Compounds and methods for treatment and diagnosis of chlamydial infection

Information

  • Patent Grant
  • 6432916
  • Patent Number
    6,432,916
  • Date Filed
    Wednesday, April 19, 2000
    24 years ago
  • Date Issued
    Tuesday, August 13, 2002
    22 years ago
Abstract
Compounds and methods for the diagnosis and treatment of Chlamydial infection are disclosed. The compounds provided include polypeptides that contain at least one antigenic portion of a Chlamydia antigen and DNA sequences encoding such polypeptides. Pharmaceutical compositions and vaccines comprising such polypeptides or DNA sequences are also provided, together with antibodies directed against such polypeptides. Diagnostic kits containing such polypeptides or DNA sequences and a suitable detection reagent may be used for the detection of Chlamydial infection in patients and in biological samples.
Description




TECHNICAL FIELD




The present invention relates generally to the detection and treatment of Chlamydial infection. In particular, the invention is related to polypeptides comprising a Chlamydia antigen and the use of such polypeptides for the serodiagnosis and treatment of Chlamydial infection.




BACKGROUND OF THE INVENTION




Chlamydiae are intracellular bacterial pathogens that are responsible for a wide variety of important human and animal infections.


Chlamydia trachomatis


is one of the most common causes of sexually transmitted diseases and can lead to pelvic inflammatory disease (PID), resulting in tubal obstruction and infertility.


Chlamydia trachomatis


may also play a role in male infertility. In 1990, the cost of treating PID in the US was estimated to be $4 billion. Trachoma, due to ocular infection with


Chlamydia trachomatis,


is the leading cause of preventable blindness worldwide.


Chlamydia pneumonia


is a major cause of acute respiratory tract infections in humans and is also believed to play a role in the pathogenesis of atherosclerosis and, in particular, coronary heart disease. Individuals with a high titer of antibodies to


Chlamydia pneumonia


have been shown to be at least twice as likely to suffer from coronary heart disease as seronegative individuals. Chlamydial infections thus constitute a significant health problem both in the US and worldwide.




Chlamydial infection is often asymptomatic. For example, by the time a woman seeks medical attention for PID, irreversible damage may have already occurred resulting in infertility. There thus remains a need in the art for improved vaccines and pharmaceutical compositions for the prevention and treatment of Chlamydia infections. The present invention fulfills this need and further provides other related advantages.




SUMMARY OF THE INVENTION




The present invention provides compositions and methods for the diagnosis and therapy of Chlamydia infection. In one aspect, the present invention provides polypeptides comprising an immunogenic portion of a Chlamydia antigen, or a variant of such an antigen. Certain portions and other variants are immunogenic, such that the ability of the variant to react with antigen-specific antisera is not substantially diminished. Within certain embodiments, the polypeptide comprises an amino acid sequence encoded by a polynucleotide sequence selected from the group consisting of (a) a sequence of SEQ ID NO: 1, 15, 21-25, 44-64, 66-76, 79-88, 110-119, 120, 122, 124, 126, 128, 130, 132, 134, 136, 169-174, 181-188, 263, 265 and 267-290; (b) the complements of said sequences; and (c) sequences that hybridize to a sequence of (a) or (b) under moderately stringent conditions. In specific embodiments, the polypeptides of the present invention comprise at least a portion of a Chlamydial protein that includes an amino acid sequence selected from the group consisting of sequences recited in SEQ ID NO: 5-14, 17-20, 26, 28, 30-32, 34, 39-43, 65, 89-109, 138-158, 167, 168, 224-262, 246, 247, 254-256, 292, 294-305 and variants thereof.




The present invention further provides polynucleotides that encode a polypeptide as described above, or a portion thereof (such as a portion encoding at least 15 amino acid residues of a Chlamydial protein), expression vectors comprising such polynucleotides and host cells transformed or transfected with such expression vectors.




In a related aspect, polynucleotide sequences encoding the above polypeptides, recombinant expression vectors comprising one or more of these polynucleotide sequences and host cells transformed or transfected with such expression vectors are also provided.




In another aspect, the present invention provides fusion proteins comprising an inventive polypeptide, or, alternatively, an inventive polypeptide and a known Chlamydia antigen, as well as polynucleotides encoding such fusion proteins, in combination with a physiologically acceptable carrier or immunostimulant for use as pharmaceutical compositions and vaccines thereof.




The present invention further provides pharmaceutical compositions that comprise: (a) an antibody, both polyclonal and monoclonal, or antigen-binding fragment thereof that specifically binds to a Chlamydial protein; and (b) a physiologically acceptable carrier. Within other aspects, the present invention provides pharmaceutical compositions that comprise one or more Chlamydia polypeptides disclosed herein, or a polynucleotide molecule encoding such a polypeptide, and a physiologically acceptable carrier. The invention also provides vaccines for prophylactic and therapeutic purposes comprising one or more of the disclosed polypeptides and an immunostimulant, as defined herein, together with vaccines comprising one or more polynucleotide sequences encoding such polypeptides and an immunostimulant.




In yet another aspect, methods are provided for inducing protective immunity in a patient, comprising administering to a patient an effective amount of one or more of the above pharmaceutical compositions or vaccines.




In yet a further aspect, methods for the treatment of Chlamydia infection in a patient are provided, the methods comprising obtaining peripheral blood mononuclear cells (PBMC) from the patient, incubating the PBMC with a polypeptide of the present invention (or a polynucleotide that encodes such a polypeptide) to provide incubated T cells and administering the incubated T cells to the patient. The present invention additionally provides methods for the treatment of Chlamydia infection that comprise incubating antigen presenting cells with a polypeptide of the present invention (or a polynucleotide that encodes such a polypeptide) to provide incubated antigen presenting cells and administering the incubated antigen presenting cells to the patient. Proliferated cells may, but need not, be cloned prior to administration to the patient. In certain embodiments, the antigen presenting cells are selected from the group consisting of dendritic cells, macrophages, monocytes, B-cells, and fibroblasts. Compositions for the treatment of Chlamydia infection comprising T cells or antigen presenting cells that have been incubated with a polypeptide or polynucleotide of the present invention are also provided. Within related aspects, vaccines are provided that comprise: (a) an antigen presenting cell that expresses a polypeptide as described above and (b) an immunostimulant.




The present invention further provides, within other aspects, methods for removing Chlamydial-infected cells from a biological sample, comprising contacting a biological sample with T cells that specifically react with a Chlamydial protein, wherein the step of contacting is performed under conditions and for a time sufficient to permit the removal of cells expressing the protein from the sample.




Within related aspects, methods are provided for inhibiting the development of Chlamydial infection in a patient, comprising administering to a patient a biological sample treated as described above. In further aspects of the subject invention, methods and diagnostic kits are provided for detecting Chlamydia infection in a patient. In one embodiment, the method comprises: (a) contacting a biological sample with at least one of the polypeptides or fusion proteins disclosed herein; and (b) detecting in the sample the presence of binding agents that bind to the polypeptide or fusion protein, thereby detecting Chlamydia infection in the biological sample. Suitable biological samples include whole blood, sputum, serum, plasma, saliva, cerebrospinal fluid and urine. In one embodiment, the diagnostic kits comprise one or more of the polypeptides or fusion proteins disclosed herein in combination with a detection reagent. In yet another embodiment, the diagnostic kits comprise either a monoclonal antibody or a polyclonal antibody that binds with a polypeptide of the present invention.




The present invention also provides methods for detecting Chlamydia infection comprising: (a) obtaining a biological sample from a patient; (b) contacting the sample with at least two oligonucleotide primers in a polymerase chain reaction, at least one of the oligonucleotide primers being specific for a polynucleotide sequence disclosed herein; and (c) detecting in the sample a polynucleotide sequence that amplifies in the presence of the oligonucleotide primers. In one embodiment, the oligonucleotide primer comprises at least about 10 contiguous nucleotides of a polynucleotide sequence peptide disclosed herein, or of a sequence that hybridizes thereto.




In a further aspect, the present invention provides a method for detecting Chlamydia infection in a patient comprising: (a) obtaining a biological sample from the patient; (b) contacting the sample with an oligonucleotide probe specific for a polynucleotide sequence disclosed herein; and (c) detecting in the sample a polynucleotide sequence that hybridizes to the oligonucleotide probe. In one embodiment, the oligonucleotide probe comprises at least about 15 contiguous nucleotides of a polynucleotide sequence disclosed herein, or a sequence that hybridizes thereto.




These and other aspects of the present invention will become apparent upon reference to the following detailed description. All references disclosed herein are hereby incorporated by reference in their entirety as if each was incorporated individually.




Sequence Identifiers




SEQ ID NO: 1 is the determined DNA sequence for the


C. trachomatis


clone 1-B1-66.




SEQ ID NO: 2 is the determined DNA sequence for the


C. trachomatis


clone 4-D7-28.




SEQ ID NO: 3 is the determined DNA sequence for the


C. trachomatis


clone 3-G3-10.




SEQ ID NO: 4 is the determined DNA sequence for the


C. trachomatis


clone 10-C10-31.




SEQ ID NO: 5 is the predicted amino acid sequence for 1-B1-66.




SEQ ID NO: 6 is the predicted amino acid sequence for 4-D7-28.




SEQ ID NO: 7 is a first predicted amino acid sequence for 3-G3-10.




SEQ ID NO: 8 is a second predicted amino acid sequence for 3-G3-10.




SEQ ID NO: 9 is a third predicted amino acid sequence for 3-G3-10.




SEQ ID NO: 10 is a fourth predicted amino acid sequence for 3-G3-10.




SEQ ID NO: 11 is a fifth predicted amino acid sequence for 3-G3-10.




SEQ ID NO: 12 is the predicted amino acid sequence for 10-C10-31.




SEQ ID NO: 13 is the amino acid sequence of the synthetic peptide 1-B1-66/48-67.




SEQ ID NO: 14 is the amino acid sequence of the synthetic peptide 1-B1-66/58-77.




SEQ ID NO: 15 is the determined DNA sequence for the


C. trachomatis


serovar LGV II clone 2C7-8




SEQ ID NO: 16 is a DNA sequence of a putative open reading frame from a region of the


C. trachomatis


serovar D genome to which 2C7-8 maps




SEQ ID NO: 17 is the predicted amino acid sequence encoded by the DNA sequence of SEQ ID NO: 16




SEQ ID NO: 18 is the amino acid sequence of the synthetic peptide CtC7.8-12




SEQ ID NO: 19 is the amino acid sequence of the synthetic peptide CtC7.8-13




SEQ ID NO: 20 is the predicted amino acid sequence encoded by a second putative open reading from


C. trachomatis


serovar D




SEQ ID NO: 21 is the determined DNA sequence for clone 4C9-18 from


C. trachomatis


LGV II




SEQ ID NO: 22 is the determined DNA sequence homologous to Lipoamide Dehydrogenase from


C. trachomatis


LGV II




SEQ ID NO: 23 is the determined DNA sequence homologous to Hypothetical protein from


C. trachomatis


LGV II




SEQ ID NO: 24 is the determined DNA sequence homologous to Ubiquinone Mehtyltransferase from


C. trachomatis


LGV II




SEQ ID NO: 25 is the determined DNA sequence for clone 4C9-18#2 BL21 pLysS from


C. trachomatis


LGV II




SEQ ID NO: 26 is the predicted amino acid sequence for 4C9-18#2 from


C. trachomatis


LGV II




SEQ ID NO: 27 is the determined DNA sequence for Cp-SWIB from


C. pneumonia


strain TWAR




SEQ ID NO: 28 is the predicted amino acid sequence for Cp-SWIB from


C. pneumonia


strain TWAR




SEQ ID NO: 29 is the determined DNA sequence for Cp-S13 from


C. pneumonia


strain TWAR




SEQ ID NO: 30 is the predicted amino acid sequence for Cp-S13 from


C. pneumonia


strain TWAR




SEQ ID NO: 31 is the amino acid sequence for a 10 mer consensus peptide from CtC7.8-12 and CtC7.8-13




SEQ ID NO: 32 is the predicted amino acid sequence for clone 2C7-8 from


C. trachomatis


LGV II




SEQ ID NO: 33 is the DNA sequence corresponding to nucleotides 597304-597145 of the


C. trachomatis


serovar D genome (NCBI, BLASTN search), which shows homology to clone 2C7-8




SEQ ID NO: 34 is the predicted amino acid sequence encoded by the sequence of SEQ ID NO: 33




SEQ ID NO: 35 is the DNA sequence for C.p. SWIB Nde (5′primer) from


C. pneumonia






SEQ ID NO: 36 is the DNA sequence for C.p. SWIB EcoRI (3′primer) from


C. pneumonia






SEQ ID NO : 37 is the DNA sequence for C.p. S13 Nde (5′primer) from


C. pneumonia






SEQ ID NO: 38 is the DNA sequence for C.p. S13 EcoRI (3′primer) from


C. pneumonia






SEQ ID NO: 39 is the amino acid sequence for CtSwib 52-67 peptide from


C. trachomatis


LGV II




SEQ ID NO: 40 is the amino acid sequence for CpSwib 53-68 peptide from


C. pneumonia






SEQ ID NO: 41 is the amino acid sequence for HuSwib 288-302 peptide from Human SWI domain




SEQ ID NO: 42 is the amino acid sequence for CtSWI-T 822-837 peptide from the topoisomerase-SWIB fusion of


C. trachomatis






SEQ ID NO: 43 is the amino acid sequence for CpSWI-T 828-842 peptide from the topoisomerase-SWIB fusion of


C. pneumonia






SEQ ID NO: 44 is a first determined DNA sequence for the


C. trachomatis


LGV II clone 19783.3,jen.seq(1>509)CTL2#11-3′, representing the 3′ end.




SEQ ID NO: 45 is a second determined DNA sequence for the


C. trachomatis


LGV II clone 19783.4,jen.seq(1>481)CTL2#11-5′, representing the 5′ end.




SEQ ID NO: 46 is the determined DNA sequence for the


C. trachomatis


LGV II clone19784CTL2





12consensus.seq(1>427)CTL2#12.




SEQ ID NO: 47 is the determined DNA sequence for the


C. trachomatis


LGV II clone 19785.4,jen.seq(1>600)CTL2#16-5′, representing the 5′ end.




SEQ ID NO: 48 is a first determined DNA sequence for the


C. trachomatis


LGV II clone 19786.3,jen.seq(1>600)CTL2#18-3′, representing the 3′ end.




SEQ ID NO: 49 is a second determined DNA sequence for the


C. trachomatis


LGV II clone 19786.4,jen.seq(1>600)CTL2#18-5′, representing the 5′ end.




SEQ ID NO: 50 is the determined DNA sequence for the


C. trachomatis


LGV II clone 19788CTL2





21consensus.seq(1>406)CTL2#21.




SEQ ID NO: 51 is the determined DNA sequence for the


C. trachomatis


LGV II clone 19790CTL2





23consensus.seq(1>602)CTL2#23.




SEQ ID NO: 52 is the determined DNA sequence for the


C. trachomatis


LGV II clone 19791CTL2





24consensus.seq(1>145)CTL2#24.




SEQ ID NO: 53 is the determined DNA sequence for the


C. trachomatis


LGV II clone CTL2#4.




SEQ ID NO: 54 is the determined DNA sequence for the


C. trachomatis


LGV II clone CTL2#8b.




SEQ ID NO: 55 is the determined DNA sequence for the


C. trachomatis


LGV II clone15-G1-89, sharing homology to the lipoamide dehydrogenase gene CT557.




SEQ ID NO: 56 is the determined DNA sequence for the


C. trachomatis


LGV II clone 14-H1-4, sharing homology to the thiol specific antioxidant gene CT603.




SEQ ID NO: 57 is the determined DNA sequence for the


C. trachomatis


LGV II clone 12-G3-83, sharing homology to the hypothetical protein CT622.




SEQ ID NO: 58 is the determined DNA sequence for the


C. trachomatis


LGV II clone 12-B3-95, sharing homology to the lipoamide dehydrogenase gene CT557.




SEQ ID NO: 59 is the determined DNA sequence for the


C. trachomatis


LGV II clone 11-H4-28, sharing homology to the dnaK gene CT396.




SEQ ID NO: 60 is the determined DNA sequence for the


C. trachomatis


LGV II clone 11-H3-68, sharing partial homology to the PGP6-D virulence protein and L1 ribosomal gene CT318.




SEQ ID NO: 61 is the determined DNA sequence for the


C. trachomatis


LGV II clone 11-G1-34, sharing partial homology to the malate dehydrogenase gene CT376 and to the glycogen hydrolase gene CT042.




SEQ ID NO: 62 is the determined DNA sequence for the


C. trachomatis


LGV II clone 11-G10-46, sharing homology to the hypothetical protein CT610.




SEQ ID NO: 63 is the determined DNA sequence for the


C. trachomatis


LGV II clone 11-C12-91, sharing homology to the OMP2 gene CT443.




SEQ ID NO: 64 is the determined DNA sequence for the


C. trachomatis


LGV II clone 11-A3-93, sharing homology to the HAD superfamily gene CT103.




SEQ ID NO: 65 is the determined amino acid sequence for the


C. trachomatis


LGV II clone 14-H1-4, sharing homology to the thiol specific antioxidant gene CT603.




SEQ ID NO: 66 is the determined DNA sequence for the


C. trachomatis


LGV II clone CtL2#9.




SEQ ID NO: 67 is the determined DNA sequence for the


C. trachomatis


LGV II clone CtL2#7.




SEQ ID NO: 68 is the determined DNA sequence for the


C. trachomatis


LGV II clone CtL2#6.




SEQ ID NO: 69 is the determined DNA sequence for the


C. trachomatis


LGV II clone CtL2#5.




SEQ ID NO: 70 is the determined DNA sequence for the


C. trachomatis


LGV II clone CtL2#2.




SEQ ID NO: 71 is the determined DNA sequence for the


C. trachomatis


LGV II clone CtL2#1.




SEQ ID NO: 72 is a first determined DNA sequence for the


C. trachomatis


LGV II clone 23509.2CtL2#3-5′, representing the 5′ end.




SEQ ID NO: 73 is a second determined DNA sequence for the


C. trachomatis


LGV II clone 23509.1CtL2#3-3′, representing the 3′ end.




SEQ ID NO: 74 is a first determined DNA sequence for the


C. trachomatis


LGV II clone 22121.2CtL2#10-5′, representing the 5′ end.




SEQ ID NO: 75 is a second determined DNA sequence for the


C. trachomatis


LGV II clone 22121.1 CtL2#10-3′, representing the 3′ end.




SEQ ID NO: 76 is the determined DNA sequence for the


C. trachomatis


LGV II clone 19787.6CtL2#19-5′, representing the 5′ end.




SEQ ID NO: 77 is the determined DNA sequence for the


C. pneumoniae


LGV II clone CpS 13-His.




SEQ ID NO: 78 is the determined DNA sequence for the


C. pneumoniae


LGV II clone Cp_SWIB-His.




SEQ ID NO: 79 is the determined DNA sequence for the


C. trachomatis


LGV II clone 23-G7-68, sharing partial homology to the L11, L10 and L1 ribosomal protein.




SEQ ID NO: 80 is the determined DNA sequence for the


C. trachomatis


LGV II clone 22-F8-91, sharing homology to the pmpC gene.




SEQ ID NO: 81 is the determined DNA sequence for the


C. trachomatis


LGV II clone 21-E8-14, sharing homology to the CT610-CT613 genes.




SEQ ID NO: 82 is the determined DNA sequence for the


C. trachomatis


LGV II clone 19-F12-57, sharing homology to the CT858 and recA genes.




SEQ ID NO: 83 is the determined DNA sequence for the


C. trachomatis


LGV II clone 19-F12-53, sharing homology to the CT445 gene encoding glutamyl tRNA synthetase.




SEQ ID NO: 84 is the determined DNA sequence for the


C. trachomatis


LGV II clone 19-A5-54, sharing homology to the cryptic plasmid gene.




SEQ ID NO: 85 is the determined DNA sequence for the


C. trachomatis


LGV II clone 17-E11-72, sharing partial homology to the OppC





2 and pmpD genes.




SEQ ID NO: 86 is the determined DNA sequence for the


C. trachomatis


LGV II clone 17-C1-77, sharing partial homology to the CT857 and CT858 open reading frames.




SEQ ID NO: 87 is the determined DNA sequence for the


C. trachomatis


LGV II clone 15-H2-76, sharing partial homology to the pmpD and SycE genes, and to the CT089 ORF.




SEQ ID NO: 88 is the determined DNA sequence for the


C. trachomatis


LGV II clone 15-A3-26, sharing homology to the CT858 ORF.




SEQ ID NO: 89 is the determined amino acid sequence for the


C. pnuemoniae


clone Cp_SWIB-His.




SEQ ID NO: 90 is the determined amino acid sequence for the


C. trachomatis


LGV II clone CtL2_LPDA_FL.




SEQ ID NO: 91 is the determined amino acid sequence for the


C. pnuemoniae


clone CpS13-His.




SEQ ID NO: 92 is the determined amino acid sequence for the


C. trachomatis


LGV II clone CtL2_TSA_FL.




SEQ ID NO: 93 is the amino acid sequence for Ct-Swib 43-61 peptide from


C. trachomatis


LGV II.




SEQ ID NO: 94 is the amino acid sequence for Ct-Swib 48-67 peptide from


C. trachomatis


LGV II.




SEQ ID NO: 95 is the amino acid sequence for Ct-Swib 52-71 peptide from


C. trachomatis


LGV II.




SEQ ID NO: 96 is the amino acid sequence for Ct-Swib 58-77 peptide from


C. trachomatis


LGV II.




SEQ ID NO: 97 is the amino acid sequence for Ct-Swib 63-82 peptide from


C. trachomatis


LGV II.




SEQ ID NO: 98 is the amino acid sequence for Ct-Swib 51-66 peptide from


C. trachomatis


LGV II.




SEQ ID NO: 99 is the amino acid sequence for Cp-Swib 52-67 peptide from


C. pneumonia.






SEQ ID NO: 100 is the amino acid sequence for Cp-Swib 37-51 peptide from


C. pneumonia.






SEQ ID NO: 101 is the amino acid sequence for Cp-Swib 32-51 peptide from


C. pneumonia.






SEQ ID NO: 102 is the amino acid sequence for Cp-Swib 37-56 peptide from


C. pneumonia.






SEQ ID NO: 103 is the amino acid sequence for Ct-Swib 36-50 peptide from


C. trachomatis.






SEQ ID NO: 104 is the amino acid sequence for Ct-S13 46-65 peptide from


C. trachomatis.






SEQ ID NO: 105 is the amino acid sequence for Ct-S13 60-80 peptide from


C. trachomatis.






SEQ ID NO: 106 is the amino acid sequence for Ct-S13 1-20 peptide from


C. trachomatis.






SEQ ID NO: 107 is the amino acid sequence for Ct-S13 46-65 peptide from


C. trachomatis.






SEQ ID NO; 108 is the amino acid sequence for Ct-S13 56-75 peptide from


C. trachomatis.






SEQ ID NO: 109 is the amino acid sequence for Cp-S13 56-75 peptide from


C. pneumoniae.






SEQ ID NO: 110 is the determined DNA sequence for the


C. trachomatis


LGV II clone 21-G12-60, containing partial open reading frames for hypothetical proteins CT875, CT229 and CT228.




SEQ ID NO: 111 is the determined DNA sequence for the


C. trachomatis


LGV II clone 22-B3-53, sharing homology to the C110 ORF of GroEL.




SEQ ID NO: 112 is the determined DNA sequence for the


C. trachomatis


LGV II clone 22-A1-49, sharing partial homology to the CT660 and CT659 ORFs.




SEQ ID NO: 113 is the determined DNA sequence for the


C. trachomatis


LGV II clone 17-E2-9, sharing partial homology to the CT611 and CT 610 ORFs.




SEQ ID NO: 114 is the determined DNA sequence for the


C. trachomatis


LGV II clone 17-C10-31, sharing partial homology to the CT858 ORF.




SEQ ID NO: 115 is the determined DNA sequence for the


C. trachomatis


LGV II clone 21-C7-66, sharing homology to the dnaK-like gene.




SEQ ID NO: 116 is the determined DNA sequence for the


C. trachomatis


LGV II clone 20-G3-45, containing part of the pmpB gene CT413.




SEQ ID NO: 117 is the determined DNA sequence for the


C. trachomatis


LGV II clone 18-C5-2, sharing homology to the S1 ribosomal protein ORF.




SEQ ID NO: 118 is the determined DNA sequence for the


C. trachomatis


LGV II clone 17-C5-19, containing part of the ORFs for CT431 and CT430.




SEQ ID NO: 119 is the determined DNA sequence for the


C. trachomatis


LGV II clone 16-D4-22, contains partial sequences of ORF3 and ORF4 of the plasmid for growth within mammalian cells.




SEQ ID NO: 120 is the determined full-length DNA sequence for the


C. trachomatis


serovar LGV II Cap1 gene CT529.




SEQ ID NO: 121 is the predicted full-length amino acid sequence for the


C. trachomatis


serovar LGV II Cap1 gene CT529.




SEQ ID NO: 122 is the determined full-length DNA sequence for the


C. trachomatis


serovar E Cap1 gene CT529.




SEQ ID NO: 123 is the predicted full-length amino acid sequence for the


C. trachomatis


serovar E Cap1 gene CT529.




SEQ ID NO: 124 is the determined full-length DNA sequence for the


C. trachomatis


serovar 1A Cap1 gene CT529.




SEQ ID NO: 125 is the predicted full-length amino acid sequence for the


C. trachomatis


serovar 1A Cap1 gene CT529.




SEQ ID NO: 126 is the determined full-length DNA sequence for the


C. trachomatis


serovar G Cap1 gene CT529.




SEQ ID NO: 127 is the predicted full-length amino acid sequence for the


C. trachomatis


serovar G Cap1 gene CT529.




SEQ ID NO: 128 is the determined full-length DNA sequence for the


C. trachomatis


serovar F1 NII Cap1 gene CT529.




SEQ ID NO: 129 is the predicted full-length amino acid sequence for the


C. trachomatis


serovar F1 NII Cap1 gene CT529.




SEQ ID NO: 130 is the determined full-length DNA sequence for the


C. trachomatis


serovar L1 Cap1 gene CT529.




SEQ ID NO: 131 is the predicted full-length amino acid sequence for the


C. trachomatis


serovar L1 Cap1 gene CT529.




SEQ ID NO: 132 is the determined full-length DNA sequence for the


C. trachomatis


serovar L3 Cap1 gene CT529.




SEQ ID NO: 133 is the predicted full-length amino acid sequence for the


C. trachomatis


serovar L3 Cap1 gene CT529.




SEQ ID NO: 134 is the determined full-length DNA sequence for the


C. trachomatis


serovar Ba Cap1 gene CT529.




SEQ ID NO: 135 is the predicted full-length amino acid sequence for the


C. trachomatis


serovar Ba Cap1 gene CT529.




SEQ ID NO: 136 is the determined full-length DNA sequence for the


C. trachomatis


serovar MOPN Cap1 gene CT529.




SEQ ID NO: 137 is the predicted full-length amino acid sequence for the


C. trachomatis


serovar MOPN Cap1 gene CT529.




SEQ ID NO: 138 is the determined amino acid sequence for the Cap1 CT529 ORF peptide #124-139 of


C. trachomatis


serovar L2.




SEQ ID NO: 139 is the determined amino acid sequence for the Cap1 CT529 ORF peptide #132-147 of


C. trachomatis


serovar L2.




SEQ ID NO: 140 is the determined amino acid sequence for the Cap1 CT529 ORF peptide #138-155 of


C. trachomatis


serovar L2.




SEQ ID NO: 141 is the determined amino acid sequence for the Cap1 CT529 ORF peptide #146-163 of


C. trachomatis


serovar L2.




SEQ ID NO: 142 is the determined amino acid sequence for the Cap1 CT529 ORF peptide #154-171 of


C. trachomatis


serovar L2.




SEQ ID NO: 143 is the determined amino acid sequence for the Cap1 CT529 ORF peptide #162-178 of


C. trachomatis


serovar L2.




SEQ ID NO: 144 is the determined amino acid sequence for the Cap1 CT529 ORF peptide #138-147 of


C. trachomatis


serovar L2.




SEQ ID NO: 145 is the determined amino acid sequence for the Cap1 CT529 ORF peptide #139-147 of


C. trachomatis


serovar L2.




SEQ ID NO: 146 is the determined amino acid sequence for the Cap1 CT529 ORF peptide #140-147 of


C. trachomatis


serovar L2.




SEQ ID NO: 147 is the determined amino acid sequence for the Cap1 CT529 ORF peptide #138-146 of


C. trachomatis


serovar L2.




SEQ ID NO: 148 is the determined amino acid sequence for the Cap1 CT529 ORF peptide #138-145 of


C. trachomatis


serovar L2.




SEQ ID NO: 149 is the determined amino acid sequence for the Cap1 CT529 ORF peptide #F140->I of


C. trachomatis


serovar L2.




SEQ ID NO: 150 is the determined amino acid sequence for the Cap1 CT529 ORF peptide ##S139>Ga of


C. trachomatis


serovar L2.




SEQ ID NO: 151 is the determined amino acid sequence for the Cap1 CT529 ORF peptide ##S139>Gb of


C. trachomatis


serovar L2.




SEQ ID NO: 152 is the determined amino acid sequence for the peptide #2 C7.8-6 of the 216aa ORF of


C. trachomatis


serovar L2.




SEQ ID NO: 153 is the determined amino acid sequence for the peptide #2 C7.8-7 of the 216aa ORF of


C. trachomatis


serovar L2.




SEQ ID NO: 154 is the determined amino acid sequence for the peptide #2 C7.8-8 of the 216aa ORF of


C. trachomatis


serovar L2.




SEQ ID NO: 155 is the determined amino acid sequence for the peptide #2 C7.8-9 of the 216aa ORF of


C. trachomatis


serovar L2.




SEQ ID NO: 156 is the determined amino acid sequence for the peptide #2 C7.8-10 of the 216aa ORF of


C. trachomatis


serovar L2.




SEQ ID NO: 157 is the determined amino acid sequence for the 53 amino acid residue peptide of the 216aa ORF within clone 2C7.8 of


C. trachomatis


serovar L2.




SEQ ID NO: 158 is the determined amino acid sequence for the 52 amino acid residue peptide of the CT529 ORF within clone 2C7.8 of


C. trachomatis


serovar L2.




SEQ ID NO: 159 is the determined DNA sequence for the 5′ (forward) primer for cloning full-length CT529 serovar L2.




SEQ ID NO 160 is the determined DNA sequence for the 5′ (reverse) primer for cloning full-length CT529 serovar L2.




SEQ ID NO: 161 is the determined DNA sequence for the 5′ (forward) primer for cloning full-length CT529 for serovars other than L2 and MOPN.




SEQ ID NO: 162 is the determined DNA sequence for the 5′ (reverse) primer for cloning full-length CT529 serovars other than L2 and MOPN.




SEQ ID NO: 163 is the determined DNA sequence for the 5′ (forward) primer for cloning full-length CT529 serovar MOPN.




SEQ ID NO: 164 is the determined DNA sequence for the 5′ (reverse) primer for cloning full-length CT529 serovar MOPN.




SEQ ID NO: 165 is the determined DNA sequence for the 5′ (forward) primer for pBIB-KS.




SEQ ID NO: 166 is the determined DNA sequence for the 5′ (reverse) primer for pBIB-KS.




SEQ ID NO: 167 is the determined amino acid sequence for the 9-mer epitope peptide Cap1 #139-147 from serovar L2.




SEQ ID NO: 168 is the determined amino acid sequence for the 9-mer epitope peptide Cap1 #139-147 from serovar D.




SEQ ID NO: 169 is the determined full-length DNA sequence for the


C. trachomatis


pmpI gene.




SEQ ID NO: 170 is the determined full-length DNA sequence for the


C. trachomatis


pmpG gene.




SEQ ID NO: 171 is the determined full-length DNA sequence for the


C. trachomatis


pmpE gene.




SEQ ID NO: 172 is the determined full-length DNA sequence for the


C. trachomatis


pmpD gene.




SEQ ID NO: 173 is the determined full-length DNA sequence for the


C. trachomatis


pmpC gene.




SEQ ID NO: 174 is the determined full-length DNA sequence for the


C. trachomatis


pmpB gene.




SEQ ID NO: 175 is the predicted full-length amino acid sequence for the


C. trachomatis


pmpI gene.




SEQ ID NO: 176 is the predicted full-length amino acid sequence for the


C. trachomatis


pmpG gene.




SEQ ID NO: 177 is the predicted full-length amino acid sequence for the


C. trachomatis


pmpE gene.




SEQ ID NO: 178 is the predicted full-length amino acid sequence for the


C. trachomatis


pmpD gene.




SEQ ID NO: 179 is the predicted full-length amino acid sequence for the


C. trachomatis


pmpC gene.




SEQ ID NO: 180 is the predicted full-length amino acid sequence for the


C. trachomatis


pmpB gene.




SEQ ID NO: 181 is the determined DNA sequence minus the signal sequence for the


C. trachomatis


pmpI gene.




SEQ ID NO: 182 is a subsequently determined full-length DNA sequence for the


C. trachomatis


pmpG gene.




SEQ ID NO: 183 is the determined DNA sequence minus the signal sequence for the


C. trachomatis


pmpE gene.




SEQ ID NO: 184 is a first determined DNA sequence representing the carboxy terminus for the


C. trachomatis


pmpD gene.




SEQ ID NO: 185 is a second determined DNA sequence representing the amino terminus minus the signal sequence for the


C. trachomatis


pmpD gene.




SEQ ID NO: 186 is a first determined DNA sequence representing the carboxy terminus for the


C. trachomatis


pmpC gene.




SEQ ID NO: 187 is a second determined DNA sequence representing the amino terminus minus the signal sequence for the


C. trachomatis


pmpC gene.




SEQ ID NO: 188 is the determined DNA sequence representing the


C. pneumoniae


serovar MOMPS pmp gene in a fusion molecule with Ra12.




SEQ ID NO: 189 is the predicted amino acid sequence minus the signal sequence for the


C. trachomatis


pmpI gene.




SEQ ID NO: 190 is subsequently predicted amino acid sequence for the


C. trachomatis


pmpG gene.




SEQ ID NO: 191 is the predicted amino acid sequence minus the signal sequence for the


C. trachomatis


pmpE gene.




SEQ ID NO: 192 is a first predicted amino acid sequence representing the carboxy terminus for the


C. trachomatis


pmpD gene.




SEQ ID NO: 193 is a second predicted amino acid sequence representing the Amino terminus minus the signal sequence for the


C. trachomatis


pmpD gene.




SEQ ID NO: 194 is a first predicted amino acid sequence representing the Carboxy terminus for the


C. trachomatis


pmpC gene.




SEQ ID NO: 195 is a second predicted amino acid sequence representing the Amino terminus for the


C. trachomatis


pmpC gene.




SEQ ID NO: 196 is the predicted amino acid sequence representing the


C. pneumoniae


serovar MOMPS pmp gene in a fusion molecule with Ra12.




SEQ ID NO: 197 is the determined DNA sequence for the 5′ oligo primer for cloning the


C. trachomatis


pmpC gene in the SKB vaccine vector.




SEQ ID NO: 198 is the determined DNA sequence for the 3′ oligo primer for cloning the


C. trachomatis


pmpC gene in the SKB vaccine vector.




SEQ ID NO: 199 is the determined DNA sequence for the insertion sequence for cloning the


C. trachomatis


pmpC gene in the SKB vaccine vector.




SEQ ID NO: 200 is the determined DNA sequence for the 5′ oligo primer for cloning the


C. trachomatis


pmpD gene in the SKB vaccine vector.




SEQ ID NO: 201 is the determined DNA sequence for the 3′ oligo primer for cloning the


C. trachomatis


pmpD gene in the SKB vaccine vector.




SEQ ID NO: 202 is the determined DNA sequence for the insertion sequence for cloning the


C. trachomatis


pmpD gene in the SKB vaccine vector.




SEQ ID NO: 203 is the determined DNA sequence for the 5′ oligo primer for cloning the


C. trachomatis


pmpE gene in the SKB vaccine vector.




SEQ ID NO: 204 is the determined DNA sequence for the 3′ oligo primer for cloning the


C. trachomatis


pmpE gene in the SKB vaccine vector.




SEQ ID NO: 205 is the determined DNA sequence for the 5′ oligo primer for cloning the


C. trachomatis


pmpG gene in the SKB vaccine vector.




SEQ ID NO: 206 is the determined DNA sequence for the 3′ oligo primer for cloning the


C. trachomatis


pmpG gene in the SKB vaccine vector.




SEQ ID NO: 207 is the determined DNA sequence for the 5′ oligo primer for cloning the amino terminus portion of the


C. trachomatis


pmpC gene in the pET17b vector.




SEQ ID NO: 208 is the determined DNA sequence for the 3′ oligo primer for cloning the amino terminus portion of the


C. trachomatis


pmpC gene in the pET17b vector.




SEQ ID NO: 209 is the determined DNA sequence for the 5′ oligo primer for cloning the carboxy terminus portion of the


C. trachomatis


pmpC gene in the pET17b vector.




SEQ ID NO: 210 is the determined DNA sequence for the 3′ oligo primer for cloning the carboxy terminus portion of the


C. trachomatis


pmpC gene in the pET17b vector.




SEQ ID NO: 211 is the determined DNA sequence for the 5′ oligo primer for cloning the amino terminus portion of the


C. trachomatis


pmpD gene in the pET17b vector.




SEQ ID NO: 212 is the determined DNA sequence for the 3′ oligo primer for cloning the amino terminus portion of the


C. trachomatis


pmpD gene in the pET17b vector.




SEQ ID NO: 213 is the determined DNA sequence for the 5′ oligo primer for cloning the carboxy terminus portion of the


C. trachomatis


pmpD gene in the pET17b vector.




SEQ ID NO: 214 is the determined DNA sequence for the 3′ oligo primer for cloning the carboxy terminus portion of the


C. trachomatis


pmpD gene in the pET17b vector.




SEQ ID NO: 215 is the determined DNA sequence for the 5′ oligo primer for cloning the


C. trachomatis


pmpE gene in the pET17b vector.




SEQ ID NO: 216 is the determined DNA sequence for the 3′ oligo primer for cloning the


C. trachomatis


pmpE gene in the pET17b vector.




SEQ ID NO: 217 is the determined DNA sequence for the insertion sequence for cloning the


C. trachomatis


pmpE gene in the pET17b vector.




SEQ ID NO: 218 is the amino acid sequence for the insertion sequence for cloning the


C. trachomatis


pmpE gene in the pET17b vector.




SEQ ID NO: 219 is the determined DNA sequence for the 5′ oligo primer for cloning the


C. trachomatis


pmpG gene in the pET17b vector.




SEQ ID NO: 220 is the determined DNA sequence for the 3′ oligo primer for cloning the


C. trachomatis


pmpG gene in the pET17b vector.




SEQ ID NO: 221 is the amino acid sequence for the insertion sequence for cloning the


C. trachomatis


pmpG gene in the pET17b vector.




SEQ ID NO: 222 is the determined DNA sequence for the 5′ oligo primer for cloning the


C. trachomatis


pmpI gene in the pET17b vector.




SEQ ID NO: 223 is the determined DNA sequence for the 3′ oligo primer for cloning the


C. trachomatis


pmpI gene in the pET17b vector.




SEQ ID NO: 224 is the determined amino acid sequence for the


C. pneumoniae


Swib peptide 1-20.




SEQ ID NO: 225 is the determined amino acid sequence for the


C. pneumoniae


Swib peptide 6-25.




SEQ ID NO: 226 is the determined amino acid sequence for the


C. pneumoniae


Swib peptide 12-31.




SEQ ID NO: 227 is the determined amino acid sequence for the


C. pneumoniae


Swib peptide 17-36.




SEQ ID NO: 228 is the determined amino acid sequence for the


C. pneumoniae


Swib peptide 22-41.




SEQ ID NO: 229 is the determined amino acid sequence for the


C. pneumoniae


Swib peptide 27-46.




SEQ ID NO: 230 is the determined amino acid sequence for the


C. pneumoniae


Swib peptide 42-61.




SEQ ID NO: 231 is the determined amino acid sequence for the


C. pneumoniae


Swib peptide 46-65.




SEQ ID NO: 232 is the determined amino acid sequence for the


C. pneumoniae


Swib peptide 51-70.




SEQ ID NO: 233 is the determined amino acid sequence for the


C. pneumoniae


Swib peptide 56-75.




SEQ ID NO: 234 is the determined amino acid sequence for the


C. pneumoniae


Swib peptide 61-80.




SEQ ID NO: 235 is the determined amino acid sequence for the


C. pneumoniae


Swib peptide 66-87.




SEQ ID NO: 236 is the determined amino acid sequence for the


C. trachomatis


OMCB peptide 103-122.




SEQ ID NO: 237 is the determined amino acid sequence for the


C. trachomatis


OMCB peptide 108-127.




SEQ ID NO: 238 is the determined amino acid sequence for the


C. trachomatis


OMCB peptide 113-132.




SEQ ID NO: 239 is the determined amino acid sequence for the


C. trachomatis


OMCB peptide 118-137.




SEQ ID NO: 240 is the determined amino acid sequence for the


C. trachomatis


OMCB peptide 123-143.




SEQ ID NO: 241 is the determined amino acid sequence for the


C. trachomatis


OMCB peptide 128-147.




SEQ ID NO: 242 is the determined amino acid sequence for the


C. trachomatis


OMCB peptide 133-152.




SEQ ID NO: 243 is the determined amino acid sequence for the


C. trachomatis


OMCB peptide 137-156.




SEQ ID NO: 244 is the determined amino acid sequence for the


C. trachomatis


OMCB peptide 142-161.




SEQ ID NO: 245 is the determined amino acid sequence for the


C. trachomatis


OMCB peptide 147-166.




SEQ ID NO: 246 is the determined amino acid sequence for the


C. trachomatis


OMCB peptide 152-171.




SEQ ID NO: 247 is the determined amino acid sequence for the


C. trachomatis


OMCB peptide 157-176.




SEQ ID NO: 248 is the determined amino acid sequence for the


C. trachomatis


OMCB peptide 162-181.




SEQ ID NO: 249 is the determined amino acid sequence for the


C. trachomatis


OMCB peptide 167-186.




SEQ ID NO: 250 is the determined amino acid sequence for the


C. trachomatis


OMCB peptide 171-190.




SEQ ID NO: 251 is the determined amino acid sequence for the


C. trachomatis


OMCB peptide 171-186.




SEQ ID NO: 252 is the determined amino acid sequence for the


C. trachomatis


OMCB peptide 175-186.




SEQ ID NO: 252 is the determined amino acid sequence for the


C. trachomatis


OMCB peptide 175-186.




SEQ ID NO: 253 is the determined amino acid sequence for the


C. pneumoniae


OMCB peptide 185-198.




SEQ ID NO: 254 is the determined amino acid sequence for the


C. trachomatis


TSA peptide 96-115.




SEQ ID NO: 255 is the determined amino acid sequence for the


C. trachomatis


TSA peptide 101-120.




SEQ ID NO: 256 is the determined amino acid sequence for the


C. trachomatis


TSA peptide 106-125.




SEQ ID NO: 257 is the determined amino acid sequence for the


C. trachomatis


TSA peptide 111-130.




SEQ ID NO: 258 is the determined amino acid sequence for the


C. trachomatis


TSA peptide 116-135.




SEQ ID NO: 259 is the determined amino acid sequence for the


C. trachomatis


TSA peptide 121-140.




SEQ ID NO: 260 is the determined amino acid sequence for the


C. trachomatis


TSA peptide 126-145.




SEQ ID NO: 261 is the determined amino acid sequence for the


C. trachomatis


TSA peptide 131-150.




SEQ ID NO: 262 is the determined amino acid sequence for the


C. trachomatis


TSA peptide 136-155.




SEQ ID NO: 263 is the determined full-length DNA sequence for the


C. trachomatis CT


529/Cap 1 gene serovar I.




SEQ ID NO: 264 is the predicted full-length amino sequence for the


C. trachomatis CT


529/Cap 1 gene serovar I.




SEQ ID NO: 265 is the determined full-length DNA sequence for the


C. trachomatis CT


529/Cap 1 gene serovar K.




SEQ ID NO: 266 is the predicted full-length amino sequence for the


C. trachomatis CT


529/Cap 1 gene serovar K.




SEQ ID NO: 267 is the determined DNA sequence for the


C. trachomatis


clone 17-G4-36 sharing homology to part of the ORF of DNA-directed RNA polymerase beta subunit-CT315 in serD.




SEQ ID NO: 268 is the determined DNA sequence for the partial sequence of the


C. trachomatis


CT016 gene in clone 2E10.




SEQ ID NO: 269 is the determined DNA sequence for the partial sequence of the


C. trachomatis


tRNA syntase gene in clone 2E10.




SEQ ID NO: 270 is the determined DNA sequence for the partial sequence for the


C. trachomatis


clpX gene in clone 2E10.




SEQ ID NO: 271 is a first determined DNA sequence for the


C. trachomatis


clone CtL2gam-30 representing the 5′ end.




SEQ ID NO: 272 is a second determined DNA sequence for the


C. trachomatis clone CtL


2gam-30 representing the 3′ end.




SEQ ID NO: 273 is the determined DNA sequence for the


C. trachomatis


clone CtL2gam-28.




SEQ ID NO: 274 is the determined DNA sequence for the


C. trachomatis


clone CtL2gam-27.




SEQ ID NO: 275 is the determined DNA sequence for the


C. trachomatis


clone CtL2gam-26.




SEQ ID NO: 276 is the determined DNA sequence for the


C. trachomatis


clone CtL2gam-24.




SEQ ID NO: 277 is the determined DNA sequence for the


C. trachomatis


clone CtL2gam-23.




SEQ ID NO: 278 is the determined DNA sequence for the


C. trachomatis


clone CtL2gam-21.




SEQ ID NO: 279 is the determined DNA sequence for the


C. trachomatis


clone CtL2gam-18.




SEQ ID NO: 280 is the determined DNA sequence for the


C. trachomatis


clone CtL2gam-17.




SEQ ID NO: 281 is a first determined DNA sequence for the


C. trachomatis


clone CtL2gam-15 representing the 5′ end.




SEQ ID NO: 282 is a second determined DNA sequence for the


C. trachomatis clone CtL


2gam-15 representing the 3′ end.




SEQ ID NO: 283 is the determined DNA sequence for the


C. trachomatis


clone CtL2gam-13.




SEQ ID NO: 284 is the determined DNA sequence for the


C. trachomatis


clone CtL2gam-10.




SEQ ID NO: 285 is the determined DNA sequence for the


C. trachomatis


clone CtL2gam-8.




SEQ ID NO: 286 is a first determined DNA sequence for the


C. trachomatis


clone CtL2gam-6 representing the 5′ end.




SEQ ID NO: 287 is a second determined DNA sequence for the


C. trachomatis


clone CtL2gam-6 representing the 3′ end.




SEQ ID NO: 288 is the determined DNA sequence for the


C. trachomatis


clone CtL2gam-5.




SEQ ID NO: 289 is the determined DNA sequence for the


C. trachomatis


clone CtL2gam-2.




SEQ ID NO: 290 is the determined DNA sequence for the


C. trachomatis


clone CtL2gam-1.




SEQ ID NO: 291 is the determined full-length DNA sequence for the


C. pneumoniae homologue of the CT


529 gene.




SEQ ID NO: 292 is the predicted full-length amino acid sequence for the


C. pneumoniae homologue of the CT


529 gene.




SEQ ID NO: 293 is the determined DNA sequence for the insertion sequence for cloning the


C. trachomatis


pmpG gene in the SKB vaccine vector.




SEQ ID NO: 294 is the amino acid sequence of an open reading frame of clone CT603.




SEQ ID NO: 295 is the amino acid sequence of a first open reading frame of clone CT875.




SEQ ID NO: 296 is the amino acid sequence of a second open reading frame of clone CT875.




SEQ ID NO: 297 is the amino acid sequence of a first open reading frame of clone CT858.




SEQ ID NO: 298 is the amino acid sequence of a second open reading frame of clone CT858.




SEQ ID NO: 299 is the amino acid sequence of an open reading frame of clone CT622.




SEQ ID NO: 300 is the amino acid sequence of an open reading frame of clone CT610.




SEQ ID NO: 301 is the amino acid sequence of an open reading frame of clone CT396.




SEQ ID NO: 302 is the amino acid sequence of an open reading frame of clone CT318.




SEQ ID NO: 303 is the amino acid sequence of an open reading frame of the ORF-3 protein of


C. trachomatis.






SEQ ID NO: 304 is the amino acid sequence for


C. trachomatis


, serovar L2 rCt529c1-125 having a modified N-terminal sequence (6-His tag).




SEQ ID NO: 305 is the amino acid sequence for


C. trachomatis


, serovar L2 rCt529c1-125.











DESCRIPTION OF THE FIGURES





FIG. 1

illustrates induction of INF-γ from a Chlamydia-specific T cell line activated by target cells expressing clone 4C9-18#2.





FIG. 2

illustrates retroviral vectors pBIB-KS1,2,3 modified to contain a Kosak translation initiation site and stop codons.





FIG. 3

shows specific lysis in a chromium release assay of P815 cells pulsed with Chlamydia peptides CtC7.8-12 (SEQ ID NO: 18) and CtC7.8-13 (SEQ ID NO: 19).





FIG. 4

shows antibody isotype titers in C57Bl/6 mice immunized with


C. trachomatis


SWIB protein.





FIG. 5

shows Chlamydia-specific T-cell proliferative responses in splenocytes from C3H mice immunized with


C. trachomatis


SWIB protein.





FIG. 6

illustrates the 5′ and 3′primer sequences designed from


C. pneumoniae


which were used to isolate the SWIB and S13 genes from


C. pneumoniae


.





FIGS. 7A and 7B

show induction of IFN-γ from a human anti-chlamydia T-cell line (TCL-8) capable of cross-reacting to


C. trachomatis


and


C. pneumonia


upon activation by monocyte-derived dendritic cells expressing chlamydial proteins.





FIG. 8

shows the identification of T cell epitopes in Chlamydial ribosomal S13 protein with T-cell line TCL 8 EB/DC.





FIG. 9

illustrates the proliferative response of CP-21 T-cells generated against


C. pnuemoniae


-infected dendritic cells to recombinant


C. pneumonia


-SWIBprotein, but not


C. trachomatis


SWIB protein.





FIG. 10

shows the


C. trachomatis


-specific SWIB proliferative responses of a primary T-cell line (TCT-10 EB) from an asymptomatic donor.





FIG. 11

illustrates the identification of T-cell epitope in


C. trachomatis


SWIB with an antigen specific T-cell line (TCL-10 EB).











DETAILED DESCRIPTION OF THE INVENTION




As noted above, the present invention is generally directed to compositions and methods for the diagnosis and treatment of Chlamydial infection. In one aspect, the compositions of the subject invention include polypeptides that comprise at least one immunogenic portion of a Chlamydia antigen, or a variant thereof.




In specific embodiments, the subject invention discloses polypeptides comprising an immunogenic portion of a Chlamydia antigen, wherein the Chlamydia antigen comprises an amino acid sequence encoded by a polynucleotide molecule including a sequence selected from the group consisting of (a) nucleotide sequences recited in SEQ ID NO: 1, 15, 21-25, 44-64, 66-76, 79-88, 110-119, 120, 122, 124, 126, 128, 130, 132, 134, 136, 169-174, 181-188, 263, 265 and 267-290 (b) the complements of said nucleotide sequences, and (c) variants of such sequences.




As used herein, the term “polypeptide” encompasses amino acid chains of any length, including full length proteins (i.e., antigens), wherein the amino acid residues are linked by covalent peptide bonds. Thus, a polypeptide comprising an immunogenic portion of one of the inventive antigens may consist entirely of the immunogenic portion, or may contain additional sequences. The additional sequences may be derived from the native Chlamydia antigen or may be heterologous, and such sequences may (but need not) be immunogenic.




The term “polynucleotide(s),” as used herein, means a single or double-stranded polymer of deoxyribonucleotide or ribonucleotide bases and includes DNA and corresponding RNA molecules, including HnRNA and mRNA molecules, both sense and anti-sense strands, and comprehends cDNA, genomic DNA and recombinant DNA, as well as wholly or partially synthesized polynucleotides. An HnRNA molecule contains introns and corresponds to a DNA molecule in a generally one-to-one manner. An mRNA molecule corresponds to an HnRNA and DNA molecule from which the introns have been excised. A polynucleotide may consist of an entire gene, or any portion thereof. Operable anti-sense polynucleotides may comprise a fragment of the corresponding polynucleotide, and the definition of “polynucleotide” therefore includes all such operable anti-sense fragments.




An “immunogenic portion” of an antigen is a portion that is capable of reacting with sera obtained from a Chlamydia-infected individual (i.e., generates an absorbance reading with sera from infected individuals that is at least three standard deviations above the absorbance obtained with sera from uninfected individuals, in a representative ELISA assay described herein). Such immunogenic portions generally comprise at least about 5 amino acid residues, more preferably at least about 10, and most preferably at least about 20 amino acid residues. Methods for preparing and identifying immunogenic portions of antigens of known sequence are well known in the art and include those summarized in Paul,


Fundamental Immunology,


3


rd


ed., Raven Press, 1993, pp. 243-247 and references cited therein. Such techniques include screening polypeptides for the ability to react with antigen-specific antibodies, antisera and/or T-cell lines or clones. As used herein, antisera and antibodies are “antigen-specific” if they specifically bind to an antigen (i.e., they react with the protein in an ELISA or other immunoassay, and do not react detectably with unrelated proteins). Such antisera and antibodies may be prepared as described herein, and using well known techniques. An immunogenic portion of a native Chlamydia protein is a portion that reacts with such antisera and/or T-cells at a level that is not substantially less than the reactivity of the full length polypeptide (e.g. in an ELISA and/or T-cell reactivity assay). Such immunogenic portions may react within such assays at a level that is similar to or greater than the reactivity of the full length polypeptide. Such screens may generally be performed using methods well known to those of ordinary skill in the art, such as those described in Harlow and Lane,


Antibodies: A Laboratory Manual,


Cold Spring Harbor Laboratory, 1988. For example, a polypeptide may be immobilized on a solid support and contacted with patient sera to allow binding of antibodies within the sera to the immobilized polypeptide. Unbound sera may then be removed and bound antibodies detected using, for example,


125


I-labeled Protein A.




Examples of immunogenic portions of antigens contemplated by the present invention include, for example, the T cell stimulating epitopes provided in SEQ ID NO: 9, 10, 18, 19, 31, 39, 93-96, 98, 100-102, 106, 108, 138-140, 158, 167, 168, 246, 247 and 254-256. Polypeptides comprising at least an immunogenic portion of one or more Chlamydia antigens as described herein may generally be used, alone or in combination, to detect Chlamydial infection in a patient.




The compositions and methods of the present invention also encompass variants of the above polypeptides and polynucleotide molecules. Such variants include, but are not limited to, naturally occurring allelic variants of the inventive sequences. In particular, variants include other Chlamydiae serovars, such as serovars D, E and F, as well as the several LGV serovars which share homology to the inventive polypeptide and polynucleotide molecules described herein. Preferably, the serovar homologues show 95-99% homology to the corresponding polypeptide sequence(s) described herein.




A polypeptide “variant,” as used herein, is a polypeptide that differs from the recited polypeptide only in conservative substitutions and/or modifications, such that the antigenic properties of the polypeptide are retained. In a preferred embodiment, variant polypeptides differ from an identified sequence by substitution, deletion or addition of five amino acids or fewer. Such variants may generally be identified by modifying one of the above polypeptide sequences, and evaluating the antigenic properties of the modified polypeptide using, for example, the representative procedures described herein. In other words, the ability of a variant to react with antigen-specific antisera may be enhanced or unchanged, relative to the native protein, or may be diminished by less than 50%, and preferably less than 20%, relative to the native protein. Such variants may generally be identified by modifying one of the above polypeptide sequences and evaluating the reactivity of the modified polypeptide with antigen-specific antibodies or antisera as described herein. Preferred variants include those in which one or more portions, such as an N-terminal leader sequence or transmembrane domain, have been removed. Other preferred variants include variants in which a small portion (e.g., 1-30 amino acids, preferably 5-15 amino acids) has been removed from the N- and/or C-terminal of the mature protein.




As used herein, a “conservative substitution” is one in which an amino acid is substituted for another amino acid that has similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and hydropathic nature of the polypeptide to be substantially unchanged. Amino acid substitutions may generally be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity and/or the amphipathic nature of the residues. For example, negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; and amino acids with uncharged polar head groups having similar hydrophilicity values include leucine, isoleucine and valine; glycine and alanine; asparagine and glutamine; and serine, threonine, phenylalanine and tyrosine. Other groups of amino acids that may represent conservative changes include: (1) ala, pro, gly, glu, asp, gln, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his. A variant may also, or alternatively, contain nonconservative changes. In a preferred embodiment, variant polypeptides differ from a native sequence by substitution, deletion or addition of five amino acids or fewer. Variants may also (or alternatively) be modified by, for example, the deletion or addition of amino acids that have minimal influence on the immunogenicity, secondary structure and hydropathic nature of the polypeptide. Variants may also, or alternatively, contain other modifications, including the deletion or addition of amino acids that have minimal influence on the antigenic properties, secondary structure and hydropathic nature of the polypeptide. For example, a polypeptide may be conjugated to a signal (or leader) sequence at the N-terminal end of the protein which co-translationally or post-translationally directs transfer of the protein. The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification or identification of the polypeptide (e.g., poly-His), or to enhance binding of the polypeptide to a solid support. For example, a polypeptide may be conjugated to an immunoglobulin Fc region.




A polynucleotide “variant” is a sequence that differs from the recited nucleotide sequence in having one or more nucleotide deletions, substitutions or additions such that the immunogenicity of the encoded polypeptide is not diminished, relative to the native protein. The effect on the immunogenicity of the encoded polypeptide may generally be assessed as described herein. Such modifications may be readily introduced using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis as taught, for example, by Adelman et al. (


DNA,


2:183, 1983). Nucleotide variants may be naturally occurring allelic variants as discussed below, or non-naturally occurring variants. The polypeptides provided by the present invention include variants that are encoded by polynucleotide sequences which are substantially homologous to one or more of the polynucleotide sequences specifically recited herein. “Substantial homology,” as used herein, refers to polynucleotide sequences that are capable of hybridizing under moderately stringent conditions. Suitable moderately stringent conditions include prewashing in a solution of 5×SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0); hybridizing at 50° C.-65° C., 5×SSC, overnight or, in the event of cross-species homology, at 45° C. with 0.5×SSC; followed by washing twice at 65° C. for 20 minutes with each of 2×, 0.5× and 0.2×SSC containing 0.1% SDS. Such hybridizing polynucleotide sequences are also within the scope of this invention, as are nucleotide sequences that, due to code degeneracy, encode a polypeptide that is the same as a polypeptide of the present invention.




Two nucleotide or polypeptide sequences are said to be “identical” if the sequence of nucleotides or amino acid residues in the two sequences is the same when aligned for maximum correspondence as described below. Comparisons between two sequences are typically performed by comparing the sequences over a comparison window to identify and compare local regions of sequence similarity. A “comparison window” as used herein, refers to a segment of at least about 20 contiguous positions, usually 30 to about 75, 40 to about 50, in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned.




Optimal alignment of sequences for comparison may be conducted using the Megalign program in the Lasergene suite of bioinformatics software (DNASTAR, Inc., Madison, Wis.), using default parameters. This program embodies several alignment schemes described in the following references: Dayhoff, M. O. (1978) A model of evolutionary change in proteins—Matrices for detecting distant relationships. In Dayhoff, M. O. (ed.) Atlas of Protein Sequence and Structure, National Biomedical Resarch Foundation, Washington D.C. Vol. 5, Suppl. 3, pp. 345-358; Hein J. (1990) Unified Approach to Alignment and Phylogenes pp. 626-645


Methods in Enzymology


vol. 183, Academic Press, Inc., San Diego, Calif.; Higgins, D. G. and Sharp, P. M. (1989) Fast and sensitive multiple sequence alignments on a microcomputer


CABIOS


5:151-153; Myers, E. W. and Muller W. (1988) Optimal alignments in linear space


CABIOS


4:11-17; Robinson, E. D. (1971)


Comb. Theor


11:105; Santou, N. Nes, M. (1987) The neighbor joining method. A new method for reconstructing phylogenetic trees


Mol. Biol. Evol.


4:406-425; Sneath, P. H. A. and Sokal, R. R. (1973)


Numerical Taxonomy—the Principles and Practice of Numerical Taxonomy,


Freeman Press, San Francisco, Calif.; Wilbur, W. J. and Lipman, D. J. (1983) Rapid similarity searches of nucleic acid and protein data banks


Proc. Natl. Acad., Sci. USA


80:726-730.




Alternatively, optimal alignment of sequences for comparison may be conducted by the local identity algorithm of Smith and Waterman (1981)


Add. APL. Math


2:482, by the identity alignment algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48:443, by the search for similarity methods of Pearson and Lipman (1988) Proc. Natl. Acad. Sci. (U.S.A.) 85: 2444, by computerized implementations of these algorithms (GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group (GCG), 575 Science Dr., Madison, Wis.), or by inspection.




One illustrative example of algorithms that are suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al. (1977) Nuc. Acids Res. 25:3389-3402 and Altschul et al. (1990) J. Mol. Biol. 215:403-410, respectively. BLAST and BLAST 2.0 can be used, for example with the parameters described herein, to determine percent sequence identity for the polynucleotides and polypeptides of the invention. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/) In one illustrative example, cumulative scores can be calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always <0). For amino acid sequences, a scoring matrix can be used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, and expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff and Henikoff (1989) Proc. Natl. Acad. Sci. USA 89:10915) alignments, (B) of 50, expectation (E) of 10, M=5, N=−4 and a comparison of both strands.




Preferably, the “percentage of sequence identity” is determined by comparing two optimally aligned sequences over a window of comparison of at least 20 positions, wherein the portion of the polynucleotide or amino acid sequence in the comparison window may comprise additions or deletions (i.e. gaps) of 20 percent or less, usually 5 to 15 percent, or 10 to 12 percent, as compared to the reference sequences (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid bases or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the reference sequence (i.e. the window size) and multiplying the results by 100 to yield the percentage of sequence identity.




Therefore, the present invention provides polynucleotide and polypeptide sequences having substantial identity to the sequences disclosed herein, for example those comprising at least 50% or more sequence identity, preferably at least 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% or higher, sequence identity compared to a polynucleotide or polypeptide sequence of this invention using the methods described herein, (e.g., BLAST analysis using standard parameters, as described below). One skilled in this art will recognize that these values can be appropriately adjusted to determine corresponding identity of proteins encoded by two polynucleotide sequences by taking into account codon degeneracy, amino acid similarity, reading frame positioning and the like.




In additional embodiments, the present invention provides isolated polynucleotides or polypeptides comprising various lengths of contiguous stretches of sequence identical to or complementary to one or more of the sequences disclosed herein. For example, polynucleotides and polypeptides encompassed by this invention may comprise at least about 15, 20, 30, 40, 50, 75, 100, 150, 200, 300, 400, 500 or 1000 or more contiguous nucleotides of one or more of the disclosed sequences, as well as all intermediate lengths therebetween. It will be readily understood that “intermediate lengths”, in this context, means any length between the quoted values, such as 16, 17, 18, 19, etc.; 21, 22, 23, etc.; 30, 31, 32, etc.; 50, 51, 52, 53, etc.; 100, 101, 102, 103, etc.; 150, 151, 152, 153, etc.; including all integers through the 200-500; 500-1,000, and the like.




The polynucleotides of the present invention, or fragments thereof, regardless of the length of the coding sequence itself, may be combined with other DNA sequences, such as promoters, polyadenylation signals, additional restriction enzyme sites, multiple cloning sites, other coding segments, and the like, such that their overall length may vary considerably. It is therefore contemplated that a nucleic acid fragment of almost any length may be employed, with the total length preferably being limited by the ease of preparation and use in the intended recombinant DNA protocol. For example, illustrative DNA segments with total lengths of about 10,000, about 5000, about 3000, about 2,000, about 1,000, about 500, about 200, about 100, about 50 base pairs in length, and the like, (including all intermediate lengths) are contemplated to be useful in many implementations of this invention.




Also included in the scope of the present invention are alleles of the genes encoding the nucleotide sequences recited in herein. As used herein, an “allele” or “allellic sequence” is an alternative form of the gene which may result from at least one mutation in the nucleic acid sequence. Alleles may result in altered mRNAs or polypeptides whose structure or function may or may not be altered. Any given gene may have none, one, or many allelic forms. Common mutational changes which give rise to alleles are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone or in combination with the others, one or more times in a given sequence. In specific embodiments, the subject invention discloses polypeptides comprising at least an immunogenic portion of a Chlamydia antigen (or a variant of such an antigen), that comprises one or more of the amino acid sequences encoded by (a) a polynucleotide sequence selected from the group consisting of SEQ ID NO: 1-4, 15 21-25, 44-64, 66-76 and 79-88; (b) the complements of such DNA sequences or (c) DNA sequences substantially homologous to a sequence in (a) or (b). As discussed in the Examples below, several of the Chlamydia antigens disclosed herein recognize a T cell line that recognizes both Chlamydia trachomatis and Chlamydia pneumoniae infected monocyte-derived dendritic cells, indicating that they may represent an immunoreactive epitope shared by


Chlamydia trachomatis


and


Chlamydia pneumoniae.


The antigens may thus be employed in a vaccine for both


C. trachomatis


genital tract infections and for


C. pneumonia


infections. Further characterization of these Chlamydia antigens from


Chlamydia trachomatis


and


Chlamydia pneumonia


to determine the extent of cross-reactivity is provided in Example 6. Additionally, Example 4 describes cDNA fragments (SEQ ID NO: 15, 16 and 33) isolated from


C. trachomatis


which encode proteins (SEQ ID NO: 17-19 and 32) capable of stimulating a Chlamydia-specific murine CD8+ T cell line.




In general, Chlamydia antigens, and polynucleotide sequences encoding such antigens, may be prepared using any of a variety of procedures. For example, polynucleotide molecules encoding Chlamydia antigens may be isolated from a Chlamydia genomic or cDNA expression library by screening with a Chlamydia-specific T cell line as described below, and sequenced using techniques well known to those of skill in the art. Additionally, a polynucleotide may be identified, as described in more detail below, by screening a microarray of cDNAs for Chlamydia-associated expression (i.e., expression that is at least two fold greater in Chlamydia-infected cells than in controls, as determined using a representative assay provided herein). Such screens may be performed using a Synteni microarray (Palo Alto, Calif.) according to the manufacturer's instructions (and essentially as described by Schena et al.,


Proc. Natl. Acad. Sci. USA


93:10614-10619, 1996 and Heller et al.,


Proc. Natl. Acad. Sci. USA


94:2150-2155, 1997). Alternatively, polypeptides may be amplified from cDNA prepared from cells expressing the proteins described herein. Such polynucleotides may be amplified via polymerase chain reaction (PCR). For this approach, sequence-specific primers may be designed based on the sequences provided herein, and may be purchased or synthesized.




Antigens may be produced recombinantly, as described below, by inserting a polynucleotide sequence that encodes the antigen into an expression vector and expressing the antigen in an appropriate host. Antigens may be evaluated for a desired property, such as the ability to react with sera obtained from a Chlamydia-infected individual as described herein, and may be sequenced using, for example, traditional Edman chemistry. See Edman and Berg,


Eur. J. Biochem.


80:116-132, 1967.




Polynucleotide sequences encoding antigens may also be obtained by screening an appropriate Chlamydia cDNA or genomic DNA library for polynucleotide sequences that hybridize to degenerate oligonucleotides derived from partial amino acid sequences of isolated antigens. Degenerate oligonucleotide sequences for use in such a screen may be designed and synthesized, and the screen may be performed, as described (for example) in Sambrook et al.,


Molecular Cloning. A Laboratory Manual,


Cold Spring Harbor Laboratories, Cold Spring Harbor, N.Y. (and references cited therein). Polymerase chain reaction (PCR) may also be employed, using the above oligonucleotides in methods well known in the art, to isolate a nucleic acid probe from a cDNA or genomic library. The library screen may then be performed using the isolated probe.




An amplified portion may be used to isolate a full length gene from a suitable library (e.g., a Chlamydia cDNA library) using well known techniques. Within such techniques, a library (cDNA or genomic) is screened using one or more polynucleotide probes or primers suitable for amplification. Preferably, a library is size-selected to include larger molecules. Random primed libraries may also be preferred for identifying 5′ and upstream regions of genes. Genomic libraries are preferred for obtaining introns and extending 5′ sequences.




For hybridization techniques, a partial sequence may be labeled (e.g., by nick-translation or end-labeling with


32


P) using well known techniques. A bacterial or bacteriophage library is then screened by hybridizing filters containing denatured bacterial colonies (or lawns containing phage plaques) with the labeled probe (see Sambrook et al.,


Molecular Cloning: A Laboratory Manual,


Cold Spring Harbor Laboratories, Cold Spring Harbor, N.Y., 1989). Hybridizing colonies or plaques are selected and expanded, and the DNA is isolated for further analysis. cDNA clones may be analyzed to determine the amount of additional sequence by, for example, PCR using a primer from the partial sequence and a primer from the vector. Restriction maps and partial sequences may be generated to identify one or more overlapping clones. The complete sequence may then be determined using standard techniques, which may involve generating a series of deletion clones. The resulting overlapping sequences are then assembled into a single contiguous sequence. A full length cDNA molecule can be generated by ligating suitable fragments, using well known techniques.




Alternatively, there are numerous amplification techniques for obtaining a full length coding sequence from a partial cDNA sequence. Within such techniques, amplification is generally performed via PCR. Any of a variety of commercially available kits may be used to perform the amplification step. Primers may be designed using techniques well known in the art (see, for example, Mullis et al.,


Cold Spring Harbor Symp. Quant. Biol.


51:263, 1987; Erlich ed.,


PCR Technology,


Stockton Press, NY, 1989), and software well known in the art may also be employed. Primers are preferably 22-30 nucleotides in length, have a GC content of at least 50% and anneal to the target sequence at temperatures of about 68° C. to 72° C. The amplified region may be sequenced as described above, and overlapping sequences assembled into a contiguous sequence.




One such amplification technique is inverse PCR (see Triglia et al.,


Nucl. Acids Res.


16:8186, 1988), which uses restriction enzymes to generate a fragment in the known region of the gene. The fragment is then circularized by intramolecular ligation and used as a template for PCR with divergent primers derived from the known region. Within an alternative approach, sequences adjacent to a partial sequence may be retrieved by amplification with a primer to a linker sequence and a primer specific to a known region. The amplified sequences are typically subjected to a second round of amplification with the same linker primer and a second primer specific to the known region. A variation on this procedure, which employs two primers that initiate extension in opposite directions from the known sequence, is described in WO 96/38591. Additional techniques include capture PCR (Lagerstrom et al.,


PCR Methods Applic.


1:111-19, 1991) and walking PCR (Parker et al.,


Nucl. Acids. Res.


19:3055-60, 1991). Transcription-Mediated Amplification, or TMA is another method that may be utilized for the amplification of DNA, rRNA, or mRNA, as described in Patent No. PCT/US91/03184. This autocatalytic and isothermic non-PCR based method utilizes two primers and two enzymes: RNA polymerase and reverse transcriptase. One primer contains a promoter sequence for RNA polymerase. In the first amplification, the promoter-primer hybridizes to the target rRNA at a defined site. Reverse transcriptase creates a DNA copy of the target rRNA by extension from the 3′ end of the promoter-primer. The RNA in the resulting complex is degraded and a second primer binds to the DNA copy. A new strand of DNA is synthesized from the end of the primer by reverse transcriptase creating double stranded DNA. RNA polymerase recognizes the promoter sequence in the DNA template and initiates transcription. Each of the newly synthesized RNA amplicons re-enters the TMA process and serves as a template for a new round of replication leading to the expotential expansion of the RNA amplicon. Other methods employing amplification may also be employed to obtain a full length cDNA sequence.




In certain instances, it is possible to obtain a full length cDNA sequence by analysis of sequences provided in an expressed sequence tag (EST) database, such as that available from GenBank. Searches for overlapping ESTs may generally be performed using well known programs (e.g., NCBI BLAST searches), and such ESTs may be used to generate a contiguous full length sequence. Full length cDNA sequences may also be obtained by analysis of genomic fragments.




Polynucleotide variants may generally be prepared by any method known in the art, including chemical synthesis by, for example, solid phase phosphoramidite chemical synthesis. Modifications in a polynucleotide sequence may also be introduced using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis (see Adelman et al.,


DNA


2:183, 1983). Alternatively, RNA molecules may be generated by in vitro or in vivo transcription of DNA sequences encoding a Chlamydial protein, or portion thereof, provided that the DNA is incorporated into a vector with a suitable RNA polymerase promoter (such as T7 or SP6). Certain portions may be used to prepare an encoded polypeptide, as described herein. In addition, or alternatively, a portion may be administered to a patient such that the encoded polypeptide is generated in vivo (e.g., by transfecting antigen-presenting cells, such as dendritic cells, with a cDNA construct encoding a Chlamydial polypeptide, and administering the transfected cells to the patient).




A portion of a sequence complementary to a coding sequence (i.e., an antisense polynucleotide) may also be used as a probe or to modulate gene expression. cDNA constructs that can be transcribed into antisense RNA may also be introduced into cells of tissues to facilitate the production of antisense RNA. An antisense polynucleotide may be used, as described herein, to inhibit expression of a Chlamydial protein. Antisense technology can be used to control gene expression through triple-helix formation, which compromises the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors or regulatory molecules (see Gee et al., In Huber and Carr,


Molecular and Immunologic Approaches,


Futura Publishing Co. (Mt. Kisco, N.Y.; 1994)). Alternatively, an antisense molecule may be designed to hybridize with a control region of a gene (e.g., promoter, enhancer or transcription initiation site), and block transcription of the gene; or to block translation by inhibiting binding of a transcript to ribosomes.




A portion of a coding sequence, or of a complementary sequence, may also be designed as a probe or primer to detect gene expression. Probes may be labeled with a variety of reporter groups, such as radionuclides and enzymes, and are preferably at least 10 nucleotides in length, more preferably at least 20 nucleotides in length and still more preferably at least 30 nucleotides in length. Primers, as noted above, are preferably 22-30 nucleotides in length.




Any polynucleotide may be further modified to increase stability in vivo. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5′ and/or 3′ ends; the use of phosphorothioate or 2′ O-methyl rather than phosphodiesterase linkages in the backbone; and/or the inclusion of nontraditional bases such as inosine, queosine and wybutosine, as well as acetyl- methyl-, thio- and other modified forms of adenine, cytidine, guanine, thymine and uridine.




Nucleotide sequences as described herein may be joined to a variety of other nucleotide sequences using established recombinant DNA techniques. For example, a polynucleotide may be cloned into any of a variety of cloning vectors, including plasmids, phagemids, lambda phage derivatives and cosmids. Vectors of particular interest include expression vectors, replication vectors, probe generation vectors and sequencing vectors. In general, a vector will contain an origin of replication functional in at least one organism, convenient restriction endonuclease sites and one or more selectable markers. Other elements will depend upon the desired use, and will be apparent to those of ordinary skill in the art.




Synthetic polypeptides having fewer than about 100 amino acids, and generally fewer than about 50 amino acids, may be generated using techniques well known in the art. For example, such polypeptides may be synthesized using any of the commercially available solid-phase techniques, such as the Merrifield solid-phase synthesis method, where amino acids are sequentially added to a growing amino acid chain. See Merrifield,


J. Am. Chem. Soc.


85:2149-2146, 1963. Equipment for automated synthesis of polypeptides is commercially available from suppliers such as Perkin Elmer/Applied BioSystems Division, Foster City, Calif., and may be operated according to the manufacturer's instructions.




As noted above, immunogenic portions of Chlamydia antigens may be prepared and identified using well known techniques, such as those summarized in Paul,


Fundamental Immunology,


3d ed., Raven Press, 1993, pp. 243-247 and references cited therein. Such techniques include screening polypeptide portions of the native antigen for immunogenic properties. The representative ELISAs described herein may generally be employed in these screens. An immunogenic portion of a polypeptide is a portion that, within such representative assays, generates a signal in such assays that is substantially similar to that generated by the full length antigen. In other words, an immunogenic portion of a Chlamydia antigen generates at least about 20%, and preferably about 100%, of the signal induced by the full length antigen in a model ELISA as described herein.




Portions and other variants of Chlamydia antigens may be generated by synthetic or recombinant means. Variants of a native antigen may generally be prepared using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis. Sections of the polynucleotide sequence may also be removed using standard techniques to permit preparation of truncated polypeptides.




Recombinant polypeptides containing portions and/or variants of a native antigen may be readily prepared from a polynucleotide sequence encoding the polypeptide using a variety of techniques well known to those of ordinary skill in the art. For example, supernatants from suitable host/vector systems which secrete recombinant protein into culture media may be first concentrated using a commercially available filter. Following concentration, the concentrate may be applied to a suitable purification matrix such as an affinity matrix or an ion exchange resin. Finally, one or more reverse phase HPLC steps can be employed to further purify a recombinant protein.




Any of a variety of expression vectors known to those of ordinary skill in the art may be employed to express recombinant polypeptides as described herein. Expression may be achieved in any appropriate host cell that has been transformed or transfected with an expression vector containing a polynucleotide molecule that encodes a recombinant polypeptide. Suitable host cells include prokaryotes, yeast and higher eukaryotic cells. Preferably, the host cells employed are


E. coli,


yeast or a mammalian cell line, such as COS or CHO. The DNA sequences expressed in this manner may encode naturally occurring antigens, portions of naturally occurring antigens, or other variants thereof.




In general, regardless of the method of preparation, the polypeptides disclosed herein are prepared in an isolated, substantially pure, form. Preferably, the polypeptides are at least about 80% pure, more preferably at least about 90% pure and most preferably at least about 99% pure.




Within certain specific embodiments, a polypeptide may be a fusion protein that comprises multiple polypeptides as described herein, or that comprises at least one polypeptide as described herein and an unrelated sequence, such as a known Chlamydial protein. A fusion partner may, for example, assist in providing T helper epitopes (an immunological fusion partner), preferably T helper epitopes recognized by humans, or may assist in expressing the protein (an expression enhancer) at higher yields than the native recombinant protein. Certain preferred fusion partners are both immunological and expression enhancing fusion partners. Other fusion partners may be selected so as to increase the solubility of the protein or to enable the protein to be targeted to desired intracellular compartments. Still further fusion partners include affinity tags, which facilitate purification of the protein. A DNA sequence encoding a fusion protein of the present invention may be constructed using known recombinant DNA techniques to assemble separate DNA sequences encoding, for example, the first and second polypeptides, into an appropriate expression vector. The 3′ end of a DNA sequence encoding the first polypeptide is ligated, with or without a peptide linker, to the 5′ end of a DNA sequence encoding the second polypeptide so that the reading frames of the sequences are in phase to permit mRNA translation of the two DNA sequences into a single fusion protein that retains the biological activity of both the first and the second polypeptides.




A peptide linker sequence may be employed to separate the first and the second polypeptides by a distance sufficient to ensure that each polypeptide folds into its secondary and tertiary structures. Such a peptide linker sequence is incorporated into the fusion protein using standard techniques well known in the art. Suitable peptide linker sequences may be chosen based on the following factors: (1) their ability to adopt a flexible extended conformation; (2) their inability to adopt a secondary structure that could interact with functional epitopes on the first and second polypeptides; and (3) the lack of hydrophobic or charged residues that might react with the polypeptide functional epitopes. Preferred peptide linker sequences contain Gly, Asn and Ser residues. Other near neutral amino acids, such as Thr and Ala may also be used in the linker sequence. Amino acid sequences which may be usefully employed as linkers include those disclosed in Maratea et al.,


Gene


40:39-46, 1985; Murphy et al.,


Proc. Natl. Acad. Sci. USA


83:8258-8562, 1986; U.S. Pat. Nos. 4,935,233 and 4,751,180. The linker sequence may be from 1 to about 50 amino acids in length. As an alternative to the use of a peptide linker sequence (when desired), one can utilize non-essential N-terminal amino acid regions (when present) on the first and second polypeptides to separate the functional domains and prevent steric hindrance.




The ligated DNA sequences are operably linked to suitable transcriptional or translational regulatory elements. The regulatory elements responsible for expression of DNA are located only 5′ to the DNA sequence encoding the first polypeptides. Similarly, stop codons required to end translation and transcription termination signals are only present 3′ to the DNA sequence encoding the second polypeptide.




Fusion proteins are also provided that comprise a polypeptide of the present invention together with an unrelated immunogenic protein. Preferably the immunogenic protein is capable of eliciting a recall response. Examples of such proteins include tetanus, tuberculosis and hepatitis proteins (see, for example, Stoute et al.


New Engl. J. Med.,


336:86-91, 1997).




