Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, integrated circuit structures having condensed source or drain structures with high germanium content.
For the past several decades, the scaling of features in integrated circuits has been a driving force behind an ever-growing semiconductor industry. Scaling to smaller and smaller features enables increased densities of functional units on the limited real estate of semiconductor chips. For example, shrinking transistor size allows for the incorporation of an increased number of memory or logic devices on a chip, lending to the fabrication of products with increased capacity. The drive for ever-more capacity, however, is not without issue. The necessity to optimize the performance of each device becomes increasingly significant.
In the manufacture of integrated circuit devices, multi-gate transistors, such as tri-gate transistors, have become more prevalent as device dimensions continue to scale down. In conventional processes, tri-gate transistors are generally fabricated on either bulk silicon substrates or silicon-on-insulator substrates. In some instances, bulk silicon substrates are preferred due to their lower cost and because they enable a less complicated tri-gate fabrication process. In another aspect, maintaining mobility improvement and short channel control as microelectronic device dimensions scale below the 10 nanometer (nm) node provides a challenge in device fabrication. Nanowires used to fabricate devices provide improved short channel control.
Scaling multi-gate and nanowire transistors has not been without consequence, however. As the dimensions of these fundamental building blocks of microelectronic circuitry are reduced and as the sheer number of fundamental building blocks fabricated in a given region is increased, the constraints on the lithographic processes used to pattern these building blocks have become overwhelming. In particular, there may be a trade-off between the smallest dimension of a feature patterned in a semiconductor stack (the critical dimension) and the spacing between such features.
Variability in conventional and currently known fabrication processes may limit the possibility to further extend them into the 10 nanometer node or sub-10 nanometer node range. Consequently, fabrication of the functional components needed for future technology nodes may require the introduction of new methodologies or the integration of new technologies in current fabrication processes or in place of current fabrication processes.
Integrated circuit structures having condensed source or drain structures with high germanium content are described. In the following description, numerous specific details are set forth, such as specific integration and material regimes, in order to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to one skilled in the art that embodiments of the present disclosure may be practiced without these specific details. In other instances, well-known features, such as integrated circuit design layouts, are not described in detail in order to not unnecessarily obscure embodiments of the present disclosure. Furthermore, it is to be appreciated that the various embodiments shown in the Figures are illustrative representations and are not necessarily drawn to scale.
The following detailed description is merely illustrative in nature and is not intended to limit the embodiments of the subject matter or the application and uses of such embodiments. As used herein, the word “exemplary” means “serving as an example, instance, or illustration.” Any implementation described herein as exemplary is not necessarily to be construed as preferred or advantageous over other implementations. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description.
This specification includes references to “one embodiment” or “an embodiment.” The appearances of the phrases “in one embodiment” or “in an embodiment” do not necessarily refer to the same embodiment. Particular features, structures, or characteristics may be combined in any suitable manner consistent with this disclosure.
Terminology. The following paragraphs provide definitions or context for terms found in this disclosure (including the appended claims):
“Comprising.” This term is open-ended. As used in the appended claims, this term does not foreclose additional structure or operations.
“Configured To.” Various units or components may be described or claimed as “configured to” perform a task or tasks. In such contexts, “configured to” is used to connote structure by indicating that the units or components include structure that performs those task or tasks during operation. As such, the unit or component can be said to be configured to perform the task even when the specified unit or component is not currently operational (e.g., is not on or active). Reciting that a unit or circuit or component is “configured to” perform one or more tasks is expressly intended not to invoke 35 U.S.C. § 112, sixth paragraph, for that unit or component.
“First,” “Second,” etc. As used herein, these terms are used as labels for nouns that they precede, and do not imply any type of ordering (e.g., spatial, temporal, logical, etc.).
“Coupled.” The following description refers to elements or nodes or features being “coupled” together. As used herein, unless expressly stated otherwise, “coupled” means that one element or node or feature is directly or indirectly joined to (or directly or indirectly communicates with) another element or node or feature, and not necessarily mechanically.
In addition, certain terminology may also be used in the following description for the purpose of reference only, and thus are not intended to be limiting. For example, terms such as “upper”, “lower”, “above”, and “below” refer to directions in the drawings to which reference is made. Terms such as “front”, “back”, “rear”, “side”, “outboard”, and “inboard” describe the orientation or location or both of portions of the component within a consistent but arbitrary frame of reference which is made clear by reference to the text and the associated drawings describing the component under discussion. Such terminology may include the words specifically mentioned above, derivatives thereof, and words of similar import.
“Inhibit.” As used herein, inhibit is used to describe a reducing or minimizing effect. When a component or feature is described as inhibiting an action, motion, or condition it may completely prevent the result or outcome or future state completely. Additionally, “inhibit” can also refer to a reduction or lessening of the outcome, performance, or effect which might otherwise occur. Accordingly, when a component, element, or feature is referred to as inhibiting a result or state, it need not completely prevent or eliminate the result or state.
Embodiments described herein may be directed to front-end-of-line (FEOL) semiconductor processing and structures. FEOL is the first portion of integrated circuit (IC) fabrication where the individual devices (e.g., transistors, capacitors, resistors, etc.) are patterned in the semiconductor substrate or layer. FEOL generally covers everything up to (but not including) the deposition of metal interconnect layers. Following the last FEOL operation, the result is typically a wafer with isolated transistors (e.g., without any wires).
Embodiments described herein may be directed to back end of line (BEOL) semiconductor processing and structures. BEOL is the second portion of IC fabrication where the individual devices (e.g., transistors, capacitors, resistors, etc.) get interconnected with wiring on the wafer, e.g., the metallization layer or layers. BEOL includes contacts, insulating layers (dielectrics), metal levels, and bonding sites for chip-to-package connections. In the BEOL part of the fabrication stage contacts (pads), interconnect wires, vias and dielectric structures are formed. For modern IC processes, more than 10 metal layers may be added in the BEOL.
Embodiments described below may be applicable to FEOL processing and structures, BEOL processing and structures, or both FEOL and BEOL processing and structures. In particular, although an exemplary processing scheme may be illustrated using a FEOL processing scenario, such approaches may also be applicable to BEOL processing. Likewise, although an exemplary processing scheme may be illustrated using a BEOL processing scenario, such approaches may also be applicable to FEOL processing.
In accordance with one or more embodiments of the present disclosure, source or drain epitaxial (Epi) condensation to achieve strain on nanoribbon MOSFETs is described.
To provide context, today's nanoribbon p-FET architecture can suffer from drive current degradation due to loss of strain in the channel. Unlike in FinFET, it can be challenging to achieve a high quality embedded epi S/D in a nanoribbon or nanosheet FET, which is essential to impart strain in the channel. In fact, the nanoribbon channels may be in tensile after epi S/D growth and this can further degrade the performance of the device.
