The present invention relates to high density memory devices. In particular, embodiments of the present invention provide a method for manufacturing and a structure for connecting to multiple planes in a three-dimensional high density memory device.
Three dimensional (3D) memory devices are characterized by multiple layers, each of which can include a planar array of memory cells. For certain three-dimensionally stacked memory devices, active layers can comprise active strips of materials configured as bit lines or word lines for memory cells, stacked in spaced-apart ridge-like structures. The active layers can be made from a doped (p-type or n-type) or undoped semiconductor material. In such 3D memory, memory cells can be disposed at the cross-points of the stacked bit lines or word lines and the crossing word lines or bit lines, forming a 3D memory array.
Examples of memory devices like this are described in commonly owned U.S. Patent Publication No. 2012/0182806, filed Apr. 1, 2011, entitled Memory Architecture of 3D Array With Alternating Memory String Orientation and String Select Structures by inventors Shih-Hung Chen and Hang-Ting Lue and in commonly owned U.S. Pat. No. 8,363,476, filed 19 Jan. 2011, entitled Memory Device, Manufacturing Method And Operating Method Of The Same, by inventors Hang-Ting Lue and Shi-Hung Chen, both of which are incorporated by reference as if fully set forth herein. In these examples, the active strips are coupled to pads on each layer. The pads are arranged in stairstep structures to provide landing areas for interlayer conductors. For large arrays in particular, the resistance of the pads can be relatively high, slowing down operation of the device. Also, the current paths to the individual active strips across the array can vary, making control circuitry and sensing circuitry more complex.
It is desirable, therefore, to provide a structure for making contact to a plurality of layers in a 3D device that has lower resistance, and that causes less variation in operating characteristics across the device.
An interconnect structure for a 3D device is described that comprises a stack of semiconductor pads, each coupled to a plurality of strips of active material in corresponding active layers. A semiconductor pad in the stack has an outside perimeter with at least one side of the outside perimeter coupled to a respective active layer. Outside perimeter lower resistance regions are disposed along the outside perimeters of semiconductor pads in the stack which decrease electrical resistance in the outside perimeter lower resistance regions relative to the inner regions. Semiconductor pads in the stack also have openings that expose a landing area or landing areas on an underlying pad or pads. The opening defines an inside perimeter on the pad. Inside perimeter lower resistance regions can also be disposed along the inside perimeters of the pads in the stack, and also decrease electrical resistance in the inside perimeter lower resistance regions relative to the inner regions.
The outside perimeter lower resistance regions can be formed, according to embodiments of the technology described herein, by implanting impurities directed at one or more angles away from normal into a patterned stack of pads. The openings in the pads can be formed after the outside perimeter lower resistance regions in some examples. The inside perimeter lower resistance regions can be formed along the inside perimeters of the semiconductor pads by implanting impurities at one or more substantially normal angles to decrease the resistivity in the inside perimeter lower resistance region and to decrease the resistivity in each of the exposed landing areas, relative to interior areas of the semiconductor pads. The inside perimeter lower resistance regions include at least the landing areas and in embodiments described herein further include an overlapping region that overlaps with the outer perimeter lower resistance regions forming a low resistance path on the corresponding semiconductor pad. Many benefits can be achieved by way of the present invention over conventional techniques. For example, the present method can be applied to a stack of semiconductor pads for contact conductor structures having a high layer count, greater than, for example, four. The contact region on each semiconductor pad is characterized by a suitably high conductance for high speed operations. Various other aspects and advantages are described throughout the specification and the appended claims.
A detailed description of various embodiments is described with reference to the Figures. The following description will typically be with reference to specific structural embodiments and methods. It is to be understood that there is no intention to limit the invention to the specifically disclosed embodiments and methods, but that the invention may be practiced using other features, elements, methods and embodiments. Preferred embodiments are described to illustrate the present invention, not to limit its scope, which is defined by the claims. Those of ordinary skill in the art will recognize a variety of equivalent variations on the description that follows. Like elements in various embodiments are commonly referred to with like reference numerals.