Within preferred embodiments, an immunological fusion partner is derived from protein D, a surface protein of the gram-negative bacterium Haemophilus influenza B (WO 91/18926). Preferably, a protein D derivative comprises approximately the first third of the protein (e.g., the first N-terminal 100-110 amino acids), and a protein D derivative may be lipidated. Within certain preferred embodiments, the first 109 residues of a Lipoprotein D fusion partner is included on the N-terminus to provide the polypeptide with additional exogenous T-cell epitopes and to increase the expression level in


E. coli


(thus functioning as an expression enhancer). The lipid tail ensures optimal presentation of the antigen to antigen presenting cells. Other fusion partners include the non-structural protein from influenzae virus, NS1 (hemaglutinin). Typically, the N-terminal 81 amino acids are used, although different fragments that include T-helper epitopes may be used.




In another embodiment, the immunological fusion partner is the protein known as LYTA, or a portion thereof (preferably a C-terminal portion). LYTA is derived from


Streptococcus pneumoniae


, which synthesizes an N-acetyl-L-alanine amidase known as amidase LYTA (encoded by the LytA gene;


Gene


43:265-292, 1986). LYTA is an autolysin that specifically degrades certain bonds in the peptidoglycan backbone. The C-terminal domain of the LYTA protein is responsible for the affinity to the choline or to some choline analogues such as DEAE. This property has been exploited for the development of


E. coli


C-LYTA expressing plasmids useful for expression of fusion proteins. Purification of hybrid proteins containing the C-LYTA fragment at the amino terminus has been described (see


Biotechnology


10:795-798, 1992). Within a preferred embodiment, a repeat portion of LYTA may be incorporated into a fusion protein. A repeat portion is found in the C-terminal region starting at residue 178. A particularly preferred repeat portion incorporates residues 188-305. Additionally, the fusion protein Ra12 may be linked to the inventive polynucleotides to facilitate protein expression.




In another aspect, the present invention provides methods for using one or more of the above polypeptides or fusion proteins (or polynucleotides encoding such polypeptides or fusion proteins) to induce protective immunity against Chlamydial infection in a patient. As used herein, a “patient” refers to any warm-blooded animal, preferably a human. A patient may be afflicted with a disease, or may be free of detectable disease and/or infection. In other words, protective immunity may be induced to prevent or treat Chlamydial infection.




In this aspect, the polypeptide, fusion protein or polynucleotide molecule is generally present within a pharmaceutical composition or a vaccine. Pharmaceutical compositions may comprise one or more polypeptides, each of which may contain one or more of the above sequences (or variants thereof), and a physiologically acceptable carrier. Vaccines may comprise one or more of the above polypeptides and an immunostimulant, such as an adjuvant or a liposome (into which the polypeptide is incorporated). Such pharmaceutical compositions and vaccines may also contain other Chlamydia antigens, either incorporated into a combination polypeptide or present within a separate polypeptide.




Alternatively, a vaccine may contain polynucleotides encoding one or more polypeptides or fusion proteins as described above, such that the polypeptide is generated in situ. In such vaccines, the polynucleotides may be present within any of a variety of delivery systems known to those of ordinary skill in the art, including nucleic acid expression systems, bacterial and viral expression systems. Appropriate nucleic acid expression systems contain the necessary polynucleotide sequences for expression in the patient (such as a suitable promoter and terminating signal). Bacterial delivery systems involve the administration of a bacterium (such as Bacillus-Calmette-Guerrin) that expresses an immunogenic portion of the polypeptide on its cell surface. In a preferred embodiment, the polynucleotides may be introduced using a viral expression system (e.g., vaccinia or other pox virus, retrovirus, or adenovirus), which may involve the use of a non-pathogenic (defective) virus. Techniques for incorporating polynucleotides into such expression systems are well known to those of ordinary skill in the art. The polynucleotides may also be administered as “naked” plasmid vectors as described, for example, in Ulmer et al.,


Science


259:1745-1749, 1993 and reviewed by Cohen,


Science


259:1691-1692, 1993. Techniques for incorporating DNA into such vectors are well known to those of ordinary skill in the art. A retroviral vector may additionally transfer or incorporate a gene for a selectable marker (to aid in the identification or selection of transduced cells) and/or a targeting moiety, such as a gene that encodes a ligand for a receptor on a specific target cell, to render the vector target specific. Targeting may also be accomplished using an antibody, by methods known to those of ordinary skill in the art.




Other formulations for therapeutic purposes include colloidal dispersion systems, such as macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes. A preferred colloidal system for use as a delivery vehicle in vitro and in vivo is a liposome (i.e., an artificial membrane vesicle). The uptake of naked polynucleotides may be increased by incorporating the polynucleotides into and/or onto biodegradable beads, which are efficiently transported into the cells. The preparation and use of such systems is well known in the art.




In a related aspect, a polynucleotide vaccine as described above may be administered simultaneously with or sequentially to either a polypeptide of the present invention or a known Chlamydia antigen. For example, administration of polynucleotides encoding a polypeptide of the present invention, either “naked” or in a delivery system as described above, may be followed by administration of an antigen in order to enhance the protective immune effect of the vaccine.




Polypeptides and polynucleotides disclosed herein may also be employed in adoptive immunotherapy for the treatment of Chlamydial infection. Adoptive immunotherapy may be broadly classified into either active or passive immunotherapy. In active immunotherapy, treatment relies on the in vivo stimulation of the endogenous host immune system with the administration of immune response-modifying agents (for example, vaccines, bacterial adjuvants, and/or cytokines).




In passive immunotherapy, treatment involves the delivery of biologic reagents with established immune reactivity (such as effector cells or antibodies) that can directly or indirectly mediate anti-Chlamydia effects and does not necessarily depend on an intact host immune system. Examples of effector cells include T lymphocytes (for example, CD8+ cytotoxic T-lymphocyte, CD4+ T-helper), killer cells (such as Natural Killer cells, lymphokine-activated killer cells), B cells, or antigen presenting cells (such as dendritic cells and macrophages) expressing the disclosed antigens. The polypeptides disclosed herein may also be used to generate antibodies or anti-idiotypic antibodies (as in U.S. Pat. No. 4,918,164), for passive immunotherapy.




The predominant method of procuring adequate numbers of T-cells for adoptive immunotherapy is to grow immune T-cells in vitro. Culture conditions for expanding single antigen-specific T-cells to several billion in number with retention of antigen recognition in vivo are well known in the art. These in vitro culture conditions typically utilize intermittent stimulation with antigen, often in the presence of cytokines, such as IL-2, and non-dividing feeder cells. As noted above, the immunoreactive polypeptides described herein may be used to rapidly expand antigen-specific T cell cultures in order to generate sufficient number of cells for immunotherapy. In particular, antigen-presenting cells, such as dendritic, macrophage, monocyte, fibroblast, or B-cells, may be pulsed with immunoreactive polypeptides, or polynucleotide sequence(s) may be introduced into antigen presenting cells, using a variety of standard techniques well known in the art. For example, antigen presenting cells may be transfected or transduced with a polynucleotide sequence, wherein said sequence contains a promoter region appropriate for increasing expression, and can be expressed as part of a recombinant virus or other expression system. Several viral vectors may be used to transduce an antigen presenting cell, including pox virus, vaccinia virus, and adenovirus; also, antigen presenting cells may be transfected with polynucleotide sequences disclosed herein by a variety of means, including gene-gun technology, lipid-mediated delivery, electroporation, osmotic shock, and particlate delivery mechanisms, resulting in efficient and acceptable expression levels as determined by one of ordinary skill in the art. For cultured T-cells to be effective in therapy, the cultured T-cells must be able to grow and distribute widely and to survive long term in vivo. Studies have demonstrated that cultured T-cells can be induced to grow in vivo and to survive long term in substantial numbers by repeated stimulation with antigen supplemented with IL-2 (see, for example, Cheever, M., et al, “Therapy With Cultured T Cells: Principles Revisited,”


Immunological Reviews,


157:177, 1997).




The polypeptides disclosed herein may also be employed to generate and/or isolate chlamydial-reactive T-cells, which can then be administered to the patient. In one technique, antigen-specific T-cell lines may be generated by in vivo immunization with short peptides corresponding to immunogenic portions of the disclosed polypeptides. The resulting antigen specific CD8+ or CD4+ T-cell clones may be isolated from the patient, expanded using standard tissue culture techniques, and returned to the patient.




Alternatively, peptides corresponding to immunogenic portions of the polypeptides may be employed to generate Chlamydia reactive T cell subsets by selective in vitro stimulation and expansion of autologous T cells to provide antigen-specific T cells which may be subsequently transferred to the patient as described, for example, by Chang et al, (


Crit. Rev. Oncol. Hematol.,


22(3), 213, 1996). Cells of the immune system, such as T cells, may be isolated from the peripheral blood of a patient, using a commercially available cell separation system, such as Isolex™ System, available from Nexell Therapeutics, Inc. Irvine, Calif. The separated cells are stimulated with one or more of the immunoreactive polypeptides contained within a delivery vehicle, such as a microsphere, to provide antigen-specific T cells. The population of antigen-specific T cells is then expanded using standard techniques and the cells are administered back to the patient.




In other embodiments, T-cell and/or antibody receptors specific for the polypeptides disclosed herein can be cloned, expanded, and transferred into other vectors or effector cells for use in adoptive immunotherapy. In particular, T cells may be transfected with the appropriate genes to express the variable domains from chlamydia specific monoclonal antibodies as the extracellular recognition elements and joined to the T cell receptor signaling chains, resulting in T cell activation, specific lysis, and cytokine release. This enables the T cell to redirect its specificity in an MHC-independent manner. See for example, Eshhar, Z.,


Cancer Immunol Immunother,


45(3-4):131-6, 1997 and Hwu, P., et al,


Cancer Res,


55(15):3369-73, 1995. Another embodiment may include the transfection of chlamydia antigen specific alpha and beta T cell receptor chains into alternate T cells, as in Cole, D J, et al,


Cancer Res,


55(4):748-52, 1995.




In a further embodiment, syngeneic or autologous dendritic cells may be pulsed with peptides corresponding to at least an immunogenic portion of a polypeptide disclosed herein. The resulting antigen-specific dendritic cells may either be transferred into a patient, or employed to stimulate T cells to provide antigen-specific T cells which may, in turn, be administered to a patient. The use of peptide-pulsed dendritic cells to generate antigen-specific T cells and the subsequent use of such antigen-specific T cells to eradicate disease in a murine model has been demonstrated by Cheever et al,


Immunological Reviews,


157:177, 1997). Additionally, vectors expressing the disclosed polynucleotides may be introduced into stem cells taken from the patient and clonally propagated in vitro for autologous transplant back into the same patient.




Within certain aspects, polypeptides, polynucleotides, T cells and/or binding agents disclosed herein may be incorporated into pharmaceutical compositions or immunogenic compositions (i.e., vaccines). Alternatively, a pharmaceutical composition may comprise an antigen-presenting cell (e.g. a dendritic cell) transfected with a Chlamydial polynucleotide such that the antigen presenting cell expresses a Chlamydial polypeptide. Pharmaceutical compositions comprise one or more such compounds and a physiologically acceptable carrier. Vaccines may comprise one or more such compounds and an immunostimulant. An immunostimulant may be any substance that enhances or potentiates an immune response to an exogenous antigen. Examples of immunostimulants include adjuvants, biodegradable microspheres (e.g., polylactic galactide) and liposomes (into which the compound is incorporated; see e.g., Fullerton, U.S. Pat. No. 4,235,877). Vaccine preparation is generally described in, for example, M. F. Powell and M. J. Newman, eds., “Vaccine Design (the subunit and adjuvant approach),” Plenum Press (NY, 1995). Pharmaceutical compositions and vaccines within the scope of the present invention may also contain other compounds, which may be biologically active or inactive. For example, one or more immunogenic portions of other Chlamydial antigens may be present, either incorporated into a fusion polypeptide or as a separate compound, within the composition or vaccine.




A pharmaceutical composition or vaccine may contain DNA encoding one or more of the polypeptides as described above, such that the polypeptide is generated in situ. As noted above, the DNA may be present within any of a variety of delivery systems known to those of ordinary skill in the art, including nucleic acid expression systems, bacteria and viral expression systems. Numerous gene delivery techniques are well known in the art, such as those described by Rolland,


Crit. Rev. Therap. Drug Carrier Systems


15:143-198, 1998, and references cited therein. Appropriate nucleic acid expression systems contain the necessary DNA sequences for expression in the patient (such as a suitable promoter and terminating signal). Bacterial delivery systems involve the administration of a bacterium (such as Bacillus-Calmette-Guerrin) that expresses an immnunogenic portion of the polypeptide on its cell surface or secretes such an epitope.




In a preferred embodiment, the DNA may be introduced using a viral expression system (e.g., vaccinia or other pox virus, retrovirus, adenovirus, baculovirus, togavirus, bacteriophage, and the like), which often involves the use of a non-pathogenic (defective), replication competent virus.




For example, many viral expression vectors are derived from viruses of the retroviridae family. This family includes the murine leukemia viruses, the mouse mammary tumor viruses, the human foamy viruses, Rous sarcoma virus, and the immunodeficiency viruses, including human, simian, and feline. Considerations when designing retroviral expression vectors are discussed in Comstock et al. (1997).




Excellent murine leukemia virus (MLV)-based viral expression vectors have been developed by Kim et al. (1998). In creating the MLV vectors, Kim et al. found that the entire gag sequence, together with the immediate upstream region, could be deleted without significantly affecting viral packaging or gene expression. Further, it was found that nearly the entire U3 region could be replaced with the immediately-early promoter of human cytomegalovirus without deleterious effects. Additionally, MCR and internal ribosome entry sites (IRES) could be added without adverse effects. Based on their observations, Kim et al. have designed a series of MLV-based expression vectors comprising one or more of the features described above.




As more has been learned about human foamy virus (HFV), characteristics of HFV that are favorable for its use as an expression vector have been discovered. These characteristics include the expression of pol by splicing and start of translation at a defined initiation codon. Other aspects of HFV viral expression vectors are reviewed in Bodem et al. (1997).




Murakami et al. (1997) describe a Rous sarcoma virus (RSV)-based replication-competent avian retrovirus vectors, IR1 and IR2 to express a heterologous gene at a high level. In these vectors, the IRES derived from encephalomyocarditis virus (EMCV) was inserted between the env gene and the heterologous gene. The IR1 vector retains the splice-acceptor site that is present downstream of the env gene while the IR2 vector lacks it. Murakami et al. have shown high level expression of several different heterologous genes by these vectors.




Recently, a number of lentivirus-based retroviral expression vectors have been developed. Kafri et al. (1997) have shown sustained expression of genes delivered directly into liver and muscle by a human immunodeficiency virus (HIV)-based expression vector. One benefit of the system is the inherent ability of HIV to transduce non-dividing cells. Because the viruses of Kafri et al. are pseudotyped with vesicular stomatitis virus G glycoprotein (VSVG), they can transduce a broad range of tissues and cell types.




A large number of adenovirus-based expression vectors have been developed, primarily due to the advantages offered by these vectors in gene therapy applications. Adenovirus expression vectors and methods of using such vectors are the subject of a number of United States patents, including U.S. Pat. Nos. 5,698,202, 5,616,326, 5,585,362, and 5,518,913, all incorporated herein by reference.




Additional adenoviral constructs are described in Khatri et al. (1997) and Tomanin et al. (1997). Khatri et al. describe novel ovine adenovirus expression vectors and their ability to infect bovine nasal turbinate and rabbit kidney cells as well as a range of human cell type, including lung and foreskin fibroblasts as well as liver, prostate, breast, colon and retinal lines. Tomanin et al. describe adenoviral expression vectors containing the T7 RNA polymerase gene. When introduced into cells containing a heterologous gene operably linked to a T7 promoter, the vectors were able to drive gene expression from the T7 promoter. The authors suggest that this system may be useful for the cloning and expression of genes encoding cytotoxic proteins.




Poxviruses are widely used for the expression of heterologous genes in mammalian cells, Over the years, the vectors have been improved to allow high expression of the heterologous gene and simplify the integration of multiple heterologous genes into a single molecule. In an effort to diminish cytopathic effects and to increase safety, vaccinia virus mutant and other poxviruses that undergo abortive infection in mammalian cells are receiving special attention (Oertli et al., 1997). The use of poxviruses as expression vectors is reviewed in Carroll and Moss (1997).




Togaviral expression vectors, which includes alphaviral expression vectors have been used to study the structure and function of proteins and for protein production purposes. Attractive features of togaviral expression vectors are rapid and efficient gene expression, wide host range, and RNA genomes (Huang, 1996). Also, recombinant vaccines based on alphaviral expression vectors have been shown to induce a strong humoral and cellular immune response with good immunological memory and protective effects (Tubulekas et al., 1997). Alphaviral expression vectors and their use are discussed, for example, in Lundstrom (1997).




In one study, Li and Garoff (1996) used Semliki Forest virus (SFV) expression vectors to express retroviral genes and to produce retroviral particles in BHK-21 cells. The particles produced by this method had protease and reverse transcriptase activity and were infectious. Furthermore, no helper virus could be detected in the virus stocks. Therefore, this system has features that are attractive for its use in gene therapy protocols.




Baculoviral expression vectors have traditionally been used to express heterologous proteins in insect cells. Examples of proteins include mammalian chemokine receptors (Wang et al., 1997), reporter proteins such as green fluorescent protein (Wu et al., 1997), and FLAG fusion proteins (Wu et al., 1997; Koh et al., 1997). Recent advances in baculoviral expression vector technology, including their use in virion display vectors and expression in mammalian cells is reviewed by Possee (1997). Other reviews on baculoviral expression vectors include Jones and Morikawa (1996) and O'Reilly (1997).




Other suitable viral expression systems are disclosed, for example, in Fisher-Hoch et al.,


Proc. Natl. Acad. Sci. USA


86:317-321, 1989; Flexner et al.,


Ann. N.Y. Acad. Sci.


569:86-103, 1989; Flexner et al.,


Vaccine


8:17-21, 1990; U.S. Pat. Nos. 4,603,112, 4,769,330, and 5,017,487; WO 89/01973; U.S. Pat. No. 4,777,127; GB 2,200,651; EP 0,345,242; WO 91/02805; Berkner,


Biotechniques


6:616-627, 1988; Rosenfeld et al.,


Science


252:431-434, 1991; Kolls et al.,


Proc. Natl. Acad. Sci. USA


91:215-219, 1994; Kass-Eisler et al.,


Proc. Natl. Acad. Sci. USA


90:11498-11502, 1993; Guzman et al.,


Circulation


88:2838-2848, 1993; and Guzman et al.,


Cir. Res.


73:1202-1207, 1993. Techniques for incorporating DNA into such expression systems are well known to those of ordinary skill in the art. In other systems, the DNA may be introduced as “naked” DNA, as described, for example, in Ulmer et al.,


Science


259:1745-1749, 1993 and reviewed by Cohen,


Science


259:1691-1692, 1993. The uptake of naked DNA may be increased by coating the DNA onto biodegradable beads, which are efficiently transported into the cells.




It will be apparent that a vaccine may comprise a polynucleotide and/or a polypeptide component, as desired. It will also be apparent that a vaccine may contain pharmaceutically acceptable salts of the polynucleotides and/or polypeptides provided herein. Such salts may be prepared from pharmaceutically acceptable non-toxic bases, including organic bases (e.g., salts of primary, secondary and tertiary amines and basic amino acids) and inorganic bases (e.g., sodium, potassium, lithium, ammonium, calcium and magnesium salts).While any suitable carrier known to those of ordinary skill in the art may be employed in the pharmaceutical compositions of this invention, the type of carrier will vary depending on the mode of administration. Compositions of the present invention may be formulated for any appropriate manner of administration, including for example, topical, oral, nasal, intravenous, intracranial, intraperitoneal, subcutaneous or intramuscular administration. For parenteral administration, such as subcutaneous injection, the carrier preferably comprises water, saline, alcohol, a fat, a wax or a buffer. For oral administration, any of the above carriers or a solid carrier, such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, sucrose, and magnesium carbonate, may be employed. Biodegradable microspheres (e.g., polylactate polyglycolate) may also be employed as carriers for the pharmaceutical compositions of this invention. Suitable biodegradable microspheres are disclosed, for example, in U.S. Pat. Nos. 4,897,268 and 5,075,109.




Such compositions may also comprise buffers (e.g., neutral buffered saline or phosphate buffered saline), carbohydrates (e.g., glucose, mannose, sucrose or dextrans), mannitol, proteins, polypeptides or amino acids such as glycine, antioxidants, bacteriostats, chelating agents such as EDTA or glutathione, adjuvants (e.g., aluminum hydroxide), solutes that render the formulation isotonic, hypotonic or weakly hypertonic with the blood of a recipient, suspending agents, thickening agents and/or preservatives. Alternatively, compositions of the present invention may be formulated as a lyophilizate. Compounds may also be encapsulated within liposomes using well known technology.




Any of a variety of immunostimulants may be employed in the vaccines of this invention. For example, an adjuvant may be included. Most adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a stimulator of immune responses, such as lipid A,


Bortadella pertussis


or


Mycobacterium tuberculosis


derived proteins. Suitable adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, Mich.); Merck Adjuvant 65 (Merck and Company, Inc., Rahway, N.J.); AS-2 (SmithKline Beecham, Philadelphia, Pa.); aluminum salts such as aluminum hydroxide gel (alum) or aluminum phosphate; salts of calcium, iron or zinc; an insoluble suspension of acylated tyrosine; acylated sugars; cationically or anionically derivatized polysaccharides; polyphosphazenes; biodegradable microspheres; monophosphoryl lipid A and quil A. Cytokines, such as GM-CSF or interleukin-2, -7, or -12, may also be used as adjuvants.




Within the vaccines provided herein, under select circumstances, the adjuvant composition may be designed to induce an immune response predominantly of the Th1 type or Th2 type. High levels of Th1-type cytokines (e.g., IFN-γ, TNFα, IL-2 and IL-12) tend to favor the induction of cell mediated immune responses to an administered antigen. In contrast, high levels of Th2-type cytokines (e.g., IL-4, IL-5, IL-6 and IL-10) tend to favor the induction of humoral immune responses. Following application of a vaccine as provided herein, a patient will support an immune response that includes Th1- and Th2-type responses. Within a preferred embodiment, in which a response is predominantly Th1-type, the level of Th1-type cytokines will increase to a greater extent than the level of Th2-type cytokines. The levels of these cytokines may be readily assessed using standard assays. For a review of the families of cytokines, see Mosmann and Coffman,


Ann. Rev. Immunol.


7:145-173, 1989.




Preferred adjuvants for use in eliciting a predominantly Th1-type response include, for example, a combination of monophosphoryl lipid A, preferably 3-de-O-acylated monophosphoryl lipid A (3D-MPL), together with an aluminum salt. MPL adjuvants are available from Corixa Corporation (Seattle, Wash.; see U.S. Pat. Nos. 4,436,727; 4,877,611; 4,866,034 and 4,912,094). CpG-containing oligonucleotides (in which the CpG dinucleotide is unmethylated) also induce a predominantly Th1 response. Such oligonucleotides are well known and are described, for example, in WO 96/02555 and WO 99/33488. Immunostimulatory DNA sequences are also described, for example, by Sato et al.,


Science


273:352, 1996. Another preferred adjuvant is a saponin, preferably QS21 (Aquila Biopharmaceuticals Inc., Framingham, Mass.), which may be used alone or in combination with other adjuvants. For example, an enhanced system involves the combination of a monophosphoryl lipid A and saponin derivative, such as the combination of QS21 and 3D-MPL as described in WO 94/00153, or a less reactogenic composition where the QS21 is quenched with cholesterol, as described in WO 96/33739. Other preferred formulations comprise an oil-in-water emulsion and tocopherol. A particularly potent adjuvant formulation involving QS21, 3D-MPL and tocopherol in an oil-in-water emulsion is described in WO 95/17210.




Other preferred adjuvants include Montanide ISA 720 (Seppic, France), SAF (Chiron, Calif., United States), ISCOMS (CSL), MF-59 (Chiron), the SBAS series of adjuvants (e.g., SBAS-2 or SBAS-4, available from SmithKline Beecham, Rixensart, Belgium), Detox (Corixa Corporation; Seattle, Wash.), RC-529 (Corixa Corporation; Seattle, Wash.) and other aminoalkyl glucosaminide 4-phosphates (AGPs), such as those described in pending U.S. patent application Ser. Nos. 08/853,826 and 09/074,720, the disclosures of which are incorporated herein by reference in their entireties.




Any vaccine provided herein may be prepared using well known methods that result in a combination of antigen, immunostimulant and a suitable carrier or excipient. The compositions described herein may be administered as part of a sustained release formulation (i.e., a formulation such as a capsule, sponge or gel (composed of polysaccharides, for example) that effects a slow release of compound following administration). Such formulations may generally be prepared using well known technology (see, e.g., Coombes et al.,


Vaccine


14:1429-1438, 1996) and administered by, for example, oral, rectal or subcutaneous implantation, or by implantation at the desired target site. Sustained-release formulations may contain a polypeptide, polynucleotide or antibody dispersed in a carrier matrix and/or contained within a reservoir surrounded by a rate controlling membrane.




Carriers for use within such formulations are biocompatible, and may also be biodegradable; preferably the formulation provides a relatively constant level of active component release. Such carriers include microparticles of poly(lactide-co-glycolide), as well as polyacrylate, latex, starch, cellulose and dextran. Other delayed-release carriers include supramolecular biovectors, which comprise a non-liquid hydrophilic core (e.g., a cross-linked polysaccharide or oligosaccharide) and, optionally, an external layer comprising an amphiphilic compound, such as a phospholipid (see e.g., U.S. Pat. No. 5,151,254 and PCT applications WO 94/20078, WO/94/23701 and WO 96/06638). The amount of active compound contained within a sustained release formulation depends upon the site of implantation, the rate and expected duration of release and the nature of the condition to be treated or prevented.




Any of a variety of delivery vehicles may be employed within pharmaceutical compositions and vaccines to facilitate production of an antigen-specific immune response that targets Chlamydia-infected cells. Delivery vehicles include antigen presenting cells (APCs), such as dendritic cells, macrophages, B cells, monocytes and other cells that may be engineered to be efficient APCs. Such cells may, but need not, be genetically modified to increase the capacity for presenting the antigen, to improve activation and/or maintenance of the T cell response, to have anti-Chlamydia effects per se and/or to be immunologically compatible with the receiver (i.e., matched HLA haplotype). APCs may generally be isolated from any of a variety of biological fluids and organs, and may be autologous, allogeneic, syngeneic or xenogeneic cells.




Certain preferred embodiments of the present invention use dendritic cells or progenitors thereof as antigen-presenting cells. Dendritic cells are highly potent APCs (Banchereau and Steinman,


Nature


392:245-251, 1998) and have been shown to be effective as a physiological adjuvant for eliciting prophylactic or therapeutic immunity (see Timmerman and Levy,


Ann. Rev. Med.


50:507-529, 1999). In general, dendritic cells may be identified based on their typical shape (stellate in situ, with marked cytoplasmic processes (dendrites) visible in vitro), their ability to take up, process and present antigens with high efficiency, and their ability to activate naive T cell responses. Dendritic cells may, of course, be engineered to express specific cell-surface receptors or ligands that are not commonly found on dendritic cells in vivo or ex vivo, and such modified dendritic cells are contemplated by the present invention. As an alternative to dendritic cells, secreted vesicles antigen-loaded dendritic cells (called exosomes) may be used within a vaccine (see Zitvogel et al.,


Nature Med.


4:594-600, 1998).




Dendritic cells and progenitors may be obtained from peripheral blood, bone marrow, lymph nodes, spleen, skin, umbilical cord blood or any other suitable tissue or fluid. For example, dendritic cells may be differentiated ex vivo by adding a combination of cytokines such as GM-CSF, IL-4, IL-13 and/or TNFα to cultures of monocytes harvested from peripheral blood. Alternatively, CD34 positive cells harvested from peripheral blood, umbilical cord blood or bone marrow may be differentiated into dendritic cells by adding to the culture medium combinations of GM-CSF, IL-3, TNFα, CD40 ligand, LPS, flt3 ligand and/or other compound(s) that induce differentiation, maturation and proliferation of dendritic cells.




Dendritic cells are conveniently categorized as “immature” and “mature” cells, which allows a simple way to discriminate between two well characterized phenotypes. However, this nomenclature should not be construed to exclude all possible intermediate stages of differentiation. Immature dendritic cells are characterized as APC with a high capacity for antigen uptake and processing, which correlates with the high expression of Fcγ receptor and mannose receptor. The mature phenotype is typically characterized by a lower expression of these markers, but a high expression of cell surface molecules responsible for T cell activation such as class I and class II MHC, adhesion molecules (e.g., CD54 and CD 11) and costimulatory molecules (e.g., CD40, CD80, CD86 and 4-1BB).




APCs may generally be transfected with a polynucleotide encoding a Chlamydial protein (or portion or other variant thereof) such that the Chlamydial polypeptide, or an immunogenic portion thereof, is expressed on the cell surface. Such transfection may take place ex vivo, and a composition or vaccine comprising such transfected cells may then be used for therapeutic purposes, as described herein. Alternatively, a gene delivery vehicle that targets a dendritic or other antigen presenting cell may be administered to a patient, resulting in transfection that occurs in vivo. In vivo and ex vivo transfection of dendritic cells, for example, may generally be performed using any methods known in the art, such as those described in WO 97/24447, or the gene gun approach described by Mahvi et al.,


Immunology and cell Biology


75:456-460, 1997. Antigen loading of dendritic cells may be achieved by incubating dendritic cells or progenitor cells with the Chlamydial polypeptide, DNA (naked or within a plasmid vector) or RNA; or with antigen-expressing recombinant bacterium or viruses (e.g., vaccinia, fowlpox, adenovirus or lentivirus vectors). Prior to loading, the polypeptide may be covalently conjugated to an immunological partner that provides T cell help (e.g., a carrier molecule). Alternatively, a dendritic cell may be pulsed with a non-conjugated immunological partner, separately or in the presence of the polypeptide.




Routes and frequency of administration of pharmaceutical compositions and vaccines, as well as dosage, will vary from individual to individual. In general, the pharmaceutical compositions and vaccines may be administered by injection (e.g., intracutaneous, intramuscular, intravenous or subcutaneous), intranasally (e.g., by aspiration) or orally. Between 1 and 3 doses may be administered for a 1-36 week period. Preferably, 3 doses are administered, at intervals of 3-4 months, and booster vaccinations may be given periodically thereafter. Alternate protocols may be appropriate for individual patients. A suitable dose is an amount of polypeptide or DNA that, when administered as described above, is capable of raising an immune response in an immunized patient sufficient to protect the patient from Chlamydial infection for at least 1-2 years. In general, the amount of polypeptide present in a dose (or produced in situ by the DNA in a dose) ranges from about 1 pg to about 100 mg per kg of host, typically from about 10 pg to about 1 mg, and preferably from about 100 pg to about 1 μg. Suitable dose sizes will vary with the size of the patient, but will typically range from about 0.1 mL to about 5 mL.




While any suitable carrier known to those of ordinary skill in the art may be employed in the pharmaceutical compositions of this invention, the type of carrier will vary depending on the mode of administration. For parenteral administration, such as subcutaneous injection, the carrier preferably comprises water, saline, alcohol, a fat, a wax or a buffer. For oral administration, any of the above carriers or a solid carrier, such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, sucrose, and magnesium carbonate, may be employed. Biodegradable microspheres (e.g., polylactic galactide) may also be employed as carriers for the pharmaceutical compositions of this invention. Suitable biodegradable microspheres are disclosed, for example, in U.S. Pat. Nos. 4,897,268 and 5,075,109.




In general, an appropriate dosage and treatment regimen provides the active compound(s) in an amount sufficient to provide therapeutic and/or prophylactic benefit. Such a response can be monitored by establishing an improved clinical outcome in treated patients as compared to non-treated patients. Increases in preexisting immune responses to a Chlamydial protein generally correlate with an improved clinical outcome. Such immune responses may generally be evaluated using standard proliferation, cytotoxicity or cytokine assays, which may be performed using samples obtained from a patient before and after treatment.




In another aspect, the present invention provides methods for using the polypeptides described above to diagnose Chlamydial infection. In this aspect, methods are provided for detecting Chlamydial infection in a biological sample, using one or more of the above polypeptides, either alone or in combination. For clarity, the term “polypeptide” will be used when describing specific embodiments of the inventive diagnostic methods. However, it will be clear to one of skill in the art that the fusion proteins of the present invention may also be employed in such methods.




As used herein, a “biological sample” is any antibody-containing sample obtained from a patient. Preferably, the sample is whole blood, sputum, serum, plasma, saliva, cerebrospinal fluid or urine. More preferably, the sample is a blood, serum or plasma sample obtained from a patient. The polypeptides are used in an assay, as described below, to determine the presence or absence of antibodies to the polypeptide(s) in the sample, relative to a predetermined cut-off value. The presence of such antibodies indicates previous sensitization to Chlamydia antigens which may be indicative of Chlamydia-infection.




In embodiments in which more than one polypeptide is employed, the polypeptides used are preferably complementary (i.e., one component polypeptide will tend to detect infection in samples where the infection would not be detected by another component polypeptide). Complementary polypeptides may generally be identified by using each polypeptide individually to evaluate serum samples obtained from a series of patients known to be infected with Chlamydia. After determining which samples test positive (as described below) with each polypeptide, combinations of two or more polypeptides may be formulated that are capable of detecting infection in most, or all, of the samples tested.




A variety of assay formats are known to those of ordinary skill in the art for using one or more polypeptides to detect antibodies in a sample. See, e.g., Harlow and Lane,


Antibodies: A Laboratory Manual,


Cold Spring Harbor Laboratory, 1988, which is incorporated herein by reference. In a preferred embodiment, the assay involves the use of polypeptide immobilized on a solid support to bind to and remove the antibody from the sample. The bound antibody may then be detected using a detection reagent that contains a reporter group. Suitable detection reagents include antibodies that bind to the antibody/polypeptide complex and free polypeptide labeled with a reporter group (e.g., in a semi-competitive assay). Alternatively, a competitive assay may be utilized, in which an antibody that binds to the polypeptide is labeled with a reporter group and allowed to bind to the immobilized antigen after incubation of the antigen with the sample. The extent to which components of the sample inhibit the binding of the labeled antibody to the polypeptide is indicative of the reactivity of the sample with the immobilized polypeptide.




The solid support may be any solid material known to those of ordinary skill in the art to which the antigen may be attached. For example, the solid support may be a test well in a microtiter plate, or a nitrocellulose or other suitable membrane. Alternatively, the support may be a bead or disc, such as glass, fiberglass, latex or a plastic material such as polystyrene or polyvinylchloride. The support may also be a magnetic particle or a fiber optic sensor, such as those disclosed, for example, in U.S. Pat. No. 5,359,681.




The polypeptides may be bound to the solid support using a variety of techniques known to those of ordinary skill in the art. In the context of the present invention, the term “bound” refers to both noncovalent association, such as adsorption, and covalent attachment (which may be a direct linkage between the antigen and functional groups on the support or may be a linkage by way of a cross-linking agent). Binding by adsorption to a well in a microtiter plate or to a membrane is preferred. In such cases, adsorption may be achieved by contacting the polypeptide, in a suitable buffer, with the solid support for a suitable amount of time. The contact time varies with temperature, but is typically between about 1 hour and 1 day. In general, contacting a well of a plastic microtiter plate (such as polystyrene or polyvinylchloride) with an amount of polypeptide ranging from about 10 ng to about 1 μg, and preferably about 100 ng, is sufficient to bind an adequate amount of antigen.




Covalent attachment of polypeptide to a solid support may generally be achieved by first reacting the support with a bifunctional reagent that will react with both the support and a functional group, such as a hydroxyl or amino group, on the polypeptide. For example, the polypeptide may be bound to supports having an appropriate polymer coating using benzoquinone or by condensation of an aldehyde group on the support with an amine and an active hydrogen on the polypeptide (see, e.g., Pierce Immunotechnology Catalog and Handbook, 1991, at A12-A13).




In certain embodiments, the assay is an enzyme linked immunosorbent assay (ELISA). This assay may be performed by first contacting a polypeptide antigen that has been immobilized on a solid support, commonly the well of a microtiter plate, with the sample, such that antibodies to the polypeptide within the sample are allowed to bind to the immobilized polypeptide. Unbound sample is then removed from the immobilized polypeptide and a detection reagent capable of binding to the immobilized antibody-polypeptide complex is added. The amount of detection reagent that remains bound to the solid support is then determined using a method appropriate for the specific detection reagent.




More specifically, once the polypeptide is immobilized on the support as described above, the remaining protein binding sites on the support are typically blocked. Any suitable blocking agent known to those of ordinary skill in the art, such as bovine serum albumin (BSA) or Tween 20™ (Sigma Chemical Co., St. Louis, Mo.) may be employed. The immobilized polypeptide is then incubated with the sample, and antibody is allowed to bind to the antigen. The sample may be diluted with a suitable dilutent, such as phosphate-buffered saline (PBS) prior to incubation. In general, an appropriate contact time (i.e., incubation time) is that period of time that is sufficient to detect the presence of antibody within an HGE-infected sample. Preferably, the contact time is sufficient to achieve a level of binding that is at least 95% of that achieved at equilibrium between bound and unbound antibody. Those of ordinary skill in the art will recognize that the time necessary to achieve equilibrium may be readily determined by assaying the level of binding that occurs over a period of time. At room temperature, an incubation time of about 30 minutes is generally sufficient.




Unbound sample may then be removed by washing the solid support with an appropriate buffer, such as PBS containing 0.1% Tween 20™. Detection reagent may then be added to the solid support. An appropriate detection reagent is any compound that binds to the immobilized antibody-polypeptide complex and that can be detected by any of a variety of means known to those in the art. Preferably, the detection reagent contains a binding agent (such as, for example, Protein A, Protein G, immunoglobulin, lectin or free antigen) conjugated to a reporter group. Preferred reporter groups include enzymes (such as horseradish peroxidase), substrates, cofactors, inhibitors, dyes, radionuclides, luminescent groups, fluorescent groups and biotin. The conjugation of binding agent to reporter group may be achieved using standard methods known to those of ordinary skill in the art. Common binding agents may also be purchased conjugated to a variety of reporter groups from many commercial sources (e.g., Zymed Laboratories, San Francisco, Calif., and Pierce, Rockford, Ill.).




The detection reagent is then incubated with the immobilized antibody-polypeptide complex for an amount of time sufficient to detect the bound antibody. An appropriate amount of time may generally be determined from the manufacturer's instructions or by assaying the level of binding that occurs over a period of time. Unbound detection reagent is then removed and bound detection reagent is detected using the reporter group. The method employed for detecting the reporter group depends upon the nature of the reporter group. For radioactive groups, scintillation counting or autoradiographic methods are generally appropriate. Spectroscopic methods may be used to detect dyes, luminescent groups and fluorescent groups. Biotin may be detected using avidin, coupled to a different reporter group (commonly a radioactive or fluorescent group or an enzyme). Enzyme reporter groups may generally be detected by the addition of substrate (generally for a specific period of time), followed by spectroscopic or other analysis of the reaction products.




To determine the presence or absence of anti-Chlamydia antibodies in the sample, the signal detected from the reporter group that remains bound to the solid support is generally compared to a signal that corresponds to a predetermined cut-off value. In one preferred embodiment, the cut-off value is the average mean signal obtained when the immobilized antigen is incubated with samples from an uninfected patient. In general, a sample generating a signal that is three standard deviations above the predetermined cut-off value is considered positive for Chlamydia-infection. In an alternate preferred embodiment, the cut-off value is determined using a Receiver Operator Curve, according to the method of Sackett et al.,


Clinical Epidemiology: A Basic Science for Clinical Medicine,


Little Brown and Co., 1985, pp. 106-107. Briefly, in this embodiment, the cut-off value may be determined from a plot of pairs of true positive rates (i.e., sensitivity) and false positive rates (100%-specificity) that correspond to each possible cut-off value for the diagnostic test result. The cut-off value on the plot that is the closest to the upper left-hand corner (i.e., the value that encloses the largest area) is the most accurate cut-off value, and a sample generating a signal that is higher than the cut-off value determined by this method may be considered positive. Alternatively, the cut-off value may be shifted to the left along the plot, to minimize the false positive rate, or to the right, to minimize the false negative rate. In general, a sample generating a signal that is higher than the cut-off value determined by this method is considered positive for Chlamydial infection.




In a related embodiment, the assay is performed in a rapid flow-through or strip test format, wherein the antigen is immobilized on a membrane, such as nitrocellulose. In the flow-through test, antibodies within the sample bind to the immobilized polypeptide as the sample passes through the membrane. A detection reagent (e.g., protein A-colloidal gold) then binds to the antibody-polypeptide complex as the solution containing the detection reagent flows through the membrane. The detection of bound detection reagent may then be performed as described above. In the strip test format, one end of the membrane to which polypeptide is bound is immersed in a solution containing the sample. The sample migrates along the membrane through a region containing detection reagent and to the area of immobilized polypeptide. Concentration of detection reagent at the polypeptide indicates the presence of anti-Chlamydia antibodies in the sample. Typically, the concentration of detection reagent at that site generates a pattern, such as a line, that can be read visually. The absence of such a pattern indicates a negative result. In general, the amount of polypeptide immobilized on the membrane is selected to generate a visually discernible pattern when the biological sample contains a level of antibodies that would be sufficient to generate a positive signal in an ELISA, as discussed above. Preferably, the amount of polypeptide immobilized on the membrane ranges from about 25 ng to about 1 μg, and more preferably from about 50 ng to about 500 ng. Such tests can typically be performed with a very small amount (e.g., one drop) of patient serum or blood.




Of course, numerous other assay protocols exist that are suitable for use with the polypeptides of the present invention. The above descriptions are intended to be exemplary only. One example of an alternative assay protocol which may be usefully employed in such methods is a Western blot, wherein the proteins present in a biological sample are separated on a gel, prior to exposure to a binding agent. Such techniques are well known to those of skill in the art.




The present invention further provides agents, such as antibodies and antigen-binding fragments thereof, that specifically bind to a Chlamydial protein. As used herein, an antibody, or antigen-binding fragment thereof, is said to “specifically bind” to a Chlamydial protein if it reacts at a detectable level (within, for example, an ELISA) with a Chlamydial protein, and does not react detectably with unrelated proteins under similar conditions. As used herein, “binding” refers to a noncovalent association between two separate molecules such that a complex is formed. The ability to bind may be evaluated by, for example, determining a binding constant for the formation of the complex. The binding constant is the value obtained when the concentration of the complex is divided by the product of the component concentrations. In general, two compounds are said to “bind,” in the context of the present invention, when the binding constant for complex formation exceeds about 10


3


L/mol. The binding constant may be determined using methods well known in the art.




Binding agents may be further capable of differentiating between patients with and without a Chlamydial infection using the representative assays provided herein. In other words, antibodies or other binding agents that bind to a Chlamydial protein will generate a signal indicating the presence of a Chlamydial infection in at least about 20% of patients with the disease, and will generate a negative signal indicating the absence of the disease in at least about 90% of individuals without infection. To determine whether a binding agent satisfies this requirement, biological samples (e.g., blood, sera, sputum urine and/or tissue biopsies ) from patients with and without Chlamydial infection (as determined using standard clinical tests) may be assayed as described herein for the presence of polypeptides that bind to the binding agent. It will be apparent that a statistically significant number of samples with and without the disease should be assayed. Each binding agent should satisfy the above criteria; however, those of ordinary skill in the art will recognize that binding agents may be used in combination to improve sensitivity.




Any agent that satisfies the above requirements may be a binding agent. For example, a binding agent may be a ribosome, with or without a peptide component, an RNA molecule or a polypeptide. In a preferred embodiment, a binding agent is an antibody or an antigen-binding fragment thereof. Antibodies may be prepared by any of a variety of techniques known to those of ordinary skill in the art. See, e.g., Harlow and Lane,


Antibodies: A Laboratory Manual,


Cold Spring Harbor Laboratory, 1988. In general, antibodies can be produced by cell culture techniques, including the generation of monoclonal antibodies as described herein, or via transfection of antibody genes into suitable bacterial or mammalian cell hosts, in order to allow for the production of recombinant antibodies. In one technique, an immunogen comprising the polypeptide is initially injected into any of a wide variety of mammals (e.g., mice, rats, rabbits, sheep or goats). In this step, the polypeptides of this invention may serve as the immunogen without modification. Alternatively, particularly for relatively short polypeptides, a superior immune response may be elicited if the polypeptide is joined to a carrier protein, such as bovine serum albumin or keyhole limpet hemocyanin. The immunogen is injected into the animal host, preferably according to a predetermined schedule incorporating one or more booster immunizations, and the animals are bled periodically. Polyclonal antibodies specific for the polypeptide may then be purified from such antisera by, for example, affinity chromatography using the polypeptide coupled to a suitable solid support.




Monoclonal antibodies specific for an antigenic polypeptide of interest may be prepared, for example, using the technique of Kohler and Milstein,


Eur. J Immunol.


6:511-519, 1976, and improvements thereto. Briefly, these methods involve the preparation of immortal cell lines capable of producing antibodies having the desired specificity (i.e., reactivity with the polypeptide of interest). Such cell lines may be produced, for example, from spleen cells obtained from an animal immunized as described above. The spleen cells are then immortalized by, for example, fusion with a myeloma cell fusion partner, preferably one that is syngeneic with the immunized animal. A variety of fusion techniques may be employed. For example, the spleen cells and myeloma cells may be combined with a nonionic detergent for a few minutes and then plated at low density on a selective medium that supports the growth of hybrid cells, but not myeloma cells. A preferred selection technique uses HAT (hypoxanthine, aminopterin, thymidine) selection. After a sufficient time, usually about 1 to 2 weeks, colonies of hybrids are observed. Single colonies are selected and their culture supernatants tested for binding activity against the polypeptide. Hybridomas having high reactivity and specificity are preferred.




Monoclonal antibodies may be isolated from the supernatants of growing hybridoma colonies. In addition, various techniques may be employed to enhance the yield, such as injection of the hybridoma cell line into the peritoneal cavity of a suitable vertebrate host, such as a mouse. Monoclonal antibodies may then be harvested from the ascites fluid or the blood. Contaminants may be removed from the antibodies by conventional techniques, such as chromatography, gel filtration, precipitation, and extraction. The polypeptides of this invention may be used in the purification process in, for example, an affinity chromatography step.




Within certain embodiments, the use of antigen-binding fragments of antibodies may be preferred. Such fragments include Fab fragments, which may be prepared using standard techniques. Briefly, immunoglobulins may be purified from rabbit serum by affinity chromatography on Protein A bead columns (Harlow and Lane,


Antibodies: A Laboratory Manual,


Cold Spring Harbor Laboratory, 1988) and digested by papain to yield Fab and Fc fragments. The Fab and Fc fragments may be separated by affinity chromatography on protein A bead columns.




Monoclonal antibodies of the present invention may be coupled to one or more therapeutic agents. Suitable agents in this regard include radionuclides, differentiation inducers, drugs, toxins, and derivatives thereof. Preferred radionuclides include


90


Y,


123


I,


125


I,


131


I,


186


Re,


188


Re,


211


At, and


212


Bi. Preferred drugs include methotrexate, and pyrimidine and purine analogs. Preferred differentiation inducers include phorbol esters and butyric acid. Preferred toxins include ricin, abrin, diptheria toxin, cholera toxin, gelonin, Pseudomonas exotoxin, Shigella toxin, and pokeweed antiviral protein.




A therapeutic agent may be coupled (e.g., covalently bonded) to a suitable monoclonal antibody either directly or indirectly (e.g., via a linker group). A direct reaction between an agent and an antibody is possible when each possesses a substituent capable of reacting with the other. For example, a nucleophilic group, such as an amino or sulfhydryl group, on one may be capable of reacting with a carbonyl-containing group, such as an anhydride or an acid halide, or with an alkyl group containing a good leaving group (e.g., a halide) on the other.




Alternatively, it may be desirable to couple a therapeutic agent and an antibody via a linker group. A linker group can function as a spacer to distance an antibody from an agent in order to avoid interference with binding capabilities. A linker group can also serve to increase the chemical reactivity of a substituent on an agent or an antibody, and thus increase the coupling efficiency. An increase in chemical reactivity may also facilitate the use of agents, or functional groups on agents, which otherwise would not be possible.




It will be evident to those skilled in the art that a variety of bifunctional or polyfunctional reagents, both homo- and hetero-functional (such as those described in the catalog of the Pierce Chemical Co., Rockford, Ill.), may be employed as the linker group. Coupling may be effected, for example, through amino groups, carboxyl groups, sulfhydryl groups or oxidized carbohydrate residues. There are numerous references describing such methodology, e.g., U.S. Pat. No. 4,671,958, to Rodwell et al.




Where a therapeutic agent is more potent when free from the antibody portion of the immunoconjugates of the present invention, it may be desirable to use a linker group which is cleavable during or upon internalization into a cell. A number of different cleavable linker groups have been described. The mechanisms for the intracellular release of an agent from these linker groups include cleavage by reduction of a disulfide bond (e.g., U.S. Pat. No. 4,489,710, to Spitler), by irradiation of a photolabile bond (e.g., U.S. Pat. No. 4,625,014, to Senter et al.), by hydrolysis of derivatized amino acid side chains (e.g., U.S. Pat. No. 4,638,045, to Kohn et al.), by serum complement-mediated hydrolysis (e.g., U.S. Pat. No. 4,671,958, to Rodwell et al.), and acid-catalyzed hydrolysis (e.g., U.S. Pat. No. 4,569,789, to Blattler et al.).




It may be desirable to couple more than one agent to an antibody. In one embodiment, multiple molecules of an agent are coupled to one antibody molecule. In another embodiment, more than one type of agent may be coupled to one antibody. Regardless of the particular embodiment, immunoconjugates with more than one agent may be prepared in a variety of ways. For example, more than one agent may be coupled directly to an antibody molecule, or linkers which provide multiple sites for attachment can be used. Alternatively, a carrier can be used.




A carrier may bear the agents in a variety of ways, including covalent bonding either directly or via a linker group. Suitable carriers include proteins such as albumins (e.g., U.S. Pat. No. 4,507,234, to Kato et al.), peptides and polysaccharides such as aminodextran (e.g., U.S. Pat. No. 4,699,784, to Shih et al.). A carrier may also bear an agent by noncovalent bonding or by encapsulation, such as within a liposome vesicle (e.g., U.S. Pat. Nos. 4,429,008 and 4,873,088). Carriers specific for radionuclide agents include radiohalogenated small molecules and chelating compounds. For example, U.S. Pat. No. 4,735,792 discloses representative radiohalogenated small molecules and their synthesis. A radionuclide chelate may be formed from chelating compounds that include those containing nitrogen and sulfur atoms as the donor atoms for binding the metal, or metal oxide, radionuclide. For example, U.S. Pat. No. 4,673,562, to Davison et al. discloses representative chelating compounds and their synthesis.




A variety of routes of administration for the antibodies and immunoconjugates may be used. Typically, administration will be intravenous, intramuscular, subcutaneous or in site-specific regions by appropriate methods. It will be evident that the precise dose of the antibody/immunoconjugate will vary depending upon the antibody used, the antigen density, and the rate of clearance of the antibody.




Antibodies may be used in diagnostic tests to detect the presence of Chlamydia antigens using assays similar to those detailed above and other techniques well known to those of skill in the art, thereby providing a method for detecting Chlamydial infection in a patient.




Diagnostic reagents of the present invention may also comprise DNA sequences encoding one or more of the above polypeptides, or one or more portions thereof. For example, at least two oligonucleotide primers may be employed in a polymerase chain reaction (PCR) based assay to amplify Chlamydia-specific cDNA derived from a biological sample, wherein at least one of the oligonucleotide primers is specific for a DNA molecule encoding a polypeptide of the present invention. The presence of the amplified cDNA is then detected using techniques well known in the art, such as gel electrophoresis. Similarly, oligonucleotide probes specific for a DNA molecule encoding a polypeptide of the present invention may be used in a hybridization assay to detect the presence of an inventive polypeptide in a biological sample.




As used herein, the term “oligonucleotide primer/probe specific for a DNA molecule” means an oligonucleotide sequence that has at least about 80%, preferably at least about 90% and more preferably at least about 95%, identity to the DNA molecule in question. Oligonucleotide primers and/or probes which may be usefully employed in the inventive diagnostic methods preferably have at least about 10-40 nucleotides. In a preferred embodiment, the oligonucleotide primers comprise at least about 10 contiguous nucleotides of a DNA molecule encoding one of the polypeptides disclosed herein. Preferably, oligonucleotide probes for use in the inventive diagnostic methods comprise at least about 15 contiguous oligonucleotides of a DNA molecule encoding one of the polypeptides disclosed herein. Techniques for both PCR based assays and hybridization assays are well known in the art (see, for example, Mullis et al. Ibid; Ehrlich, Ibid). Primers or probes may thus be used to detect Chlamydia-specific sequences in biological samples. DNA probes or primers comprising oligonucleotide sequences described above may be used alone or in combination with each other.




The following Examples are offered by way of illustration and not by way of limitation.




EXAMPLE 1




Isolation o DNA Sequences Encoding Chlamydia Antigens




Chlamydia antigens of the present invention were isolated by expression cloning of a genomic DNA library of


Chlamydia trachomatis


LGV II essentially as described by Sanderson et al. (


J. Exp. Med.,


1995, 182:1751-1757) and were shown to induce PBMC proliferation and IFN-γ in an immunoreactive T cell line.




A Chlamydia-specific T cell line was generated by stimulating PBMCs from a normal donor with no history of chlamydial genital tract infection with elementary bodies of


Chlamydia trachomatis


LGV II. This T cell line, referred to as TCL-8, was found to recognize both


Chlamydia trachomatis


and


Chlamydia pneumonia


infected monocyte-derived dendritic cells.




A randomly sheared genomic library of


Chlamydia trachomatis


LGV II was constructed in Lambda ZAP (Stratagene, La Jolla, Calif.) and the amplified library plated out in 96 well microtiter plates at a density of 30 clones/well. Bacteria were induced to express recombinant protein in the presence of 2 mM IPTG for 3 h, then pelleted and resuspended in 200 μl of RPMI 10% FBS. 10 μl of the induced bacterial suspension was transferred to 96 well plates containing autologous monocyte-derived dendritic cells. After a 2 h incubation, dendritic cells were washed to remove free


E. coli


and Chlamydia-specific T cells were added. Positive


E. coli


pools were identified by determining IFN-γ production and proliferation of the T cells in response to the pools.




Four positive pools were identified, which were broken down to yield four pure clones (referred to as 1-B1-66, 4-D7-28, 3-G3-10 and 10-C10-31), with insert sizes of 481 bp, 183 bp, 110 bp and 1400 bp, respectively. The determined DNA sequences for 1-B1-66, 4-D7-29, 3-G3-10 and 10-C10-31 are provided in SEQ ID NO: 1-4, respectively. Clone 1-B1-66 is approximately in region 536690 of the


C. trachomatis


genome (NCBI


C. trachomatis


database). Within clone 1-B1-66, an open reading frame (ORF) has been identified (nucleotides 115-375) that encodes a previously identified 9 kDa protein (Stephens, et al. Genbank Accession No. AE001320), the sequence of which is provided in SEQ ID NO: 5). Clone 4-D7-28 is a smaller region of the same ORF (amino acids 22-82 of 1-B1-66). Clone 3-G3-10 is approximately in region 74559 of the


C. trachomatis


genome. The insert is cloned in the antisense orientation with respect to its orientation in the genome. The clone 10-C10-31 contains an open reading frame that corresponds to a previously published sequence for S13 ribosomal protein from


Chlamydia trachomatis


(Gu, L. et al.


J. Bacteriology,


177:2594-2601, 1995). The predicted protein sequences for 4-D7-28 and 10-C10-31 are provided in SEQ ID NO: 6 and 12, respectively. Predicted protein sequences for 3-G3-10 are provided in SEQ ID NO: 7-11.




In a related series of screening studies, an additional T cell line was used to screen the genomic DNA library of


Chlamydia trachomatis


LGV II described above. A Chlamydia-specific T cell line (TCT-1) was derived from a patient with a chlamydial genital tract infection by stimulating patient PBMC with autologous monocyte-derived dendritic cells infected with elementary bodies of


Chlamydia trachomatis


LGV II. One clone, 4C9-18 (SEQ ID NO: 21), containing a 1256 bp insert, elicited a specific immune response, as measured by standard proliferation assays, from the Chlamydia-specific T cell line TCT-1. Subsequent analysis revealed this clone to contain three known sequences: lipoamide dehydrogenase (Genbank Accession No. AE001326), disclosed in SEQ ID NO: 22; a hypothetical protein CT429 (Genbank Accession No. AE001316), disclosed in SEQ ID NO: 23; and part of an open reading frame of ubiquinone methyltransferase CT428 (Genbank Accession No. AE001316), disclosed in SEQ ID NO: 24.




In further studies involving clone 4C9-18 (SEQ ID NO: 21), the full-length amino acid sequence for lipoamide dehydrognase (SEQ ID NO: 22) from


C. trachomatis


(LGV II) was expressed in clone CtL2-LPDA-FL, as disclosed in SEQ ID NO: 90.




To further characterize the open reading frame containing the T cell stimulating epitope(s), a cDNA fragment containing nucleotides 1-695 of clone 4C9-18 with a cDNA sequence encoding a 6×-Histidine tag on the amino terminus was subcloned into the NdeI/EcoRI site of the pET17b vector (Novagen, Madison, Wis.), referred to as clone 4C9-18#2 BL21 pLysS (SEQ ID NO: 25, with the corresponding amino acid sequence provided in SEQ ID NO: 26) and transformed into


E. coli.


Selective induction of the transformed


E. coli


with 2 mM IPTG for three hours resulted in the expression of a 26 kDa protein from clone 4C9-18#2 BL21 pLysS, as evidenced by standard Coomassie-stained SDS-PAGE. To determine the immunogenicity of the protein encoded by clone 4C9-18#2 BL21 pLysS,


E. coli


expressing the 26 kDa protein were titered onto 1×10


4


monocyte-derived dendritic cells and incubated for two hours. The dendritic cell cultures were washed and 2.5×10


4


T cells (TCT-1) added and allowed to incubate for an additional 72 hours, at which time the level of IFN-γ in the culture supernatant was determined by ELISA. As shown in

FIG. 1

, the T-cell line TCT-1 was found to respond to induced cultures as measured by IFN-g, indicating a Chlamydia-specific T-cell response against the lipoamide dehydrogenase sequence, Similarly, the protein encoded by clone 4C9-18#2 BL21 pLysS was shown to stimulate the TCT-1 T-cell line by standard proliferation assays.




Subsequent studies to identify additional


Chlamydia trachomatis


antigens using the above-described CD4+ T-cell expression cloning technique yielded additional clones. The TCT-1 and TCL-8 Chlamydia-specific T-cell lines, as well as the TCP-21 T-cell line were utilized to screen the


Chlamydia trachomatis


LGVII genomic library. The TCP-21 T-cell line was derived from a patient having a humoral immune response to


Chlamydia pnuemoniae.


The TCT-1 cell line identified 37 positive pools, the TCT-3 cell line identified 41 positive pools and the TCP-21 cell line identified 2 positive pools. The following clones were derived from 10 of these positive pools. Clone 11-A3-93 (SEQ ID NO: 64), identified by the TCP-21 cell line, is a 1339 bp genomic fragment sharing homology to the HAD superfamily (CT103). The second insert in the same clone shares homology with the fab I gene (CT104) present on the complementary strand. Clone 11-C12-91 (SEQ ID NO: 63), identified using the TCP-21 cell line, has a 269 bp insert that is part of the OMP2 gene (CT443) and shares homology with the 60 kDa cysteine rich outer membrane protein of


C. pnuemoniae.






Clone 11-G10-46, (SEQ ID NO: 62), identified using the TCT-3 cell line, contains a 688 bp insert that shares homology to the hypothetical protein CT610. Clone 11-G1-34, (SEQ ID NO: 61), identified using the TCT-3 cell line, has two partial open reading frames (ORF) with an insert size of 1215 bp. One ORF shares homology to the malate dehydrogenase gene (CT376), and the other ORF shares homology to the glycogen hydrolase gene (CT042). Clone 11-H3-68, (SEQ ID NO: 60), identified using the TCT-3 cell line, has two ORFs with a total insert size of 1180 bp. One partial ORF encodes the plasmid-encoded PGP6-D virulence protein while the second ORF is a complete ORF for the L1 ribosomal gene (CT318). Clone 11-H4-28, (SEQ ID NO: 59), identified using the TCT-3 cell line, has an insert size of 552 bp and is part of the ORF for the dnaK gene (CT396). Clone 12-B3-95, (SEQ ID NO: 58), identified using the TCT-1 cell line, has an insert size of 463 bp and is a part of the ORF for the lipoamide dehydrogenase gene (CT557). Clones 15-G1-89 and 12-B3-95 are identical, (SEQ ID NO: 55 and 58, respectively), identified using the TCT-1 cell line, has an insert size of 463 bp and is part of the ORF for the lipoamide dehydrogenase gene (CT557). Clone 12-G3-83, (SEQ ID NO: 57), identified using the TCT-1 cell line, has an insert size of 1537 bp and has part of the ORF for the hypothetical protein CT622.




Clone 23-G7-68, (SEQ ID NO: 79), identified using the TCT-3 cell line, contains a 950 bp insert and contains a small part of the L11 ribosomal ORF, the entire ORF for L1 ribosomal protein and a part of the ORF for L10 ribosomal protein. Clone 22-F8-91, (SEQ ID NO: 80), identified using the TCT-1 cell line, contains a 395 bp insert that contains a part of the pmpC ORF on the complementary strand of the clone. Clone 21-E8-95, (SEQ ID NO: 81), identified using the TCT-3 cell line, contains a 2,085 bp insert which contains part of CT613 ORF, the complete ORF for CT612, the complete ORF for CT611 and part of the ORF for CT610. Clone 19-F12-57, (SEQ ID NO: 82), identified using the TCT-3 cell line, contains a 405 bp insert which contains part of the CT 858 ORF and a small part of the recA ORF. Clone 19-F12-53, (SEQ ID NO: 83), identified using the TCT-3 cell line, contains a 379 bp insert that is part of the ORF for CT455 encoding glutamyl tRNA synthetase. Clone 19-A5-54, (SEQ ID NO: 84), identified using the TCT-3 cell line, contains a 715 bp insert that is part of the ORF3 (complementary strand of the clone) of the cryptic plasmid. Clone 17-E11-72, (SEQ ID NO: 85), identified using the TCT-1 cell line, contains a 476 bp insert that is part of the ORF for Opp





2 and pmpD. The pmpD region of this clone is covered by the pmpD region of clone 15-H2-76. Clone 17-C1-77, (SEQ ID NO: 86), identified using the TCT-3 cell line, contains a 1551 bp insert that is part of the CT857 ORF, as well as part of the CT858 ORF. Clone 15-H2-76, (SEQ ID NO: 87), identified using the TCT-1 cell line, contains a 3,031 bp insert that contains a large part of the pmpD ORF, part of the CT089 ORF, as well as part of the ORF for SycE. Clone 15-A3-26, (SEQ ID NO: 88), contains a 976 bp insert that contains part of the ORF for CT858. Clone 17-G4-36, (SEQ ID NO: 267), identified using the TCT-10 cell line, contains a 680 bp insert that is in frame with beta-gal in the plasmid and shares homology to part of the ORF for DNA-directed RNA polymerase beta subunit (CT315 in SerD).




Several of the clones described above share homology to various polymorphic membrane proteins. The genomic sequence of


Chlamydia trachomatis


contains a family of nine polymorphic membrane protein genes, referred to as pmp. These genes are designated pmpA, pmpB, pmpC, pmpD, pmpE, pmpF, pmpG, pmpH and pmpI. Proteins expressed from these genes are believed to be of biological relevance in generating a protective immune response to a Chlamydial infection. In particular, pmpC, pmpD, pmpE and pmpI contain predictable signal peptides, suggesting they are outer membrane proteins, and therefore, potential immunological targets.




Based on the


Chlamydia trachomatis


LGVII serovar sequence, primer pairs were designed to PCR amplify the full-length fragments of pmpC, pmpD, pmpE, pmpG, pmpH and pmpI. The resulting fragments were subcloned into the DNA vaccine vector JA4304 or JAL, which is JA4304 with a modified linker (SmithKline Beecham, London, England). Specifically, PmpC was subcloned into the JAL vector using the 5′ oligo GAT AGG CGC GCC GCA ATC ATG AAA TTT ATG TCA GCT ACT GCT G and the 3′ oligo CAG AAC GCG TTT AGA ATG TCA TAC GAG CAC CGC A, as provided in SEQ ID NO: 197 and 198, respectively. PCR amplification of the gene under conditions well known in the art and ligation into the 5′ ASCI/13′ Mlul sites of the JAL vector was completed after inserting the short nucleotide sequence GCAATC (SEQ ID NO: 199) upstream of the ATG to create a Kozak-like sequence. The resulting expression vector contained the full-length pmpC gene comprising 5325 nucleotides (SEQ ID NO: 173) containing the hypothetical signal sequence, which encodes a 187 kD protein (SEQ ID NO: 179). The pmpD gene was subcloned into the JA4304 vaccine vector following PCR amplification of the gene using the following oligos: 5′ oligo-TGC AAT CAT GAG TTC GCA GAA AGA TAT AAA AAG C (SEQ ID NO: 200) and 3′ oligo-CAG AGC TAG CTT AAA AGA TCA ATC GCA ATC CAG TAT TC (SEQ ID NO: 201). The gene was ligated into the a 5′ blunted HIII/3′ Ml uI site of the JA4304 vaccine vector using standard techniques well known in the art. The CAATC (SEQ ID NO: 202) was inserted upstream of the ATG to create a Kozak-like sequence. This clone is unique in that the last threonine of the HindIII site is missing due to the blunting procedure, as is the last glycine of the Kozak-like sequence. The insert, a 4593 nucleotide fragment (SEQ ID NO: 172) is the full-length gene for pmpD containing the hypothetical signal sequence, which encodes a 161 kD protein (SEQ ID NO: 178). PmpE was subcloned into the JA4304 vector using the 5′ oligo-TGC AAT CAT GAA AAA AGC GTT TTT CTT TTT C (SEQ ID NO: 203), and the 3′ oligo-CAG AAC GCG TCT AGA ATC GCA GAG CAA TTT C (SEQ ID NO: 204). Following PCR amplification, the gene was ligated into the 5′ blunted HIII/3′ Ml uI site of JA4304. To facilitate this, a short nucleotide sequence, TGCAATC (SEQ ID NO: 293), was added upstream of the initiation codon for creating a Kozak-like sequence and reconstituting the HindIII site. The insert is the full-length pmpE gene (SEQ ID NO: 171) containing the hypothetical signal sequence. The pmpE gene encodes a 105 kD protein (SEQ ID NO: 177). The pmpG gene was PCR amplified using the 5′ oligo-GTG CAA TCA TGA TTC CTC AAG GAA TTT ACG ( SEQ ID NO: 205), and the 3′ oligo-CAG AAC GCG TTT AGA ACC GGA CTT TAC TTC C (SEQ ID NO: 206) and subcloned into the JA4304 vector. Similar cloning strategies were followed for the pmpI and pmpK genes. In addition, primer pairs were designed to PCR amplify the fill-length or overlapping fragments of the pmp genes, which were then subcloned for protein expression in the pET17b vector (Novagen, Madison, Wis.) and transfected into


E. coli


BL21 pLysS for expression and subsequent purification utilizing the histidine-nickel chromatographic methodology provided by Novagen. Several of the genes encoding the recombinant proteins, as described below, lack the native signal sequence to facilitate expression of the protein. Full-length protein expression of pmpC was accomplished through expression of two overlapping fragments, representing the amino and carboxy termini. Subcloning of the pmpC-amino terminal portion, which lacks the signal sequence, (SEQ ID NO: 187, with the corresponding amino acid sequence provided in SEQ ID NO: 195) used the 5′ oligo-CAG ACA TAT GCA TCA CCA TCA CCA TCA CGA GGC GAG CTC GAT CCA AGA TC (SEQ ID NO: 207), and the 3′ oligo-CAG AGG TAC CTC AGA TAG CAC TCT CTC CTA TTA AAG TAG G (SEQ ID NO: 208) into the 5′ NdeI/3′ KPN cloning site of the vector. The carboxy terminus portion of the gene, pmpC-carboxy terminal fragment (SEQ ID NO: 186, with the corresponding amino acid sequence provided in SEQ ID NO: 194), was subcloned into the 5′ NheI/3′ KPN cloning site of the expression vector using the following primers: 5′ oligo-CAG AGC TAG CAT GCA TCA CCA TCA CCA TCA CGT TAA GAT TGA GAA CTT CTC TGG C (SEQ ID NO: 209), and 3′ oligo-CAG AGG TAC CTT AGA ATG TCA TAC GAG CAC CGC AG (SEQ ID NO: 210). PmpD was also expressed as two overlapping proteins. The pmpD-amino terminal portion, which lacks the signal sequence, (SEQ ID NO: 185, with the corresponding amino acid sequence provided in SEQ ID NO: 193) contains the initiating codon of the pET17b and is expressed as a 80 kD protein. For protein expression and purification purposes, a six-histidine tag follows the initiation codon and is fused at the 28


th


amino acid (nucleotide 84) of the gene. The following primers were used, 5′ oligo, CAG ACA TAT GCA TCA CCA TCA CCA TCA CGG GTT AGC (SEQ ID NO: 211), and the 3′ oligo-CAG AGG TAC CTC AGC TCC TCC AGC ACA CTC TCT TC (SEQ ID NO-212), to splice into the 5′ NdeI/3′ KPN cloning site of the vector. The pmpD-carboxy terminus portion (SEQ ID NO: 184) was expressed as a 92 kD protein (SEQ ID NO: 192). For expression and subsequent purification, an additional methionine, alanine and serine was included, which represent the initiation codon and the first two amino acids from the pET17b vector. A six-histidine tag downstream of the methionine, alanine and serine is fused at the 691


st


amino acid (nucleotide 2073) of the gene. The 5′ oligo-CAG AGC TAG CCA TCA CCA TCA CCA TCA CGG TGC TAT TTC TTG CTT ACG TGG (SEQ ID NO: 213) and the 3′ oligo-CAG AGG TAC TTn AAA AGA TCA ATC GCA ATC CAG TAT TCG (SEQ ID NO: 214) were used to subclone the insert into the 5′ NheI/3′ KPN cloning site of the expression vector. PmpE was expressed as a 106 kD protein (SEQ ID NO: 183 with the corresponding amino acid sequence provided in SEQ ID NO: 191). The pmpE insert also lacks the native signal sequence. PCR amplification of the gene under conditions well known in the art was performed using the following oligo primers: 5′ oligo-CAG AGG ATC CAC ATC ACC ATC ACC ATC ACG GAC TAG CTA GAG AGG TTC (SEQ ID NO: 215), and the 3′ oligo-CAG AGA ATT CCT AGA ATC GCA GAG CAA TTT C (SEQ ID NO: 216), and the amplified insert was ligated into a 5′ BamHI/3′ EcoRI site of JA4304. The short nucleotide sequence, as provided in SEQ ID NO: 217, was inserted upstream of the initiation codon for creating the Kozak-like sequence and reconstituting the HindIII site. The expressed protein contains the initiation codon and the downstream 21 amino acids from the pET17b expression vector, i.e., MASMTGGQQMGRDSSLVPSSDP (SEQ ID NO: 218). In addition, a six-histidine tag is included upstream of the sequence described above and is fused at the 28


th


amino acid (nucleotide 84) of the gene, which eliminates the hypothetical signal peptide. The sequences provided in SEQ ID NO: 183 with the corresponding amino acid sequence provided in SEQ ID NO: 191 do not include these additional sequences. The pmpG gene (SEQ ID NO: 182, with the corresponding amino acid sequence provided in SEQ ID No; 190) was PCR amplified under conditions well known in the art using the following oligo primers: 5′ oligo-CAG AGG TAC CGC ATC ACC ATC ACC ATC ACA TGA TTC CTC AAG GAA TTT ACG (SEQ ID NO: 219), and the 3′ oligo-CAG AGC GGC CGC TTA GAA CCG GAC TTT ACT TCC (SEQ ID NO: 220), and ligated into the 5′ KPN/3′ NotI cloning site of the expression vector. The expressed protein contains an additional amino acid sequence at the amino end, namely, MASMTGGQQNGRDSSLVPHHHHHH (SEQ ID NO: 221), which comprises the initiation codon and additional sequence from the pET17b expression vector. The pmpI gene (SEQ ID NO-181, with the corresponding amino acid sequence provided in SEQ ID No; 189) was PCR amplified under conditions well known in the art using the following oligo primers: 5′ oligo-CAG AGC TAG CCA TCA CCA TCA CCA TCA CCT CTT TGG CCA GGA TCC C (SEQ ID NO: 222), and the 3′ oligo-CAG AAC TAG TCT AGA ACC TGT AAG TGG TCC (SEQ ID NO: 223), and ligated into the expression vector at the 5′ NheI/3′ SpeI cloning site. The 95 kD expressed protein contains the initiation codon plus an additional alanine and serine from the pET17b vector at the amino end of the protein. In addition, a six-histidine tag is fused at the 21 st amino acid of the gene, which eliminates the hypothetical signal peptide.




Clone 14H1-4, (SEQ ID NO: 56), identified using the TCT-3 cell line, contains a complete ORF for the TSA gene, thiol specific antioxidant—CT603 (the CT603 ORF is a homolog of CPn0778 from


C. pnuemoniae


). The TSA open reading frame in clone 14-H1-4 was amplified such that the expressed protein possess an additional methionine and a 6×histidine tag (amino terminal end). This amplified insert was sub-cloned into the Nde/EcoRI sites of the pET17b vector. Upon induction of this clone with IPTG, a 22.6 kDa protein was purified by Ni-NTA agarose affinity chromatography. The determined amino acid sequence for the 195 amino acid ORF of clone 14-H1-4 encoding the TSA gene is provided in SEQ ID NO: 65. Further analysis yielded a full-length clone for the TSA gene, referred to as CTL2-TSA-FL, with the full-length amino acid sequence provided in SEQ ID NO: 92.




Further studies yielded 10 additional clones identified by the TCT-1 and TCT-3 T-cell lines, as described above. The clones identified by the TCT-1 line are: 16-D4-22, 17-C5-19, 18-C5-2, 20-G3-45 and 21-C7-66; clones identified by the TCT line are: 17-C10-11, 17-E2-9, 22-A1-49 and 22-B3-53. Clone 21-G12-60 was recognized by both the TCT-1 and TCT-3 T cell lines. Clone 16-D4-22 (SEQ ID NO: 119), identified using the TCT-1 cell line contains a 953 bp insert that contains two genes, parts of open reading frame 3 (ORF3) and ORF4 of the


C. trachomatis


plasmid for growth within mammalian cells. Clone 17-C5-19 (SEQ ID NO: 118), contains a 951 bp insert that contains part of the ORF for DT43 1, encoding for clpP





1 protease and part of the ORF for CT430 (diaminopimelate epimerase). Clone 18-C5-2 (SEQ ID NO: 117) is part of the ORF for S1 ribosomal protein with a 446 bp insert that was identified using the TCT-1 cell line. Clone 20-G3-45 (SEQ ID NO: 116), identified by the TCT-1 cell line, contains a 437 bp insert that is part of the pmpB gene (CT413). Clone 21-C7-66 (SEQ ID NO: 115), identified by the TCT-1 line, contains a 995bp insert that encodes part of the dnaK like protein. The insert of this clone does not overlap with the insert of the TCT-3 clone 11-H4-28 (SEQ ID NO: 59), which was shown to be part of the dnaK gene CT396 Clone 17-C10-31 (SEQ ID NO: 114), identified by the TCT-3 cell line, contains a 976 bp insert. This clone contains part of the ORF for CT858, a protease containing IRBP and DHR domains. Clone 17-E2-9 (SEQ ID NO: 113) contains part of ORFs for two genes, CT611 and CT610, that span a 1142 bp insert. Clone 22-A1-49 (SEQ ID NO: 112), identified using the TCT-3 line, also contains two genes in a 698 bp insert. Part of the ORF for CT660 (DNA gyrase{gyrA





2}) is present on the top strand where as the complete ORF for a hypothetical protein CT659 is present on the complementary strand. Clone 22-B3-53 (SEQ ID NO: 111), identified by the TCT1 line, has a 267 bp insert that encodes part of the ORF for GroEL (CT110). Clone 21-G12-60 (SEQ ID NO: 110), identified by both the TCT-1 and TCT-3 cell lines contains a 1461 bp insert that contains partial ORFs for hypothetical proteins CT875, CT229 and CT228.




Additional Chlamydia antigens were obtained by screening a genomic expression library of


Chlamydia trachomatis


(LGV II serovar) in Lambda Screen-1 vector (Novagen, Madison, Wis.) with sera pooled from several Chlamydia-infected individuals using techniques well known in the art. The following immuno-reactive clones were identified and the inserts containing Chlamydia genes sequenced: CTL2#1 (SEQ ID NO: 71); CTL2#2 (SEQ ID NO: 70); CTL2#3-5′ (SEQ ID NO: 72, a first determined genomic sequence representing the 5′ end); CTL2#3-3′ (SEQ ID NO: 73, a second determined genomic sequence representing the 3′ end); CTL2#4 (SEQ ID NO: 53); CTL2#5 (SEQ ID NO: 69); CTL2#6 (SEQ ID NO: 68); CTL2#7 (SEQ ID NO: 67); CTL2#8b (SEQ ID NO: 54); CTL2#9 (SEQ ID NO: 66); CTL2#10-5′ (SEQ ID NO: 74, a first determined genomic sequence representing the 5′ end); CTL2#10-3′ (SEQ ID NO: 75, a second determined genomic sequence representing the 3′ end); CTL2#11-5′ (SEQ ID NO: 45, a first determined genomic sequence representing the 5′ end); CTL2#11-3′ (SEQ ID NO: 44, a second determined genomic sequence representing the 3′ end); CTL2#12 (SEQ ID NO: 46); CTL2#16-5′ (SEQ ID NO: 47); CTL2#18-5′ (SEQ ID NO: 49, a first determined genomic sequence representing the 5′ end); CTL2#18-3′ (SEQ ID NO: 48, a second determined genomic sequence representing the 3, end); CTL2#19-5′ (SEQ ID NO: 76, the determined genomic sequence representing the 5′ end); CTL2#21 (SEQ ID NO: 50); CTL2#23 (SEQ ID NO: 51; and CTL2#24 (SEQ ID NO: 52).




Additional


Chlamydia trachomatis


antigens were identified by serological expression cloning. These studies used sera pooled from several Chlamydia-infected individuals, as described above, but, IgA,and IgM antibodies were used in addition to IgG as a secondary antibody. Clones screened by this method enhance detection of antigens recognized by an early immune response to a Chlamydial infection, that is a mucosal humoral immune response. The following immunoreactive clones were characterized and the inserts containing Chlamydia genes sequenced: CTL2gam-1 (SEQ ID NO: 290), CTL2gam-2 (SEQ ID NO: 289), CTL2gam-5 (SEQ ID NO: 288), CTL2gam-6-3′ (SEQ ID NO: 287, a second determined genomic sequence representing the 3′ end), CTL2gam-6-5′ (SEQ ID NO: 286, a first determined genomic sequence representing the 5′ end), CTL2gam-8 (SEQ ID NO: 285), CTL2gam-10 (SEQ ID NO: 284), CTL2gam-13 (SEQ ID NO: 283), CTL2gam-15-3′ (SEQ ID NO: 282, a second determined genomic sequence representing the 3′ end), CTL2gam-15-5′ (SEQ ID NO: 281, a first determined genomic sequence representing the 5′ end), CTL2gam-17 (SEQ ID NO: 280), CTL2gam-18 (SEQ ID NO: 279), CTL2gam-21 (SEQ ID NO: 278), CTL2gam-23 (SEQ ID NO: 277), CTL2gam-24 (SEQ ID NO: 276), CTL2gam-26 (SEQ ID NO: 275), CTL2gam-27 (SEQ ID NO: 274), CTL2gam-28 (SEQ ID NO: 273), CTL2gam-30-3′ (SEQ ID NO: 272, a second determined genomic sequence representing the 3′ end) and CTL2gam-30-5′ (SEQ ID NO: 271, a first determined genomic sequence representing the 5′ end).




EXAMPLE 2




Induction of T Cell Proliferation and Interferon-γProduction by Chlamydia Trachomatis Antigens




The ability of recombinant


Chlamydia trachomatis


antigens to induce T cell proliferation and interferon-γ production is determined as follows.