In accordance with an embodiment of the present disclosure, a condensation technique is implemented to repair and/or eliminate defects in the epi S/D and increase the effective Ge concentration in the epi S/D to render the structure a better stressor for the channel. Advantages to implementing embodiments described herein may include the realization of high quality embedded epi S/D with effective Ge concentration greater than nominal, e.g., greater than 30%. The condensation process can provide a gradient of Ge concentration in the ESD with the peak concentration at near an edge of an epi bubble. Compressive strain in the nanoribbon channels in the presence of bottom isolation and internal spacers may be achieved.
As an exemplary process flow,
Referring to
Referring again to
Referring to
Referring to
Not to be bound by theory, as best understood, a reason as to why it is very difficult to achieve a strained Si channel in a nanoribbon architecture is because the source/drain SiGe epi (e.g., the merged source or drain structures 122) is full of defects. In the nanoribbon architecture, SiGe epi is grown laterally from the channels at multiple fronts due to the presence of the internal dielectric spacers. Epitaxial film grown in this manner can have a substantial number of dislocations and stacking faults and therefore no longer effective at imparting compressive strain to the channels and, possibly, imparting a tensile stress.
Referring to
In an embodiment, the condensation process can form a layer of silicon oxide at free or exposed surfaces of the source or drain structure and drive the remaining Ge away from the free surfaces, e.g., into regions 154, as depicted. Free surfaces may also be at a top surface and/or at a bottom surface of the source or drain structure. In an embodiment, a free surface of a source drain structure is an exposed surface of a surface in contact with a material other than an epitaxial seed layer such as a silicon nanowire or nanoribbon. For example, a free surface may be where the source or drain structure has an interface with the internal spacers 112. Such embedded epi S/D can have an effective Ge concentration greater than nominally deposited initially, e.g., greater than 30%. The condensation process can provide a gradient of Ge concentration in the epitaxial source or drain structure with the peak concentration at near an edge of an epi bubble, e.g., at a central portion of interface 126.
It is to be appreciated that the structure 150 of
Referring to
With reference again to
In an embodiment, the integrated circuit structure further includes first and second dielectric gate sidewall spacers along the first and second sides of the gate stack, respectively. In one embodiment, the first and second epitaxial source or drain structures abut the first and second dielectric gate sidewall spacers, respectively. In a particular such embodiment, the atomic concentration of germanium of the each of the first and second epitaxial source or drain structures is lowest where the first and second epitaxial source or drain structures abut the first and second dielectric gate sidewall spacers. In an embodiment, each of the first and second epitaxial source or drain structures further includes boron.
As used throughout, a silicon layer or structure may be used to describe a silicon material composed of a very substantial amount of, if not all, silicon. However, it is to be appreciated that, practically, 100% pure Si may be difficult to form and, hence, could include a tiny percentage of carbon, germanium or tin. Such impurities may be included as an unavoidable impurity or component during deposition of Si or may “contaminate” the Si upon diffusion during post deposition processing. As such, embodiments described herein directed to a silicon layer may include a silicon layer that contains a relatively small amount, e.g., “impurity” level, non-Si atoms or species, such as Ge, C or Sn. It is to be appreciated that a silicon layer as described herein may be undoped or may be doped with dopant atoms such as boron, phosphorous or arsenic.
As used throughout, a germanium layer or structure may be used to describe a germanium material composed of a very substantial amount of, if not all, germanium. However, it is to be appreciated that, practically, 100% pure Ge may be difficult to form and, hence, could include a tiny percentage of silicon, carbon or tin. Such impurities may be included as an unavoidable impurity or component during deposition of Ge or may “contaminate” the Ge upon diffusion during post deposition processing. As such, embodiments described herein directed to a germanium layer may include a germanium layer that contains a relatively small amount, e.g., “impurity” level, non-Ge atoms or species, such as carbon, silicon or tin. It is to be appreciated that a germanium layer as described herein may be undoped or may be doped with dopant atoms such as boron, phosphorous or arsenic.
As used throughout, a silicon germanium layer or structure may be used to describe a silicon germanium material composed of substantial portions of both silicon and germanium, such as at least 5% of both. In some embodiments, the amount of germanium is greater than the amount of silicon. In particular embodiments, a silicon germanium layer includes approximately 60% germanium and approximately 40% silicon (Si40Ge60). In other embodiments, the amount of silicon is greater than the amount of germanium. In particular embodiments, a silicon germanium layer includes approximately 30% germanium and approximately 70% silicon (Si70Ge30). It is to be appreciated that, practically, 100% pure silicon germanium (referred to generally as SiGe) may be difficult to form and, hence, could include a tiny percentage of carbon or tin. Such impurities may be included as an unavoidable impurity or component during deposition of SiGe or may “contaminate” the SiGe upon diffusion during post deposition processing. As such, embodiments described herein directed to a silicon germanium layer may include a silicon germanium layer that contains a relatively small amount, e.g., “impurity” level, non-Ge and non-Si atoms or species, such as carbon or tin. It is to be appreciated that a silicon germanium layer as described herein may be undoped or may be doped with dopant atoms such as boron, phosphorous or arsenic.
In an embodiment, a semiconductor structure or device benefiting from source or drain structures described herein is a non-planar device such as, but not limited to, a fin-FET device, a tri-gate device, a nanoribbon device, or a nanowire device. Additionally, although structures may be differentiated as nanowires or nanoribbons, the term nanowire can be used to describe both unless stated otherwise.
In another aspect, source or drain structures described herein may be implemented for integrated circuit structures based on architectures other than nanowires and nanoribbons, e.g., for fin-based devices. In an example,
Referring to
Referring to
The active gate lines 364 include a gate dielectric structure 398/399, a workfunction gate electrode portion 374 and a fill gate electrode portion 376, and a dielectric capping layer 378. Dielectric spacers 380 line the sidewalls of the active gate lines 364 and the dummy gate lines 366.
