRAIN


No.
(μg)
CORTEX
CORD
STEM
CORTEX
CORD
STEM

















PBS
N/A
100
100
100
N/A
N/A
N/A


1072813
3
93
101
99
34
24
21



10
68
71
69



30
70
38
37



100
18
28
21



300
10
19
13


1166721
1
116
111
94
25
25
12



3
95
104
89



10
91
73
51



30
39
47
28



100
13
18
11



300
7
10
6


1166874
1
81
102
78
27
11
7



3
73
83
75



10
77
50
45



30
65
32
22



100
12
14
10



300
5
9
6


1166895
3
108
93
93
41
93
38



10
82
94
80



30
46
74
50



100
40
40
32
















TABLE 110







Reduction of human GFAP RNA (all isoforms) in transgenic mice










GFAP RNA (% control)
ED50 (μg)














Compound
Dose

SPINAL
BRAIN

SPINAL
BRAIN


No.
(μg)
CORTEX
CORD
STEM
CORTEX
CORD
STEM

















PBS
N/A
100
100
100
N/A
N/A
N/A


1166895
300
16
45
27
N/A
N/A
N/A


1166926
3
103
77
77
47
32
17



10
86
70
57



30
67
62
49



100
27
27
20



300
13
21
11


1166985
1
105
101
100
46
36
14



3
96
90
78



10
75
68
53



30
79
58
40



100
17
35
15



300
8
23
10


1167056
1
102
87
86
10
5
3



3
81
60
42



10
54
35
20



30
20
16
9



100
5
8
5



300
3
7
4


1167058
1
98
82
80
19
4
3



3
79
59
44



10
79
21
20
















TABLE 111







Reduction of human GFAP RNA (all isoforms) in transgenic mice










GFAP RNA (% control)
ED50 (μg)














Compound
Dose

SPINAL
BRAIN

SPINAL
BRAIN


No.
(μg)
CORTEX
CORD
STEM
CORTEX
CORD
STEM

















PBS
N/A
100
100
100
N/A
N/A
N/A


1166927
3
91
92
89
44
24
15



10
98
62
57



30
62
52
35



100
25
26
14



300
14
20
12


1166954
3
106
87
85
58
60
26



10
79
80
68



30
70
65
49



100
36
46
27



300
20
25
17


1166986
3
114
113
101
35
42
21



10
87
88
66



30
52
56
38



100
23
30
20



300
10
20
14


1166998
3
77
73
61
23
13
6



10
90
63
42



30
36
31
20


1167058
30
34
14
9
N/A
N/A
N/A



100
9
7
6



300
5
6
4
















TABLE 112







Reduction of human GFAP RNA (all isoforms) in transgenic mice










GFAP RNA (% control) RTS38621
ED50 (μg)














Compound
Dose

SPINAL
BRAIN

SPINAL
BRAIN


No.
(μg)
CORTEX
CORD
STEM
CORTEX
CORD
STEM

















PBS

100
100
100
N/A
N/A
N/A


1166998
100
11
18
17
N/A
N/A
N/A



300
7
12
9
N/A
N/A
N/A


1199983
3
75
83
71



10
72
57
62
18

15



30
37
38
38

16



100
17
27
22



300
12
22
17









Example 10: Effect of Modified Oligonucleotides on Human GFAP RNA In Vitro, Multiple Doses

Modified oligonucleotides selected from the examples above were tested at various doses in U251 cells. Cultured U251 cells at a density of 30,000 cells per well were treated with electroporation with various concentrations of modified oligonucleotide as specified in the tables below. After a treatment period of approximately 24 hours, total RNA was isolated from the cells and GFAP RNA levels were measured by quantitative real-time RTPCR. Human GFAP primer probe sets RTS38621 (described herein above), RTS38024 (forward sequence AACCGGATCACCATCCC, designated herein as SEQ ID NO:2892: reverse sequence CCTTGTGATTTTCCCCGTCT, designated herein as SEQ ID NO: 1064; probe sequence TGCTTTTGCCCCCTCGAATCTG, designated herein as SEQ ID) NO: 2894), and RTS38622 (forward sequence AACCGGATCACCATTCCC, designated herein as SEQ ID NO: 2892; reverse sequence GTCTTCACCACGATGTCCTC, designated herein as SEQ ID NO: 2896; probe sequence CACCAAGTCTGTGTCAGAAGGCCA, designated herein as SEQ ID NO: 2897) were used to measure RNA levels. GFAP RNA levels were normalized to total GAPDH, as measured by human primer probe set RTS104 (forward sequence GAAGGTGAAGGTCGGAGTC, designated herein as SEQ ID NO: 2898; reverse sequence GAAGATGGTGATGGGATITC, designated herein as SEQ ID NO: 2899; probe sequence CAAGCTTCCCGTCTCAGCC, designated herein as SEQ ID NO: 2900). Results are presented as percent of GFAP RNA, relative to untreated control cells (% UTC). The half maximal inhibitory concentration (IC50) of each modified oligonucleotide was calculated using a linear regression on a log/linear plot of the data in Excel.