Proteins are induced by IPTG and purified by Ni-NTA agarose affinity chromatograph (Webb et al.,


J. Immunology


157:5034-5041, 1996). The purified polypeptides are then screened for the ability to induce T-cell proliferation in PBMC preparations. PBMCs from


C. trachomatis


patients as well as from normal donors whose T-cells are known to proliferate in response to Chlamydia antigens, are cultured in medium comprising RPMI 1640 supplemented with 10% pooled human serum and 50 μg/ml gentamicin. Purified polypeptides are added in duplicate at concentrations of 0.5 to 10 μg/mL. After six days of culture in 96-well round-bottom plates in a volume of 200 μl, 50 μl of medium is removed from each well for determination of IFN-γ levels, as described below The plates are then pulsed with 1 μCi/well of tritiated thymidine for a further 18 hours, harvested and tritium uptake determined using a gas scintillation counter. Fractions that result in proliferation in both replicates three fold greater than the proliferation observed in cells cultured in medium alone are considered positive.




IFN-γ is measured using an enzyme-linked immunosorbent assay (ELISA). ELISA plates are coated with a mouse monoclonal antibody directed to human IFNγ (PharMingen, San Diego, Calif.) in PBS for four hours at room temperature. Wells are then blocked with PBS containing 5% (W/V) non-fat dried milk for 1 hour at room temperature. The plates are washed six times in PBS/0.2% TWEEN-20 and samples diluted 1:2 in culture medium in the ELISA plates are incubated overnight at room temperature. The plates are again washed and a polyclonal rabbit anti-human IFN-γ serum diluted 1:3000 in PBS/10% normal goat serum is added to each well. The plates are then incubated for two hours at room temperature, washed and horseradish peroxidase-coupled anti-rabbit IgG (Sigma Chemical So., St. Louis, Mo.) is added at a 1:2000 dilution in PBS/5% non-fat dried milk. After a further two hour incubation at room temperature, the plates are washed and TMB substrate added. The reaction is stopped after 20 min with 1 N sulfuric acid. Optical density is determined at 450 nm using 570 nm as a reference wavelength. Fractions that result in both replicates giving an OD two fold greater than the mean OD from cells cultured in medium alone, plus 3 standard deviations, are considered positive.




Using the above methodology, recombinant 1B1-66 protein (SEQ ID NO: 5) as well as two synthetic peptides corresponding to amino acid residues 48-67 (SEQ ID NO: 13; referred to as 1-B1-66/48-67) and 58-77 (SEQ ID NO: 14, referred to as 1B1-66/58-77), respectively, of SEQ ID NO: 5, were found to induce a proliferative response and IFN-γ production in a Chlamydia-specific T cell line used to screen a genomic library of


C. trachomatis


LGV II.




Further studies have identified a


C. trachomatis


-specific T-cell epitope in the ribosomal S13 protein. Employing standard epitope mapping techniques well known in the art, two T-cell epitopes in the ribosomal S13 protein (rS13) were identified with a Chlamydia-specific T-cell line from donor CL-8 (T-cell line TCL-8 EB/DC).

FIG. 8

illustrates that the first peptide, rS13 1-20 (SEQ ID NO: 106), is 100% identical with the corresponding


C. pneumoniae


sequence, explaining the cross-reactivity of the T-cell line to recombinant


C. trachomatis


- and


C. pneumoniae


-rS13. The response to the second peptide rS13 56-75 (SEQ ID NO: 108) is


C. trachomatis


-specific, indicating that the rS13 response in this healthy asymptomatic donor was elicited by exposure to


C. trachomatis


and not to


C. pneumoniae


, or any other microbial infection.




As described in Example 1, Clone 11-C12-91 (SEQ ID NO: 63), identified using the TCP-21 cell line, has a 269 bp insert that is part of the OMP2 gene (CT443) and shares homology with the 60 kDa cysteine rich outer membrane protein of


C. pneumoniae


, referred to as OMCB. To further define the reactive epitope(s), epitope mapping was performed using a series of overlapping peptides and the immunoassay previously described. Briefly, proliferative responses were determined by stimulating 2.5×10


4


TCP-21 T-cells in the presence of 1×10


4


monocyte-derived dendritic cells with either non-infectious elementary bodies derived from


C. trachomatis


and


C. pneumoniae


, or peptides derived from the protein sequence of


C. trachomatis


or


C. pneumoniae


OMCB protein (0.1 μg/ml). The TCP-21 T-cells responded to epitopes CT-OMCB #167-186, CT-OMCB #171-190, CT-OMCB #171-186, and to a lesser extent, CT-OMCB #175-186 (SEQ ID NO: 249-252, respectively). Notably, the TCP-21 T-cell line also gave a proliferative response to the homologous


C. pneumoniae


peptide CP-OMCB #171-186 (SEQ ID NO. 253), which was equal to or greater than the response to the


C. trachomatis


peptides. The amino acid substitutions in position two (i.e., Asp for Glu) and position four (i.e., Cys for Ser) did not alter the proliferative response of the T-cells and therefore demonstrating this epitope to be a cross-reactive epitope between


C. trachomatis


and


C. pneumoniae.






To further define the epitope described above, an additional T-cell line, TCT-3, was used in epitope mapping experiments. The immunoassays were performed as described above, except that only peptides from


C. trachomatis


were tested. The T-cells gave a proliferative response to two peptides, CT-OMCB #152-171 and CT-OMCB #157-176 (SEQ ID NO: 246 and 247, respectively), thereby defining an additional immunogenic epitope in the cysteine rich outer membrane protein of


C. trachomatis.






Clone 14H1-4, (SEQ ID NO: 56, with the corresponding full-length amino acid sequence provided in SEQ ID NO: 92), was identified using the TCT-3 cell line in the CD4 T-cell expression cloning system previously described, and was shown to contain a complete ORF for the, thiol specific antioxidant gene (CT603), referred to as TSA. Epitope mapping immunoassays were performed, as described above, to further define the epitope. The TCT-3 T-cells line exhibited a strong proliferative response to the overlapping peptides CT-TSA #96-115, CT-TSA #101-120 and CT-TSA #106-125 (SEQ ID NO: 254-256, respectively) demonstrating an immunoreactive epitope in the thiol specific antioxidant gene of


C. trachomatis


serovar LGVII.




EXAMPLE 3




Preparation o Synthetic Polypeptides




Polypeptides may be synthesized on a Millipore 9050 peptide synthesizer using FMOC chemistry with HPTU (O-Benzotriazole-N,N,N′,N′-tetramethyluronium hexafluorophosphate) activation. A Gly-Cys-Gly sequence may be attached to the amino terminus of the peptide to provide a method of conjugating or labeling of the peptide. Cleavage of the peptides from the solid support may be carried out using the following cleavage mixture: trifluoroacetic acid:ethanedithiol:thioanisole:water:phenol (40:1:2:2:3). After cleaving for 2 hours, the peptides may be precipitated in cold methyl-t-butyl-ether. The peptide pellets may then be dissolved in water containing 0.1% trifluoroacetic acid (TFA) and lyophilized prior to purification by C18 reverse phase HPLC. A gradient of 0-60% acetonitrile (containing 0.1% TFA) in water (containing 0.1% TFA) may be used to elute the peptides. Following lyophilization of the pure fractions, the peptides may be characterized using electrospray mass spectrometry and by amino acid analysis.




EXAMPLE 4




Isolation and Characterization of DNA Sequences Encoding Chlamydia Antigens Using Retroviral Expression Vector Systems and Subsequent Immunological Analysis




A genomic library of


Chlamydia trachomatis


LGV II was constructed by limited digests using BamHI, BgIII, BstYi and MboI restriction enzymes. The restriction digest fragments were subsequently ligated into the BamHI site of the retroviral vectors pBIB-KS1,2,3. This vector set was modified to contain a Kosak translation initiation site and stop codons in order to allow expression of proteins from short DNA genomic fragments, as shown in FIG.


2


. DNA pools of 80 clones were prepared and transfected into the retroviral packaging line Phoenix-Ampho, as described in Pear, W. S., Scott, M. L. and Nolan, G. P., Generation of High Titre, Helper-free Retroviruses by Transient Transfection. Methods in Molecular Medicine: Gene Therapy Protocols, Humana Press, Totowa, N.J., pp. 41-57. The Chlamydia library in retroviral form was then transduced into H2-Ld expressing P815 cells, which were then used as target cells to stimulate an antigen specific T-cell line.




A Chlamydia-specific, murine H2


d


restricted CD8+ T-cell line was expanded in culture by repeated rounds of stimulation with irradiated


C. trachomatis


-infected J774 cells and irradiated syngeneic spleen cells, as described by Starnbach, M., in


J. Immunol.,


153:5183, 1994. This Chlamydia-specific T-cell line was used to screen the above Chlamydia genomic library expressed by the retrovirally-transduced P815 cells. Positive DNA pools were identified by detection of IFN-γ production using Elispot analysis (see Lalvani et al.,


J. Experimental Medicine


186:859-865, 1997).




Two positive pools, referred to as 2C7 and 2E10, were identified by IFN-γ Elispot assays. Stable transductants of P815 cells from pool 2C7 were cloned by limiting dilution and individual clones were selected based upon their capacity to elicit IFN-γ production from the Chlamydia-specific CTL line. From this screening process, four positive clones were selected, referred to as 2C7-8, 2C7-9, 2C7-19 and 2C7-21. Similarly the positive pool 2E10 was further screened, resulting in an additional positive clone, which contains three inserts. The three inserts are fragments of the CT016, tRNA syntase and clpX genes (SEQ ID NO: 268-270, respectively).




Transgenic DNA from these four positive 2C7 clones were PCR amplified using pBIB-KS specific primers to selectively amplify the Chlamydia DNA insert. Amplified inserts were gel purified and sequenced. One immunoreactive clone, 2C7-8 (SEQ ID NO: 15, with the predicted amino acid sequence provided in SEQ ID NO: 32), is a 160 bp fragment with homology to nucleotides 597304-597145 of


Chlamydia trachomatis


, serovar D (NCBI, BLASTN search; SEQ ID NO: 33, with the predicted amino acid sequence provided in SEQ ID NO: 34). The sequence of clone 2C7-8 maps within two putative open reading frames from the region of high homology described immediately above, and in particular, one of these putative open reading frames, consisting of a 298 amino acid fragment (SEQ ID NO: 16, with the predicted amino acid sequence provided in SEQ ID NO: 17), was demonstrated to exhibit immunological activity.




Full-length cloning of the 298 amino acid fragment (referred to as CT529 and/or the Cap1 gene) from serovar L2 was obtained by PCR amplification using 5′-ttttgaagcaggtaggtgaatatg (forward) (SEQ ID NO: 159) and 5′-ttaagaaatttaaaaaatccctta (reverse) (SEQ ID NO: 160) primers, using purified


C. trachomatis


L2 genomic DNA as template. This PCR product was gel-purified, cloned into pCRBlunt (Invitrogen, Carlsbad, Calif.) for sequencing, and then subcloned into the EcoRI site of pBIB-KMS, a derivative of pBIB-KS for expression. The


Chlamydia pnuemoniae


homlogue of CT529 is provided in SEQ ID NO: 291, with the corresponding amino acid sequence provided in SEQ ID NO: 292.




Full-length DNA encoding various CT529 serovars were amplified by PCR from bacterial lysates containing 10


5


IFU, essentially as described (Denamur, E., C. Sayada, A. Souriau, J. Orfila, A. Rodolakis and J. Elion. 1991. J. Gen. Microbiol. 137: 2525). The following serovars were amplified as described: Ba (SEQ ID NO: 134, with the corresponding predicted amino acid sequence provided in SEQ ID NO: 135); E (BOUR) and E (MTW447) (SEQ ID NO: 122, with the corresponding predicted amino acid sequence provided in SEQ ID NO: 123); F (NI1) (SEQ ID NO: 128, with the corresponding predicted amino acid sequence provided in SEQ ID NO: 129); G; (SEQ ID NO: 126, with the corresponding predicted amino acid sequence provided in SEQ ID NO: 127); Ia (SEQ ID NO: 124, with the corresponding predicted amino acid sequence provided in SEQ ID NO: 125); L1 (SEQ ID NO: 130, with the corresponding predicted amino acid sequence provided in SEQ ID NO: 131); L3 (SEQ ID NO: 132, with the corresponding predicted amino acid sequence provided in SEQ ID NO: 133); I (SEQ ID NO: 263, with the corresponding predicted amino acid sequence provided in SEQ ID NO: 264); K (SEQ ID NO: 265, with the corresponding predicted amino acid sequence provided in SEQ ID NO: 266); and MoPn (SEQ ID NO: 136, with the corresponding predicted amino acid sequence provided in SEQ ID NO: 137). PCR reactions were performed with Advantage Genomic PCR Kit (Clontech, Palo Alto, Calif.) using primers specific for serovar L2 DNA (external to the ORF). Primers sequences were 5′-ggtataatatotctctaaattttg (forward-SEQ ID NO: 161) and 5′-agataaaaaaggctgtttc′ (reverse-SEQ ID NO: 162) except for MoPn which required 5′-ttttgaagcaggtaggtgaatatg (forward-SEQ ID NO: 163) and 5′-tttacaataagaaaagctaagcactttgt (reverse-SEQ ID NO: 164). PCR amplified DNA was purified with QIAquick PCR purification kit (Qiagen, Valencia, Calif.) and cloned in pCR2.1 (Invitrogen, Carlsbad, Calif.) for sequencing.




Sequencing of DNA derived from PCR amplified inserts of immunoreactive clones was done on an automated sequencer (ABI 377) using both a pBIB-KS specific forward primer 5′-ccttacacagtcctgctgac (SEQ ID NO: 165) and a reverse primer 3′-gtttccgggccctcacattg (SEQ ID NO: 166). PCRBlunt cloned DNA coding for CT529 serovar L2 and pCR2.1 cloned DNA coding for CT529 serovar Ba, E (BOUR), E (MTW447), F (NI1), G, Ia, K, L1, L3 and MoPn were sequenced using T7 promoter primer and universal M13 forward and M13 reverse primers.




To determine if these two putative open reading frames (SEQ ID NO: 16 and 20) encoded a protein with an associated immunological function, overlapping peptides (17-20 amino acid lengths) spanning the lengths of the two open reading frames were synthesized, as described in Example 3. A standard chromium release assay was utilized to determine the per cent specific lysis of peptide-pulsed H2


d


restricted target cells. In this assay, aliquots of P815 cells (H2


d


) were labeled at 37° C. for one hour with 100 μCi of


51


Cr in the presence or absence of 1 μg/ml of the indicated peptides. Following this incubation, labeled P815 cells were washed to remove excess


51


Cr and peptide, and subsequently plated in duplicate in microculture plates at a concentration of 1,000 cells/well. Effector CTL (Chlamydia-specific CD8 T cells) were added at the indicated effector:target ratios. Following a 4 hour incubation, supernatants were harvested and measured by gamma-counter for release of


51


Cr into the supernatant. Two overlapping peptides from the 298 amino acid open reading frame did specifically stimulate the CTL line. The peptides represented in SEQ ID NO: 138-156 were synthesized, representing the translation of the L2 homologue of the serovar D open reading frame for CT529 (Cap1 gene) and 216 amino acid open reading frame. As shown in

FIG. 3

, peptides CtC7.8-12 (SEQ ID NO: 18, also referred to as Cap1#132-147, SEQ ID NO: 139) and CtC7.8-13 (SEQ ID NO: 19, also referred to as Cap1#138-155, SEQ ID NO: 140) were able to elicit 38 to 52% specific lysis, respectively, at an effector to target ratio of 10:1. Notably, the overlap between these two peptides contained a predicted H2


d


(K


d


and L


d


) binding peptide. A 10 amino acid peptide was synthesized to correspond to this overlapping sequence (SEQ ID NO: 31) and was found to generate a strong immune response from the anti-Chlamydia CTL line by elispot assay. Significantly, a search of the most recent Genbank database revealed no proteins have previously been described for this gene. Therefore, the putative open reading frame encoding clone 2C7-8 (SEQ ID NO: 15) defines a gene which encompasses an antigen from Chlamydia capable of stimulating antigen-specific CD8+ T-cells in a MHC-I restricted manner, demonstrating this antigen could be used to develop a vaccine against Chlamydia.




To confirm these results and to further map the epitope, truncated peptides (SEQ ID NO: 138-156) were made and tested for recognition by the T-cells in an IFN-g ELISPOT assay. Truncations of either Ser139 (Cap1#140-147, SEQ ID NO: 146) or Leu147 (Cap1#138-146, SEQ ID NO: 147) abrogate T-cell recognition. These results indicate that the 9-mer peptide Cap1#139-147 (SFIGGITYL, SEQ ID NO: 145) is the minimal epitope recognized by the Chlamydia-specific T-cells.




Sequence alignments of Cap1 (CT529) from selected serovars of


C. trachomatis


(SEQ ID NO: 121, 123, 125, 127, 129, 131, 133, 135, 137 and 139) shows one of the amino acid differences is found in position 2 of the proposed epitope. The homologous serovar D peptide is SIIGGITYL (SEQ ID NO: 168). The ability of SFIGGITYL and SIIGGITYL to target cells for recognition by the Chlamydia specific T-cells was compared. Serial dilutions of each peptide were incubated with P815 cells and tested for recognition by the T-cells in a


51


Cr release assay, as described above. The Chlamydia-specific T-cells recognize the serovar L2 peptide at a minimum concentration of 1 nM and the serovar D peptide at a minimum concentration of 10 nM.




Further studies have shown that a Cap1#139-147-specific T-cell clone recognizes


C. trachomatis


infected cells. To confirm that Cap1#139-147 is presented on the surface of Chlamydia infected cells, Balb-3T3 (H-2


d


) cells were infected with


C. trachomatis


serovar L2 and tested to determine whether these cells are recognized by a CD8+ T-cell clone specific for Cap1#139-147 epitope (SEQ ID NO: 145). The T-cell clone specific for Cap1#139-147 epitope was obtained by limiting dilution of the line 69 T-cells. The T-cell clone specifically recognized the Chlamydia infected cells. In these experiments, target cells were


C. trachomatis


infected (positive control) or uninfected Balb/3T3 cells, showing 45%, 36% and 30% specific lysis at 30:1, 10:1 and 3:1 effector to target ratios, respectively; or Cap1#139-147 epitope (SEQ ID NO: 145) coated, or untreated P815 cells, showing 83%, 75% and 58% specific lysis at 30:1, 10:1 and 3:1 effector to target ratios, respectively (negative controls having less than 5% lysis in all cases). This data suggests that the epitope is presented during infection.




In vivo studies show Cap1#139-147 epitope-specific T-cells are primed during murine infection with


C. trachomatis


. To determine if infection with


C. trachomatis


primes a Cap1#139-147 epitope-specific T-cell response, mice were infected i.p. with 10


8


IFU of


C. trachomatis


serovar L2. Two weeks after infection, the mice were sacrificed and spleen cells were stimulated on irradiated syngeneic spleen cells pulsed with Cap1#139-147 epitope peptide. After 5 days of stimulation, the cultures were used in a standard


51


Cr release assay to determine if there were Cap1#139-147 epitope-specific T-cells present in the culture. Specifically, spleen cells from a


C. trachomatis


serovar L2 immunized mouse or a control mouse injected with PBS after a 5 days culture with Cap1#139-147 peptide-coated syngeneic spleen cells and CD8+ T-cells able to specifically recognize Cap1#139-147 epitope gave 73%, 60% and 32% specific lysis at a30:1, 10:1 and 3:1 effector to target ratios, respectively. The control mice had a percent lysis of approximately 10% at a 30:1 effector to target ratio, and steadily declining with lowering E:T ratios. Target cells were Cap1#139-147 peptide-coated, or untreated P815 cells. These data suggest that Cap1#139-147 peptide-specific T-cells are primed during murine infection with


C. trachomatis.






Studies were performed demonstrating that Ct529 (referred to herein as Cap-1) localizes to the inclusion membrane of


C. trachomatis


-infected cells and is not associated with elementary bodies or reticulate bodies. As described above, Cap-1 was identified as a product from Chlamydia that stimulates CD8+ CTL. These CTL are protective in a murine model of infection, thus making Cap-1 a good vaccine candidate. Further, since these CTL are MHC-T restricted, the Cap-1 gene must have access to the cytosol of infected cells, which may be a unique characteristic of specific Chlamydial gene products. Therefore, determination of the cellular localization of the gene products would be useful in characterizing Cap-1 as a vaccine candidate. To detect the intracellular localization of Cap-1, rabbit polyclonal antibodies directed against a recombinant polypeptide encompassing the N-terminal 125 amino acids of Cap-1 (SEQ ID NO: 305, with the amino acid sequence including the N-terminal 6-His tag provided in SEQ ID NO: 304) were used to stain McCoy cells infected with Chlamydial.




Rabbit-anti-Cap-1 polyclonal antibodies were obtained by hyper-immunization of rabbits with a recombinant polypeptide, rCt529c1-125 (SEQ ID NO: 305) encompassing the N-terminal portion of Cap-1. Recombinant rCt529e1-125 protein was obtained from


E. coli


transformed with a pET expression plasmid (as described above) encoding the nucleotides 1-375 encoding the N-terminal 1-125 amino acids of Cap-1. Recombinant protein was purified by Ni-NTA using techniques well known in the art. For a positive control antiserum, polyclonal antisera directed against elementary bodies were made by immunization of rabbits with purified


C. trachomatis


elementary bodies (Biodesign, Sacco, Me). Pre-immune sera derived from rabbits prior to immunization with the Cap-1 polypeptide was used as a negative control.




Immunocytochemistry was performed on McCoy cell monolayers grown on glass coverslips inoculated with either


C. trachomatis


serovar L2 or


C. psitacci


, strain 6BC, at a concentration of 10


6


IFU (Inclusion Forming Units) per ml. After 2 hours, medium was aspirated and replaced with fresh RP-10 medium supplemented with cycloheximide (1.0 μg/ml). Infected cells were incubated at in 7% CO


2


for 24 hours and fixed by aspirating medium, rinsing cells once with PBS and methanol fixation for 5 minutes. For antigen staining, fixed cell monolayers were washed with PBS and incubated at 37° C. for 2 hours with 1:100 dilutions of specific or control antisera. Cells were rinsed with PBS and incubated for 1 hour with fluorescein isothiocyanate (FITC)-labeled, anti-rabbit IgG (KPL, Gaithersburg) and stained with Evans blue (0.05%) in PBS. Fluorescence was observed with a 100X objective (Zeiss epifluorescence microscope), and photographed (Nikon UFX-11A camera).




Results from this study show Cap-1 localizes to the inclusion membrane of


C. trachomatis


-infected cells. Cap-1 specific antibody labeled the inclusion membranes of


C. trachomatis


-infected cells, but not Chlamydial elementary bodies contained in these inclusions or released by the fixation process. Conversely, the anti-elementary body antibody clearly labeled the bacterial bodies, not only within the inclusions, but those released by the fixation process. Specificity of the anti-Cap-1 antibody is demonstrated by the fact that it does not stain


C. psittaci


-infected cells. Specificity of the Cap-1 labeling is also shown by the absence of reactivity in pre-immune sera. These results suggest that Cap-1 is released from the bacteria and becomes associated with the Chlamydial inclusion membrane. Therefore, Cap-1 is a gene product which may be useful for stimulating CD8+ T cells in the development of a vaccine against infections caused by Chlamydia.




The relevance of the Cap-1 gene as a potential CTL antigen in a vaccine against Chlamydia infection is further illustrated by two additional series of studies. First, CTL specific for the MHC-I epitope of Cap-1 CT529 #138-147 peptide of


C. trachomatis


(SEQ ID NO: 144) have been shown to be primed to a high frequency during natural infection. Specifically, Balb/C mice were inoculated with 10


6


I.F.U. of


C. trachomatis


, serova L2. After 2 weeks, spleens were harvested and quantified by Elispot analysis for the number of IFN-γ secreting cells in response to Cap-1 #138-147 peptide-pulsed antigen presenting cells. In two experiments, the number of IFN-γ-secreting cells in 10


5


splenocytes was about 1% of all CD8+ T-cells. This high frequency of responding CD8+ CTL to the MHC-1 epitope (Cap-1 CT529 #138-147 peptide) suggest that Cap-1 is highly immunogenic in infections.




Results from a second series of studies have shown that the Cap-1 protein is almost immediately accessible to the cytosol of the host cell upon infection. This is shown in a time-course of Cap-1 CT529 #138-147 peptide presentation. Briefly, 3T3 cells were infected with


C. trachomatis


serovar L2 for various lengths of time, and then tested for recognition by Cap-1 CT529 #138-147 peptide-specific CTL. The results show that


C. trachomatis


-infected 3T3 cells are targeted for recognition by the antigen-specific CTL after only 2 hours of infection. These results suggest that Cap-1 is an early protein synthesized in the development of


C. trachomatis


elementary bodies to reticulate bodies. A CD8+ CTL immune response directed against a gene product expressed early in infection may be particularly efficacious in a vaccine against Chlamydia infection.




EXAMPLE 5




Generation of Antibody and T-cell Responses in Mice Immunized With Chlamydia Angigens




Immunogenicity studies were conducted to determine the antibody and CD4+ T cell responses in mice immunized with either purified SWIB or S13 proteins formulated with Montanide adjuvant, or DNA-based immunizations with pcDNA-3 expression vectors containing the DNA sequences for SWIB or S13. SWIB is also referred to as clone 1-B1-66 (SEQ ID NO: 1, with the corresponding amino acid sequence provided in SEQ ID NO: 5), and S13 ribosomal protein is also referred to as clone 10-C10-31 (SEQ ID NO: 4, with the corresponding amino acid sequence provided in SEQ ID NO: 12). In the first experiment, groups of three C57BL/6 mice were immunized twice and monitored for antibody and CD4+ T-cell responses. DNA immunizations were intradermal at the base of the tail and polypeptide immunizations were administered by subcutaneous route. Results from standard


3


H-incorporation assays of spleen cells from immunized mice shows a strong proliferative response from the group immunized with purified recombinant SWIB polypeptide (SEQ ID NO: 5). Further analysis by cytokine induction assays, as previously described, demonstrated that the group immunized with SWIB polypeptide produced a measurable IFN-γ and IL-4 response. Subsequent ELISA-based assays to determine the predominant antibody isotype response in the experimental group immunized with the SWIB polypeptide were performed.

FIG. 4

illustrates the SWIB-immunized group gave a humoral response that was predominantly IgG1.




In a second experiment, C3H mice were immunized three times with 10 μg purified SWIB protein (also referred to as clone 1-B1-66, SEQ ID NO: 5) formulated in either PBS or Montanide at three week intervals and harvested two weeks after the third immunization. Antibody titers directed against the SWIB protein were determined by standard ELISA-based techniques well known in the art, demonstrating the SWIB protein formulated with Montanide adjuvant induced a strong humoral immune response. T-cell proliferative responses were determined by a XTT-based assay (Scudiero, et al,


Cancer Research,


1988, 48:4827). As shown in

FIG. 5

, splenocytes from mice immunized with the SWIB polypeptide plus Montanide elicited an antigen specific proliferative response. In addition, the capacity of splenocytes from immunized animals to secrete IFN-γ in response to soluble recombinant SWIB polypeptide was determined using the cytokine induction assay previously described. The splenocytes from all animals in the group immunized with SWIB polypeptide formulated with montanide adjuvant secreted IFN-γ in response to exposure to the SWIB Chlamydia antigen, demonstrating an Chlamydia-specific immune response.




In a further experiment, C3H mice were immunized at three separate time points at the base of the tail with 10 μg of purified SWIB or S13 protein (


C. trachomatis


, SWIB protein, clone 1-B1-66, SEQ ID NO: 5, and S13 protein, clone 10-C10-31, SEQ ID NO: 4) formulated with the SBAS2 adjuvant (SmithKline Beecham, London, England). Antigen-specific antibody titers were measured by ELISA, showing both polypeptides induced a strong IgG response, ranging in titers from 1×10


−4


to 1×10


−5


. The IgG1 and IgG2a components of this response were present in fairly equal amounts. Antigen-specific T-cell proliferative responses, determined by standard


3


H-incorporation assays on spleen cells isolated from immunized mice, were quite strong for SWIB (50,000 cpm above the negative control) and even stronger for s13 (100,000 cpm above the negative control). The IFNγ production was assayed by standard ELISA techniques from supernatant from the proliferating culture. In vitro restimulation of the culture with S13 protein induced high levels of IFNγ production, approximately 25 ng/ml versus 2 ng/ml for the negative control. Restimulation with the SWIB protein also induced IFNγ, although to a lesser extent.




In a related experiment, C3H mice were immunized at three separate time points with 10 μg of purified SWIB or S13 protein (


C. trachomatis


, SWIB protein, clone 1-B1-66, SEQ ID NO: 5, and S13 protein, clone 10-C10-31, SEQ ID NO: 4) mixed with 10 μg of Cholera Toxin. Mucosal immunization was through intranasal inoculation. Antigen-specific antibody responses were determined by standard ELISA techniques. Antigen-specific IgG antibodies were present in the blood of SWIB-immunized mice, with titers ranging from 1×10


−3


to 1×10


−4


but non-detectable in the S13-immunized animals. Antigen-specific T-cell responses from isolated splenocytes, as measured by IFNγ production, gave similar results to those described immediately above for systemic immunization.




An animal study was conducted to determine the immunogenicity of the CT529 serovar LGVII CTL epitope, defined by the CT529 110 consensus peptide (CSFIGGITYL—SEQ ID NO: 31), which was identified as an H2-Kd restricted CTL epitope. BALB/c mice (3 mice per group) were immunized three times with 25 μg of peptide combined with various adjuvants. The peptide was administered systemically at the base of the tail in either SKB Adjuvant System SBAS-2″, SBAS-7 (SmithKline Beecham, London, England) or Montanide. The peptide was also administered intranasally mixed with 10 ug of Cholera Toxin (CT). Naive mice were used as a control. Four weeks after the 3rd immunization, spleen cells were restimulated with LPS-blasts pulsed with 10 ug/ml CT529 10 mer consensus peptide at three different effector to LPS-blasts ratios: 6, 1.5 and 0.4 at 1×10


6


cell/ml. After 2 restimulations, effector cells were tested for their ability to lyse peptide pulsed P815 cells using a standard chromium release assay. A non-relevant peptide from chicken egg ovalbumin was used as a negative control. The results demonstrate that a significant immune response was elicited towards the CT529 10 mer consensus peptide and that antigen-specific T-cells capable of lysing peptide-pulsed targets were elicited in response to immunization with the peptide. Specifically, antigen-specific lytic activities were found in the SBAS-7 and CT adjuvanted group while Montanide and SBAS-2″ failed to adjuvant the CTL epitope immunization.




EXAMPLE 6




Expression and Characterization of


Chlamydia Pneumoniae


Genes




The human T-cell line, TCL-8, described in Example 1, recognizes


Chlamydia trachomatis


as well as


Chlamydia pneumonia


infected monocyte-derived dendritic cells, suggesting


Chlamydia trachomatis


and pneumonia may encode cross-reactive T-cell epitopes. To isolate the


Chlamydia pneumonia


genes homologous to


Chlamydia trachomatis


LGV II clones 1B1-66, also referred to as SWIB (SEQ ID NO: 1) and clone 10C10-31, also referred to as S13 ribosomal protein (SEQ ID NO: 4), HeLa 229 cells were infected with


C. pneumonia


strain TWAR (CDC/CWL-029). After three days incubation, the


C. pneumonia


-infected HeLa cells were harvested, washed and resuspended in 200 μl water and heated in a boiling water bath for 20 minutes. Ten microliters of the disrupted cell suspension was used as the PCR template.






C. pneumonia


specific primers were designed for clones 1B1-66 and 10C10-31 such that the 5′ end had a 6×-Histidine tag and a Nde I site inserted, and the 3′ end had a stop codon and a BamHI site included (FIG.


6


). The PCR products were amplified and sequenced by standard techniques well known in the art. The


C. pneumonia


-specific PCR products were cloned into expression vector pET17B (Novagen, Madison, Wis.) and transfected into


E. coli


BL21 pLysS for expression and subsequent purification utilizing the histidine-nickel chromatographic methodology provided by Novagen. Two proteins from


C. pneumonia


were thus generated, a 10-11 kDa protein referred to as CpSWIB (SEQ ID NO: 27, and SEQ ID NO: 78 having a 6×His tag, with the corresponding amino acid sequence provided in SEQ ID NO: 28, respectively), a 15 kDa protein referred to as CpS13 (SEQ ID NO: 29, and SEQ ID NO: 77, having a 6×His tag, with the corresponding amino acid sequence provided in SEQ ID NO: 30 and 91, respectively).




EXAMPLE 7




Induction of T Cell Proliferation and Interferon-γ Production by


Chlamydia Pneumoniae


Antigens




The ability of recombinant Chlamydia pneumoniae antigens to induce T cell proliferation and interferon-γ production is determined as follows.




Proteins are induced by IPTG and purified by Ni-NTA agarose affinity chromatography (Webb et al.,


J. Immunology


157:5034-5041, 1996). The purified polypeptides are then screened for the ability to induce T-cell proliferation in PBMC preparations. PBMCs from


C. pneumoniae


patients as well as from normal donors whose T-cells are known to proliferate in response to Chlamydia antigens, are cultured in medium comprising RPMI 1640 supplemented with 10% pooled human serum and 50 μg/ml gentamicin. Purified polypeptides are added in duplicate at concentrations of 0.5 to 10 μg/mL. After six days of culture in 96-well round-bottom plates in a volume of 200 μl, 50 μl of medium is removed from each well for determination of IFN-γ levels, as described below. The plates are then pulsed with 1 μCi/well of tritiated thymidine for a further 18 hours, harvested and tritium uptake determined using a gas scintillation counter. Fractions that result in proliferation in both replicates three fold greater than the proliferation observed in cells cultured in medium alone are considered positive.




IFN-γ was measured using an enzyme-linked immunosorbent assay (ELISA). ELISA plates are coated with a mouse monoclonal antibody directed to human IFN-γ (PharMingen, San Diego, Calif.) in PBS for four hours at room temperature. Wells are then blocked with PBS containing 5% (W/V) non-fat dried milk for 1 hour at room temperature. The plates are washed six times in PBS/0.2% TWEEN-20 and samples diluted 1:2 in culture medium in the ELISA plates are incubated overnight at room temperature. The plates are again washed and a polyclonal rabbit anti-human IFN-γ serum diluted 1:3000 in PBS/10% normal goat serum is added to each well. The plates are then incubated for two hours at room temperature, washed and horseradish peroxidase-coupled anti-rabbit IgG (Sigma Chemical So., St. Louis, Mo.) is added at a 1:2000 dilution in PBS/5% non-fat dried milk. After a further two hour incubation at room temperature, the plates are washed and TMB substrate added. The reaction is stopped after 20 min with 1 N sulfuric acid. Optical density is determined at 450 nm using 570 nm as a reference wavelength. Fractions that result in both replicates giving an OD two fold greater than the mean OD from cells cultured in medium alone, plus 3 standard deviations, are considered positive.




A human anti-Chlamydia T-cell line (TCL-8) capable of cross-reacting to


C. trachomatis


and


C. pneumonia


was used to determine whether the expressed proteins described in the example above, (i.e., CpSWIB, SEQ ID NO: 27, and SEQ ID NO: 78 having a 6×His tag, with the corresponding amino acid sequence provided in SEQ ID NO: 28, respectively, and the 15 kDa protein referred to as CpS13 SEQ ID NO: 29, and SEQ ID NO: 77, having a 6×His tag, with the corresponding amino acid sequence provided in SEQ ID NO: 30 and 91, respectively), possessed T-cell epitopes common to both


C. trachomatis


and


C. pneumonia


. Briefly,


E. coli


expressing Chlamydial proteins were titered on 1×10


4


monocyte-derived dendritic cells. After two hours, the dendritic cells cultures were washed and 2.5×10


4


T cells (TCL-8) added and allowed to incubate for an additional 72 hours. The amount of INF-γ in the culture supernatant was then determined by ELISA. As shown in

FIGS. 7A and 7B

, the TCL-8 T-cell line specifically recognized the S13 ribosomal protein from both


C. trachomatis


and


C. pneumonia


as demonstrated by the antigen-specific induction of IFN-γ, whereas only the SWIB protein from


C. trachomatis


was recognized by the T-cell line. To validate these results, the T cell epitope of


C. trachomatis


SWIB was identified by epitope mapping using target cells pulsed with a series of overlapping peptides and the T-cell line TCL-8. 3H-thymidine incorporation assays demonstrated that the peptide, referred to as C.t.SWIB 52-67, of SEQ ID NO: 39 gave the strongest proliferation of the TCL-8 line. The homologous peptides corresponding to the SWIB of


C. pneumoniae


sequence (SEQ ID NO: 40), the topoisomerase-SWIB fusion of


C. pneumoniae


(SEQ ID NO: 43) and


C. trachomatis


(SEQ ID NO: 42) as well as the human SWI domain (SEQ ID NO: 41) were synthesized and tested in the above assay. The T-cell line TCL-8 only recognized the


C. trachomatis


peptide of SEQ ID NO: 39 and not the corresponding


C. pneumoniae


peptide (SEQ ID NO: 40), or the other corresponding peptides described above (SEQ ID NO: 41-43).




Chlamydia-specific T cell lines were generated from donor CP-21 with a positive serum titer against


C. pneumoniae


by stimulating donor PBMC with either


C. trachomatis


or


C. pneumoniae


-infected monocyte-derived dendritic cells, respectively. T-cells generated against


C. pneumoniae


responded to recombinant


C. pneumoniae


-SWIB but not


C. trachomatis


-SWIB, whereas the T-cell line generated against


C. trachomatis


did not respond to either


C. trachomatis


- or


C. pneumoniae


-SWIB (see FIG.


9


). The


C. pneumoniae


-SWIB specific immune response of donor CP-21 confirms the


C. pneumoniae


infection and indicates the elicitation of


C. pneumoniae


-SWIB specific T-cells during in vivo


C. pneumoniae


infection.




Epitope mapping of the T-cell response to


C. pneumoniae


-SWIB has shown that Cp-SWIB-specific T-cells responded to the overlapping peptides Cp-SWIB 32-51 (SEQ ID NO: 101) and Cp-SWIB 37-56 (SEQ ID NO: 102), indicating a


C. pneumoniae


-SWIB-specific T-cell epitope Cp-SWIB 37-51 (SEQ ID NO: 100).




In additional experiments, T-cell lines were generated from donor CP1, also a


C. pneumoniae


seropositive donor, by stimulating PBMC with non-infectious elementary bodies from


C. trachomatis


and


C. pneumoniae


, respectively. In particular, proliferative responses were determined by stimulating 2.5×10


4


T-cells in the presence of 1×10


4


monocyte-derived dendritic cells and non-infectious elementary bodies derived from


C. trachomatis


and


C. pneumoniae


, or either recombinant


C. trachomatis


or


C. pneumoniae


SWIB protein. The T-cell response against SWIB resembled the data obtained with T-cell lines from CP-21 in that


C. pneumoniae


-SWIB, but not


C. trachomatis


-SWIB elicited a response by the


C. pneumoniae


T-cell line. In addition, the


C. trachomatis


T-cell line did not proliferate in response to either


C. trachomatis


or


C. pneumoniae


SWIB, though it did proliferate in response to both CT and CP elementary bodies. As described in Example 1, Clone 11-C12-91 (SEQ ID NO: 63), identified using the TCP-21 cell line, has a 269 bp insert that is part of the OMP2 gene (CT443) and shares homology with the 60 kDa cysteine rich outer membrane protein of


C. pneumoniae


, referred to as OMCB. To further define the reactive epitope(s), epitope mapping was performed using a series of overlapping peptides and the immunoassay previously described. Briefly, proliferative responses were determined by stimulating 2.5×10


4


TCP-21 T-cells in the presence of 1×10


4


monocyte-derived dendritic cells with either non-infectious elementary bodies derived from


C. trachomatis


and


C. pneumoniae


, or peptides derived from the protein sequence of


C. trachomatis


or


C. pneumoniae


OMCB protein (0.1 μg/ml). The TCP-21 T-cells responded to epitopes CT-OMCB #167-186, CT-OMCB #171-190, CT-OMCB #171-186, and to a lesser extent, CT-OMCB #175-186 (SEQ ID NO: 249-252, respectively). Notably, the TCP-21 T-cell line also gave a proliferative response to the homologous


C. pneumoniae


peptide CP-OMCB #171-186 (SEQ ID NO: 253), which was equal to or greater than the response to the to the


C. trachomatis


peptides. The amino acid substitutions in position two (i.e., Asp for Glu) and position four (i.e., Cys for Ser) did not alter the proliferative response of the T-cells and therefore demonstrating this epitope to be a cross-reactive epitope between


C. trachomatis


and


C. pneumoniae.






EXAMPLE 8




Immune Responses of Human PBMC and T-cell Lines Against Chlamydia Antigens




The examples provided herein suggest that there is a population of healthy donors among the general population that have been infected with


C. trachomatis


and generated a protective immune response controlling the


C. trachomatis


infection. These donors remained clinically asymptomatic and seronegative for


C. trachomatis


. To characterize the immune responses of normal donors against chlamydial antigens which had been identified by CD4 expression cloning, PBMC obtained from 12 healthy donors were tested against a panel of recombinant chlamydial antigens including


C. trachomatis


-,


C. pneumoniae


-SWIB and


C. trachomatis


-,


C. pneumoniae


-S13. The data are summarized in Table I below. All donors were seronegative for


C. trachomatis


, whereas 6/12 had a positive


C. pneumoniae


titer. Using a stimulation index of >4 as a positive response, 11/12 of the subjects responded to


C. trachomatis


elementary bodies and 12/12 responded to


C. pneumoniae


elementary bodies. One donor, AD104, responded to recombinant


C. pneumoniae


-S13 protein, but not to recombinant


C. trachomatis


-S13 protein, indicating a


C. pneumoniae


-specific response. Three out of 12 donors had a


C. trachomatis


-SWIB, but not a


C. pneumoniae


-SWIB specific response, confirming a


C. trachomatis


infection.


C. trachomatis


and


C. pneumoniae


-S13 elicited a response in 8/12 donors suggesting a chlamydial infection. These data demonstrate the ability of SWIB and S13 to elicit a T-cell response in PBMC of normal study subjects.












TABLE I











Immune response of normal study subjects against Chlamydia























Chlamydia




CT




CP




CT




CP




CT




CP




CT




CT






Donor




Sex




IgG titer




EB




EB




Swib




Swib




S13




S13




lpdA




TSA









AD100




male




negative




++




+++




+









++




++









n.t.






AD104




female




negative




+++




++



















++









n.t.






AD108




male




CP 1:256




++




++




+




+/−




+




+




+




n.t.






AD112




female




negative




++




++




+









+









+/−




n.t.






AD120




male




negative









+





























n.t.






AD124




female




CP 1:128




++




++





























n.t.






AD128




male




CP 1:512




+




++














++




+




++











AD132




female




negative




++




++














+




+
















AD136




female




CP 1:128




+




++














+/−





















AD140




male




CP 1:256




++




++














+




+
















AD142




female




CP 1:512




++




++














+




+




+











AD146




female




negative




++




++














++




+




+



















CT=


Chlamydia trachomatis


; CP=


Chiamydia pneumoniae


; EB=Chlamydia elementary bodies; Swib=recombinant Chlamydia Swib protein; S13=recombinant chlamydia S13 protein, lpdA=recombinant Chlamydia lpdA protein; TSA=recombinant Chlamydia TSA protein. Values represent results from standard proliferation assays. Proliferative responses were determined by stimulating 3×10


5


PBMC with 1×10


4


monocyte-derived dendritic cells pre-incubated with the respective recombinant antigens or elementary bodies (EB). Assays were harvested after 6 days with a


3


H-thymidine pulse for the last 18 h.















SI: Stimulation index

























+/−:




SI˜




4






+:




SI>




4






++:




SI 




10-30






+++:




SI>




30 














In a first series of experiments, T-cell lines were generated from a healthy female individual (CT-10) with a history of genital exposure to


C. trachomatis


by stimulating T-cells with


C. trachomatis


LGV II elementary bodies as previously described. Although the study subject was exposed to


C. trachomatis


, she did not seroconvert and did not develop clinical symptoms, suggesting donor CT-10 may have developed a protective immune response against


C. trachomatis


. As shown in

FIG. 10

, a primary Chlamydia-specific T-cell line derived from donor CT-10 responded to


C. trachomatis


-SWIB, but not


C. pneumoniae


-SWIB recombinant proteins, confirming the exposure of CT-10 to


C. trachomatis.


Epitope mapping of the T-cell response to


C. trachomatis


-SWIB showed that this donor responded to the same epitope Ct-SWIB 52-67 (SEQ ID NO: 39) as T-cell line TCL-8, as shown in FIG.


11


.




Additional T-cell lines were generated as described above for various


C. trachomatis


patients. A summary of the patients' clinical profile and proliferative responses to various


C. trachomatis


and


C. pneumoniae


elementary bodies and recombinant proteins are summarized in Table II.












TABLE II











Proliferative response of


C. traehomatis


patients






















Clinical





CT




CP




CT




CP




CT




CP




CT




CT






Patients




manifestation




IgG titer




EB




EB




Swib




Swib




S13




S13




lpdA




TSA









CT-1




NGU




negative




+




+














++




++




++




+






CT-2




NGU




negative




++




++














+




+/−
















CT-3




asymptomatic




Ct 1:512




+




+














+









+












shed Eb




Cp 1:1024







Dx was KPV




Cps 1:256






CT-4




asymptomatic




Ct 1:1024




+




+





































shed Eb






CT-5




BV




Ct 1:256




++




++














+























Cp 1:256






CT-6




perinial rash




Cp 1:1024




+




+





































discharge






CT-7




BV




Ct 1:512




+




+














+




+




+












genital ulcer




Cp 1:1024






CT-8




Not known




Not tested




++




++




































CT-9




asymptomatic




Ct 1:128




+++




++














++




+




+













Cp 1:128






CT-10




Itch mild vulvar




negative




++




++




































CT-11




BV.




Ct 1:512




+++




+++














+++




+/−




++




+







abnormal pap






CT-12




asymptomatic




Cp 1:512




++




++














++




+




+



















NGU=Non-Gonococcal Urethritis; BV=Bacterial Vaginosis; CT=


Chlamydia trachomatis;


CP=


Chlamydia pneumoniae,


EB=Chlamydia elementary bodies; Swib=recombinant Chlamydia Swib protein; S13=recombinant Chlamydia S13 protein; lpdA=recombinant Chlamydia lpdA protein TSA=recombinant Chlamydia TSA protein Values represent results from standard proliferation assays. Proliferative responses were determined by stimulating 3×10


5


PBMC with 1×10


4


monocyte-derived dendritic cells pre-incubated with the respective recombinant antigens or elementary bodies (EB). Assays were harvested after 6 days with a


3


H-thymidine pulse for the last 18 hours.















SI: Stimulation index

























+/−:




SI˜




4






+:




SI>




4






++:




SI 




10-30






+++:




SI>




30 














Using the panel of asymptomatic (as defined above) study subjects and


C. trachomatis


patients, as summarized in Tables I and II, a comprehensive study of the immune responses of PBMC derived from the two groups was conducted. Briefly, PBMCs from


C. pneumoniae


patients as well as from normal donors are cultured in medium comprising RPMI 1640 supplemented with 10% pooled human serum and 50 μg/ml gentamicin. Purified polypeptides, a panel of recombinant chlamydial antigens including


C. trachomatis


-,


C. pneumoniae


-SWIB and S13, as well as.


C. trachomatis


lpdA and TSA are added in duplicate at concentrations of 0.5 to 10 μg/mL. After six days of culture in 96-well round-bottom plates in a volume of 200 μl, 50 μl of medium is removed from each well for determination of IFN-γ levels, as described below. The plates are then pulsed with 1 μCi/well of tritiated thymidine for a further 18 hours, harvested and tritium uptake determined using a gas scintillation counter. Fractions that result in proliferation in both replicates three fold greater than the proliferation observed in cells cultured in medium alone are considered positive.




Proliferative responses to the recombinant Chlamydial antigens demonstrated that the majority of asymptomatic donors and


C. trachomatis


patients recognized the


C. trachomatis


S13 antigen (8/12) and a majority of the


C. trachomatis


patients recognized the


C. pneumonia


S13 antigen (8/12), with 4/12 asymptomatic donors also recognizing the


C. pneumonia


S13 antigen. Also, six out of twelve of the


C. trachomatis


patients and four out of twelve of the asymptomatic donors gave a proliferative response to the lpdA antigen of


C. trachomatis


. These results demonstrate that the


C. trachomatis


and


C. pneumonia


S13 antigen,


C. trachomatis


Swib antigen and the


C. trachomatis


lpdA antigen are recognized by the asymptomatic donors, indicating these antigens were recognized during exposure to Chlamydia and an immune response elicited against them. This implies these antigens may play a role in conferring protective immunity in a human host. In addition, the


C. trachomatis


and


C. pneumonia


S13 antigen is recognized equally well among the


C. trachomatis


patients, therefore indicating there may be epitopes shared between


C. trachomatis


and


C. pneumonia


in the S13 protein. Table III summarizes the results of these studies.
















TABLE III











Antigen




Normal Donors




C.t. Patients













C.t-Swib




3/12




0/12







C.p.-Swib




0/12




0/12







C.t.-S13




8/12




8/12







C.p.-S13




4/12




8/12







IpdA




4/12




6/12







TSA




0/12




2/12















A series of studies were initiated to determine the cellular immune response to short-term T-cell lines generated from asymptomatic donors and


C. trachomatis


patients. Cellular immune responses were measured by standard proliferation assays and IFN-γ, as described in Example 7. Specifically, the majority of the antigens were in the form of single


E. coli


clones expressing Chlamydial antigens, although some recombinant proteins were also used in the assays. The single


E. coli


clones were titered on 1×10


4


monocyte-derived dendritic cells and after two hours, the culture was washed and 2.5×10


4


T-cells were added. The assay using the recombinant proteins were performed as previously described. Proliferation was determined after four days with a standard


3


H-thymidine pulse for the last 18 hours. Induction of IFN-γ was determined from culture supernatants harvested after four days using standard ELISA assays, as described above. The results show that all the


C. trachomatis


antigens tested, except for C.T. Swib, elicited a proliferative response from one or more different T-cell lines derived form


C. trachomatis


patients. In addition, proliferative responses were elicited from both the


C. trachomatis


patients and asymptomatic donors for the following Chlamydia genes, CT622, groEL, pmpD, CT610 and rS13.




The 12G3-83 clone also contains sequences to CT734 and CT764 in addition to CT622, and therefore these gene sequence may also have immunoreactive epitopes. Similarly, clone 21G12-60 contains sequences to the hypothetical protein genes CT229 and CT228 in addition to CT875; and 15H2-76 also contains sequences from CT812 and CT088, as well as sharing homology to the sycE gene. Clone 11H3-61 also contains sequences sharing homology to the PGP6-D virulence protein.
















TABLE IV












TCL from








C.t. Antigen




TCL from




C.t.




SEQ ID






Clone




(putative*)




Asymp. Donors




Patients




NO::



























1B1-66 (


E. coli


)




Swib




2/2




0/4




5






1B1-66 (protein)




Swib




2/2




0/4




5






12G3-83 (


E. coli


)




CT622*




2/2




4/4




57






22B3-53 (


E. coli


)




groEL




1/2




4/4




111






22B3-53 (protein)




groEL




1/2




4/4




111






15H2-76 (


E. coli


)




PmpD*




1/2




3/4




87






11H3-61 (


E. coli


)




rL1*




0/2




3/4




60






14H1-4 (


E. coli


)




TSA




0/2




3/4




56






14H1-4 (protein)




TSA




0/2




3/4




56






11G10-46 (


E. coli


)




CT610




1/2




1/4




62






10C10-17 (


E. coli


)




rS13




1/2




1/4




62






10C10-17 (protein)




rS13




1/2




1/4




62






21G12-60 (


E. coli


)




CT875*




0/2




2/4




110






11H4-32 (


E. coli


)




dnaK




0/2




2/4




59






21C7-8 (


E. coli


)




dnaK




0/2




2/4




115






17C10-31 (


E. coli


)




CT858




0/2




2/4




114














EXAMPLE 9




Protective Studies Using Chlamydia Antigens




Protection studies were conducted in mice to determine whether immunization with chlamydial antigens can impact on the genital tract disease resulting from chlamydial inoculation. Two models were utilized; a model of intravaginal inoculation that uses a human isolate containing a strain of


Chlamydia psittaci


(MTW447), and a model of intrauterine inoculation that involves a human isolate identified as


Chlamydia trachomatis


, serovar F (strain NI1). Both strains induce inflammation in the upper genital tract, which resemble endometritis and salpingitis caused by


Chlamydia trachomatis


in women. In the first experiment, C3H mice (4 mice per group) were immunized three times with 100 μg of pcDNA-3 expression vector containing


C. trachomatis


SWIB DNA (SEQ ID NO: 1, with the corresponding amino acid sequence provided in SEQ ID NO: 5). Inoculations were at the base of the tail for systemic immunization. Two weeks after the last immunization, animals were progesterone treated and infected, either thru the vagina or by injection of the inoculum in the uterus. Two weeks after infection, the mice were sacrificed and genital tracts sectioned, stained and examined for histopathology. Inflammation level was scored (from + for very mild, to +++++ for very severe). Scores attributed to each single oviduct/ovary were summed and divided by the number of organs examined to get a mean score of inflammation for the group. In the model of uterine inoculation, negative control-immunized animals receiving empty vector showed consistent inflammation with an ovary/oviduct mean inflammation score of 6.12, in contrast to 2.62 for the DNA-immunized group. In the model of vaginal inoculation and ascending infection, negative control-immunized mice had an ovary/oviduct mean inflammation score of 8.37, versus 5.00 for the DNA-immunized group. Also, in the later model, vaccinated mice showed no signs of tubal occlusion while negative control vaccinated groups had inflammatory cells in the lumen of the oviduct.




In a second experiment, C3H mice (4 mice per group) were immunized three times with 50 μg of pcDNA-3 expression vector containing


C. trachomatis


SWIB DNA (SEQ ID NO: 1, with the corresponding amino acid sequence provided in SEQ ID NO: 5) encapsulated in Poly Lactide co-Glycolide microspheres (PLG); immunizations were made intra-peritoneally. Two weeks after the last immunization, animal were progesterone treated and infected by inoculation of


C. psittaci


in the vagina. Two weeks after infection, mice were sacrificed and genital tracts sectioned, stained and examined for histopathology. Inflammation level was scored as previously described. Scores attributed to each single oviduct/ovary were summed and divided by the number of examined organs to get a mean of inflammation for the group. Negative control-immunized animals receiving PLG-encapsulated empty vector showed consistent infammation with an ovary/oviduct mean inflammation score of 7.28, versus 5.71 for the PLG-encapsulated DNA immunized group. Inflammation in the peritoneum was 1.75 for the vaccinated group versus 3. 75 for the control.




In a third experiment, C3H mice (4 per group) were immunized three times with 10 μg of purified recombinant protein, either SWIB (SEQ ID NO: 1, with the corresponding amino acid sequence provided in SEQ ID NO: 5, or S13 (SEQ ID NO: 4, with the corresponding amino acid sequence provided in SEQ ID NO: 12) mixed with Cholera Toxin (CT); the preparation was administered intranasally upon anaesthesia in a 20 uL volume. Two weeks after the last immunization, animal were progesterone treated and infected, either by vaginal inoculation of


C. psittaci


or by injection of


C. trachomatis


serovar F in the uterus. Two weeks after infection, the mice were sacrificed and genital tracts sectioned, stained and examined for histopathology. The degree of inflammation was scored as described above. Scores attributed to each single oviduct/ovary were summed and divided by the number of examined organs to get a mean score of inflammation for the group. In the model of uterine inoculation, negative control-immunized animals receiving cholera toxin alone showed an ovary/oviduct mean inflammation score of 4.25 (only 2 mice analyzed; 2 other died) versus 5.00 for the s13 plus cholera toxin-immunized group, and 1.00 for the SWIB plus cholera toxin, Untreated infected animals had an ovary/oviduct mean inflammation score of 7. In the model of vaginal inoculation and ascending infection, negative control-immunized mice had an ovary/oviduct mean inflammation score of 7.37 versus 6.75 for the s13 plus cholera toxin-immunized group and 5.37 for the SWIB plus cholera toxin-immunized group. Untreated infected animals had an ovary /oviduct mean inflammation score of 8.




The three experiments described above suggest that SWIB-specific protection is obtainable. This protective effect is more marked in the model of homologous infection but is still present when in a heterologous challenge infection with


C. psittaci.






Although the present invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, changes and modifications can be carried out without departing from the scope of the invention which is intended to be limited only by the scope of the appended claims.







305




1


481


DNA


Chlamydia trachomatis



1
ctgaagactt ggctatgttt tttattttga cgataaacct agttaaggca taaaagagtt 60
gcgaaggaag agccctcaac ttttcttatc accttcttta actaggagtc atccatgagt 120
caaaataaga actctgcttt catgcagcct gtgaacgtat ccgctgattt agctgccatc 180
gttggtgcag gacctatgcc tcgcacagag atcattaaga aaatgtggga ttacattaag 240
gagaatagtc ttcaagatcc tacaaacaaa cgtaatatca atcccgatga taaattggct 300
aaagtttttg gaactgaaaa acctatcgat atgttccaaa tgacaaaaat ggtttctcaa 360
cacatcatta aataaaatag aaattgactc acgtgttcct cgtctttaag atgaggaact 420
agttcattct ttttgttcgt ttttgtgggt attactgtat ctttaacaac tatcttagca 480
g 481




2


183


DNA


Chlamydia trachomatis



2
atcgttggtg caggacctat gcctcgcaca gagatcatta agaaaatgtg ggattacatt 60
aaggagaata gtcttcaaga tcctacaaac aaacgtaata tcaatcccga tgataaattg 120
gctaaagttt ttggaactga aaaacctatc gatatgttcc aaatgacaaa aatggtttct 180
caa 183




3


110


DNA


Chlamydia trachomatis



3
gctgcgacat catgcgagct tgcaaaccaa catggacatc tccaatttcc ccttctaact 60
cgctctttgg aactaatgct gctaccgagt caatcacaat cacatcgacc 110




4


555


DNA


Chlamydia trachomatis



4
cggcacgagc ctaagatgct tatactactt taagggaggc ccttcgtatg ccgcgcatca 60
ttggaataga tattcctgcg aaaaagaaat taaaaataag tcttacatat atttatggaa 120
tagggccagc tctttctaaa gagattattg ctagattgca gttgaatccc gaagctagag 180
ctgcagagtt gactgaggaa gaggttggtc gactaaacgc tcttttacag tcggattacg 240
ttgttgaagg ggatttgcgc cgtcgtgtgc aatctgatat caaacgtctg attactatcc 300
atgcttatcg tggacaaaga catagacttt ctttgcctgt tcgtggtcag agaacaaaaa 360
caaattctcg cacgcgtaag ggtaaacgta aaactattgc aggtaagaag aaataataat 420
ttttaggaga gagtgttttg gttaaaaatc aagcgcaaaa aagaggcgta aaaagaaaac 480
aagtaaaaaa cattccttcg ggcgttgtcc atgttaaggc tacttttaat aatacaattg 540
taaccataac agacc 555




5


86


PRT


Chlamydia trachomatis



5
Met Ser Gln Asn Lys Asn Ser Ala Phe Met Gln Pro Val Asn Val Ser
1 5 10 15
Ala Asp Leu Ala Ala Ile Val Gly Ala Gly Pro Met Pro Arg Thr Glu
20 25 30
Ile Ile Lys Lys Met Trp Asp Tyr Ile Lys Glu Asn Ser Leu Gln Asp
35 40 45
Pro Thr Asn Lys Arg Asn Ile Asn Pro Asp Asp Lys Leu Ala Lys Val
50 55 60
Phe Gly Thr Glu Lys Pro Ile Asp Met Phe Gln Met Thr Lys Met Val
65 70 75 80
Ser Gln His Ile Ile Lys
85




6


61


PRT


Chlamydia trachomatis



6
Ile Val Gly Ala Gly Pro Met Pro Arg Thr Glu Ile Ile Lys Lys Met
1 5 10 15
Trp Asp Tyr Ile Lys Glu Asn Ser Leu Gln Asp Pro Thr Asn Lys Arg
20 25 30
Asn Ile Asn Pro Asp Asp Lys Leu Ala Lys Val Phe Gly Thr Glu Lys
35 40 45
Pro Ile Asp Met Phe Gln Met Thr Lys Met Val Ser Gln
50 55 60




7


36


PRT


Chlamyida trachomatis



7
Ala Ala Thr Ser Cys Glu Leu Ala Asn Gln His Gly His Leu Gln Phe
1 5 10 15
Pro Leu Leu Thr Arg Ser Leu Glu Leu Met Leu Leu Pro Ser Gln Ser
20 25 30
Gln Ser His Arg
35




8


18


PRT


Chlamydia trachomatis



8
Leu Arg His His Ala Ser Leu Gln Thr Asn Met Asp Ile Ser Asn Phe
1 5 10 15
Pro Phe




9


5


PRT


Chlamydia trachomatis



9
Leu Ala Leu Trp Asn
1 5




10


11


PRT


Chlamydia trachomatis



10
Cys Cys Tyr Arg Val Asn His Asn His Ile Asp
1 5 10




11


36


PRT


Chlamydia trachomatis



11
Val Asp Val Ile Val Ile Asp Ser Val Ala Ala Leu Val Pro Lys Ser
1 5 10 15
Glu Leu Glu Gly Glu Ile Gly Asp Val His Val Gly Leu Gln Ala Arg
20 25 30
Met Met Ser Gln
35




12


122


PRT


Chlamydia trachomatis



12
Met Pro Arg Ile Ile Gly Ile Asp Ile Pro Ala Lys Lys Lys Leu Lys
1 5 10 15
Ile Ser Leu Thr Tyr Ile Tyr Gly Ile Gly Pro Ala Leu Ser Lys Glu
20 25 30
Ile Ile Ala Arg Leu Gln Leu Asn Pro Glu Ala Arg Ala Ala Glu Leu
35 40 45
Thr Glu Glu Glu Val Gly Arg Leu Asn Ala Leu Leu Gln Ser Asp Tyr
50 55 60
Val Val Glu Gly Asp Leu Arg Arg Arg Val Gln Ser Asp Ile Lys Arg
65 70 75 80
Leu Ile Thr Ile His Ala Tyr Arg Gly Gln Arg His Arg Leu Ser Leu
85 90 95
Pro Val Arg Gly Gln Arg Thr Lys Thr Asn Ser Arg Thr Arg Lys Gly
100 105 110
Lys Arg Lys Thr Ile Ala Gly Lys Lys Lys
115 120




13


20


PRT


Chlamydia trachomatis



13
Asp Pro Thr Asn Lys Arg Asn Ile Asn Pro Asp Asp Lys Leu Ala Lys
1 5 10 15
Val Phe Gly Thr
20




14


20


PRT


Chlamydia trachomatis



14
Asp Asp Lys Leu Ala Lys Val Phe Gly Thr Glu Lys Pro Ile Asp Met
1 5 10 15
Phe Gln Met Thr
20




15


161


DNA


Chlymidia trachomatis



15
atctttgtgt gtctcataag cgcagagcgg ctgcggctgt ctgtagcttc atcggaggaa 60
ttacctacct cgcgacattc ggagctatcc gtccgattct gtttgtcaac aaaatgctgg 120
cgcaaccgtt tctttcttcc caaactaaag caaatatggg a 161




16


897


DNA


Chlymidia trachomatis



16
atggcttcta tatgcggacg tttagggtct ggtacaggga atgctctaaa agcttttttt 60
acacagccca acaataaaat ggcaagggta gtaaataaga cgaagggaat ggataagact 120
attaaggttg ccaagtctgc tgccgaattg accgcaaata ttttggaaca agctggaggc 180
gcgggctctt ccgcacacat tacagcttcc caagtgtcca aaggattagg ggatgcgaga 240
actgttgtcg ctttagggaa tgcctttaac ggagcgttgc caggaacagt tcaaagtgcg 300
caaagcttct tctctcacat gaaagctgct agtcagaaaa cgcaagaagg ggatgagggg 360
ctcacagcag atctttgtgt gtctcataag cgcagagcgg ctgcggctgt ctgtagcatc 420
atcggaggaa ttacctacct cgcgacattc ggagctatcc gtccgattct gtttgtcaac 480
aaaatgctgg caaaaccgtt tctttcttcc caaactaaag caaatatggg atcttctgtt 540
agctatatta tggcggctaa ccatgcagcg tctgtggtgg gtgctggact cgctatcagt 600
gcggaaagag cagattgcga agcccgctgc gctcgtattg cgagagaaga gtcgttactc 660
gaagtgccgg gagaggaaaa tgcttgcgag aagaaagtcg ctggagagaa agccaagacg 720
ttcacgcgca tcaagtatgc actcctcact atgctcgaga agtttttgga atgcgttgcc 780
gacgttttca aattggtgcc gctgcctatt acaatgggta ttcgtgcgat tgtggctgct 840
ggatgtacgt tcacttctgc aattattgga ttgtgcactt tctgcgccag agcataa 897




17


298


PRT


Chlamydia trachomatis



17
Met Ala Ser Ile Cys Gly Arg Leu Gly Ser Gly Thr Gly Asn Ala Leu
1 5 10 15
Lys Ala Phe Phe Thr Gln Pro Asn Asn Lys Met Ala Arg Val Val Asn
20 25 30
Lys Thr Lys Gly Met Asp Lys Thr Ile Lys Val Ala Lys Ser Ala Ala
35 40 45
Glu Leu Thr Ala Asn Ile Leu Glu Gln Ala Gly Gly Ala Gly Ser Ser
50 55 60
Ala His Ile Thr Ala Ser Gln Val Ser Lys Gly Leu Gly Asp Ala Arg
65 70 75 80
Thr Val Val Ala Leu Gly Asn Ala Phe Asn Gly Ala Leu Pro Gly Thr
85 90 95
Val Gln Ser Ala Gln Ser Phe Phe Ser His Met Lys Ala Ala Ser Gln
100 105 110
Lys Thr Gln Glu Gly Asp Glu Gly Leu Thr Ala Asp Leu Cys Val Ser
115 120 125
His Lys Arg Arg Ala Ala Ala Ala Val Cys Ser Ile Ile Gly Gly Ile
130 135 140
Thr Tyr Leu Ala Thr Phe Gly Ala Ile Arg Pro Ile Leu Phe Val Asn
145 150 155 160
Lys Met Leu Ala Lys Pro Phe Leu Ser Ser Gln Thr Lys Ala Asn Met
165 170 175
Gly Ser Ser Val Ser Tyr Ile Met Ala Ala Asn His Ala Ala Ser Val
180 185 190
Val Gly Ala Gly Leu Ala Ile Ser Ala Glu Arg Ala Asp Cys Glu Ala
195 200 205
Arg Cys Ala Arg Ile Ala Arg Glu Glu Ser Leu Leu Glu Val Pro Gly
210 215 220
Glu Glu Asn Ala Cys Glu Lys Lys Val Ala Gly Glu Lys Ala Lys Thr
225 230 235 240
Phe Thr Arg Ile Lys Tyr Ala Leu Leu Thr Met Leu Glu Lys Phe Leu
245 250 255
Glu Cys Val Ala Asp Val Phe Lys Leu Val Pro Leu Pro Ile Thr Met
260 265 270
Gly Ile Arg Ala Ile Val Ala Ala Gly Cys Thr Phe Thr Ser Ala Ile
275 280 285
Ile Gly Leu Cys Thr Phe Cys Ala Arg Ala
290 295




18


18


PRT


Chlamydia trachomatis



18
Arg Ala Ala Ala Ala Ala Ala Val Cys Ser Phe Ile Gly Gly Ile Thr
1 5 10 15
Tyr Leu




19


18


PRT


Chlamydia trachomatis



19
Cys Ser Phe Ile Gly Gly Ile Thr Tyr Leu Ala Thr Phe Gly Ala Ile
1 5 10 15
Arg Pro




20


216


PRT


Chlamydia trachomatis



20
Met Arg Gly Ser Gln Gln Ile Phe Val Cys Leu Ile Ser Ala Glu Arg
1 5 10 15
Leu Arg Leu Ser Val Ala Ser Ser Glu Glu Leu Pro Thr Ser Arg His
20 25 30
Ser Glu Leu Ser Val Arg Phe Cys Leu Ser Thr Lys Cys Trp Gln Asn
35 40 45
Arg Phe Phe Leu Pro Lys Leu Lys Gln Ile Trp Asp Leu Leu Leu Ala
50 55 60
Ile Leu Trp Arg Leu Thr Met Gln Arg Leu Trp Trp Val Leu Asp Ser
65 70 75 80
Leu Ser Val Arg Lys Glu Gln Ile Ala Lys Pro Ala Ala Leu Val Leu
85 90 95
Arg Glu Lys Ser Arg Tyr Ser Lys Cys Arg Glu Arg Lys Met Leu Ala
100 105 110
Arg Arg Lys Ser Leu Glu Arg Lys Pro Arg Arg Ser Arg Ala Ser Ser
115 120 125
Met His Ser Ser Leu Cys Ser Arg Ser Phe Trp Asn Ala Leu Pro Thr
130 135 140
Phe Ser Asn Trp Cys Arg Cys Leu Leu Gln Trp Val Phe Val Arg Leu
145 150 155 160
Trp Leu Leu Asp Val Arg Ser Leu Leu Gln Leu Leu Asp Cys Ala Leu
165 170 175
Ser Ala Pro Glu His Lys Gly Phe Phe Lys Phe Leu Lys Lys Lys Ala
180 185 190
Val Ser Lys Lys Lys Gln Pro Phe Leu Ser Thr Lys Cys Leu Ala Phe
195 200 205
Leu Ile Val Lys Ile Val Phe Leu
210 215




21


1256


DNA


Chlamydia trachomatis



21
ctcgtgccgg cacgagcaaa gaaatccctc aaaaaatggc cattattggc ggtggtgtga 60
tcggttgcga attcgcttcc ttattccata cgttaggctc cgaagtttct gtgatcgaag 120
caagctctca aatccttgct ttgaataatc cagatatttc aaaaaccatg ttcgataaat 180
tcacccgaca aggactccgt ttcgtactag aagcctctgt atcaaatatt gaggatatag 240
gagatcgcgt tcggttaact atcaatggga atgtcgaaga atacgattac gttctcgtat 300
ctataggacg ccgtttgaat acagaaaata ttggcttgga taaagctggt gttatttgtg 360
atgaacgcgg agtcatccct accgatgcca caatgcgcac aaacgtacct aacatttatg 420
ctattggaga tatcacagga aaatggcaac ttgcccatgt agcttctcat caaggaatca 480
ttgcagcacg gaatataggt ggccataaag aggaaatcga ttactctgct gtcccttctg 540
tgatctttac cttccctgaa gtcgcttcag taggcctctc cccaacagca gctcaacaac 600
atctccttct tcgcttactt tttctgaaaa atttgataca gaagaagaat tcctcgcaca 660
cttgcgagga ggagggcgtc tggaagacca gttgaattta gctaagtttt ctgagcgttt 720
tgattctttg cgagaattat ccgctaagct tggttacgat agcgatggag agactgggga 780
tttcttcaac gaggagtacg acgacgaaga agaggaaatc aaaccgaaga aaactacgaa 840
acgtggacgt aagaagagcc gttcataagc cttgctttta aggtttggta gttttacttc 900
tctaaaatcc aaatggttgc tgtgccaaaa agtagtttgc gtttccggat agggcgtaaa 960
tgcgctgcat gaaagattgc ttcgagagcg gcatcgcgtg ggagatcccg gatactttct 1020
ttcagatacg aataagcata gctgttccca gaataaaaac ggccgacgct aggaacaaca 1080
agatttagat agagcttgtg tagcaggtaa actgggttat atgttgctgg gcgtgttagt 1140
tctagaatac ccaagtgtcc tccaggttgt aatactcgat acacttccct aagagcctct 1200
aatggatagg ataagttccg taatccatag gccatagaag ctaaacgaaa cgtatt 1256




22


601


DNA


Chlamydia trachomatis



22
ctcgtgccgg cacgagcaaa gaaatccctc aaaaaatggc cattattggc ggtggtgtga 60
tcggttgcga attcgcttcc ttattccata cgttaggctc cgaagtttct gtgatcgaag 120
caagctctca aatccttgct ttgaataatc cagatatttc aaaaaccatg ttcgataaat 180
tcacccgaca aggactccgt ttcgtactag aagcctctgt atcaaatatt gaggatatag 240
gagatcgcgt tcggttaact atcaatggga atgtcgaaga atacgattac gttctcgtat 300
ctataggacg ccgtttgaat acagaaaata ttggcttgga taaagctggt gttatttgtg 360
atgaacgcgg agtcatccct accgatgcca caatgcgcac aaacgtacct aacatttatg 420
ctattggaga tatcacagga aaatggcaac ttgcccatgt agcttctcat caaggaatca 480
ttgcagcacg gaatataggt ggccataaag aggaaatcga ttactctgct gtcccttctg 540
tgatctttac cttccctgaa gtcgcttcag taggcctctc cccaacagca gctcaacaac 600
a 601




23


270


DNA


Chlamydia trachomatis



23
acatctcctt cttcgcttac tttttctgaa aaatttgata cagaagaaga attcctcgca 60
cacttgcgag gaggagggcg tctggaagac cagttgaatt tagctaagtt ttctgagcgt 120
tttgattctt tgcgagaatt atccgctaag cttggttacg atagcgatgg agagactggg 180
gatttcttca acgaggagta cgacgacgaa gaagaggaaa tcaaaccgaa gaaaactacg 240
aaacgtggac gtaagaagag ccgttcataa 270




24


363


DNA


Chlamydia trachomatis



24
ttacttctct aaaatccaaa tggttgctgt gccaaaaagt agtttgcgtt tccggatagg 60
gcgtaaatgc gctgcatgaa agattgcttc gagagcggca tcgcgtggga gatcccggat 120
actttctttc agatacgaat aagcatagct gttcccagaa taaaaacggc cgacgctagg 180
aacaacaaga tttagataga gcttgtgtag caggtaaact gggttatatg ttgctgggcg 240
tgttagttct agaataccca agtgtcctcc aggttgtaat actcgataca cttccctaag 300
agcctctaat ggataggata agttccgtaa tccataggcc atagaagcta aacgaaacgt 360
att 363




25


696


DNA


Chlamydia trachomatis



25
gctcgtgccg gcacgagcaa agaaatccct caaaaaatgg ccattattgg cggtggtgtg 60
atcggttgcg aattcgcttc cttattccat acgttaggct ccgaagtttc tgtgatcgaa 120
gcaagctctc aaatccttgc tttgaataat ccagatattt caaaaaccat gttcgataaa 180
ttcacccgac aaggactccg tttcgtacta gaagcctctg tatcaaatat tgaggatata 240
ggagatcgcg ttcggttaac tatcaatggg aatgtcgaag aatacgatta cgttctcgta 300
tctataggac gccgtttgaa tacagaaaat attggcttgg ataaagctgg tgttatttgt 360
gatgaacgcg gagtcatccc taccgatgcc acaatgcgca caaacgtacc taacatttat 420
gctattggag atatcacagg aaaatggcaa cttgcccatg tagcttctca tcaaggaatc 480
attgcagcac ggaatatagg tggccataaa gaggaaatcg attactctgc tgtcccttct 540
gtgatcttta ccttccctga agtcgcttca gtaggcctct ccccaacagc agctcaacaa 600
catctccttc ttcgcttact ttttctgaaa aatttgatac agaagaagaa ttcctcgcac 660
acttgcgagg aggagggcgt ctggaagacc agttga 696




26


231


PRT


Chlamydia trachomatis



26
Ala Arg Ala Gly Thr Ser Lys Glu Ile Pro Gln Lys Met Ala Ile Ile
1 5 10 15
Gly Gly Gly Val Ile Gly Cys Glu Phe Ala Ser Leu Phe His Thr Leu
20 25 30
Gly Ser Glu Val Ser Val Ile Glu Ala Ser Ser Gln Ile Leu Ala Leu
35 40 45
Asn Asn Pro Asp Ile Ser Lys Thr Met Phe Asp Lys Phe Thr Arg Gln
50 55 60
Gly Leu Arg Phe Val Leu Glu Ala Ser Val Ser Asn Ile Glu Asp Ile
65 70 75 80
Gly Asp Arg Val Arg Leu Thr Ile Asn Gly Asn Val Glu Glu Tyr Asp
85 90 95
Tyr Val Leu Val Ser Ile Gly Arg Arg Leu Asn Thr Glu Asn Ile Gly
100 105 110
Leu Asp Lys Ala Gly Val Ile Cys Asp Glu Arg Gly Val Ile Pro Thr
115 120 125
Asp Ala Thr Met Arg Thr Asn Val Pro Asn Ile Tyr Ala Ile Gly Asp
130 135 140
Ile Thr Gly Lys Trp Gln Leu Ala His Val Ala Ser His Gln Gly Ile
145 150 155 160
Ile Ala Ala Arg Asn Ile Gly Gly His Lys Glu Glu Ile Asp Tyr Ser
165 170 175
Ala Val Pro Ser Val Ile Phe Thr Phe Pro Glu Val Ala Ser Val Gly
180 185 190
Leu Ser Pro Thr Ala Ala Gln Gln His Leu Leu Leu Arg Leu Leu Phe
195 200 205
Leu Lys Asn Leu Ile Gln Lys Lys Asn Ser Ser His Thr Cys Glu Glu
210 215 220
Glu Gly Val Trp Lys Thr Ser
225 230




27


264


DNA


Chlamydia pneumoniae



27
atgagtcaaa aaaataaaaa ctctgctttt atgcatcccg tgaatatttc cacagattta 60
gcagttatag ttggcaaggg acctatgccc agaaccgaaa ttgtaaagaa agtttgggaa 120
tacattaaaa aacacaactg tcaggatcaa aaaaataaac gtaatatcct tcccgatgcg 180
aatcttgcca aagtctttgg ctctagtgat cctatcgaca tgttccaaat gaccaaagcc 240
ctttccaaac atattgtaaa ataa 264




28


87


PRT


Chlamydia pneumoniae



28
Met Ser Gln Lys Asn Lys Asn Ser Ala Phe Met His Pro Val Asn Ile
1 5 10 15
Ser Thr Asp Leu Ala Val Ile Val Gly Lys Gly Pro Met Pro Arg Thr
20 25 30
Glu Ile Val Lys Lys Val Trp Glu Tyr Ile Lys Lys His Asn Cys Gln
35 40 45
Asp Gln Lys Asn Lys Arg Asn Ile Leu Pro Asp Ala Asn Leu Ala Lys
50 55 60
Val Phe Gly Ser Ser Asp Pro Ile Asp Met Phe Gln Met Thr Lys Ala
65 70 75 80
Leu Ser Lys His Ile Val Lys
85




29


369


DNA


Chlamydia pneumoniae



29
atgccacgca tcattggaat tgatattcct gcaaagaaaa agttaaaaat aagtctgaca 60
tatatttatg gaataggatc agctcgttct gatgaaatca ttaaaaagtt gaagttagat 120
cctgaggcaa gagcctctga attaactgaa gaagaagtag gacgactgaa ctctctgcta 180
caatcagaat ataccgtaga aggggatttg cgacgtcgtg ttcaatcgga tatcaaaaga 240
ttgatcgcca tccattctta tcgaggtcag agacatagac tttctttacc agtaagagga 300
caacgtacaa aaactaattc tcgtactcga aaaggtaaaa gaaaaacagt cgcaggtaag 360
aagaaataa 369




30


122


PRT


Chlamydia pneumoniae



30
Met Pro Arg Ile Ile Gly Ile Asp Ile Pro Ala Lys Lys Lys Leu Lys
1 5 10 15
Ile Ser Leu Thr Tyr Ile Tyr Gly Ile Gly Ser Ala Arg Ser Asp Glu
20 25 30
Ile Ile Lys Lys Leu Lys Leu Asp Pro Glu Ala Arg Ala Ser Glu Leu
35 40 45
Thr Glu Glu Glu Val Gly Arg Leu Asn Ser Leu Leu Gln Ser Glu Tyr
50 55 60
Thr Val Glu Gly Asp Leu Arg Arg Arg Val Gln Ser Asp Ile Lys Arg
65 70 75 80
Leu Ile Ala Ile His Ser Tyr Arg Gly Gln Arg His Arg Leu Ser Leu
85 90 95
Pro Val Arg Gly Gln Arg Thr Lys Thr Asn Ser Arg Thr Arg Lys Gly
100 105 110
Lys Arg Lys Thr Val Ala Gly Lys Lys Lys
115 120




31


10


PRT


Artificial Sequence




Made in the lab





31
Cys Ser Phe Ile Gly Gly Ile Thr Tyr Leu
1 5 10




32


53


PRT


Chlamydia trachomatis



32
Leu Cys Val Ser His Lys Arg Arg Ala Ala Ala Ala Val Cys Ser Phe
1 5 10 15
Ile Gly Gly Ile Thr Tyr Leu Ala Thr Phe Gly Ala Ile Arg Pro Ile
20 25 30
Leu Phe Val Asn Lys Met Leu Ala Gln Pro Phe Leu Ser Ser Gln Thr
35 40 45
Lys Ala Asn Met Gly
50