In another aspect, trench contact structures, e.g., for source or drain regions, are described. In an example,
Referring to
First 464 and second 466 semiconductor source or drain regions are adjacent the first 456A and second 456B sides of the gate electrode 456, respectively. In one embodiment, the first 464 and second 466 semiconductor source or drain regions include embedded epitaxial regions and a corresponding silicide layer 495 or 497, and are formed in recesses 465 and 467, respectively, of the fin 452, as is depicted. In an embodiment, embedded source or drain structures 464 and 466 have a structure and/or composition such as described above in association with source or drain structure 152 of
First 468 and second 470 trench contact structures are over the first 464 and second 466 semiconductor source or drain regions adjacent the first 456A and second 456B sides of the gate electrode 456, respectively. The first 468 and second 470 trench contact structures both include a U-shaped metal layer 472 and a T-shaped metal layer 474 on and over the entirety of the U-shaped metal layer 472. In one embodiment, the U-shaped metal layer 472 and the T-shaped metal layer 474 differ in composition. In one such embodiment, the U-shaped metal layer 472 includes titanium, and the T-shaped metal layer 474 includes cobalt. In one embodiment, the first 468 and second 470 trench contact structures both further include a third metal layer 476 on the T-shaped metal layer 474. In one such embodiment, the third metal layer 476 and the U-shaped metal layer 472 have a same composition. In a particular embodiment, the third metal layer 476 and the U-shaped metal layer 472 include titanium, and the T-shaped metal layer 474 includes cobalt.
A first trench contact via 478 is electrically connected to the first trench contact 468. In a particular embodiment, the first trench contact via 478 is on and coupled to the third metal layer 476 of the first trench contact 468. The first trench contact via 478 is further over and in contact with a portion of one of the dielectric spacers 463, and over and in contact with a portion of the dielectric cap 462. A second trench contact via 480 is electrically connected to the second trench contact 470. In a particular embodiment, the second trench contact via 480 is on and coupled to the third metal layer 476 of the second trench contact 470. The second trench contact via 480 is further over and in contact with a portion of another of the dielectric spacers 463, and over and in contact with another portion of the dielectric cap 462.
In an embodiment, the metal silicide layer 495 or 497 includes nickel, platinum and silicon. In a particular such embodiment, the first 464 and second 466 semiconductor source or drain regions are first and second P-type semiconductor source or drain regions. In one embodiment, the metal silicide layer 495 or 497 further includes boron.
Referring to
In an embodiment, the source or drain contacts 562 include a barrier layer 562A and a conductive trench fill material 562B. In one embodiment, the barrier layer 562A is a high purity metallic layer having a total atomic composition including 98% or greater of titanium. In one such embodiment, the total atomic composition of the high purity metallic layer further includes 0.5-2% of chlorine. In an embodiment, the high purity metallic layer has a thickness variation of 30% or less. In an embodiment, the conductive trench fill material 562B is composed of a conductive material such as, but not limited to, Cu, Al, W, Co, or alloys thereof.
In another aspect, contact over active gate (COAG) structures and processes are described. One or more embodiments of the present disclosure are directed to semiconductor structures or devices having one or more gate contact structures (e.g., as gate contact vias) disposed over active portions of gate electrodes of the semiconductor structures or devices. One or more embodiments of the present disclosure are directed to methods of fabricating semiconductor structures or devices having one or more gate contact structures formed over active portions of gate electrodes of the semiconductor structures or devices. Approaches described herein may be used to reduce a standard cell area by enabling gate contact formation over active gate regions. In one or more embodiments, the gate contact structures fabricated to contact the gate electrodes are self-aligned via structures.
In an embodiment, an integrated circuit structure, semiconductor structure or device is a non-planar device such as, but not limited to, a fin-FET or a tri-gate device. In such an embodiment, a corresponding semiconducting channel region is composed of or is formed in a three-dimensional body. In one such embodiment, gate electrode stacks of gate lines surround at least a top surface and a pair of sidewalls of the three-dimensional body. In another embodiment, at least the channel region is made to be a discrete three-dimensional body, such as in a gate-all-around device. In one such embodiment, each gate electrode stack of a plurality of gate lines completely surrounds the channel region.
More generally, one or more embodiments are directed to approaches for, and structures formed from, landing a gate contact via directly on an active transistor gate. Such approaches may eliminate the need for extension of a gate line on isolation for contact purposes. Such approaches may also eliminate the need for a separate gate contact (GCN) layer to conduct signals from a gate line or structure. In an embodiment, eliminating the above features is achieved by recessing contact metals in a trench contact (TCN) and introducing an additional dielectric material in the process flow (e.g., TILA). The additional dielectric material is included as a trench contact dielectric cap layer with etch characteristics different from the gate dielectric material cap layer already used for trench contact alignment in a gate aligned contact process (GAP) processing scheme (e.g., GILA).
In an embodiment, providing an integrated circuit structure involves formation of a contact pattern which is essentially perfectly aligned to an existing gate pattern while eliminating the use of a lithographic operation with exceedingly tight registration budget. In one such embodiment, this approach enables the use of intrinsically highly selective wet etching (e.g., versus dry or plasma etching) to generate contact openings. In an embodiment, a contact pattern is formed by utilizing an existing gate pattern in combination with a contact plug lithography operation. In one such embodiment, the approach enables elimination of the need for an otherwise critical lithography operation to generate a contact pattern, as used in other approaches. In an embodiment, a trench contact grid is not separately patterned, but is rather formed between poly (gate) lines. For example, in one such embodiment, a trench contact grid is formed subsequent to gate grating patterning but prior to gate grating cuts.
Furthermore, gate stack structures may be fabricated by a replacement gate process. In such a scheme, dummy gate material such as polysilicon or silicon nitride pillar material, may be removed and replaced with permanent gate electrode material. In one such embodiment, a permanent gate dielectric layer is also formed in this process, as opposed to being carried through from earlier processing. In an embodiment, dummy gates are removed by a dry etch or wet etch process. In one embodiment, dummy gates are composed of polycrystalline silicon or amorphous silicon and are removed with a dry etch process including SF6. In another embodiment, dummy gates are composed of polycrystalline silicon or amorphous silicon and are removed with a wet etch process including aqueous NH4OH or tetramethylammonium hydroxide. In one embodiment, dummy gates are composed of silicon nitride and are removed with a wet etch including aqueous phosphoric acid.
In an embodiment, one or more approaches described herein contemplate essentially a dummy and replacement gate process in combination with a dummy and replacement contact process to arrive at an integrated circuit structure. In one such embodiment, the replacement contact process is performed after the replacement gate process to allow high temperature anneal of at least a portion of the permanent gate stack. For example, in a specific such embodiment, an anneal of at least a portion of the permanent gate structures, e.g., after a gate dielectric layer is formed, is performed at a temperature greater than approximately 600 degrees Celsius. The anneal is performed prior to formation of the permanent contacts.