TABLE 113







Dose-dependent reduction of human GFAP RNA


in U251 cells by modified oligonucleotides










GFAP RNA (% UTC) RTS38621














Compound
123
370
1100
3300
10000
IC50


No.
nM
nM
nM
nM
nM
(μM)
















1072813
111
77
62
28
16
1.6


1166721
81
63
30
19
15
0.6


1166874
86
62
34
15
15
0.6


1166895
91
94
68
40
21
2.5


1166954
69
52
35
14
12
0.4


1047582
54
26
13
6
5
0.1
















TABLE 114







Dose-dependent reduction of human GFAP RNA


in U251 cells by modified oligonucleotides










GFAP RNA (% UTC) RTS38622














Compound
123
370
1100
3300
10000
IC50


No.
nM
nM
nM
nM
nM
(μM)
















1072813
84
70
34
20
9
0.7


1166721
78
47
27
15
11
0.4


1166874
80
49
27
9
7
0.4


1166895
89
83
62
35
17
1.8


1166954
68
50
27
9
5
0.3


1047582
51
24
10
3
1
0.1
















TABLE 115







Dose-dependent reduction of human GFAP RNA


in U251 cells by modified oligonucleotides










GFAP RNA (% UTC) RTS38624














Compound
123
370
1100
3300
10000
IC50


No.
nM
nM
nM
nM
nM
(μM)
















1072813
98
86
78
61
54
10.6


1166721
87
66
43
28
21
1.0


1166874
70
90
57
50
54
9.0


1166895
88
90
71
52
34
4.0


1166954
77
69
67
53
50
6.9


1047582
68
56
47
41
43
1.2
















TABLE 116







Dose-dependent reduction of human GFAP RNA


in U251 cells by modified oligonucleotides










GFAP RNA (% UTC) RTS38621














Compound
123
370
1100
3300
10000
IC50


No.
nM
nM
nM
nM
nM
(μM)
















1166985
88
79
49
33
18
1.3


1166986
82
71
55
31
23
1.3


1166998
74
97
37
23
15
1.1


1167056
64
38
23
12
10
0.2


1199983
70
53
37
17
10
0.4


1048182
69
53
30
15
10
0.4
















TABLE 117







Dose-dependent reduction of human GFAP RNA


in U251 cells by modified oligonucleotides










GFAP RNA (% UTC) RTS38622














Compound
123
370
1100
3300
10000
IC50


No.
nM
nM
nM
nM
nM
(μM)
















1166985
79
71
44
28
16
0.9


1166986
83
68
53
30
23
1.2


1166998
72
94
37
23
15
1.0


1167056
64
38
21
9
6
0.2


1199983
72
62
40
18
11
0.6


1048182
79
50
36
19
13
0.5
















TABLE 118







Dose-dependent reduction of human GFAP RNA


in U251 cells by modified oligonucleotides










GFAP RNA (% UTC) RTS38624














Compound
123
370
1100
3300
10000
IC50


No.
nM
nM
nM
nM
nM
(μM)
















1166985
80
75
54
44
25
1.8


1166986
86
73
65
43
31
2.5


1166998
76
111
53
32
17
1.8


1167056
80
72
62
53
55
10.6


1199983
77
65
52
31
20
1.0


1048182
92
69
52
33
20
1.3









Example 11: Effect of Modified Oligonucleotides on Human GFAP RNA Vitro, Multiple Doses