33


161


DNA


Chlamydia trachomatis



33
atctttgtgt gtctcataag cgcagagcgg ctgcggctgt ctgtagcatc atcggaggaa 60
ttacctacct cgcgacattc ggagctatcc gtccgattct gtttgtcaac aaaatgctgg 120
caaaaccgtt tctttcttcc caaactaaag caaatatggg a 161




34


53


PRT


Chlamydia trachomatis



34
Leu Cys Val Ser His Lys Arg Arg Ala Ala Ala Ala Val Cys Ser Ile
1 5 10 15
Ile Gly Gly Ile Thr Tyr Leu Ala Thr Phe Gly Ala Ile Arg Pro Ile
20 25 30
Leu Phe Val Asn Lys Met Leu Ala Lys Pro Phe Leu Ser Ser Gln Thr
35 40 45
Lys Ala Asn Met Gly
50




35


55


DNA


Chlamydia pneumoniae



35
gatatacata tgcatcacca tcaccatcac atgagtcaaa aaaaataaaa actct 55




36


33


DNA


Chlamydia pneumoniae



36
ctcgaggaat tcttatttta caatatgttt gga 33




37


53


DNA


Chlamydia pneumoniae



37
gatatacata tgcatcacca tcaccatcac atgccacgca tcattggaat gat 53




38


30


DNA


Chlamydia pneumoniae



38
ctcgaggaat tcttatttct tcttacctgc 30




39


16


PRT


Artificial Sequence




Made in the lab





39
Lys Arg Asn Ile Asn Pro Asp Asp Lys Leu Ala Lys Val Phe Gly Thr
1 5 10 15




40


16


PRT


Artificial Sequence




made in the lab





40
Lys Arg Asn Ile Leu Pro Asp Ala Asn Leu Ala Lys Val Phe Gly Ser
1 5 10 15




41


15


PRT


Artificial Sequence




made in the lab





41
Lys Glu Tyr Ile Asn Gly Asp Lys Tyr Phe Gln Gln Ile Phe Asp
1 5 10 15




42


16


PRT


Artificial Sequence




made in the lab





42
Lys Lys Ile Ile Ile Pro Asp Ser Lys Leu Gln Gly Val Ile Gly Ala
1 5 10 15




43


15


PRT


Artificial Sequence




made in the lab





43
Lys Lys Leu Leu Val Pro Asp Asn Asn Leu Ala Thr Ile Ile Gly
1 5 10 15




44


509


DNA


Chlamydia



44
ggagctcgaa ttcggcacga gagtgcctat tgttttgcag gctttgtctg atgatagcga 60
taccgtacgt gagattgctg tacaagtagc tgttatgtat ggttctagtt gcttactgcg 120
cgccgtgggc gatttagcga aaaatgattc ttctattcaa gtacgcatca ctgcttatcg 180
tgctgcagcc gtgttggaga tacaagatct tgtgcctcat ttacgagttg tagtccaaaa 240
tacacaatta gatggaacgg aaagaagaga agcttggaga tctttatgtg ttcttactcg 300
gcctcatagt ggtgtattaa ctggcataga tcaagcttta atgacctgtg agatgttaaa 360
ggaatatcct gaaaagtgta cggaagaaca gattcgtaca ttattggctg cagatcatcc 420
agaagtgcag gtagctactt tacagatcat tctgagagga ggtagagtat tccggtcatc 480
ttctataatg gaatcggttc tcgtgccgg 509




45


481


DNA


Chlamydia




unsure




(23)




n=A,T,C or G





45
gatccgaatt cggcacgagg cantatttac tcccaacatt acggttccaa ataagcgata 60
aggtcttcta ataaggaagt taatgtaaga ggctttttta ttgcttttcg taaggtagta 120
ttgcaaccgc acgcgattga atgatacgca agccatttcc atcatggaaa agaacccttg 180
gacaaaaata caaaggaggt tcactcctaa ccagaaaaag ggagagttag tttccatggg 240
ttttccttat atacacccgt ttcacacaat taggagccgc gtctagtatt tggaatacaa 300
attgtcccca agcgaatttt gttcctgttt cagggatttc tcctaattgt tctgtcagcc 360
atccgcctat ggtaacgcaa ttagctgtag taggaagatc aactccaaac aggtcataga 420
aatcagaaag ctcataggtg cctgcagcaa taacaacatt cttgtctgag tgagcgaatt 480
g 481




46


427


DNA


Chlamydia




unsure




(20)




n=A,T,C or G





46
gatccgaatt cggcacgagn tttttcctgt tttttcttag tttttagtgt tcccggagca 60
ataacacaga tcaaagaacg gccattcagt ttaggctctg actcaacaaa acctatgtcc 120
tctaagccct gacacattct ttgaacaacc ttatgcccgt gttcgggata agccaactct 180
cgcccccgaa acatacaaga aacctttact ttatttcctt tctcaataaa ggctctagct 240
tgctttgctt tcgtaagaaa gtcgttatca tcgatattag gcttaagctt aacctctttg 300
atacgcactt ggtgctgtgc tttcttacta tctttttctt ttttagttat gtcgtaacga 360
tacttcccgt agtccatgat tttgcacaca ggaggctctg agtttgaagc aacctcgtgc 420
cgaattc 427




47


600


DNA


Chlamydia




unsure




(522)




n=A,T,C or G





47
gatccgaatt cggcacgaga tgcttctatt acaattggtt tggatgcgga aaaagcttac 60
cagcttattc tagaaaagtt gggagatcaa attcttggtg gaattgctga tactattgtt 120
gatagtacag tccaagatat tttagacaaa atcacaacag acccttctct aggtttgttg 180
aaagctttta acaactttcc aatcactaat aaaattcaat gcaacgggtt attcactccc 240
aggaacattg aaactttatt aggaggaact gaaataggaa aattcacagt cacacccaaa 300
agctctggga gcatgttctt agtctcagca gatattattg catcaagaat ggaaggcggc 360
gttgttctag ctttggtacg agaaggtgat tctaagccct acgcgattag ttatggatac 420
tcatcaggcg ttcctaattt atgtagtcta agaaccagaa ttattaatac aggattgact 480
ccgacaacgt attcattacg tgtaggcggt ttagaaagcg gngtggtatg ggttaatgcc 540
ctttctaatg gcaatgatat tttaggaata acaaatcttc taatgtatct tttttggagg 600




48


600


DNA


Chlamydia



48
ggagctcgaa ttcggcacga gctctatgaa tatccaattc tctaaactgt tcggataaaa 60
atgatgcagg aattaggtcc acactatctt tttttgtttc gcaaatgatt gattttaaat 120
cgtttgatgt gtatactatg tcgtgtaagc ctttttggtt acttctgaca ctagccccca 180
atccagaaga taaattggat tgcgggtcta ggtcagcaag taacactttt ttccctaaaa 240
attgggccaa gttgcatccc acgtttagag aaagtgttgt ttttccagtt cctcccttaa 300
aagagcaaaa aactaaggtg tgcaaatcaa ctccaacgtt agagtaagtt atctattcag 360
ccttggaaaa catgtctttt ctagacaaga taagcataat caaagccttt tttagcttta 420
aactgttatc ctctaatttt tcaagaacag gagagtctgg gaataatcct aaagagtttt 480
ctatttgttg aagcagtcct agaattagtg agacactttt atggtagagt tctaagggag 540
aatttaagaa agttactttt tccttgttta ctcgtatttt taggtctaat tcggggaaat 600




49


600


DNA


Chlamydia



49
gatccgaatt cggcacgaga tgcttctatt acaattggtt tggatgcgga aaaagcttac 60
cagcttattc tagaaaagtt gggagatcaa attcttggtg gaattgctga tactattgtt 120
gatagtacag tccaagatat tttagacaaa atcacaacag acccttctct aggtttgttg 180
aaagctttta acaactttcc aatcactaat aaaattcaat gcaacgggtt attcactccc 240
aggaacattg aaactttatt aggaggaact gaaataggaa aattcacagt cacacccaaa 300
agctctggga gcatgttctt agtctcagca gatattattg catcaagaat ggaaggcggc 360
gttgttctag ctttggtacg agaaggtgat tctaagccct acgcgattag ttatggatac 420
tcatcaggcg ttcctaattt atgtagtcta agaaccagaa ttattaatac aggattgact 480
ccgacaacgt attcattacg tgtaggcggt ttagaaagcg gtgtggtatg ggttaatgcc 540
ctttctaatg gcaatgatat tttaggaata acaaatactt ctaatgtatc ttttttggag 600




50


406


DNA


Chlamydia



50
gatccgaatt cggcacgagt tcttagcttg cttaattacg taattaacca aactaaaggg 60
gctatcaaat agcttattca gtctttcatt agttaaacga tcttttctag ccatgactca 120
tcctatgttc ttcagctata aaaatacttc ttaaaacttg atatgctgta atcaaatcat 180
cattaaccac aacataatca aattcgctag cggcagcaat ttcgacagcg ctatgctcta 240
atctttcttt cttctggaaa tctttctctg aatcccgagc attcaaacgg cgctcaagtt 300
cttcttgaga gggagcttga ataaaaatgt gactgccggc atttgcttct tcagagccaa 360
agctccttgt acatcaatca cggctatgca gtctcgtgcc gaattc 406




51


602


DNA


Chlamydia



51
gatccgaatt cggcacgaga tattttagac aaaatcacaa cagacccttc tctaggtttg 60
ttgaaagctt ttaacaactt tccaatcact aataaaattc aatgcaacgg gttattcact 120
cccaggaaca ttgaaacttt attaggagga actgaaatag gaaaattcac agtcacaccc 180
aaaagctctg ggagcatgtt cttagtctca gcagatatta ttgcatcaag aatggaaggc 240
ggcgttgttc tagctttggt acgagaaggt gattctaagc cctacgcgat tagttatgga 300
tactcatcag gcgttcctaa tttatgtagt ctaagaacca gaattattaa tacaggattg 360
actccgacaa cgtattcatt acgtgtaggc ggtttagaaa gcggtgtggt atgggttaat 420
gccctttcta atggcaatga tattttagga ataacaaata cttctaatgt atcttttttg 480
gaggtaatac ctcaaacaaa cgcttaaaca atttttattg gatttttctt ataggtttta 540
tatttagaga aaaaagttcg aattacgggg tttgttatgc aaaataaact cgtgccgaat 600
tc 602




52


145


DNA


Chlamydia



52
gatccgaatt cggcacgagc tcgtgccgat gtgttcaaca gcatccatag gatgggcagt 60
caaatatact ccaagtaatt ctttttctct tttcaacaac tccttaggag agcgttggat 120
aacattttca gctcgtgccg aattc 145




53


450


DNA


Chlamydia



53
gatccgaatt cggcacgagg taatcggcac cgcactgctg acactcatct cctcgagctc 60
gatcaaaccc acacttggga caagtaccta caacataacg gtccgctaaa aacttccctt 120
cttcctcaga atacagctgt tcggtcacct gattctctac cagtccgcgt tcctgcaagt 180
ttcgatagaa atcttgcaca atagcaggat gataagcgtt cgtagttctg gaaaagaaat 240
ctacagaaat tcccaatttc ttgaaggtat ctttatgaag cttatgatac atgtcgacat 300
attcttgata ccccatgcct gccaactctg cattaagggt aattgcgatt ccgtattcat 360
cagaaccaca aatatacaaa acctctttgc cttgtagtct ctgaaaacgc gcataaacat 420
ctgcaggcaa ataagcctcg tgccgaattc 450




54


716


DNA


Chlamydia



54
gatcgaaatt cggcacgagc ggcacgagtt ttctgatagc gatttacaat cctttattca 60
acttttgcct agagaggcac actatactaa gaagtttctt gggtgtgtgg cacagtcctg 120
tcgtcagggg attctgctag aggggtaggg gaaaaaaccc ttattactat gaccatgcgc 180
atgtggaatt acattccata gactttcgca tcattcccaa catttacaca gctctacacc 240
tcttaagaag aggtgacgtg gattgggtgg ggcagccttg gcaccaaggg attccttttg 300
agcttcggac tacctctgct ctctacaccc attaccctgt agatggcaca ttctggctta 360
ttcttaatcc caaagatcct gtactttcct ctctatctaa tcgtcagcga ttgattgctg 420
ccatccaaaa ggaaaaactg gtgaagcaag ctttaggaac acaatatcga gtagctgaaa 480
gctctccatc tccagaggga atcatagctc atcaagaagc ttctactcct tttcctggga 540
aaattacttt gatatatccc aataatatta cgcgctgtca gcgtttggcc gaggtatcca 600
aaaaatgatc gacaaggagc acgctaaatt tgtacatacc ccaaaatcaa tcagccatct 660
aggcaaatgg aatatcaaag taaacagtat acaactgggg atctcgtgcc gaattc 716




55


463


DNA


Chlamydia trachomatis



55
tctcaaatcc ttgctttgaa taatccagat atttcaaaaa ccatgttcga taaattcacc 60
cgacaaggac tccgtttcgt actagaagcc tctgtatcaa atattgagga tataggagat 120
cgcgttcggt taactatcaa tgggaatgtc gaagaatacg attacgttct cgtatctata 180
ggacgccgtt tgaatacaga aaatattggc ttggataaag ctggtgttat ttgtgatgaa 240
cgcggagtca tccctaccga tgccacaatg cgcacaaacg tacctaacat ttatgctatt 300
ggagatatca caggaaaatg gcaacttgcc catgtagctt ctcatcaagg aatcattgca 360
gcacggaata taggtggcca taaagaggaa atcgattact ctgctgtccc ttctgtgatc 420
tttaccttcc ctgaagtcgc ttcagtaggc ctctccccaa cag 463




56


829


DNA


Chlamydia trachomatis



56
gtactatggg atcattagtt ggaagacagg ctccggattt ttctggtaaa gccgttgttt 60
gtggagaaga gaaagaaatc tctctagcag actttcgtgg taagtatgta gtgctcttct 120
tttatcctaa agattttacc tatgtttgtc ctacagaatt acatgctttt caagatagat 180
tggtagattt tgaagagcat ggtgcagtcg tccttggttg ctccgttgac gacattgaga 240
cacattctcg ttggctcact gtagcgagag atgcaggagg gatagaggga acagaatatc 300
ctctgttagc agacccctct tttaaaatat cagaagcttt tggtgttttg aatcctgaag 360
gatcgctcgc tttaagagct actttcctta tcgataaaca tggggttatt cgtcatgcgg 420
ttatcaatga tcttccttta gggcgttcca ttgacgagga attgcgtatt ttagattcat 480
tgatcttctt tgagaaccac ggaatggttt gtccagctaa ctggcgttct ggagagcgtg 540
gaatggtgcc ttctgaagag ggattaaaag aatacttcca gacgatggat taagcatctt 600
tgaaagtaag aaagtcgtac agatcttgat ctgaaaagag aagaaggctt tttaattttc 660
tgcagagagc cagcgaggct tcaataatgt tgaagtctcc gacaccaggc aatgctaagg 720
cgacgatatt agttagtgaa gtctgagtat taaggaaatg aaggccaaag aaatagctat 780
caataaagaa gccttcttcc ttgactctaa agaatagtat gtcgtatcc 829




57


1537


DNA


Chlamydia trachomatis



57
acatcaagaa atagcggact cgcctttagt gaaaaaagct gaggagcaga ttaatcaagc 60
acaacaagat attcaaacga tcacacctag tggtttggat attcctatcg ttggtccgag 120
tgggtcagct gcttccgcag gaagtgcggc aggagcgttg aaatcctcta acaattcagg 180
aagaatttcc ttgttgcttg atgatgtaga caatgaaatg gcagcgattg caatgcaagg 240
ttttcgatct atgatcgaac aatttaatgt aaacaatcct gcaacagcta aagagctaca 300
agctatggag gctcagctga ctgcgatgtc agatcaactg gttggtgcgg atggcgagct 360
cccagccgaa atacaagcaa tcaaagatgc tcttgcgcaa gctttgaaac aaccatcagc 420
agatggttta gctacagcta tgggacaagt ggcttttgca gctgccaagg ttggaggagg 480
ctccgcagga acagctggca ctgtccagat gaatgtaaaa cagctttaca agacagcgtt 540
ttcttcgact tcttccagct cttatgcagc agcactttcc gatggatatt ctgcttacaa 600
aacactgaac tctttatatt ccgaaagcag aagcggcgtg cagtcagcta ttagtcaaac 660
tgcaaatccc gcgctttcca gaagcgtttc tcgttctggc atagaaagtc aaggacgcag 720
tgcagatgct agccaaagag cagcagaaac tattgtcaga gatagccaaa cgttaggtga 780
tgtatatagc cgcttacagg ttctggattc tttgatgtct acgattgtga gcaatccgca 840
agcaaatcaa gaagagatta tgcagaagct cacggcatct attagcaaag ctccacaatt 900
tgggtatcct gctgttcaga attctgtgga tagcttgcag aagtttgctg cacaattgga 960
aagagagttt gttgatgggg aacgtagtct cgcagaatct caagagaatg cgtttagaaa 1020
acagcccgct ttcattcaac aggtgttggt aaacattgct tctctattct ctggttatct 1080
ttcttaacgt gtgattgaag tttgtgaatt gagggggagc caaaaaagaa tttctttttt 1140
ggctcttttt tcttttcaaa ggaatctcgt gtctacagaa gtcttttcaa taataagttc 1200
ttagttccaa aagaagaaaa tatataaaag aaaaaactcc taattcattt aaaaagtgct 1260
cggcagactt cgtggaaaat gtctgtaaag ctggagggga atcagcagaa agatgcaaga 1320
tatccgagaa aaaaggctca ggctcgtgcc gaattcggca cgagactacg aaagaaaggt 1380
cttttctttc ggaatctgtc attggatctg cgtaagactt aaagttcggc aacacaggct 1440
ctgtcttctc tttaggtttc ttgcgcgaga aaaattttct caagtaacaa gaagatttct 1500
ttttacagcc ggcatccggc ttctcgcgaa gtataac 1537




58


463


DNA


Chlamydia trachomatis



58
tctcaaatcc ttgctttgaa taatccagat atttcaaaaa ccatgttcga taaattcacc 60
cgacaaggac tccgtttcgt actagaagcc tctgtatcaa atattgagga tataggagat 120
cgcgttcggt taactatcaa tgggaatgtc gaagaatacg attacgttct cgtatctata 180
ggacgccgtt tgaatacaga aaatattggc ttggataaag ctggtgttat ttgtgatgaa 240
cgcggagtca tccctaccga tgccacaatg cgcacaaacg tacctaacat ttatgctatt 300
ggagatatca caggaaaatg gcaacttgcc catgtagctt ctcatcaagg aatcattgca 360
gcacggaata taggtggcca taaagaggaa atcgattact ctgctgtccc ttctgtgatc 420
tttaccttcc ctgaagtcgc ttcagtaggc ctctccccaa cag 463




59


552


DNA


Chlamydia trachomatis



59
acattcctcc tgctcctcgc ggccatccac aaattgaggt aaccttcgat attgatgcca 60
acggaatttt acacgtttct gctaaagatg ctgctagtgg acgcgaacaa aaaatccgta 120
ttgaagcaag ctctggatta aaagaagatg aaattcaaca aatgatccgc gatgcagagc 180
ttcataaaga ggaagacaaa caacgaaaag aagcttctga tgtgaaaaat gaagccgatg 240
gaatgatctt tagagccgaa aaagctgtga aagattacca cgacaaaatt cctgcagaac 300
ttgttaaaga aattgaagag catattgaga aagtacgcca agcaatcaaa gaagatgctt 360
ccacaacagc tatcaaagca gcttctgatg agttgagtac tcgtatgcaa aaaatcggag 420
aagctatgca ggctcaatcc gcatccgcag cagcatcttc tgcagcgaat gctcaaggag 480
ggccaaacat taactccgaa gatctgaaaa aacatagttt cagcacacga cctccagcag 540
gaggaagcgc ct 552




60


1180


DNA


Chlamydia trachomatis



60
atcctagcgg taaaactgct tactggtcag ataaaatcca tacagaagca acacgtactt 60
cttttaggag aaaaaatcta taatgctaga aaaatcctga gtaaggatca cttctcctca 120
acaacttttt catcttggat agagttagtt tttagaacta agtcttctgc ttacaatgct 180
cttgcatatt acgagctttt tataaacctc cccaaccaaa ctctacaaaa agagtttcaa 240
tcgatcccct ataaatccgc atatattttg gccgctagaa aaggcgattt aaaaaccaag 300
gtcgatgtga tagggaaagt atgtggaatc tcgtgccgaa ttcggcacga gcggcacgag 360
gatgtagagt aattagttaa agagctgcat aattatgaca aagcatggaa aacgcattcg 420
tggtatccaa gagacttacg atttagctaa gtcgtattct ttgggtgaag cgatagatat 480
tttaaaacag tgtcctactg tgcgtttcga tcaaacggtt gatgtgtctg ttaaattagg 540
gatcgatcca agaaagagtg atcagcaaat tcgtggttcg gtttctttac ctcacggtac 600
aggtaaagtt ttgcgaattt tagtttttgc tgctggagat aaggctgcag aggctattga 660
agcaggagcg gactttgttg gtagcgacga cttggtagaa aaaatcaaag gtggatgggt 720
tgacttcgat gttgcggttg ccactcccga tatgatgaga gaggtcggaa agctaggaaa 780
agttttaggt ccaagaaacc ttatgcctac gcctaaagcc ggaactgtaa caacagatgt 840
ggttaaaact attgcggaac tgcgaaaagg taaaattgaa tttaaagctg atcgagctgg 900
tgtatgcaac gtcggagttg cgaagctttc tttcgatagt gcgcaaatca aagaaaatgt 960
tgaagcgttg tgtgcagcct tagttaaagc taagcccgca actgctaaag gacaatattt 1020
agttaatttc actatttcct cgaccatggg gccaggggtt accgtggata ctagggagtt 1080
gattgcgtta taattctaag tttaaagagg aaaaatgaaa gaagagaaaa agttgctgct 1140
tcgcgaggtt gaagaaaaga taaccgcttc tcggcacgag 1180




61


1215


DNA


Chlamydia trachomatis



61
attacagcgt gtgcaggtaa cgacatcatt gcatgatgct tttgatggca ttgatgcggc 60
attccttata gggtcagttc ctagaggccc aggaatggag agaagagatc ttctaaagaa 120
aaatggggag attgttgcta cgcaaggaaa agctttgaac acaacagcca agcgggatgc 180
aaagattttt gttgttggga accctgtgaa taccaattgc tggatagcaa tgaatcatgc 240
tcccagatta ttgagaaaga actttcatgc gatgctacga ttggaccaga atcgtatgca 300
tagcatgtta tcgcatagag cagaagtacc tttatcggct gtatcacaag ttgtggtttg 360
gggaaatcac tccgccaaac aagtgcctga ttttacgcaa gctctgatta atgaccgtcc 420
tatcgcagag acgatagcgg atcgtgattg gttagagaat attatggtgc cttctgtaca 480
gagtcgtggt agtgcagtaa ttgaagcacg agggaagtct tcggcagctt ctgcagcacg 540
agctttagca gaggctgctc gatcaatata tcagccaaaa gaaggactcg tgccgaattc 600
ggcacgagta tcgaaattgc aggcatttct agtgaatggt cgtatgctta taaactacgt 660
ggtacagact tgagctctca aaagtttgct acagattctt acatcgcaga cccttattct 720
aagaatatct actcccctca actatttgga tcccctaaac aagaaaagga ttacgcattt 780
agttacctga aatatgagga ttttgactgg gaaggcgaca ctcctttgca ccttccaaaa 840
gaaaattact tcatttatga aatgcatgtt cggtcattca cccgagatcc gtcttcccag 900
gtttcccatc ctggaacttt ccttggtatc atcgaaaaaa tagaccacct caaacaacta 960
ggcgttcatg cagttgaact ccttcctatt ttcgaattcg atgaaaccgt ccatccattt 1020
aaaaatcagg acttccccca cctgtgtaac tattgggggt attcttcggt gaattttttc 1080
tgcccctctc gccgttatac ttatggggca gacccttgcg ctccggcccg agagttcaag 1140
actcttgtca aagcgttaca ccgtgcggga atcgaagtca ttctcgatgt cgttttcaat 1200
catacaggct ttgaa 1215




62


688


DNA


Chlamydia trachomatis



62
gtggatccaa aaaagaatct aaaaagccat acaaagattg cgttacttct tgcgatgcct 60
ctaacacttt atcagcgtca tctttgagaa gcatctcaat gagcgctttt tcttctctag 120
catgccgcac atccgcttct tcatgttctg tgaaatatgc atagtcttca ggattggaaa 180
atccaaagta ctcagtcaat ccacgaattt tctctctagc gatacgtgga atttgactct 240
cataagaata caaagcagcc actcctgcag ctaaagaatc tcctgtacac caccgcatga 300
aagtagctac tttcgctttt gctgcttcac taggctcatg agcctctaac tcttctggag 360
taactcctag agcaaacaca aactgcttcc acaaatcaat atgattaggg taaccgttct 420
cttcatccat caagttatct aacaataact tacgcgcctc taaatcatcg caacgactat 480
gaatcgcaga taaatattta ggaaaggctt tgatatgtaa ataatagtct ttggcacgag 540
cctgtaattg ctctttagta agctccccct tcgaccattt cacataaaac gtgtgttcta 600
gcatatgctt attttgaata attaaatcta actgatctaa aaaattcata aacacctcca 660
tcatttcttt tcttgactcc acgtaacc 688




63


269


DNA


Chlamydia trachomatis



63
atgttgaaat cacacaagct gttcctaaat atgctacggt aggatctccc tatcctgttg 60
aaattactgc tacaggtaaa agggattgtg ttgatgttat cattactcag caattaccat 120
gtgaagcaga gttcgtacgc agtgatccag cgacaactcc tactgctgat ggtaagctag 180
tttggaaaat tgaccgctta ggacaaggcg aaaagagtaa aattactgta tgggtaaaac 240
ctcttaaaga aggttgctgc tttacagct 269




64


1339


DNA


Chlamydia trachomatis



64
cttttattat ggcttctggg gatgatgtca acgatatcga cctgctatct cgaggagatt 60
ttaaaattgt tatacagacg gctccagagg agatgcatgg attagcggac tttttggctc 120
ccccggcgaa ggatcttggt attctctccg cctgggaagc tggtgagctg cgttacaaac 180
agctagttaa tccttaggaa acatttctgg acctatgccc atcacattgg ctccgtgatc 240
cacatagaga gtttctcccg taattgcgct agctagggga gagactaaga aggctgctgc 300
tgcgcctact tgctcagctt ccattggaga aggtagtgga gcccagtctt ggtagtaatc 360
caccattctc tcaataaatc caatagcttt tcctgcacgg ctagctaatg gccctgccga 420
gatagtattc actcggactc cccaacgtcg gccggcttcc caagccagta cttttgtatc 480
actttctaaa gcagcttttg ctgcgttcat tcctccgcca taccctggaa cagcacgcat 540
ggaagcaaga taagttagag agatggtgct agctcctgca ttcataattg ggccaaaatg 600
agagagaagg ctgataaagg agtagctgga tgtacttaag gcggcaagat agcctttacg 660
agaggtatca agtaatggtt tagcaatttc cggactgttt gctaaagagt gaacaagaat 720
atcaatgtgt ccaaaatctt ttttcacctg ttctacaact tcggatacag tgtacccaga 780
aagatctttg taacgtttat tttccaaaat ttcctgagga atatcttctg gggtgtcgaa 840
actggcatcc atgggataga ttttagcgaa agttagcaat tctccattgg agagttcacg 900
agatgcattg aattttccta actcccaaga ttgagagaaa attttataga taggaaccca 960
ggtccccaca agtatggttg cgcctgcttc tgctaacatt ttggcaatgc cccagccata 1020
cccgttatca tcgcctatgc cggctatgaa agcaattttt cctgttaaat caattttcaa 1080
catgagctaa ccccattttg tcttcttgag agaggagagt agcagattct ttattattga 1140
gaaacgggcc tcataataca taaggagtag attcactggc tggatccagg tttctagagt 1200
aaagagtttc cttgtcaaat tcttatatgg gtagagttaa tcaactgttt tcaagtgatt 1260
tatgtttatt ttaaaataat ttgttttaac aactgtttaa tagttttaat ttttaaagtg 1320
tgaaaaacag gttttatat 1339




65


195


PRT


Chlamydia trachomatis



65
Met Gly Ser Leu Val Gly Arg Gln Ala Pro Asp Phe Ser Gly Lys Ala
5 10 15
Val Val Cys Gly Glu Glu Lys Glu Ile Ser Leu Ala Asp Phe Arg Gly
20 25 30
Lys Tyr Val Val Leu Phe Phe Tyr Pro Lys Asp Phe Thr Tyr Val Cys
35 40 45
Pro Thr Glu Leu His Ala Phe Gln Asp Arg Leu Val Asp Phe Glu Glu
50 55 60
His Gly Ala Val Val Leu Gly Cys Ser Val Asp Asp Ile Glu Thr His
65 70 75 80
Ser Arg Trp Leu Thr Val Ala Arg Asp Ala Gly Gly Ile Glu Gly Thr
85 90 95
Glu Tyr Pro Leu Leu Ala Asp Pro Ser Phe Lys Ile Ser Glu Ala Phe
100 105 110
Gly Val Leu Asn Pro Glu Gly Ser Leu Ala Leu Arg Ala Thr Phe Leu
115 120 125
Ile Asp Lys His Gly Val Ile Arg His Ala Val Ile Asn Asp Leu Pro
130 135 140
Leu Gly Arg Ser Ile Asp Glu Glu Leu Arg Ile Leu Asp Ser Leu Ile
145 150 155 160
Phe Phe Glu Asn His Gly Met Val Cys Pro Ala Asn Trp Arg Ser Gly
165 170 175
Glu Arg Gly Met Val Pro Ser Glu Glu Gly Leu Lys Glu Tyr Phe Gln
180 185 190
Thr Met Asp
195




66


520


DNA


Chlamydia



66
gatccgaatt cggcacgagg aggaatggaa gggccctccg attttaaatc tgctaccatg 60
ccattcacta gaaactccat aacagcggtt ttctctgatg gcgagtaaga agcaagcatt 120
tgatgtaaat tagcgcaatt agagggggat gaggttactt ggaaatataa ggagcgaagc 180
gatgaaggag atgtatttgc tctggaagca aaggtttctg aagctaacag aacattgcgt 240
cctccaacaa tcgcctgagg attctggctc atcagttgat gctttgcctg aatgagagcg 300
gacttaagtt tcccatcaga gggagctatt tgaattagat aatcaagagc tagatccttt 360
attgtgggat cagaaaattt acttgtgagc gcatcgagaa tttcgtcaga agaagaatca 420
tcatcgaacg aatttttcaa tcctcgaaaa tcttctccag agacttcgga aagatcttct 480
gtgaaacgat cttcaagagg agtatcgcct ttttcctctg 520




67


276


DNA


Chlamydia



67
gatccgaatt cggcacgagg tattgaagga gaaggatctg actcgatcta tgaaatcatg 60
atgcctatct atgaagttat gaatatggat ctagaaacac gaagatcttt tgcggtacag 120
caagggcact atcaggaccc aagagcttca gattatgacc tcccacgtgc tagcgactat 180
gatttgccta gaagcccata tcctactcca cctttgcctt ctagatatca gctacagaat 240
atggatgtag aagcagggtt ccgtgaggca gtttat 276




68


248


DNA


Chlamydia



68
gatccgaatt cggcacgagg tgttcaagaa tatgtccttc aagaatgggt taaattgaaa 60
gatctaccgg tagaagagtt gctagaaaaa cgatatcaga aattccgaac gataggtcta 120
tatgaaactt cttctgaaag cgattctgag gcataagaag catttagttt tattcggttt 180
ttctctttta tccatattag ggctaacgat aacgtctcaa gcagaaattt tttctctagg 240
tcttattg 248




69


715


DNA


Chlamydia




unsure




(34)




n=A,T,C or G





69
gatccgaatt cggcacgaga aggtagatcc gatntcagca aaagtgctcc taaaggaaga 60
ttccttcggt atcctgcagc aaataaggtg gcacactcca tctcggacag tttgagcttt 120
attttcatat agttttcgac ggaactcttt attaaactcc caaaaccgaa tgttagtcgt 180
gtgggtgatg cctatatggt aagggaggtt tttggcttcg agaatattgg tgatcatttt 240
ttgtacgaca aaattagcta atgcagggac ctctgggggg aagtatgcat ctgatgttcc 300
atcttttcgg atgctagcaa cagggacaaa ataatctcct atttggtagt gggatcttaa 360
gcctccgcac atgcccaaca tgatcgctgc tgtagcattg ggaaggaaag aacacagatc 420
tacggtaaga gctgctcctg gagagcctaa tttaaaatcg atgattgagg tgtgaatttg 480
aggcgcatgc gctgccgaaa acatggatcc tcgagaaaca gggacctgat agatttcagc 540
gaaaacatcc acggtaatac ccmaaattag taagaaggag atagggctgg aactcttgaa 600
tggtagagcc ggtatagcgc tctagcatgt cacaggcgat tgtttcttcg ctgatttttt 660
tatgttgatg ggtcataaat cacagatatt ataatggtta gagaatcttt ttttc 715




70


323


DNA


Chlamydia



70
gatccgaatt cggcacgagc agaacgtaaa cagcacactt aaaccgtgta tgaggtttaa 60
cactgtttgg caagcaaaca accattcctc tttccacatc gttcttacca atacctctga 120
ggagcaatcc aacattctct cctgcacgac cttctgggag ttcttttctg aacatttcaa 180
ccccagtaac aatcgtttct ttagtatctc taagaccgac caactgaact ttatcggaaa 240
ctttaacaat tccacgctca atacgtccag ttactacagt tcctcgtccg gagatagaga 300
acacgtcctc aatgggcatt aag 323




71


715


DNA


Chlamydia



71
gatccgaatt cggcacgagg aaaaaaagat tctctaacca ttataatatc tgtgatttat 60
gacccatcaa cataaaaaaa tcagcgaaga aacaatcgcc tgtgacatgc tagagcggct 120
ataccggctc taccattcaa gagttccagc cctatctcct tcttactaat tttgggtatt 180
acgtggatgt tttcgctgaa atctatcagg tccctgtttc tcgaggatcc atgttttcgg 240
gcagcgcatg cgcctcaaat tcacacctca atcatcgatt ttaaattagg ctctccagga 300
gcagctctta ccgtagatct gtgttctttc cttcccaatg ctacagcagc gatcatgttg 360
ggcatgtgcg gaggcttaag atcccactac caaataggag attattttgt ccctgttgct 420
agcatccgaa aagatggaac atcagatgca tacttccccc cagaggtccc tgcattagct 480
aattttgtcg tacaaaaaat gatcaccaat attctcgaag ccaaaaacct cccttaccat 540
ataggcatca cccacacgac taacattcgg ttttgggagt ttaataaaga gttccgtcga 600
aaactatatg aaaataaagc tcaaactgtc gagatggagt gtgccacctt atttgctgca 660
ggataccgaa ggaatcttcc tttaggagca cttttgctga tatcggatct acctt 715




72


641


DNA


Chlamydia




unsure




(550)




n=A,T,C or G





72
gatccgaatt cggcacgaga tctcctcgag ctcgatcaaa cccacacttg ggacaagtac 60
ctacaacata acggtccgct aaaaacttcc cttcttcctc agaatacagc tgttcggtca 120
cctgattctc taccagtccg cgttcctgca agtttcgata gaaatcttgc acaatagcag 180
gatgataagc gttcgtagtt ctggaaaaga aatctacaga aattcccaat ttcttgaagg 240
tatctttatg aagcttatga tacatgtcga catattcttg ataccccatg cctgccaact 300
ctgcattaag ggtaattgcg attccgtatt catcagaacc acaaatatac aaaacctctt 360
tgccttgtag tctctgaaaa cgcgcataaa catctgcagg caaataagca ccggtaatat 420
gtccaaaatg caaaggacca tttgcgtaag gcaacgcaga agtaataaga atacgggaag 480
attccactat ttcacgtcgc tccagttgta cagagaagga tcttttcttc tggatgttcc 540
gaaaccttgn tctcttcgnc tctctcctgt agcanacaaa tgnctctctc gacatctctt 600
tcagcgtatt cggactgatg ccctaaagat cccnggangt t 641




73


584


DNA


Chlamydia




unsure




(460)




n=A,T,C or G





73
gaattcggca cgagacattt ctagaatgga accggcaaca aacaaaaact ttgtatctga 60
agatgacttt aagcaatctt tagataggga agattttttg gaatgggtct ttttatttgg 120
gacttattac ggaacgagta aggcggagat ttctagagtt ctgcaaaagg gtaagcactg 180
catagccgtg attgatgtac aaggagcttt ggctctgaag aagcaaatgc cggcagtcac 240
tatttttatt caagctccct ctcaagaaga acttgagcgc cgtttgaatg ctcgggattc 300
agagaaagat ttccagaaga aagaaagatt agagcatagc gctgtcgaaa ttgctgccgc 360
tagcgaattt gattatgttg tggttaatga tgatttgatt acagcatatc aagttttaag 420
aagtattttt atagctgaag aacataggat gagtcatggn tagaaaagat cgtttaacta 480
atgaaagact gaataagcta tttgatagcc cctttagttt ggntaattac gtaattaagc 540
nagctnagaa caaaattgct agaggagatg ttcgttcttc taac 584




74


465


DNA


Chlamydia



74
gatccgaatt cggcacgagc tcgtgccgtt tgggatcgtg taatcgcatc ggagaatggt 60
taagaaatta ttttcgagtg aaagagctag gcgtaatcat tacagatagc catactactc 120
caatgcggcg tggagtactg ggtatcgggc tgtgttggta tggattttct ccattacaca 180
actatatagg atcgctagat tgtttcggtc gtcccttaca gatgacgcaa agtaatcttg 240
tagatgcctt agcagttgcg gctgttgttt gtatgggaga ggggaatgag caaacaccgt 300
tagcggtgat agagcaggca cctaatatgg tctaccattc atatcctact tctcgagaag 360
agtattgttc tttgcgcata gatgaaacag aggacttata cggacctttt ttgcaagcgg 420
ttaccgtgga gtcaagaaaa gaaatgatgg aggtgtttat gaatt 465




75


545


DNA


Chlamydia



75
gaattcggca cgagatgaaa agttagcgtc acaggggatt ctcctaccaa agaattccga 60
aaagttttct tccaaaaacc tcttcctctc ttgattagtg atccctctgc aactacttta 120
ctatatgttc tgtgaaatat gcatagtctt caggattgga aaatccaaag tactcagtca 180
atccacgaat tttctctcta gcgatacgtg gaatttgact ctcataagaa tacaaagcag 240
ccactcctgc agctaaagaa tctcctgtac accaccgcat gaaagtagct actttcgctt 300
ttgctgcttc actaggctca tgagcctcta actcttctgg agtaactcct agagcaaaca 360
caaactgctt ccacaaatca atatgattag ggtaaccgtt ctcttcatcc atcaagttat 420
ctaacaataa cttacgcgcc tctaaatcat cgcaacgact atgaatcgca gataaatatt 480
taggaaaggc tttgatatgt aaataatagt ctttggcata cgcctgtaat tgctctttag 540
taagc 545




76


797


DNA


Chlamydia




unsure




(788)




n=A,T,C or G





76
gatccgaatt cggcacgaga tacgctagat gcgataaatg cggataatga ggattatcct 60
aaaccaggtg acttcccacg atcttccttc tctagtacgc ctcctcatgc tccagtacct 120
caatctgaga ttccaacgtc acctacctca acacagcctc catcacccta acttgtaaaa 180
actgtaataa aaagagcgcg cttcctttat gcaaaatcaa tttgaacaac tccttactga 240
attagggact caaatcaaca gccctcttac tcctgattcc aataatgcct gtatagttcg 300
ctttggatac aacaatgttg ctgtacaaat tgaagaggat ggtaattcag gatttttagt 360
tgctggagtc atgcttggaa aacttccaga gaataccttt agacaaaaaa ttttcaaagc 420
tgctttgtct atcaatggat ctccgcaatc taatattaaa ggcactctag gatacggtga 480
aatctctaac caactctatc tctgtgatcg gcttaacatg acctatctaa atggagaaaa 540
gctcgcccgt tacttagttc ttttttcgca gcatgccaat atctggatgc aatctatctc 600
aaaaggagaa cttccagatt tacatgctct aggtatgtat cacctgtaaa ttatgccgtc 660
attatcccaa tcccgacgta tcatccagca atcttccatt cgaaagattt ggaatcagat 720
agatacttct cctaagcatg ggggtatgcg taccggttat ttttctcttc atactcaaaa 780
aaagttgnng gggaata 797




77


399


DNA


Chlamydia



77
catatgcatc accatcacca tcacatgcca cgcatcattg gaattgatat tcctgcaaag 60
aaaaagttaa aaataagtct gacatatatt tatggaatag gatcagctcg ttctgatgaa 120
atcattaaaa agttgaagtt agatcctgag gcaagagcct ctgaattaac tgaagaagaa 180
gtaggacgac tgaactctct gctacaatca gaatataccg tagaagggga tttgcgacgt 240
cgtgttcaat cggatatcaa aagattgatc gccatccatt cttatcgagg tcagagacat 300
agactttctt taccagtaag aggacaacgt acaaaaacta attctcgtac tcgaaaaggt 360
aaaagaaaaa cagtcgcagg taagaagaaa taagaattc 399




78


285


DNA


Chlamydia



78
atgcatcacc atcaccatca catgagtcaa aaaaataaaa actctgcttt tatgcatccc 60
gtgaatattt ccacagattt agcagttata gttggcaagg gacctatgcc cagaaccgaa 120
attgtaaaga aagtttggga atacattaaa aaacacaact gtcaggatca aaaaaataaa 180
cgtaatatcc ttcccgatgc gaatcttgcc aaagtctttg gctctagtga tcctatcgac 240
atgttccaaa tgaccaaagc cctttccaaa catattgtaa aataa 285




79


950


DNA


Chlamydia



79
aaattaactc gagcacaaat tacggcaatt gctgagcaaa agatgaagga catggatgtc 60
gttcttttag agtccgccga gagaatggtt gaagggactg cccgaagcat gggtgtagat 120
gtagagtaat tagttaaaga gctgcataat tatgacaaag catggaaaac gcattcgtgg 180
tatccaagag acttacgatt tagctaagtc gtattctttg ggtgaagcga tagatatttt 240
aaaacagtgt cctactgtgc gtttcgatca aacggttgat gtgtctgtta aattagggat 300
cgatccaaga aagagtgatc agcaaattcg tggttcggtt tctttacctc acggtacagg 360
taaagttttg cgaattttag tttttgctgc tggagataag gctgcagagg ctattgaagc 420
aggagcggac tttgttggta gcgacgactt ggtagaaaaa atcaaaggtg gatgggttga 480
cttcgatgtt gcggttgcca ctcccgatat gatgagagag gtcggaaagc taggaaaagt 540
tttaggtcca agaaacctta tgcctacgcc taaagccgga actgtaacaa cagatgtggt 600
taaaactatt gcggaactgc gaaaaggtaa aattgaattt aaagctgatc gagctggtgt 660
atgcaacgtc ggagttgcga agctttcttt cgatagtgcg caaatcaaag aaaatgttga 720
agcgttgtgt gcagccttag ttaaagctaa gcccgcaact gctaaaggac aatatttagt 780
taatttcact atttcctcga ccatggggcc aggggttacc gtggatacta gggagttgat 840
tgcgttataa ttctaagttt aaagaggaaa aatgaaagaa gagaaaaagt tgctgcttcg 900
cgaggttgaa gaaaagataa ccgcttctca aggttttatt ttgttgagat 950




80


395


DNA


Chlamydia



80
tttcaaggat tttgttttcc cgatcatctt actaaatgca gctccaacaa tcacatcatg 60
ggctggttta gcatctaagg caacagaagc tcctctgctg taataagtga attcttcaga 120
agtaggtgtt cctacttgcg atagcatcgt tcctagtcct gatatccaca ggttgttata 180
gctaacttca tcaaagcgag ctagattcat tttatcgttg agcaagcctt gtttgactgt 240
gaccattgac atttgagatc ccagaatcga gttcgcatag aaatgattgt ctctaggtac 300
ataagcccat tgtctataag agtcaaattt ccagagcgct gagatcgttc cattttgtag 360
ttgatcagga tccagagtga gtgttcctgt atatc 395




81


2085


DNA


Chlamydia



81
atttggcgaa ggagtttggg ctacggctat taataaatca ttcgtgttcg ctgcctccaa 60
gaccagattg tgtactttct tatgaagaat ctcctattga gcaaatgttg cgttggggag 120
agtctcagtt agaacaattt gctcaagtag gtttagatac aagttggcaa gttgttttcg 180
atccaggaat aggatttggg aagactcccg ttcagtcgat gttattgatg gatggagtaa 240
agcagtttaa acgtgtttta gagtgtcctg tattaatagg ccattctaga aaatcgtgtt 300
tgagtatgtt gggccgattt aatagtgacg atcgtgattg ggaaacgatc ggctgttctg 360
tatctcttca tgatcgagga gttgattatc tacgtgtgca tcaggttgaa ggtaacagac 420
gtgccttagc cgctgctgct tgggctggta tgtttgtatg atccaagcaa caggtatcgt 480
tgctattgat cccagaggag tgatgggagc tttaggcaag ctcccttgga gttatcccga 540
agatctacgt ttttttgcag aaaccattcg aaatcatccc atcattatgg gacgaaagac 600
ttgggagtct cttccagaca agtataagca tgggcgggat atcgttgtct tttctcgcag 660
gatgcatcca ccacaatgca taggagtttc ttcctttgca gagtatggga cactatcttt 720
gaatcatccg tttttaattg ggggagcgga gctctttgaa agttttttcc aacaaaacct 780
tctgaaagct tgttttgtca cacatatcaa aaagaaatat tggggcgata ctttcttccc 840
tatcacgcga ttatcaggat ggaagaagga atgtatttgt aatacagagg atttcagtat 900
ttattattat gaaaataact ccgatcaaaa cacgtaaagt atttgcacat gattcgcttc 960
aagagatctt gcaagaggct ttgccgcctc tgcaagaacg gagtgtggta gttgtctctt 1020
caaagattgt gagtttatgt gaaggcgctg tcgctgatgc aagaatgtgc aaagcagagt 1080
tgataaaaaa agaagcggat gcttatttgt tttgtgagaa aagcgggata tatctaacga 1140
aaaaagaagg tattttgatt ccttctgcag ggattgatga atcgaatacg gaccagcctt 1200
ttgttttata tcctaaagat attttgggat cgtgtaatcg catcggagaa tggttaagaa 1260
attattttcg agtgaaagag ctaggcgtaa tcattacaga tagccatact actccaatgc 1320
ggcgtggagt actgggtatc gggctgtgtt ggtatggatt ttctccatta cacaactata 1380
taggatcgct agattgtttc ggtcgtccct tacagatgac gcaaagtaat cttgtagatg 1440
ccttagcagt tgcggctgtt gtttgtatgg gagaggggaa tgagcaaaca ccgttagcgg 1500
tgatagagca ggcacctaat atggtctacc attcatatcc tacttctcga gaagagtatt 1560
gttctttgcg catagatgaa acagaggact tatacggacc ttttttgcaa gcggttacgt 1620
ggagtcaaga aaagaaatga tggaggtgtt tatgaatttt ttagatcagt tagatttaat 1680
tattcaaaat aagcatatgc tagaacacac gttttatgtg aaatggtcga agggggagct 1740
tactaaagag caattacagg cgtatgccaa agactattat ttacatatca aagcctttcc 1800
taaatattta tctgcgattc atagtcgttg cgatgattta gaggcgcgta agttattgtt 1860
agataacttg atggatgaag agaacggtta ccctaatcat attgatttgt ggaagcagtt 1920
tgtgtttgct ctaggagtta ctccagaaga gttagaggct catgagccta gtgaagcagc 1980
aaaagcgaaa gtagctactt tcatgcggtg gtgtacagga gattctttag ctgcaggagt 2040
ggctgctttg tattcttatg agagtcaaat tccacgtatc gcctc 2085




82


405


DNA


Chlamydia



82
ttcatcggtc tagttcgcta ttctactctc caatggttcc gcatttttgg gcagagcttc 60
gcaatcatta tgcaacgagt ggtttgaaaa gcgggtacaa tattgggagt accgatgggt 120
ttctccctgt cattgggcct gttatatggg agtcggaggg tcttttccgc gcttatattt 180
cttcggtgac tgatggggat ggtaagagcc ataaagtagg atttctaaga attcctacat 240
atagttggca ggacatggaa gattttgatc cttcaggacc gcctccttgg gaagaattgt 300
attggctcca taaagggagg agaaaacttc gatataggga atcgtatcaa ggtgaaagta 360
gcaaaaaata aattagctcc tccattccga actgcagaat ttgat 405




83


379


DNA


Chlamydia



83
tataccattc gtttgaaagt gcctttgacg ggagaaagtg tttttgaaga tcaatgcaaa 60
ggtcgtgtcg ttttcccttg ggcagatgtt gacgatcaag ttttggttaa atcagacggg 120
ttccctacgt atcactttgc taatgtagtt gatgatcatt tgatggggat tacccatgtg 180
ttgcgagggg aagagtggtt aagttctaca cctaaacacc ttcttcttta caaagctttt 240
gggtgggagc ctccgcagtt tttccatatg ccgcttcttc taaatcctga tggaagtaag 300
ctttccaaga gaaagaatcc tacttctatt ttttactatc gggatgctgg atacaaaaaa 360
gaagcgttca tgaatttcc 379




84


715


DNA


Chlamydia



84
tcaatcctgt attaataatt ctggttctta gactacataa attaggaacg cctgatgagt 60
atccataact aatcgcgtag ggcttagaat caccttctcg taccaaagct agaacaacgc 120
cgccttccat tcttgatgca ataatatctg ctgagactaa gaacatgctc ccagagcttt 180
tgggtgtgac tgtgaatttt cctatttcag ttcctcctaa taaagtttca atgttcctgg 240
gagtgaataa cccgttgcat tgaattttat tagtgattgg aaagttgtta aaagctttca 300
acaaacctag agaagggtct gttgtgattt tgtctaaaat atcttggact gtactatcaa 360
caatagtatc agcaattcca ccaagaattt gatctcccaa cttttctaga ataagctggt 420
aagctttttc cgcatccaaa ccaattgtaa tagaagcatt ggttgatgga ttattggaga 480
ctgttaaaga tattccatca gaagctgtca ttttggctgc gacaggtgtt gatgttgtcc 540
caaggattat ttgctggtcc ttgagcggct ctgtcatttg cccaactttg atattatcag 600
caaagacgca gttttgagtg ttatacaaat aaaaaccaga atttcccatt ttaaaactct 660
tttttatttt gagctttaaa taaattaggt ttttagtttc aagtttgcta ttaat 715




85


476


DNA


Chlamydia



85
ctcgtgccgc tcgtgccgct cgtgccggtc ttttagaaga gcgtgaagct ttaaataatt 60
cgattacgtt tatcatggat aagcgtaatt ggatagaaac cgagtctgaa caggtacaag 120
tggttttcag agatagtaca gcttgcttag gaggaggcgc tattgcagct caagaaattg 180
tttctattca gaacaatcag gctgggattt ccttcgaggg aggtaaggct agtttcggag 240
gaggtattgc gtgtggatct ttttcttccg caggcggtgc ttctgtttta gggactattg 300
atatttcgaa gaatttaggc gcgatttcgt tctctcgtac tttatgtacg acctcagatt 360
taggacaaat ggagtaccag ggaggaggag ctctatttgg tgaaaatatt tctctttctg 420
agaatgctgg tgtgctcacc tttaaagaca acattgtgaa gacttttgct tcgaat 476




86


1551


DNA


Chlamydia



86
gcgtatcgat atttcttctg ttacattctt tatagggatt ctgttggctg ttaatgcgct 60
aacctactct catgtattac gggatttatc tgtgagtatg gatgcgctgt tttctcgtaa 120
cacgcttgct gttcttttag gtttagtctc tagcgtttta gataatgtgc cattagtcgc 180
tgcaacaata ggtatgtatg acttacctat gaacgatcct ctttggaaac tcattgccta 240
tacagcaggc acagggggaa gtattctcat cattggatcc gctgcaggtg ttgcctacat 300
gggaatggaa aaagtgagtt tcggctggta tgtcaaacac gcttcttgga ttgctttagc 360
cagttatttt ggaggtctag cagtctattt tctaatggaa aattgtgtga atttgttcgt 420
ttgaggtagt cagtatggca gagtttcttt aaaaattctt ttaataaaag ggttctctgc 480
ctattctagg cccctttttg aatggaaaaa tgggtttttg gagaacatcg attatgaaaa 540
tgaataggat ttggctatta ctgcttacct tttcttctgc catacattct cctgtacgag 600
gagaaagctt ggtttgcaag aatgctcttc aagatttgag ttttttagag catttattac 660
aggttaaata tgctcctaaa acatggaaag agcaatactt aggatgggat cttgttcaaa 720
gctccgtttc tgcacagcag aagcttcgta cacaagaaaa tccatcaaca agtttttgcc 780
agcaggtcct tgctgatttt atcggaggat taaatgactt tcacgctgga gtaactttct 840
ttgcgataga aagtgcttac cttccttata ccgtacaaaa aagtagtgac ggccgtttct 900
actttgtaga tatcatgact ttttcttcag agatccgtgt tggagatgag ttgctagagg 960
tggatggggc gcctgtccaa gatgtgctcg ctactctata tggaagcaat cacaaaggga 1020
ctgcagctga agagtcggct gctttaagaa cactattttc tcgcatggcc tctttagggc 1080
acaaagtacc ttctgggcgc actactttaa agattcgtcg tccttttggt actacgagag 1140
aagttcgtgt gaaatggcgt tatgttcctg aaggtgtagg agatttggct accatagctc 1200
cttctatcag ggctccacag ttacagaaat cgatgagaag ctttttccct aagaaagatg 1260
atgcgtttca tcggtctagt tcgctattct actctccaat ggttccgcat ttttgggcag 1320
agcttcgcaa tcattatgca acgagtggtt tgaaaagcgg gtacaatatt gggagtaccg 1380
atgggtttct ccctgtcatt gggcctgtta tatgggagtc ggagggtctt ttccgcgctt 1440
atatttcttc ggtgactgat ggggatggta agagccataa agtaggattt ctaagaattc 1500
ctacatatag ttggcaggac atggaagatt ttgatccttc aggaccgcct c 1551




87


3031


DNA


Chlamydia



87
atgtaggccc tcaagcggtt ttattgttag accaaattcg agatctattc gttgggtcta 60
aagatagtca ggctgaagga cagtataggt taattgtagg agatccaagt tctttccaag 120
agaaagatgc agatactctt cccgggaagg tagagcaaag tactttgttc tcagtaacca 180
atcccgtggt tttccaaggt gtggaccaac aggatcaagt ctcttcccaa gggttaattt 240
gtagttttac gagcagcaac cttgattctc cccgtgacgg agaatctttt ttaggtattg 300
cttttgttgg ggatagtagt aaggctggaa tcacattaac tgacgtgaaa gcttctttgt 360
ctggagcggc tttatattct acagaagatc ttatctttga aaagattaag ggtggattgg 420
aatttgcatc atgttcttct ctagaacagg ggggagcttg tgcagctcaa agtattttga 480
ttcatgattg tcaaggattg caggttaaac actgtactac agccgtgaat gctgaggggt 540
ctagtgcgaa tgatcatctt ggatttggag gaggcgcttt ctttgttacg ggttctcttt 600
ctggagagaa aagtctctat atgcctgcag gagatatggt agttgcgaat tgtgatgggg 660
ctatatcttt tgaaggaaac agcgcgaact ttgctaatgg aggagcgatt gctgcctctg 720
ggaaagtgct ttttgtcgct aatgataaaa agacttcttt tatagagaac cgagctttgt 780
ctggaggagc gattgcagcc tcttctgata ttgcctttca aaactgcgca gaactagttt 840
tcaaaggcaa ttgtgcaatt ggaacagagg ataaaggttc tttaggtgga ggggctatat 900
cttctctagg caccgttctt ttgcaaggga atcacgggat aacttgtgat aataatgagt 960
ctgcttcgca aggaggcgcc atttttggca aaaattgtca gatttctgac aacgaggggc 1020
cagtggtttt cagagatagt acagcttgct taggaggagg cgctattgca gctcaagaaa 1080
ttgtttctat tcagaacaat caggctggga tttccttcga gggaggtaag gctagtttcg 1140
gaggaggtat tgcgtgtgga tctttttctt ccgcaggcgg tgcttctgtt ttagggacta 1200
ttgatatttc gaagaattta ggcgcgattt cgttctctcg tactttatgt acgacctcag 1260
atttaggaca aatggagtac cagggaggag gagctctatt tggtgaaaat atttctcttt 1320
ctgagaatgc tggtgtgctc acctttaaag acaacattgt gaagactttt gcttcgaatg 1380
ggaaaattct gggaggagga gcgattttag ctactggtaa ggtggaaatt accaataatt 1440
ccggaggaat ttcttttaca ggaaatgcga gagctccaca agctcttcca actcaagagg 1500
agtttccttt attcagcaaa aaagaagggc gaccactctc ttcaggatat tctgggggag 1560
gagcgatttt aggaagagaa gtagctattc tccacaacgc tgcagtagta tttgagcaaa 1620
atcgtttgca gtgcagcgaa gaagaagcga cattattagg ttgttgtgga ggaggcgctg 1680
ttcatgggat ggatagcact tcgattgttg gcaactcttc agtaagattt ggtaataatt 1740
acgcaatggg acaaggagtc tcaggaggag ctcttttatc taaaacagtg cagttagctg 1800
gaaatggaag cgtcgatttt tctcgaaata ttgctagttt gggaggacgc aatgttctgt 1860
tagcttcaga aacctttgct tccagagcaa atacatctcc ttcatcgctt cgctccttat 1920
atttccaagt aacctcatcc ccctctaatt gcgctaattt acatcaaatg cttgcttctt 1980
actcgccatc agagaaaacc gctgttatgg agtttctagt gaatggcatg gtagcagatt 2040
taaaatcgga gggcccttcc attcctcctg caaaattgca agtatatatg acggaactaa 2100
gcaatctcca agccttacac tctgtagata gcttttttga tagaaatatt gggaacttgg 2160
aaaatagctt aaagcatgaa ggacatgccc ctattccatc cttaacgaca ggaaatttaa 2220
ctaaaacctt cttacaatta gtagaagata aattcccttc ctcttccaaa gctcaaaagg 2280
cattaaatga actggtaggc ccagatactg gtcctcaaac tgaagtttta aacttattct 2340
tccgcgctct taatggctgt tcgcctagaa tattctctgg agctgaaaaa aaacagcagc 2400
tggcatcggt tatcacaaat acgctagatg cgataaatgc ggataatgag gattatccta 2460
aaccaggtga cttcccacga tcttccttct ctagtacgcc tcctcatgct ccagtacctc 2520
aatctgagat tccaacgtca cctacctcaa cacagcctcc atcaccctaa cttgtaaaaa 2580
ctgtaataaa aagagcgcgc ttcctttatg caaaatcaat ttgaacaact ccttactgaa 2640
ttagggactc aaatcaacag ccctcttact cctgattcca ataatgcctg tatagttcgc 2700
tttggataca acaatgttgc tgtacaaatt gaagaggatg gtaattcagg atttttagtt 2760
gctggagtca tgcttggaaa acttccagag aataccttta gacaaaaaat tttcaaagct 2820
gctttgtcta tcaatggatc tccgcaatct aatattaaag gcactctagg atacggtgaa 2880
atctctaacc aactctatct ctgtgatcgg cttaacatga cctatctaaa tggagaaaag 2940
ctcgcccgtt acttagttct tttttcgcag catgccaata tctggatgca atctatctca 3000
aaaggagaac ttccagattt acatgctcta g 3031




88


976


DNA


Chlamydia



88
aggtggatgg ggcgcctgtc caagatgtgc tcgctactct atatggaagc aatcacaaag 60
ggactgcagc tgaagagtcg gctgctttaa gaacactatt ttctcgcatg gcctctttag 120
ggcacaaagt accttctggg cgcactactt taaagattcg tcgtcctttt ggtactacga 180
gagaagttcg tgtgaaatgg cgttatgttc ctgaaggtgt aggagatttg gctaccatag 240
ctccttctat cagggctcca cagttacaga aatcgatgag aagctttttc cctaagaaag 300
atgatgcgtt tcatcggtct agttcgctat tctactctcc aatggttccg catttttggg 360
cagagcttcg caatcattat gcaacgagtg gtttgaaaag cgggtacaat attgggagta 420
ccgatgggtt tctccctgtc attgggcctg ttatatggga gtcggagggt cttttccgcg 480
cttatatttc ttcggtgact gatggggatg gtaagagcca taaagtagga tttctaagaa 540
ttcctacata tagttggcag gacatggaag attttgatcc ttcaggaccg cctccttggg 600
aagaatttgc taagattatt caagtatttt cttctaatac agaagctttg attatcgacc 660
aaacgaacaa cccaggtggt agtgtccttt atctttatgc actgctttcc atgttgacag 720
accgtccttt agaacttcct aaacatagaa tgattctgac tcaggatgaa gtggttgatg 780
ctttagattg gttaaccctg ttggaaaacg tagacacaaa cgtggagtct cgccttgctc 840
tgggagacaa catggaagga tatactgtgg atctacaggt tgccgagtat ttaaaaagct 900
ttggacgtca agtattgaat tgttggagta aaggggatat cgagttatca acacctattc 960
ctctttttgg ttttga 976




89


94


PRT


Chlamydia



89
Met His His His His His His Met Ser Gln Lys Asn Lys Asn Ser Ala
5 10 15
Phe Met His Pro Val Asn Ile Ser Thr Asp Leu Ala Val Ile Val Gly
20 25 30
Lys Gly Pro Met Pro Arg Thr Glu Ile Val Lys Lys Val Trp Glu Tyr
35 40 45
Ile Lys Lys His Asn Cys Gln Asp Gln Lys Asn Lys Arg Asn Ile Leu
50 55 60
Pro Asp Ala Asn Leu Ala Lys Val Phe Gly Ser Ser Asp Pro Ile Asp
65 70 75 80
Met Phe Gln Met Thr Lys Ala Leu Ser Lys His Ile Val Lys
85 90




90


474


PRT


Chlamydia



90
Met Ala Ser His His His His His His Met Asn Glu Ala Phe Asp Cys
5 10 15
Val Val Ile Gly Ala Gly Pro Gly Gly Tyr Val Ala Ala Ile Thr Ala
20 25 30
Ala Gln Ala Gly Leu Lys Thr Ala Leu Ile Glu Lys Arg Glu Ala Gly
35 40 45
Gly Thr Cys Leu Asn Arg Gly Cys Ile Pro Ser Lys Ala Leu Leu Ala
50 55 60
Gly Ala Glu Val Val Thr Gln Ile Arg His Ala Asp Gln Phe Gly Ile
65 70 75 80
His Val Glu Gly Phe Ser Ile Asn Tyr Pro Ala Met Val Gln Arg Lys
85 90 95
Asp Ser Val Val Arg Ser Ile Arg Asp Gly Leu Asn Gly Leu Ile Arg
100 105 110
Ser Asn Lys Ile Thr Val Phe Ser Gly Arg Gly Ser Leu Ile Ser Ser
115 120 125
Thr Glu Val Lys Ile Leu Gly Glu Asn Pro Ser Val Ile Lys Ala His
130 135 140
Ser Ile Ile Leu Ala Thr Gly Ser Glu Pro Arg Ala Phe Pro Gly Ile
145 150 155 160
Pro Phe Ser Ala Glu Ser Pro Arg Ile Leu Cys Ser Thr Gly Val Leu
165 170 175
Asn Leu Lys Glu Ile Pro Gln Lys Met Ala Ile Ile Gly Gly Gly Val
180 185 190
Ile Gly Cys Glu Phe Ala Ser Leu Phe His Thr Leu Gly Ser Glu Val
195 200 205
Ser Val Ile Glu Ala Ser Ser Gln Ile Leu Ala Leu Asn Asn Pro Asp
210 215 220
Ile Ser Lys Thr Met Phe Asp Lys Phe Thr Arg Gln Gly Leu Arg Phe
225 230 235 240
Val Leu Glu Ala Ser Val Ser Asn Ile Glu Asp Ile Gly Asp Arg Val
245 250 255
Arg Leu Thr Ile Asn Gly Asn Val Glu Glu Tyr Asp Tyr Val Leu Val
260 265 270
Ser Ile Gly Arg Arg Leu Asn Thr Glu Asn Ile Gly Leu Asp Lys Ala
275 280 285
Gly Val Ile Cys Asp Glu Arg Gly Val Ile Pro Thr Asp Ala Thr Met
290 295 300
Arg Thr Asn Val Pro Asn Ile Tyr Ala Ile Gly Asp Ile Thr Gly Lys
305 310 315 320
Trp Gln Leu Ala His Val Ala Ser His Gln Gly Ile Ile Ala Ala Arg
325 330 335
Asn Ile Gly Gly His Lys Glu Glu Ile Asp Tyr Ser Ala Val Pro Ser
340 345 350
Val Ile Phe Thr Phe Pro Glu Val Ala Ser Val Gly Leu Ser Pro Thr
355 360 365
Ala Ala Gln Gln Gln Lys Ile Pro Val Lys Val Thr Lys Phe Pro Phe
370 375 380
Arg Ala Ile Gly Lys Ala Val Ala Met Gly Glu Ala Asp Gly Phe Ala
385 390 395 400
Ala Ile Ile Ser His Glu Thr Thr Gln Gln Ile Leu Gly Ala Tyr Val
405 410 415
Ile Gly Pro His Ala Ser Ser Leu Ile Ser Glu Ile Thr Leu Ala Val
420 425 430
Arg Asn Glu Leu Thr Leu Pro Cys Ile Tyr Glu Thr Ile His Ala His
435 440 445
Pro Thr Leu Ala Glu Val Trp Ala Glu Ser Ala Leu Leu Ala Val Asp
450 455 460
Thr Pro Leu His Met Pro Pro Ala Lys Lys
465 470




91


129


PRT


Chlamydia



91
Met His His His His His His Met Pro Arg Ile Ile Gly Ile Asp Ile
5 10 15
Pro Ala Lys Lys Lys Leu Lys Ile Ser Leu Thr Tyr Ile Tyr Gly Ile
20 25 30
Gly Ser Ala Arg Ser Asp Glu Ile Ile Lys Lys Leu Lys Leu Asp Pro
35 40 45
Glu Ala Arg Ala Ser Glu Leu Thr Glu Glu Glu Val Gly Arg Leu Asn
50 55 60
Ser Leu Leu Gln Ser Glu Tyr Thr Val Glu Gly Asp Leu Arg Arg Arg
65 70 75 80
Val Gln Ser Asp Ile Lys Arg Leu Ile Ala Ile His Ser Tyr Arg Gly
85 90 95
Gln Arg His Arg Leu Ser Leu Pro Val Arg Gly Gln Arg Thr Lys Thr
100 105 110
Asn Ser Arg Thr Arg Lys Gly Lys Arg Lys Thr Val Ala Gly Lys Lys
115 120 125
Lys




92


202


PRT


Chlamydia



92
Met His His His His His His Met Gly Ser Leu Val Gly Arg Gln Ala
5 10 15
Pro Asp Phe Ser Gly Lys Ala Val Val Cys Gly Glu Glu Lys Glu Ile
20 25 30
Ser Leu Ala Asp Phe Arg Gly Lys Tyr Val Val Leu Phe Phe Tyr Pro
35 40 45
Lys Asp Phe Thr Tyr Val Cys Pro Thr Glu Leu His Ala Phe Gln Asp
50 55 60
Arg Leu Val Asp Phe Glu Glu His Gly Ala Val Val Leu Gly Cys Ser
65 70 75 80
Val Asp Asp Ile Glu Thr His Ser Arg Trp Leu Thr Val Ala Arg Asp
85 90 95
Ala Gly Gly Ile Glu Gly Thr Glu Tyr Pro Leu Leu Ala Asp Pro Ser
100 105 110
Phe Lys Ile Ser Glu Ala Phe Gly Val Leu Asn Pro Glu Gly Ser Leu
115 120 125
Ala Leu Arg Ala Thr Phe Leu Ile Asp Lys His Gly Val Ile Arg His
130 135 140
Ala Val Ile Asn Asp Leu Pro Leu Gly Arg Ser Ile Asp Glu Glu Leu
145 150 155 160
Arg Ile Leu Asp Ser Leu Ile Phe Phe Glu Asn His Gly Met Val Cys
165 170 175
Pro Ala Asn Trp Arg Ser Gly Glu Arg Gly Met Val Pro Ser Glu Glu
180 185 190
Gly Leu Lys Glu Tyr Phe Gln Thr Met Asp
195 200




93


19


PRT


Artificial Sequence




made in a lab





93
Glu Asn Ser Leu Gln Asp Pro Thr Asn Lys Arg Asn Ile Asn Pro Asp
1 5 10 15
Asp Lys Leu




94


20


PRT


Artificial Sequence




Made in a lab





94
Asp Pro Thr Asn Lys Arg Asn Ile Asn Pro Asp Asp Lys Leu Ala Lys
1 5 10 15
Val Phe Gly Thr
20




95


20


PRT


Artificial Sequence




Made in a lab





95
Lys Arg Asn Ile Asn Pro Asp Asp Lys Leu Ala Lys Val Phe Gly Thr
1 5 10 15
Glu Lys Pro Ile
20




96


20


PRT


Artificial Sequence




Made in a lab





96
Asp Asp Lys Leu Ala Lys Val Phe Gly Thr Glu Lys Pro Ile Asp Met
1 5 10 15
Phe Gln Met Thr
20




97


20


PRT


Artificial Sequence




Made in a lab





97
Lys Val Phe Gly Thr Glu Lys Pro Ile Asp Met Phe Gln Met Thr Lys
1 5 10 15
Met Val Ser Gln
20




98


20


PRT


Artificial Sequence




Made in a lab





98
Asn Lys Arg Asn Ile Asn Pro Asp Asp Lys Leu Ala Lys Val Phe Gly
1 5 10 15
Thr Glu Lys Pro
20




99


16


PRT


Artificial Sequence




Made in a lab





99
Asn Lys Arg Asn Ile Leu Pro Asp Ala Asn Leu Ala Lys Val Phe Gly
1 5 10 15




100


15


PRT


Artificial Sequence




Made in a lab





100
Lys Met Trp Asp Tyr Ile Lys Glu Asn Ser Leu Gln Asp Pro Thr
1 5 10 15




101


20


PRT


Artificial Sequence




Made in a lab





101
Thr Glu Ile Val Lys Lys Val Trp Glu Tyr Ile Lys Lys His Asn Cys
1 5 10 15
Gln Asp Gln Lys
20




102


20


PRT


Artificial Sequence




Made in a lab





102
Lys Val Trp Glu Tyr Ile Lys Lys His Asn Cys Gln Asp Gln Lys Asn
1 5 10 15
Lys Arg Asn Ile
20




103


15


PRT


Artificial Sequence




Made in a lab





103
Lys Val Trp Glu Tyr Ile Lys Lys His Asn Cys Gln Asp Gln Lys
1 5 10 15




104


20


PRT


Artificial Sequence




Made in a lab





104
Ala Glu Leu Thr Glu Glu Glu Val Gly Arg Leu Asn Ala Leu Leu Gln
1 5 10 15
Ser Asp Tyr Val
20




105


21


PRT


Artificial Sequence




Made in a lab





105
Leu Gln Ser Asp Tyr Val Val Glu Gly Asp Leu Arg Arg Arg Val Gln
1 5 10 15
Ser Asp Ile Lys Arg
20




106


20


PRT


Artificial Sequence




Made in a lab





106
Met Pro Arg Ile Ile Gly Ile Asp Ile Pro Ala Lys Lys Lys Leu Lys
1 5 10 15
Ile Ser Leu Thr
20




107


20


PRT


Artificial Sequence




Made in a lab





107
Ala Glu Leu Thr Glu Glu Glu Val Gly Arg Leu Asn Ala Leu Leu Gln
1 5 10 15
Ser Asp Tyr Val
20




108


20


PRT


Artificial Sequence




Made in a lab





108
Leu Asn Ala Leu Leu Gln Ser Asp Tyr Val Val Glu Gly Asp Leu Arg
1 5 10 15
Arg Arg Val Gln
20




109


20


PRT


Artificial Sequence




Made in a lab





109
Leu Asn Ser Leu Leu Gln Ser Glu Tyr Thr Val Glu Gly Asp Leu Arg
1 5 10 15
Arg Arg Val Gln
20




110


1461


DNA


Chlamydia



110
ctatctatga agttatgaat atggatctag aaacacgaag atcttttgcg gtacagcaag 60
ggcactatca ggacccaaga gcttcagatt atgacctccc acgtgctagc gactatgatt 120
tgcctagaag cccatatcct actccacctt tgccttctag atatcagcta cagaatatgg 180
atgtagaagc agggttccgt gaggcagttt atgcttcttt tgtagcagga atgtacaatt 240
atgtagtgac acagccgcaa gagcgtattc ccaatagtca gcaggtggaa gggattctgc 300
gtgatatgct taccaacggg tcacagacat ttagcaacct gatgcagcgt tgggatagag 360
aagtcgatag ggaataaact ggtatctacc ataggtttgt atcaaaaaac taagcccacc 420
aagaagaaat tctctttggt gggcttcttt ttttattcaa aaaagaaagc cctcttcaag 480
attatctcgt gccgctcgtg ccgaattcgg cacgagcggc acgaggagct gtaagtaagt 540
attgccaaga gttggaagaa aaaatattag atttgtgtaa gcgtcatgcc gcaacaattt 600
gctccattga ggaggatgct aaacaagaaa ttcgtcatca gacagaaagg tttaaacagc 660
ggttgcaaca aaatcagaac acttgcagtc aattaacagc agagttgtgt aaattgagat 720
ctgagaataa ggcattatcg gagcggctgc aggtgcaggc atcccgtcgt aaaaaataat 780
taaagactcc tcagatattg catctgagag ttaggggttc cttttgctta cggcgcttta 840
gttctgcatg ttgcggattt atagtgattt gcgagtaaag cgccgttctg atacagtttt 900
tccgctttaa aaataaaaag gtggaaaaat gagtactact attagcggag acgcttcttc 960
tttaccgttg ccaacagctt cctgcgtaga gacaaaatct acttcgtctt caacaaaagg 1020
gaatacttgt tccaaaattt tggatatagc tttagctatc gtaggcgctt tagttgttgt 1080
cgctggggta ttagctttgg ttttgtgcgc tagcaatgtc atatttactg taataggtat 1140
tcctgcatta attattggat ctgcttgtgt gggtgcggga atatctcgtc ttatgtatcg 1200
atcctcttat gctagcttag aagcaaaaaa tgttttggct gagcaacgtt tgcgtaatct 1260
ttcagaagag aaggacgctt tggcctccgt ctctttcatt aataagatgt ttctgcgagg 1320
tcttacggac gatctccaag ctttggaagc taaggtaatg gaatttgaga ttgattgttt 1380
ggacagatta gagaaaaatg agcaagcttt attgtccgat gtgcgcttag ttttatctag 1440
ctacacaaga tggttggata g 1461




111


267


DNA


Chlamydia



111
gtcctcttct tattatagca gaagacattg aaggcgaagc tttagctact ttggtcgtga 60
acagaattcg tggaggattc cgggtttgcg cagttaaagc tccaggcttt ggagatagaa 120
gaaaagctat gttggaagac atcgctatct taactggcgg tcaactcatt agcgaagagt 180
tgggcatgaa attagaaaac gctaacttag ctatgttagg taaagctaaa aaagttatcg 240
tttctaaaga agacacgacc atcgtcg 267




112


698


DNA


Chlamydia



112
tgataagcaa gcaaccgctc aactagcagc tctaactatt aaaaaaatcc tctgttttga 60
tgaaaattcc tacgagaagg agctggcatg cttagaaaag aaacgcagta gcgtacaaaa 120
agatctgagc caactgaaaa aatacacagt tctctacatc aagaagctgc tcgaaaccta 180
cagacaactc gggcatcgaa agacaaaaat tgcaaaattt gatgacctac ctaccgagag 240
agtctccgct cataagaaag caaaagaact cgctgcgctc gatcaagaag agaacttcta 300
aaacgtgact cggcccttga gatccttaaa ctctcgggcc aaaaagacta cagtcttctc 360
gagaagaaaa acggtgttag aaaatacgcg cgctaagact ttctctaaca atgactcaaa 420
aagctgtaaa cgtatacgtt taccgctctt ccataatttc taggctgact ttcacattat 480
ctcgacttgc tacggaaacc aataaagtac ggatagcctt aatagtgcgt ccttctttac 540
cgataatttt accgatatct cccttagcaa cagtcaattc gtagataatc gtattggttc 600
cctgcacctc tttcagatgc acttcctctg gcttatcaac aagatttttt acaatgtacg 660
ctaaaaactc tttcatgcga agcaaatcct acacaagc 698




113


1142


DNA


Chlamydia



113
ctcttcaaag attgtgagtt tatgtgaagg cgctgtcgct gatgcaagaa tgtgcaaagc 60
agagttgata aaaaaagaag cggatgctta tttgttttgt gagaaaagcg ggatatatct 120
aacgaaaaaa gaaggtattt tgattccttc tgcagggatt gatgaatcga atacggacca 180
gccttttgtt ttatatccta aagatatttt gggatcgtgt aatcgcatcg gagaatggtt 240
aagaaattat tttcgagtga aagagctagg cgtaatcatt acagatagcc atactactcc 300
aatgcggcgt ggagtactgg gtatcgggct gtgttggtat ggattttctc cattacacaa 360
ctatatagga tcgctagatt gtttcggtcg tcccttacag atgacgcaaa gtaatcttgt 420
agatgcctta gcagttgcgg ctgttgtttg tatgggagag gggaatgagc aaacaccgtt 480
agcggtgata gagcaggcac ctaatatggt ctaccattca tatcctactt ctcgagaaga 540
gtattgttct ttgcgcatag atgaaacaga ggacttatac ggaccttttt tgcaagcggt 600
tacgtggagt caagaaaaga aatgatggag gtgtttatga attttttaga tcagttagat 660
ttaattattc aaaataagca tatgctagaa cacacgtttt atgtgaaatg gtcgaagggg 720
gagcttacta aagagcaatt acaggcgtat gccaaagact attatttaca tatcaaagcc 780
tttcctaaat atttatctgc gattcatagt cgttgcgatg atttagaggc gcgtaagtta 840
ttgttagata acttgatgga tgaagagaac ggttacccta atcatattga tttgtggaag 900
cagtttgtgt ttgctctagg agttactcca gaagagttag aggctcatga gcctagtgaa 960
gcagcaaaag cgaaagtagc tactttcatg cggtggtgta caggagattc tttagctgca 1020
ggagtggctg ctttgtattc ttatgagagt caaattccac gtatcgctag agagaaaatt 1080
cgtggattga ctgagtactt tggattttcc aatcctgaag actatgcata tttcacagaa 1140
ca 1142




114


976


DNA


Chlamydia



114
aggtggatgg ggcgcctgtc caagatgtgc tcgctactct atatggaagc aatcacaaag 60
ggactgcagc tgaagagtcg gctgctttaa gaacactatt ttctcgcatg gcctctttag 120
ggcacaaagt accttctggg cgcactactt taaagattcg tcgtcctttt ggtactacga 180
gagaagttcg tgtgaaatgg cgttatgttc ctgaaggtgt aggagatttg gctaccatag 240
ctccttctat cagggctcca cagttacaga aatcgatgag aagctttttc cctaagaaag 300
atgatgcgtt tcatcggtct agttcgctat tctactctcc aatggttccg catttttggg 360
cagagcttcg caatcattat gcaacgagtg gtttgaaaag cgggtacaat attgggagta 420
ccgatgggtt tctccctgtc attgggcctg ttatatggga gtcggagggt cttttccgcg 480
cttatatttc ttcggtgact gatggggatg gtaagagcca taaagtagga tttctaagaa 540
ttcctacata tagttggcag gacatggaag attttgatcc ttcaggaccg cctccttggg 600
aagaatttgc taagattatt caagtatttt cttctaatac agaagctttg attatcgacc 660
aaacgaacaa cccaggtggt agtgtccttt atctttatgc actgctttcc atgttgacag 720
accgtccttt agaacttcct aaacatagaa tgattctgac tcaggatgaa gtggttgatg 780
ctttagattg gttaaccctg ttggaaaacg tagacacaaa cgtggagtct cgccttgctc 840
tgggagacaa catggaagga tatactgtgg atctacaggt tgccgagtat ttaaaaagct 900
ttggacgtca agtattgaat tgttggagta aaggggatat cgagttatca acacctattc 960
ctctttttgg ttttga 976