It is to be appreciated that differing structural relationships between an insulating gate cap layer and an insulating trench contact cap layer may be fabricated. As examples,
Referring to
A first dielectric spacer 620 is adjacent the first side 612 of the first gate electrode 608. A second dielectric spacer 622 is adjacent the second side 614 of the second gate electrode 610. A semiconductor source or drain region 624 is adjacent the first 620 and second 622 dielectric spacers. A trench contact structure 626 is over the semiconductor source or drain region 624 adjacent the first 620 and second 622 dielectric spacers. In an embodiment, the semiconductor source or drain region 624 has a structure and/or composition such as described above in association with source or drain structure 152 of
The trench contact structure 626 includes an insulating cap 628 on a conductive structure 630. The insulating cap 628 of the trench contact structure 626 has a top surface 629 substantially co-planar with a top surfaces 618 of the insulating caps 616 of the first 608 and second 610 gate electrodes. In an embodiment, the insulating cap 628 of the trench contact structure 626 extends laterally into recesses 632 in the first 620 and second 622 dielectric spacers. In such an embodiment, the insulating cap 628 of the trench contact structure 626 overhangs the conductive structure 630 of the trench contact structure 626. In other embodiments, however, the insulating cap 628 of the trench contact structure 626 does not extend laterally into recesses 632 in the first 620 and second 622 dielectric spacers and, hence, does not overhang the conductive structure 630 of the trench contact structure 626.
It is to be appreciated that the conductive structure 630 of the trench contact structure 626 may not be rectangular, as depicted in
In an embodiment, the insulating cap 628 of the trench contact structure 626 has a composition different than a composition of the insulating caps 616 of the first 608 and second 610 gate electrodes. In one such embodiment, the insulating cap 628 of the trench contact structure 626 includes a carbide material, such as a silicon carbide material. The insulating caps 616 of the first 608 and second 610 gate electrodes include a nitride material, such as a silicon nitride material.
In an embodiment, the insulating caps 616 of the first 608 and second 610 gate electrodes both have a bottom surface 617A below a bottom surface 628A of the insulating cap 628 of the trench contact structure 626, as is depicted in
In an embodiment, the conductive structure 630 of the trench contact structure 626 includes a U-shaped metal layer 634, a T-shaped metal layer 636 on and over the entirety of the U-shaped metal layer 634, and a third metal layer 638 on the T-shaped metal layer 636. The insulating cap 628 of the trench contact structure 626 is on the third metal layer 638. In one such embodiment, the third metal layer 638 and the U-shaped metal layer 634 include titanium, and the T-shaped metal layer 636 includes cobalt. In a particular such embodiment, the T-shaped metal layer 636 further includes carbon.
In an embodiment, a metal silicide layer 640 is directly between the conductive structure 630 of the trench contact structure 626 and the semiconductor source or drain region 624. In one such embodiment, the metal silicide layer 640 includes nickel, platinum and silicon. In a particular such embodiment, the semiconductor source or drain region 624 is a P-type semiconductor source or drain region.
To highlight an exemplary integrated circuit structure having three vertically arranged nanowires,
Referring to
Each of the nanowires 704 includes a channel region 706 in the nanowire. The channel region 706 has a length (L). Referring to
Referring to both
In an embodiment, as depicted, the source or drain regions 710/712 are non-discrete in that there are not individual and discrete source or drain regions for each channel region 706 of a nanowire 704. Accordingly, in embodiments having a plurality of nanowires 704, the source or drain regions 710/712 of the nanowires are global or unified source or drain regions as opposed to discrete for each nanowire. That is, the non-discrete source or drain regions 710/712 are global in the sense that a single unified feature is used as a source or drain region for a plurality (in this case, 3) of nanowires 704 and, more particularly, for more than one discrete channel region 706. In one embodiment, from a cross-sectional perspective orthogonal to the length of the discrete channel regions 706, each of the pair of non-discrete source or drain regions 710/712 is approximately rectangular in shape with a bottom tapered portion and a top vertex portion, as depicted in
In accordance with an embodiment of the present disclosure, and as depicted in
Referring again to
Substrate 702 may be composed of a material suitable for integrated circuit structure fabrication. In one embodiment, substrate 702 includes a lower bulk substrate composed of a single crystal of a material which may include, but is not limited to, silicon, germanium, silicon-germanium, germanium-tin, silicon-germanium-tin, or a group III-V compound semiconductor material. An upper insulator layer composed of a material which may include, but is not limited to, silicon dioxide, silicon nitride or silicon oxy-nitride is on the lower bulk substrate. Thus, the structure 700 may be fabricated from a starting semiconductor-on-insulator substrate. Alternatively, the structure 700 is formed directly from a bulk substrate and local oxidation is used to form electrically insulative portions in place of the above described upper insulator layer. In another alternative embodiment, the structure 700 is formed directly from a bulk substrate and doping is used to form electrically isolated active regions, such as nanowires, thereon. In one such embodiment, the first nanowire (i.e., proximate the substrate) is in the form of an omega-FET type structure.
In an embodiment, the nanowires 704 may be sized as wires or ribbons, as described below, and may have squared-off or rounder corners. In an embodiment, the nanowires 704 are composed of a material such as, but not limited to, silicon, germanium, or a combination thereof. In one such embodiment, the nanowires are single-crystalline. For example, for a silicon nanowire 704, a single-crystalline nanowire may be based from a (100) global orientation, e.g., with a <100> plane in the z-direction. As described below, other orientations may also be considered. In an embodiment, the dimensions of the nanowires 704, from a cross-sectional perspective, are on the nano-scale. For example, in a specific embodiment, the smallest dimension of the nanowires 704 is less than approximately 20 nanometers. In an embodiment, the nanowires 704 are composed of a strained material, particularly in the channel regions 706.
Referring to
As described throughout the present application, a substrate may be composed of a semiconductor material that can withstand a manufacturing process and in which charge can migrate. In an embodiment, a substrate is described herein is a bulk substrate composed of a crystalline silicon, silicon/germanium or germanium layer doped with a charge carrier, such as but not limited to phosphorus, arsenic, boron or a combination thereof, to form an active region. In one embodiment, the concentration of silicon atoms in such a bulk substrate is greater than 97%. In another embodiment, a bulk substrate is composed of an epitaxial layer grown atop a distinct crystalline substrate, e.g. a silicon epitaxial layer grown atop a boron-doped bulk silicon mono-crystalline substrate. A bulk substrate may alternatively be composed of a group III-V material. In an embodiment, a bulk substrate is composed of a group III-V material such as, but not limited to, gallium nitride, gallium phosphide, gallium arsenide, indium phosphide, indium antimonide, indium gallium arsenide, aluminum gallium arsenide, indium gallium phosphide, or a combination thereof. In one embodiment, a bulk substrate is composed of a group III-V material and the charge-carrier dopant impurity atoms are ones such as, but not limited to, carbon, silicon, germanium, oxygen, sulfur, selenium or tellurium.