Modified oligonucleotides selected from the examples above were tested at various doses in U251 cells. Cultured U251 cells at a density of 20,000 cells per well were treated using free uptake with various concentrations of modified oligonucleotide as specified in the tables below. After a treatment period of approximately 48 hours, total RNA was isolated from the cells and GFAP RNA levels were measured by quantitative real-time RTPCR. Human GFAP primer probe sets RTS37485 (described herein above) was used to measure RNA levels. GFAP RNA levels were normalized to total GAPDH, as measured by human primer probe set RTS104 (described herein above). Results are presented as percent of GFAP RNA, relative to untreated control cells (% UTC). The half maximal inhibitory concentration (IC50) of each modified oligonucleotide was calculated using a linear regression on a log/linear plot of the data in Excel.









TABLE 113







Dose-dependent reduction of human GFAP RNA


in U251 cells by modified oligonucleotides










GFAP RNA (% UTC) RTS37485














Compound
250
740
2220
6670
20000
IC50


No.
nM
nM
nM
nM
nM
(μM)
















1072813
105
102
80
59
34
10


1166721
92
83
64
49
32
7


1166874
81
78
55
38
22
4


1166895
83
89
85
78
73
950


1166926
97
93
79
73
58
31


1166927
89
86
78
76
52
28


1166954
92
90
77
67
58
29


1166985
104
108
104
94
80
43


1166986
94
92
95
84
82
1063


1166998
91
91
77
59
42
12


1167056
77
55
32
17
12
1


1167058
85
59
41
18
15
1


1199983
94
88
73
62
49
17








Claims
  • 1.-45. (canceled)
  • 46. A modified oligonucleotide according to the following chemical structure:
  • 47. A modified oligonucleotide according to the following chemical structure:
  • 48.-55. (canceled)
  • 56. The modified oligonucleotide of claim 46, which is the sodium salt or the potassium salt.
  • 57. A pharmaceutical composition comprising the modified oligonucleotide of claim 46 and a pharmaceutically acceptable diluent.
  • 58. The pharmaceutical composition of claim 57, wherein the pharmaceutically acceptable diluent is artificial cerebrospinal fluid or phosphate-buffered saline (PBS).
  • 59. The pharmaceutical composition of claim 58, wherein the pharmaceutical composition consists of the modified oligonucleotide and artificial cerebrospinal fluid.
  • 60. (canceled)
  • 61. An oligomeric compound comprising a modified oligonucleotide according to the following chemical notation: mCesAeomCeoAcoTeoTeomCdsAdsmCdsTdsAdsAdsTdsAdsTdsTasTeoAesAesmCe (SEQ ID NO: 21), wherein: A=an adenine nucleobase,mC=a 5-methylcytosine nucleobase,G=a guanine nucleobase,T=a thymine nucleobase,e=a 2′-β-D-MOE sugar moiety,d=a 2′-β-D-deoxyribosyl sugar moiety,S=a phosphorothioate internucleoside linkage, ando=a phosphodiester internucleoside linkage.
  • 62.-65. (canceled)
  • 66. The oligomeric compound of claim 61, comprising the modified oligonucleotide covalently linked to a conjugate group.
  • 67. A pharmaceutical composition comprising the oligomeric compound of claim 61, and a pharmaceutically acceptable diluent.
  • 68. The pharmaceutical composition of claim 67, wherein the pharmaceutically acceptable diluent is artificial cerebrospinal fluid or PBS.
  • 69. The pharmaceutical composition of claim 68, wherein the pharmaceutical composition consists of the oligomeric compound and artificial cerebrospinal fluid.
  • 70.-78. (canceled)
  • 79. A method comprising administering to an individual the pharmaceutical composition of claim 57.
  • 80. A method of treating a disease associated with GFAP, comprising administering to an individual having or at risk of having a disease associated with GFAP a therapeutically effective amount of the pharmaceutical composition according to claim 57, thereby treating the disease associated with GFAP.
  • 81. (canceled)
  • 82. (canceled)
  • 83. The method of claim 80, wherein the disease is Alexander disease.
  • 84. The method of claim 80, wherein at least one symptom or hallmark of the disease is ameliorated.
  • 85. The method of claim 84, wherein at least one symptom or hallmark is any of motor delays, cognitive delays, paroxysmal deterioration, seizures, vomiting, swallowing difficulties, ataxic gait, palatal myoclonus, autonomic dysfunction, or the presence of intra-astrocytic inclusions called Rosenthal fibers.