115


995


DNA


Chlamydia



115
ttatcctaga aatttggtgt tcaatatgag cgaaaaaaga aagtctaaca aaattattgg 60
tatcgaccta gggacgacca actcttgcgt ctctgttatg gaaggtggcc aacctaaagt 120
tattgcctct tctgaaggaa ctcgtactac tccttctatc gttgctttta aaggtggcga 180
aactcttgtt ggaattcctg caaaacgtca ggcagtaacc aatcctgaaa aaacattggc 240
ttctactaag cgattcatcg gtagaaaatt ctctgaagtc gaatctgaaa ttaaaacagt 300
cccctacaaa gttgctccta actcgaaagg agatgcggtc tttgatgtgg aacaaaaact 360
gtacactcca gaagaaatcg gcgctcagat cctcatgaag atgaaggaaa ctgctgaggc 420
ttatctcgga gaaacagtaa cggaagcagt cattaccgta ccagcttact ttaacgattc 480
tcaaagagct tctacaaaag atgctggacg tatcgcagga ttagatgtta aacgcattat 540
tcctgaacca acagcggccg ctcttgctta tggtattgat aaggaaggag ataaaaaaat 600
cgccgtcttc gacttaggag gaggaacttt cgatatttct atcttggaaa tcggtgacgg 660
agtttttgaa gttctctcaa ccaacgggga tactcacttg ggaggagacg acttcgacgg 720
agtcatcatc aactggatgc ttgatgaatt caaaaaacaa gaaggcattg atctaagcaa 780
agataacatg gctttgcaaa gattgaaaga tgctgctgaa aaagcaaaaa tagaattgtc 840
tggtgtatcg tctactgaaa tcaatcagcc attcatcact atcgacgcta atggacctaa 900
acatttggct ttaactctaa ctcgcgctca attcgaacac ctagcttcct ctctcattga 960
gcgaaccaaa caaccttgtg ctcaggcttt aaaag 995




116


437


DNA


Chlamydia



116
gtcacagcta aaggcggtgg gctttatact gataagaatc tttcgattac taacatcaca 60
ggaattatcg aaattgcaaa taacaaagcg acagatgttg gaggtggtgc ttacgtaaaa 120
ggaaccctta cttgtaaaaa ctctcaccgt ctacaatttt tgaaaaactc ttccgataaa 180
caaggtggag gaatctacgg agaagacaac atcaccctat ctaatttgac agggaagact 240
ctattccaag agaatactgc caaaaaagag ggcggtggac tcttcataaa aggtacagat 300
aaagctctta caatgacagg actggatagt ttctgtttaa ttaataacac atcagaaaaa 360
catggtggtg gagcctttgt taccaaagaa atctctcaga cttacacctc tgatgtggaa 420
acaattccag gaatcac 437




117


446


DNA


Chlamydia



117
aagtttacct agaccaaact gaagatgacg aaggaaaagt tgttttatcc agagaaaaag 60
caacaagaca acgacaatgg gaatacattc ttgctcactg cgaggaaggt tctattgtta 120
agggacaaat tacccgaaaa gttaagggtg gtttgatcgt agatattggt atggaagcct 180
tccttccagg atcccaaata gacaataaga agatcaagaa cttagatgat tacgtaggca 240
aggtttgtga gttcaaaatt ctcaaaatca acgtggatcg tcggaacgtt gttgtatcta 300
gaagagaact tctcgaagct gaacgcattt ctaagaaagc agagttgatc gagcaaatca 360
ctatcggtga acgtcgcaaa ggtatcgtta agaatatcac agatttcgga gtattcttgg 420
atcttgatgg cattgacggc ctactc 446




118


951


DNA


Chlamydia



118
agtattgcga aatattactg tgagaagcaa tgctgagagc ggttctagta aaagtgaggg 60
gagagctgtc agaagggatc gctcaggaag cgagacaacg tgtggctgat ttattaggaa 120
gattccctct ttatcctgaa atcgatctgg aaacgctagt ttagtgggag actctatgcc 180
tgaaggggaa atgatgcata agttgcaaga tgtcatagat agaaagttgt tggattctcg 240
tcgtattttc ttctccgaac ctgtaacgga gaaaagtgct gcagaagcca tcaaaaagct 300
ttggtatttg gaactcacca atcctgggca gccaattgta tttgtcatta atagccctgg 360
agggtctgtt gatgctgggt ttgctgtttg ggaccaaatt aaaatgatct cttctccttt 420
gactacagtt gttacaggtt tagcagcatc tatgggatct gtattgagtt tgtgtgctgt 480
tccaggaaga cgttttgcta cgcctcatgc gcgcattatg attcaccagc cttctattgg 540
aggaaccatt actggtcaag ccacggactt ggatattcat gctcgtgaaa ttttaaaaac 600
aaaagcacgc attattgatg tgtatgtcga ggcaactgga caatctccag aggtgataga 660
gaaagctatc gatcgagata tgtggatgag tgcaaatgaa gcaatggagt ttggactgtt 720
agatgggatt ctcttctctt ttaacgactt gtagatatct tttatattct ggagcaggaa 780
acagtttcat tttgggagaa tcgatgcctt ctcttgagga tgttctgttt ttatgccagg 840
aagagatggt tgatgggttt ttatgtgtag agtcttctga aatagcagat gctaaactca 900
ctgtttttaa tagtgatgga tctatcgcgt ctatgtgcgg gaatgggttg c 951




119


953


DNA


Chlamydia



119
atatcaaagt tgggcaaatg acagagccgc tcaaggacca gcaaataatc cttgggacaa 60
catcaacacc tgtcgcagcc aaaatgacag cttctgatgg aatatcttta acagtctcca 120
ataatccatc aaccaatgct tctattacaa ttggtttgga tgcggaaaaa gcttaccagc 180
ttattctaga aaagttggga gatcaaattc ttggtggaat tgctgatact attgttgata 240
gtacagtcca agatatttta gacaaaatca caacagaccc ttctctaggt ttgttgaaag 300
cttttaacaa ctttccaatc actaataaaa ttcaatgcaa cgggttattc actcccagga 360
acattgaaac tttattagga ggaactgaaa taggaaaatt cacagtcaca cccaaaagct 420
ctgggagcat gttcttagtc tcagcagata ttattgcatc aagaatggaa ggcggcgttg 480
ttctagcttt ggtacgagaa ggtgattcta agccctacgc gattagttat ggatactcat 540
caggcgttcc taatttatgt agtctaagaa ccagaattat taatacagga ttgactccga 600
caacgtattc attacgtgta ggcggtttag aaagcggtgt ggtatgggtt aatgcccttt 660
ctaatggcaa tgatatttta ggaataacaa atacttctaa tgtatctttt ttggaggtaa 720
tacctcaaac aaacgcttaa acaattttta ttggattttt cttataggtt ttatatttag 780
agaaaaaagt tcgaattacg gggtttgtta tgcaaaataa aagcaaagtg agggacgatt 840
ttattaaaat tgttaaagat tcctggtatc ggtctgcgat tccgactcgt ccaacatcaa 900
tacaacctat taatttcccc tcgtcaaaaa taaggttatc aagtgagaaa tca 953




120


897


DNA


Chlamydia



120
atggcttcta tatgcggacg tttagggtct ggtacaggga atgctctaaa agcttttttt 60
acacagccca gcaataaaat ggcaagggta gtaaataaga cgaagggaat ggataagact 120
gttaaggtcg ccaagtctgc tgccgaattg accgcaaata ttttggaaca agctggaggc 180
gcgggctctt ccgcacacat tacagcttcc caagtgtcca aaggattagg ggatgcgaga 240
actgttctcg ctttagggaa tgcctttaac ggagcgttgc caggaacagt tcaaagtgcg 300
caaagcttct tctcttacat gaaagctgct agtcagaaac cgcaagaagg ggatgagggg 360
ctcgtagcag atctttgtgt gtctcataag cgcanagcgg ctgcggctgt ctgtagcttc 420
atcggaggaa ttacctacct cgcgacattc ggagctatcc gtccgattct gtttgtcaac 480
aaaatgctgg cgcaaccgtt tctttcttcc caaattaaag caaatatggg atcttctgtt 540
agctatatta tggcggctaa ccatgcagcg tttgtggtgg gttctggact cgctatcagt 600
gcggaaagag cagattgcga agcccgctgc gctcgtattg cgagagaaga gtcgtcactc 660
gaattgtcgg gagaggaaaa tgcttgcgag aggagagtcg ctggagagaa agccaagacg 720
ttcacgcgca tcaagtatgc actcctcact atgctcgaga agtttttgga atgcgttgcc 780
gacgttttca aattggtgcc gttgcctatt acaatgggta ttcgtgcaat tgtggctgcg 840
ggatgtacgt tcacttctgc agttattgga ttgtggactt tctgcgccag agcataa 897




121


298


PRT


Chlamydia



121
Met Ala Ser Ile Cys Gly Arg Leu Gly Ser Gly Thr Gly Asn Ala Leu
1 5 10 15
Lys Ala Phe Phe Thr Gln Pro Ser Asn Lys Met Ala Arg Val Val Asn
20 25 30
Lys Thr Lys Gly Met Asp Lys Thr Val Lys Val Ala Lys Ser Ala Ala
35 40 45
Glu Leu Thr Ala Asn Ile Leu Glu Gln Ala Gly Gly Ala Gly Ser Ser
50 55 60
Ala His Ile Thr Ala Ser Gln Val Ser Lys Gly Leu Gly Asp Ala Arg
65 70 75 80
Thr Val Leu Ala Leu Gly Asn Ala Phe Asn Gly Ala Leu Pro Gly Thr
85 90 95
Val Gln Ser Ala Gln Ser Phe Phe Ser Tyr Met Lys Ala Ala Ser Gln
100 105 110
Lys Pro Gln Glu Gly Asp Glu Gly Leu Val Ala Asp Leu Cys Val Ser
115 120 125
His Lys Arg Arg Ala Ala Ala Ala Val Cys Ser Phe Ile Gly Gly Ile
130 135 140
Thr Tyr Leu Ala Thr Phe Gly Ala Ile Arg Pro Ile Leu Phe Val Asn
145 150 155 160
Lys Met Leu Ala Gln Pro Phe Leu Ser Ser Gln Ile Lys Ala Asn Met
165 170 175
Gly Ser Ser Val Ser Tyr Ile Met Ala Ala Asn His Ala Ala Phe Val
180 185 190
Val Gly Ser Gly Leu Ala Ile Ser Ala Glu Arg Ala Asp Cys Glu Ala
195 200 205
Arg Cys Ala Arg Ile Ala Arg Glu Glu Ser Ser Leu Glu Leu Ser Gly
210 215 220
Glu Glu Asn Ala Cys Glu Arg Arg Val Ala Gly Glu Lys Ala Lys Thr
225 230 235 240
Phe Thr Arg Ile Lys Tyr Ala Leu Leu Thr Met Leu Glu Lys Phe Leu
245 250 255
Glu Cys Val Ala Asp Val Phe Lys Leu Val Pro Leu Pro Ile Thr Met
260 265 270
Gly Ile Arg Ala Ile Val Ala Ala Gly Cys Thr Phe Thr Ser Ala Val
275 280 285
Ile Gly Leu Trp Thr Phe Cys Ala Arg Ala
290 295




122


897


DNA


Chlamydia



122
atggcttcta tatgcggacg tttagggtct ggtacaggga atgctctaaa agcttttttt 60
acacagccca gcaataaaat ggcaagggta gtaaataaga cgaagggaat ggataagact 120
gttaaggtcg ccaagtctgc tgccgaattg accgcaaata ttttggaaca agctggaggc 180
gcgggctctt ccgcacacat tacagcttcc caagtgtcca aaggattagg ggatacgaga 240
actgttgtcg ctttagggaa tgcctttaac ggagcgttgc caggaacagt tcaaagtgcg 300
caaagcttct tctctcacat gaaagctgct agtcagaaaa cgcaagaagg ggatgagggg 360
ctcacagcag atctttgtgt gtctcataag cgcagagcgg ctgcggctgt ctgtggcttc 420
atcggaggaa ttacctacct cgcgacattc ggagttatcc gtccgattct gtttgtcaac 480
aaaatgctgg tgaacccgtt tctttcttcc caaactaaag caaatatggg atcttctgtt 540
agctatatta tggcggctaa ccatgcagcg tctgtggtgg gtgctggact cgctatcagt 600
gcggaaagag cagattgcga agcccgctgc gctcgtattg cgagagaaga gtcgttactc 660
gaagtgtcgg gagaggaaaa tgcttgcgag aagagagtcg ctggagagaa agccaagacg 720
ttcacgcgca tcaagtatgc actcctcact atgctcgaga agtttttgga atgcgttgcc 780
gacgttttca aattggtgcc gctgcctatt acaatgggta ttcgtgcgat tgtggctgct 840
ggatgtacgt tcacttctgc aattattgga ttgtgcactt tctgcgccag agcataa 897




123


298


PRT


Chlamydia



123
Met Ala Ser Ile Cys Gly Arg Leu Gly Ser Gly Thr Gly Asn Ala Leu
1 5 10 15
Lys Ala Phe Phe Thr Gln Pro Ser Asn Lys Met Ala Arg Val Val Asn
20 25 30
Lys Thr Lys Gly Met Asp Lys Thr Val Lys Val Ala Lys Ser Ala Ala
35 40 45
Glu Leu Thr Ala Asn Ile Leu Glu Gln Ala Gly Gly Ala Gly Ser Ser
50 55 60
Ala His Ile Thr Ala Ser Gln Val Ser Lys Gly Leu Gly Asp Thr Arg
65 70 75 80
Thr Val Val Ala Leu Gly Asn Ala Phe Asn Gly Ala Leu Pro Gly Thr
85 90 95
Val Gln Ser Ala Gln Ser Phe Phe Ser His Met Lys Ala Ala Ser Gln
100 105 110
Lys Thr Gln Glu Gly Asp Glu Gly Leu Thr Ala Asp Leu Cys Val Ser
115 120 125
His Lys Arg Arg Ala Ala Ala Ala Val Cys Gly Phe Ile Gly Gly Ile
130 135 140
Thr Tyr Leu Ala Thr Phe Gly Val Ile Arg Pro Ile Leu Phe Val Asn
145 150 155 160
Lys Met Leu Val Asn Pro Phe Leu Ser Ser Gln Thr Lys Ala Asn Met
165 170 175
Gly Ser Ser Val Ser Tyr Ile Met Ala Ala Asn His Ala Ala Ser Val
180 185 190
Val Gly Ala Gly Leu Ala Ile Ser Ala Glu Arg Ala Asp Cys Glu Ala
195 200 205
Arg Cys Ala Arg Ile Ala Arg Glu Glu Ser Leu Leu Glu Val Ser Gly
210 215 220
Glu Glu Asn Ala Cys Glu Lys Arg Val Ala Gly Glu Lys Ala Lys Thr
225 230 235 240
Phe Thr Arg Ile Lys Tyr Ala Leu Leu Thr Met Leu Glu Lys Phe Leu
245 250 255
Glu Cys Val Ala Asp Val Phe Lys Leu Val Pro Leu Pro Ile Thr Met
260 265 270
Gly Ile Arg Ala Ile Val Ala Ala Gly Cys Thr Phe Thr Ser Ala Ile
275 280 285
Ile Gly Leu Cys Thr Phe Cys Ala Arg Ala
290 295




124


897


DNA


Chlamydia



124
atggcttcta tatgcggacg tttagggtct ggtacaggga atgctctaaa agcttttttt 60
acacagccca acaataaaat ggcaagggta gtaaataaga cgaagggaat ggataagact 120
attaaggttg ccaagtctgc tgccgaattg accgcaaata ttttggaaca agctggaggc 180
gcgggctctt ccgcacacat tacagcttcc caagtgtcca aaggattagg ggatgcgaga 240
actgttgtcg ctttagggaa tgcctttaac ggagcgttgc caggaacagt tcaaagtgcg 300
caaagcttct tctctcacat gaaagctgct agtcagaaaa cgcaagaagg ggatgagggg 360
ctcacagcag atctttgtgt gtctcataag cgcagagcgg ctgcggctgt ctgtagcatc 420
atcggaggaa ttacctacct cgcgacattc ggagctatcc gtccgattct gtttgtcaac 480
aaaatgctgg caaaaccgtt tctttcttcc caaactaaag caaatatggg atcttctgtt 540
agctatatta tggcggctaa ccatgcagcg tctgtggtgg gtgctggact cgctatcagt 600
gcggaaagag cagattgcga agcccgctgc gctcgtattg cgagagaaga gtcgttactc 660
gaagtgccgg gagaggaaaa tgcttgcgag aagaaagtcg ctggagagaa agccaagacg 720
ttcacgcgca tcaagtatgc actcctcact atgctcgaga agtttttgga atgcgttgcc 780
gacgttttca aattggtgcc gctgcctatt acaatgggta ttcgtgcgat tgtggctgct 840
ggatgtacgt tcacttctgc aattattgga ttgtgcactt tctgcgccag agcataa 897




125


298


PRT


Chlamydia



125
Met Ala Ser Ile Cys Gly Arg Leu Gly Ser Gly Thr Gly Asn Ala Leu
1 5 10 15
Lys Ala Phe Phe Thr Gln Pro Asn Asn Lys Met Ala Arg Val Val Asn
20 25 30
Lys Thr Lys Gly Met Asp Lys Thr Ile Lys Val Ala Lys Ser Ala Ala
35 40 45
Glu Leu Thr Ala Asn Ile Leu Glu Gln Ala Gly Gly Ala Gly Ser Ser
50 55 60
Ala His Ile Thr Ala Ser Gln Val Ser Lys Gly Leu Gly Asp Ala Arg
65 70 75 80
Thr Val Val Ala Leu Gly Asn Ala Phe Asn Gly Ala Leu Pro Gly Thr
85 90 95
Val Gln Ser Ala Gln Ser Phe Phe Ser His Met Lys Ala Ala Ser Gln
100 105 110
Lys Thr Gln Glu Gly Asp Glu Gly Leu Thr Ala Asp Leu Cys Val Ser
115 120 125
His Lys Arg Arg Ala Ala Ala Ala Val Cys Ser Ile Ile Gly Gly Ile
130 135 140
Thr Tyr Leu Ala Thr Phe Gly Ala Ile Arg Pro Ile Leu Phe Val Asn
145 150 155 160
Lys Met Leu Ala Lys Pro Phe Leu Ser Ser Gln Thr Lys Ala Asn Met
165 170 175
Gly Ser Ser Val Ser Tyr Ile Met Ala Ala Asn His Ala Ala Ser Val
180 185 190
Val Gly Ala Gly Leu Ala Ile Ser Ala Glu Arg Ala Asp Cys Glu Ala
195 200 205
Arg Cys Ala Arg Ile Ala Arg Glu Glu Ser Leu Leu Glu Val Pro Gly
210 215 220
Glu Glu Asn Ala Cys Glu Lys Lys Val Ala Gly Glu Lys Ala Lys Thr
225 230 235 240
Phe Thr Arg Ile Lys Tyr Ala Leu Leu Thr Met Leu Glu Lys Phe Leu
245 250 255
Glu Cys Val Ala Asp Val Phe Lys Leu Val Pro Leu Pro Ile Thr Met
260 265 270
Gly Ile Arg Ala Ile Val Ala Ala Gly Cys Thr Phe Thr Ser Ala Ile
275 280 285
Ile Gly Leu Cys Thr Phe Cys Ala Arg Ala
290 295




126


897


DNA


Chlamydia



126
atggcttcta tatgcggacg tttagggtct ggtacaggga atgctctaaa agcttttttt 60
acacagccca acaataaaat ggcaagggta gtaaataaga cgaagggaat ggataagact 120
attaaggttg ccaagtctgc tgccgaattg accgcaaata ttttggaaca agctggaggc 180
gcgggctctt ccgcacacat tacagcttcc caagtgtcca aaggattagg ggatgcgaga 240
actgttgtcg ctttagggaa tgcctttaac ggagcgttgc caggaacagt tcaaagtgcg 300
caaagcttct tctctcacat gaaagctgct agtcagaaaa cgcaagaagg ggatgagggg 360
ctcacagcag atctttgtgt gtctcataag cgcagagcgg ctgcggctgt ctgtagcatc 420
atcggaggaa ttacctacct cgcgacattc ggagctatcc gtccgattct gtttgtcaac 480
aaaatgctgg caaaaccgtt tctttcttcc caaactaaag caaatatggg atcttctgtt 540
agctatatta tggcggctaa ccatgcagcg tctgtggtgg gtgctggact cgctatcagt 600
gcggaaagag cagattgcga agcccgctgc gctcgtattg cgagagaaga gtcgttactc 660
gaagtgccgg gagaggaaaa tgcttgcgag aagaaagtcg ctggagagaa agccaagacg 720
ttcacgcgca tcaagtatgc actcctcact atgctcgaga agtttttgga atgcgttgcc 780
gacgttttca aattggtgcc gctgcctatt acaatgggta ttcgtgcgat tgtggctgct 840
ggatgtacgt tcacttctgc aattattgga ttgtgcactt tctgcgccag agcataa 897




127


298


PRT


Chlamydia



127
Met Ala Ser Ile Cys Gly Arg Leu Gly Ser Gly Thr Gly Asn Ala Leu
1 5 10 15
Lys Ala Phe Phe Thr Gln Pro Asn Asn Lys Met Ala Arg Val Val Asn
20 25 30
Lys Thr Lys Gly Met Asp Lys Thr Ile Lys Val Ala Lys Ser Ala Ala
35 40 45
Glu Leu Thr Ala Asn Ile Leu Glu Gln Ala Gly Gly Ala Gly Ser Ser
50 55 60
Ala His Ile Thr Ala Ser Gln Val Ser Lys Gly Leu Gly Asp Ala Arg
65 70 75 80
Thr Val Val Ala Leu Gly Asn Ala Phe Asn Gly Ala Leu Pro Gly Thr
85 90 95
Val Gln Ser Ala Gln Ser Phe Phe Ser His Met Lys Ala Ala Ser Gln
100 105 110
Lys Thr Gln Glu Gly Asp Glu Gly Leu Thr Ala Asp Leu Cys Val Ser
115 120 125
His Lys Arg Arg Ala Ala Ala Ala Val Cys Ser Ile Ile Gly Gly Ile
130 135 140
Thr Tyr Leu Ala Thr Phe Gly Ala Ile Arg Pro Ile Leu Phe Val Asn
145 150 155 160
Lys Met Leu Ala Lys Pro Phe Leu Ser Ser Gln Thr Lys Ala Asn Met
165 170 175
Gly Ser Ser Val Ser Tyr Ile Met Ala Ala Asn His Ala Ala Ser Val
180 185 190
Val Gly Ala Gly Leu Ala Ile Ser Ala Glu Arg Ala Asp Cys Glu Ala
195 200 205
Arg Cys Ala Arg Ile Ala Arg Glu Glu Ser Leu Leu Glu Val Pro Gly
210 215 220
Glu Glu Asn Ala Cys Glu Lys Lys Val Ala Gly Glu Lys Ala Lys Thr
225 230 235 240
Phe Thr Arg Ile Lys Tyr Ala Leu Leu Thr Met Leu Glu Lys Phe Leu
245 250 255
Glu Cys Val Ala Asp Val Phe Lys Leu Val Pro Leu Pro Ile Thr Met
260 265 270
Gly Ile Arg Ala Ile Val Ala Ala Gly Cys Thr Phe Thr Ser Ala Ile
275 280 285
Ile Gly Leu Cys Thr Phe Cys Ala Arg Ala
290 295




128


897


DNA


Chlamydia



128
atggcttcta tatgtggacg tttagggtct ggtacaggga atgctctaaa agcttttttt 60
acacagccca gcaataaaat ggcaagggta gtaaataaga cgaagggaat ggataagact 120
gttaaggtcg ccaagtctgc tgccgaattg accgcaaata ttttggaaca agctggaggc 180
gcgggctctt ccgcacacat tacagcttcc caagtgtcca aaggattagg ggatacgaga 240
actgttgtcg ctttagggaa tgcctttaac ggagcgttgc caggaacagt tcaaagtgcg 300
caaagcttct tctctcacat gaaagctgct agtcagaaaa cgcaagaagg ggatgagggg 360
ctcacagcag atctttgtgt gtctcataag cgcagagcgg ctgcggctgt ctgtggcttc 420
atcggaggaa ttacctacct cgcgacattc ggagttatcc gtccgattct gtttgtcaac 480
aaaatgctgg tgaacccgtt tctttcttcc caaactaaag caaatatggg atcttctgtt 540
agctatatta tggcggctaa ccatgcagcg tctgtggtgg gtgctggact cgctatcagt 600
gcggaaagag cagattgcga agcccgctgc gctcgtattg cgagagaaga gtcgttactc 660
gaagtgtcgg gagaggaaaa tgcttgcgag aagagagtcg ctggagagaa agccaagacg 720
ttcacgcgca tcaagtatgc actcctcact atgctcgaga agtttttgga atgcgttgcc 780
gacgttttca aattggtgcc gctgcctatt acaatgggta ttcgtgcgat tgtggctgct 840
ggatgtacgt tcacttctgc aattattgga ttgtgcactt tctgcgccag agcataa 897




129


298


PRT


Chlamydia



129
Met Ala Ser Ile Cys Gly Arg Leu Gly Ser Gly Thr Gly Asn Ala Leu
1 5 10 15
Lys Ala Phe Phe Thr Gln Pro Ser Asn Lys Met Ala Arg Val Val Asn
20 25 30
Lys Thr Lys Gly Met Asp Lys Thr Val Lys Val Ala Lys Ser Ala Ala
35 40 45
Glu Leu Thr Ala Asn Ile Leu Glu Gln Ala Gly Gly Ala Gly Ser Ser
50 55 60
Ala His Ile Thr Ala Ser Gln Val Ser Lys Gly Leu Gly Asp Thr Arg
65 70 75 80
Thr Val Val Ala Leu Gly Asn Ala Phe Asn Gly Ala Leu Pro Gly Thr
85 90 95
Val Gln Ser Ala Gln Ser Phe Phe Ser His Met Lys Ala Ala Ser Gln
100 105 110
Lys Thr Gln Glu Gly Asp Glu Gly Leu Thr Ala Asp Leu Cys Val Ser
115 120 125
His Lys Arg Arg Ala Ala Ala Ala Val Cys Gly Phe Ile Gly Gly Ile
130 135 140
Thr Tyr Leu Ala Thr Phe Gly Val Ile Arg Pro Ile Leu Phe Val Asn
145 150 155 160
Lys Met Leu Val Asn Pro Phe Leu Ser Ser Gln Thr Lys Ala Asn Met
165 170 175
Gly Ser Ser Val Ser Tyr Ile Met Ala Ala Asn His Ala Ala Ser Val
180 185 190
Val Gly Ala Gly Leu Ala Ile Ser Ala Glu Arg Ala Asp Cys Glu Ala
195 200 205
Arg Cys Ala Arg Ile Ala Arg Glu Glu Ser Leu Leu Glu Val Ser Gly
210 215 220
Glu Glu Asn Ala Cys Glu Lys Arg Val Ala Gly Glu Lys Ala Lys Thr
225 230 235 240
Phe Thr Arg Ile Lys Tyr Ala Leu Leu Thr Met Leu Glu Lys Phe Leu
245 250 255
Glu Cys Val Ala Asp Val Phe Lys Leu Val Pro Leu Pro Ile Thr Met
260 265 270
Gly Ile Arg Ala Ile Val Ala Ala Gly Cys Thr Phe Thr Ser Ala Ile
275 280 285
Ile Gly Leu Cys Thr Phe Cys Ala Arg Ala
290 295




130


897


DNA


Chlamydia



130
atggctgcta tatgtggacg tttagggtct ggtacaggga atgctctaaa agcttttttt 60
acacagccca gcaataaaat ggcaagggta gtaaataaga cgaagggaat ggataagact 120
gttaaggtcg ccaagtctgc tgccgaattg accgcaaata ttttggaaca agctggaggc 180
gcgggctctt ccgcacacat tacagcttcc caagtgtcca aaggattagg ggatgcgaga 240
actgttctcg ctttagggaa tgcctttaac ggagcgttgc caggaacagt tcaaagtgcg 300
caaagcttct tctcttacat gaaagctgct agtcagaaac cgcaagaagg ggatgagggg 360
ctcgtagcag atctttgtgt gtctcataag cgcagagcgg ctgcggctgt ctgtagcttc 420
atcggaggaa ttacctacct cgcgacattc ggagctatcc gtccgattct gtttgtcaac 480
aaaatgctgg cgcaaccgtt tctttcttcc caaactaaag caaatatggg atcttctgtt 540
agctatatta tggcggctaa ccatgcagcg tttgtggtgg gttctggact cgctatcagt 600
gcggaaagag cagattgcga agcccgctgc gctcgtattg cgagagaaga gtcgtcactc 660
gaattgtcgg gagaggaaaa tgcttgcgag aggggagtcg ctggagagaa agccaagacg 720
ttcacgcgca tcaagtatgc actcctcact atgctcgaga agtttttgga atgcgttgcc 780
gacgttttca aattggtgcc gttgcctatt acaatgggta ttcgtgcaat tgtggctgcg 840
ggatgtacgt tcacttctgc agttattgga ttgtggactt tctgcaacag agtataa 897




131


298


PRT


Chlamydia



131
Met Ala Ala Ile Cys Gly Arg Leu Gly Ser Gly Thr Gly Asn Ala Leu
1 5 10 15
Lys Ala Phe Phe Thr Gln Pro Ser Asn Lys Met Ala Arg Val Val Asn
20 25 30
Lys Thr Lys Gly Met Asp Lys Thr Val Lys Val Ala Lys Ser Ala Ala
35 40 45
Glu Leu Thr Ala Asn Ile Leu Glu Gln Ala Gly Gly Ala Gly Ser Ser
50 55 60
Ala His Ile Thr Ala Ser Gln Val Ser Lys Gly Leu Gly Asp Ala Arg
65 70 75 80
Thr Val Leu Ala Leu Gly Asn Ala Phe Asn Gly Ala Leu Pro Gly Thr
85 90 95
Val Gln Ser Ala Gln Ser Phe Phe Ser Tyr Met Lys Ala Ala Ser Gln
100 105 110
Lys Pro Gln Glu Gly Asp Glu Gly Leu Val Ala Asp Leu Cys Val Ser
115 120 125
His Lys Arg Arg Ala Ala Ala Ala Val Cys Ser Phe Ile Gly Gly Ile
130 135 140
Thr Tyr Leu Ala Thr Phe Gly Ala Ile Arg Pro Ile Leu Phe Val Asn
145 150 155 160
Lys Met Leu Ala Gln Pro Phe Leu Ser Ser Gln Thr Lys Ala Asn Met
165 170 175
Gly Ser Ser Val Ser Tyr Ile Met Ala Ala Asn His Ala Ala Phe Val
180 185 190
Val Gly Ser Gly Leu Ala Ile Ser Ala Glu Arg Ala Asp Cys Glu Ala
195 200 205
Arg Cys Ala Arg Ile Ala Arg Glu Glu Ser Ser Leu Glu Leu Ser Gly
210 215 220
Glu Glu Asn Ala Cys Glu Arg Gly Val Ala Gly Glu Lys Ala Lys Thr
225 230 235 240
Phe Thr Arg Ile Lys Tyr Ala Leu Leu Thr Met Leu Glu Lys Phe Leu
245 250 255
Glu Cys Val Ala Asp Val Phe Lys Leu Val Pro Leu Pro Ile Thr Met
260 265 270
Gly Ile Arg Ala Ile Val Ala Ala Gly Cys Thr Phe Thr Ser Ala Val
275 280 285
Ile Gly Leu Trp Thr Phe Cys Asn Arg Val
290 295




132


897


DNA


Chlamydia



132
atggctgcta tatgcggacg tttagggtct ggtacaggga atgctctaaa agcttttttt 60
acacagccca gcaataaaat ggcaagggta gtaaataaga cgaagggaat ggataagact 120
gttaaggtcg ccaagtctgc tgccgaattg accgcaaata ttttggaaca agctggaggc 180
gcgggctctt ccgcacacat tacagcttcc caagtgtcca aaggattagg ggatgcgaga 240
actgttctcg ctttagggaa tgcctttaac ggagcgttgc caggaacagt tcaaagtgcg 300
caaagcttct tctcttacat gaaagctgct agtcagaaac cgcaagaagg ggatgagggg 360
ctcgtagcag atctttgtgt gtctcataag cgcagagcgg ctgcggctgt ctgtagcttc 420
atcggaggaa ttacctacct cgcgacattc ggagctatcc gtccgattct gtttgtcaac 480
aaaatgctgg cgcaaccgtt tctttcttcc caaactaaag caaatatggg atcttctgtt 540
agctatatta tggcggctaa ccatgcagcg tttgtggtgg gttctggact cgctatcagt 600
gcggaaagag cagattgcga agcccgctgc gctcgtattg cgagagaaga gtcgtcactc 660
gaattgtcgg gagaggaaaa tgcttgtgag aggagagtcg ctggagagaa agccaagacg 720
ttcacgcgca tcaagtatgc actcctcact atgctcgaga agtttttgga atgcgttgcc 780
gacgttttca aattggtgcc gttgcctatt acaatgggta ttcgtgcaat tgtggctgcg 840
ggatgtacgt tcacttctgc agttattgga ttgtggactt tctgcaacag agtataa 897




133


298


PRT


Chlamydia



133
Met Ala Ala Ile Cys Gly Arg Leu Gly Ser Gly Thr Gly Asn Ala Leu
1 5 10 15
Lys Ala Phe Phe Thr Gln Pro Ser Asn Lys Met Ala Arg Val Val Asn
20 25 30
Lys Thr Lys Gly Met Asp Lys Thr Val Lys Val Ala Lys Ser Ala Ala
35 40 45
Glu Leu Thr Ala Asn Ile Leu Glu Gln Ala Gly Gly Ala Gly Ser Ser
50 55 60
Ala His Ile Thr Ala Ser Gln Val Ser Lys Gly Leu Gly Asp Ala Arg
65 70 75 80
Thr Val Leu Ala Leu Gly Asn Ala Phe Asn Gly Ala Leu Pro Gly Thr
85 90 95
Val Gln Ser Ala Gln Ser Phe Phe Ser Tyr Met Lys Ala Ala Ser Gln
100 105 110
Lys Pro Gln Glu Gly Asp Glu Gly Leu Val Ala Asp Leu Cys Val Ser
115 120 125
His Lys Arg Arg Ala Ala Ala Ala Val Cys Ser Phe Ile Gly Gly Ile
130 135 140
Thr Tyr Leu Ala Thr Phe Gly Ala Ile Arg Pro Ile Leu Phe Val Asn
145 150 155 160
Lys Met Leu Ala Gln Pro Phe Leu Ser Ser Gln Thr Lys Ala Asn Met
165 170 175
Gly Ser Ser Val Ser Tyr Ile Met Ala Ala Asn His Ala Ala Phe Val
180 185 190
Val Gly Ser Gly Leu Ala Ile Ser Ala Glu Arg Ala Asp Cys Glu Ala
195 200 205
Arg Cys Ala Arg Ile Ala Arg Glu Glu Ser Ser Leu Glu Leu Ser Gly
210 215 220
Glu Glu Asn Ala Cys Glu Arg Arg Val Ala Gly Glu Lys Ala Lys Thr
225 230 235 240
Phe Thr Arg Ile Lys Tyr Ala Leu Leu Thr Met Leu Glu Lys Phe Leu
245 250 255
Glu Cys Val Ala Asp Val Phe Lys Leu Val Pro Leu Pro Ile Thr Met
260 265 270
Gly Ile Arg Ala Ile Val Ala Ala Gly Cys Thr Phe Thr Ser Ala Val
275 280 285
Ile Gly Leu Trp Thr Phe Cys Asn Arg Val
290 295




134


897


DNA


Chlamydia



134
atggcttcta tatgcggacg tttagggtct ggtacaggga atgctctaaa agcttttttt 60
acacagccca acaataaaat ggcaagggta gtaaataaga cgaagggaat ggataagact 120
attaaggttg ccaagtctgc tgccgaattg accgcaaata ttttggaaca agctggaggc 180
gcgggctctt ccgcacacat tacagcttcc caagtgtcca aaggattagg ggatgcgaga 240
actgttgtcg ctttagggaa tgcctttaac ggagcgttgc caggaacagt tcaaagtgcg 300
caaagcttct tctctcacat gaaagctgct agtcagaaaa cgcaagaagg ggatgagggg 360
ctcacagcag atctttgtgt gtctcataag cgcagagcgg ctgcggctgt ctgtagcatc 420
atcggaggaa ttacctacct cgcgacattc ggagctatcc gtccgattct gtttgtcaac 480
aaaatgctgg caaaaccgtt tctttcttcc caaactaaag caaatatggg atcttctgtt 540
agctatatta tggcggctaa ccatgcagcg tctgtggtgg gtgctggact cgctatcagt 600
gcggaaagag cagattgcga agcccgctgc gctcgtattg cgagagaaga gtcgttactc 660
gaaatgccgg gagaggaaaa tgcttgcgag aagaaagtcg ctggagagaa agccaagacg 720
ttcacgcgca tcaagtatgc actcctcact atgctcgaga agtttttgga atgcgttgcc 780
gacgttttca aattggtgcc gctgcctatt acaatgggta ttcgtgcgat tgtggctgct 840
ggatgtacgt tcacttctgc aattattgga ttgtgcactt tctgcgccag agcataa 897




135


298


PRT


Chlamydia



135
Met Ala Ser Ile Cys Gly Arg Leu Gly Ser Gly Thr Gly Asn Ala Leu
1 5 10 15
Lys Ala Phe Phe Thr Gln Pro Asn Asn Lys Met Ala Arg Val Val Asn
20 25 30
Lys Thr Lys Gly Met Asp Lys Thr Ile Lys Val Ala Lys Ser Ala Ala
35 40 45
Glu Leu Thr Ala Asn Ile Leu Glu Gln Ala Gly Gly Ala Gly Ser Ser
50 55 60
Ala His Ile Thr Ala Ser Gln Val Ser Lys Gly Leu Gly Asp Ala Arg
65 70 75 80
Thr Val Val Ala Leu Gly Asn Ala Phe Asn Gly Ala Leu Pro Gly Thr
85 90 95
Val Gln Ser Ala Gln Ser Phe Phe Ser His Met Lys Ala Ala Ser Gln
100 105 110
Lys Thr Gln Glu Gly Asp Glu Gly Leu Thr Ala Asp Leu Cys Val Ser
115 120 125
His Lys Arg Arg Ala Ala Ala Ala Val Cys Ser Ile Ile Gly Gly Ile
130 135 140
Thr Tyr Leu Ala Thr Phe Gly Ala Ile Arg Pro Ile Leu Phe Val Asn
145 150 155 160
Lys Met Leu Ala Lys Pro Phe Leu Ser Ser Gln Thr Lys Ala Asn Met
165 170 175
Gly Ser Ser Val Ser Tyr Ile Met Ala Ala Asn His Ala Ala Ser Val
180 185 190
Val Gly Ala Gly Leu Ala Ile Ser Ala Glu Arg Ala Asp Cys Glu Ala
195 200 205
Arg Cys Ala Arg Ile Ala Arg Glu Glu Ser Leu Leu Glu Met Pro Gly
210 215 220
Glu Glu Asn Ala Cys Glu Lys Lys Val Ala Gly Glu Lys Ala Lys Thr
225 230 235 240
Phe Thr Arg Ile Lys Tyr Ala Leu Leu Thr Met Leu Glu Lys Phe Leu
245 250 255
Glu Cys Val Ala Asp Val Phe Lys Leu Val Pro Leu Pro Ile Thr Met
260 265 270
Gly Ile Arg Ala Ile Val Ala Ala Gly Cys Thr Phe Thr Ser Ala Ile
275 280 285
Ile Gly Leu Cys Thr Phe Cys Ala Arg Ala
290 295




136


882


DNA


Chlamydia



136
atggcttctg tatgtgggcg attaagtgct ggggtgggga acagatttaa cgcatttttc 60
acgcgtcccg gtaacaagct atcacggttt gtaaatagcg caaaaggatt agacagatca 120
ataaaggttg ggaagtctgc tgctgaatta acggcgagta ttttagagca aactgggggg 180
gcagggactg atgcacatgt tacggcggcc aaggtgtcta aagcacttgg ggacgcgcga 240
acagtaatgg ctctagggaa tgtcttcaat gggtctgtgc cagcaaccat tcaaagtgcg 300
cgaagctgtc tcgcccattt acgagcggcc ggcaaagaag aagaaacatg ctccaaggtg 360
aaagatctct gtgtttctca tagacgaaga gctgcggctg aggcttgtaa tgttattgga 420
ggagcaactt atattacaac tttcggagcg attcgtccga cattactcgt taacaagctt 480
cttgccaaac cattcctttc ctcccaagcc aaagaagggt tgggagcttc tgttggttat 540
atcatggcag cgaaccatgc ggcatctgtg cttgggtctg ctttaagtat tagcgcagaa 600
agagcagact gtgaagagcg gtgtgatcgc attcgatgta gtgaggatgg tgaaatttgc 660
gaaggcaata aattaacagc tatttcggaa gagaaggcta gatcatggac tctcattaag 720
tacagattcc ttactatgat agaaaaacta tttgagatgg tggcggatat cttcaagtta 780
attcctttgc caatttcgca tggaattcgt gctattgttg ctgcgggatg tacgttgact 840
tctgcagtta ttggcttagg tactttttgg tctagagcat aa 882




137


293


PRT


Chlamydia



137
Met Ala Ser Val Cys Gly Arg Leu Ser Ala Gly Val Gly Asn Arg Phe
1 5 10 15
Asn Ala Phe Phe Thr Arg Pro Gly Asn Lys Leu Ser Arg Phe Val Asn
20 25 30
Ser Ala Lys Gly Leu Asp Arg Ser Ile Lys Val Gly Lys Ser Ala Ala
35 40 45
Glu Leu Thr Ala Ser Ile Leu Glu Gln Thr Gly Gly Ala Gly Thr Asp
50 55 60
Ala His Val Thr Ala Ala Lys Val Ser Lys Ala Leu Gly Asp Ala Arg
65 70 75 80
Thr Val Met Ala Leu Gly Asn Val Phe Asn Gly Ser Val Pro Ala Thr
85 90 95
Ile Gln Ser Ala Arg Ser Cys Leu Ala His Leu Arg Ala Ala Gly Lys
100 105 110
Glu Glu Glu Thr Cys Ser Lys Val Lys Asp Leu Cys Val Ser His Arg
115 120 125
Arg Arg Ala Ala Ala Glu Ala Cys Asn Val Ile Gly Gly Ala Thr Tyr
130 135 140
Ile Thr Thr Phe Gly Ala Ile Arg Pro Thr Leu Leu Val Asn Lys Leu
145 150 155 160
Leu Ala Lys Pro Phe Leu Ser Ser Gln Ala Lys Glu Gly Leu Gly Ala
165 170 175
Ser Val Gly Tyr Ile Met Ala Ala Asn His Ala Ala Ser Val Leu Gly
180 185 190
Ser Ala Leu Ser Ile Ser Ala Glu Arg Ala Asp Cys Glu Glu Arg Cys
195 200 205
Asp Arg Ile Arg Cys Ser Glu Asp Gly Glu Ile Cys Glu Gly Asn Lys
210 215 220
Leu Thr Ala Ile Ser Glu Glu Lys Ala Arg Ser Trp Thr Leu Ile Lys
225 230 235 240
Tyr Arg Phe Leu Thr Met Ile Glu Lys Leu Phe Glu Met Val Ala Asp
245 250 255
Ile Phe Lys Leu Ile Pro Leu Pro Ile Ser His Gly Ile Arg Ala Ile
260 265 270
Val Ala Ala Gly Cys Thr Leu Thr Ser Ala Val Ile Gly Leu Gly Thr
275 280 285
Phe Trp Ser Arg Ala
290




138


16


PRT


Artificial Sequence




Made in a lab





138
Asp Leu Cys Val Ser His Lys Arg Arg Ala Ala Ala Ala Val Cys Ser
1 5 10 15




139


16


PRT


Artificial Sequence




Made in a lab





139
Arg Ala Ala Ala Ala Val Cys Ser Phe Ile Gly Gly Ile Thr Tyr Leu
1 5 10 15




140


18


PRT


Artificial Sequence




Made in a lab





140
Cys Ser Phe Ile Gly Gly Ile Thr Tyr Leu Ala Thr Phe Gly Ala Ile
1 5 10 15
Arg Pro




141


18


PRT


Artificial Sequence




Made in a lab





141
Tyr Leu Ala Thr Phe Gly Ala Ile Arg Pro Ile Leu Phe Val Asn Lys
1 5 10 15
Met Leu




142


18


PRT


Artificial Sequence




Made in a lab





142
Arg Pro Ile Leu Phe Val Asn Lys Met Leu Ala Gln Pro Phe Leu Ser
1 5 10 15
Ser Gln




143


17


PRT


Artificial Sequence




Made in a lab





143
Met Leu Ala Gln Pro Phe Leu Ser Ser Gln Thr Lys Ala Asn Met Gly
1 5 10 15
Ser




144


10


PRT


Artificial Sequence




Made in a lab





144
Cys Ser Phe Ile Gly Gly Ile Thr Tyr Leu
1 5 10




145


9


PRT


Artificial Sequence




Made in a lab





145
Ser Phe Ile Gly Gly Ile Thr Tyr Leu
1 5




146


8


PRT


Artificial Sequence




Made in a lab





146
Phe Ile Gly Gly Ile Thr Tyr Leu
1 5




147


9


PRT


Artificial Sequence




Made in a lab





147
Cys Ser Phe Ile Gly Gly Ile Thr Tyr
1 5




148


8


PRT


Artificial Sequence




Made in a lab





148
Cys Ser Phe Ile Gly Gly Ile Thr
1 5




149


10


PRT


Artificial Sequence




Made in a lab





149
Cys Ser Ile Ile Gly Gly Ile Thr Tyr Leu
1 5 10




150


10


PRT


Artificial Sequence




Made in a lab





150
Cys Gly Phe Ile Gly Gly Ile Thr Tyr Leu
1 5 10




151


9


PRT


Artificial Sequence




Made in a lab





151
Gly Phe Ile Gly Gly Ile Thr Tyr Leu
1 5




152


20


PRT


Artificial Sequence




Made in a lab





152
Gln Ile Phe Val Cys Leu Ile Ser Ala Glu Arg Leu Arg Leu Arg Leu
1 5 10 15
Ser Val Ala Ser
20




153


20


PRT


Artificial Sequence




Made in a lab





153
Glu Arg Leu Arg Leu Arg Leu Ser Val Ala Ser Ser Glu Glu Leu Pro
1 5 10 15
Thr Ser Arg His
20




154


20


PRT


Artificial Sequence




Made in a lab





154
Ala Ser Ser Glu Glu Leu Pro Thr Ser Arg His Ser Glu Leu Ser Val
1 5 10 15
Arg Phe Cys Leu
20




155


20


PRT


Artificial Sequence




Made in a lab





155
Arg His Ser Glu Leu Ser Val Arg Phe Cys Leu Ser Thr Lys Cys Trp
1 5 10 15
Arg Asn Arg Phe
20




156


20


PRT


Artificial Sequence




Made in a lab





156
Leu Ser Thr Lys Cys Trp Arg Asn Arg Phe Phe Leu Pro Lys Leu Lys
1 5 10 15
Gln Ile Trp Asp
20




157


53


PRT


Artificial Sequence




Made in a lab





157
Ile Phe Val Cys Leu Ile Ser Ala Glu Arg Leu Arg Leu Ser Val Ala
1 5 10 15
Ser Ser Glu Glu Leu Pro Thr Ser Arg His Ser Glu Leu Ser Val Arg
20 25 30
Phe Cys Leu Ser Thr Lys Cys Trp Arg Asn Arg Phe Phe Leu Pro Lys
35 40 45
Leu Lys Gln Ile Trp
50




158


52


PRT


Artificial Sequence




Made in a lab





158
Leu Cys Val Ser His Lys Arg Arg Ala Ala Ala Ala Val Cys Ser Phe
1 5 10 15
Ile Gly Gly Ile Thr Tyr Leu Ala Thr Phe Gly Ala Ile Arg Pro Ile
20 25 30
Leu Phe Val Asn Lys Met Leu Ala Gln Pro Phe Leu Ser Ser Gln Ile
35 40 45
Lys Ala Asn Met
50




159


24


DNA


Chlamydia



159
ttttgaagca ggtaggtgaa tatg 24




160


24


DNA


Chlamydia



160
ttaagaaatt taaaaaatcc ctta 24




161


24


DNA


Chlamydia



161
ggtataatat ctctctaaat tttg 24




162


19


DNA


Chlamydia



162
agataaaaaa ggctgtttc 19




163


24


DNA


Chlamydia



163
ttttgaagca ggtaggtgaa tatg 24




164


29


DNA


Chlamydia



164
tttacaataa gaaaagctaa gcactttgt 29




165


20


DNA


Chlamydia



165
ccttacacag tcctgctgac 20




166


20


DNA


Chlamydia



166
gtttccgggc cctcacattg 20




167


9


PRT


Artificial Sequence




Made in a lab





167
Ser Phe Ile Gly Gly Ile Thr Tyr Leu
1 5




168


9


PRT


Artificial Sequence




Made in a lab





168
Ser Ile Ile Gly Gly Ile Thr Tyr Leu
1 5




169


2643


DNA


Chlamydia



169
gcaatcatgc gacctgatca tatgaacttc tgttgtctat gtgctgctat tttgtcatcc 60
acagcggtcc tctttggcca ggatccctta ggtgaaaccg ccctcctcac taaaaatcct 120
aatcatgtcg tctgtacatt ttttgaggac tgtaccatgg agagcctctt tcctgctctt 180
tgtgctcatg catcacaaga cgatcctttg tatgtacttg gaaattccta ctgttggttc 240
gtatctaaac tccatatcac ggaccccaaa gaggctcttt ttaaagaaaa aggagatctt 300
tccattcaaa actttcgctt cctttccttc acagattgct cttccaagga aagctctcct 360
tctattattc atcaaaagaa tggtcagtta tccttgcgca ataatggtag catgagtttc 420
tgtcgaaatc atgctgaagg ctctggagga gccatctctg cggatgcctt ttctctacag 480
cacaactatc ttttcacagc ttttgaagag aattcttcta aaggaaatgg cggagccatt 540
caggctcaaa ccttctcttt atctagaaat gtgtcgccta tttctttcgc ccgtaatcgt 600
gcggatttaa atggcggcgc tatttgctgt agtaatctta tttgttcagg gaatgtaaac 660
cctctctttt tcactggaaa ctccgccacg aatggaggcg ctatttgttg tatcagcgat 720
ctaaacacct cagaaaaagg ctctctctct cttgcttgta accaagaaac gctatttgca 780
agcaattctg ctaaagaaaa aggcggggct atttatgcca agcacatggt attgcgttat 840
aacggtcctg tttccttcat taacaacagc gctaaaatag gtggagctat cgccatccag 900
tccggaggga gtctctctat ccttgcaggt gaaggatctg ttctgttcca gaataactcc 960
caacgcacct ccgaccaagg tctagtaaga aacgccatct acttaragaa agatgcgatt 1020
ctttcttcct tagaagctcg caacggagat attcttttct ttgatcctat tgtacaagaa 1080
agtagcagca aagaatcgcc tcttccctcc tctttgcaag ccagcgtgac ttctcccacc 1140
ccagccaccg catctccttt agttattcag acaagtgcaa accgttcagt gattttctcg 1200
agcgaacgtc tttctgaaga agaaaaaact cctgataacc tcacttccca actacagcag 1260
cctatcgaac tgaaatccgg acgcttagtt ttaaaagatc gcgctgtcct ttccgcgcct 1320
tctctctctc aggatcctca agctctcctc attatggaag cgggaacttc tttaaaaact 1380
tcctctgatt tgaagttagc tacgctaagt attccccttc attccttaga tactgaaaaa 1440
agcgtaacta tccacgcccc taatctttct atccaaaaga tcttcctctc taactctgga 1500
gatgagaatt tttatgaaaa tgtagagctt ctcagtaaag agcaaaacaa tattcctctc 1560
cttactctcc ctaaagagca atctcattta catcttcctg atgggaacct ctcttctcac 1620
tttggatatc aaggagattg gactttttct tggaaagatt ctgatgaagg gcattctctg 1680
attgctaatt ggacgcctaa aaactatgtg cctcatccag aacgtcaatc tacactcgtt 1740
gcgaacactc tttggaacac ctattccgat atgcaagctg tgcagtcgat gattaataca 1800
acagcgcacg gaggagccta tctatttgga acgtggggat ctgctgtttc taatttattc 1860
tatgttcacg acagctctgg gaaacctatc gataattggc atcatagaag ccttggctac 1920
ctattcggta tcagtactca cagtttagat gaccattctt tctgcttggc tgcaggacaa 1980
ttactcggga aatcgtccga ttcctttatt acgtctacag aaacgacctc ctatatagct 2040
actgtacaag cgcaactcgc tacctctcta atgaaaatct ctgcacaggc atgctacaat 2100
gaaagtatcc atgagctaaa aacaaaatat cgctccttct ctaaagaagg attcggatcc 2160
tggcatagcg ttgcagtatc cggagaagtg tgcgcatcga ttcctattgt atccaatggt 2220
tccggactgt tcagctcctt ctctattttc tctaaactgc aaggattttc aggaacacag 2280
gacggttttg aggagagttc gggagagatt cggtcctttt ctgccagctc tttcagaaat 2340
atttcacttc ctataggaat aacatttgaa aaaaaatccc aaaaaacacg aacctactat 2400
tactttctag gagcctacat ccaagacctg aaacgtgatg tggaatcggg acctgtagtg 2460
ttactcaaaa atgccgtctc ctgggatgct cctatggcga acttggattc acgagcctac 2520
atgttccggc ttacgaatca aagagctcta cacagacttc agacgctgtt aaatgtgtct 2580
tgtgtgctgc gtgggcaaag ccatagttac tccctggatc tggggaccac ttacaggttc 2640
tag 2643




170


2949


DNA


Chlamydia



170
atgattcctc aaggaattta cgatggggag acgttaactg tatcatttcc ctatactgtt 60
ataggagatc cgagtgggac tactgttttt tctgcaggag agttaacatt aaaaaatctt 120
gacaattcta ttgcagcttt gcctttaagt tgttttggga acttattagg gagttttact 180
gttttaggga gaggacactc gttgactttc gagaacatac ggacttctac aaatggggca 240
gctctaagta atagcgctgc tgatggactg tttactattg agggttttaa agaattatcc 300
ttttccaatt gcaattcatt acttgccgta ctgcctgctg caacgactaa taagggtagc 360
cagactccga cgacaacatc tacaccgtct aatggtacta tttattctaa aacagatctt 420
ttgttactca ataatgagaa gttctcattc tatagtaatt tagtctctgg agatggggga 480
gctatagatg ctaagagctt aacggttcaa ggaattagca agctttgtgt cttccaagaa 540
aatactgctc aagctgatgg gggagcttgt caagtagtca ccagtttctc tgctatggct 600
aacgaggctc ctattgcctt tgtagcgaat gttgcaggag taagaggggg agggattgct 660
gctgttcagg atgggcagca gggagtgtca tcatctactt caacagaaga tccagtagta 720
agtttttcca gaaatactgc ggtagagttt gatgggaacg tagcccgagt aggaggaggg 780
atttactcct acgggaacgt tgctttcctg aataatggaa aaaccttgtt tctcaacaat 840
gttgcttctc ctgtttacat tgctgctaag caaccaacaa gtggacaggc ttctaatacg 900
agtaataatt acggagatgg aggagctatc ttctgtaaga atggtgcgca agcaggatcc 960
aataactctg gatcagtttc ctttgatgga gagggagtag ttttctttag tagcaatgta 1020
gctgctggga aagggggagc tatttatgcc aaaaagctct cggttgctaa ctgtggccct 1080
gtacaatttt taaggaatat cgctaatgat ggtggagcga tttatttagg agaatctgga 1140
gagctcagtt tatctgctga ttatggagat attattttcg atgggaatct taaaagaaca 1200
gccaaagaga atgctgccga tgttaatggc gtaactgtgt cctcacaagc catttcgatg 1260
ggatcgggag ggaaaataac gacattaaga gctaaagcag ggcatcagat tctctttaat 1320
gatcccatcg agatggcaaa cggaaataac cagccagcgc agtcttccaa acttctaaaa 1380
attaacgatg gtgaaggata cacaggggat attgtttttg ctaatggaag cagtactttg 1440
taccaaaatg ttacgataga gcaaggaagg attgttcttc gtgaaaaggc aaaattatca 1500
gtgaattctc taagtcagac aggtgggagt ctgtatatgg aagctgggag tacattggat 1560
tttgtaactc cacaaccacc acaacagcct cctgccgcta atcagttgat cacgctttcc 1620
aatctgcatt tgtctctttc ttctttgtta gcaaacaatg cagttacgaa tcctcctacc 1680
aatcctccag cgcaagattc tcatcctgca gtcattggta gcacaactgc tggttctgtt 1740
acaattagtg ggcctatctt ttttgaggat ttggatgata cagcttatga taggtatgat 1800
tggctaggtt ctaatcaaaa aatcaatgtc ctgaaattac agttagggac taagccccca 1860
gctaatgccc catcagattt gactctaggg aatgagatgc ctaagtatgg ctatcaagga 1920
agctggaagc ttgcgtggga tcctaataca gcaaataatg gtccttatac tctgaaagct 1980
acatggacta aaactgggta taatcctggg cctgagcgag tagcttcttt ggttccaaat 2040
agtttatggg gatccatttt agatatacga tctgcgcatt cagcaattca agcaagtgtg 2100
gatgggcgct cttattgtcg aggattatgg gtttctggag tttcgaattt cttctatcat 2160
gaccgcgatg ctttaggtca gggatatcgg tatattagtg ggggttattc cttaggagca 2220
aactcctact ttggatcatc gatgtttggt ctagcattta ccgaagtatt tggtagatct 2280
aaagattatg tagtgtgtcg ttccaatcat catgcttgca taggatccgt ttatctatct 2340
acccaacaag ctttatgtgg atcctatttg ttcggagatg cgtttatccg tgctagctac 2400
gggtttggga atcagcatat gaaaacctca tatacatttg cagaggagag cgatgttcgt 2460
tgggataata actgtctggc tggagagatt ggagcgggat taccgattgt gattactcca 2520
tctaagctct atttgaatga gttgcgtcct ttcgtgcaag ctgagttttc ttatgccgat 2580
catgaatctt ttacagagga aggcgatcaa gctcgggcat tcaagagcgg acatctccta 2640
aatctatcag ttcctgttgg agtgaagttt gatcgatgtt ctagtacaca tcctaataaa 2700
tatagcttta tggcggctta tatctgtgat gcttatcgca ccatctctgg tactgagaca 2760
acgctcctat cccatcaaga gacatggaca acagatgcct ttcatttagc aagacatgga 2820
gttgtggtta gaggatctat gtatgcttct ctaacaagta atatagaagt atatggccat 2880
ggaagatatg agtatcgaga tgcttctcga ggctatggtt tgagtgcagg magtaaagtc 2940
yggttctaa 2949




171


2895


DNA


Chlamydia



171
atgaaaaaag cgtttttctt tttccttatc ggaaactccc tatcaggact agctagagag 60
gttccttcta gaatctttct tatgcccaac tcagttccag atcctacgaa agagtcgcta 120
tcaaataaaa ttagtttgac aggagacact cacaatctca ctaactgcta tctcgataac 180
ctacgctaca tactggctat tctacaaaaa actcccaatg aaggagctgc tgtcacaata 240
acagattacc taagcttttt tgatacacaa aaagaaggta tttattttgc aaaaaatctc 300
acccctgaaa gtggtggtgc gattggttat gcgagtccca attctcctac cgtggagatt 360
cgtgatacaa taggtcctgt aatctttgaa aataatactt gttgcagact atttacatgg 420
agaaatcctt atgctgctga taaaataaga gaaggcggag ccattcatgc tcaaaatctt 480
tacataaatc ataatcatga tgtggtcgga tttatgaaga acttttctta tgtccaagga 540
ggagccatta gtaccgctaa tacctttgtt gtgagcgaga atcagtcttg ttttctcttt 600
atggacaaca tctgtattca aactaataca gcaggaaaag gtggcgctat ctatgctgga 660
acgagcaatt cttttgagag taataactgc gatctcttct tcatcaataa cgcctgttgt 720
gcaggaggag cgatcttctc ccctatctgt tctctaacag gaaatcgtgg taacatcgtt 780
ttctataaca atcgctgctt taaaaatgta gaaacagctt cttcagaagc ttctgatgga 840
ggagcaatta aagtaactac tcgcctagat gttacaggca atcgtggtag gatctttttt 900
agtgacaata tcacaaaaaa ttatggcgga gctatttacg ctcctgtagt taccctagtg 960
gataatggcc ctacctactt tataaacaat atcgccaata ataagggggg cgctatctat 1020
atagacggaa ccagtaactc caaaatttct gccgaccgcc atgctattat ttttaatgaa 1080
aatattgtga ctaatgtaac taatgcaaat ggtaccagta cgtcagctaa tcctcctaga 1140
agaaatgcaa taacagtagc aagctcctct ggtgaaattc tattaggagc agggagtagc 1200
caaaatttaa ttttttatga tcctattgaa gttagcaatg caggggtctc tgtgtccttc 1260
aataaggaag ctgatcaaac aggctctgta gtattttcag gagctactgt taattctgca 1320
gattttcatc aacgcaattt acaaacaaaa acacctgcac cccttactct cagtaatggt 1380
tttctatgta tcgaagatca tgctcagctt acagtgaatc gattcacaca aactgggggt 1440
gttgtttctc ttgggaatgg agcagttctg agttgctata aaaatggtac aggagattct 1500
gctagcaatg cctctataac actgaagcat attggattga atctttcttc cattctgaaa 1560
agtggtgctg agattccttt attgtgggta gagcctacaa ataacagcaa taactataca 1620
gcagatactg cagctacctt ttcattaagt gatgtaaaac tctcactcat tgatgactac 1680
gggaactctc cttatgaatc cacagatctg acccatgctc tgtcatcaca gcctatgcta 1740
tctatttctg aagctagcga taaccagcta caatcagaaa atatagattt ttcgggacta 1800
aatgtccctc attatggatg gcaaggactt tggacttggg gctgggcaaa aactcaagat 1860
ccagaaccag catcttcagc aacaatcact gatccacaaa aagccaatag atttcataga 1920
accttactac taacatggct tcctgccggg tatgttccta gcccaaaaca cagaagtccc 1980
ctcatagcta acaccttatg ggggaatatg ctgcttgcaa cagaaagctt aaaaaatagt 2040
gcagagctga cacctagtgg tcatcctttc tggggaatta caggaggagg actaggcatg 2100
atggtttacc aagatcctcg agaaaatcat cctggattcc atatgcgctc ttccggatac 2160
tctgcgggga tgatagcagg gcagacacac accttctcat tgaaattcag tcagacctac 2220
accaaactca atgagcgtta cgcaaaaaac aacgtatctt ctaaaaatta ctcatgccaa 2280
ggagaaatgc tcttctcatt gcaagaaggt ttcttgctga ctaaattagt tgggctttac 2340
agctatggag accataactg tcaccatttc tatactcaag gagaaaatct aacatctcaa 2400
gggacgttcc gcagtcaaac gatgggaggt gctgtctttt ttgatctccc tatgaaaccc 2460
tttggatcaa cgcatatact gacagctccc tttttaggtg ctcttggtat ttattctagc 2520
ctgtctcact ttactgaggt gggagcctat ccgcgaagct tttctacaaa gactcctttg 2580
atcaatgtcc tagtccctat tggagttaaa ggtagcttta tgaatgctac ccacagacct 2640
caagcctgga ctgtagaatt ggcataccaa cccgttctgt atagacaaga accagggatc 2700
gcgacccagc tcctagccag taaaggtatt tggtttggta gtggaagccc ctcatcgcgt 2760
catgccatgt cctataaaat ctcacagcaa acacaacctt tgagttggtt aactctccat 2820
ttccagtatc atggattcta ctcctcttca accttctgta attatctcaa tggggaaatt 2880
gctctgcgat tctag 2895




172


4593


DNA


Chlamydia



172
atgagttccg agaaagatat aaaaagcacc tgttctaagt tttctttgtc tgtagtagca 60
gctatccttg cctctgttag cgggttagct agttgcgtag atcttcatgc tggaggacag 120
tctgtaaatg agctggtata tgtaggccct caagcggttt tattgttaga ccaaattcga 180
gatctattcg ttgggtctaa agatagtcag gctgaaggac agtataggtt aattgtagga 240
gatccaagtt ctttccaaga gaaagatgca gatactcttc ccgggaaggt agagcaaagt 300
actttgttct cagtaaccaa tcccgtggtt ttccaaggtg tggaccaaca ggatcaagtc 360
tcttcccaag ggttaatttg tagttttacg agcagcaacc ttgattctcc ccgtgacgga 420
gaatcttttt taggtattgc ttttgttggg gatagtagta aggctggaat cacattaact 480
gacgtgaaag cttctttgtc tggagcggct ttatattcta cagaagatct tatctttgaa 540
aagattaagg gtggattgga atttgcatca tgttcttctc tagaacaggg gggagcttgt 600
gcagctcaaa gtattttgat tcatgattgt caaggattgc aggttaaaca ctgtactaca 660
gccgtgaatg ctgaggggtc tagtgcgaat gatcatcttg gatttggagg aggcgctttc 720
tttgttacgg gttctctttc tggagagaaa agtctctata tgcctgcagg agatatggta 780
gttgcgaatt gtgatggggc tatatctttt gaaggaaaca gcgcgaactt tgctaatgga 840
ggagcgattg ctgcctctgg gaaagtgctt tttgtcgcta atgataaaaa gacttctttt 900
atagagaacc gagctttgtc tggaggagcg attgcagcct cttctgatat tgcctttcaa 960
aactgcgcag aactagtttt caaaggcaat tgtgcaattg gaacagagga taaaggttct 1020
ttaggtggag gggctatatc ttctctaggc accgttcttt tgcaagggaa tcacgggata 1080
acttgtgata agaatgagtc tgcttcgcaa ggaggcgcca tttttggcaa aaattgtcag 1140
atttctgaca acgaggggcc agtggttttc agagatagta cagcttgctt aggaggaggc 1200
gctattgcag ctcaagaaat tgtttctatt cagaacaatc aggctgggat ttccttcgag 1260
ggaggtaagg ctagtttcgg aggaggtatt gcgtgtggat ctttttcttc cgcaggcggt 1320
gcttctgttt tagggactat tgatatttcg aagaatttag gcgcgatttc gttctctcgt 1380
actttatgta cgacctcaga tttaggacaa atggagtacc agggaggagg agctctattt 1440
ggtgaaaata tttctctttc tgagaatgct ggtgtgctca cctttaaaga caacattgtg 1500
aagacttttg cttcgaatgg gaaaattctg ggaggaggag cgattttagc tactggtaag 1560
gtggaaatta ccaataattc cggaggaatt tcttttacag gaaatgcgag agctccacaa 1620
gctcttccaa ctcaagagga gtttccttta ttcagcaaaa aagaagggcg accactctct 1680
tcaggatatt ctgggggagg agcgatttta ggaagagaag tagctattct ccacaacgct 1740
gcagtagtat ttgagcaaaa tcgtttgcag tgcagcgaag aagaagcgac attattaggt 1800
tgttgtggag gaggcgctgt tcatgggatg gatagcactt cgattgttgg caactcttca 1860
gtaagatttg gtaataatta cgcaatggga caaggagtct caggaggagc tcttttatct 1920
aaaacagtgc agttagctgg aaatggaagc gtcgattttt ctcgaaatat tgctagtttg 1980
ggaggaggag ctcttcaagc ttctgaagga aattgtgagc tagttgataa cggctatgtg 2040
ctattcagag ataatcgagg gagggtttat gggggtgcta tttcttgctt acgtggagat 2100
gtagtcattt ctggaaacaa gggtagagtt gaatttaaag acaacatagc aacacgtctt 2160
tatgtggaag aaactgtaga aaaggttgaa gaggtagagc cagctcctga gcaaaaagac 2220
aataatgagc tttctttctt agggagtgta gaacagagtt ttattactgc agctaatcaa 2280
gctcttttcg catctgaaga tggggattta tcacctgagt catccatttc ttctgaagaa 2340
cttgcgaaaa gaagagagtg tgctggagga gctatttttg caaaacgggt tcgtattgta 2400
gataaccaag aggccgttgt attctcgaat aacttctctg atatttatgg cggcgccatt 2460
tttacaggtt ctcttcgaga agaggataag ttagatgggc aaatccctga agtcttgatc 2520
tcaggcaatg caggggatgt tgttttttcc ggaaattcct cgaagcgtga tgagcatctt 2580
cctcatacag gtgggggagc catttgtact caaaatttga cgatttctca gaatacaggg 2640
aatgttctgt tttataacaa cgtggcctgt tcgggaggag ctgttcgtat agaggatcat 2700
ggtaatgttc ttttagaagc ttttggagga gatattgttt ttaaaggaaa ttcttctttc 2760
agagcacaag gatccgatgc tatctatttt gcaggtaaag aatcgcatat tacagccctg 2820
aatgctacgg aaggacatgc tattgttttc cacgacgcat tagtttttga aaatctaaaa 2880
gaaaggaaat ctgctgaagt attgttaatc aatagtcgag aaaatccagg ttacactgga 2940
tctattcgat ttttagaagc agaaagtaaa gttcctcaat gtattcatgt acaacaagga 3000
agccttgagt tgctaaatgg agctacatta tgtagttatg gttttaaaca agatgctgga 3060
gctaagttgg tattggctgc tggatctaaa ctgaagattt tagattcagg aactcctgta 3120
caagggcatg ctatcagtaa acctgaagca gaaatcgagt catcttctga accagagggt 3180
gcacattctc tttggattgc gaagaatgct caaacaacag ttcctatggt tgatatccat 3240
actatttctg tagatttagc ctccttctct tctagtcaac aggaggggac agtagaagct 3300
cctcaggtta ttgttcctgg aggaagttat gttcgatctg gagagcttaa tttggagtta 3360
gttaacacaa caggtactgg ttatgaaaat catgctttgt tgaagaatga ggctaaagtt 3420
ccattgatgt ctttcgttgc ttctagtgat gaagcttcag ccgaaatcag taacttgtcg 3480
gtttctgatt tacagattca tgtagcaact ccagagattg aagaagacac atacggccat 3540
atgggagatt ggtctgaggc taaaattcaa gatggaactc ttgtcattaa ttggaatcct 3600
actggatatc gattagatcc tcaaaaagca ggggctttag tatttaatgc attatgggaa 3660
gaaggggctg tcttgtctgc tctgaaaaat gcacgctttg ctcataatct cactgctcag 3720
cgtatggaat tcgattattc tacaaatgtg tggggattcg cctttggtgg tttccgaact 3780
ctatctgcag agaatctggt tgctattgat ggatacaaag gagcttatgg tggtgcttct 3840
gctggagtcg atattcaatt gatggaagat tttgttctag gagttagtgg agctgctttc 3900
ctaggtaaaa tggatagtca gaagtttgat gcggaggttt ctcggaaggg agttgttggt 3960
tctgtatata caggattttt agctggatcc tggttcttca aaggacaata tagccttgga 4020
gaaacacaga acgatatgaa aacgcgttat ggagtactag gagagtcgag tgcttcttgg 4080
acatctcgag gagtactggc agatgcttta gttgaatacc gaagtttagt tggtcctgtg 4140
agacctactt tttatgcttt gcatttcaat ccttatgtcg aagtatctta tgcttctatg 4200
aaattccctg gctttacaga acaaggaaga gaagcgcgtt cttttgaaga cgcttccctt 4260
accaatatca ccattccttt agggatgaag tttgaattgg cgttcataaa aggacagttt 4320
tcagaggtga actctttggg aataagttat gcatgggaag cttatcgaaa agtagaagga 4380
ggcgcggtgc agcttttaga agctgggttt gattgggagg gagctccaat ggatcttcct 4440
agacaggagc tgcgtgtcgc tctggaaaat aatacggaat ggagttctta cttcagcaca 4500
gtcttaggat taacagcttt ttgtggagga tttacttcta cagatagtaa actaggatat 4560
gaggcgaata ctggattgcg attgatcttt taa 4593




173


5331


DNA


Chlamydia



173
gcaatcatga aatttatgtc agctactgct gtatttgctg cagtactctc ctccgttact 60
gaggcgagct cgatccaaga tcaaataaag aataccgact gcaatgttag caaagtagga 120
tattcaactt ctcaagcatt tactgatatg atgctagcag acaacacaga gtatcgagct 180
gctgatagtg tttcattcta tgacttttcg acatcttccg gattacctag aaaacatctt 240
agtagtagta gtgaagcttc tccaacgaca gaaggagtgt cttcatcttc atctggagaa 300
aatactgaga attcacaaga ttcagctccc tcttctggag aaactgataa gaaaacagaa 360
gaagaactag acaatggcgg aatcatttat gctagagaga aactaactat ctcagaatct 420
caggactctc tctctaatcc aagcatagaa ctccatgaca atagtttttt cttcggagaa 480
ggtgaagtta tctttgatca cagagttgcc ctcaaaaacg gaggagctat ttatggagag 540
aaagaggtag tctttgaaaa cataaaatct ctactagtag aagtaaatat ctcggtcgag 600
aaagggggta gcgtctatgc aaaagaacga gtatctttag aaaatgttac cgaagcaacc 660
ttctcctcca atggtgggga acaaggtggt ggtggaatct attcagaaca agatatgtta 720
atcagtgatt gcaacaatgt acatttccaa gggaatgctg caggagcaac agcagtaaaa 780
caatgtctgg atgaagaaat gatcgtattg ctcacagaat gcgttgatag cttatccgaa 840
gatacactgg atagcactcc agaaacggaa cagactaagt caaatggaaa tcaagatggt 900
tcgtctgaaa caaaagatac acaagtatca gaatcaccag aatcaactcc tagccccgac 960
gatgttttag gtaaaggtgg tggtatctat acagaaaaat ctttgaccat cactggaatt 1020
acagggacta tagattttgt cagtaacata gctaccgatt ctggagcagg tgtattcact 1080
aaagaaaact tgtcttgcac caacacgaat agcctacagt ttttgaaaaa ctcggcaggt 1140
caacatggag gaggagccta cgttactcaa accatgtctg ttactaatac aactagtgaa 1200
agtataacta ctccccctct cgtaggagaa gtgattttct ctgaaaatac agctaaaggg 1260
cacggtggtg gtatctgcac taacaaactt tctttatcta atttaaaaac ggtgactctc 1320
actaaaaact ctgcaaagga gtctggagga gctattttta cagatctagc gtctatacca 1380
acaacagata ccccagagtc ttctaccccc tcttcctcct cgcctgcaag cactcccgaa 1440
gtagttgctt ctgctaaaat aaatcgattc tttgcctcta cggcagaacc ggcagcccct 1500
tctctaacag aggctgagtc tgatcaaacg gatcaaacag aaacttctga tactaatagc 1560
gatatagacg tgtcgattga gaacattttg aatgtcgcta tcaatcaaaa cacttctgcg 1620
aaaaaaggag gggctattta cgggaaaaaa gctaaacttt cccgtattaa caatcttgaa 1680
ctttcaggga attcatccca ggatgtagga ggaggtctct gtttaactga aagcgtagaa 1740
tttgatgcaa ttggatcgct cttatcccac tataactctg ctgctaaaga aggtggggtt 1800
attcattcta aaacggttac tctatctaac ctcaagtcta ccttcacttt tgcagataac 1860
actgttaaag caatagtaga aagcactcct gaagctccag aagagattcc tccagtagaa 1920
ggagaagagt ctacagcaac agaaaatccg aattctaata cagaaggaag ttcggctaac 1980
actaaccttg aaggatctca aggggatact gctgatacag ggactggtgt tgttaacaat 2040
gagtctcaag acacatcaga tactggaaac gctgaatctg gagaacaact acaagattct 2100
acacaatcta atgaagaaaa tacccttccc aatagtagta ttgatcaatc taacgaaaac 2160
acagacgaat catctgatag ccacactgag gaaataactg acgagagtgt ctcatcgtcc 2220
tctaaaagtg gatcatctac tcctcaagat ggaggagcag cttcttcagg ggctccctca 2280
ggagatcaat ctatctctgc aaacgcttgt ttagctaaaa gctatgctgc gagtactgat 2340
agctcccctg tatctaattc ttcaggttca gacgttactg catcttctga taatccagac 2400
tcttcctcat ctggagatag cgctggagac tctgaaggac cgactgagcc agaagctggt 2460
tctacaacag aaactcctac tttaatagga ggaggtgcta tctatggaga aactgttaag 2520
attgagaact tctctggcca aggaatattt tctggaaaca aagctatcga taacaccaca 2580
gaaggctcct cttccaaatc taacgtcctc ggaggtgcgg tctatgctaa aacattgttt 2640
aatctcgata gcgggagctc tagacgaact gtcaccttct ccgggaatac tgtctcttct 2700
caatctacaa caggtcaggt tgctggagga gctatctact ctcctactgt aaccattgct 2760
actcctgtag tattttctaa aaactctgca acaaacaatg ctaataacgc tacagatact 2820
cagagaaaag acacctttgg aggagctatc ggagctactt ctgctgtttc tctatcagga 2880
ggggctcatt tcttagaaaa cgttgctgac ctcggatctg ctattgggtt ggtgccagac 2940
acacaaaata cagaaacagt gaaattagag tctggctcct actactttga aaaaaataaa 3000
gctttaaaac gagctactat ttacgcacct gtcgtttcca ttaaagccta tactgcgaca 3060
tttaaccaaa acagatctct agaagaagga agcgcgattt actttacaaa agaagcatct 3120
attgagtctt taggctctgt tctcttcaca ggaaacttag taaccccaac gctaagcaca 3180
actacagaag gcacaccagc cacaacctca ggagatgtaa caaaatatgg tgctgctatc 3240
tttggacaaa tagcaagctc aaacggatct cagacggata accttcccct gaaactcatt 3300
gcttcaggag gaaatatttg tttccgaaac aatgaatacc gtcctacttc ttctgatacc 3360
ggaacctcta ctttctgtag tattgcggga gatgttaaat taaccatgca agctgcaaaa 3420
gggaaaacga tcagtttctt tgatgcaatc cggacctcta ctaagaaaac aggtacacag 3480
gcaactgcct acgatactct cgatattaat aaatctgagg attcagaaac tgtaaactct 3540
gcgtttacag gaacgattct gttctcctct gaattacatg aaaataaatc ctatattcca 3600
caaaacgtag ttctacacag tggatctctt gtattgaagc caaataccga gcttcatgtc 3660
atttcttttg agcagaaaga aggctcttct ctcgttatga cacctggatc tgttctttcg 3720
aaccagactg ttgctgatgg agctttggtc ataaataaca tgaccattga tttatccagc 3780
gtagagaaaa atggtattgc tgaaggaaat atctttactc ctccagaatt gagaatcata 3840
gacactacta caagtggaag cggtggaacc ccatctacag atagtgaaag taaccagaat 3900
agtgatgata ccaaggagca aaataataat gacgcctcga atcaaggaga aagcgcgaat 3960
ggatcgtctt ctcctgcagt agctgctgca cacacatctc gtacaagaaa ctttgccgct 4020
gcagctacag ccacacctac gacaacacca acggctacaa ctacaacaag caaccaagta 4080
atcctaggag gagaaatcaa actcatcgat cctaatggga ccttcttcca gaaccctgca 4140
ttaagatccg accaacaaat ctccttgtta gtgctcccta cagactcatc aaaaatgcaa 4200
gctcagaaaa tagtactgac gggtgatatt gctcctcaga aaggatatac aggaacactc 4260
actctggatc ctgatcaact acaaaatgga acgatctcag cgctctggaa atttgactct 4320
tatagacaat gggcttatgt acctagagac aatcatttct atgcgaactc gattctggga 4380
tctcaaatgt caatggtcac agtcaaacaa ggcttgctca acgataaaat gaatctagct 4440
cgctttgatg aagttagcta taacaacctg tggatatcag gactaggaac gatgctatcg 4500
caagtaggaa cacctacttc tgaagaattc acttattaca gcagaggagc ttctgttgcc 4560
ttagatgcta aaccagccca tgatgtgatt gttggagctg catttagtaa gatgatcggg 4620
aaaacaaaat ccttgaaaag agagaataac tacactcaca aaggatccga atattcttac 4680
caagcatcgg tatacggagg caaaccattc cactttgtaa tcaataaaaa aacggaaaaa 4740
tcgctaccgc tattgttaca aggagtcatc tcttacggat atatcaaaca tgatacagtg 4800
actcactatc caacgatccg tgaacgaaac caaggagaat gggaagactt aggatggctg 4860
acagctctcc gtgtctcctc tgtcttaaga actcctgcac aaggggatac taaacgtatc 4920
actgtttacg gagaattgga atactccagt atccgtcaga aacaattcac agaaacagaa 4980
tacgatcctc gttacttcga caactgcacc tatagaaact tagcaattcc tatggggtta 5040
gcattcgaag gagagctctc tggtaacgat attttgatgt acaacagatt ctctgtagca 5100
tacatgccat caatctatcg aaattctcca acatgcaaat accaagtgct ctcttcagga 5160
gaaggcggag aaattatttg tggagtaccg acaagaaact cagctcgcgg agaatacagc 5220
acgcagctgt acccgggacc tttgtggact ctgtatggat cctacacgat agaagcagac 5280
gcacatacac tagctcatat gatgaactgc ggtgctcgta tgacattcta a 5331