As described throughout the present application, isolation regions such as shallow trench isolation regions or sub-fin isolation regions may be composed of a material suitable to ultimately electrically isolate, or contribute to the isolation of, portions of a permanent gate structure from an underlying bulk substrate or to isolate active regions formed within an underlying bulk substrate, such as isolating fin active regions. For example, in one embodiment, an isolation region is composed of one or more layers of a dielectric material such as, but not limited to, silicon dioxide, silicon oxy-nitride, silicon nitride, carbon-doped silicon nitride, or a combination thereof.
As described throughout the present application, gate lines or gate structures may be composed of a gate electrode stack which includes a gate dielectric layer and a gate electrode layer. In an embodiment, the gate electrode of the gate electrode stack is composed of a metal gate and the gate dielectric layer is composed of a high-k material. For example, in one embodiment, the gate dielectric layer is composed of a material such as, but not limited to, hafnium oxide, hafnium oxy-nitride, hafnium silicate, lanthanum oxide, zirconium oxide, zirconium silicate, tantalum oxide, barium strontium titanate, barium titanate, strontium titanate, yttrium oxide, aluminum oxide, lead scandium tantalum oxide, lead zinc niobate, or a combination thereof. Furthermore, a portion of gate dielectric layer may include a layer of native oxide formed from the top few layers of a semiconductor substrate. In an embodiment, the gate dielectric layer is composed of a top high-k portion and a lower portion composed of an oxide of a semiconductor material. In one embodiment, the gate dielectric layer is composed of a top portion of hafnium oxide and a bottom portion of silicon dioxide or silicon oxy-nitride. In some implementations, a portion of the gate dielectric is a “U”-shaped structure that includes a bottom portion substantially parallel to the surface of the substrate and two sidewall portions that are substantially perpendicular to the top surface of the substrate.
In one embodiment, a gate electrode is composed of a metal layer such as, but not limited to, metal nitrides, metal carbides, metal silicides, metal aluminides, hafnium, zirconium, titanium, tantalum, aluminum, ruthenium, palladium, platinum, cobalt, nickel or conductive metal oxides. In a specific embodiment, the gate electrode is composed of a non-workfunction-setting fill material formed above a metal workfunction-setting layer. The gate electrode layer may consist of a P-type workfunction metal or an N-type workfunction metal, depending on whether the transistor is to be a PMOS or an NMOS transistor. In some implementations, the gate electrode layer may consist of a stack of two or more metal layers, where one or more metal layers are workfunction metal layers and at least one metal layer is a conductive fill layer. For a PMOS transistor, metals that may be used for the gate electrode include, but are not limited to, ruthenium, palladium, platinum, cobalt, nickel, and conductive metal oxides, e.g., ruthenium oxide. A P-type metal layer will enable the formation of a PMOS gate electrode with a workfunction that is between about 4.9 eV and about 5.2 eV. For an NMOS transistor, metals that may be used for the gate electrode include, but are not limited to, hafnium, zirconium, titanium, tantalum, aluminum, alloys of these metals, and carbides of these metals such as hafnium carbide, zirconium carbide, titanium carbide, tantalum carbide, and aluminum carbide. An N-type metal layer will enable the formation of an NMOS gate electrode with a workfunction that is between about 3.9 eV and about 4.2 eV. In some implementations, the gate electrode may consist of a “U”-shaped structure that includes a bottom portion substantially parallel to the surface of the substrate and two sidewall portions that are substantially perpendicular to the top surface of the substrate. In another implementation, at least one of the metal layers that form the gate electrode may simply be a planar layer that is substantially parallel to the top surface of the substrate and does not include sidewall portions substantially perpendicular to the top surface of the substrate. In further implementations of the disclosure, the gate electrode may consist of a combination of U-shaped structures and planar, non-U-shaped structures. For example, the gate electrode may consist of one or more U-shaped metal layers formed atop one or more planar, non-U-shaped layers.
As described throughout the present application, spacers associated with gate lines or electrode stacks may be composed of a material suitable to ultimately electrically isolate, or contribute to the isolation of, a permanent gate structure from adjacent conductive contacts, such as self-aligned contacts. For example, in one embodiment, the spacers are composed of a dielectric material such as, but not limited to, silicon dioxide, silicon oxy-nitride, silicon nitride, or carbon-doped silicon nitride.
In an embodiment, approaches described herein may involve formation of a contact pattern which is very well aligned to an existing gate pattern while eliminating the use of a lithographic operation with exceedingly tight registration budget. In one such embodiment, this approach enables the use of intrinsically highly selective wet etching (e.g., versus dry or plasma etching) to generate contact openings. In an embodiment, a contact pattern is formed by utilizing an existing gate pattern in combination with a contact plug lithography operation. In one such embodiment, the approach enables elimination of the need for an otherwise critical lithography operation to generate a contact pattern, as used in other approaches. In an embodiment, a trench contact grid is not separately patterned, but is rather formed between poly (gate) lines. For example, in one such embodiment, a trench contact grid is formed subsequent to gate grating patterning but prior to gate grating cuts.
Pitch division processing and patterning schemes may be implemented to enable embodiments described herein or may be included as part of embodiments described herein. Pitch division patterning typically refers to pitch halving, pitch quartering etc. Pitch division schemes may be applicable to FEOL processing, BEOL processing, or both FEOL (device) and BEOL (metallization) processing. In accordance with one or more embodiments described herein, optical lithography is first implemented to print unidirectional lines (e.g., either strictly unidirectional or predominantly unidirectional) in a pre-defined pitch. Pitch division processing is then implemented as a technique to increase line density.
In an embodiment, the term “grating structure” for fins, gate lines, metal lines, ILD lines or hardmask lines is used herein to refer to a tight pitch grating structure. In one such embodiment, the tight pitch is not achievable directly through a selected lithography. For example, a pattern based on a selected lithography may first be formed, but the pitch may be halved by the use of spacer mask patterning, as is known in the art. Even further, the original pitch may be quartered by a second round of spacer mask patterning. Accordingly, the grating-like patterns described herein may have metal lines, ILD lines or hardmask lines spaced at a substantially consistent pitch and having a substantially consistent width. For example, in some embodiments the pitch variation would be within ten percent and the width variation would be within ten percent, and in some embodiments, the pitch variation would be within five percent and the width variation would be within five percent. The pattern may be fabricated by a pitch halving or pitch quartering, or other pitch division, approach. In an embodiment, the grating is not necessarily single pitch.