Each stack of active strips is terminated at one end by semiconductor pads and the other end by a source line. Therefore, active strips 402, 403, 404, 405 terminate on the proximal end by semiconductor pads 402B, 403B, 404B, and 405B and a source line terminal 419 on the distal end of the strips passing through gate select line 427. Active strips 412, 413, 414, 415 terminate on the distal end by semiconductor pads 412A, 413A, 414A, and 415A and a source line terminal (for example, source line 428) passing through gate select line 426 near the proximal end of the strips.
In the embodiment of
Depending upon the implementation, layer 452 of memory material can comprise multilayer dielectric charge storage structures. For example, a multilayer dielectric charge storage structure includes a tunneling layer comprising a silicon oxide, a charge trapping layer comprising a silicon nitride, and a blocking layer comprising a silicon oxide. In some examples, the tunneling layer in the dielectric charge storage layer can comprise a first layer of silicon oxide less than about 2 nanometers thick, a layer of silicon nitride less than about 3 nanometers thick and a second layer of silicon oxide less than about 3 nanometers thick. In other implementations, layer 452 of memory material can comprise only a charge trapping layer without the tunneling layer or the blocking layer.
In the alternative, an anti-fuse material such as a silicon dioxide, silicon oxynitride or other silicon oxides, for example having a thickness on the order of 1 to 5 nanometers, can be utilized. Other anti-fuse materials may be used, such as silicon nitride. For anti-fuse embodiments, active strips 402, 403, 404, 405 can be a semiconductor material with a first conductivity type (e.g. p-type). Conductors (for example, word lines or source select lines) 425-N can be a semiconductor material with a second conductivity type (e.g. n-type). For example, the active strips 402, 403, 404, 405 can be made using p-type polysilicon while the conductors 425-N can be made using relatively heavily doped n+-type polysilicon or relatively heavily doped p+-type polysilicon. For anti-fuse embodiments, the width of the active strips should be enough to provide room for a depletion region to support the diode operation. As a result, memory cells comprising a rectifier formed by the p-n junction with a programmable anti-fuse layer in between the anode and cathode are formed in the 3D array of cross-points between the polysilicon strips and conductor lines.
In other embodiments, different programmable resistance memory materials can be used as the memory material, including metal oxides like tungsten oxide on tungsten or doped metal oxide, and others. Some of such materials can form devices that can be programmed and erased at multiple voltages or currents, and can be implemented for operations storing multiple bits per cell.
As can be seen in
Thereafter, back-end-of-line processes such as metallization to form metal lines ML1, ML2 and ML3 as in
Step 1402: forming a stack of semiconductor material (or other active material, such as a metal, a metal nitride, a chalcogenide, etc.) separated by insulator, the semiconductor material can be undoped or lightly doped (p-type or n-type) in this example;
Step 1404: forming parallel strips of active material and a stack of semiconductor pads to form the stack of semiconductor material, the semiconductor pads have an outside perimeter and one side of the outside perimeter is coupled to a corresponding layer of parallel strips;
Step 1406: forming an outside perimeter lower resistance region on each of the semiconductor pads by implanting impurities to decrease an electrical resistance of the outside perimeter region relative to an interior region;
Step 1408: for a memory device as illustrated in
Step 1410: forming openings over the semiconductor pads to expose a landing area for an interlayer conductor on each of the semiconductor pads, the openings defining an inside perimeter on the corresponding semiconductor pad;
Step 1412: forming inside perimeter lower resistance regions by implanting impurities to decrease an electrical resistance of the exposed landing regions relative to interior regions;
Step 1414: depositing an insulating fill over the semiconductor pads;
Step 1416: forming contact openings (or vias) in portions of the insulating fill to expose the landing areas on each semiconductor pad;
Step 1418: filling the contact openings with a conductive material, for example, doped polysilicon material or a metal material; and
Step 1420: applying back-end-of-line processes to complete the device.