  • 86. The method of claim 80, wherein the pharmaceutical composition is administered to the central nervous system or systemically.
  • 87. The method of claim 80, wherein the pharmaceutical composition is administered to the central nervous system and systemically.
  • 88. (canceled)
  • 89. The pharmaceutical composition of claim 58, wherein the pharmaceutical composition consists essentially of the modified oligonucleotide and artificial cerebrospinal fluid.
  • 90. The pharmaceutical composition of claim 68, wherein the pharmaceutical composition consists essentially of the oligomeric compound and artificial cerebrospinal fluid.
  • 91. The pharmaceutical composition of claim 58, wherein the pharmaceutical composition consists essentially of the modified oligonucleotide and PBS.
  • 92. The pharmaceutical composition of claim 68, wherein the pharmaceutical composition consists essentially of the oligomeric compound and PBS.
  • 93. A pharmaceutical composition comprising the modified oligonucleotide of claim 47 and a pharmaceutically acceptable diluent.
  • 94. The pharmaceutical composition of claim 93, wherein the pharmaceutically acceptable diluent is artificial cerebrospinal fluid or PBS.
  • 95. The pharmaceutical composition of claim 94, wherein the pharmaceutical composition consists essentially of the modified oligonucleotide and artificial cerebrospinal fluid.
  • 96. The pharmaceutical composition of claim 94, wherein the pharmaceutical composition consists essentially of the modified oligonucleotide and PBS.
  • 97. A pharmaceutical composition comprising the modified oligonucleotide of claim 56 and a pharmaceutically acceptable diluent.
  • 98. The pharmaceutical composition of claim 97, wherein the pharmaceutically acceptable diluent is artificial cerebrospinal fluid or PBS.
  • 99. The pharmaceutical composition of claim 98, wherein the pharmaceutical composition consists essentially of the modified oligonucleotide and artificial cerebrospinal fluid.
  • 100. The pharmaceutical composition of claim 98, wherein the pharmaceutical composition consists essentially of the modified oligonucleotide and PBS.
  • 101. A population of modified oligonucleotides of claim 46, wherein all of the phosphorothioate internucleoside linkages of the modified oligonucleotide are stereorandom.
  • 102. A population of modified oligonucleotides of claim 47, wherein all of the phosphorothioate internucleoside linkages of the modified oligonucleotide are stereorandom.
  • 103. A population of modified oligonucleotides of claim 56, wherein all of the phosphorothioate internucleoside linkages of the modified oligonucleotide are stereorandom.
  • 104. A population of oligomeric compounds of claim 61, wherein all of the phosphorothioate internucleoside linkages of the modified oligonucleotide are stereorandom.
  • 105. A pharmaceutical composition comprising the population of modified oligonucleotides of claim 101 and a pharmaceutically acceptable diluent.
  • 106. The pharmaceutical composition of claim 105, wherein the pharmaceutically acceptable diluent is artificial cerebrospinal fluid or PBS.
  • 107. A pharmaceutical composition comprising the population of modified oligonucleotides of claim 102 and a pharmaceutically acceptable diluent.
  • 108. The pharmaceutical composition of claim 107, wherein the pharmaceutically acceptable diluent is artificial cerebrospinal fluid or PBS.
  • 109. A pharmaceutical composition comprising the population of modified oligonucleotides of claim 103 and a pharmaceutically acceptable diluent.
  • 110. The pharmaceutical composition of claim 109, wherein the pharmaceutically acceptable diluent is artificial cerebrospinal fluid or PBS.
  • 111. A pharmaceutical composition comprising the population of oligomeric compounds of claim 104 and a pharmaceutically acceptable diluent.
  • 112. The pharmaceutical composition of claim 111, wherein the pharmaceutically acceptable diluent is artificial cerebrospinal fluid or PBS.
  • 113. The method of claim 79, wherein the individual has or is at risk of having Alexander disease.
Provisional Applications (1)
Number Date Country
62878998 Jul 2019 US
Continuations (1)
Number Date Country
Parent 16938826 Jul 2020 US
Child 18243156 US