In an embodiment, as used throughout the present description, interlayer dielectric (ILD) material is composed of or includes a layer of a dielectric or insulating material. Examples of suitable dielectric materials include, but are not limited to, oxides of silicon (e.g., silicon dioxide (SiO2)), doped oxides of silicon, fluorinated oxides of silicon, carbon doped oxides of silicon, various low-k dielectric materials known in the arts, and combinations thereof. The interlayer dielectric material may be formed by techniques, such as, for example, chemical vapor deposition (CVD), physical vapor deposition (PVD), or by other deposition methods.
In an embodiment, as is also used throughout the present description, metal lines or interconnect line material (and via material) is composed of one or more metal or other conductive structures. A common example is the use of copper lines and structures that may or may not include barrier layers between the copper and surrounding ILD material. As used herein, the term metal includes alloys, stacks, and other combinations of multiple metals. For example, the metal interconnect lines may include barrier layers (e.g., layers including one or more of Ta, TaN, Ti or TiN), stacks of different metals or alloys, etc. Thus, the interconnect lines may be a single material layer, or may be formed from several layers, including conductive liner layers and fill layers. Any suitable deposition process, such as electroplating, chemical vapor deposition or physical vapor deposition, may be used to form interconnect lines. In an embodiment, the interconnect lines are composed of a conductive material such as, but not limited to, Cu, Al, Ti, Zr, Hf, V, Ru, Co, Ni, Pd, Pt, W, Ag, Au or alloys thereof. The interconnect lines are also sometimes referred to in the art as traces, wires, lines, metal, or simply interconnect.
In an embodiment, as is also used throughout the present description, hardmask materials are composed of dielectric materials different from the interlayer dielectric material. In one embodiment, different hardmask materials may be used in different regions so as to provide different growth or etch selectivity to each other and to the underlying dielectric and metal layers. In some embodiments, a hardmask layer includes a layer of a nitride of silicon (e.g., silicon nitride) or a layer of an oxide of silicon, or both, or a combination thereof. Other suitable materials may include carbon-based materials. In another embodiment, a hardmask material includes a metal species. For example, a hardmask or other overlying material may include a layer of a nitride of titanium or another metal (e.g., titanium nitride). Potentially lesser amounts of other materials, such as oxygen, may be included in one or more of these layers. Alternatively, other hardmask layers known in the arts may be used depending upon the particular implementation. The hardmask layers maybe formed by CVD, PVD, or by other deposition methods.
In an embodiment, as is also used throughout the present description, lithographic operations are performed using 193 nm immersion lithography (i193), extreme ultra-violet (EUV) lithography or electron beam direct write (EBDW) lithography, or the like. A positive tone or a negative tone resist may be used. In one embodiment, a lithographic mask is a trilayer mask composed of a topographic masking portion, an anti-reflective coating (ARC) layer, and a photoresist layer. In a particular such embodiment, the topographic masking portion is a carbon hardmask (CHM) layer and the anti-reflective coating layer is a silicon ARC layer.
It is to be appreciated that not all aspects of the processes described above need be practiced to fall within the spirit and scope of embodiments of the present disclosure. For example, in one embodiment, dummy gates need not ever be formed prior to fabricating gate contacts over active portions of the gate stacks. The gate stacks described above may actually be permanent gate stacks as initially formed. Also, the processes described herein may be used to fabricate one or a plurality of semiconductor devices. The semiconductor devices may be transistors or like devices. For example, in an embodiment, the semiconductor devices are a metal-oxide semiconductor (MOS) transistors for logic or memory, or are bipolar transistors. Also, in an embodiment, the semiconductor devices have a three-dimensional architecture, such as a trigate device, an independently accessed double gate device, a FIN-FET, a nanowire device, or a nanoribbon device. One or more embodiments may be particularly useful for fabricating semiconductor devices at a sub-10 nanometer (10 nm) technology node.
Additional or intermediate operations for FEOL layer or structure fabrication may include standard microelectronic fabrication processes such as lithography, etch, thin films deposition, planarization (such as chemical mechanical polishing (CMP)), diffusion, metrology, the use of sacrificial layers, the use of etch stop layers, the use of planarization stop layers, or any other associated action with microelectronic component fabrication. Also, it is to be appreciated that the process operations described for the preceding process flows may be practiced in alternative sequences, not every operation need be performed or additional process operations may be performed, or both.
It is to be appreciated that in the above exemplary FEOL embodiments, in an embodiment, 10 nanometer or sub-10 nanometer node processing is implemented directly in to the fabrication schemes and resulting structures as a technology driver. In other embodiment, FEOL considerations may be driven by BEOL 10 nanometer or sub-10 nanometer processing requirements. For example, material selection and layouts for FEOL layers and devices may need to accommodate BEOL processing. In one such embodiment, material selection and gate stack architectures are selected to accommodate high density metallization of the BEOL layers, e.g., to reduce fringe capacitance in transistor structures formed in the FEOL layers but coupled together by high density metallization of the BEOL layers.
Embodiments disclosed herein may be used to manufacture a wide variety of different types of integrated circuits or microelectronic devices. Examples of such integrated circuits include, but are not limited to, processors, chipset components, graphics processors, digital signal processors, micro-controllers, and the like. In other embodiments, semiconductor memory may be manufactured. Moreover, the integrated circuits or other microelectronic devices may be used in a wide variety of electronic devices known in the arts. For example, in computer systems (e.g., desktop, laptop, server), cellular phones, personal electronics, etc. The integrated circuits may be coupled with a bus and other components in the systems. For example, a processor may be coupled by one or more buses to a memory, a chipset, etc. Each of the processor, the memory, and the chipset, may potentially be manufactured using the approaches disclosed herein.
Depending on its applications, computing device 800A may include other components that may or may not be physically and electrically coupled to the board 802A. These other components include, but are not limited to, volatile memory (e.g., DRAM), non-volatile memory (e.g., ROM), flash memory, a graphics processor, a digital signal processor, a crypto processor, a chipset, an antenna, a display, a touchscreen display, a touchscreen controller, a battery, an audio codec, a video codec, a power amplifier, a global positioning system (GPS) device, a compass, an accelerometer, a gyroscope, a speaker, a camera, and a mass storage device (such as hard disk drive, compact disk (CD), digital versatile disk (DVD), and so forth).