The above sequence of steps provides a method for forming low resistance landing areas for contact conductors for a high density 3D device according to various embodiments. The lower resistance landing areas are formed on semiconductor pads coupled to corresponding active strips configured as various circuits, for example, bit lines or word lines for a memory device. Depending on the implementation, the process steps may be carried out in different sequences than that shown in
A controller implemented in this example using bias arrangement state machine 969 controls the application of bias arrangement supply voltage generated or provided through the voltage supply or supplies in block 968, such as read, erase, program, erase verify and program verify voltages. The controller can be implemented using special-purpose logic circuitry as known in the art. In alternative embodiments, the controller comprises a general-purpose processor, which may be implemented on the same integrated circuit, which executes a computer program to control the operations of the device. In yet other embodiments, a combination of special-purpose logic circuitry and a general-purpose processor may be utilized for implementation of the controller.
In various embodiments, a device is provided. The device can be fabricated using the process as in
In various embodiments, an integrated circuit memory device is provided. The memory device includes a 3D array of memory cells. The 3D array of memory cells includes a plurality of active layers. The active layers include patterned layers of semiconductor material. In certain implementation, the patterned layers include parallel strips of semiconductor material configured as local word lines or local bit lines for the memory cells connected on each of their ends to respective semiconductor pads. The semiconductor pads can be fabricated using the method as illustrated in the process in
While the present invention is disclosed by reference to the preferred embodiments and examples detailed above, it is to be understood that these examples are intended in an illustrative rather than in a limiting sense. It is contemplated that modifications and combinations will readily occur to those skilled in the art, which modifications and combinations will be within the spirit of the invention and the scope of the following claims.
This application claims benefit of U.S. Provisional Patent Application No. 61/761,710 filed on 7 Feb. 2013, which application is incorporated by reference as if fully set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
6034882 | Johnson et al. | Mar 2000 | A |
6323117 | Noguchi | Nov 2001 | B1 |
6906361 | Zhang | Jun 2005 | B2 |
6906940 | Lue | Jun 2005 | B1 |
7018783 | Iwasaki et al. | Mar 2006 | B2 |
7081377 | Cleeves | Jul 2006 | B2 |
7129538 | Lee et al. | Oct 2006 | B2 |
7177169 | Scheuerlein | Feb 2007 | B2 |
7274594 | Pascucci et al. | Sep 2007 | B2 |
7315474 | Lue | Jan 2008 | B2 |
7382647 | Gopalakrishnan | Jun 2008 | B1 |
7420242 | Lung | Sep 2008 | B2 |
7696559 | Arai et al. | Apr 2010 | B2 |
7851849 | Kiyotoshi | Dec 2010 | B2 |
8338882 | Tanaka et al. | Dec 2012 | B2 |
8363476 | Lue et al. | Jan 2013 | B2 |
8383512 | Chen et al. | Feb 2013 | B2 |
8437192 | Lung et al. | May 2013 | B2 |
8467219 | Lue | Jun 2013 | B2 |
8503213 | Chen et al. | Aug 2013 | B2 |
8736069 | Chiu et al. | May 2014 | B2 |