174


5265


DNA


Chlamydia



174
gcaatcatga aatggctgtc agctactgcg gtgtttgctg ctgttctccc ctcagtttca 60
gggttttgct tcccagaacc taaagaatta aatttctctc gcgtagaaac ttcttcctct 120
accactttta ctgaaacaat tggagaagct ggggcagaat atatcgtctc tggtaacgca 180
tctttcacaa aatttaccaa cattcctact accgatacaa caactcccac gaactcaaac 240
tcctctagct ctagcggaga aactgcttcc gtttctgagg atagtgactc tacaacaacg 300
actcctgatc ctaaaggtgg cggcgccttt tataacgcgc actccggagt tttgtccttt 360
atgacacgat caggaacaga aggttcctta actctgtctg agataaaaat gactggtgaa 420
ggcggtgcta tcttctctca aggagagctg ctatttacag atctgacaag tctaaccatc 480
caaaataact tatcccagct atccggagga gcgatttttg gaggatctac aatctcccta 540
tcagggatta ctaaagcgac tttctcctgc aactctgcag aagttcctgc tcctgttaag 600
aaacctacag aacctaaagc tcaaacagca agcgaaacgt cgggttctag tagttctagc 660
ggaaatgatt cggtgtcttc ccccagttcc agtagagctg aacccgcagc agctaatctt 720
caaagtcact ttatttgtgc tacagctact cctgctgctc aaaccgatac agaaacatca 780
actccctctc ataagccagg atctggggga gctatctatg ctaaaggcga ccttactatc 840
gcagactctc aagaggtact attctcaata aataaagcta ctaaagatgg aggagcgatc 900
tttgctgaga aagatgtttc tttcgagaat attacatcat taaaagtaca aactaacggt 960
gctgaagaaa agggaggagc tatctatgct aaaggtgacc tctcaattca atcttctaaa 1020
cagagtcttt ttaattctaa ctacagtaaa caaggtgggg gggctctata tgttgaagga 1080
ggtataaact tccaagatct tgaagaaatt cgcattaagt acaataaagc tggaacgttc 1140
gaaacaaaaa aaatcacttt accttcttta aaagctcaag catctgcagg aaatgcagat 1200
gcttgggcct cttcctctcc tcaatctggt tctggagcaa ctacagtctc cgactcagga 1260
gactctagct ctggctcaga ctcggatacc tcagaaacag ttccagtcac agctaaaggc 1320
ggtgggcttt atactgataa gaatctttcg attactaaca tcacaggaat tatcgaaatt 1380
gcaaataaca aagcgacaga tgttggaggt ggtgcttacg taaaaggaac ccttacttgt 1440
gaaaactctc accgtctaca atttttgaaa aactcttccg ataaacaagg tggaggaatc 1500
tacggagaag acaacatcac cctatctaat ttgacaggga agactctatt ccaagagaat 1560
actgccaaag aagagggcgg tggactcttc ataaaaggta cagataaagc tcttacaatg 1620
acaggactgg atagtttctg tttaattaat aacacatcag aaaaacatgg tggtggagcc 1680
tttgttacca aagaaatctc tcagacttac acctctgatg tggaaacaat tccaggaatc 1740
acgcctgtac atggtgaaac agtcattact ggcaataaat ctacaggagg taatggtgga 1800
ggcgtgtgta caaaacgtct tgccttatct aaccttcaaa gcatttctat atccgggaat 1860
tctgcagcag aaaatggtgg tggagcccac acatgcccag atagcttccc aacggcggat 1920
actgcagaac agcccgcagc agcttctgcc gcgacgtcta ctcccaaatc tgccccggtc 1980
tcaactgctc taagcacacc ttcatcttct accgtctctt cattaacctt actagcagcc 2040
tcttcacaag cctctcctgc aacctctaat aaggaaactc aagatcctaa tgctgataca 2100
gacttattga tcgattatgt agttgatacg actatcagca aaaacactgc taagaaaggc 2160
ggtggaatct atgctaaaaa agccaagatg tcccgcatag accaactgaa tatctctgag 2220
aactccgcta cagagatagg tggaggtatc tgctgtaaag aatctttaga actagatgct 2280
ctagtctcct tatctgtaac agagaacctt gttgggaaag aaggtggagg cttacatgct 2340
aaaactgtaa atatttctaa tctgaaatca ggcttctctt tctcgaacaa caaagcaaac 2400
tcctcatcca caggagtcgc aacaacagct tcagcacctg ctgcagctgc tgcttcccta 2460
caagcagccg cagcagccgc accatcatct ccagcaacac caacttattc aggtgtagta 2520
ggaggagcta tctatggaga aaaggttaca ttctctcaat gtagcgggac ttgtcagttc 2580
tctgggaacc aagctatcga taacaatccc tcccaatcat cgttgaacgt acaaggagga 2640
gccatctatg ccaaaacctc tttgtctatt ggatcttccg atgctggaac ctcctatatt 2700
ttctcgggga acagtgtctc cactgggaaa tctcaaacaa cagggcaaat agcgggagga 2760
gcgatctact cccctactgt tacattgaat tgtcctgcga cattctctaa caatacagcc 2820
tctatagcta caccgaagac ttcttctgaa gatggatcct caggaaattc tattaaagat 2880
accattggag gagccattgc agggacagcc attaccctat ctggagtctc tcgattttca 2940
gggaatacgg ctgatttagg agctgcaata ggaactctag ctaatgcaaa tacacccagt 3000
gcaactagcg gatctcaaaa tagcattaca gaaaaaatta ctttagaaaa cggttctttt 3060
atttttgaaa gaaaccaagc taataaacgt ggagcgattt actctcctag cgtttccatt 3120
aaagggaata atattacctt caatcaaaat acatccactc atgatggaag cgctatctac 3180
tttacaaaag atgctacgat tgagtcttta ggatctgttc tttttacagg aaataacgtt 3240
acagctacac aagctagttc tgcaacatct ggacaaaata caaatactgc caactatggg 3300
gcagccatct ttggagatcc aggaaccact caatcgtctc aaacagatgc cattttaacc 3360
cttcttgctt cttctggaaa cattactttt agcaacaaca gtttacagaa taaccaaggt 3420
gatactcccg ctagcaagtt ttgtagtatt gcaggatacg tcaaactctc tctacaagcc 3480
gctaaaggga agactattag ctttttcgat tgtgtgcaca cctctaccaa aaaaacaggt 3540
tcaacacaaa acgtttatga aactttagat attaataaag aagagaacag taatccatat 3600
acaggaacta ttgtgttctc ttctgaatta catgaaaaca aatcttacat cccacagaat 3660
gcaatccttc acaacggaac tttagttctt aaagagaaaa cagaactcca cgtagtctct 3720
tttgagcaga aagaagggtc taaattaatt atggaacccg gagctgtgtt atctaaccaa 3780
aacatagcta acggagctct agctatcaat gggttaacga ttgatctttc cagtatgggg 3840
actcctcaag caggggaaat cttctctcct ccagaattac gtatcgttgc cacgacctct 3900
agtgcatccg gaggaagcgg ggtcagcagt agtataccaa caaatcctaa aaggatttct 3960
gcagcagtgc cttcaggttc tgccgcaact actccaacta tgagcgagaa caaagttttc 4020
ctaacaggag accttacttt aatagatcct aatggaaact tttaccaaaa ccctatgtta 4080
ggaagcgatc tagatgtacc actaattaag cttccgacta acacaagtga cgtccaagtc 4140
tatgatttaa ctttatctgg ggatcttttc cctcagaaag ggtacatggg aacctggaca 4200
ttagattcta atccacaaac agggaaactt caagccagat ggacattcga tacctatcgt 4260
cgctgggtat acatacctag ggataatcat ttttatgcga actctatctt aggctcccaa 4320
aactcaatga ttgttgtgaa gcaagggctt atcaacaaca tgttgaataa tgcccgcttc 4380
gatgatatcg cttacaataa cttctgggtt tcaggagtag gaactttctt agctcaacaa 4440
ggaactcctc tttccgaaga attcagttac tacagccgcg gaacttcagt tgccatcgat 4500
gccaaaccta gacaagattt tatcctagga gctgcattta gtaagatagt ggggaaaacc 4560
aaagccatca aaaaaatgca taattacttc cataagggct ctgagtactc ttaccaagct 4620
tctgtctatg gaggtaaatt cctgtatttc ttgctcaata agcaacatgg ttgggcactt 4680
cctttcctaa tacaaggagt cgtgtcctat ggacatatta aacatgatac aacaacactt 4740
tacccttcta tccatgaaag aaataaagga gattgggaag atttaggatg gttagcggat 4800
cttcgtatct ctatggatct taaagaacct tctaaagatt cttctaaacg gatcactgtc 4860
tatggggaac tcgagtattc cagcattcgc cagaaacagt tcacagaaat cgattacgat 4920
ccaagacact tcgatgattg tgcttacaga aatctgtcgc ttcctgtggg atgcgctgtc 4980
gaaggagcta tcatgaactg taatattctt atgtataata agcttgcatt agcctacatg 5040
ccttctatct acagaaataa tcctgtctgt aaatatcggg tattgtcttc gaatgaagct 5100
ggtcaagtta tctgcggagt gccaactaga acctctgcta gagcagaata cagtactcaa 5160
ctatatcttg gtcccttctg gactctctac ggaaactata ctatcgatgt aggcatgtat 5220
acgctatcgc aaatgactag ctgcggtgct cgcatgatct tctaa 5265




175


880


PRT


Chlamydia




VARIANT




(1)...(880)




Xaa = Any Amino Acid





175
Ala Ile Met Arg Pro Asp His Met Asn Phe Cys Cys Leu Cys Ala Ala
1 5 10 15
Ile Leu Ser Ser Thr Ala Val Leu Phe Gly Gln Asp Pro Leu Gly Glu
20 25 30
Thr Ala Leu Leu Thr Lys Asn Pro Asn His Val Val Cys Thr Phe Phe
35 40 45
Glu Asp Cys Thr Met Glu Ser Leu Phe Pro Ala Leu Cys Ala His Ala
50 55 60
Ser Gln Asp Asp Pro Leu Tyr Val Leu Gly Asn Ser Tyr Cys Trp Phe
65 70 75 80
Val Ser Lys Leu His Ile Thr Asp Pro Lys Glu Ala Leu Phe Lys Glu
85 90 95
Lys Gly Asp Leu Ser Ile Gln Asn Phe Arg Phe Leu Ser Phe Thr Asp
100 105 110
Cys Ser Ser Lys Glu Ser Ser Pro Ser Ile Ile His Gln Lys Asn Gly
115 120 125
Gln Leu Ser Leu Arg Asn Asn Gly Ser Met Ser Phe Cys Arg Asn His
130 135 140
Ala Glu Gly Ser Gly Gly Ala Ile Ser Ala Asp Ala Phe Ser Leu Gln
145 150 155 160
His Asn Tyr Leu Phe Thr Ala Phe Glu Glu Asn Ser Ser Lys Gly Asn
165 170 175
Gly Gly Ala Ile Gln Ala Gln Thr Phe Ser Leu Ser Arg Asn Val Ser
180 185 190
Pro Ile Ser Phe Ala Arg Asn Arg Ala Asp Leu Asn Gly Gly Ala Ile
195 200 205
Cys Cys Ser Asn Leu Ile Cys Ser Gly Asn Val Asn Pro Leu Phe Phe
210 215 220
Thr Gly Asn Ser Ala Thr Asn Gly Gly Ala Ile Cys Cys Ile Ser Asp
225 230 235 240
Leu Asn Thr Ser Glu Lys Gly Ser Leu Ser Leu Ala Cys Asn Gln Glu
245 250 255
Thr Leu Phe Ala Ser Asn Ser Ala Lys Glu Lys Gly Gly Ala Ile Tyr
260 265 270
Ala Lys His Met Val Leu Arg Tyr Asn Gly Pro Val Ser Phe Ile Asn
275 280 285
Asn Ser Ala Lys Ile Gly Gly Ala Ile Ala Ile Gln Ser Gly Gly Ser
290 295 300
Leu Ser Ile Leu Ala Gly Glu Gly Ser Val Leu Phe Gln Asn Asn Ser
305 310 315 320
Gln Arg Thr Ser Asp Gln Gly Leu Val Arg Asn Ala Ile Tyr Leu Xaa
325 330 335
Lys Asp Ala Ile Leu Ser Ser Leu Glu Ala Arg Asn Gly Asp Ile Leu
340 345 350
Phe Phe Asp Pro Ile Val Gln Glu Ser Ser Ser Lys Glu Ser Pro Leu
355 360 365
Pro Ser Ser Leu Gln Ala Ser Val Thr Ser Pro Thr Pro Ala Thr Ala
370 375 380
Ser Pro Leu Val Ile Gln Thr Ser Ala Asn Arg Ser Val Ile Phe Ser
385 390 395 400
Ser Glu Arg Leu Ser Glu Glu Glu Lys Thr Pro Asp Asn Leu Thr Ser
405 410 415
Gln Leu Gln Gln Pro Ile Glu Leu Lys Ser Gly Arg Leu Val Leu Lys
420 425 430
Asp Arg Ala Val Leu Ser Ala Pro Ser Leu Ser Gln Asp Pro Gln Ala
435 440 445
Leu Leu Ile Met Glu Ala Gly Thr Ser Leu Lys Thr Ser Ser Asp Leu
450 455 460
Lys Leu Ala Thr Leu Ser Ile Pro Leu His Ser Leu Asp Thr Glu Lys
465 470 475 480
Ser Val Thr Ile His Ala Pro Asn Leu Ser Ile Gln Lys Ile Phe Leu
485 490 495
Ser Asn Ser Gly Asp Glu Asn Phe Tyr Glu Asn Val Glu Leu Leu Ser
500 505 510
Lys Glu Gln Asn Asn Ile Pro Leu Leu Thr Leu Pro Lys Glu Gln Ser
515 520 525
His Leu His Leu Pro Asp Gly Asn Leu Ser Ser His Phe Gly Tyr Gln
530 535 540
Gly Asp Trp Thr Phe Ser Trp Lys Asp Ser Asp Glu Gly His Ser Leu
545 550 555 560
Ile Ala Asn Trp Thr Pro Lys Asn Tyr Val Pro His Pro Glu Arg Gln
565 570 575
Ser Thr Leu Val Ala Asn Thr Leu Trp Asn Thr Tyr Ser Asp Met Gln
580 585 590
Ala Val Gln Ser Met Ile Asn Thr Thr Ala His Gly Gly Ala Tyr Leu
595 600 605
Phe Gly Thr Trp Gly Ser Ala Val Ser Asn Leu Phe Tyr Val His Asp
610 615 620
Ser Ser Gly Lys Pro Ile Asp Asn Trp His His Arg Ser Leu Gly Tyr
625 630 635 640
Leu Phe Gly Ile Ser Thr His Ser Leu Asp Asp His Ser Phe Cys Leu
645 650 655
Ala Ala Gly Gln Leu Leu Gly Lys Ser Ser Asp Ser Phe Ile Thr Ser
660 665 670
Thr Glu Thr Thr Ser Tyr Ile Ala Thr Val Gln Ala Gln Leu Ala Thr
675 680 685
Ser Leu Met Lys Ile Ser Ala Gln Ala Cys Tyr Asn Glu Ser Ile His
690 695 700
Glu Leu Lys Thr Lys Tyr Arg Ser Phe Ser Lys Glu Gly Phe Gly Ser
705 710 715 720
Trp His Ser Val Ala Val Ser Gly Glu Val Cys Ala Ser Ile Pro Ile
725 730 735
Val Ser Asn Gly Ser Gly Leu Phe Ser Ser Phe Ser Ile Phe Ser Lys
740 745 750
Leu Gln Gly Phe Ser Gly Thr Gln Asp Gly Phe Glu Glu Ser Ser Gly
755 760 765
Glu Ile Arg Ser Phe Ser Ala Ser Ser Phe Arg Asn Ile Ser Leu Pro
770 775 780
Ile Gly Ile Thr Phe Glu Lys Lys Ser Gln Lys Thr Arg Thr Tyr Tyr
785 790 795 800
Tyr Phe Leu Gly Ala Tyr Ile Gln Asp Leu Lys Arg Asp Val Glu Ser
805 810 815
Gly Pro Val Val Leu Leu Lys Asn Ala Val Ser Trp Asp Ala Pro Met
820 825 830
Ala Asn Leu Asp Ser Arg Ala Tyr Met Phe Arg Leu Thr Asn Gln Arg
835 840 845
Ala Leu His Arg Leu Gln Thr Leu Leu Asn Val Ser Cys Val Leu Arg
850 855 860
Gly Gln Ser His Ser Tyr Ser Leu Asp Leu Gly Thr Thr Tyr Arg Phe
865 870 875 880




176


982


PRT


Chlamydia




VARIANT




(1)...(982)




Xaa = Any Amino Acid





176
Met Ile Pro Gln Gly Ile Tyr Asp Gly Glu Thr Leu Thr Val Ser Phe
1 5 10 15
Pro Tyr Thr Val Ile Gly Asp Pro Ser Gly Thr Thr Val Phe Ser Ala
20 25 30
Gly Glu Leu Thr Leu Lys Asn Leu Asp Asn Ser Ile Ala Ala Leu Pro
35 40 45
Leu Ser Cys Phe Gly Asn Leu Leu Gly Ser Phe Thr Val Leu Gly Arg
50 55 60
Gly His Ser Leu Thr Phe Glu Asn Ile Arg Thr Ser Thr Asn Gly Ala
65 70 75 80
Ala Leu Ser Asn Ser Ala Ala Asp Gly Leu Phe Thr Ile Glu Gly Phe
85 90 95
Lys Glu Leu Ser Phe Ser Asn Cys Asn Ser Leu Leu Ala Val Leu Pro
100 105 110
Ala Ala Thr Thr Asn Lys Gly Ser Gln Thr Pro Thr Thr Thr Ser Thr
115 120 125
Pro Ser Asn Gly Thr Ile Tyr Ser Lys Thr Asp Leu Leu Leu Leu Asn
130 135 140
Asn Glu Lys Phe Ser Phe Tyr Ser Asn Leu Val Ser Gly Asp Gly Gly
145 150 155 160
Ala Ile Asp Ala Lys Ser Leu Thr Val Gln Gly Ile Ser Lys Leu Cys
165 170 175
Val Phe Gln Glu Asn Thr Ala Gln Ala Asp Gly Gly Ala Cys Gln Val
180 185 190
Val Thr Ser Phe Ser Ala Met Ala Asn Glu Ala Pro Ile Ala Phe Val
195 200 205
Ala Asn Val Ala Gly Val Arg Gly Gly Gly Ile Ala Ala Val Gln Asp
210 215 220
Gly Gln Gln Gly Val Ser Ser Ser Thr Ser Thr Glu Asp Pro Val Val
225 230 235 240
Ser Phe Ser Arg Asn Thr Ala Val Glu Phe Asp Gly Asn Val Ala Arg
245 250 255
Val Gly Gly Gly Ile Tyr Ser Tyr Gly Asn Val Ala Phe Leu Asn Asn
260 265 270
Gly Lys Thr Leu Phe Leu Asn Asn Val Ala Ser Pro Val Tyr Ile Ala
275 280 285
Ala Lys Gln Pro Thr Ser Gly Gln Ala Ser Asn Thr Ser Asn Asn Tyr
290 295 300
Gly Asp Gly Gly Ala Ile Phe Cys Lys Asn Gly Ala Gln Ala Gly Ser
305 310 315 320
Asn Asn Ser Gly Ser Val Ser Phe Asp Gly Glu Gly Val Val Phe Phe
325 330 335
Ser Ser Asn Val Ala Ala Gly Lys Gly Gly Ala Ile Tyr Ala Lys Lys
340 345 350
Leu Ser Val Ala Asn Cys Gly Pro Val Gln Phe Leu Arg Asn Ile Ala
355 360 365
Asn Asp Gly Gly Ala Ile Tyr Leu Gly Glu Ser Gly Glu Leu Ser Leu
370 375 380
Ser Ala Asp Tyr Gly Asp Ile Ile Phe Asp Gly Asn Leu Lys Arg Thr
385 390 395 400
Ala Lys Glu Asn Ala Ala Asp Val Asn Gly Val Thr Val Ser Ser Gln
405 410 415
Ala Ile Ser Met Gly Ser Gly Gly Lys Ile Thr Thr Leu Arg Ala Lys
420 425 430
Ala Gly His Gln Ile Leu Phe Asn Asp Pro Ile Glu Met Ala Asn Gly
435 440 445
Asn Asn Gln Pro Ala Gln Ser Ser Lys Leu Leu Lys Ile Asn Asp Gly
450 455 460
Glu Gly Tyr Thr Gly Asp Ile Val Phe Ala Asn Gly Ser Ser Thr Leu
465 470 475 480
Tyr Gln Asn Val Thr Ile Glu Gln Gly Arg Ile Val Leu Arg Glu Lys
485 490 495
Ala Lys Leu Ser Val Asn Ser Leu Ser Gln Thr Gly Gly Ser Leu Tyr
500 505 510
Met Glu Ala Gly Ser Thr Leu Asp Phe Val Thr Pro Gln Pro Pro Gln
515 520 525
Gln Pro Pro Ala Ala Asn Gln Leu Ile Thr Leu Ser Asn Leu His Leu
530 535 540
Ser Leu Ser Ser Leu Leu Ala Asn Asn Ala Val Thr Asn Pro Pro Thr
545 550 555 560
Asn Pro Pro Ala Gln Asp Ser His Pro Ala Val Ile Gly Ser Thr Thr
565 570 575
Ala Gly Ser Val Thr Ile Ser Gly Pro Ile Phe Phe Glu Asp Leu Asp
580 585 590
Asp Thr Ala Tyr Asp Arg Tyr Asp Trp Leu Gly Ser Asn Gln Lys Ile
595 600 605
Asn Val Leu Lys Leu Gln Leu Gly Thr Lys Pro Pro Ala Asn Ala Pro
610 615 620
Ser Asp Leu Thr Leu Gly Asn Glu Met Pro Lys Tyr Gly Tyr Gln Gly
625 630 635 640
Ser Trp Lys Leu Ala Trp Asp Pro Asn Thr Ala Asn Asn Gly Pro Tyr
645 650 655
Thr Leu Lys Ala Thr Trp Thr Lys Thr Gly Tyr Asn Pro Gly Pro Glu
660 665 670
Arg Val Ala Ser Leu Val Pro Asn Ser Leu Trp Gly Ser Ile Leu Asp
675 680 685
Ile Arg Ser Ala His Ser Ala Ile Gln Ala Ser Val Asp Gly Arg Ser
690 695 700
Tyr Cys Arg Gly Leu Trp Val Ser Gly Val Ser Asn Phe Phe Tyr His
705 710 715 720
Asp Arg Asp Ala Leu Gly Gln Gly Tyr Arg Tyr Ile Ser Gly Gly Tyr
725 730 735
Ser Leu Gly Ala Asn Ser Tyr Phe Gly Ser Ser Met Phe Gly Leu Ala
740 745 750
Phe Thr Glu Val Phe Gly Arg Ser Lys Asp Tyr Val Val Cys Arg Ser
755 760 765
Asn His His Ala Cys Ile Gly Ser Val Tyr Leu Ser Thr Gln Gln Ala
770 775 780
Leu Cys Gly Ser Tyr Leu Phe Gly Asp Ala Phe Ile Arg Ala Ser Tyr
785 790 795 800
Gly Phe Gly Asn Gln His Met Lys Thr Ser Tyr Thr Phe Ala Glu Glu
805 810 815
Ser Asp Val Arg Trp Asp Asn Asn Cys Leu Ala Gly Glu Ile Gly Ala
820 825 830
Gly Leu Pro Ile Val Ile Thr Pro Ser Lys Leu Tyr Leu Asn Glu Leu
835 840 845
Arg Pro Phe Val Gln Ala Glu Phe Ser Tyr Ala Asp His Glu Ser Phe
850 855 860
Thr Glu Glu Gly Asp Gln Ala Arg Ala Phe Lys Ser Gly His Leu Leu
865 870 875 880
Asn Leu Ser Val Pro Val Gly Val Lys Phe Asp Arg Cys Ser Ser Thr
885 890 895
His Pro Asn Lys Tyr Ser Phe Met Ala Ala Tyr Ile Cys Asp Ala Tyr
900 905 910
Arg Thr Ile Ser Gly Thr Glu Thr Thr Leu Leu Ser His Gln Glu Thr
915 920 925
Trp Thr Thr Asp Ala Phe His Leu Ala Arg His Gly Val Val Val Arg
930 935 940
Gly Ser Met Tyr Ala Ser Leu Thr Ser Asn Ile Glu Val Tyr Gly His
945 950 955 960
Gly Arg Tyr Glu Tyr Arg Asp Ala Ser Arg Gly Tyr Gly Leu Ser Ala
965 970 975
Gly Ser Lys Val Xaa Phe
980




177


964


PRT


Chlamydia



177
Met Lys Lys Ala Phe Phe Phe Phe Leu Ile Gly Asn Ser Leu Ser Gly
1 5 10 15
Leu Ala Arg Glu Val Pro Ser Arg Ile Phe Leu Met Pro Asn Ser Val
20 25 30
Pro Asp Pro Thr Lys Glu Ser Leu Ser Asn Lys Ile Ser Leu Thr Gly
35 40 45
Asp Thr His Asn Leu Thr Asn Cys Tyr Leu Asp Asn Leu Arg Tyr Ile
50 55 60
Leu Ala Ile Leu Gln Lys Thr Pro Asn Glu Gly Ala Ala Val Thr Ile
65 70 75 80
Thr Asp Tyr Leu Ser Phe Phe Asp Thr Gln Lys Glu Gly Ile Tyr Phe
85 90 95
Ala Lys Asn Leu Thr Pro Glu Ser Gly Gly Ala Ile Gly Tyr Ala Ser
100 105 110
Pro Asn Ser Pro Thr Val Glu Ile Arg Asp Thr Ile Gly Pro Val Ile
115 120 125
Phe Glu Asn Asn Thr Cys Cys Arg Leu Phe Thr Trp Arg Asn Pro Tyr
130 135 140
Ala Ala Asp Lys Ile Arg Glu Gly Gly Ala Ile His Ala Gln Asn Leu
145 150 155 160
Tyr Ile Asn His Asn His Asp Val Val Gly Phe Met Lys Asn Phe Ser
165 170 175
Tyr Val Gln Gly Gly Ala Ile Ser Thr Ala Asn Thr Phe Val Val Ser
180 185 190
Glu Asn Gln Ser Cys Phe Leu Phe Met Asp Asn Ile Cys Ile Gln Thr
195 200 205
Asn Thr Ala Gly Lys Gly Gly Ala Ile Tyr Ala Gly Thr Ser Asn Ser
210 215 220
Phe Glu Ser Asn Asn Cys Asp Leu Phe Phe Ile Asn Asn Ala Cys Cys
225 230 235 240
Ala Gly Gly Ala Ile Phe Ser Pro Ile Cys Ser Leu Thr Gly Asn Arg
245 250 255
Gly Asn Ile Val Phe Tyr Asn Asn Arg Cys Phe Lys Asn Val Glu Thr
260 265 270
Ala Ser Ser Glu Ala Ser Asp Gly Gly Ala Ile Lys Val Thr Thr Arg
275 280 285
Leu Asp Val Thr Gly Asn Arg Gly Arg Ile Phe Phe Ser Asp Asn Ile
290 295 300
Thr Lys Asn Tyr Gly Gly Ala Ile Tyr Ala Pro Val Val Thr Leu Val
305 310 315 320
Asp Asn Gly Pro Thr Tyr Phe Ile Asn Asn Ile Ala Asn Asn Lys Gly
325 330 335
Gly Ala Ile Tyr Ile Asp Gly Thr Ser Asn Ser Lys Ile Ser Ala Asp
340 345 350
Arg His Ala Ile Ile Phe Asn Glu Asn Ile Val Thr Asn Val Thr Asn
355 360 365
Ala Asn Gly Thr Ser Thr Ser Ala Asn Pro Pro Arg Arg Asn Ala Ile
370 375 380
Thr Val Ala Ser Ser Ser Gly Glu Ile Leu Leu Gly Ala Gly Ser Ser
385 390 395 400
Gln Asn Leu Ile Phe Tyr Asp Pro Ile Glu Val Ser Asn Ala Gly Val
405 410 415
Ser Val Ser Phe Asn Lys Glu Ala Asp Gln Thr Gly Ser Val Val Phe
420 425 430
Ser Gly Ala Thr Val Asn Ser Ala Asp Phe His Gln Arg Asn Leu Gln
435 440 445
Thr Lys Thr Pro Ala Pro Leu Thr Leu Ser Asn Gly Phe Leu Cys Ile
450 455 460
Glu Asp His Ala Gln Leu Thr Val Asn Arg Phe Thr Gln Thr Gly Gly
465 470 475 480
Val Val Ser Leu Gly Asn Gly Ala Val Leu Ser Cys Tyr Lys Asn Gly
485 490 495
Thr Gly Asp Ser Ala Ser Asn Ala Ser Ile Thr Leu Lys His Ile Gly
500 505 510
Leu Asn Leu Ser Ser Ile Leu Lys Ser Gly Ala Glu Ile Pro Leu Leu
515 520 525
Trp Val Glu Pro Thr Asn Asn Ser Asn Asn Tyr Thr Ala Asp Thr Ala
530 535 540
Ala Thr Phe Ser Leu Ser Asp Val Lys Leu Ser Leu Ile Asp Asp Tyr
545 550 555 560
Gly Asn Ser Pro Tyr Glu Ser Thr Asp Leu Thr His Ala Leu Ser Ser
565 570 575
Gln Pro Met Leu Ser Ile Ser Glu Ala Ser Asp Asn Gln Leu Gln Ser
580 585 590
Glu Asn Ile Asp Phe Ser Gly Leu Asn Val Pro His Tyr Gly Trp Gln
595 600 605
Gly Leu Trp Thr Trp Gly Trp Ala Lys Thr Gln Asp Pro Glu Pro Ala
610 615 620
Ser Ser Ala Thr Ile Thr Asp Pro Gln Lys Ala Asn Arg Phe His Arg
625 630 635 640
Thr Leu Leu Leu Thr Trp Leu Pro Ala Gly Tyr Val Pro Ser Pro Lys
645 650 655
His Arg Ser Pro Leu Ile Ala Asn Thr Leu Trp Gly Asn Met Leu Leu
660 665 670
Ala Thr Glu Ser Leu Lys Asn Ser Ala Glu Leu Thr Pro Ser Gly His
675 680 685
Pro Phe Trp Gly Ile Thr Gly Gly Gly Leu Gly Met Met Val Tyr Gln
690 695 700
Asp Pro Arg Glu Asn His Pro Gly Phe His Met Arg Ser Ser Gly Tyr
705 710 715 720
Ser Ala Gly Met Ile Ala Gly Gln Thr His Thr Phe Ser Leu Lys Phe
725 730 735
Ser Gln Thr Tyr Thr Lys Leu Asn Glu Arg Tyr Ala Lys Asn Asn Val
740 745 750
Ser Ser Lys Asn Tyr Ser Cys Gln Gly Glu Met Leu Phe Ser Leu Gln
755 760 765
Glu Gly Phe Leu Leu Thr Lys Leu Val Gly Leu Tyr Ser Tyr Gly Asp
770 775 780
His Asn Cys His His Phe Tyr Thr Gln Gly Glu Asn Leu Thr Ser Gln
785 790 795 800
Gly Thr Phe Arg Ser Gln Thr Met Gly Gly Ala Val Phe Phe Asp Leu
805 810 815
Pro Met Lys Pro Phe Gly Ser Thr His Ile Leu Thr Ala Pro Phe Leu
820 825 830
Gly Ala Leu Gly Ile Tyr Ser Ser Leu Ser His Phe Thr Glu Val Gly
835 840 845
Ala Tyr Pro Arg Ser Phe Ser Thr Lys Thr Pro Leu Ile Asn Val Leu
850 855 860
Val Pro Ile Gly Val Lys Gly Ser Phe Met Asn Ala Thr His Arg Pro
865 870 875 880
Gln Ala Trp Thr Val Glu Leu Ala Tyr Gln Pro Val Leu Tyr Arg Gln
885 890 895
Glu Pro Gly Ile Ala Thr Gln Leu Leu Ala Ser Lys Gly Ile Trp Phe
900 905 910
Gly Ser Gly Ser Pro Ser Ser Arg His Ala Met Ser Tyr Lys Ile Ser
915 920 925
Gln Gln Thr Gln Pro Leu Ser Trp Leu Thr Leu His Phe Gln Tyr His
930 935 940
Gly Phe Tyr Ser Ser Ser Thr Phe Cys Asn Tyr Leu Asn Gly Glu Ile
945 950 955 960
Ala Leu Arg Phe




178


1530


PRT


Chlamydia



178
Met Ser Ser Glu Lys Asp Ile Lys Ser Thr Cys Ser Lys Phe Ser Leu
1 5 10 15
Ser Val Val Ala Ala Ile Leu Ala Ser Val Ser Gly Leu Ala Ser Cys
20 25 30
Val Asp Leu His Ala Gly Gly Gln Ser Val Asn Glu Leu Val Tyr Val
35 40 45
Gly Pro Gln Ala Val Leu Leu Leu Asp Gln Ile Arg Asp Leu Phe Val
50 55 60
Gly Ser Lys Asp Ser Gln Ala Glu Gly Gln Tyr Arg Leu Ile Val Gly
65 70 75 80
Asp Pro Ser Ser Phe Gln Glu Lys Asp Ala Asp Thr Leu Pro Gly Lys
85 90 95
Val Glu Gln Ser Thr Leu Phe Ser Val Thr Asn Pro Val Val Phe Gln
100 105 110
Gly Val Asp Gln Gln Asp Gln Val Ser Ser Gln Gly Leu Ile Cys Ser
115 120 125
Phe Thr Ser Ser Asn Leu Asp Ser Pro Arg Asp Gly Glu Ser Phe Leu
130 135 140
Gly Ile Ala Phe Val Gly Asp Ser Ser Lys Ala Gly Ile Thr Leu Thr
145 150 155 160
Asp Val Lys Ala Ser Leu Ser Gly Ala Ala Leu Tyr Ser Thr Glu Asp
165 170 175
Leu Ile Phe Glu Lys Ile Lys Gly Gly Leu Glu Phe Ala Ser Cys Ser
180 185 190
Ser Leu Glu Gln Gly Gly Ala Cys Ala Ala Gln Ser Ile Leu Ile His
195 200 205
Asp Cys Gln Gly Leu Gln Val Lys His Cys Thr Thr Ala Val Asn Ala
210 215 220
Glu Gly Ser Ser Ala Asn Asp His Leu Gly Phe Gly Gly Gly Ala Phe
225 230 235 240
Phe Val Thr Gly Ser Leu Ser Gly Glu Lys Ser Leu Tyr Met Pro Ala
245 250 255
Gly Asp Met Val Val Ala Asn Cys Asp Gly Ala Ile Ser Phe Glu Gly
260 265 270
Asn Ser Ala Asn Phe Ala Asn Gly Gly Ala Ile Ala Ala Ser Gly Lys
275 280 285
Val Leu Phe Val Ala Asn Asp Lys Lys Thr Ser Phe Ile Glu Asn Arg
290 295 300
Ala Leu Ser Gly Gly Ala Ile Ala Ala Ser Ser Asp Ile Ala Phe Gln
305 310 315 320
Asn Cys Ala Glu Leu Val Phe Lys Gly Asn Cys Ala Ile Gly Thr Glu
325 330 335
Asp Lys Gly Ser Leu Gly Gly Gly Ala Ile Ser Ser Leu Gly Thr Val
340 345 350
Leu Leu Gln Gly Asn His Gly Ile Thr Cys Asp Lys Asn Glu Ser Ala
355 360 365
Ser Gln Gly Gly Ala Ile Phe Gly Lys Asn Cys Gln Ile Ser Asp Asn
370 375 380
Glu Gly Pro Val Val Phe Arg Asp Ser Thr Ala Cys Leu Gly Gly Gly
385 390 395 400
Ala Ile Ala Ala Gln Glu Ile Val Ser Ile Gln Asn Asn Gln Ala Gly
405 410 415
Ile Ser Phe Glu Gly Gly Lys Ala Ser Phe Gly Gly Gly Ile Ala Cys
420 425 430
Gly Ser Phe Ser Ser Ala Gly Gly Ala Ser Val Leu Gly Thr Ile Asp
435 440 445
Ile Ser Lys Asn Leu Gly Ala Ile Ser Phe Ser Arg Thr Leu Cys Thr
450 455 460
Thr Ser Asp Leu Gly Gln Met Glu Tyr Gln Gly Gly Gly Ala Leu Phe
465 470 475 480
Gly Glu Asn Ile Ser Leu Ser Glu Asn Ala Gly Val Leu Thr Phe Lys
485 490 495
Asp Asn Ile Val Lys Thr Phe Ala Ser Asn Gly Lys Ile Leu Gly Gly
500 505 510
Gly Ala Ile Leu Ala Thr Gly Lys Val Glu Ile Thr Asn Asn Ser Gly
515 520 525
Gly Ile Ser Phe Thr Gly Asn Ala Arg Ala Pro Gln Ala Leu Pro Thr
530 535 540
Gln Glu Glu Phe Pro Leu Phe Ser Lys Lys Glu Gly Arg Pro Leu Ser
545 550 555 560
Ser Gly Tyr Ser Gly Gly Gly Ala Ile Leu Gly Arg Glu Val Ala Ile
565 570 575
Leu His Asn Ala Ala Val Val Phe Glu Gln Asn Arg Leu Gln Cys Ser
580 585 590
Glu Glu Glu Ala Thr Leu Leu Gly Cys Cys Gly Gly Gly Ala Val His
595 600 605
Gly Met Asp Ser Thr Ser Ile Val Gly Asn Ser Ser Val Arg Phe Gly
610 615 620
Asn Asn Tyr Ala Met Gly Gln Gly Val Ser Gly Gly Ala Leu Leu Ser
625 630 635 640
Lys Thr Val Gln Leu Ala Gly Asn Gly Ser Val Asp Phe Ser Arg Asn
645 650 655
Ile Ala Ser Leu Gly Gly Gly Ala Leu Gln Ala Ser Glu Gly Asn Cys
660 665 670
Glu Leu Val Asp Asn Gly Tyr Val Leu Phe Arg Asp Asn Arg Gly Arg
675 680 685
Val Tyr Gly Gly Ala Ile Ser Cys Leu Arg Gly Asp Val Val Ile Ser
690 695 700
Gly Asn Lys Gly Arg Val Glu Phe Lys Asp Asn Ile Ala Thr Arg Leu
705 710 715 720
Tyr Val Glu Glu Thr Val Glu Lys Val Glu Glu Val Glu Pro Ala Pro
725 730 735
Glu Gln Lys Asp Asn Asn Glu Leu Ser Phe Leu Gly Ser Val Glu Gln
740 745 750
Ser Phe Ile Thr Ala Ala Asn Gln Ala Leu Phe Ala Ser Glu Asp Gly
755 760 765
Asp Leu Ser Pro Glu Ser Ser Ile Ser Ser Glu Glu Leu Ala Lys Arg
770 775 780
Arg Glu Cys Ala Gly Gly Ala Ile Phe Ala Lys Arg Val Arg Ile Val
785 790 795 800
Asp Asn Gln Glu Ala Val Val Phe Ser Asn Asn Phe Ser Asp Ile Tyr
805 810 815
Gly Gly Ala Ile Phe Thr Gly Ser Leu Arg Glu Glu Asp Lys Leu Asp
820 825 830
Gly Gln Ile Pro Glu Val Leu Ile Ser Gly Asn Ala Gly Asp Val Val
835 840 845
Phe Ser Gly Asn Ser Ser Lys Arg Asp Glu His Leu Pro His Thr Gly
850 855 860
Gly Gly Ala Ile Cys Thr Gln Asn Leu Thr Ile Ser Gln Asn Thr Gly
865 870 875 880
Asn Val Leu Phe Tyr Asn Asn Val Ala Cys Ser Gly Gly Ala Val Arg
885 890 895
Ile Glu Asp His Gly Asn Val Leu Leu Glu Ala Phe Gly Gly Asp Ile
900 905 910
Val Phe Lys Gly Asn Ser Ser Phe Arg Ala Gln Gly Ser Asp Ala Ile
915 920 925
Tyr Phe Ala Gly Lys Glu Ser His Ile Thr Ala Leu Asn Ala Thr Glu
930 935 940
Gly His Ala Ile Val Phe His Asp Ala Leu Val Phe Glu Asn Leu Lys
945 950 955 960
Glu Arg Lys Ser Ala Glu Val Leu Leu Ile Asn Ser Arg Glu Asn Pro
965 970 975
Gly Tyr Thr Gly Ser Ile Arg Phe Leu Glu Ala Glu Ser Lys Val Pro
980 985 990
Gln Cys Ile His Val Gln Gln Gly Ser Leu Glu Leu Leu Asn Gly Ala
995 1000 1005
Thr Leu Cys Ser Tyr Gly Phe Lys Gln Asp Ala Gly Ala Lys Leu Val
1010 1015 1020
Leu Ala Ala Gly Ser Lys Leu Lys Ile Leu Asp Ser Gly Thr Pro Val
1025 1030 1035 1040
Gln Gly His Ala Ile Ser Lys Pro Glu Ala Glu Ile Glu Ser Ser Ser
1045 1050 1055
Glu Pro Glu Gly Ala His Ser Leu Trp Ile Ala Lys Asn Ala Gln Thr
1060 1065 1070
Thr Val Pro Met Val Asp Ile His Thr Ile Ser Val Asp Leu Ala Ser
1075 1080 1085
Phe Ser Ser Ser Gln Gln Glu Gly Thr Val Glu Ala Pro Gln Val Ile
1090 1095 1100
Val Pro Gly Gly Ser Tyr Val Arg Ser Gly Glu Leu Asn Leu Glu Leu
1105 1110 1115 1120
Val Asn Thr Thr Gly Thr Gly Tyr Glu Asn His Ala Leu Leu Lys Asn
1125 1130 1135
Glu Ala Lys Val Pro Leu Met Ser Phe Val Ala Ser Ser Asp Glu Ala
1140 1145 1150
Ser Ala Glu Ile Ser Asn Leu Ser Val Ser Asp Leu Gln Ile His Val
1155 1160 1165
Ala Thr Pro Glu Ile Glu Glu Asp Thr Tyr Gly His Met Gly Asp Trp
1170 1175 1180
Ser Glu Ala Lys Ile Gln Asp Gly Thr Leu Val Ile Asn Trp Asn Pro
1185 1190 1195 1200
Thr Gly Tyr Arg Leu Asp Pro Gln Lys Ala Gly Ala Leu Val Phe Asn
1205 1210 1215
Ala Leu Trp Glu Glu Gly Ala Val Leu Ser Ala Leu Lys Asn Ala Arg
1220 1225 1230
Phe Ala His Asn Leu Thr Ala Gln Arg Met Glu Phe Asp Tyr Ser Thr
1235 1240 1245
Asn Val Trp Gly Phe Ala Phe Gly Gly Phe Arg Thr Leu Ser Ala Glu
1250 1255 1260
Asn Leu Val Ala Ile Asp Gly Tyr Lys Gly Ala Tyr Gly Gly Ala Ser
1265 1270 1275 1280
Ala Gly Val Asp Ile Gln Leu Met Glu Asp Phe Val Leu Gly Val Ser
1285 1290 1295
Gly Ala Ala Phe Leu Gly Lys Met Asp Ser Gln Lys Phe Asp Ala Glu
1300 1305 1310
Val Ser Arg Lys Gly Val Val Gly Ser Val Tyr Thr Gly Phe Leu Ala
1315 1320 1325
Gly Ser Trp Phe Phe Lys Gly Gln Tyr Ser Leu Gly Glu Thr Gln Asn
1330 1335 1340
Asp Met Lys Thr Arg Tyr Gly Val Leu Gly Glu Ser Ser Ala Ser Trp
1345 1350 1355 1360
Thr Ser Arg Gly Val Leu Ala Asp Ala Leu Val Glu Tyr Arg Ser Leu
1365 1370 1375
Val Gly Pro Val Arg Pro Thr Phe Tyr Ala Leu His Phe Asn Pro Tyr
1380 1385 1390
Val Glu Val Ser Tyr Ala Ser Met Lys Phe Pro Gly Phe Thr Glu Gln
1395 1400 1405
Gly Arg Glu Ala Arg Ser Phe Glu Asp Ala Ser Leu Thr Asn Ile Thr
1410 1415 1420
Ile Pro Leu Gly Met Lys Phe Glu Leu Ala Phe Ile Lys Gly Gln Phe
1425 1430 1435 1440
Ser Glu Val Asn Ser Leu Gly Ile Ser Tyr Ala Trp Glu Ala Tyr Arg
1445 1450 1455
Lys Val Glu Gly Gly Ala Val Gln Leu Leu Glu Ala Gly Phe Asp Trp
1460 1465 1470
Glu Gly Ala Pro Met Asp Leu Pro Arg Gln Glu Leu Arg Val Ala Leu
1475 1480 1485
Glu Asn Asn Thr Glu Trp Ser Ser Tyr Phe Ser Thr Val Leu Gly Leu
1490 1495 1500
Thr Ala Phe Cys Gly Gly Phe Thr Ser Thr Asp Ser Lys Leu Gly Tyr
1505 1510 1515 1520
Glu Ala Asn Thr Gly Leu Arg Leu Ile Phe
1525 1530




179


1776


PRT


Chlamydia



179
Ala Ile Met Lys Phe Met Ser Ala Thr Ala Val Phe Ala Ala Val Leu
1 5 10 15
Ser Ser Val Thr Glu Ala Ser Ser Ile Gln Asp Gln Ile Lys Asn Thr
20 25 30
Asp Cys Asn Val Ser Lys Val Gly Tyr Ser Thr Ser Gln Ala Phe Thr
35 40 45
Asp Met Met Leu Ala Asp Asn Thr Glu Tyr Arg Ala Ala Asp Ser Val
50 55 60
Ser Phe Tyr Asp Phe Ser Thr Ser Ser Gly Leu Pro Arg Lys His Leu
65 70 75 80
Ser Ser Ser Ser Glu Ala Ser Pro Thr Thr Glu Gly Val Ser Ser Ser
85 90 95
Ser Ser Gly Glu Asn Thr Glu Asn Ser Gln Asp Ser Ala Pro Ser Ser
100 105 110
Gly Glu Thr Asp Lys Lys Thr Glu Glu Glu Leu Asp Asn Gly Gly Ile
115 120 125
Ile Tyr Ala Arg Glu Lys Leu Thr Ile Ser Glu Ser Gln Asp Ser Leu
130 135 140
Ser Asn Pro Ser Ile Glu Leu His Asp Asn Ser Phe Phe Phe Gly Glu
145 150 155 160
Gly Glu Val Ile Phe Asp His Arg Val Ala Leu Lys Asn Gly Gly Ala
165 170 175
Ile Tyr Gly Glu Lys Glu Val Val Phe Glu Asn Ile Lys Ser Leu Leu
180 185 190
Val Glu Val Asn Ile Ser Val Glu Lys Gly Gly Ser Val Tyr Ala Lys
195 200 205
Glu Arg Val Ser Leu Glu Asn Val Thr Glu Ala Thr Phe Ser Ser Asn
210 215 220
Gly Gly Glu Gln Gly Gly Gly Gly Ile Tyr Ser Glu Gln Asp Met Leu
225 230 235 240
Ile Ser Asp Cys Asn Asn Val His Phe Gln Gly Asn Ala Ala Gly Ala
245 250 255
Thr Ala Val Lys Gln Cys Leu Asp Glu Glu Met Ile Val Leu Leu Thr
260 265 270
Glu Cys Val Asp Ser Leu Ser Glu Asp Thr Leu Asp Ser Thr Pro Glu
275 280 285
Thr Glu Gln Thr Lys Ser Asn Gly Asn Gln Asp Gly Ser Ser Glu Thr
290 295 300
Lys Asp Thr Gln Val Ser Glu Ser Pro Glu Ser Thr Pro Ser Pro Asp
305 310 315 320
Asp Val Leu Gly Lys Gly Gly Gly Ile Tyr Thr Glu Lys Ser Leu Thr
325 330 335
Ile Thr Gly Ile Thr Gly Thr Ile Asp Phe Val Ser Asn Ile Ala Thr
340 345 350
Asp Ser Gly Ala Gly Val Phe Thr Lys Glu Asn Leu Ser Cys Thr Asn
355 360 365
Thr Asn Ser Leu Gln Phe Leu Lys Asn Ser Ala Gly Gln His Gly Gly
370 375 380
Gly Ala Tyr Val Thr Gln Thr Met Ser Val Thr Asn Thr Thr Ser Glu
385 390 395 400
Ser Ile Thr Thr Pro Pro Leu Val Gly Glu Val Ile Phe Ser Glu Asn
405 410 415
Thr Ala Lys Gly His Gly Gly Gly Ile Cys Thr Asn Lys Leu Ser Leu
420 425 430
Ser Asn Leu Lys Thr Val Thr Leu Thr Lys Asn Ser Ala Lys Glu Ser
435 440 445
Gly Gly Ala Ile Phe Thr Asp Leu Ala Ser Ile Pro Thr Thr Asp Thr
450 455 460
Pro Glu Ser Ser Thr Pro Ser Ser Ser Ser Pro Ala Ser Thr Pro Glu
465 470 475 480
Val Val Ala Ser Ala Lys Ile Asn Arg Phe Phe Ala Ser Thr Ala Glu
485 490 495
Pro Ala Ala Pro Ser Leu Thr Glu Ala Glu Ser Asp Gln Thr Asp Gln
500 505 510
Thr Glu Thr Ser Asp Thr Asn Ser Asp Ile Asp Val Ser Ile Glu Asn
515 520 525
Ile Leu Asn Val Ala Ile Asn Gln Asn Thr Ser Ala Lys Lys Gly Gly
530 535 540
Ala Ile Tyr Gly Lys Lys Ala Lys Leu Ser Arg Ile Asn Asn Leu Glu
545 550 555 560
Leu Ser Gly Asn Ser Ser Gln Asp Val Gly Gly Gly Leu Cys Leu Thr
565 570 575
Glu Ser Val Glu Phe Asp Ala Ile Gly Ser Leu Leu Ser His Tyr Asn
580 585 590
Ser Ala Ala Lys Glu Gly Gly Val Ile His Ser Lys Thr Val Thr Leu
595 600 605
Ser Asn Leu Lys Ser Thr Phe Thr Phe Ala Asp Asn Thr Val Lys Ala
610 615 620
Ile Val Glu Ser Thr Pro Glu Ala Pro Glu Glu Ile Pro Pro Val Glu
625 630 635 640
Gly Glu Glu Ser Thr Ala Thr Glu Asn Pro Asn Ser Asn Thr Glu Gly
645 650 655
Ser Ser Ala Asn Thr Asn Leu Glu Gly Ser Gln Gly Asp Thr Ala Asp
660 665 670
Thr Gly Thr Gly Val Val Asn Asn Glu Ser Gln Asp Thr Ser Asp Thr
675 680 685
Gly Asn Ala Glu Ser Gly Glu Gln Leu Gln Asp Ser Thr Gln Ser Asn
690 695 700
Glu Glu Asn Thr Leu Pro Asn Ser Ser Ile Asp Gln Ser Asn Glu Asn
705 710 715 720
Thr Asp Glu Ser Ser Asp Ser His Thr Glu Glu Ile Thr Asp Glu Ser
725 730 735
Val Ser Ser Ser Ser Lys Ser Gly Ser Ser Thr Pro Gln Asp Gly Gly
740 745 750
Ala Ala Ser Ser Gly Ala Pro Ser Gly Asp Gln Ser Ile Ser Ala Asn
755 760 765
Ala Cys Leu Ala Lys Ser Tyr Ala Ala Ser Thr Asp Ser Ser Pro Val
770 775 780
Ser Asn Ser Ser Gly Ser Asp Val Thr Ala Ser Ser Asp Asn Pro Asp
785 790 795 800
Ser Ser Ser Ser Gly Asp Ser Ala Gly Asp Ser Glu Gly Pro Thr Glu
805 810 815
Pro Glu Ala Gly Ser Thr Thr Glu Thr Pro Thr Leu Ile Gly Gly Gly
820 825 830
Ala Ile Tyr Gly Glu Thr Val Lys Ile Glu Asn Phe Ser Gly Gln Gly
835 840 845
Ile Phe Ser Gly Asn Lys Ala Ile Asp Asn Thr Thr Glu Gly Ser Ser
850 855 860
Ser Lys Ser Asn Val Leu Gly Gly Ala Val Tyr Ala Lys Thr Leu Phe
865 870 875 880
Asn Leu Asp Ser Gly Ser Ser Arg Arg Thr Val Thr Phe Ser Gly Asn
885 890 895
Thr Val Ser Ser Gln Ser Thr Thr Gly Gln Val Ala Gly Gly Ala Ile
900 905 910
Tyr Ser Pro Thr Val Thr Ile Ala Thr Pro Val Val Phe Ser Lys Asn
915 920 925
Ser Ala Thr Asn Asn Ala Asn Asn Ala Thr Asp Thr Gln Arg Lys Asp
930 935 940
Thr Phe Gly Gly Ala Ile Gly Ala Thr Ser Ala Val Ser Leu Ser Gly
945 950 955 960
Gly Ala His Phe Leu Glu Asn Val Ala Asp Leu Gly Ser Ala Ile Gly
965 970 975
Leu Val Pro Asp Thr Gln Asn Thr Glu Thr Val Lys Leu Glu Ser Gly
980 985 990
Ser Tyr Tyr Phe Glu Lys Asn Lys Ala Leu Lys Arg Ala Thr Ile Tyr
995 1000 1005
Ala Pro Val Val Ser Ile Lys Ala Tyr Thr Ala Thr Phe Asn Gln Asn
1010 1015 1020
Arg Ser Leu Glu Glu Gly Ser Ala Ile Tyr Phe Thr Lys Glu Ala Ser
1025 1030 1035 1040
Ile Glu Ser Leu Gly Ser Val Leu Phe Thr Gly Asn Leu Val Thr Pro
1045 1050 1055
Thr Leu Ser Thr Thr Thr Glu Gly Thr Pro Ala Thr Thr Ser Gly Asp
1060 1065 1070
Val Thr Lys Tyr Gly Ala Ala Ile Phe Gly Gln Ile Ala Ser Ser Asn
1075 1080 1085
Gly Ser Gln Thr Asp Asn Leu Pro Leu Lys Leu Ile Ala Ser Gly Gly
1090 1095 1100
Asn Ile Cys Phe Arg Asn Asn Glu Tyr Arg Pro Thr Ser Ser Asp Thr
1105 1110 1115 1120
Gly Thr Ser Thr Phe Cys Ser Ile Ala Gly Asp Val Lys Leu Thr Met
1125 1130 1135
Gln Ala Ala Lys Gly Lys Thr Ile Ser Phe Phe Asp Ala Ile Arg Thr
1140 1145 1150
Ser Thr Lys Lys Thr Gly Thr Gln Ala Thr Ala Tyr Asp Thr Leu Asp
1155 1160 1165
Ile Asn Lys Ser Glu Asp Ser Glu Thr Val Asn Ser Ala Phe Thr Gly
1170 1175 1180
Thr Ile Leu Phe Ser Ser Glu Leu His Glu Asn Lys Ser Tyr Ile Pro
1185 1190 1195 1200
Gln Asn Val Val Leu His Ser Gly Ser Leu Val Leu Lys Pro Asn Thr
1205 1210 1215
Glu Leu His Val Ile Ser Phe Glu Gln Lys Glu Gly Ser Ser Leu Val
1220 1225 1230
Met Thr Pro Gly Ser Val Leu Ser Asn Gln Thr Val Ala Asp Gly Ala
1235 1240 1245
Leu Val Ile Asn Asn Met Thr Ile Asp Leu Ser Ser Val Glu Lys Asn
1250 1255 1260
Gly Ile Ala Glu Gly Asn Ile Phe Thr Pro Pro Glu Leu Arg Ile Ile
1265 1270 1275 1280
Asp Thr Thr Thr Ser Gly Ser Gly Gly Thr Pro Ser Thr Asp Ser Glu
1285 1290 1295
Ser Asn Gln Asn Ser Asp Asp Thr Lys Glu Gln Asn Asn Asn Asp Ala
1300 1305 1310
Ser Asn Gln Gly Glu Ser Ala Asn Gly Ser Ser Ser Pro Ala Val Ala
1315 1320 1325
Ala Ala His Thr Ser Arg Thr Arg Asn Phe Ala Ala Ala Ala Thr Ala
1330 1335 1340
Thr Pro Thr Thr Thr Pro Thr Ala Thr Thr Thr Thr Ser Asn Gln Val
1345 1350 1355 1360
Ile Leu Gly Gly Glu Ile Lys Leu Ile Asp Pro Asn Gly Thr Phe Phe
1365 1370 1375
Gln Asn Pro Ala Leu Arg Ser Asp Gln Gln Ile Ser Leu Leu Val Leu
1380 1385 1390
Pro Thr Asp Ser Ser Lys Met Gln Ala Gln Lys Ile Val Leu Thr Gly
1395 1400 1405
Asp Ile Ala Pro Gln Lys Gly Tyr Thr Gly Thr Leu Thr Leu Asp Pro
1410 1415 1420
Asp Gln Leu Gln Asn Gly Thr Ile Ser Ala Leu Trp Lys Phe Asp Ser
1425 1430 1435 1440
Tyr Arg Gln Trp Ala Tyr Val Pro Arg Asp Asn His Phe Tyr Ala Asn
1445 1450 1455
Ser Ile Leu Gly Ser Gln Met Ser Met Val Thr Val Lys Gln Gly Leu
1460 1465 1470
Leu Asn Asp Lys Met Asn Leu Ala Arg Phe Asp Glu Val Ser Tyr Asn
1475 1480 1485
Asn Leu Trp Ile Ser Gly Leu Gly Thr Met Leu Ser Gln Val Gly Thr
1490 1495 1500
Pro Thr Ser Glu Glu Phe Thr Tyr Tyr Ser Arg Gly Ala Ser Val Ala
1505 1510 1515 1520
Leu Asp Ala Lys Pro Ala His Asp Val Ile Val Gly Ala Ala Phe Ser
1525 1530 1535
Lys Met Ile Gly Lys Thr Lys Ser Leu Lys Arg Glu Asn Asn Tyr Thr
1540 1545 1550
His Lys Gly Ser Glu Tyr Ser Tyr Gln Ala Ser Val Tyr Gly Gly Lys
1555 1560 1565
Pro Phe His Phe Val Ile Asn Lys Lys Thr Glu Lys Ser Leu Pro Leu
1570 1575 1580
Leu Leu Gln Gly Val Ile Ser Tyr Gly Tyr Ile Lys His Asp Thr Val
1585 1590 1595 1600
Thr His Tyr Pro Thr Ile Arg Glu Arg Asn Gln Gly Glu Trp Glu Asp
1605 1610 1615
Leu Gly Trp Leu Thr Ala Leu Arg Val Ser Ser Val Leu Arg Thr Pro
1620 1625 1630
Ala Gln Gly Asp Thr Lys Arg Ile Thr Val Tyr Gly Glu Leu Glu Tyr
1635 1640 1645
Ser Ser Ile Arg Gln Lys Gln Phe Thr Glu Thr Glu Tyr Asp Pro Arg
1650 1655 1660
Tyr Phe Asp Asn Cys Thr Tyr Arg Asn Leu Ala Ile Pro Met Gly Leu
1665 1670 1675 1680
Ala Phe Glu Gly Glu Leu Ser Gly Asn Asp Ile Leu Met Tyr Asn Arg
1685 1690 1695
Phe Ser Val Ala Tyr Met Pro Ser Ile Tyr Arg Asn Ser Pro Thr Cys
1700 1705 1710
Lys Tyr Gln Val Leu Ser Ser Gly Glu Gly Gly Glu Ile Ile Cys Gly
1715 1720 1725
Val Pro Thr Arg Asn Ser Ala Arg Gly Glu Tyr Ser Thr Gln Leu Tyr
1730 1735 1740
Pro Gly Pro Leu Trp Thr Leu Tyr Gly Ser Tyr Thr Ile Glu Ala Asp
1745 1750 1755 1760
Ala His Thr Leu Ala His Met Met Asn Cys Gly Ala Arg Met Thr Phe
1765 1770 1775




180


1752


PRT


Chlamydia



180
Met Lys Trp Leu Ser Ala Thr Ala Val Phe Ala Ala Val Leu Pro Ser
1 5 10 15
Val Ser Gly Phe Cys Phe Pro Glu Pro Lys Glu Leu Asn Phe Ser Arg
20 25 30
Val Glu Thr Ser Ser Ser Thr Thr Phe Thr Glu Thr Ile Gly Glu Ala
35 40 45
Gly Ala Glu Tyr Ile Val Ser Gly Asn Ala Ser Phe Thr Lys Phe Thr
50 55 60
Asn Ile Pro Thr Thr Asp Thr Thr Thr Pro Thr Asn Ser Asn Ser Ser
65 70 75 80
Ser Ser Ser Gly Glu Thr Ala Ser Val Ser Glu Asp Ser Asp Ser Thr
85 90 95
Thr Thr Thr Pro Asp Pro Lys Gly Gly Gly Ala Phe Tyr Asn Ala His
100 105 110
Ser Gly Val Leu Ser Phe Met Thr Arg Ser Gly Thr Glu Gly Ser Leu
115 120 125
Thr Leu Ser Glu Ile Lys Met Thr Gly Glu Gly Gly Ala Ile Phe Ser
130 135 140
Gln Gly Glu Leu Leu Phe Thr Asp Leu Thr Ser Leu Thr Ile Gln Asn
145 150 155 160
Asn Leu Ser Gln Leu Ser Gly Gly Ala Ile Phe Gly Gly Ser Thr Ile
165 170 175
Ser Leu Ser Gly Ile Thr Lys Ala Thr Phe Ser Cys Asn Ser Ala Glu
180 185 190
Val Pro Ala Pro Val Lys Lys Pro Thr Glu Pro Lys Ala Gln Thr Ala
195 200 205
Ser Glu Thr Ser Gly Ser Ser Ser Ser Ser Gly Asn Asp Ser Val Ser
210 215 220
Ser Pro Ser Ser Ser Arg Ala Glu Pro Ala Ala Ala Asn Leu Gln Ser
225 230 235 240
His Phe Ile Cys Ala Thr Ala Thr Pro Ala Ala Gln Thr Asp Thr Glu
245 250 255
Thr Ser Thr Pro Ser His Lys Pro Gly Ser Gly Gly Ala Ile Tyr Ala
260 265 270
Lys Gly Asp Leu Thr Ile Ala Asp Ser Gln Glu Val Leu Phe Ser Ile
275 280 285
Asn Lys Ala Thr Lys Asp Gly Gly Ala Ile Phe Ala Glu Lys Asp Val
290 295 300
Ser Phe Glu Asn Ile Thr Ser Leu Lys Val Gln Thr Asn Gly Ala Glu
305 310 315 320
Glu Lys Gly Gly Ala Ile Tyr Ala Lys Gly Asp Leu Ser Ile Gln Ser
325 330 335
Ser Lys Gln Ser Leu Phe Asn Ser Asn Tyr Ser Lys Gln Gly Gly Gly
340 345 350
Ala Leu Tyr Val Glu Gly Gly Ile Asn Phe Gln Asp Leu Glu Glu Ile
355 360 365
Arg Ile Lys Tyr Asn Lys Ala Gly Thr Phe Glu Thr Lys Lys Ile Thr
370 375 380
Leu Pro Ser Leu Lys Ala Gln Ala Ser Ala Gly Asn Ala Asp Ala Trp
385 390 395 400
Ala Ser Ser Ser Pro Gln Ser Gly Ser Gly Ala Thr Thr Val Ser Asp
405 410 415
Ser Gly Asp Ser Ser Ser Gly Ser Asp Ser Asp Thr Ser Glu Thr Val
420 425 430
Pro Val Thr Ala Lys Gly Gly Gly Leu Tyr Thr Asp Lys Asn Leu Ser
435 440 445
Ile Thr Asn Ile Thr Gly Ile Ile Glu Ile Ala Asn Asn Lys Ala Thr
450 455 460
Asp Val Gly Gly Gly Ala Tyr Val Lys Gly Thr Leu Thr Cys Glu Asn
465 470 475 480
Ser His Arg Leu Gln Phe Leu Lys Asn Ser Ser Asp Lys Gln Gly Gly
485 490 495
Gly Ile Tyr Gly Glu Asp Asn Ile Thr Leu Ser Asn Leu Thr Gly Lys
500 505 510
Thr Leu Phe Gln Glu Asn Thr Ala Lys Glu Glu Gly Gly Gly Leu Phe
515 520 525
Ile Lys Gly Thr Asp Lys Ala Leu Thr Met Thr Gly Leu Asp Ser Phe
530 535 540
Cys Leu Ile Asn Asn Thr Ser Glu Lys His Gly Gly Gly Ala Phe Val
545 550 555 560
Thr Lys Glu Ile Ser Gln Thr Tyr Thr Ser Asp Val Glu Thr Ile Pro
565 570 575
Gly Ile Thr Pro Val His Gly Glu Thr Val Ile Thr Gly Asn Lys Ser
580 585 590
Thr Gly Gly Asn Gly Gly Gly Val Cys Thr Lys Arg Leu Ala Leu Ser
595 600 605
Asn Leu Gln Ser Ile Ser Ile Ser Gly Asn Ser Ala Ala Glu Asn Gly
610 615 620
Gly Gly Ala His Thr Cys Pro Asp Ser Phe Pro Thr Ala Asp Thr Ala
625 630 635 640
Glu Gln Pro Ala Ala Ala Ser Ala Ala Thr Ser Thr Pro Lys Ser Ala
645 650 655
Pro Val Ser Thr Ala Leu Ser Thr Pro Ser Ser Ser Thr Val Ser Ser
660 665 670
Leu Thr Leu Leu Ala Ala Ser Ser Gln Ala Ser Pro Ala Thr Ser Asn
675 680 685
Lys Glu Thr Gln Asp Pro Asn Ala Asp Thr Asp Leu Leu Ile Asp Tyr
690 695 700
Val Val Asp Thr Thr Ile Ser Lys Asn Thr Ala Lys Lys Gly Gly Gly
705 710 715 720
Ile Tyr Ala Lys Lys Ala Lys Met Ser Arg Ile Asp Gln Leu Asn Ile
725 730 735
Ser Glu Asn Ser Ala Thr Glu Ile Gly Gly Gly Ile Cys Cys Lys Glu
740 745 750
Ser Leu Glu Leu Asp Ala Leu Val Ser Leu Ser Val Thr Glu Asn Leu
755 760 765
Val Gly Lys Glu Gly Gly Gly Leu His Ala Lys Thr Val Asn Ile Ser
770 775 780
Asn Leu Lys Ser Gly Phe Ser Phe Ser Asn Asn Lys Ala Asn Ser Ser
785 790 795 800
Ser Thr Gly Val Ala Thr Thr Ala Ser Ala Pro Ala Ala Ala Ala Ala
805 810 815
Ser Leu Gln Ala Ala Ala Ala Ala Ala Pro Ser Ser Pro Ala Thr Pro
820 825 830
Thr Tyr Ser Gly Val Val Gly Gly Ala Ile Tyr Gly Glu Lys Val Thr
835 840 845
Phe Ser Gln Cys Ser Gly Thr Cys Gln Phe Ser Gly Asn Gln Ala Ile
850 855 860
Asp Asn Asn Pro Ser Gln Ser Ser Leu Asn Val Gln Gly Gly Ala Ile
865 870 875 880
Tyr Ala Lys Thr Ser Leu Ser Ile Gly Ser Ser Asp Ala Gly Thr Ser
885 890 895
Tyr Ile Phe Ser Gly Asn Ser Val Ser Thr Gly Lys Ser Gln Thr Thr
900 905 910
Gly Gln Ile Ala Gly Gly Ala Ile Tyr Ser Pro Thr Val Thr Leu Asn
915 920 925
Cys Pro Ala Thr Phe Ser Asn Asn Thr Ala Ser Ile Ala Thr Pro Lys
930 935 940
Thr Ser Ser Glu Asp Gly Ser Ser Gly Asn Ser Ile Lys Asp Thr Ile
945 950 955 960
Gly Gly Ala Ile Ala Gly Thr Ala Ile Thr Leu Ser Gly Val Ser Arg
965 970 975
Phe Ser Gly Asn Thr Ala Asp Leu Gly Ala Ala Ile Gly Thr Leu Ala
980 985 990
Asn Ala Asn Thr Pro Ser Ala Thr Ser Gly Ser Gln Asn Ser Ile Thr
995 1000 1005
Glu Lys Ile Thr Leu Glu Asn Gly Ser Phe Ile Phe Glu Arg Asn Gln
1010 1015 1020
Ala Asn Lys Arg Gly Ala Ile Tyr Ser Pro Ser Val Ser Ile Lys Gly
1025 1030 1035 1040
Asn Asn Ile Thr Phe Asn Gln Asn Thr Ser Thr His Asp Gly Ser Ala
1045 1050 1055
Ile Tyr Phe Thr Lys Asp Ala Thr Ile Glu Ser Leu Gly Ser Val Leu
1060 1065 1070
Phe Thr Gly Asn Asn Val Thr Ala Thr Gln Ala Ser Ser Ala Thr Ser
1075 1080 1085
Gly Gln Asn Thr Asn Thr Ala Asn Tyr Gly Ala Ala Ile Phe Gly Asp
1090 1095 1100
Pro Gly Thr Thr Gln Ser Ser Gln Thr Asp Ala Ile Leu Thr Leu Leu
1105 1110 1115 1120
Ala Ser Ser Gly Asn Ile Thr Phe Ser Asn Asn Ser Leu Gln Asn Asn
1125 1130 1135
Gln Gly Asp Thr Pro Ala Ser Lys Phe Cys Ser Ile Ala Gly Tyr Val
1140 1145 1150
Lys Leu Ser Leu Gln Ala Ala Lys Gly Lys Thr Ile Ser Phe Phe Asp
1155 1160 1165
Cys Val His Thr Ser Thr Lys Lys Thr Gly Ser Thr Gln Asn Val Tyr
1170 1175 1180
Glu Thr Leu Asp Ile Asn Lys Glu Glu Asn Ser Asn Pro Tyr Thr Gly
1185 1190 1195 1200
Thr Ile Val Phe Ser Ser Glu Leu His Glu Asn Lys Ser Tyr Ile Pro
1205 1210 1215
Gln Asn Ala Ile Leu His Asn Gly Thr Leu Val Leu Lys Glu Lys Thr
1220 1225 1230
Glu Leu His Val Val Ser Phe Glu Gln Lys Glu Gly Ser Lys Leu Ile
1235 1240 1245
Met Glu Pro Gly Ala Val Leu Ser Asn Gln Asn Ile Ala Asn Gly Ala
1250 1255 1260
Leu Ala Ile Asn Gly Leu Thr Ile Asp Leu Ser Ser Met Gly Thr Pro
1265 1270 1275 1280
Gln Ala Gly Glu Ile Phe Ser Pro Pro Glu Leu Arg Ile Val Ala Thr
1285 1290 1295
Thr Ser Ser Ala Ser Gly Gly Ser Gly Val Ser Ser Ser Ile Pro Thr
1300 1305 1310
Asn Pro Lys Arg Ile Ser Ala Ala Val Pro Ser Gly Ser Ala Ala Thr
1315 1320 1325
Thr Pro Thr Met Ser Glu Asn Lys Val Phe Leu Thr Gly Asp Leu Thr
1330 1335 1340
Leu Ile Asp Pro Asn Gly Asn Phe Tyr Gln Asn Pro Met Leu Gly Ser
1345 1350 1355 1360
Asp Leu Asp Val Pro Leu Ile Lys Leu Pro Thr Asn Thr Ser Asp Val
1365 1370 1375
Gln Val Tyr Asp Leu Thr Leu Ser Gly Asp Leu Phe Pro Gln Lys Gly
1380 1385 1390
Tyr Met Gly Thr Trp Thr Leu Asp Ser Asn Pro Gln Thr Gly Lys Leu
1395 1400 1405
Gln Ala Arg Trp Thr Phe Asp Thr Tyr Arg Arg Trp Val Tyr Ile Pro
1410 1415 1420
Arg Asp Asn His Phe Tyr Ala Asn Ser Ile Leu Gly Ser Gln Asn Ser
1425 1430 1435 1440
Met Ile Val Val Lys Gln Gly Leu Ile Asn Asn Met Leu Asn Asn Ala
1445 1450 1455
Arg Phe Asp Asp Ile Ala Tyr Asn Asn Phe Trp Val Ser Gly Val Gly
1460 1465 1470
Thr Phe Leu Ala Gln Gln Gly Thr Pro Leu Ser Glu Glu Phe Ser Tyr
1475 1480 1485
Tyr Ser Arg Gly Thr Ser Val Ala Ile Asp Ala Lys Pro Arg Gln Asp
1490 1495 1500
Phe Ile Leu Gly Ala Ala Phe Ser Lys Ile Val Gly Lys Thr Lys Ala
1505 1510 1515 1520
Ile Lys Lys Met His Asn Tyr Phe His Lys Gly Ser Glu Tyr Ser Tyr
1525 1530 1535
Gln Ala Ser Val Tyr Gly Gly Lys Phe Leu Tyr Phe Leu Leu Asn Lys
1540 1545 1550
Gln His Gly Trp Ala Leu Pro Phe Leu Ile Gln Gly Val Val Ser Tyr
1555 1560 1565
Gly His Ile Lys His Asp Thr Thr Thr Leu Tyr Pro Ser Ile His Glu
1570 1575 1580
Arg Asn Lys Gly Asp Trp Glu Asp Leu Gly Trp Leu Ala Asp Leu Arg
1585 1590 1595 1600
Ile Ser Met Asp Leu Lys Glu Pro Ser Lys Asp Ser Ser Lys Arg Ile
1605 1610 1615
Thr Val Tyr Gly Glu Leu Glu Tyr Ser Ser Ile Arg Gln Lys Gln Phe
1620 1625 1630
Thr Glu Ile Asp Tyr Asp Pro Arg His Phe Asp Asp Cys Ala Tyr Arg
1635 1640 1645
Asn Leu Ser Leu Pro Val Gly Cys Ala Val Glu Gly Ala Ile Met Asn
1650 1655 1660
Cys Asn Ile Leu Met Tyr Asn Lys Leu Ala Leu Ala Tyr Met Pro Ser
1665 1670 1675 1680
Ile Tyr Arg Asn Asn Pro Val Cys Lys Tyr Arg Val Leu Ser Ser Asn
1685 1690 1695
Glu Ala Gly Gln Val Ile Cys Gly Val Pro Thr Arg Thr Ser Ala Arg
1700 1705 1710
Ala Glu Tyr Ser Thr Gln Leu Tyr Leu Gly Pro Phe Trp Thr Leu Tyr
1715 1720 1725
Gly Asn Tyr Thr Ile Asp Val Gly Met Tyr Thr Leu Ser Gln Met Thr
1730 1735 1740
Ser Cys Gly Ala Arg Met Ile Phe
1745 1750




181


2601


DNA


Chlamydia



181
atggctagcc atcaccatca ccatcacctc tttggccagg atcccttagg tgaaaccgcc 60
ctcctcacta aaaatcctaa tcatgtcgtc tgtacatttt ttgaggactg taccatggag 120
agcctctttc ctgctctttg tgctcatgca tcacaagacg atcctttgta tgtacttgga 180
aattcctact gttggttcgt atctaaactc catatcacgg accccaaaga ggctcttttt 240
aaagaaaaag gagatctttc cattcaaaac tttcgcttcc tttccttcac agattgctct 300
tccaaggaaa gctctccttc tattattcat caaaagaatg gtcagttatc cttgcgcaat 360
aatggtagca tgagtttctg tcgaaatcat gctgaaggct ctggaggagc catctctgcg 420
gatgcctttt ctctacagca caactatctt ttcacagctt ttgaagagaa ttcttctaaa 480
ggaaatggcg gagccattca ggctcaaacc ttctctttat ctagaaatgt gtcgcctatt 540
tctttcgccc gtaatcgtgc ggatttaaat ggcggcgcta tttgctgtag taatcttatt 600
tgttcaggga atgtaaaccc tctctttttc actggaaact ccgccacraa tggaggcsct 660
atttgttgta tcagcgatct aaacacctca gaaaaaggct ctctctctct tgcttgtaac 720
caaraaacgc tatttgcaag caattctgct aaagaaaaag gcggggctat ttatgccaag 780
cacatggtat tgcgttataa cggtcctgtt tccttcatta acaacagcgc taaaataggt 840
ggagctatcg ccatccagtc cggagggagt ctctctatcc ttgcaggtga aggatctgtt 900
ctgttccaga ataactccca acgcacctcc gaccaaggtc tagtaagaaa cgccatctac 960
ttagagaaag atgcgattct ttcttcctta gaagctcgca acggagatat tcttttcttt 1020
gatcctattg tacaagaaag tagcagcaaa gaatcgcctc ttccctcctc tttgcaagcc 1080
agcgtgactt ctcccacccc agccaccgca tctcctttag ttattcagac aagtgcaaac 1140
cgttcagtga ttttctcgag cgaacgtctt tctgaagaag aaaaaactcc tgataacctc 1200
acttcccaac tacagcagcc tatcgaactg aaatccggac gcttagtttt aaaagatcgc 1260
gctgtccttt ccgsgccttc tctctctcag gatcctcaag ctctcctcat tatggaagcg 1320
ggaacttctt taaaaacttc ctytgatttg aagttagsta cgstaagtat tccccttcat 1380
tccttagata ctgaaaaaag cgtaactatc cacgccccta atctttctat ccaaaagatc 1440
ttcctctcta actctggaga tgagaatttt tatgaaaatg tagagcttct cagtaaagag 1500
caaaacaata ttcctctcct tactctccct aaagagcaat ctcatttaca tcttcctgat 1560
gggaacctct cttctcactt tggatatcaa ggagattgga ctttttcttg gaaagattct 1620
gatgaagggc attctctgat tgctaattgg acgcctaaaa actatgtgcc tcatccagaa 1680
cgtcaatcta cactcgttgc gaacactctt tggaacacct attccgatat gcaagctgtg 1740
cagtcgatga ttaatacaac agcgcacgga ggagcctatc tatttggaac gtggggatct 1800
gctgtttcta atttattcta tgttcacgac agctctggga aacctatcga taattggcat 1860
catagaagcc ttggctacct attcggtatc agtactcaca gtttagatga ccattctttc 1920
tgcttggctg caggacaatt actcgggaaa tcgtccgatt cctttattac gtctacagaa 1980
acgacctcct atatagctac tgtacaagcg caactcgcta cctctctaat gaaaatctct 2040
gcacaggcat gctacaatga aagtatccat gagctaaaaa caaaatatcg ctccttctct 2100
aaagaaggat tcggatcctg gcatagcgtt gcagtatccg gagaagtgtg cgcatcgatt 2160
cctattgtat ccaatggttc cggactgttc agctccttct ctattttctc taaactgcaa 2220
ggattttcag gaacacagga cggttttgag gagagttcgg gagagattcg gtccttttct 2280
gccagctctt tcagaaatat ttcacttcct ataggaataa catttgaaaa aaaatcccaa 2340
aaaacacgaa cctactatta ctttctagga gcctacatcc aagacctgaa acgtgatgtg 2400
gaatcgggac ctgtagtgtt actcaaaaat gccgtctcct gggatgctcc tatggcgaac 2460
ttggattcac gagcctacat gttccggctt acgaatcaaa gagctctaca cagacttcag 2520
acgctgttaa atgtgtcttg tgtgctgcgt gggcaaagcc atagttactc cctggatctg 2580
gggaccactt acaggttcta g 2601