The communication chip 806A enables wireless communications for the transfer of data to and from the computing device 800A. The term “wireless” and its derivatives may be used to describe circuits, devices, systems, methods, techniques, communications channels, etc., that may communicate data through the use of modulated electromagnetic radiation through a non-solid medium. The term does not imply that the associated devices do not contain any wires, although in some embodiments they might not. The communication chip 806A may implement any of a number of wireless standards or protocols, including but not limited to Wi-Fi (IEEE 802.11 family), WiMAX (IEEE 802.16 family), IEEE 802.20, long term evolution (LTE), Ev-DO, HSPA+, HSDPA+, HSUPA+, EDGE, GSM, GPRS, CDMA, TDMA, DECT, Bluetooth, derivatives thereof, as well as any other wireless protocols that are designated as 3G, 4G, 5G, and beyond. The computing device 800A may include a plurality of communication chips 806A. For instance, a first communication chip 806A may be dedicated to shorter range wireless communications such as Wi-Fi and Bluetooth and a second communication chip 806A may be dedicated to longer range wireless communications such as GPS, EDGE, GPRS, CDMA, WiMAX, LTE, Ev-DO, and others.
The processor 804A of the computing device 800A includes an integrated circuit die packaged within the processor 804A. In some implementations of embodiments of the disclosure, the integrated circuit die of the processor 804A includes one or more structures, such as integrated circuit structures built in accordance with implementations of the disclosure. The term “processor” may refer to any device or portion of a device that processes electronic data from registers or memory to transform that electronic data, or both, into other electronic data that may be stored in registers or memory, or both.
The communication chip 806A also includes an integrated circuit die packaged within the communication chip 806A. In accordance with another implementation of the disclosure, the integrated circuit die of the communication chip 806A is built in accordance with implementations of the disclosure.
In further implementations, another component housed within the computing device 800A may contain an integrated circuit die built in accordance with implementations of embodiments of the disclosure.
In various embodiments, the computing device 800A may be a laptop, a netbook, a notebook, an ultrabook, a smartphone, a tablet, a personal digital assistant (PDA), an ultramobile PC, a mobile phone, a desktop computer, a server, a printer, a scanner, a monitor, a set-top box, an entertainment control unit, a digital camera, a portable music player, or a digital video recorder. In further implementations, the computing device 800A may be any other electronic device that processes data.
The interposer 800B may be formed of an epoxy resin, a fiberglass-reinforced epoxy resin, a ceramic material, or a polymer material such as polyimide. In further implementations, the interposer 800B may be formed of alternate rigid or flexible materials that may include the same materials described above for use in a semiconductor substrate, such as silicon, germanium, and other group III-V and group IV materials.
The interposer 800B may include metal interconnects 808B and vias 810B, including but not limited to through-silicon vias (TSVs) 812B. The interposer 800B may further include embedded devices 814B, including both passive and active devices. Such devices include, but are not limited to, capacitors, decoupling capacitors, resistors, inductors, fuses, diodes, transformers, sensors, and electrostatic discharge (ESD) devices. More complex devices such as radio-frequency (RF) devices, power amplifiers, power management devices, antennas, arrays, sensors, and MEMS devices may also be formed on the interposer 800B. In accordance with embodiments of the disclosure, apparatuses or processes disclosed herein may be used in the fabrication of interposer 800B or in the fabrication of components included in the interposer 800B.
The mobile computing platform 900 may be any portable device configured for each of electronic data display, electronic data processing, and wireless electronic data transmission. For example, mobile computing platform 900 may be any of a tablet, a smart phone, laptop computer, etc. and includes a display screen 905 which in the exemplary embodiment is a touchscreen (capacitive, inductive, resistive, etc.), a chip-level (SoC) or package-level integrated system 910, and a battery 913. As illustrated, the greater the level of integration in the integrated system 910 enabled by higher transistor packing density, the greater the portion of the mobile computing platform 900 that may be occupied by the battery 913 or non-volatile storage, such as a solid state drive, or the greater the transistor gate count for improved platform functionality. Similarly, the greater the carrier mobility of each transistor in the integrated system 910, the greater the functionality. As such, techniques described herein may enable performance and form factor improvements in the mobile computing platform 900.
The integrated system 910 is further illustrated in the expanded view 920. In the exemplary embodiment, packaged device 977 includes at least one memory chip (e.g., RAM), or at least one processor chip (e.g., a multi-core microprocessor and/or graphics processor) fabricated according to one or more processes described herein or including one or more features described herein. The packaged device 977 is further coupled to the board 960 along with one or more of a power management integrated circuit (PMIC) 915, RF (wireless) integrated circuit (RFIC) 925 including a wideband RF (wireless) transmitter and/or receiver (e.g., including a digital baseband and an analog front end module further includes a power amplifier on a transmit path and a low noise amplifier on a receive path), and a controller thereof 911. Functionally, the PMIC 915 performs battery power regulation, DC-to-DC conversion, etc., and so has an input coupled to the battery 913 and with an output providing a current supply to all the other functional modules. As further illustrated, in the exemplary embodiment, the RFIC 925 has an output coupled to an antenna to provide to implement any of a number of wireless standards or protocols, including but not limited to Wi-Fi (IEEE 802.11 family), WiMAX (IEEE 802.16 family), IEEE 802.20, long term evolution (LTE), Ev-DO, HSPA+, HSDPA+, HSUPA+, EDGE, GSM, GPRS, CDMA, TDMA, DECT, Bluetooth, derivatives thereof, as well as any other wireless protocols that are designated as 3G, 4G, 5G, and beyond. In alternative implementations, each of these board-level modules may be integrated onto separate ICs coupled to the package substrate of the packaged device 977 or within a single IC (SoC) coupled to the package substrate of the packaged device 977.
In another aspect, semiconductor packages are used for protecting an integrated circuit (IC) chip or die, and also to provide the die with an electrical interface to external circuitry. With the increasing demand for smaller electronic devices, semiconductor packages are designed to be even more compact and must support larger circuit density. Furthermore, the demand for higher performance devices results in a need for an improved semiconductor package that enables a thin packaging profile and low overall warpage compatible with subsequent assembly processing.
In an embodiment, wire bonding to a ceramic or organic package substrate is used. In another embodiment, a C4 process is used to mount a die to a ceramic or organic package substrate. In particular, C4 solder ball connections can be implemented to provide flip chip interconnections between semiconductor devices and substrates. A flip chip or Controlled Collapse Chip Connection (C4) is a type of mounting used for semiconductor devices, such as integrated circuit (IC) chips, MEMS or components, which utilizes solder bumps instead of wire bonds. The solder bumps are deposited on the C4 pads, located on the top side of the substrate package. In order to mount the semiconductor device to the substrate, it is flipped over with the active side facing down on the mounting area. The solder bumps are used to connect the semiconductor device directly to the substrate.