8759899 | Lue et al. | Jun 2014 | B1 |
20040023499 | Hellig et al. | Feb 2004 | A1 |
20040188822 | Hara | Sep 2004 | A1 |
20050280061 | Lee | Dec 2005 | A1 |
20070045708 | Lung | Mar 2007 | A1 |
20070090434 | Davies et al. | Apr 2007 | A1 |
20070140001 | Motoi et al. | Jun 2007 | A1 |
20070231750 | Parikh | Oct 2007 | A1 |
20070252201 | Kito et al. | Nov 2007 | A1 |
20080073635 | Kiyotoshi et al. | Mar 2008 | A1 |
20080096327 | Lee et al. | Apr 2008 | A1 |
20080101109 | Haring-Bolivar et al. | May 2008 | A1 |
20080175032 | Tanaka et al. | Jul 2008 | A1 |
20080180994 | Katsumata et al. | Jul 2008 | A1 |
20080247230 | Lee et al. | Oct 2008 | A1 |
20080285350 | Yeh | Nov 2008 | A1 |
20090001530 | Goto | Jan 2009 | A1 |
20090032966 | Lee et al. | Feb 2009 | A1 |
20090097321 | Kim et al. | Apr 2009 | A1 |
20090184360 | Jin et al. | Jul 2009 | A1 |
20100007001 | Wang et al. | Jan 2010 | A1 |
20100054015 | Lee et al. | Mar 2010 | A1 |
20100109164 | Kang et al. | May 2010 | A1 |
20100133645 | Dunne | Jun 2010 | A1 |
20100182041 | Feng et al. | Jul 2010 | A1 |
20100225000 | Sugizaki et al. | Sep 2010 | A1 |
20100270593 | Lung et al. | Oct 2010 | A1 |
20110031630 | Hashimoto | Feb 2011 | A1 |
20110057321 | Wang et al. | Mar 2011 | A1 |
20110116309 | Lung | May 2011 | A1 |
20110235408 | Minemura et al. | Sep 2011 | A1 |
20120119283 | Lee et al. | May 2012 | A1 |
20120182806 | Chen et al. | Jul 2012 | A1 |
20130082341 | Shimizu et al. | Apr 2013 | A1 |
20130341797 | Lim | Dec 2013 | A1 |
20140264934 | Chen | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
1936681 | Jun 2008 | EP |
2048709 | Apr 2009 | EP |
2192612 | Jun 2010 | EP |
I308374 | Apr 2009 | TW |
201123266 | Jul 2011 | TW |
Entry |
---|
U.S. Appl. No. 14/045,573, “Interlayer Conductor Structure and Method”, filed on Oct. 3, 2013. |
Chen et al., “A Highly Pitch Scalable 3D Vertical Gate (VG) NAND Flash Decoded by a Novel Self-Aligned Independently Controlled Double Gate (IDG) String Select Transistor (SSL),” 2012 Symp. on VLSI Technology (VLSIT), Jun. 12-14, 2012, pp. 91-92. |
Choi et al., “3D approaches for non-volatile memory”, 2011 Symposium on VLSI Technology, Digest of Technical Papers, pp. 178-179, Jun. 14-16, 2011. |
Choi et al., “Performance Breakthrough in NOR Flash Memory With Dopant-Segregated Schottky-Barrier (DSSB) SONOS Devices,” Jun. 2009 Symposium on VLSI Technology Digest of Technical Papers, pp. 222-223. |
Extended European Search Report for EP 12170759, dated Feb. 5, 2013, 12 pages. |
Fukuzumi et al. “Optimal Integration and Characteristics of Vertical Array Devices for Ultra-High Density, Bit-Cost Scalable Flash Memory,” IEEE Dec. 2007, pp. 449-452. |
Hsu et al., “Study of Sub-30nm Thin Film Transistor (TFT) Charge-Trapping (CT) Devices for 3D NAND Flash Application,” 2009 IEEE, Dec. 7-9, 2009, pp. 27.4.1-27.4.4. |
Hu J. et al., “Reducing Write Activities on Non-volatile Memories in Embedded CMPs via Data Migration and Recomputation,” Proc. of the IEEE/ACM DAC, pp. 350-355, 2010. |
Hubert et al., “A Stacked SONOS Technology, Up to 4 Levels and 6nm Crystalline Nanowires, With Gate-All-Around or Independent Gates (Flash), Suitable for Full 3D Integration,” IEEE 2009, Dec. 7-9, 2009, pp. 27.6.1-27.6.4. |
Hung et al., “A highly scalable vertical gate (VG) 3D NAND Flash with robust program disturb immunity using a novel PN diode decoding structure,” 2011 Symp. on VLSI Technology (VLSIT), Jun. 14-16, 2011, pp. 68-69. |