182


3021


DNA


Chlamydia



182
atggctagca tgactggtgg acagcaaatg ggtcgggatt caagcttggt accgcatcac 60
catcaccatc acatgattcc tcaaggaatt tacgatgggg agacgttaac tgtatcattt 120
ccctatactg ttataggaga tccgagtggg actactgttt tttctgcagg agagttaaca 180
ttaaaaaatc ttgacaattc tattgcagct ttgcctttaa gttgttttgg gaacttatta 240
gggagtttta ctgttttagg gagaggacac tcgttgactt tcgagaacat acggacttct 300
acaaatgggg cagctctaag taatagcgct gctgatggac tgtttactat tgagggtttt 360
aaagaattat ccttttccaa ttgcaattca ttacttgccg tactgcctgc tgcaacgact 420
aataagggta gccagactcc gacgacaaca tctacaccgt ctaatggtac tatttattct 480
aaaacagatc ttttgttact caataatgag aagttctcat tctatagtaa tttagtctct 540
ggagatgggg gagctataga tgctaagagc ttaacggttc aaggaattag caagctttgt 600
gtcttccaag aaaatactgc tcaagctgat gggggagctt gtcaagtagt caccagtttc 660
tctgctatgg ctaacgaggc tcctattgcc tttgtagcga atgttgcagg agtaagaggg 720
ggagggattg ctgctgttca ggatgggcag cagggagtgt catcatctac ttcaacagaa 780
gatccagtag taagtttttc cagaaatact gcggtagagt ttgatgggaa cgtagcccga 840
gtaggaggag ggatttactc ctacgggaac gttgctttcc tgaataatgg aaaaaccttg 900
tttctcaaca atgttgcttc tcctgtttac attgctgcta agcaaccaac aagtggacag 960
gcttctaata cgagtaataa ttacggagat ggaggagcta tcttctgtaa gaatggtgcg 1020
caagcaggat ccaataactc tggatcagtt tcctttgatg gagagggagt agttttcttt 1080
agtagcaatg tagctgctgg gaaaggggga gctatttatg ccaaaaagct ctcggttgct 1140
aactgtggcc ctgtacaatt tttaaggaat atcgctaatg atggtggagc gatttattta 1200
ggagaatctg gagagctcag tttatctgct gattatggag atattatttt cgatgggaat 1260
cttaaaagaa cagccaaaga gaatgctgcc gatgttaatg gcgtaactgt gtcctcacaa 1320
gccatttcga tgggatcggg agggaaaata acgacattaa gagctaaagc agggcatcag 1380
attctcttta atgatcccat cgagatggca aacggaaata accagccagc gcagtcttcc 1440
aaacttctaa aaattaacga tggtgaagga tacacagggg atattgtttt tgctaatgga 1500
agcagtactt tgtaccaaaa tgttacgata gagcaaggaa ggattgttct tcgtgaaaag 1560
gcaaaattat cagtgaattc tctaagtcag acaggtggga gtctgtatat ggaagctggg 1620
agtacattgg attttgtaac tccacaacca ccacaacagc ctcctgccgc taatcagttg 1680
atcacgcttt ccaatctgca tttgtctctt tcttctttgt tagcaaacaa tgcagttacg 1740
aatcctccta ccaatcctcc agcgcaagat tctcatcctg cagtcattgg tagcacaact 1800
gctggttctg ttacaattag tgggcctatc ttttttgagg atttggatga tacagcttat 1860
gataggtatg attggctagg ttctaatcaa aaaatcaatg tcctgaaatt acagttaggg 1920
actaagcccc cagctaatgc cccatcagat ttgactctag ggaatgagat gcctaagtat 1980
ggctatcaag gaagctggaa gcttgcgtgg gatcctaata cagcaaataa tggtccttat 2040
actctgaaag ctacatggac taaaactggg tataatcctg ggcctgagcg agtagcttct 2100
ttggttccaa atagtttatg gggatccatt ttagatatac gatctgcgca ttcagcaatt 2160
caagcaagtg tggatgggcg ctcttattgt cgaggattat gggtttctgg agtttcgaat 2220
ttcttctatc atgaccgcga tgctttaggt cagggatatc ggtatattag tgggggttat 2280
tccttaggag caaactccta ctttggatca tcgatgtttg gtctagcatt taccgaagta 2340
tttggtagat ctaaagatta tgtagtgtgt cgttccaatc atcatgcttg cataggatcc 2400
gtttatctat ctacccaaca agctttatgt ggatcctatt tgttcggaga tgcgtttatc 2460
cgtgctagct acgggtttgg gaatcagcat atgaaaacct catatacatt tgcagaggag 2520
agcgatgttc gttgggataa taactgtctg gctggagaga ttggagcggg attaccgatt 2580
gtgattactc catctaagct ctatttgaat gagttgcgtc ctttcgtgca agctgagttt 2640
tcttatgccg atcatgaatc ttttacagag gaaggcgatc aagctcgggc attcaagagc 2700
ggacatctcc taaatctatc agttcctgtt ggagtgaagt ttgatcgatg ttctagtaca 2760
catcctaata aatatagctt tatggcggct tatatctgtg atgcttatcg caccatctct 2820
ggtactgaga caacgctcct atcccatcaa gagacatgga caacagatgc ctttcattta 2880
gcaagacatg gagttgtggt tagaggatct atgtatgctt ctctaacaag taatatagaa 2940
gtatatggcc atggaagata tgagtatcga gatgcttctc gaggctatgg tttgagtgca 3000
ggaagtaaag tccggttcta a 3021




183


2934


DNA


Chlamydia



183
atggctagca tgactggtgg acagcaaatg ggtcgggatt caagcttggt accgagctcg 60
gatccacatc accatcacca tcacggacta gctagagagg ttccttctag aatctttctt 120
atgcccaact cagttccaga tcctacgaaa gagtcgctat caaataaaat tagtttgaca 180
ggagacactc acaatctcac taactgctat ctcgataacc tacgctacat actggctatt 240
ctacaaaaaa ctcccaatga aggagctgct gtcacaataa cagattacct aagctttttt 300
gatacacaaa aagaaggtat ttattttgca aaaaatctca cccctgaaag tggtggtgcg 360
attggttatg cgagtcccaa ttctcctacc gtggagattc gtgatacaat aggtcctgta 420
atctttgaaa ataatacttg ttgcagacta tttacatgga gaaatcctta tgctgctgat 480
aaaataagag aaggcggagc cattcatgct caaaatcttt acataaatca taatcatgat 540
gtggtcggat ttatgaagaa cttttcttat gtccaaggag gagccattag taccgctaat 600
acctttgttg tgagcgagaa tcagtcttgt tttctcttta tggacaacat ctgtattcaa 660
actaatacag caggaaaagg tggcgctatc tatgctggaa cgagcaattc ttttgagagt 720
aataactgcg atctcttctt catcaataac gcctgttgtg caggaggagc gatcttctcc 780
cctatctgtt ctctaacagg aaatcgtggt aacatcgttt tctataacaa tcgctgcttt 840
aaaaatgtag aaacagcttc ttcagaagct tctgatggag gagcaattaa agtaactact 900
cgcctagatg ttacaggcaa tcgtggtagg atctttttta gtgacaatat cacaaaaaat 960
tatggcggag ctatttacgc tcctgtagtt accctagtgg ataatggccc tacctacttt 1020
ataaacaata tcgccaataa taaggggggc gctatctata tagacggaac cagtaactcc 1080
aaaatttctg ccgaccgcca tgctattatt tttaatgaaa atattgtgac taatgtaact 1140
aatgcaaatg gtaccagtac gtcagctaat cctcctagaa gaaatgcaat aacagtagca 1200
agctcctctg gtgaaattct attaggagca gggagtagcc aaaatttaat tttttatgat 1260
cctattgaag ttagcaatgc aggggtctct gtgtccttca ataaggaagc tgatcaaaca 1320
ggctctgtag tattttcagg agctactgtt aattctgcag attttcatca acgcaattta 1380
caaacaaaaa cacctgcacc ccttactctc agtaatggtt ttctatgtat cgaagatcat 1440
gctcagctta cagtgaatcg attcacacaa actgggggtg ttgtttctct tgggaatgga 1500
gcagttctga gttgctataa aaatggtaca ggagattctg ctagcaatgc ctctataaca 1560
ctgaagcata ttggattgaa tctttcttcc attctgaaaa gtggtgctga gattccttta 1620
ttgtgggtag agcctacaaa taacagcaat aactatacag cagatactgc agctaccttt 1680
tcattaagtg atgtaaaact ctcactcatt gatgactacg ggaactctcc ttatgaatcc 1740
acagatctga cccatgctct gtcatcacag cctatgctat ctatttctga agctagcgat 1800
aaccagctac aatcagaaaa tatagatttt tcgggactaa atgtccctca ttatggatgg 1860
caaggacttt ggacttgggg ctgggcaaaa actcaagatc cagaaccagc atcttcagca 1920
acaatcactg atccacaaaa agccaataga tttcatagaa ccttactact aacatggctt 1980
cctgccgggt atgttcctag cccaaaacac agaagtcccc tcatagctaa caccttatgg 2040
gggaatatgc tgcttgcaac agaaagctta aaaaatagtg cagagctgac acctagtggt 2100
catcctttct ggggaattac aggaggagga ctaggcatga tggtttacca agatcctcga 2160
gaaaatcatc ctggattcca tatgcgctct tccggatact ctgcggggat gatagcaggg 2220
cagacacaca ccttctcatt gaaattcagt cagacctaca ccaaactcaa tgagcgttac 2280
gcaaaaaaca acgtatcttc taaaaattac tcatgccaag gagaaatgct cttctcattg 2340
caagaaggtt tcttgctgac taaattagtt gggctttaca gctatggaga ccataactgt 2400
caccatttct atactcaagg agaaaatcta acatctcaag ggacgttccg cagtcaaacg 2460
atgggaggtg ctgtcttttt tgatctccct atgaaaccct ttggatcaac gcatatactg 2520
acagctccct ttttaggtgc tcttggtatt tattctagcc tgtctcactt tactgaggtg 2580
ggagcctatc cgcgaagctt ttctacaaag actcctttga tcaatgtcct agtccctatt 2640
ggagttaaag gtagctttat gaatgctacc cacagacctc aagcctggac tgtagaattg 2700
gcataccaac ccgttctgta tagacaagaa ccagggatcg cgacccagct cctagccagt 2760
aaaggtattt ggtttggtag tggaagcccc tcatcgcgtc atgccatgtc ctataaaatc 2820
tcacagcaaa cacaaccttt gagttggtta actctccatt tccagtatca tggattctac 2880
tcctcttcaa ccttctgtaa ttatctcaat ggggaaattg ctctgcgatt ctag 2934




184


2547


DNA


Chlamydia



184
atggctagcc atcaccatca ccatcacggt gctatttctt gcttacgtgg agatgtagtc 60
atttctggaa acaagggtag agttgaattt aaagacaaca tagcaacacg tctttatgtg 120
gaagaaactg tagaaaaggt tgaagaggta gagccagctc ctgagcaaaa agacaataat 180
gagctttctt tcttagggag tgtagaacag agttttatta ctgcagctaa tcaagctctt 240
ttcgcatctg aagatgggga tttatcacct gagtcatcca tttcttctga agaacttgcg 300
aaaagaagag agtgtgctgg aggagctatt tttgcaaaac gggttcgtat tgtagataac 360
caagaggccg ttgtattctc gaataacttc tctgatattt atggcggcgc catttttaca 420
ggttctcttc gagaagagga taagttagat gggcaaatcc ctgaagtctt gatctcaggc 480
aatgcagggg atgttgtttt ttccggaaat tcctcgaagc gtgatgagca tcttcctcat 540
acaggtgggg gagccatttg tactcaaaat ttgacgattt ctcagaatac agggaatgtt 600
ctgttttata acaacgtggc ctgttcggga ggagctgttc gtatagagga tcatggtaat 660
gttcttttag aagcttttgg aggagatatt gtttttaaag gaaattcttc tttcagagca 720
caaggatccg atgctatcta ttttgcaggt aaagaatcgc atattacagc cctgaatgct 780
acggaaggac atgctattgt tttccacgac gcattagttt ttgaaaatct aaaagaaagg 840
aaatctgctg aagtattgtt aatcaatagt cgagaaaatc caggttacac tggatctatt 900
cgatttttag aagcagaaag taaagttcct caatgtattc atgtacaaca aggaagcctt 960
gagttgctaa atggagctac attatgtagt tatggtttta aacaagatgc tggagctaag 1020
ttggtattgg ctgctggatc taaactgaag attttagatt caggaactcc tgtacaaggg 1080
catgctatca gtaaacctga agcagaaatc gagtcatctt ctgaaccaga gggtgcacat 1140
tctctttgga ttgcgaagaa tgctcaaaca acagttccta tggttgatat ccatactatt 1200
tctgtagatt tagcctcctt ctcttctagt caacaggagg ggacagtaga agctcctcag 1260
gttattgttc ctggaggaag ttatgttcga tctggagagc ttaatttgga gttagttaac 1320
acaacaggta ctggttatga aaatcatgct ttgttgaaga atgaggctaa agttccattg 1380
atgtctttcg ttgcttctag tgatgaagct tcagccgaaa tcagtaactt gtcggtttct 1440
gatttacaga ttcatgtagc aactccagag attgaagaag acacatacgg ccatatggga 1500
gattggtctg aggctaaaat tcaagatgga actcttgtca ttaattggaa tcctactgga 1560
tatcgattag atcctcaaaa agcaggggct ttagtattta atgcattatg ggaagaaggg 1620
gctgtcttgt ctgctctgaa aaatgcacgc tttgctcata atctcactgc tcagcgtatg 1680
gaattcgatt attctacaaa tgtgtgggga ttcgcctttg gtggtttccg aactctatct 1740
gcagagaatc tggttgctat tgatggatac aaaggagctt atggtggtgc ttctgctgga 1800
gtcgatattc aattgatgga agattttgtt ctaggagtta gtggagctgc tttcctaggt 1860
aaaatggata gtcagaagtt tgatgcggag gtttctcgga agggagttgt tggttctgta 1920
tatacaggat ttttagctgg atcctggttc ttcaaaggac aatatagcct tggagaaaca 1980
cagaacgata tgaaaacgcg ttatggagta ctaggagagt cgagtgcttc ttggacatct 2040
cgaggagtac tggcagatgc tttagttgaa taccgaagtt tagttggtcc tgtgagacct 2100
actttttatg ctttgcattt caatccttat gtcgaagtat cttatgcttc tatgaaattc 2160
cctggcttta cagaacaagg aagagaagcg cgttcttttg aagacgcttc ccttaccaat 2220
atcaccattc ctttagggat gaagtttgaa ttggcgttca taaaaggaca gttttcagag 2280
gtgaactctt tgggaataag ttatgcatgg gaagcttatc gaaaagtaga aggaggcgcg 2340
gtgcagcttt tagaagctgg gtttgattgg gagggagctc caatggatct tcctagacag 2400
gagctgcgtg tcgctctgga aaataatacg gaatggagtt cttacttcag cacagtctta 2460
ggattaacag ctttttgtgg aggatttact tctacagata gtaaactagg atatgaggcg 2520
aatactggat tgcgattgat cttttaa 2547




185


2337


DNA


Chlamydia



185
atgcatcacc atcaccatca cgggttagct agttgcgtag atcttcatgc tggaggacag 60
tctgtaaatg agctggtata tgtaggccct caagcggttt tattgttaga ccaaattcga 120
gatctattcg ttgggtctaa agatagtcag gctgaaggac agtataggtt aattgtagga 180
gatccaagtt ctttccaaga gaaagatgca gatactcttc ccgggaaggt agagcaaagt 240
actttgttct cagtaaccaa tcccgtggtt ttccaaggtg tggaccaaca ggatcaagtc 300
tcttcccaag ggttaatttg tagttttacg agcagcaacc ttgattctcc ccgtgacgga 360
gaatcttttt taggtattgc ttttgttggg gatagtagta aggctggaat cacattaact 420
gacgtgaaag cttctttgtc tggagcggct ttatattcta cagaagatct tatctttgaa 480
aagattaagg gtggattgga atttgcatca tgttcttctc tagaacaggg gggagcttgt 540
gcagctcaaa gtattttgat tcatgattgt caaggattgc aggttaaaca ctgtactaca 600
gccgtgaatg ctgaggggtc tagtgcgaat gatcatcttg gatttggagg aggcgctttc 660
tttgttacgg gttctctttc tggagagaaa agtctctata tgcctgcagg agatatggta 720
gttgcgaatt gtgatggggc tatatctttt gaaggaaaca gcgcgaactt tgctaatgga 780
ggagcgattg ctgcctctgg gaaagtgctt tttgtcgcta atgataaaaa gacttctttt 840
atagagaacc gagctttgtc tggaggagcg attgcagcct cttctgatat tgcctttcaa 900
aactgcgcag aactagtttt caaaggcaat tgtgcaattg gaacagagga taaaggttct 960
ttaggtggag gggctatatc ttctctaggc accgttcttt tgcaagggaa tcacgggata 1020
acttgtgata agaatgagtc tgcttcgcaa ggaggcgcca tttttggcaa aaattgtcag 1080
atttctgaca acgaggggcc agtggttttc agagatagta cagcttgctt aggaggaggc 1140
gctattgcag ctcaagaaat tgtttctatt cagaacaatc aggctgggat ttccttcgag 1200
ggaggtaagg ctagtttcgg aggaggtatt gcgtgtggat ctttttcttc cgcaggcggt 1260
gcttctgttt tagggactat tgatatttcg aagaatttag gcgcgatttc gttctctcgt 1320
actttatgta cgacctcaga tttaggacaa atggagtacc agggaggagg agctctattt 1380
ggtgaaaata tttctctttc tgagaatgct ggtgtgctca cctttaaaga caacattgtg 1440
aagacttttg cttcgaatgg gaaaattctg ggaggaggag cgattttagc tactggtaag 1500
gtggaaatta ccaataattc cggaggaatt tcttttacag gaaatgcgag agctccacaa 1560
gctcttccaa ctcaagagga gtttccttta ttcagcaaaa aagaagggcg accactctct 1620
tcaggatatt ctgggggagg agcgatttta ggaagagaag tagctattct ccacaacgct 1680
gcagtagtat ttgagcaaaa tcgtttgcag tgcagcgaag aagaagcgac attattaggt 1740
tgttgtggag gaggcgctgt tcatgggatg gatagcactt cgattgttgg caactcttca 1800
gtaagatttg gtaataatta cgcaatggga caaggagtct caggaggagc tcttttatct 1860
aaaacagtgc agttagctgg aaatggaagc gtcgattttt ctcgaaatat tgctagtttg 1920
ggaggaggag ctcttcaagc ttctgaagga aattgtgagc tagttgataa cggctatgtg 1980
ctattcagag ataatcgagg gagggtttat gggggtgcta tttcttgctt acgtggagat 2040
gtagtcattt ctggaaacaa gggtagagtt gaatttaaag acaacatagc aacacgtctt 2100
tatgtggaag aaactgtaga aaaggttgaa gaggtagagc cagctcctga gcaaaaagac 2160
aataatgagc tttctttctt agggagtgta gaacagagtt ttattactgc agctaatcaa 2220
gctcttttcg catctgaaga tggggattta tcacctgagt catccatttc ttctgaagaa 2280
cttgcgaaaa gaagagagtg tgctggagga gctgactcga gcagatccgg ctgctaa 2337




186


2847


DNA


Chlamydia



186
atggctagca tgcatcacca tcaccatcac gttaagattg agaacttctc tggccaagga 60
atattttctg gaaacaaagc tatcgataac accacagaag gctcctcttc caaatctaac 120
gtcctcggag gtgcggtcta tgctaaaaca ttgtttaatc tcgatagcgg gagctctaga 180
cgaactgtca ccttctccgg gaatactgtc tcttctcaat ctacaacagg tcaggttgct 240
ggaggagcta tctactctcc tactgtaacc attgctactc ctgtagtatt ttctaaaaac 300
tctgcaacaa acaatgctaa taacgctaca gatactcaga gaaaagacac ctttggagga 360
gctatcggag ctacttctgc tgtttctcta tcaggagggg ctcatttctt agaaaacgtt 420
gctgacctcg gatctgctat tgggttggtg ccagacacac aaaatacaga aacagtgaaa 480
ttagagtctg gctcctacta ctttgaaaaa aataaagctt taaaacgagc tactatttac 540
gcacctgtcg tttccattaa agcctatact gcgacattta accaaaacag atctctagaa 600
gaaggaagcg cgatttactt tacaaaagaa gcatctattg agtctttagg ctctgttctc 660
ttcacaggaa acttagtaac cccaacgcta agcacaacta cagaaggcac accagccaca 720
acctcaggag atgtaacaaa atatggtgct gctatctttg gacaaatagc aagctcaaac 780
ggatctcaga cggataacct tcccctgaaa ctcattgctt caggaggaaa tatttgtttc 840
cgaaacaatg aataccgtcc tacttcttct gataccggaa cctctacttt ctgtagtatt 900
gcgggagatg ttaaattaac catgcaagct gcaaaaggga aaacgatcag tttctttgat 960
gcaatccgga cctctactaa gaaaacaggt acacaggcaa ctgcctacga tactctcgat 1020
attaataaat ctgaggattc agaaactgta aactctgcgt ttacaggaac gattctgttc 1080
tcctctgaat tacatgaaaa taaatcctat attccacaaa acgtagttct acacagtgga 1140
tctcttgtat tgaagccaaa taccgagctt catgtcattt cttttgagca gaaagaaggc 1200
tcttctctcg ttatgacacc tggatctgtt ctttcgaacc agactgttgc tgatggagct 1260
ttggtcataa ataacatgac cattgattta tccagcgtag agaaaaatgg tattgctgaa 1320
ggaaatatct ttactcctcc agaattgaga atcatagaca ctactacaag tggaagcggt 1380
ggaaccccat ctacagatag tgaaagtaac cagaatagtg atgataccaa ggagcaaaat 1440
aataatgacg cctcgaatca aggagaaagc gcgaatggat cgtcttctcc tgcagtagct 1500
gctgcacaca catctcgtac aagaaacttt gccgctgcag ctacagccac acctacgaca 1560
acaccaacgg ctacaactac aacaagcaac caagtaatcc taggaggaga aatcaaactc 1620
atcgatccta atgggacctt cttccagaac cctgcattaa gatccgacca acaaatctcc 1680
ttgttagtgc tccctacaga ctcatcaaaa atgcaagctc agaaaatagt actgacgggt 1740
gatattgctc ctcagaaagg atatacagga acactcactc tggatcctga tcaactacaa 1800
aatggaacga tctcagcgct ctggaaattt gactcttata gacaatgggc ttatgtacct 1860
agagacaatc atttctatgc gaactcgatt ctgggatctc aaatgtcaat ggtcacagtc 1920
aaacaaggct tgctcaacga taaaatgaat ctagctcgct ttgatgaagt tagctataac 1980
aacctgtgga tatcaggact aggaacgatg ctatcgcaag taggaacacc tacttctgaa 2040
gaattcactt attacagcag aggagcttct gttgccttag atgctaaacc agcccatgat 2100
gtgattgttg gagctgcatt tagtaagatg atcgggaaaa caaaatcctt gaaaagagag 2160
aataactaca ctcacaaagg atccgaatat tcttaccaag catcggtata cggaggcaaa 2220
ccattccact ttgtaatcaa taaaaaaacg gaaaaatcgc taccgctatt gttacaagga 2280
gtcatctctt acggatatat caaacatgat acagtgactc actatccaac gatccgtgaa 2340
cgaaaccaag gagaatggga agacttagga tggctgacag ctctccgtgt ctcctctgtc 2400
ttaagaactc ctgcacaagg ggatactaaa cgtatcactg tttacggaga attggaatac 2460
tccagtatcc gtcagaaaca attcacagaa acagaatacg atcctcgtta cttcgacaac 2520
tgcacctata gaaacttagc aattcctatg gggttagcat tcgaaggaga gctctctggt 2580
aacgatattt tgatgtacaa cagattctct gtagcataca tgccatcaat ctatcgaaat 2640
tctccaacat gcaaatacca agtgctctct tcaggagaag gcggagaaat tatttgtgga 2700
gtaccgacaa gaaactcagc tcgcggagaa tacagcacgc agctgtaccc gggacctttg 2760
tggactctgt atggatccta cacgatagaa gcagacgcac atacactagc tcatatgatg 2820
aactgcggtg ctcgtatgac attctaa 2847




187


2466


DNA


Chlamydia



187
atgcatcacc atcaccatca cgaggcgagc tcgatccaag atcaaataaa gaataccgac 60
tgcaatgtta gcaaagtagg atattcaact tctcaagcat ttactgatat gatgctagca 120
gacaacacag agtatcgagc tgctgatagt gtttcattct atgacttttc gacatcttcc 180
ggattaccta gaaaacatct tagtagtagt agtgaagctt ctccaacgac agaaggagtg 240
tcttcatctt catctggaga aaatactgag aattcacaag attcagctcc ctcttctgga 300
gaaactgata agaaaacaga agaagaacta gacaatggcg gaatcattta tgctagagag 360
aaactaacta tctcagaatc tcaggactct ctctctaatc caagcataga actccatgac 420
aatagttttt tcttcggaga aggtgaagtt atctttgatc acagagttgc cctcaaaaac 480
ggaggagcta tttatggaga gaaagaggta gtctttgaaa acataaaatc tctactagta 540
gaagtaaata tctcggtcga gaaagggggt agcgtctatg caaaagaacg agtatcttta 600
gaaaatgtta ccgaagcaac cttctcctcc aatggtgggg aacaaggtgg tggtggaatc 660
tattcagaac aagatatgtt aatcagtgat tgcaacaatg tacatttcca agggaatgct 720
gcaggagcaa cagcagtaaa acaatgtctg gatgaagaaa tgatcgtatt gctcacagaa 780
tgcgttgata gcttatccga agatacactg gatagcactc cagaaacgga acagactaag 840
tcaaatggaa atcaagatgg ttcgtctgaa acaaaagata cacaagtatc agaatcacca 900
gaatcaactc ctagccccga cgatgtttta ggtaaaggtg gtggtatcta tacagaaaaa 960
tctttgacca tcactggaat tacagggact atagattttg tcagtaacat agctaccgat 1020
tctggagcag gtgtattcac taaagaaaac ttgtcttgca ccaacacgaa tagcctacag 1080
tttttgaaaa actcggcagg tcaacatgga ggaggagcct acgttactca aaccatgtct 1140
gttactaata caactagtga aagtataact actccccctc tcgtaggaga agtgattttc 1200
tctgaaaata cagctaaagg gcacggtggt ggtatctgca ctaacaaact ttctttatct 1260
aatttaaaaa cggtgactct cactaaaaac tctgcaaagg agtctggagg agctattttt 1320
acagatctag cgtctatacc aacaacagat accccagagt cttctacccc ctcttcctcc 1380
tcgcctgcaa gcactcccga agtagttgct tctgctaaaa taaatcgatt ctttgcctct 1440
acggcagaac cggcagcccc ttctctaaca gaggctgagt ctgatcaaac ggatcaaaca 1500
gaaacttctg atactaatag cgatatagac gtgtcgattg agaacatttt gaatgtcgct 1560
atcaatcaaa acacttctgc gaaaaaagga ggggctattt acgggaaaaa agctaaactt 1620
tcccgtatta acaatcttga actttcaggg aattcatccc aggatgtagg aggaggtctc 1680
tgtttaactg aaagcgtaga atttgatgca attggatcgc tcttatccca ctataactct 1740
gctgctaaag aaggtggggt tattcattct aaaacggtta ctctatctaa cctcaagtct 1800
accttcactt ttgcagataa cactgttaaa gcaatagtag aaagcactcc tgaagctcca 1860
gaagagattc ctccagtaga aggagaagag tctacagcaa cagaaaatcc gaattctaat 1920
acagaaggaa gttcggctaa cactaacctt gaaggatctc aaggggatac tgctgataca 1980
gggactggtg ttgttaacaa tgagtctcaa gacacatcag atactggaaa cgctgaatct 2040
ggagaacaac tacaagattc tacacaatct aatgaagaaa atacccttcc caatagtagt 2100
attgatcaat ctaacgaaaa cacagacgaa tcatctgata gccacactga ggaaataact 2160
gacgagagtg tctcatcgtc ctctaaaagt ggatcatcta ctcctcaaga tggaggagca 2220
gcttcttcag gggctccctc aggagatcaa tctatctctg caaacgcttg tttagctaaa 2280
agctatgctg cgagtactga tagctcccct gtatctaatt cttcaggttc agacgttact 2340
gcatcttctg ataatccaga ctcttcctca tctggagata gcgctggaga ctctgaagga 2400
ccgactgagc cagaagctgg ttctacaaca gaaactccta ctttaatagg aggaggtgct 2460
atctga 2466




188


1578


DNA


Chlamydia



188
atgcatcacc atcaccatca cacggccgcg tccgataact tccagctgtc ccagggtggg 60
cagggattcg ccattccgat cgggcaggcg atggcgatcg cgggccagat caagcttccc 120
accgttcata tcgggcctac cgccttcctc ggcttgggtg ttgtcgacaa caacggcaac 180
ggcgcacgag tccaacgcgt ggtcgggagc gctccggcgg caagtctcgg catctccacc 240
ggcgacgtga tcaccgcggt cgacggcgct ccgatcaact cggccaccgc gatggcggac 300
gcgcttaacg ggcatcatcc cggtgacgtc atctcggtga cctggcaaac caagtcgggc 360
ggcacgcgta cagggaacgt gacattggcc gagggacccc cggccgaatt cccgctagta 420
cctagaggtt caccgctgcc tgtggggaat ccagctgaac caagtttatt aatcgatggc 480
actatgtggg aaggtgcttc aggagatcct tgcgatcctt gcgctacttg gtgtgacgcc 540
attagcatcc gcgcaggata ctacggagat tatgttttcg atcgtgtatt aaaagttgat 600
gtgaataaaa cttttagcgg catggctgca actcctacgc aggctatagg taacgcaagt 660
aatactaatc agccagaagc aaatggcaga ccgaacatcg cttacggaag gcatatgcaa 720
gatgcagagt ggttttcaaa tgcagccttc ctagccttaa acatttggga tcgcttcgac 780
attttctgca ccttaggggc atccaatgga tacttcaaag caagttcggc tgcattcaac 840
ttggttgggt taatagggtt ttcagctgca agctcaatct ctaccgatct tccaatgcaa 900
cttcctaacg taggcattac ccaaggtgtt gtggaatttt atacagacac atcattttct 960
tggagcgtag gtgcacgtgg agctttatgg gaatgtggtt gtgcaacttt aggagctgag 1020
ttccaatacg ctcaatctaa tcctaagatt gagatgctca acgtcacttc aagcccagca 1080
caatttgtga ttcacaaacc aagaggctat aaaggagcta gctcgaattt tcctttacct 1140
ataacggctg gaacaacaga agctacagac accaaatcag ctacaattaa ataccatgaa 1200
tggcaagtag gcctcgccct gtcttacaga ttgaatatgc ttgttccata tattggcgta 1260
aactggtcaa gagcaacttt tgatgctgat actatccgca ttgctcaacc taaattaaaa 1320
tcggagattc ttaacattac tacatggaac ccaagcctta taggatcaac cactgctttg 1380
cccaataata gtggtaagga tgttctatct gatgtcttgc aaattgcttc gattcagatc 1440
aacaaaatga agtctagaaa agcttgtggt gtagctgttg gtgcaacgtt aatcgacgct 1500
gacaaatggt caatcactgg tgaagcacgc ttaatcaatg aaagagctgc tcacatgaat 1560
gcacaattcc gcttctaa 1578




189


866


PRT


Chlamydia




VARIANT




(1)...(866)




Xaa = Any Amino Acid





189
Met Ala Ser His His His His His His Leu Phe Gly Gln Asp Pro Leu
1 5 10 15
Gly Glu Thr Ala Leu Leu Thr Lys Asn Pro Asn His Val Val Cys Thr
20 25 30
Phe Phe Glu Asp Cys Thr Met Glu Ser Leu Phe Pro Ala Leu Cys Ala
35 40 45
His Ala Ser Gln Asp Asp Pro Leu Tyr Val Leu Gly Asn Ser Tyr Cys
50 55 60
Trp Phe Val Ser Lys Leu His Ile Thr Asp Pro Lys Glu Ala Leu Phe
65 70 75 80
Lys Glu Lys Gly Asp Leu Ser Ile Gln Asn Phe Arg Phe Leu Ser Phe
85 90 95
Thr Asp Cys Ser Ser Lys Glu Ser Ser Pro Ser Ile Ile His Gln Lys
100 105 110
Asn Gly Gln Leu Ser Leu Arg Asn Asn Gly Ser Met Ser Phe Cys Arg
115 120 125
Asn His Ala Glu Gly Ser Gly Gly Ala Ile Ser Ala Asp Ala Phe Ser
130 135 140
Leu Gln His Asn Tyr Leu Phe Thr Ala Phe Glu Glu Asn Ser Ser Lys
145 150 155 160
Gly Asn Gly Gly Ala Ile Gln Ala Gln Thr Phe Ser Leu Ser Arg Asn
165 170 175
Val Ser Pro Ile Ser Phe Ala Arg Asn Arg Ala Asp Leu Asn Gly Gly
180 185 190
Ala Ile Cys Cys Ser Asn Leu Ile Cys Ser Gly Asn Val Asn Pro Leu
195 200 205
Phe Phe Thr Gly Asn Ser Ala Thr Asn Gly Gly Xaa Ile Cys Cys Ile
210 215 220
Ser Asp Leu Asn Thr Ser Glu Lys Gly Ser Leu Ser Leu Ala Cys Asn
225 230 235 240
Gln Xaa Thr Leu Phe Ala Ser Asn Ser Ala Lys Glu Lys Gly Gly Ala
245 250 255
Ile Tyr Ala Lys His Met Val Leu Arg Tyr Asn Gly Pro Val Ser Phe
260 265 270
Ile Asn Asn Ser Ala Lys Ile Gly Gly Ala Ile Ala Ile Gln Ser Gly
275 280 285
Gly Ser Leu Ser Ile Leu Ala Gly Glu Gly Ser Val Leu Phe Gln Asn
290 295 300
Asn Ser Gln Arg Thr Ser Asp Gln Gly Leu Val Arg Asn Ala Ile Tyr
305 310 315 320
Leu Glu Lys Asp Ala Ile Leu Ser Ser Leu Glu Ala Arg Asn Gly Asp
325 330 335
Ile Leu Phe Phe Asp Pro Ile Val Gln Glu Ser Ser Ser Lys Glu Ser
340 345 350
Pro Leu Pro Ser Ser Leu Gln Ala Ser Val Thr Ser Pro Thr Pro Ala
355 360 365
Thr Ala Ser Pro Leu Val Ile Gln Thr Ser Ala Asn Arg Ser Val Ile
370 375 380
Phe Ser Ser Glu Arg Leu Ser Glu Glu Glu Lys Thr Pro Asp Asn Leu
385 390 395 400
Thr Ser Gln Leu Gln Gln Pro Ile Glu Leu Lys Ser Gly Arg Leu Val
405 410 415
Leu Lys Asp Arg Ala Val Leu Ser Xaa Pro Ser Leu Ser Gln Asp Pro
420 425 430
Gln Ala Leu Leu Ile Met Glu Ala Gly Thr Ser Leu Lys Thr Ser Xaa
435 440 445
Asp Leu Lys Leu Xaa Thr Xaa Ser Ile Pro Leu His Ser Leu Asp Thr
450 455 460
Glu Lys Ser Val Thr Ile His Ala Pro Asn Leu Ser Ile Gln Lys Ile
465 470 475 480
Phe Leu Ser Asn Ser Gly Asp Glu Asn Phe Tyr Glu Asn Val Glu Leu
485 490 495
Leu Ser Lys Glu Gln Asn Asn Ile Pro Leu Leu Thr Leu Pro Lys Glu
500 505 510
Gln Ser His Leu His Leu Pro Asp Gly Asn Leu Ser Ser His Phe Gly
515 520 525
Tyr Gln Gly Asp Trp Thr Phe Ser Trp Lys Asp Ser Asp Glu Gly His
530 535 540
Ser Leu Ile Ala Asn Trp Thr Pro Lys Asn Tyr Val Pro His Pro Glu
545 550 555 560
Arg Gln Ser Thr Leu Val Ala Asn Thr Leu Trp Asn Thr Tyr Ser Asp
565 570 575
Met Gln Ala Val Gln Ser Met Ile Asn Thr Thr Ala His Gly Gly Ala
580 585 590
Tyr Leu Phe Gly Thr Trp Gly Ser Ala Val Ser Asn Leu Phe Tyr Val
595 600 605
His Asp Ser Ser Gly Lys Pro Ile Asp Asn Trp His His Arg Ser Leu
610 615 620
Gly Tyr Leu Phe Gly Ile Ser Thr His Ser Leu Asp Asp His Ser Phe
625 630 635 640
Cys Leu Ala Ala Gly Gln Leu Leu Gly Lys Ser Ser Asp Ser Phe Ile
645 650 655
Thr Ser Thr Glu Thr Thr Ser Tyr Ile Ala Thr Val Gln Ala Gln Leu
660 665 670
Ala Thr Ser Leu Met Lys Ile Ser Ala Gln Ala Cys Tyr Asn Glu Ser
675 680 685
Ile His Glu Leu Lys Thr Lys Tyr Arg Ser Phe Ser Lys Glu Gly Phe
690 695 700
Gly Ser Trp His Ser Val Ala Val Ser Gly Glu Val Cys Ala Ser Ile
705 710 715 720
Pro Ile Val Ser Asn Gly Ser Gly Leu Phe Ser Ser Phe Ser Ile Phe
725 730 735
Ser Lys Leu Gln Gly Phe Ser Gly Thr Gln Asp Gly Phe Glu Glu Ser
740 745 750
Ser Gly Glu Ile Arg Ser Phe Ser Ala Ser Ser Phe Arg Asn Ile Ser
755 760 765
Leu Pro Ile Gly Ile Thr Phe Glu Lys Lys Ser Gln Lys Thr Arg Thr
770 775 780
Tyr Tyr Tyr Phe Leu Gly Ala Tyr Ile Gln Asp Leu Lys Arg Asp Val
785 790 795 800
Glu Ser Gly Pro Val Val Leu Leu Lys Asn Ala Val Ser Trp Asp Ala
805 810 815
Pro Met Ala Asn Leu Asp Ser Arg Ala Tyr Met Phe Arg Leu Thr Asn
820 825 830
Gln Arg Ala Leu His Arg Leu Gln Thr Leu Leu Asn Val Ser Cys Val
835 840 845
Leu Arg Gly Gln Ser His Ser Tyr Ser Leu Asp Leu Gly Thr Thr Tyr
850 855 860
Arg Phe
865




190


1006


PRT


Chlamydia



190
Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg Asp Ser Ser Leu
1 5 10 15
Val Pro His His His His His His Met Ile Pro Gln Gly Ile Tyr Asp
20 25 30
Gly Glu Thr Leu Thr Val Ser Phe Pro Tyr Thr Val Ile Gly Asp Pro
35 40 45
Ser Gly Thr Thr Val Phe Ser Ala Gly Glu Leu Thr Leu Lys Asn Leu
50 55 60
Asp Asn Ser Ile Ala Ala Leu Pro Leu Ser Cys Phe Gly Asn Leu Leu
65 70 75 80
Gly Ser Phe Thr Val Leu Gly Arg Gly His Ser Leu Thr Phe Glu Asn
85 90 95
Ile Arg Thr Ser Thr Asn Gly Ala Ala Leu Ser Asn Ser Ala Ala Asp
100 105 110
Gly Leu Phe Thr Ile Glu Gly Phe Lys Glu Leu Ser Phe Ser Asn Cys
115 120 125
Asn Ser Leu Leu Ala Val Leu Pro Ala Ala Thr Thr Asn Lys Gly Ser
130 135 140
Gln Thr Pro Thr Thr Thr Ser Thr Pro Ser Asn Gly Thr Ile Tyr Ser
145 150 155 160
Lys Thr Asp Leu Leu Leu Leu Asn Asn Glu Lys Phe Ser Phe Tyr Ser
165 170 175
Asn Leu Val Ser Gly Asp Gly Gly Ala Ile Asp Ala Lys Ser Leu Thr
180 185 190
Val Gln Gly Ile Ser Lys Leu Cys Val Phe Gln Glu Asn Thr Ala Gln
195 200 205
Ala Asp Gly Gly Ala Cys Gln Val Val Thr Ser Phe Ser Ala Met Ala
210 215 220
Asn Glu Ala Pro Ile Ala Phe Val Ala Asn Val Ala Gly Val Arg Gly
225 230 235 240
Gly Gly Ile Ala Ala Val Gln Asp Gly Gln Gln Gly Val Ser Ser Ser
245 250 255
Thr Ser Thr Glu Asp Pro Val Val Ser Phe Ser Arg Asn Thr Ala Val
260 265 270
Glu Phe Asp Gly Asn Val Ala Arg Val Gly Gly Gly Ile Tyr Ser Tyr
275 280 285
Gly Asn Val Ala Phe Leu Asn Asn Gly Lys Thr Leu Phe Leu Asn Asn
290 295 300
Val Ala Ser Pro Val Tyr Ile Ala Ala Lys Gln Pro Thr Ser Gly Gln
305 310 315 320
Ala Ser Asn Thr Ser Asn Asn Tyr Gly Asp Gly Gly Ala Ile Phe Cys
325 330 335
Lys Asn Gly Ala Gln Ala Gly Ser Asn Asn Ser Gly Ser Val Ser Phe
340 345 350
Asp Gly Glu Gly Val Val Phe Phe Ser Ser Asn Val Ala Ala Gly Lys
355 360 365
Gly Gly Ala Ile Tyr Ala Lys Lys Leu Ser Val Ala Asn Cys Gly Pro
370 375 380
Val Gln Phe Leu Arg Asn Ile Ala Asn Asp Gly Gly Ala Ile Tyr Leu
385 390 395 400
Gly Glu Ser Gly Glu Leu Ser Leu Ser Ala Asp Tyr Gly Asp Ile Ile
405 410 415
Phe Asp Gly Asn Leu Lys Arg Thr Ala Lys Glu Asn Ala Ala Asp Val
420 425 430
Asn Gly Val Thr Val Ser Ser Gln Ala Ile Ser Met Gly Ser Gly Gly
435 440 445
Lys Ile Thr Thr Leu Arg Ala Lys Ala Gly His Gln Ile Leu Phe Asn
450 455 460
Asp Pro Ile Glu Met Ala Asn Gly Asn Asn Gln Pro Ala Gln Ser Ser
465 470 475 480
Lys Leu Leu Lys Ile Asn Asp Gly Glu Gly Tyr Thr Gly Asp Ile Val
485 490 495
Phe Ala Asn Gly Ser Ser Thr Leu Tyr Gln Asn Val Thr Ile Glu Gln
500 505 510
Gly Arg Ile Val Leu Arg Glu Lys Ala Lys Leu Ser Val Asn Ser Leu
515 520 525
Ser Gln Thr Gly Gly Ser Leu Tyr Met Glu Ala Gly Ser Thr Leu Asp
530 535 540
Phe Val Thr Pro Gln Pro Pro Gln Gln Pro Pro Ala Ala Asn Gln Leu
545 550 555 560
Ile Thr Leu Ser Asn Leu His Leu Ser Leu Ser Ser Leu Leu Ala Asn
565 570 575
Asn Ala Val Thr Asn Pro Pro Thr Asn Pro Pro Ala Gln Asp Ser His
580 585 590
Pro Ala Val Ile Gly Ser Thr Thr Ala Gly Ser Val Thr Ile Ser Gly
595 600 605
Pro Ile Phe Phe Glu Asp Leu Asp Asp Thr Ala Tyr Asp Arg Tyr Asp
610 615 620
Trp Leu Gly Ser Asn Gln Lys Ile Asn Val Leu Lys Leu Gln Leu Gly
625 630 635 640
Thr Lys Pro Pro Ala Asn Ala Pro Ser Asp Leu Thr Leu Gly Asn Glu
645 650 655
Met Pro Lys Tyr Gly Tyr Gln Gly Ser Trp Lys Leu Ala Trp Asp Pro
660 665 670
Asn Thr Ala Asn Asn Gly Pro Tyr Thr Leu Lys Ala Thr Trp Thr Lys
675 680 685
Thr Gly Tyr Asn Pro Gly Pro Glu Arg Val Ala Ser Leu Val Pro Asn
690 695 700
Ser Leu Trp Gly Ser Ile Leu Asp Ile Arg Ser Ala His Ser Ala Ile
705 710 715 720
Gln Ala Ser Val Asp Gly Arg Ser Tyr Cys Arg Gly Leu Trp Val Ser
725 730 735
Gly Val Ser Asn Phe Phe Tyr His Asp Arg Asp Ala Leu Gly Gln Gly
740 745 750
Tyr Arg Tyr Ile Ser Gly Gly Tyr Ser Leu Gly Ala Asn Ser Tyr Phe
755 760 765
Gly Ser Ser Met Phe Gly Leu Ala Phe Thr Glu Val Phe Gly Arg Ser
770 775 780
Lys Asp Tyr Val Val Cys Arg Ser Asn His His Ala Cys Ile Gly Ser
785 790 795 800
Val Tyr Leu Ser Thr Gln Gln Ala Leu Cys Gly Ser Tyr Leu Phe Gly
805 810 815
Asp Ala Phe Ile Arg Ala Ser Tyr Gly Phe Gly Asn Gln His Met Lys
820 825 830
Thr Ser Tyr Thr Phe Ala Glu Glu Ser Asp Val Arg Trp Asp Asn Asn
835 840 845
Cys Leu Ala Gly Glu Ile Gly Ala Gly Leu Pro Ile Val Ile Thr Pro
850 855 860
Ser Lys Leu Tyr Leu Asn Glu Leu Arg Pro Phe Val Gln Ala Glu Phe
865 870 875 880
Ser Tyr Ala Asp His Glu Ser Phe Thr Glu Glu Gly Asp Gln Ala Arg
885 890 895
Ala Phe Lys Ser Gly His Leu Leu Asn Leu Ser Val Pro Val Gly Val
900 905 910
Lys Phe Asp Arg Cys Ser Ser Thr His Pro Asn Lys Tyr Ser Phe Met
915 920 925
Ala Ala Tyr Ile Cys Asp Ala Tyr Arg Thr Ile Ser Gly Thr Glu Thr
930 935 940
Thr Leu Leu Ser His Gln Glu Thr Trp Thr Thr Asp Ala Phe His Leu
945 950 955 960
Ala Arg His Gly Val Val Val Arg Gly Ser Met Tyr Ala Ser Leu Thr
965 970 975
Ser Asn Ile Glu Val Tyr Gly His Gly Arg Tyr Glu Tyr Arg Asp Ala
980 985 990
Ser Arg Gly Tyr Gly Leu Ser Ala Gly Ser Lys Val Arg Phe
995 1000 1005




191


977


PRT


Chlamydia



191
Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg Asp Ser Ser Leu
1 5 10 15
Val Pro Ser Ser Asp Pro His His His His His His Gly Leu Ala Arg
20 25 30
Glu Val Pro Ser Arg Ile Phe Leu Met Pro Asn Ser Val Pro Asp Pro
35 40 45
Thr Lys Glu Ser Leu Ser Asn Lys Ile Ser Leu Thr Gly Asp Thr His
50 55 60
Asn Leu Thr Asn Cys Tyr Leu Asp Asn Leu Arg Tyr Ile Leu Ala Ile
65 70 75 80
Leu Gln Lys Thr Pro Asn Glu Gly Ala Ala Val Thr Ile Thr Asp Tyr
85 90 95
Leu Ser Phe Phe Asp Thr Gln Lys Glu Gly Ile Tyr Phe Ala Lys Asn
100 105 110
Leu Thr Pro Glu Ser Gly Gly Ala Ile Gly Tyr Ala Ser Pro Asn Ser
115 120 125
Pro Thr Val Glu Ile Arg Asp Thr Ile Gly Pro Val Ile Phe Glu Asn
130 135 140
Asn Thr Cys Cys Arg Leu Phe Thr Trp Arg Asn Pro Tyr Ala Ala Asp
145 150 155 160
Lys Ile Arg Glu Gly Gly Ala Ile His Ala Gln Asn Leu Tyr Ile Asn
165 170 175
His Asn His Asp Val Val Gly Phe Met Lys Asn Phe Ser Tyr Val Gln
180 185 190
Gly Gly Ala Ile Ser Thr Ala Asn Thr Phe Val Val Ser Glu Asn Gln
195 200 205
Ser Cys Phe Leu Phe Met Asp Asn Ile Cys Ile Gln Thr Asn Thr Ala
210 215 220
Gly Lys Gly Gly Ala Ile Tyr Ala Gly Thr Ser Asn Ser Phe Glu Ser
225 230 235 240
Asn Asn Cys Asp Leu Phe Phe Ile Asn Asn Ala Cys Cys Ala Gly Gly
245 250 255
Ala Ile Phe Ser Pro Ile Cys Ser Leu Thr Gly Asn Arg Gly Asn Ile
260 265 270
Val Phe Tyr Asn Asn Arg Cys Phe Lys Asn Val Glu Thr Ala Ser Ser
275 280 285
Glu Ala Ser Asp Gly Gly Ala Ile Lys Val Thr Thr Arg Leu Asp Val
290 295 300
Thr Gly Asn Arg Gly Arg Ile Phe Phe Ser Asp Asn Ile Thr Lys Asn
305 310 315 320
Tyr Gly Gly Ala Ile Tyr Ala Pro Val Val Thr Leu Val Asp Asn Gly
325 330 335
Pro Thr Tyr Phe Ile Asn Asn Ile Ala Asn Asn Lys Gly Gly Ala Ile
340 345 350
Tyr Ile Asp Gly Thr Ser Asn Ser Lys Ile Ser Ala Asp Arg His Ala
355 360 365
Ile Ile Phe Asn Glu Asn Ile Val Thr Asn Val Thr Asn Ala Asn Gly
370 375 380
Thr Ser Thr Ser Ala Asn Pro Pro Arg Arg Asn Ala Ile Thr Val Ala
385 390 395 400
Ser Ser Ser Gly Glu Ile Leu Leu Gly Ala Gly Ser Ser Gln Asn Leu
405 410 415
Ile Phe Tyr Asp Pro Ile Glu Val Ser Asn Ala Gly Val Ser Val Ser
420 425 430
Phe Asn Lys Glu Ala Asp Gln Thr Gly Ser Val Val Phe Ser Gly Ala
435 440 445
Thr Val Asn Ser Ala Asp Phe His Gln Arg Asn Leu Gln Thr Lys Thr
450 455 460
Pro Ala Pro Leu Thr Leu Ser Asn Gly Phe Leu Cys Ile Glu Asp His
465 470 475 480
Ala Gln Leu Thr Val Asn Arg Phe Thr Gln Thr Gly Gly Val Val Ser
485 490 495
Leu Gly Asn Gly Ala Val Leu Ser Cys Tyr Lys Asn Gly Thr Gly Asp
500 505 510
Ser Ala Ser Asn Ala Ser Ile Thr Leu Lys His Ile Gly Leu Asn Leu
515 520 525
Ser Ser Ile Leu Lys Ser Gly Ala Glu Ile Pro Leu Leu Trp Val Glu
530 535 540
Pro Thr Asn Asn Ser Asn Asn Tyr Thr Ala Asp Thr Ala Ala Thr Phe
545 550 555 560
Ser Leu Ser Asp Val Lys Leu Ser Leu Ile Asp Asp Tyr Gly Asn Ser
565 570 575
Pro Tyr Glu Ser Thr Asp Leu Thr His Ala Leu Ser Ser Gln Pro Met
580 585 590
Leu Ser Ile Ser Glu Ala Ser Asp Asn Gln Leu Gln Ser Glu Asn Ile
595 600 605
Asp Phe Ser Gly Leu Asn Val Pro His Tyr Gly Trp Gln Gly Leu Trp
610 615 620
Thr Trp Gly Trp Ala Lys Thr Gln Asp Pro Glu Pro Ala Ser Ser Ala
625 630 635 640
Thr Ile Thr Asp Pro Gln Lys Ala Asn Arg Phe His Arg Thr Leu Leu
645 650 655
Leu Thr Trp Leu Pro Ala Gly Tyr Val Pro Ser Pro Lys His Arg Ser
660 665 670
Pro Leu Ile Ala Asn Thr Leu Trp Gly Asn Met Leu Leu Ala Thr Glu
675 680 685
Ser Leu Lys Asn Ser Ala Glu Leu Thr Pro Ser Gly His Pro Phe Trp
690 695 700
Gly Ile Thr Gly Gly Gly Leu Gly Met Met Val Tyr Gln Asp Pro Arg
705 710 715 720
Glu Asn His Pro Gly Phe His Met Arg Ser Ser Gly Tyr Ser Ala Gly
725 730 735
Met Ile Ala Gly Gln Thr His Thr Phe Ser Leu Lys Phe Ser Gln Thr
740 745 750
Tyr Thr Lys Leu Asn Glu Arg Tyr Ala Lys Asn Asn Val Ser Ser Lys
755 760 765
Asn Tyr Ser Cys Gln Gly Glu Met Leu Phe Ser Leu Gln Glu Gly Phe
770 775 780
Leu Leu Thr Lys Leu Val Gly Leu Tyr Ser Tyr Gly Asp His Asn Cys
785 790 795 800
His His Phe Tyr Thr Gln Gly Glu Asn Leu Thr Ser Gln Gly Thr Phe
805 810 815
Arg Ser Gln Thr Met Gly Gly Ala Val Phe Phe Asp Leu Pro Met Lys
820 825 830
Pro Phe Gly Ser Thr His Ile Leu Thr Ala Pro Phe Leu Gly Ala Leu
835 840 845
Gly Ile Tyr Ser Ser Leu Ser His Phe Thr Glu Val Gly Ala Tyr Pro
850 855 860
Arg Ser Phe Ser Thr Lys Thr Pro Leu Ile Asn Val Leu Val Pro Ile
865 870 875 880
Gly Val Lys Gly Ser Phe Met Asn Ala Thr His Arg Pro Gln Ala Trp
885 890 895
Thr Val Glu Leu Ala Tyr Gln Pro Val Leu Tyr Arg Gln Glu Pro Gly
900 905 910
Ile Ala Thr Gln Leu Leu Ala Ser Lys Gly Ile Trp Phe Gly Ser Gly
915 920 925
Ser Pro Ser Ser Arg His Ala Met Ser Tyr Lys Ile Ser Gln Gln Thr
930 935 940
Gln Pro Leu Ser Trp Leu Thr Leu His Phe Gln Tyr His Gly Phe Tyr
945 950 955 960
Ser Ser Ser Thr Phe Cys Asn Tyr Leu Asn Gly Glu Ile Ala Leu Arg
965 970 975
Phe




192


848


PRT


Chlamydia



192
Met Ala Ser His His His His His His Gly Ala Ile Ser Cys Leu Arg
1 5 10 15
Gly Asp Val Val Ile Ser Gly Asn Lys Gly Arg Val Glu Phe Lys Asp
20 25 30
Asn Ile Ala Thr Arg Leu Tyr Val Glu Glu Thr Val Glu Lys Val Glu
35 40 45
Glu Val Glu Pro Ala Pro Glu Gln Lys Asp Asn Asn Glu Leu Ser Phe
50 55 60
Leu Gly Ser Val Glu Gln Ser Phe Ile Thr Ala Ala Asn Gln Ala Leu
65 70 75 80
Phe Ala Ser Glu Asp Gly Asp Leu Ser Pro Glu Ser Ser Ile Ser Ser
85 90 95
Glu Glu Leu Ala Lys Arg Arg Glu Cys Ala Gly Gly Ala Ile Phe Ala
100 105 110
Lys Arg Val Arg Ile Val Asp Asn Gln Glu Ala Val Val Phe Ser Asn
115 120 125
Asn Phe Ser Asp Ile Tyr Gly Gly Ala Ile Phe Thr Gly Ser Leu Arg
130 135 140
Glu Glu Asp Lys Leu Asp Gly Gln Ile Pro Glu Val Leu Ile Ser Gly
145 150 155 160
Asn Ala Gly Asp Val Val Phe Ser Gly Asn Ser Ser Lys Arg Asp Glu
165 170 175
His Leu Pro His Thr Gly Gly Gly Ala Ile Cys Thr Gln Asn Leu Thr
180 185 190
Ile Ser Gln Asn Thr Gly Asn Val Leu Phe Tyr Asn Asn Val Ala Cys
195 200 205
Ser Gly Gly Ala Val Arg Ile Glu Asp His Gly Asn Val Leu Leu Glu
210 215 220
Ala Phe Gly Gly Asp Ile Val Phe Lys Gly Asn Ser Ser Phe Arg Ala
225 230 235 240
Gln Gly Ser Asp Ala Ile Tyr Phe Ala Gly Lys Glu Ser His Ile Thr
245 250 255
Ala Leu Asn Ala Thr Glu Gly His Ala Ile Val Phe His Asp Ala Leu
260 265 270
Val Phe Glu Asn Leu Lys Glu Arg Lys Ser Ala Glu Val Leu Leu Ile
275 280 285
Asn Ser Arg Glu Asn Pro Gly Tyr Thr Gly Ser Ile Arg Phe Leu Glu
290 295 300
Ala Glu Ser Lys Val Pro Gln Cys Ile His Val Gln Gln Gly Ser Leu
305 310 315 320
Glu Leu Leu Asn Gly Ala Thr Leu Cys Ser Tyr Gly Phe Lys Gln Asp
325 330 335
Ala Gly Ala Lys Leu Val Leu Ala Ala Gly Ser Lys Leu Lys Ile Leu
340 345 350
Asp Ser Gly Thr Pro Val Gln Gly His Ala Ile Ser Lys Pro Glu Ala
355 360 365
Glu Ile Glu Ser Ser Ser Glu Pro Glu Gly Ala His Ser Leu Trp Ile
370 375 380
Ala Lys Asn Ala Gln Thr Thr Val Pro Met Val Asp Ile His Thr Ile
385 390 395 400
Ser Val Asp Leu Ala Ser Phe Ser Ser Ser Gln Gln Glu Gly Thr Val
405 410 415
Glu Ala Pro Gln Val Ile Val Pro Gly Gly Ser Tyr Val Arg Ser Gly
420 425 430
Glu Leu Asn Leu Glu Leu Val Asn Thr Thr Gly Thr Gly Tyr Glu Asn
435 440 445
His Ala Leu Leu Lys Asn Glu Ala Lys Val Pro Leu Met Ser Phe Val
450 455 460
Ala Ser Ser Asp Glu Ala Ser Ala Glu Ile Ser Asn Leu Ser Val Ser
465 470 475 480
Asp Leu Gln Ile His Val Ala Thr Pro Glu Ile Glu Glu Asp Thr Tyr
485 490 495
Gly His Met Gly Asp Trp Ser Glu Ala Lys Ile Gln Asp Gly Thr Leu
500 505 510
Val Ile Asn Trp Asn Pro Thr Gly Tyr Arg Leu Asp Pro Gln Lys Ala
515 520 525
Gly Ala Leu Val Phe Asn Ala Leu Trp Glu Glu Gly Ala Val Leu Ser
530 535 540
Ala Leu Lys Asn Ala Arg Phe Ala His Asn Leu Thr Ala Gln Arg Met
545 550 555 560
Glu Phe Asp Tyr Ser Thr Asn Val Trp Gly Phe Ala Phe Gly Gly Phe
565 570 575
Arg Thr Leu Ser Ala Glu Asn Leu Val Ala Ile Asp Gly Tyr Lys Gly
580 585 590
Ala Tyr Gly Gly Ala Ser Ala Gly Val Asp Ile Gln Leu Met Glu Asp
595 600 605
Phe Val Leu Gly Val Ser Gly Ala Ala Phe Leu Gly Lys Met Asp Ser
610 615 620
Gln Lys Phe Asp Ala Glu Val Ser Arg Lys Gly Val Val Gly Ser Val
625 630 635 640
Tyr Thr Gly Phe Leu Ala Gly Ser Trp Phe Phe Lys Gly Gln Tyr Ser
645 650 655
Leu Gly Glu Thr Gln Asn Asp Met Lys Thr Arg Tyr Gly Val Leu Gly
660 665 670
Glu Ser Ser Ala Ser Trp Thr Ser Arg Gly Val Leu Ala Asp Ala Leu
675 680 685
Val Glu Tyr Arg Ser Leu Val Gly Pro Val Arg Pro Thr Phe Tyr Ala
690 695 700
Leu His Phe Asn Pro Tyr Val Glu Val Ser Tyr Ala Ser Met Lys Phe
705 710 715 720
Pro Gly Phe Thr Glu Gln Gly Arg Glu Ala Arg Ser Phe Glu Asp Ala
725 730 735
Ser Leu Thr Asn Ile Thr Ile Pro Leu Gly Met Lys Phe Glu Leu Ala
740 745 750
Phe Ile Lys Gly Gln Phe Ser Glu Val Asn Ser Leu Gly Ile Ser Tyr
755 760 765
Ala Trp Glu Ala Tyr Arg Lys Val Glu Gly Gly Ala Val Gln Leu Leu
770 775 780
Glu Ala Gly Phe Asp Trp Glu Gly Ala Pro Met Asp Leu Pro Arg Gln
785 790 795 800
Glu Leu Arg Val Ala Leu Glu Asn Asn Thr Glu Trp Ser Ser Tyr Phe
805 810 815
Ser Thr Val Leu Gly Leu Thr Ala Phe Cys Gly Gly Phe Thr Ser Thr
820 825 830
Asp Ser Lys Leu Gly Tyr Glu Ala Asn Thr Gly Leu Arg Leu Ile Phe
835 840 845




193


778


PRT


Chlamydia



193
Met His His His His His His Gly Leu Ala Ser Cys Val Asp Leu His
1 5 10 15
Ala Gly Gly Gln Ser Val Asn Glu Leu Val Tyr Val Gly Pro Gln Ala
20 25 30
Val Leu Leu Leu Asp Gln Ile Arg Asp Leu Phe Val Gly Ser Lys Asp
35 40 45
Ser Gln Ala Glu Gly Gln Tyr Arg Leu Ile Val Gly Asp Pro Ser Ser
50 55 60
Phe Gln Glu Lys Asp Ala Asp Thr Leu Pro Gly Lys Val Glu Gln Ser
65 70 75 80
Thr Leu Phe Ser Val Thr Asn Pro Val Val Phe Gln Gly Val Asp Gln
85 90 95
Gln Asp Gln Val Ser Ser Gln Gly Leu Ile Cys Ser Phe Thr Ser Ser
100 105 110
Asn Leu Asp Ser Pro Arg Asp Gly Glu Ser Phe Leu Gly Ile Ala Phe
115 120 125
Val Gly Asp Ser Ser Lys Ala Gly Ile Thr Leu Thr Asp Val Lys Ala
130 135 140
Ser Leu Ser Gly Ala Ala Leu Tyr Ser Thr Glu Asp Leu Ile Phe Glu
145 150 155 160
Lys Ile Lys Gly Gly Leu Glu Phe Ala Ser Cys Ser Ser Leu Glu Gln
165 170 175
Gly Gly Ala Cys Ala Ala Gln Ser Ile Leu Ile His Asp Cys Gln Gly
180 185 190
Leu Gln Val Lys His Cys Thr Thr Ala Val Asn Ala Glu Gly Ser Ser
195 200 205
Ala Asn Asp His Leu Gly Phe Gly Gly Gly Ala Phe Phe Val Thr Gly
210 215 220
Ser Leu Ser Gly Glu Lys Ser Leu Tyr Met Pro Ala Gly Asp Met Val
225 230 235 240
Val Ala Asn Cys Asp Gly Ala Ile Ser Phe Glu Gly Asn Ser Ala Asn
245 250 255
Phe Ala Asn Gly Gly Ala Ile Ala Ala Ser Gly Lys Val Leu Phe Val
260 265 270
Ala Asn Asp Lys Lys Thr Ser Phe Ile Glu Asn Arg Ala Leu Ser Gly
275 280 285
Gly Ala Ile Ala Ala Ser Ser Asp Ile Ala Phe Gln Asn Cys Ala Glu
290 295 300
Leu Val Phe Lys Gly Asn Cys Ala Ile Gly Thr Glu Asp Lys Gly Ser
305 310 315 320
Leu Gly Gly Gly Ala Ile Ser Ser Leu Gly Thr Val Leu Leu Gln Gly
325 330 335
Asn His Gly Ile Thr Cys Asp Lys Asn Glu Ser Ala Ser Gln Gly Gly
340 345 350
Ala Ile Phe Gly Lys Asn Cys Gln Ile Ser Asp Asn Glu Gly Pro Val
355 360 365
Val Phe Arg Asp Ser Thr Ala Cys Leu Gly Gly Gly Ala Ile Ala Ala
370 375 380
Gln Glu Ile Val Ser Ile Gln Asn Asn Gln Ala Gly Ile Ser Phe Glu
385 390 395 400
Gly Gly Lys Ala Ser Phe Gly Gly Gly Ile Ala Cys Gly Ser Phe Ser
405 410 415
Ser Ala Gly Gly Ala Ser Val Leu Gly Thr Ile Asp Ile Ser Lys Asn
420 425 430
Leu Gly Ala Ile Ser Phe Ser Arg Thr Leu Cys Thr Thr Ser Asp Leu
435 440 445
Gly Gln Met Glu Tyr Gln Gly Gly Gly Ala Leu Phe Gly Glu Asn Ile
450 455 460
Ser Leu Ser Glu Asn Ala Gly Val Leu Thr Phe Lys Asp Asn Ile Val
465 470 475 480
Lys Thr Phe Ala Ser Asn Gly Lys Ile Leu Gly Gly Gly Ala Ile Leu
485 490 495
Ala Thr Gly Lys Val Glu Ile Thr Asn Asn Ser Gly Gly Ile Ser Phe
500 505 510
Thr Gly Asn Ala Arg Ala Pro Gln Ala Leu Pro Thr Gln Glu Glu Phe
515 520 525
Pro Leu Phe Ser Lys Lys Glu Gly Arg Pro Leu Ser Ser Gly Tyr Ser
530 535 540
Gly Gly Gly Ala Ile Leu Gly Arg Glu Val Ala Ile Leu His Asn Ala
545 550 555 560
Ala Val Val Phe Glu Gln Asn Arg Leu Gln Cys Ser Glu Glu Glu Ala
565 570 575
Thr Leu Leu Gly Cys Cys Gly Gly Gly Ala Val His Gly Met Asp Ser
580 585 590
Thr Ser Ile Val Gly Asn Ser Ser Val Arg Phe Gly Asn Asn Tyr Ala
595 600 605
Met Gly Gln Gly Val Ser Gly Gly Ala Leu Leu Ser Lys Thr Val Gln
610 615 620
Leu Ala Gly Asn Gly Ser Val Asp Phe Ser Arg Asn Ile Ala Ser Leu
625 630 635 640
Gly Gly Gly Ala Leu Gln Ala Ser Glu Gly Asn Cys Glu Leu Val Asp
645 650 655
Asn Gly Tyr Val Leu Phe Arg Asp Asn Arg Gly Arg Val Tyr Gly Gly
660 665 670
Ala Ile Ser Cys Leu Arg Gly Asp Val Val Ile Ser Gly Asn Lys Gly
675 680 685
Arg Val Glu Phe Lys Asp Asn Ile Ala Thr Arg Leu Tyr Val Glu Glu
690 695 700
Thr Val Glu Lys Val Glu Glu Val Glu Pro Ala Pro Glu Gln Lys Asp
705 710 715 720
Asn Asn Glu Leu Ser Phe Leu Gly Ser Val Glu Gln Ser Phe Ile Thr
725 730 735
Ala Ala Asn Gln Ala Leu Phe Ala Ser Glu Asp Gly Asp Leu Ser Pro
740 745 750
Glu Ser Ser Ile Ser Ser Glu Glu Leu Ala Lys Arg Arg Glu Cys Ala
755 760 765
Gly Gly Ala Asp Ser Ser Arg Ser Gly Cys
770 775




194


948


PRT


Chlamydia



194
Met Ala Ser Met His His His His His His Val Lys Ile Glu Asn Phe
1 5 10 15
Ser Gly Gln Gly Ile Phe Ser Gly Asn Lys Ala Ile Asp Asn Thr Thr
20 25 30
Glu Gly Ser Ser Ser Lys Ser Asn Val Leu Gly Gly Ala Val Tyr Ala
35 40 45
Lys Thr Leu Phe Asn Leu Asp Ser Gly Ser Ser Arg Arg Thr Val Thr
50 55 60
Phe Ser Gly Asn Thr Val Ser Ser Gln Ser Thr Thr Gly Gln Val Ala
65 70 75 80
Gly Gly Ala Ile Tyr Ser Pro Thr Val Thr Ile Ala Thr Pro Val Val
85 90 95
Phe Ser Lys Asn Ser Ala Thr Asn Asn Ala Asn Asn Ala Thr Asp Thr
100 105 110
Gln Arg Lys Asp Thr Phe Gly Gly Ala Ile Gly Ala Thr Ser Ala Val
115 120 125
Ser Leu Ser Gly Gly Ala His Phe Leu Glu Asn Val Ala Asp Leu Gly
130 135 140
Ser Ala Ile Gly Leu Val Pro Asp Thr Gln Asn Thr Glu Thr Val Lys
145 150 155 160
Leu Glu Ser Gly Ser Tyr Tyr Phe Glu Lys Asn Lys Ala Leu Lys Arg
165 170 175
Ala Thr Ile Tyr Ala Pro Val Val Ser Ile Lys Ala Tyr Thr Ala Thr
180 185 190
Phe Asn Gln Asn Arg Ser Leu Glu Glu Gly Ser Ala Ile Tyr Phe Thr
195 200 205
Lys Glu Ala Ser Ile Glu Ser Leu Gly Ser Val Leu Phe Thr Gly Asn
210 215 220
Leu Val Thr Pro Thr Leu Ser Thr Thr Thr Glu Gly Thr Pro Ala Thr
225 230 235 240
Thr Ser Gly Asp Val Thr Lys Tyr Gly Ala Ala Ile Phe Gly Gln Ile
245 250 255
Ala Ser Ser Asn Gly Ser Gln Thr Asp Asn Leu Pro Leu Lys Leu Ile
260 265 270
Ala Ser Gly Gly Asn Ile Cys Phe Arg Asn Asn Glu Tyr Arg Pro Thr
275 280 285
Ser Ser Asp Thr Gly Thr Ser Thr Phe Cys Ser Ile Ala Gly Asp Val
290 295 300
Lys Leu Thr Met Gln Ala Ala Lys Gly Lys Thr Ile Ser Phe Phe Asp
305 310 315 320
Ala Ile Arg Thr Ser Thr Lys Lys Thr Gly Thr Gln Ala Thr Ala Tyr
325 330 335
Asp Thr Leu Asp Ile Asn Lys Ser Glu Asp Ser Glu Thr Val Asn Ser
340 345 350
Ala Phe Thr Gly Thr Ile Leu Phe Ser Ser Glu Leu His Glu Asn Lys
355 360 365
Ser Tyr Ile Pro Gln Asn Val Val Leu His Ser Gly Ser Leu Val Leu
370 375 380
Lys Pro Asn Thr Glu Leu His Val Ile Ser Phe Glu Gln Lys Glu Gly
385 390 395 400
Ser Ser Leu Val Met Thr Pro Gly Ser Val Leu Ser Asn Gln Thr Val
405 410 415
Ala Asp Gly Ala Leu Val Ile Asn Asn Met Thr Ile Asp Leu Ser Ser
420 425 430
Val Glu Lys Asn Gly Ile Ala Glu Gly Asn Ile Phe Thr Pro Pro Glu
435 440 445
Leu Arg Ile Ile Asp Thr Thr Thr Ser Gly Ser Gly Gly Thr Pro Ser
450 455 460
Thr Asp Ser Glu Ser Asn Gln Asn Ser Asp Asp Thr Lys Glu Gln Asn
465 470 475 480
Asn Asn Asp Ala Ser Asn Gln Gly Glu Ser Ala Asn Gly Ser Ser Ser
485 490 495
Pro Ala Val Ala Ala Ala His Thr Ser Arg Thr Arg Asn Phe Ala Ala
500 505 510
Ala Ala Thr Ala Thr Pro Thr Thr Thr Pro Thr Ala Thr Thr Thr Thr
515 520 525
Ser Asn Gln Val Ile Leu Gly Gly Glu Ile Lys Leu Ile Asp Pro Asn
530 535 540
Gly Thr Phe Phe Gln Asn Pro Ala Leu Arg Ser Asp Gln Gln Ile Ser
545 550 555 560
Leu Leu Val Leu Pro Thr Asp Ser Ser Lys Met Gln Ala Gln Lys Ile
565 570 575
Val Leu Thr Gly Asp Ile Ala Pro Gln Lys Gly Tyr Thr Gly Thr Leu
580 585 590
Thr Leu Asp Pro Asp Gln Leu Gln Asn Gly Thr Ile Ser Ala Leu Trp
595 600 605
Lys Phe Asp Ser Tyr Arg Gln Trp Ala Tyr Val Pro Arg Asp Asn His
610 615 620
Phe Tyr Ala Asn Ser Ile Leu Gly Ser Gln Met Ser Met Val Thr Val
625 630 635 640
Lys Gln Gly Leu Leu Asn Asp Lys Met Asn Leu Ala Arg Phe Asp Glu
645 650 655
Val Ser Tyr Asn Asn Leu Trp Ile Ser Gly Leu Gly Thr Met Leu Ser
660 665 670
Gln Val Gly Thr Pro Thr Ser Glu Glu Phe Thr Tyr Tyr Ser Arg Gly
675 680 685
Ala Ser Val Ala Leu Asp Ala Lys Pro Ala His Asp Val Ile Val Gly
690 695 700
Ala Ala Phe Ser Lys Met Ile Gly Lys Thr Lys Ser Leu Lys Arg Glu
705 710 715 720
Asn Asn Tyr Thr His Lys Gly Ser Glu Tyr Ser Tyr Gln Ala Ser Val
725 730 735
Tyr Gly Gly Lys Pro Phe His Phe Val Ile Asn Lys Lys Thr Glu Lys
740 745 750
Ser Leu Pro Leu Leu Leu Gln Gly Val Ile Ser Tyr Gly Tyr Ile Lys
755 760 765
His Asp Thr Val Thr His Tyr Pro Thr Ile Arg Glu Arg Asn Gln Gly
770 775 780
Glu Trp Glu Asp Leu Gly Trp Leu Thr Ala Leu Arg Val Ser Ser Val
785 790 795 800
Leu Arg Thr Pro Ala Gln Gly Asp Thr Lys Arg Ile Thr Val Tyr Gly
805 810 815
Glu Leu Glu Tyr Ser Ser Ile Arg Gln Lys Gln Phe Thr Glu Thr Glu
820 825 830
Tyr Asp Pro Arg Tyr Phe Asp Asn Cys Thr Tyr Arg Asn Leu Ala Ile
835 840 845
Pro Met Gly Leu Ala Phe Glu Gly Glu Leu Ser Gly Asn Asp Ile Leu
850 855 860
Met Tyr Asn Arg Phe Ser Val Ala Tyr Met Pro Ser Ile Tyr Arg Asn
865 870 875 880
Ser Pro Thr Cys Lys Tyr Gln Val Leu Ser Ser Gly Glu Gly Gly Glu
885 890 895
Ile Ile Cys Gly Val Pro Thr Arg Asn Ser Ala Arg Gly Glu Tyr Ser
900 905 910
Thr Gln Leu Tyr Pro Gly Pro Leu Trp Thr Leu Tyr Gly Ser Tyr Thr
915 920 925
Ile Glu Ala Asp Ala His Thr Leu Ala His Met Met Asn Cys Gly Ala
930 935 940
Arg Met Thr Phe
945




195


821


PRT


Chlamydia



195
Met His His His His His His Glu Ala Ser Ser Ile Gln Asp Gln Ile
1 5 10 15
Lys Asn Thr Asp Cys Asn Val Ser Lys Val Gly Tyr Ser Thr Ser Gln
20 25 30
Ala Phe Thr Asp Met Met Leu Ala Asp Asn Thr Glu Tyr Arg Ala Ala
35 40 45
Asp Ser Val Ser Phe Tyr Asp Phe Ser Thr Ser Ser Gly Leu Pro Arg
50 55 60
Lys His Leu Ser Ser Ser Ser Glu Ala Ser Pro Thr Thr Glu Gly Val
65 70 75 80
Ser Ser Ser Ser Ser Gly Glu Asn Thr Glu Asn Ser Gln Asp Ser Ala
85 90 95
Pro Ser Ser Gly Glu Thr Asp Lys Lys Thr Glu Glu Glu Leu Asp Asn
100 105 110
Gly Gly Ile Ile Tyr Ala Arg Glu Lys Leu Thr Ile Ser Glu Ser Gln
115 120 125
Asp Ser Leu Ser Asn Pro Ser Ile Glu Leu His Asp Asn Ser Phe Phe
130 135 140
Phe Gly Glu Gly Glu Val Ile Phe Asp His Arg Val Ala Leu Lys Asn
145 150 155 160
Gly Gly Ala Ile Tyr Gly Glu Lys Glu Val Val Phe Glu Asn Ile Lys
165 170 175
Ser Leu Leu Val Glu Val Asn Ile Ser Val Glu Lys Gly Gly Ser Val
180 185 190
Tyr Ala Lys Glu Arg Val Ser Leu Glu Asn Val Thr Glu Ala Thr Phe
195 200 205
Ser Ser Asn Gly Gly Glu Gln Gly Gly Gly Gly Ile Tyr Ser Glu Gln
210 215 220
Asp Met Leu Ile Ser Asp Cys Asn Asn Val His Phe Gln Gly Asn Ala
225 230 235 240
Ala Gly Ala Thr Ala Val Lys Gln Cys Leu Asp Glu Glu Met Ile Val
245 250 255
Leu Leu Thr Glu Cys Val Asp Ser Leu Ser Glu Asp Thr Leu Asp Ser
260 265 270
Thr Pro Glu Thr Glu Gln Thr Lys Ser Asn Gly Asn Gln Asp Gly Ser
275 280 285
Ser Glu Thr Lys Asp Thr Gln Val Ser Glu Ser Pro Glu Ser Thr Pro
290 295 300
Ser Pro Asp Asp Val Leu Gly Lys Gly Gly Gly Ile Tyr Thr Glu Lys
305 310 315 320
Ser Leu Thr Ile Thr Gly Ile Thr Gly Thr Ile Asp Phe Val Ser Asn
325 330 335
Ile Ala Thr Asp Ser Gly Ala Gly Val Phe Thr Lys Glu Asn Leu Ser
340 345 350
Cys Thr Asn Thr Asn Ser Leu Gln Phe Leu Lys Asn Ser Ala Gly Gln
355 360 365
His Gly Gly Gly Ala Tyr Val Thr Gln Thr Met Ser Val Thr Asn Thr
370 375 380
Thr Ser Glu Ser Ile Thr Thr Pro Pro Leu Val Gly Glu Val Ile Phe
385 390 395 400
Ser Glu Asn Thr Ala Lys Gly His Gly Gly Gly Ile Cys Thr Asn Lys
405 410 415
Leu Ser Leu Ser Asn Leu Lys Thr Val Thr Leu Thr Lys Asn Ser Ala
420 425 430
Lys Glu Ser Gly Gly Ala Ile Phe Thr Asp Leu Ala Ser Ile Pro Thr
435 440 445
Thr Asp Thr Pro Glu Ser Ser Thr Pro Ser Ser Ser Ser Pro Ala Ser
450 455 460
Thr Pro Glu Val Val Ala Ser Ala Lys Ile Asn Arg Phe Phe Ala Ser
465 470 475 480
Thr Ala Glu Pro Ala Ala Pro Ser Leu Thr Glu Ala Glu Ser Asp Gln
485 490 495
Thr Asp Gln Thr Glu Thr Ser Asp Thr Asn Ser Asp Ile Asp Val Ser
500 505 510
Ile Glu Asn Ile Leu Asn Val Ala Ile Asn Gln Asn Thr Ser Ala Lys
515 520 525
Lys Gly Gly Ala Ile Tyr Gly Lys Lys Ala Lys Leu Ser Arg Ile Asn
530 535 540
Asn Leu Glu Leu Ser Gly Asn Ser Ser Gln Asp Val Gly Gly Gly Leu
545 550 555 560
Cys Leu Thr Glu Ser Val Glu Phe Asp Ala Ile Gly Ser Leu Leu Ser
565 570 575
His Tyr Asn Ser Ala Ala Lys Glu Gly Gly Val Ile His Ser Lys Thr
580 585 590
Val Thr Leu Ser Asn Leu Lys Ser Thr Phe Thr Phe Ala Asp Asn Thr
595 600 605
Val Lys Ala Ile Val Glu Ser Thr Pro Glu Ala Pro Glu Glu Ile Pro
610 615 620
Pro Val Glu Gly Glu Glu Ser Thr Ala Thr Glu Asn Pro Asn Ser Asn
625 630 635 640
Thr Glu Gly Ser Ser Ala Asn Thr Asn Leu Glu Gly Ser Gln Gly Asp
645 650 655
Thr Ala Asp Thr Gly Thr Gly Val Val Asn Asn Glu Ser Gln Asp Thr
660 665 670
Ser Asp Thr Gly Asn Ala Glu Ser Gly Glu Gln Leu Gln Asp Ser Thr
675 680 685
Gln Ser Asn Glu Glu Asn Thr Leu Pro Asn Ser Ser Ile Asp Gln Ser
690 695 700
Asn Glu Asn Thr Asp Glu Ser Ser Asp Ser His Thr Glu Glu Ile Thr
705 710 715 720
Asp Glu Ser Val Ser Ser Ser Ser Lys Ser Gly Ser Ser Thr Pro Gln
725 730 735
Asp Gly Gly Ala Ala Ser Ser Gly Ala Pro Ser Gly Asp Gln Ser Ile
740 745 750
Ser Ala Asn Ala Cys Leu Ala Lys Ser Tyr Ala Ala Ser Thr Asp Ser
755 760 765
Ser Pro Val Ser Asn Ser Ser Gly Ser Asp Val Thr Ala Ser Ser Asp
770 775 780
Asn Pro Asp Ser Ser Ser Ser Gly Asp Ser Ala Gly Asp Ser Glu Gly
785 790 795 800
Pro Thr Glu Pro Glu Ala Gly Ser Thr Thr Glu Thr Pro Thr Leu Ile
805 810 815
Gly Gly Gly Ala Ile
820