Referring to
Processing a flip chip may be similar to conventional IC fabrication, with a few additional operations. Near the end of the manufacturing process, the attachment pads are metalized to make them more receptive to solder. This typically consists of several treatments. A small dot of solder is then deposited on each metalized pad. The chips are then cut out of the wafer as normal. To attach the flip chip into a circuit, the chip is inverted to bring the solder dots down onto connectors on the underlying electronics or circuit board. The solder is then re-melted to produce an electrical connection, typically using an ultrasonic or alternatively reflow solder process. This also leaves a small space between the chip's circuitry and the underlying mounting. In most cases an electrically-insulating adhesive is then “underfilled” to provide a stronger mechanical connection, provide a heat bridge, and to ensure the solder joints are not stressed due to differential heating of the chip and the rest of the system.
In other embodiments, newer packaging and die-to-die interconnect approaches, such as through silicon via (TSV) and silicon interposer, are implemented to fabricate high performance Multi-Chip Module (MCM) and System in Package (SiP) incorporating an integrated circuit (IC) fabricated according to one or more processes described herein or including one or more features described herein, in accordance with an embodiment of the present disclosure.
Thus, embodiments of the present disclosure include integrated circuit structures having condensed source or drain structures with high germanium content, and methods of fabricating integrated circuit structures having condensed source or drain structures with high germanium content.
Although specific embodiments have been described above, these embodiments are not intended to limit the scope of the present disclosure, even where only a single embodiment is described with respect to a particular feature. Examples of features provided in the disclosure are intended to be illustrative rather than restrictive unless stated otherwise. The above description is intended to cover such alternatives, modifications, and equivalents as would be apparent to a person skilled in the art having the benefit of the present disclosure.
The scope of the present disclosure includes any feature or combination of features disclosed herein (either explicitly or implicitly), or any generalization thereof, whether or not it mitigates any or all of the problems addressed herein. Accordingly, new claims may be formulated during prosecution of the present application (or an application claiming priority thereto) to any such combination of features. In particular, with reference to the appended claims, features from dependent claims may be combined with those of the independent claims and features from respective independent claims may be combined in any appropriate manner and not merely in the specific combinations enumerated in the appended claims.
The following examples pertain to further embodiments. The various features of the different embodiments may be variously combined with some features included and others excluded to suit a variety of different applications.
Example embodiment 1: An integrated circuit structure includes a vertical arrangement of horizontal nanowires. A gate stack is around the vertical arrangement of horizontal nanowires. A first epitaxial source or drain structure is at a first end of the vertical arrangement of horizontal nanowires. A second epitaxial source or drain structure is at a second end of the vertical arrangement of horizontal nanowires. Each of the first and second epitaxial source or drain structures includes silicon and germanium, with an atomic concentration of germanium greater at a core of the epitaxial source or drain structure than at a periphery of the epitaxial source or drain structure.
Example embodiment 2: The integrated circuit structure of example embodiment 1, further including first and second dielectric gate sidewall spacers along the first and second sides of the gate stack, respectively.
Example embodiment 3: The integrated circuit structure of example embodiment 2, wherein the first and second epitaxial source or drain structures abut the first and second dielectric gate sidewall spacers, respectively.
Example embodiment 4: The integrated circuit structure of example embodiment 3, wherein the atomic concentration of germanium of the each of the first and second epitaxial source or drain structures is lowest where the first and second epitaxial source or drain structures abut the first and second dielectric gate sidewall spacers.
Example embodiment 5: The integrated circuit structure of example embodiment 1, 2, 3 or 4, wherein each of the first and second epitaxial source or drain structures further includes boron.
Example embodiment 6: The integrated circuit structure of example embodiment 1, 2, 3, 4 or 5, further including a first conductive contact on the first epitaxial source or drain structure, and a second conductive contact on the second epitaxial source or drain structure.
Example embodiment 7: An integrated circuit structure includes a vertical arrangement of horizontal nanowires. A gate stack is around the vertical arrangement of horizontal nanowires. A first condensed epitaxial source or drain structure is at a first end of the vertical arrangement of horizontal nanowires. A second condensed epitaxial source or drain structure is at a second end of the vertical arrangement of horizontal nanowires. Each of the first and second condensed epitaxial source or drain structures includes silicon and germanium, with a lowest atomic concentration of germanium at a free surface of the epitaxial source or drain structure.
Example embodiment 8: The integrated circuit structure of example embodiment 7, further including first and second dielectric gate sidewall spacers along the first and second sides of the gate stack, respectively.
Example embodiment 9: The integrated circuit structure of example embodiment 8, wherein the first and second condensed epitaxial source or drain structures abut the first and second dielectric gate sidewall spacers, respectively.
Example embodiment 10: The integrated circuit structure of example embodiment 9, wherein the free surface is where the first and second condensed epitaxial source or drain structures abut the first and second dielectric gate sidewall spacers.
Example embodiment 11: The integrated circuit structure of example embodiment 7, 8, 9 or 10, wherein each of the first and second condensed epitaxial source or drain structures further includes boron.
Example embodiment 12: A computing device includes a board and a component coupled to the board. The component including an integrated circuit structure. The integrated circuit structure includes a vertical arrangement of horizontal nanowires. A gate stack is around the vertical arrangement of horizontal nanowires. A first epitaxial source or drain structure is at a first end of the vertical arrangement of horizontal nanowires. A second epitaxial source or drain structure is at a second end of the vertical arrangement of horizontal nanowires. Each of the first and second epitaxial source or drain structures includes silicon and germanium, with an atomic concentration of germanium greater at a core of the epitaxial source or drain structure than at a periphery of the epitaxial source or drain structure.
Example embodiment 13: The computing device of example embodiment 12, further including a memory coupled to the board.
Example embodiment 14: The computing device of example embodiment 12 or 13, further including a communication chip coupled to the board.
Example embodiment 15: The computing device of example embodiment 12, 13 or 14, further including a camera coupled to the board.
Example embodiment 16: The computing device of example embodiment 12, 13, 14 or 15, further including a battery coupled to the board.
Example embodiment 17: The computing device of example embodiment 12, 13, 14, 15 or 16, further including an antenna coupled to the board.
Example embodiment 18: The computing device of example embodiment 12, 13, 14, 15, 16 or 17, wherein the component is a packaged integrated circuit die.
Example embodiment 19: The computing device of example embodiment 12, 13, 14, 15, 16, 17 or 18, wherein the component is selected from the group consisting of a processor, a communications chip, and a digital signal processor.
Example embodiment 20: The computing device of example embodiment 12, 13, 14, 15, 16, 17, 18 or 19, wherein the computing device is selected from the group consisting of a mobile phone, a laptop, a desk top computer, a server, and a set-top box.