Jang et al., “Vertical Cell Array Using TCAT (Terabit Cell Array Transistor) Technology for Ultra High Density NAND Flash Memory,” 2009 Symposium on VLSI Technology Digest of Technical Papers, Jun. 16-18, 2009, pp. 192-193. |
Johnson et al., “512-Mb PROM With a Three-Dimensional Array of Diode/Antifuse Memory Cells,” IEEE Journal of Solid-State Circuits, vol. 38, No. 11, Nov. 2003, pp. 1920-1928. |
Jung et al., “Three Dimensionally Stacked NAND Flash Memory Technology Using Stacking Single Crystal Si Layers on ILD and TANOS Structure for Beyond 30nm Node,” IEEE IEDM, Dec. 11-13, 2006 4 pages. |
Katsumata et al., “Pipe-shaped BiCS Flash Memory With 16 Stacked Layers and Multi-Level-Cell Operation for Ultra High Density Storage Devices,” 2009 Symposium on VLSI Technology Digest of Technical Papers, Jun. 16-18, 2009, pp. 136-137. |
Kim et al. “Novel Vertical-Stacked-Array-Transistor (VSAT) for Ultra-High-Density and Cost-Effective NAND Flash Memory Devices and SSD (Solid State Drive)”, Jun. 2009 Symposium on VLSI Technology Digest of Technical Papers, pp. 186-187. |
Kim et al., “Three-Dimensional NAND Flash Architecture Design Based on Single-Crystalline STacked ARray,” IEEE Transactions on Electron Devices, vol. 59, No. 1, pp. 35-45, Jan. 2012. |
Kim et al., “Multi-Layered Vertical Gate NAND Flash Overcoming Stacking Limit for Terabit Density Storage,” 2009 Symposium on VLSI Technology Digest of Technical Papers, Jun. 16-18, 2009, pp. 188-189. |
Kim et al., “Novel 3-D Structure for Ultra High Density Flash Memory with VRAT (Vertical-Recess-Array-Transistor) and PIPE (Planarized Integration on the same PlanE),” IEEE 2008 Symposium on VLSI Technology Digest of Technical Papers, Jun. 17-19, 2008, pp. 122-123. |
Lai et al., “A Multi-Layer Stackable Thin-Film Transistor (TFT) NAND-Type Flash Memory,” Electron Devices Meeting, 2006, IEDM '06 International, Dec. 11-13, 2006, pp. 1-4. |
Lai et al., “Highly Reliable MA BE-SONOS (Metal-Al2 O3 Bandgap Engineered SONOS) Using a SiO2 Buffer Layer,” VLSI Technology, Systems and Applications, 2008, VLSI-TSA 2008 International Symposium on Apr. 21-23, 2008, pp. 58-59. |
Lue et al., “A Highly Scalable 8-Layer 3D Vertical-Gate (VG) TFT NAND Flash Using Junction-Free Buried Channel BE-SONOS Device”, 2010 Symposium on VLSI Technology Digest of Technical Papers, pp. 131-132, Jun. 15-17, 2010. |
Lue et al., “A Novel Buried-Channel FinFET BE-SONOS NAND Flash With Improved Memory Window and Cycling Endurance,” 2009 Symposium on VLSI Technology Digest of Technical Papers, Jun. 16-18, 2009, pp. 224-225. |
Nowak et al., “Intrinsic fluctuations in Vertical NAND flash memories,” 2012 Symposium on VLSI Technology, Digest of Technical Papers, pp. 21-22, Jun. 12-14, 2012. |
Paul et al., “Impact of a Process Variation on Nanowire and Nanotube Device Performance,” IEEE Trans. on Electron Devices, vol. 54, No. 9, Sep. 2007, pp. 2369-2376. |
Tanaka et al., “Bit Cost Scalable Technology with Punch and Plug Process for Ultra High Density Flash Memory,” VLSI Technology, 2007 IEEE Symposium on Jun. 12-14, 2007, pp. 14-15. |
Wang, Michael, “Technology Trends on 3D-NAND Flash Storage”, Impact 2011, Taipei, dated Oct. 20, 2011, found at www.impact.org.tw/2011/Files/NewsFile/201111110190.pdf. |
Number | Date | Country | |
---|---|---|---|
20140217518 A1 | Aug 2014 | US |
Number | Date | Country | |
---|---|---|---|
61761710 | Feb 2013 | US |