196


525


PRT


Chlamydia



196
Met His His His His His His Thr Ala Ala Ser Asp Asn Phe Gln Leu
1 5 10 15
Ser Gln Gly Gly Gln Gly Phe Ala Ile Pro Ile Gly Gln Ala Met Ala
20 25 30
Ile Ala Gly Gln Ile Lys Leu Pro Thr Val His Ile Gly Pro Thr Ala
35 40 45
Phe Leu Gly Leu Gly Val Val Asp Asn Asn Gly Asn Gly Ala Arg Val
50 55 60
Gln Arg Val Val Gly Ser Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr
65 70 75 80
Gly Asp Val Ile Thr Ala Val Asp Gly Ala Pro Ile Asn Ser Ala Thr
85 90 95
Ala Met Ala Asp Ala Leu Asn Gly His His Pro Gly Asp Val Ile Ser
100 105 110
Val Thr Trp Gln Thr Lys Ser Gly Gly Thr Arg Thr Gly Asn Val Thr
115 120 125
Leu Ala Glu Gly Pro Pro Ala Glu Phe Pro Leu Val Pro Arg Gly Ser
130 135 140
Pro Leu Pro Val Gly Asn Pro Ala Glu Pro Ser Leu Leu Ile Asp Gly
145 150 155 160
Thr Met Trp Glu Gly Ala Ser Gly Asp Pro Cys Asp Pro Cys Ala Thr
165 170 175
Trp Cys Asp Ala Ile Ser Ile Arg Ala Gly Tyr Tyr Gly Asp Tyr Val
180 185 190
Phe Asp Arg Val Leu Lys Val Asp Val Asn Lys Thr Phe Ser Gly Met
195 200 205
Ala Ala Thr Pro Thr Gln Ala Ile Gly Asn Ala Ser Asn Thr Asn Gln
210 215 220
Pro Glu Ala Asn Gly Arg Pro Asn Ile Ala Tyr Gly Arg His Met Gln
225 230 235 240
Asp Ala Glu Trp Phe Ser Asn Ala Ala Phe Leu Ala Leu Asn Ile Trp
245 250 255
Asp Arg Phe Asp Ile Phe Cys Thr Leu Gly Ala Ser Asn Gly Tyr Phe
260 265 270
Lys Ala Ser Ser Ala Ala Phe Asn Leu Val Gly Leu Ile Gly Phe Ser
275 280 285
Ala Ala Ser Ser Ile Ser Thr Asp Leu Pro Met Gln Leu Pro Asn Val
290 295 300
Gly Ile Thr Gln Gly Val Val Glu Phe Tyr Thr Asp Thr Ser Phe Ser
305 310 315 320
Trp Ser Val Gly Ala Arg Gly Ala Leu Trp Glu Cys Gly Cys Ala Thr
325 330 335
Leu Gly Ala Glu Phe Gln Tyr Ala Gln Ser Asn Pro Lys Ile Glu Met
340 345 350
Leu Asn Val Thr Ser Ser Pro Ala Gln Phe Val Ile His Lys Pro Arg
355 360 365
Gly Tyr Lys Gly Ala Ser Ser Asn Phe Pro Leu Pro Ile Thr Ala Gly
370 375 380
Thr Thr Glu Ala Thr Asp Thr Lys Ser Ala Thr Ile Lys Tyr His Glu
385 390 395 400
Trp Gln Val Gly Leu Ala Leu Ser Tyr Arg Leu Asn Met Leu Val Pro
405 410 415
Tyr Ile Gly Val Asn Trp Ser Arg Ala Thr Phe Asp Ala Asp Thr Ile
420 425 430
Arg Ile Ala Gln Pro Lys Leu Lys Ser Glu Ile Leu Asn Ile Thr Thr
435 440 445
Trp Asn Pro Ser Leu Ile Gly Ser Thr Thr Ala Leu Pro Asn Asn Ser
450 455 460
Gly Lys Asp Val Leu Ser Asp Val Leu Gln Ile Ala Ser Ile Gln Ile
465 470 475 480
Asn Lys Met Lys Ser Arg Lys Ala Cys Gly Val Ala Val Gly Ala Thr
485 490 495
Leu Ile Asp Ala Asp Lys Trp Ser Ile Thr Gly Glu Ala Arg Leu Ile
500 505 510
Asn Glu Arg Ala Ala His Met Asn Ala Gln Phe Arg Phe
515 520 525




197


43


DNA


Chlamydia



197
gataggcgcg ccgcaatcat gaaatttatg tcagctactg ctg 43




198


34


DNA


Chlamydia



198
cagaacgcgt ttagaatgtc atacgagcac cgca 34




199


6


DNA


Chlamydia



199
gcaatc 6




200


34


DNA


Chlamydia



200
tgcaatcatg agttcgcaga aagatataaa aagc 34




201


38


DNA


Chlamydia



201
cagagctagc ttaaaagatc aatcgcaatc cagtattc 38




202


5


DNA


Chlamydia



202
caatc 5




203


31


DNA


Chlamydia



203
tgcaatcatg aaaaaagcgt ttttcttttt c 31




204


31


DNA


Chlamydia



204
cagaacgcgt ctagaatcgc agagcaattt c 31




205


30


DNA


Chlamydia



205
gtgcaatcat gattcctcaa ggaatttacg 30




206


31


DNA


Chlamydia



206
cagaacgcgt ttagaaccgg actttacttc c 31




207


50


DNA


Chlamydia



207
cagacatatg catcaccatc accatcacga ggcgagctcg atccaagatc 50




208


40


DNA


Chlamydia



208
cagaggtacc tcagatagca ctctctccta ttaaagtagg 40




209


55


DNA


Chlamydia



209
cagagctagc atgcatcacc atcaccatca cgttaagatt gagaacttct ctggc 55




210


35


DNA


Chlamydia



210
cagaggtacc ttagaatgtc atacgagcac cgcag 35




211


36


DNA


Chlamydia



211
cagacatatg catcaccatc accatcacgg gttagc 36




212


35


DNA


Chlamydia



212
cagaggtacc tcagctcctc cagcacactc tcttc 35




213


51


DNA


Chlamydia



213
cagagctagc catcaccatc accatcacgg tgctatttct tgcttacgtg g 51




214


38


DNA


Chlamydia



214
cagaggtact taaaagatca atcgcaatcc agtattcg 38




215


48


DNA


Chlamydia



215
cagaggatcc acatcaccat caccatcacg gactagctag agaggttc 48




216


31


DNA


Chlamydia



216
cagagaattc ctagaatcgc agagcaattt c 31




217


7


DNA


Chlamydia



217
tgcaatc 7




218


22


PRT


Chlamydia



218
Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg Asp Ser Ser Leu
1 5 10 15
Val Pro Ser Ser Asp Pro
20




219


51


DNA


Chlamydia



219
cagaggtacc gcatcaccat caccatcaca tgattcctca aggaatttac g 51




220


33


DNA


Chlamydia



220
cagagcggcc gcttagaacc ggactttact tcc 33




221


24


PRT


Chlamydia



221
Met Ala Ser Met Thr Gly Gly Gln Gln Asn Gly Arg Asp Ser Ser Leu
1 5 10 15
Val Pro His His His His His His
20




222


46


DNA


Chlamydia



222
cagagctagc catcaccatc accatcacct ctttggccag gatccc 6




223


30


DNA


Chlamydia



223
cagaactagt ctagaacctg taagtggtcc 30




224


20


PRT


Artificial Sequence




Made in a lab





224
Met Ser Gln Lys Asn Lys Asn Ser Ala Phe Met His Pro Val Asn Ile
1 5 10 15
Ser Thr Asp Leu
20




225


20


PRT


Artificial Sequence




Made in a lab





225
Lys Asn Ser Ala Phe Met His Pro Val Asn Ile Ser Thr Asp Leu Ala
1 5 10 15
Val Ile Val Gly
20




226


20


PRT


Artificial Sequence




Made in a lab





226
His Pro Val Asn Ile Ser Thr Asp Leu Ala Val Ile Val Gly Lys Gly
1 5 10 15
Pro Met Pro Arg
20




227


20


PRT


Artificial Sequence




Made in a lab





227
Ser Thr Asp Leu Ala Val Ile Val Gly Lys Gly Pro Met Pro Arg Thr
1 5 10 15
Glu Ile Val Lys
20




228


20


PRT


Artificial Sequence




Made in a lab





228
Val Ile Val Gly Lys Gly Pro Met Pro Arg Thr Glu Ile Val Lys Lys
1 5 10 15
Val Trp Glu Tyr
20




229


20


PRT


Artificial Sequence




Made in a lab





229
Gly Pro Met Pro Arg Thr Glu Ile Val Lys Lys Val Trp Glu Tyr Ile
1 5 10 15
Lys Lys His Asn
20




230


20


PRT


Artificial Sequence




Made in a lab





230
Ile Lys Lys His Asn Cys Gln Asp Gln Lys Asn Lys Arg Asn Ile Leu
1 5 10 15
Pro Asp Ala Asn
20




231


20


PRT


Artificial Sequence




Made in a lab





231
Asn Cys Gln Asp Gln Lys Asn Lys Arg Asn Ile Leu Pro Asp Ala Asn
1 5 10 15
Leu Ala Lys Val
20




232


20


PRT


Artificial Sequence




Made in a lab





232
Lys Asn Lys Arg Asn Ile Leu Pro Asp Ala Asn Leu Ala Lys Val Phe
1 5 10 15
Gly Ser Ser Asp
20




233


20


PRT


Artificial Sequence




Made in a lab





233
Ile Leu Pro Asp Ala Asn Leu Ala Lys Val Phe Gly Ser Ser Asp Pro
1 5 10 15
Ile Asp Met Phe
20




234


20


PRT


Artificial Sequence




Made in a lab





234
Asn Leu Ala Lys Val Phe Gly Ser Ser Asp Pro Ile Asp Met Phe Gln
1 5 10 15
Met Thr Lys Ala
20




235


22


PRT


Artificial Sequence




Made in a lab





235
Phe Gly Ser Ser Asp Pro Ile Asp Met Phe Gln Met Thr Lys Ala Leu
1 5 10 15
Ser Lys His Ile Val Lys
20




236


20


PRT


Artificial Sequence




Made in a lab





236
Val Glu Ile Thr Gln Ala Val Pro Lys Tyr Ala Thr Val Gly Ser Pro
1 5 10 15
Tyr Pro Val Glu
20




237


20


PRT


Artificial Sequence




Made in a lab





237
Ala Val Pro Lys Tyr Ala Thr Val Gly Ser Pro Tyr Pro Val Glu Ile
1 5 10 15
Thr Ala Thr Gly
20




238


20


PRT


Artificial Sequence




Made in a lab





238
Ala Thr Val Gly Ser Pro Tyr Pro Val Glu Ile Thr Ala Thr Gly Lys
1 5 10 15
Arg Asp Cys Val
20




239


20


PRT


Artificial Sequence




Made in a lab





239
Pro Tyr Pro Val Glu Ile Thr Ala Thr Gly Lys Arg Asp Cys Val Asp
1 5 10 15
Val Ile Ile Thr
20




240


21


PRT


Artificial Sequence




Made in a lab





240
Ile Thr Ala Thr Gly Lys Arg Asp Cys Val Asp Val Ile Ile Thr Gln
1 5 10 15
Gln Leu Pro Cys Glu
20




241


20


PRT


Artificial Sequence




Made in a lab





241
Lys Arg Asp Cys Val Asp Val Ile Ile Thr Gln Gln Leu Pro Cys Glu
1 5 10 15
Ala Glu Phe Val
20




242


20


PRT


Artificial Sequence




Made in a lab





242
Asp Val Ile Ile Thr Gln Gln Leu Pro Cys Glu Ala Glu Phe Val Arg
1 5 10 15
Ser Asp Pro Ala
20




243


20


PRT


Artificial Sequence




Made in a lab





243
Thr Gln Gln Leu Pro Cys Glu Ala Glu Phe Val Arg Ser Asp Pro Ala
1 5 10 15
Thr Thr Pro Thr
20




244


20


PRT


Artificial Sequence




Made in a lab





244
Cys Glu Ala Glu Phe Val Arg Ser Asp Pro Ala Thr Thr Pro Thr Ala
1 5 10 15
Asp Gly Lys Leu
20




245


20


PRT


Artificial Sequence




Made in a lab





245
Val Arg Ser Asp Pro Ala Thr Thr Pro Thr Ala Asp Gly Lys Leu Val
1 5 10 15
Trp Lys Ile Asp
20




246


20


PRT


Artificial Sequence




Made in a lab





246
Ala Thr Thr Pro Thr Ala Asp Gly Lys Leu Val Trp Lys Ile Asp Arg
1 5 10 15
Leu Gly Gln Gly
20




247


20


PRT


Artificial Sequence




Made in a lab





247
Ala Asp Gly Lys Leu Val Trp Lys Ile Asp Arg Leu Gly Gln Gly Glu
1 5 10 15
Lys Ser Lys Ile
20




248


20


PRT


Artificial Sequence




Made in a lab





248
Val Trp Lys Ile Asp Arg Leu Gly Gln Gly Glu Lys Ser Lys Ile Thr
1 5 10 15
Val Trp Val Lys
20




249


20


PRT


Artificial Sequence




Made in a lab





249
Arg Leu Gly Gln Gly Glu Lys Ser Lys Ile Thr Val Trp Val Lys Pro
1 5 10 15
Leu Lys Glu Gly
20




250


20


PRT


Artificial Sequence




Made in a lab





250
Gly Glu Lys Ser Lys Ile Thr Val Trp Val Lys Pro Leu Lys Glu Gly
1 5 10 15
Cys Cys Phe Thr
20




251


16


PRT


Artificial Sequence




Made in a lab





251
Gly Glu Lys Ser Lys Ile Thr Val Trp Val Lys Pro Leu Lys Glu Gly
1 5 10 15




252


12


PRT


Artificial Sequence




Made in a lab





252
Lys Ile Thr Val Trp Val Lys Pro Leu Lys Glu Gly
1 5 10




253


16


PRT


Artificial Sequence




Made in a lab





253
Gly Asp Lys Cys Lys Ile Thr Val Trp Val Lys Pro Leu Lys Glu Gly
1 5 10 15




254


20


PRT


Artificial Sequence




Made in a lab





254
Thr Glu Tyr Pro Leu Leu Ala Asp Pro Ser Phe Lys Ile Ser Glu Ala
1 5 10 15
Phe Gly Val Leu
20




255


20


PRT


Artificial Sequence




Made in a lab





255
Leu Ala Asp Pro Ser Phe Lys Ile Ser Glu Ala Phe Gly Val Leu Asn
1 5 10 15
Pro Glu Gly Ser
20




256


20


PRT


Artificial Sequence




Made in a lab





256
Phe Lys Ile Ser Glu Ala Phe Gly Val Leu Asn Pro Glu Gly Ser Leu
1 5 10 15
Ala Leu Arg Ala
20




257


20


PRT


Artificial Sequence




Made in a lab





257
Ala Phe Gly Val Leu Asn Pro Glu Gly Ser Leu Ala Leu Arg Ala Thr
1 5 10 15
Phe Leu Ile Asp
20




258


20


PRT


Artificial Sequence




Made in a lab





258
Asn Pro Glu Gly Ser Leu Ala Leu Arg Ala Thr Phe Leu Ile Asp Lys
1 5 10 15
His Gly Val Ile
20




259


20


PRT


Artificial Sequence




Made in a lab





259
Leu Ala Leu Arg Ala Thr Phe Leu Ile Asp Lys His Gly Val Ile Arg
1 5 10 15
His Ala Val Ile
20




260


20


PRT


Artificial Sequence




Made in a lab





260
Thr Phe Leu Ile Asp Lys His Gly Val Ile Arg His Ala Val Ile Asn
1 5 10 15
Asp Leu Pro Leu
20




261


20


PRT


Artificial Sequence




Made in a lab





261
Lys His Gly Val Ile Arg His Ala Val Ile Asn Asp Leu Pro Leu Gly
1 5 10 15
Arg Ser Ile Asp
20




262


20


PRT


Artificial Sequence




Made in a lab





262
Arg His Ala Val Ile Asn Asp Leu Pro Leu Gly Arg Ser Ile Asp Glu
1 5 10 15
Glu Leu Arg Ile
20




263


897


DNA


Chlamydia




misc_feature




(1)...(897)




n = A,T,C or G





263
atggcttcta tatgcggacg tttagggtct ggtacaggga atgctctaaa agcttttttt 60
acacagccca acaataaaat ggcaagggta gtaaataaga cgaagggagt ggataagact 120
attaaggttg ccaagtctgc tgccgaattg accgcaaata ttttggaaca agctggaggc 180
gcgggctctt ccgcacacat tacagcttcc caagtgtcca aaggattagg ggatgcgaga 240
actgttgtcg ctttagggaa tgcctttaac ggagcgttgc caggaacagt tcaaagtgcg 300
caaagcttct tctctcacat gaaagctgct agtcagaaaa cgcaagaagg ggatgagggg 360
ctcacagcag atctttgtgt gtctcataag cgcagagcgg ctgcggctgt ctgtagcatc 420
atcggaggaa ttacctacct cgcgacattc ggagctatcc gtccgattct gtttgtcaac 480
aaaatgctgg caaaaccgtt tctttcttcc caaactaaag caaatatggg atcttctgtt 540
agctatatta tggcggctaa ccatgcagcg tctgtggtgg gtgctggact cgctatcagt 600
gcgnaaagag cagattgcga agcccgctgc gctcgtattg cgagagaaga gtcgttactc 660
gaagtgccgg gagaggaaaa tgcttgcgag aagaaagtcg ctggagagaa agccaagacg 720
ttcacgcgca tcaagtatgc actcctcact atgctcgaga agtttttgga atgcgttgcc 780
gacgttttca aattggtgcc gctgcctatt acaatgggta ttcgtgcgat tgtggctgct 840
ggatgtacgt tcacttctgc aattattgga ttgtgcactt tctgcgccag agcataa 897




264


298


PRT


Chlamydia




VARIANT




(1)...(298)




Xaa = Any Amino Acid





264
Met Ala Ser Ile Cys Gly Arg Leu Gly Ser Gly Thr Gly Asn Ala Leu
1 5 10 15
Lys Ala Phe Phe Thr Gln Pro Asn Asn Lys Met Ala Arg Val Val Asn
20 25 30
Lys Thr Lys Gly Val Asp Lys Thr Ile Lys Val Ala Lys Ser Ala Ala
35 40 45
Glu Leu Thr Ala Asn Ile Leu Glu Gln Ala Gly Gly Ala Gly Ser Ser
50 55 60
Ala His Ile Thr Ala Ser Gln Val Ser Lys Gly Leu Gly Asp Ala Arg
65 70 75 80
Thr Val Val Ala Leu Gly Asn Ala Phe Asn Gly Ala Leu Pro Gly Thr
85 90 95
Val Gln Ser Ala Gln Ser Phe Phe Ser His Met Lys Ala Ala Ser Gln
100 105 110
Lys Thr Gln Glu Gly Asp Glu Gly Leu Thr Ala Asp Leu Cys Val Ser
115 120 125
His Lys Arg Arg Ala Ala Ala Ala Val Cys Ser Ile Ile Gly Gly Ile
130 135 140
Thr Tyr Leu Ala Thr Phe Gly Ala Ile Arg Pro Ile Leu Phe Val Asn
145 150 155 160
Lys Met Leu Ala Lys Pro Phe Leu Ser Ser Gln Thr Lys Ala Asn Met
165 170 175
Gly Ser Ser Val Ser Tyr Ile Met Ala Ala Asn His Ala Ala Ser Val
180 185 190
Val Gly Ala Gly Leu Ala Ile Ser Ala Xaa Arg Ala Asp Cys Glu Ala
195 200 205
Arg Cys Ala Arg Ile Ala Arg Glu Glu Ser Leu Leu Glu Val Pro Gly
210 215 220
Glu Glu Asn Ala Cys Glu Lys Lys Val Ala Gly Glu Lys Ala Lys Thr
225 230 235 240
Phe Thr Arg Ile Lys Tyr Ala Leu Leu Thr Met Leu Glu Lys Phe Leu
245 250 255
Glu Cys Val Ala Asp Val Phe Lys Leu Val Pro Leu Pro Ile Thr Met
260 265 270
Gly Ile Arg Ala Ile Val Ala Ala Gly Cys Thr Phe Thr Ser Ala Ile
275 280 285
Ile Gly Leu Cys Thr Phe Cys Ala Arg Ala
290 295




265


897


DNA


Chlamydia




misc_feature




(1)...(897)




n = A,T,C or G





265
atggcttcta tatgcggacg tttagggtct ggtacaggga atgctctaaa agcttttttt 60
acacagccca acaataaaat ggcaagggta gtaaataaga cgaagggaat ggataagact 120
attaaggttg ccaagtctgc tgccgaattg accgcaaata ttttggaaca agctggaggc 180
gcgggctctt ccgcacacat tacagcttcc caagtgtcca aaggattagg ggatgcgaga 240
actgttgtcg ctttagggaa tgcctttaac ggagcgttgc caggaacagt tcaaagtgcg 300
caaagcttct tctctcacat gaaagctgct agtcagaaaa cgcaagaagg ggatgagggg 360
ctcacagcag atctttgtgt gtctcataag cgcagagcgg ctgcggctgt ctgtagcatc 420
atcggaggaa ttacctacct cgcgacattc ggagctatcc gtccgattct gtttgtcaac 480
aaaatgctgg caaaaccgtt tctttcttcc caaactaaag caaatatggg atcttctgtt 540
agctatatta tggcggctaa ccatgcagcg tctgtggtgg gtgctggact cgctatcagt 600
gcgnaaagag cagattgcga agcccgctgc gctcgtattg cgagagaaga gtcgttactc 660
gaagtgccgg gagaggaaaa tgcttgcgag aagaaagtcg ctggagagaa agccaagacg 720
ttcacgcgca tcaagtatgc actcctcact atgctcgaga agtttttgga atgcgttgcc 780
gacgttttca aattggtgcc gctgcctatt acaatgggta ttcgtgcgat tgtggctgct 840
ggatgtacgt tcacttctgc aattattgga ttgtgcactt tctgcgccag agcataa 897




266


298


PRT


Chlamydia




VARIANT




(1)...(298)




Xaa = Any Amino Acid





266
Met Ala Ser Ile Cys Gly Arg Leu Gly Ser Gly Thr Gly Asn Ala Leu
1 5 10 15
Lys Ala Phe Phe Thr Gln Pro Asn Asn Lys Met Ala Arg Val Val Asn
20 25 30
Lys Thr Lys Gly Met Asp Lys Thr Ile Lys Val Ala Lys Ser Ala Ala
35 40 45
Glu Leu Thr Ala Asn Ile Leu Glu Gln Ala Gly Gly Ala Gly Ser Ser
50 55 60
Ala His Ile Thr Ala Ser Gln Val Ser Lys Gly Leu Gly Asp Ala Arg
65 70 75 80
Thr Val Val Ala Leu Gly Asn Ala Phe Asn Gly Ala Leu Pro Gly Thr
85 90 95
Val Gln Ser Ala Gln Ser Phe Phe Ser His Met Lys Ala Ala Ser Gln
100 105 110
Lys Thr Gln Glu Gly Asp Glu Gly Leu Thr Ala Asp Leu Cys Val Ser
115 120 125
His Lys Arg Arg Ala Ala Ala Ala Val Cys Ser Ile Ile Gly Gly Ile
130 135 140
Thr Tyr Leu Ala Thr Phe Gly Ala Ile Arg Pro Ile Leu Phe Val Asn
145 150 155 160
Lys Met Leu Ala Lys Pro Phe Leu Ser Ser Gln Thr Lys Ala Asn Met
165 170 175
Gly Ser Ser Val Ser Tyr Ile Met Ala Ala Asn His Ala Ala Ser Val
180 185 190
Val Gly Ala Gly Leu Ala Ile Ser Ala Xaa Arg Ala Asp Cys Glu Ala
195 200 205
Arg Cys Ala Arg Ile Ala Arg Glu Glu Ser Leu Leu Glu Val Pro Gly
210 215 220
Glu Glu Asn Ala Cys Glu Lys Lys Val Ala Gly Glu Lys Ala Lys Thr
225 230 235 240
Phe Thr Arg Ile Lys Tyr Ala Leu Leu Thr Met Leu Glu Lys Phe Leu
245 250 255
Glu Cys Val Ala Asp Val Phe Lys Leu Val Pro Leu Pro Ile Thr Met
260 265 270
Gly Ile Arg Ala Ile Val Ala Ala Gly Cys Thr Phe Thr Ser Ala Ile
275 280 285
Ile Gly Leu Cys Thr Phe Cys Ala Arg Ala
290 295




267


680


DNA


Chlamydia



267
tctatatcca tattgatagg aaaaaacgtc gcagaaagat tttagctatg acgtttatcc 60
gagctttagg atattcaaca gatgcagata ttattgaaga gttcttttct gtagaggagc 120
gttccttacg ttcagagaag gattttgtcg cgttagttgg taaagtttta gctgataacg 180
tagttgatgc ggattcttca ttagtttacg ggaaagctgg agagaagcta agtactgcta 240
tgctaaaacg catcttagat acgggagtcc aatctttgaa gattgctgtt ggcgcagatg 300
aaaatcaccc aattattaag atgctcgcaa aagatcctac ggattcttac gaagctgctc 360
ttaaagattt ttatcgcaga ttacgaccag gagagcctgc aactttagct aatgctcgat 420
ccacaattat gcgtttattc ttcgatgcta aacgttataa tttaggccgc gttggacgtt 480
ataaattaaa taaaaaatta ggcttcccat tagacgacga aacattatct caagtgactt 540
tgagaaaaga agatgttatc ggcgcgttga aatatttgat tcgtttgcga atgggcgatg 600
agaagacatc tatcgatgat attgaccatt tggcaaaccg acgagttcgc tctgttggag 660
aactaattca gaatcactgt 680




268


359


DNA


Chlamydia



268
cttatgttct ggagaatgtt gcaacaacat attaatcgaa ccagctcctc ctagtaacat 60
agaaaccaag cccttttgag aaaaaacctg tacttcgcat cctttagcca tttgttgaat 120
agctcctaac aaagagctaa ttttttcctc ttccttgttt ttctgaggcg ctgtggactc 180
taaatatagc aagtgctctt ggaacacctc atcaacaatc gcttgtccta gattaggtat 240
agagactgtc tctccatcaa ttaaatggag tttcaaagta atatcccctt ccgtccctcc 300
atcacaagac tctatgaaag ctatctgatt ccatcgagca gaaatgtatg gggaaatac 359




269


124


DNA


Chlamydia



269
gatcgaatca attgagggag ctcattaaca agaatagctg cagtttcttt gcgttcttct 60
ggaataacaa gaaataggta atcggtacca ttgatagaac gaacacgaca aatcgcagaa 120
ggtt 124




270


219


DNA


Chlamydia



270
gatcctgttg ggcctagtaa taatacgttg gatttcccat aactcacttg tttatcctgc 60
ataagagcac ggatacgctt atagtggtta tagacggcaa ccgaaatcgt ttttttcgcg 120
cgctcttgtc caatgacata agagtcgatg tggcgtttga tttctttagg ggttaacact 180
ctcagacttg ttggagagct tgtggaagat gttgcgatc 219




271


511


DNA


Chlamydia




misc_feature




(1)...(511)




n = A,T,C or G





271
ggatccgaat tcggcacgag gagaaaatat aggaggttcc akcatcggaa gatctaatag 60
acaaagaggt tttggcatag atggctcctc cttgtacgtt caacgatgat tgggagggat 120
tgttatcgat agcttggttc ccagagaact gacaagtccc gctacattga gagaatgtaa 180
cctgttctcc atagatagct cctcctacta cacctgaata agttggtgtt gctggagatg 240
atggtgcggc tgctgcggct gcttgtaggg aagcagcagc tgcagcaggt gctgaagctg 300
ttgttgcgac tcctgtggat gaggagtttg ctttgttgtt cgagaaagag aagcctgatt 360
tcagattaga aatatttaca gttttagcat gtaagcctcc accttctttc ccaacaaggt 420
tctctgttac agataaggag actagangca tctagtttta aagatttttt acagcagata 480
cctccaccta tctctgtagc ggagttctca g 511




272


598


DNA


Chlamydia



272
ctcttcctct cctcaatcta gttctggagc aactacagtc tccgactcag gagactctag 60
ctctggctca aactcggata cctcaaaaac agttccagtc acagctaaag gcggtgggct 120
ttatactgat aagaatcttt cgattactaa catcacagga attatcgaaa ttgcaaataa 180
caaagcgaca gatgttggag gtggtgctta cgtaaaagga acccttactt gtaaaaactc 240
tcaccgtcta caatttttga aaaactcttc cgataaacaa ggtggaggaa tctacggaga 300
agacaacatc accctatcta atttgacagg gaagactcta ttccaagaga atactgccaa 360
aaaagagggc ggtggactct tcataaaagg tacagataaa gctcttacaa tgacaggact 420
ggatagtttc tgtttaatta ataacacatc agaaaaacat ggtggtggga gcctttgtta 480
ccaaagaaat ctctcagact tacacctctt gatgtggaaa caattccagg aatcacgcct 540
gtacatggtg aaacagtcat tactggcaat aaatctacag gaggtaatgg tggagggc 598




273


126


DNA


Chlamydia



273
ggatccgaat tcggcacgag atgagcctta tagtttaaca aaagcttctc acattccttc 60
gatagctttt tattagccgt ttttagcatc ctaatgagat ctcctcgttc gtaacaaata 120
cgagag 126




274


264


DNA


Chlamydia



274
ggatccgaat tcggcacgag ctcttttaaa tcttaattac aaaaagacaa attaattcaa 60
tttttcaaaa aagaatttaa acattaattg ttgtaaaaaa acaatattta ttctaaaata 120
ataaccatag ttacggggga atctctttca tggtttattt tagagctcat caacctaggc 180
atacgcctaa aacatttcct ttgaaagttc accattcgtt ctccgataag catcctcaaa 240
ttgctaaagc tatgtggatt acgg 264




275


359


DNA


Chlamydia



275
ggatccgaat tcggcacgag ataaaacctg aaccacaaca aagatctaaa acttcttgat 60
tttcagctgc aaattctttt agataaatat caaccatttc ttcagtttca tatcttggaa 120
ttaaaacttg ttctcttaaa ttaattctag tatttaagta ttcaacatag cccattatta 180
attgaattgg ataattttgc cttaataatt cacattcttt ttcagtaatt ttaggttcta 240
aaccgtaccg ctttttttct aaaattaatg tttcttcatt attcatttta taagccactt 300
tcctttattt tttgattttg ttcttctgtt agtaatgctt caataatagt taataattt 359




276


357


DNA


Chlamydia



276
aaaacaattg atataatttt ttttttcata acttccagac tcctttctag aaaagtcttt 60
atgggtagta gtgactctaa cgttttttat tattaagacg atccccggag atccttttaa 120
tgatgaaaac ggaaacatcc tttcgccaga aactttagca ctattaaaga atcgttacgg 180
gttagataag cctttattca cccagtatct tatctatttg aaatgtctgc taacactaga 240
tttcggggaa tctcttatct acaaagatcg aaatctcagc attattgctg ccgctcttcc 300
atcttccgct attcttggac ttgaaagctt gtgtttactc gtgccgaatt cggatcc 357




277


505


DNA


Chlamydia



277
ggatccgaat tcggcacgag ctcgtgccga ttgcttgctt cagtcacccc atcggtatag 60
agcactaaaa gagactcctc ttcaagaacg agagtgtaag cagggtgagg aggaacttca 120
ggtaaaaatc ctaaggccat accaggatgc gacaggaaag agatatctcc attaggagct 180
cggagacacg ctgggttgtg gccacaagaa tagtattcta gttctcgtgt tgcgtaatga 240
taacaataaa tgcatagtgt tacaaacatc ccagattcag ctgtctgttg atagaagaga 300
gcagctgttt gttgaacggc ttcttgaata gaggagagct cactcaaaaa ggtatgtaac 360
atgtttttca ggaataagga gtaggcgcac gcattgactc ctttcccgga agcatcagca 420
acgattagaa agagtttagc ttggggacct tcgcctataa caaagatatc aaagaaatct 480
cctcctaccg taactgcagg aatat 505




278


407


DNA


Chlamydia



278
ggatccgaat tcggcacgag aactactgag caaattgggt atccaacttc ctctttacga 60
aagaaaaaca gaaggcattc tccataccaa gatttgttgc atcgacaata aaactccaat 120
ctttggctct gctaactgga gcggtgctgg tatgattaaa aactttgaag acctattcat 180
ccttcgccca attacagaga cacagcttca ggcctttatg gacgtctggt ctcttctaga 240
aacaaatagc tcctatctgt ccccagagag cgtgcttacg gcccctactc cttcaagtag 300
acctactcaa caagatacag attctgatga cgaacaaccg agtaccagcc agcaagctat 360
ccgtatgaga aaataggatt agggaaacaa aacgacagca aaccaca 407




279


351


DNA


Chlamydia



279
ctcgtgccgc ttacaggagg cttgtatcct ttaaaataga gtttttctta tgaccccatg 60
tggcgatagg ccgggtctag cgccgatagt agaaatatcg gttggttttt gtccttgagg 120
ggatcgtata ctttttcaaa gtatggtccc cgtatcgatt atctggaggc tcttatgtct 180
ttttttcata ctagaaaata taagcttatc ctcagaggac tcttgtgttt agcaggctgt 240
ttcttaatga acagctgttc ctctagtcga ggaaatcaac ccgctgatga gagcatctat 300
gtcttgtcta tgaatcgcat gatttgtgat tctcgtgccg aattcggatc c 351




280


522


DNA


Chlamydia



280
ggatccgaat tcggcacgag cagaggaaaa aggcgatact cctcttgaag atcgtttcac 60
agaagatctt tccgaagtct ctggagaaga ttttcgagga ttgaaaaatt cgttcgatga 120
tgattcttct tctgacgaaa ttctcgatgc gctcacaagt aaattttctg atcccacaat 180
aaaggatcta gctcttgatt atctaattca aatagctccc tctgatggga aacttaagtc 240
cgctctcatt caggcaaagc atcaactgat gagccagaat cctcaggcga ttgttggagg 300
acgcaatgtt ctgttagctt cagaaacctt tgcttccaga gcaaatacat ctccttcatc 360
gcttcgctcc ttatatttcc aagtaacctc atccccctct aattgcgcta atttacatca 420
aatgcttgct tcttactcgc catcagagaa aaccgctgtt atggagtttc tagtgaatgg 480
catggtagca gatttaaaat cggagggccc ttccattcct cc 522




281


577


DNA


Chlamydia



281
ggatccgaat tcggcacgag atgcttctat tacaattggt ttggatgcgg aaaaagctta 60
ccagcttatt ctagaaaagt tgggagatca aattcttggt ggaattgctg atactattgt 120
tgatagtaca gtccaagata ttttagacaa aatcacaaca gacccttctc taggtttgtt 180
gaaagctttt aacaactttc caatcactaa taaaattcaa tgcaacgggt tattcactcc 240
caggaacatt gaaactttat taggaggaac tgaaatagga aaattcacag tcacacccaa 300
aagctctggg agcatgttct tagtctcagc agatattatt gcatcaagaa tggaaggcgg 360
cgttgttcta gctttggtac gagaaggtga ttctaagccc tacgcgatta gttatggata 420
ctcatcaggc gttcctaatt tatgtagtct aagaaccaga attattaata caggattgac 480
tccgacaacg tattcattac gtgtaggcgg tttagaaagc ggtgtggtat gggttaatgc 540
cctttctaat ggcaatgata ttttaggaat aacaaat 577




282


607


DNA


Chlamydia



282
actmatcttc cccgggctcg agtgcggccg caagcttgtc gacggagctc gatacaaaaa 60
tgtgtgcgtg tgaaccgctt cttcaaaagc ttgtcttaaa agatattgtc tcgcttccgg 120
attagttaca tgtttaaaaa ttgctagaac aatattattc ccaaccaagc tctctgcggt 180
gctgaaaaaa cctaaattca aaagaatgac tcgccgctca tcttcagaaa gacgatccga 240
cttccataat tcgatgtctt tccccatggg gatctctgta gggagccagt tatttgcgca 300
gccattcaaa taatgttccc aagcccattt gtacttaata ggaacaagtt ggttgacatc 360
gacctggttg cagttcacta gacgcttgct atttagatta acgcgtttct gttttccatc 420
taaaatatct gcttgcataa gaaccgttaa ttttattgtt aatttatatg attaattact 480
gacatgcttc acacccttct tccaaagaac agacaggtgc tttcttcgct ctttcaacaa 540
taattcctgc cgaagcagac ttattcttca tccaacgagg ctgaattcct ctcttattaa 600
tatctac 607




283


1077


DNA


Chlamydia



283
ggatccgaat tcggcacgag aagttaacga tgacgatttg ttcctttggt agagaaggag 60
caatcgaaac taaatgtgcg agagcatgtg aagactccaa tgcaggaata atcccctcat 120
ttctagtaag caggaaaaaa gctcgtaacg cctcttcatc ggtggctaat gtataaaagg 180
ctcgtcctga ctcatgcatt tcggcatgat ctggcccaac tgaaggataa tctaatccag 240
cggaaatgga gtgagtttgt aatacttgtc catcgtcatc ttgaagaaga tacgaataaa 300
atccgtggaa tactccaggt cgccctgttg caaaacgtgc tgcatgtttt cctgaagaaa 360
tgcccagtcc tcccccttcc actccaatta attggacttt tggattcggg ataaaatgat 420
ggaaaaatcc aatagcgttg gagccacctc cgatacatgc aatcagaata tcaggatctc 480
ttcctgcaac tgcatggatt tgctctttca cttcagcgct tataacagac tgaaaaaatc 540
gaacgatatc gggataaggt aaaggtccta aggccgatcc taagcaatag tgagtaaatg 600
agtgtgttgt tgcccaatct tgtagagctt gattaactgc atctttgagt ccacaagatc 660
cttttgttac agaaacgact tcagcaccta aaaagcgcat tttctctaca tttggtttct 720
gtcgttccac atcttttgct cccatgtata ctacacaatc taatcctaga taagcacacg 780
ctgttgctgt tgctactcca tgttgtcccg cacctgtttc agctacaaca cgtgttttcc 840
caagatattt agcaagcaaa cactgaccaa gagcattatt cagtttatgt gctcctgtat 900
gcaaaagatc ttcgcgttta agaaatactc tagggccatc aatagctcga gcaaaattct 960
taacttcagt cagaggagtt tgtctccccg catagttttt caaaatacaa tctagttcag 1020
ataaaaaact ttgctgagtt ttgagaatct cccattccgc ttttagattc tgtatag 1077




284


407


DNA


Chlamydia



284
ggatccgaat tcggcacgag aactactgag caaattgggt atccaacttc ctctttacga 60
aagaaaaaca gaaggcattc tccataccaa gatttgttgc atcgacaata aaactccaat 120
ctttggctct gctaactgga gcggtgctgg tatgattaaa aactttgaag acctattcat 180
ccttcgccca attacagaga cacagcttca ggcctttatg gacgtctggt ctcttctaga 240
aacaaatagc tcctatctgt ccccagagag cgtgcttacg gcccctactc cttcaagtag 300
acctactcaa caagatacag attctgatga cgaacaaccg agtaccagcc agcaagctat 360
ccgtatgaga aaataggatt agggaaacaa aacgacagca aaccaca 407




285


802


DNA


Chlamydia



285
ggatccgaat tcggcacgag ttagcttaat gtctttgtca tctctaccta catttgcagc 60
taattctaca ggcacaattg gaatcgttaa tttacgtcgc tgcctagaag agtctgctct 120
tgggaaaaaa gaatctgctg aattcgaaaa gatgaaaaac caattctcta acagcatggg 180
gaagatggag gaagaactgt cttctatcta ttccaagctc caagacgacg attacatgga 240
aggtctatcc gagaccgcag ctgccgaatt aagaaaaaaa ttcgaagatc tatctgcaga 300
atacaacaca gctcaagggc agtattacca aatattaaac caaagtaatc tcaagcgcat 360
gcaaaagatt atggaagaag tgaaaaaagc ttctgaaact gtgcgtattc aagaaggctt 420
gtcagtcctt cttaacgaag atattgtctt atctatcgat agttcggcag ataaaaccga 480
tgctgttatt aaagttcttg atgattcttt tcaaaataat taacatgcga agctagccga 540
ggagtgccgt atgtctcaat ccacttattc tcttgaacaa ttagctgatt ttttgaaagt 600
cgagtttcaa ggaaatggag ctactcttct ttccggagtt gaagagatcg aggaagcaaa 660
aacggcacac atcacattct tagataatga aaaatatgct aaacatttaa aatcatcgga 720
agctggcgct atcatcatat ctcgaacaca gtttcaaaaa tatcgagact tgaataaaaa 780
ctttcttatc acttctgagt ct 802




286


588


DNA


Chlamydia



286
ggatccgaat tcggcacgag gcaatattta ctcccaacat tacggttcca aataagcgat 60
aaggtcttct aataaggaag ttaatgtaag aggctttttt attgcttttc gtaaggtagt 120
attgcaaccg cacgcgattg aatgatacgc aagccatttc catcatggaa aagaaccctt 180
ggacaaaaat acaaaggagg ttcactccta accagaaaaa gggagagtta gtttccatgg 240
gttttcctta tatacacccg tttcacacaa ttaggagccg cgtctagtat ttggaataca 300
aattgtcccc aagcgaattt tgttcctgtt tcagggattt ctcctaattg ttctgtcagc 360
catccgccta tggtaacgca attagctgta gtaggaagat caactccaaa caggtcatag 420
aaatcagaaa gctcataggt gcctgcagca ataacaacat tcttgtctga gtgagcgaat 480
tgtttaaaag atgggcgatt atgagctacc tcatcagaga ctattttaaa tagatcattt 540
tgggtaatca atccttctat agacccatat tcatcaatga taatctcg 588




287


489


DNA


Chlamydia




misc_feature




(1)...(489)




n = A,T,C or G





287
agtgcctatt gttttgcagg ctttgtctga tgatagcgat accgtacgtg agattgctgt 60
acaagtagct gttatgtatg gttctagttg cttactgcgc gccgtgggcg atttagcgaa 120
aaatgattct tctattcaag tacgcatcac tgcttatcgt gctgcagccg tgttggagat 180
acaagatctt gtgcctcatt tacgagttgt agtccaaaat acacaattag atggaacgga 240
aagaagagaa gcttggagat ctttatgtgt tcttactcgg cctcatagtg gtgtattaac 300
tggcatagat caagctttaa tgacctgtga gatgttaaag gaatatcctg aaaagtgtac 360
ggaagaacag attcgtacat tattggctgc agatcatcca gaagtgcagg tagctacttt 420
acagatcatt ctgagaggag gtagagtatt ccggtcatct tctataatgg aatcggttct 480
cgtgccgnt 489




288


191


DNA


Chlamydia



288
ggatccgaat tcaggatatg ctgttgggtt atcaataaaa agggttttgc cattttttaa 60
gacgactttg tagataacgc taggagctgt agcaataata tcgagatcaa attctctaga 120
gattctctca aagatgattt ctaagtgcag cagtcctaaa aatccacagc ggaacccaaa 180
tccgagagag t 191




289


515


DNA


Chlamydia



289
ggatccgaat tcggcacgag gagcgacgtg aaatagtgga atcttcccgt attcttatta 60
cttctgcgtt gccttacgca aatggtcctt tgcattttgg acatattacc ggtgcttatt 120
tgcctgcaga tgtttatgcg cgttttcaga gactacaagg caaagaggtt ttgtatattt 180
gtggttctga tgaatacgga atcgcaatta cccttaatgc agagttggca ggcatggggt 240
atcaagaata tgtcgacatg tatcataagc ttcataaaga taccttcaag aaattgggaa 300
tttctgtaga tttcttttcc agaactacga acgcttatca tcctgctatt gtgcaagatt 360
tctatcgaaa cttgcaggaa cgcggactgg tagagaatca ggtgaccgaa cagctgtatt 420
ctgaggaaga agggaagttt ttagcggacc gttatgttgt aggtacttgt cccaagtgtg 480
ggtttgatcg agctcgagga gatgagtgtc agcag 515




290


522


DNA


Chlamydia



290
ggatccgaat tcggcacgag ggaggaatgg aagggccctc cgattktama tctgctacca 60
tgccattcac tagaaactcc ataacagcgg ttttctctga tggcgagtaa gaagcaagca 120
tttgatgtaa attagcgcaa ttagaggggg atgaggttac ttggaaatat aaggagcgaa 180
gcgatgaagg agatgtattt gctctggaag caaaggtttc tgaagctaac agaacattgc 240
gtcctccaac aatcgcctga ggattctggc tcatcagttg atgctttgcc tgaatgagag 300
cggacttaag tttcccatca gagggagcta tttgaattag ataatcaaga gctagatcct 360
ttattgtggg atcagaaaat ttacttgtga gcgcatcgag aatttcgtca gaagaagaat 420
catcatcgaa cgaatttttc aatcctcgaa aatcttctcc agagacttcg gaaagatctt 480
ctgtgaaacg atcttcaaga ggagtatcgc ctttttccyc tg 522




291


1002


DNA


Chlamydia



291
atggcgacta acgcaattag atcggcagga agtgcagcaa gtaagatgct gctgccagtt 60
gccaaagaac cagcggctgt cagctccttt gctcagaaag ggatttattg tattcaacaa 120
ttttttacaa accctgggaa taagttagca aagtttgtag gggcaacaaa aagtttagat 180
aaatgcttta agctaagtaa ggcggtttct gactgtgtcg taggatcgct ggaagaggcg 240
ggatgcacag gggacgcatt gacctccgcg agaaacgccc agggtatgtt aaaaacaact 300
cgagaagttg ttgccttagc taatgtgctc aatggagctg ttccatctat cgttaactcg 360
actcagaggt gttaccaata cacacgtcaa gccttcgagt taggaagcaa gacaaaagaa 420
agaaaaacgc ctggggagta tagtaaaatg ctattaactc gaggtgatta cctattggca 480
gcttccaggg aagcttgtac ggcagtcggt gcaacgactt actcagcgac attcggtgtt 540
ttacgtccgt taatgttaat caataaactc acagcaaaac cattcttaga caaagcgact 600
gtaggcaatt ttggcacggc tgttgctgga attatgacca ttaatcatat ggcaggagtt 660
gctggtgctg ttggcggaat cgcattagaa caaaagctgt tcaaacgtgc gaaggaatcc 720
ctatacaatg agagatgtgc cttagaaaac caacaatctc agttgagtgg ggacgtgatt 780
ctaagcgcgg aaagggcatt acgtaaagaa cacgttgcta ctctaaaaag aaatgtttta 840
actcttcttg aaaaagcttt agagttggta gtggatggag tcaaactcat tcctttaccg 900
attacagtgg cttgctccgc tgcaatttct ggagccttga cggcagcatc cgcaggaatt 960
ggcttatata gcatatggca gaaaacaaag tctggcaaat aa 1002




292


333


PRT


Chlamydia



292
Met Ala Thr Asn Ala Ile Arg Ser Ala Gly Ser Ala Ala Ser Lys Met
1 5 10 15
Leu Leu Pro Val Ala Lys Glu Pro Ala Ala Val Ser Ser Phe Ala Gln
20 25 30
Lys Gly Ile Tyr Cys Ile Gln Gln Phe Phe Thr Asn Pro Gly Asn Lys
35 40 45
Leu Ala Lys Phe Val Gly Ala Thr Lys Ser Leu Asp Lys Cys Phe Lys
50 55 60
Leu Ser Lys Ala Val Ser Asp Cys Val Val Gly Ser Leu Glu Glu Ala
65 70 75 80
Gly Cys Thr Gly Asp Ala Leu Thr Ser Ala Arg Asn Ala Gln Gly Met
85 90 95
Leu Lys Thr Thr Arg Glu Val Val Ala Leu Ala Asn Val Leu Asn Gly
100 105 110
Ala Val Pro Ser Ile Val Asn Ser Thr Gln Arg Cys Tyr Gln Tyr Thr
115 120 125
Arg Gln Ala Phe Glu Leu Gly Ser Lys Thr Lys Glu Arg Lys Thr Pro
130 135 140
Gly Glu Tyr Ser Lys Met Leu Leu Thr Arg Gly Asp Tyr Leu Leu Ala
145 150 155 160
Ala Ser Arg Glu Ala Cys Thr Ala Val Gly Ala Thr Thr Tyr Ser Ala
165 170 175
Thr Phe Gly Val Leu Arg Pro Leu Met Leu Ile Asn Lys Leu Thr Ala
180 185 190
Lys Pro Phe Leu Asp Lys Ala Thr Val Gly Asn Phe Gly Thr Ala Val
195 200 205
Ala Gly Ile Met Thr Ile Asn His Met Ala Gly Val Ala Gly Ala Val
210 215 220
Gly Gly Ile Ala Leu Glu Gln Lys Leu Phe Lys Arg Ala Lys Glu Ser
225 230 235 240
Leu Tyr Asn Glu Arg Cys Ala Leu Glu Asn Gln Gln Ser Gln Leu Ser
245 250 255
Gly Asp Val Ile Leu Ser Ala Glu Arg Ala Leu Arg Lys Glu His Val
260 265 270
Ala Thr Leu Lys Arg Asn Val Leu Thr Leu Leu Glu Lys Ala Leu Glu
275 280 285
Leu Val Val Asp Gly Val Lys Leu Ile Pro Leu Pro Ile Thr Val Ala
290 295 300
Cys Ser Ala Ala Ile Ser Gly Ala Leu Thr Ala Ala Ser Ala Gly Ile
305 310 315 320
Gly Leu Tyr Ser Ile Trp Gln Lys Thr Lys Ser Gly Lys
325 330




293


7


DNA


Chlamydia



293
tgcaatc 7




294


196


PRT


Chlamydia



294
Thr Met Gly Ser Leu Val Gly Arg Gln Ala Pro Asp Phe Ser Gly Lys
5 10 15
Ala Val Val Cys Gly Glu Glu Lys Glu Ile Ser Leu Ala Asp Phe Arg
20 25 30
Gly Lys Tyr Val Val Leu Phe Phe Tyr Pro Lys Asp Phe Thr Tyr Val
35 40 45
Cys Pro Thr Glu Leu His Ala Phe Gln Asp Arg Leu Val Asp Phe Glu
50 55 60
Glu His Gly Ala Val Val Leu Gly Cys Ser Val Asp Asp Ile Glu Thr
65 70 75 80
His Ser Arg Trp Leu Thr Val Ala Arg Asp Ala Gly Gly Ile Glu Gly
85 90 95
Thr Glu Tyr Pro Leu Leu Ala Asp Pro Ser Phe Lys Ile Ser Glu Ala
100 105 110
Phe Gly Val Leu Asn Pro Glu Gly Ser Leu Ala Leu Arg Ala Thr Phe
115 120 125
Leu Ile Asp Lys His Gly Val Ile Arg His Ala Val Ile Asn Asp Leu
130 135 140
Pro Leu Gly Arg Ser Ile Asp Glu Glu Leu Arg Ile Leu Asp Ser Leu
145 150 155 160
Ile Phe Phe Glu Asn His Gly Met Val Cys Pro Ala Asn Trp Arg Ser
165 170 175
Gly Glu Arg Gly Met Val Pro Ser Glu Glu Gly Leu Lys Glu Tyr Phe
180 185 190
Gln Thr Met Asp
195




295


181


PRT


Chlamydia



295
Lys Gly Gly Lys Met Ser Thr Thr Ile Ser Gly Asp Ala Ser Ser Leu
5 10 15
Pro Leu Pro Thr Ala Ser Cys Val Glu Thr Lys Ser Thr Ser Ser Ser
20 25 30
Thr Lys Gly Asn Thr Cys Ser Lys Ile Leu Asp Ile Ala Leu Ala Ile
35 40 45
Val Gly Ala Leu Val Val Val Ala Gly Val Leu Ala Leu Val Leu Cys
50 55 60
Ala Ser Asn Val Ile Phe Thr Val Ile Gly Ile Pro Ala Leu Ile Ile
65 70 75 80
Gly Ser Ala Cys Val Gly Ala Gly Ile Ser Arg Leu Met Tyr Arg Ser
85 90 95
Ser Tyr Ala Ser Leu Glu Ala Lys Asn Val Leu Ala Glu Gln Arg Leu
100 105 110
Arg Asn Leu Ser Glu Glu Lys Asp Ala Leu Ala Ser Val Ser Phe Ile
115 120 125
Asn Lys Met Phe Leu Arg Gly Leu Thr Asp Asp Leu Gln Ala Leu Glu
130 135 140
Ala Lys Val Met Glu Phe Glu Ile Asp Cys Leu Asp Arg Leu Glu Lys
145 150 155 160
Asn Glu Gln Ala Leu Leu Ser Asp Val Arg Leu Val Leu Ser Ser Tyr
165 170 175
Thr Arg Trp Leu Asp
180




296


124


PRT


Chlamydia



296
Ile Tyr Glu Val Met Asn Met Asp Leu Glu Thr Arg Arg Ser Phe Ala
5 10 15
Val Gln Gln Gly His Tyr Gln Asp Pro Arg Ala Ser Asp Tyr Asp Leu
20 25 30
Pro Arg Ala Ser Asp Tyr Asp Leu Pro Arg Ser Pro Tyr Pro Thr Pro
35 40 45
Pro Leu Pro Ser Arg Tyr Gln Leu Gln Asn Met Asp Val Glu Ala Gly
50 55 60
Phe Arg Glu Ala Val Tyr Ala Ser Phe Val Ala Gly Met Tyr Asn Tyr
65 70 75 80
Val Val Thr Gln Pro Gln Glu Arg Ile Pro Asn Ser Gln Gln Val Glu
85 90 95
Gly Ile Leu Arg Asp Met Leu Thr Asn Gly Ser Gln Thr Phe Ser Asn
100 105 110
Leu Met Gln Arg Trp Asp Arg Glu Val Asp Arg Glu
115 120




297


488


PRT


Chlamydia



297
Lys Gly Ser Leu Pro Ile Leu Gly Pro Phe Leu Asn Gly Lys Met Gly
5 10 15
Phe Trp Arg Thr Ser Ile Met Lys Met Asn Arg Ile Trp Leu Leu Leu
20 25 30
Leu Thr Phe Ser Ser Ala Ile His Ser Pro Val Arg Gly Glu Ser Leu
35 40 45
Val Cys Lys Asn Ala Leu Gln Asp Leu Ser Phe Leu Glu His Leu Leu
50 55 60
Gln Val Lys Tyr Ala Pro Lys Thr Trp Lys Glu Gln Tyr Leu Gly Trp
65 70 75 80
Asp Leu Val Gln Ser Ser Val Ser Ala Gln Gln Lys Leu Arg Thr Gln
85 90 95
Glu Asn Pro Ser Thr Ser Phe Cys Gln Gln Val Leu Ala Asp Phe Ile
100 105 110
Gly Gly Leu Asn Asp Phe His Ala Gly Val Thr Phe Phe Ala Ile Glu
115 120 125
Ser Ala Tyr Leu Pro Tyr Thr Val Gln Lys Ser Ser Asp Gly Arg Phe
130 135 140
Tyr Phe Val Asp Ile Met Thr Phe Ser Ser Glu Ile Arg Val Gly Asp
145 150 155 160
Glu Leu Leu Glu Val Asp Gly Ala Pro Val Gln Asp Val Leu Ala Thr
165 170 175
Leu Tyr Gly Ser Asn His Lys Gly Thr Ala Ala Glu Glu Ser Ala Ala
180 185 190
Leu Arg Thr Leu Phe Ser Arg Met Ala Ser Leu Gly His Lys Val Pro
195 200 205
Ser Gly Arg Thr Thr Leu Lys Ile Arg Arg Pro Phe Gly Thr Thr Arg
210 215 220
Glu Val Arg Val Lys Trp Arg Tyr Val Pro Glu Gly Val Gly Asp Leu
225 230 235 240
Ala Thr Ile Ala Pro Ser Ile Arg Ala Pro Gln Leu Gln Lys Ser Met
245 250 255
Arg Ser Phe Phe Pro Lys Lys Asp Asp Ala Phe His Arg Ser Ser Ser
260 265 270
Leu Phe Tyr Ser Pro Met Val Pro His Phe Trp Ala Glu Leu Arg Asn
275 280 285
His Tyr Ala Thr Ser Gly Leu Lys Ser Gly Tyr Asn Ile Gly Ser Thr
290 295 300
Asp Gly Phe Leu Pro Val Ile Gly Pro Val Ile Trp Glu Ser Glu Gly
305 310 315 320
Leu Phe Arg Ala Tyr Ile Ser Ser Val Thr Asp Gly Asp Gly Lys Ser
325 330 335
His Lys Val Gly Phe Leu Arg Ile Pro Thr Tyr Ser Trp Gln Asp Met
340 345 350
Glu Asp Phe Asp Pro Ser Gly Pro Pro Pro Trp Glu Glu Phe Ala Lys
355 360 365
Ile Ile Gln Val Phe Ser Ser Asn Thr Glu Ala Leu Ile Ile Asp Gln
370 375 380
Thr Asn Asn Pro Gly Gly Ser Val Leu Tyr Leu Tyr Ala Leu Leu Ser
385 390 395 400
Met Leu Thr Asp Arg Pro Leu Glu Leu Pro Lys His Arg Met Ile Leu
405 410 415
Thr Gln Asp Glu Val Val Asp Ala Leu Asp Trp Leu Thr Leu Leu Glu
420 425 430
Asn Val Asp Thr Asn Val Glu Ser Arg Leu Ala Leu Gly Asp Asn Met
435 440 445
Glu Gly Tyr Thr Val Asp Leu Gln Val Ala Glu Tyr Leu Lys Ser Phe
450 455 460
Gly Arg Gln Val Leu Asn Cys Trp Ser Lys Gly Asp Ile Glu Leu Ser
465 470 475 480
Thr Pro Ile Pro Leu Phe Gly Phe
485




298


140


PRT


Chlamydia



298
Arg Ile Asp Ile Ser Ser Val Thr Phe Phe Ile Gly Ile Leu Leu Ala
5 10 15
Val Asn Ala Leu Thr Tyr Ser His Val Leu Arg Asp Leu Ser Val Ser
20 25 30
Met Asp Ala Leu Phe Ser Arg Asn Thr Leu Ala Val Leu Leu Gly Leu
35 40 45
Val Ser Ser Val Leu Asp Asn Val Pro Leu Val Ala Ala Thr Ile Gly
50 55 60
Met Tyr Asp Leu Pro Met Asn Asp Pro Leu Trp Lys Leu Ile Ala Tyr
65 70 75 80
Thr Ala Gly Thr Gly Gly Ser Ile Leu Ile Ile Gly Ser Ala Ala Gly
85 90 95
Val Ala Tyr Met Gly Met Glu Lys Val Ser Phe Gly Trp Tyr Val Lys
100 105 110
His Ala Ser Trp Ile Ala Leu Ala Ser Tyr Phe Gly Gly Leu Ala Val
115 120 125
Tyr Phe Leu Met Glu Asn Cys Val Asn Leu Phe Val
130 135 140




299


361


PRT


Chlamydia



299
His Gln Glu Ile Ala Asp Ser Pro Leu Val Lys Lys Ala Glu Glu Gln
5 10 15
Ile Asn Gln Ala Gln Gln Asp Ile Gln Thr Ile Thr Pro Ser Gly Leu
20 25 30
Asp Ile Pro Ile Val Gly Pro Ser Gly Ser Ala Ala Ser Ala Gly Ser
35 40 45
Ala Ala Gly Ala Leu Lys Ser Ser Asn Asn Ser Gly Arg Ile Ser Leu
50 55 60
Leu Leu Asp Asp Val Asp Asn Glu Met Ala Ala Ile Ala Met Gln Gly
65 70 75 80
Phe Arg Ser Met Ile Glu Gln Phe Asn Val Asn Asn Pro Ala Thr Ala
85 90 95
Lys Glu Leu Gln Ala Met Glu Ala Gln Leu Thr Ala Met Ser Asp Gln
100 105 110
Leu Val Gly Ala Asp Gly Glu Leu Pro Ala Glu Ile Gln Ala Ile Lys
115 120 125
Asp Ala Leu Ala Gln Ala Leu Lys Gln Pro Ser Ala Asp Gly Leu Ala
130 135 140
Thr Ala Met Gly Gln Val Ala Phe Ala Ala Ala Lys Val Gly Gly Gly
145 150 155 160
Ser Ala Gly Thr Ala Gly Thr Val Gln Met Asn Val Lys Gln Leu Tyr
165 170 175
Lys Thr Ala Phe Ser Ser Thr Ser Ser Ser Ser Tyr Ala Ala Ala Leu
180 185 190
Ser Asp Gly Tyr Ser Ala Tyr Lys Thr Leu Asn Ser Leu Tyr Ser Glu
195 200 205
Ser Arg Ser Gly Val Gln Ser Ala Ile Ser Gln Thr Ala Asn Pro Ala
210 215 220
Leu Ser Arg Ser Val Ser Arg Ser Gly Ile Glu Ser Gln Gly Arg Ser
225 230 235 240
Ala Asp Ala Ser Gln Arg Ala Ala Glu Thr Ile Val Arg Asp Ser Gln
245 250 255
Thr Leu Gly Asp Val Tyr Ser Arg Leu Gln Val Leu Asp Ser Leu Met
260 265 270
Ser Thr Ile Val Ser Asn Pro Gln Ala Asn Gln Glu Glu Ile Met Gln
275 280 285
Lys Leu Thr Ala Ser Ile Ser Lys Ala Pro Gln Phe Gly Tyr Pro Ala
290 295 300
Val Gln Asn Ser Val Asp Ser Leu Gln Lys Phe Ala Ala Gln Leu Glu
305 310 315 320
Arg Glu Phe Val Asp Gly Glu Arg Ser Leu Ala Glu Ser Gln Glu Asn
325 330 335
Ala Phe Arg Lys Gln Pro Ala Phe Ile Gln Gln Val Leu Val Asn Ile
340 345 350
Ala Ser Leu Phe Ser Gly Tyr Leu Ser
355 360




300


207


PRT


Chlamydia



300
Ser Ser Lys Ile Val Ser Leu Cys Glu Gly Ala Val Ala Asp Ala Arg
5 10 15
Met Cys Lys Ala Glu Leu Ile Lys Lys Glu Ala Asp Ala Tyr Leu Phe
20 25 30
Cys Glu Lys Ser Gly Ile Tyr Leu Thr Lys Lys Glu Gly Ile Leu Ile
35 40 45
Pro Ser Ala Gly Ile Asp Glu Ser Asn Thr Asp Gln Pro Phe Val Leu
50 55 60
Tyr Pro Lys Asp Ile Leu Gly Ser Cys Asn Arg Ile Gly Glu Trp Leu
65 70 75 80
Arg Asn Tyr Phe Arg Val Lys Glu Leu Gly Val Ile Ile Thr Asp Ser
85 90 95
His Thr Thr Pro Met Arg Arg Gly Val Leu Gly Ile Gly Leu Cys Trp
100 105 110
Tyr Gly Phe Ser Pro Leu His Asn Tyr Ile Gly Ser Leu Asp Cys Phe
115 120 125
Gly Arg Pro Leu Gln Met Thr Gln Ser Asn Leu Val Asp Ala Leu Ala
130 135 140
Val Ala Ala Val Val Cys Met Gly Glu Gly Asn Glu Gln Thr Pro Leu
145 150 155 160
Ala Val Ile Glu Gln Ala Pro Asn Met Val Tyr His Ser Tyr Pro Thr
165 170 175
Ser Arg Glu Glu Tyr Cys Ser Leu Arg Ile Asp Glu Thr Glu Asp Leu
180 185 190
Tyr Gly Pro Phe Leu Gln Ala Val Thr Trp Ser Gln Glu Lys Lys
195 200 205




301


183


PRT


Chlamydia



301
Ile Pro Pro Ala Pro Arg Gly His Pro Gln Ile Glu Val Thr Phe Asp
5 10 15
Ile Asp Ala Asn Gly Ile Leu His Val Ser Ala Lys Asp Ala Ala Ser
20 25 30
Gly Arg Glu Gln Lys Ile Arg Ile Glu Ala Ser Ser Gly Leu Lys Glu
35 40 45
Asp Glu Ile Gln Gln Met Ile Arg Asp Ala Glu Leu His Lys Glu Glu
50 55 60
Asp Lys Gln Arg Lys Glu Ala Ser Asp Val Lys Asn Glu Ala Asp Gly
65 70 75 80
Met Ile Phe Arg Ala Glu Lys Ala Val Lys Asp Tyr His Asp Lys Ile
85 90 95
Pro Ala Glu Leu Val Lys Glu Ile Glu Glu His Ile Glu Lys Val Arg
100 105 110
Gln Ala Ile Lys Glu Asp Ala Ser Thr Thr Ala Ile Lys Ala Ala Ser
115 120 125
Asp Glu Leu Ser Thr Arg Met Gln Lys Ile Gly Glu Ala Met Gln Ala
130 135 140
Gln Ser Ala Ser Ala Ala Ala Ser Ser Ala Ala Asn Ala Gln Gly Gly
145 150 155 160
Pro Asn Ile Asn Ser Glu Asp Leu Lys Lys His Ser Phe Ser Thr Arg
165 170 175
Pro Pro Ala Gly Gly Ser Ala
180




302


232


PRT


Chlamydia



302
Met Thr Lys His Gly Lys Arg Ile Arg Gly Ile Gln Glu Thr Tyr Asp
5 10 15
Leu Ala Lys Ser Tyr Ser Leu Gly Glu Ala Ile Asp Ile Leu Lys Gln
20 25 30
Cys Pro Thr Val Arg Phe Asp Gln Thr Val Asp Val Ser Val Lys Leu
35 40 45
Gly Ile Asp Pro Arg Lys Ser Asp Gln Gln Ile Arg Gly Ser Val Ser
50 55 60
Leu Pro His Gly Thr Gly Lys Val Leu Arg Ile Leu Val Phe Ala Ala
65 70 75 80
Gly Asp Lys Ala Ala Glu Ala Ile Glu Ala Gly Ala Asp Phe Val Gly
85 90 95
Ser Asp Asp Leu Val Glu Lys Ile Lys Gly Gly Trp Val Asp Phe Asp
100 105 110
Val Ala Val Ala Thr Pro Asp Met Met Arg Glu Val Gly Lys Leu Gly
115 120 125
Lys Val Leu Gly Pro Arg Asn Leu Met Pro Thr Pro Lys Ala Gly Thr
130 135 140
Val Thr Thr Asp Val Val Lys Thr Ile Ala Glu Leu Arg Lys Gly Lys
145 150 155 160
Ile Glu Phe Lys Ala Asp Arg Ala Gly Val Cys Asn Val Gly Val Ala
165 170 175
Lys Leu Ser Phe Asp Ser Ala Gln Ile Lys Glu Asn Val Glu Ala Leu
180 185 190
Cys Ala Ala Leu Val Lys Ala Lys Pro Ala Thr Ala Lys Gly Gln Tyr
195 200 205
Leu Val Asn Phe Thr Ile Ser Ser Thr Met Gly Pro Gly Val Thr Val
210 215 220
Asp Thr Arg Glu Leu Ile Ala Leu
225 230




303


238


PRT


chlamydia



303
Ile Asn Ser Lys Leu Glu Thr Lys Asn Leu Ile Tyr Leu Lys Leu Lys
5 10 15
Ile Lys Lys Ser Phe Lys Met Gly Asn Ser Gly Phe Tyr Leu Tyr Asn
20 25 30
Thr Gln Asn Cys Val Phe Ala Asp Asn Ile Lys Val Gly Gln Met Thr
35 40 45
Glu Pro Leu Lys Asp Gln Gln Ile Ile Leu Gly Thr Thr Ser Thr Pro
50 55 60
Val Ala Ala Lys Met Thr Ala Ser Asp Gly Ile Ser Leu Thr Val Ser
65 70 75 80
Asn Asn Pro Ser Thr Asn Ala Ser Ile Thr Ile Gly Leu Asp Ala Glu
85 90 95
Lys Ala Tyr Gln Leu Ile Leu Glu Lys Leu Gly Asp Gln Ile Leu Gly
100 105 110
Gly Ile Ala Asp Thr Ile Val Asp Ser Thr Val Gln Asp Ile Leu Asp
115 120 125
Lys Ile Thr Thr Asp Pro Ser Leu Gly Leu Leu Lys Ala Phe Asn Asn
130 135 140
Phe Pro Ile Thr Asn Lys Ile Gln Cys Asn Gly Leu Phe Thr Pro Arg
145 150 155 160
Asn Ile Glu Thr Leu Leu Gly Gly Thr Glu Ile Gly Lys Phe Thr Val
165 170 175
Thr Pro Lys Ser Ser Gly Ser Met Phe Leu Val Ser Ala Asp Ile Ile
180 185 190
Ala Ser Arg Met Glu Gly Gly Val Val Leu Ala Leu Val Arg Glu Gly
195 200 205
Asp Ser Lys Pro Tyr Ala Ile Ser Tyr Gly Tyr Ser Ser Gly Val Pro
210 215 220
Asn Leu Cys Ser Leu Arg Thr Arg Ile Ile Asn Thr Gly Leu
225 230 235




304


133


PRT


Chlamydia



304
His Met His His His His His His Met Ala Ser Ile Cys Gly Arg Leu
5 10 15
Gly Ser Gly Thr Gly Asn Ala Leu Lys Ala Phe Phe Thr Gln Pro Ser
20 25 30
Asn Lys Met Ala Arg Val Val Asn Lys Thr Lys Gly Met Asp Lys Thr
35 40 45
Val Lys Val Ala Lys Ser Ala Ala Glu Leu Thr Ala Asn Ile Leu Glu
50 55 60
Gln Ala Gly Gly Ala Gly Ser Ser Ala His Ile Thr Ala Ser Gln Val
65 70 75 80
Ser Lys Gly Leu Gly Asp Thr Arg Thr Val Val Ala Leu Gly Asn Ala
85 90 95
Phe Asn Gly Ala Leu Pro Gly Thr Val Gln Ser Ala Gln Ser Phe Phe
100 105 110
Ser His Met Lys Ala Ala Ser Gln Lys Thr Gln Glu Gly Asp Glu Gly
115 120 125
Leu Thr Ala Asp Leu
130




305


125


PRT


Chlamydia



305
Met Ala Ser Ile Cys Gly Arg Leu Gly Ser Gly Thr Gly Asn Ala Leu
5 10 15
Lys Ala Phe Phe Thr Gln Pro Ser Asn Lys Met Ala Arg Val Val Asn
20 25 30
Lys Thr Lys Gly Met Asp Lys Thr Val Lys Val Ala Lys Ser Ala Ala
35 40 45
Glu Leu Thr Ala Asn Ile Leu Glu Gln Ala Gly Gly Ala Gly Ser Ser
50 55 60
Ala His Ile Thr Ala Ser Gln Val Ser Lys Gly Leu Gly Asp Thr Arg
65 70 75 80
Thr Val Val Ala Leu Gly Asn Ala Phe Asn Gly Ala Leu Pro Gly Thr
85 90 95
Val Gln Ser Ala Gln Ser Phe Phe Ser His Met Lys Ala Ala Ser Gln
100 105 110
Lys Thr Gln Glu Gly Asp Glu Gly Leu Thr Ala Asp Leu
115 120 125






Claims
  • 1. An isolated polypeptide comprising an amino acid sequence set forth in any one of SEQ ID NOs:304-305.
  • 2. A fusion protein comprising a polypeptide according to claim 1.
  • 3. An isolated polynucleotide encoding a fusion protein according to claim 2.
  • 4. A pharmaceutical composition comprising a polypeptide according to claim 1, and a physiologically acceptable carrier.
  • 5. A vaccine comprising a polypeptide according to claim 1, and an immunostimulant.
  • 6. The vaccine of claim 5, wherein the immunostimulant is an adjuvant.
  • 7. A method for stimulating an immune response in a patient, comprising administering to a patient a pharmaceutical composition according to claim 4, wherein an immune response to Chlamydia is induced.
  • 8. A method for stimulating an immune response in a patient, comprising administering to a patient a vaccine according to claim 5, wherein an immune response to Chlamydia is induced.
  • 9. A method for detecting Chlamydia infection in a patient, comprising:(a) obtaining a biological sample from the patient; (b) contacting the sample with a polypeptide comprising an immunogenic portion of a Chlamydia antigen, wherein said antigen comprises an amino acid sequence set forth in any one of SEQ ID NOs: 304-305; and (c) detecting the presence of antibodies that bind to the polypeptide.
  • 10. A method for detecting Chlamydia infection in a patient, comprising:(a) obtaining a biological sample from the patient; (b) contacting the sample with a fusion protein comprising a polypeptide, the polypeptide comprising an immunogenic portion of a Chlamydia antigen, wherein said antigen comprises an amino acid sequence set forth in any one of SEQ ID NOs: 304-305; and (c) detecting the presence of antibodies that bind to the fusion protein.
  • 11. The method of any one of claims 9 and 10 wherein the biological sample is selected from the group consisting of whole blood, serum, plasma, saliva, cerebrospinal fluid and urine.
  • 12. A method for detecting Chlamydia infection in a biological sample, comprising:(a) contacting the biological sample with a binding agent which is capable of binding to a polypeptide comprising an immunogenic portion of a Chlamydia antigen, wherein said antigen comprises an amino acid sequence set forth in any one of SEQ ID NOs:304-305; and (b) detecting in the sample a polypeptide that binds to the binding agent, thereby detecting Chlamydia infection in the biological sample.
  • 13. The method of claim 12, wherein the binding agent is a monoclonal antibody.
  • 14. The method of claim 12, wherein the binding agent is a polyclonal antibody.
  • 15. A diagnostic kit comprising:(a) a polypeptide comprising an immunogenic portion of a Chlamydia antigen, wherein said antigen comprises an amino acid sequence set forth in any one of SEQ ID NOs:304-305; and (b) a detection reagent.
  • 16. A diagnostic kit comprising:(a) a fusion protein comprising a polypeptide, the polypeptide comprising an immunogenic portion of a Chlamydia antigen, wherein said antigen comprises an amino acid sequence set forth in any one of SEQ ID NOs: 304-305; and (b) a detection reagent.
  • 17. The kit of claims 15 or 16 wherein the polypeptide is immobilized on a solid support.
  • 18. The kit of claims 15 or 16 wherein the detection reagent comprises a reporter group conjugated to a binding agent.
  • 19. The kit of claim 18 wherein the binding agent is selected from the group consisting of anti-immunoglobulins, Protein G, Protein A and lectins.
  • 20. The kit of claim 18 wherein the reporter group is selected from the group consisting of radioisotopes, fluorescent groups, luminescent groups, enzymes, biotin and dye particles.
  • 21. A diagnostic kit comprising:(a) at least one antibody, or antigen-binding fragment thereof, according to claim 7 or claim 8; and (b) a detection reagent.
  • 22. A method for stimulating an immune response in a patient, comprising administering to a patient a polypeptide comprising an amino acid sequence having at least 90% identity with the amino acid sequence of SEQ ID NO:305, wherein an immune response to Chlamydia is induced.
REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 09/454,684, filed Dec. 3, 1999, which is a continuation-in-part of U.S. patent application Ser. No. 09/426,571, filed Oct. 22, 1999, which is a continuation-in-part of U.S. patent application Ser. No. 09/410,568, filed Oct. 1, 1999, which is a continuation-in-part of U.S. patent application Ser. No. 09/288,594, filed Apr. 8, 1999, which is a continuation-in-part of U.S. patent application Ser. No. 09/208,277, filed Dec. 8, 1998.

US Referenced Citations (5)
Number Name Date Kind
4118469 Caldwell et al. Oct 1978 A
4497863 Armstrong et al. Feb 1985 A
5166053 Huguenel et al. Nov 1992 A
5318892 Watanabe et al. Jun 1994 A
5725963 Daniels Mar 1998 A
Foreign Referenced Citations (8)
Number Date Country
0784 059 Jul 1997 EP
WO 9706263 Feb 1997 WO
WO 9802546 Jan 1998 WO
WO 9810789 Mar 1998 WO
WO 9927105 Jun 1999 WO
WO 9928475 Jun 1999 WO
WO 9951748 Oct 1999 WO
WO 0034483 Jun 2000 WO
Non-Patent Literature Citations (25)
Entry
Stagg et al. Mol Med Today 1998 Apr.; 4:166-73.*
Stephens et al. Science 1998 Oct.;282:754-9.*
Kim et al. J Immunol 1999 Jun.; 162:6855-66.*
GenBank Accession No. AE001273, “Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis,” Oct. 30, 1999.
GenBank Accession No. AE001323, “Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis,” Oct. 30, 1999.
GenBank Accession No. AE001324, “Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis,” Oct. 30, 1999.
GenBank Accession No. AE001335, “Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis,” Oct. 30, 1999.
GenBank Accession No. E71500, “Genome sequence of an obligate intracellualr pathogen of humans: Chlamydia trachomatis,” Oct. 8, 1999.
GenBank Accession No. H71501, “Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis,” Oct. 8, 1999.
GenBank Accession No. H71510, “Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis” Oct. 8, 1999.
Levinson and Jawetz, Medical Microbiology & Immunology, 3d ed., Appleton & Lange, 1994, pp. 292-293.
Rank et al., Infect. And Immunity, 58(8):2599-2605, 1990.
Stephens et al., “Genome Sequence of an Obligate Intracellular Pathogen of Humans: Chlamydia trachomatis,” Science 282:754-759, 1998.
Genbank Accession No. AE001316.
Genbank Accession No. AE001320.
Genbank Accession No. AE001326.
Gu et al., “Chlamydia trachomatis RNA polymerase α subunit: sequence and structural analysis,” J. Bacteriology 177:2594-2601, May 1995.
Lalvani et al., “Rapid effector function in CD8+ memory T cells,” J. Exp. Med. 186(6):859-865 Sep. 15, 1997.
Sanderson et al., “Identification of a CD4+ T Cell-stimulating Antigen of Pathogenic Bacteria by Expression Cloning,” J. Exp. Med. 182(6):1751-1757, 1995.
Scudiero et al., “Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines,” Cancer Research 48:4827-4833, Sep. 1, 1988.
Starnbach et al., “Protective cytotoxic T lymphocytes are induced during murine infection with Chlamydia trachomatis,” The Journal of Immunology 153(11):5183-5189, Dec. 1, 1994.
Webb et al., “Molecular cloning of a novel protein antigen of Leishmania major that elicits a potent immune response in experimental murine leishmaniasis,” The Journal of Immunology 157:5034-5041, 1996.
Baehr et al., “Mapping antigenic domains expressed by chlamydia trachomatis major outer membrane protein genes,” Proc Natl Acad Sci USA 85(1):4000-4004, Jun. 1, 1998.
Brunham et al., “Chlamydia trachomatis antigens: role in immunity and pathogenesis,” Infectious Agents and Disease 3(5):218-233, Oct. 1994.
Genbank Accession No. AE 001361, Jul. 22, 1998.
Continuation in Parts (5)
Number Date Country
Parent 09/454684 Dec 1999 US
Child 09/556877 US
Parent 09/426571 Oct 1999 US
Child 09/454684 US
Parent 09/410568 Oct 1999 US
Child 09/426571 US
Parent 09/288594 Apr 1999 US
Child 09/410568 US
Parent 09/208277 Dec 1998 US
Child 09/288594 US