The present invention relates to nitride read only memory (NROM) cells generally and to contacts in planar NROM cells in particular.
Nitride read only memory (NROM) arrays are known in the art, and are described in many patents. U.S. patent application Ser. No. 11/247,733 for example, assigned to the common assignee of the present invention, and whose disclosure is incorporated herein by reference, describes a dense planar virtual ground (VG) NROM array, composed of double polysilicon planar NROM cells.
The virtual ground array architecture, as shown in
Sufficient horizontal margins Mh and vertical margins Mv must be maintained between each contact 26 and the bit lines and word lines adjacent to it in order to ensure reliable operation of array 10. As further shown in
In the example shown in
Misalignments between a contact 26 and a bit line 22 such as that exemplified by contact 26j in
Implementation of shallow trenchline isolation (STI) which is known in the art, between bit lines at the contact region, is a straightforward solution which can address the leakage between bit lines. However, the drawbacks of this solution include the complication of the manufacturing process and the possible requirement of additional horizontal and vertical margins, which carries a substantial die size penalty.
There is therefore provided, in accordance with a preferred embodiment of the present invention, a method for fabricating a non-volatile memory array. The method includes placing contacts over bit lines in a self-aligned manner.
Additionally, in accordance with a preferred embodiment of the present invention, the placing of the contacts includes forming self-aligned contact holes bounded by a second insulating material resistant to the removal of a first insulating material previously deposited over the bit lines and depositing contact material, wherein the second insulating material blocks effusion of the contact material beyond the contact holes.
Moreover, in accordance with a preferred embodiment of the present invention, the forming of the self-aligned contact holes includes having column-like formations of a first insulating material previously deposited over the bit lines, placing at least a layer of a second insulating material resistant to the removal of the first insulating material in the spaces between the formations, at least along the exposed side surfaces of the first insulating material, and removing the first insulating material to expose at least a portion of each of the bit lines.
Further, in accordance with a preferred embodiment of the present invention, the placing of at least a layer of a second insulating material includes filling the spaces between the formations of the first insulating material with the second insulating material.
Still further, in accordance with a preferred embodiment of the present invention, the removing of the first insulating material employs a removing substance to which the second insulating material is resistant.
Moreover, in accordance with a preferred embodiment of the present invention, the removing substance is an etchant.
Still further, in accordance with a preferred embodiment of the present invention, the filling of the spaces between the formations of the first insulating material with the second insulating material includes depositing the second insulating material over the array at least in a contact area, and etching the second insulating material to a level below the top of the formations.
Moreover, in accordance with a preferred embodiment of the present invention, the first insulating material is oxide.
Still further, in accordance with a preferred embodiment of the present invention, the second insulating material is nitride or oxy-nitride.
Moreover, in accordance with a preferred embodiment of the present invention, the removing of the first insulating material is performed by etching until a level of said bit lines.
Still further, in accordance with a preferred embodiment of the present invention, the forming of the self-aligned contact holes includes having column-like formations of a first insulating material previously deposited over the bit lines, depositing a liner of the second insulating material across the formations of the first insulating material and the spaces between the formations, filling the gaps in the liner with HV CMOS spacers, removing the liner to form wedge-topped spacers abutting the formations on each side, depositing an insulator fill, and removing the formations of the first insulating material and the insulator fill above the formations until the level of the bit lines.
Moreover, in accordance with a preferred embodiment of the present invention, the removing of the liner employs a removing substance to which the first insulating material is resistant.
Still further, in accordance with a preferred embodiment of the present invention, the substance employed to remove the liner is an etchant.
Moreover, in accordance with a preferred embodiment of the present invention, the insulator fill is either the first insulating material or an insulating material having similar etching properties to the first insulating material.
There is also provided, in accordance with a preferred embodiment of the present invention, an NVM array comprising a plurality of bit lines, and a multiplicity of contacts, each of which connect one metal line to one of the bit lines, and wherein a distance between the neighboring bit lines does not include a margin for contact misalignment.
There is also provided, in accordance with a preferred embodiment of the present invention, an NVM array comprising a plurality of bit lines, a plurality of word lines crossing the bit lines, wherein the word lines are grouped into word line areas and wherein segments of the bit lines located in the word line areas are covered with insulator formations, contact areas between neighboring word line areas, and contacts on the bit lines in the contact areas aligned with the formations in the word line areas.
The subject matter regarded as the invention is particularly pointed out and distinctly claimed in the concluding portion of the specification. The invention, however, both as to organization and method of operation, together with objects, features, and advantages thereof, may best be understood by reference to the following detailed description when read with the accompanying drawings in which:
It will be appreciated that for simplicity and clarity of illustration, elements shown in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity. Further, where considered appropriate, reference numerals may be repeated among the figures to indicate corresponding or analogous elements.
In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will be understood by those skilled in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, and components have not been described in detail so as not to obscure the present invention.
Applicant has realized that die size benefits in a VG NROM array may be realized by minimizing the dimensions of required margins between contacts and the bit lines adjacent to them.
Applicant has further realized that achieving a high degree of certainty in the placement of contacts in direct alignment with the bit lines may foster the circumstances in which the dimensions of these required margins may be minimized. When contacts are reliably placed in direct alignment with the bit lines, the existing margins between the bit lines may be fully effective over their entire lengths. It may then be unnecessary to add additional margins to compensate for the reduction of effective distance between bit lines caused by contact misalignment.
Applicant has further realized that the manufacture of NROM cells in VG NROM arrays 10 may be undertaken in such a way as to make the step of contact placement self-aligning, thus achieving a high degree of certainty in the placement of contacts in direct alignment with the bit lines. Required margins between contacts and bit lines may thus be minimized, and a reduction in the area penalty of array contacts may thus be realized.
The self-aligned contact placement process disclosed in the present invention is illustrated schematically in
The structure of section Sw, as shown in
In an additional preferred embodiment of the present invention, a thick liner of the Type 2 insulator may be used to achieve self-aligned contacts, as described with respect to
It will be appreciated that nitride spacers 64 force the alignment of contacts 26 to the diffusion bit lines even when there is a slight misalignment. This is illustrated in
While certain features of the invention have been illustrated and described herein, many modifications, substitutions, changes, and equivalents will now occur to those of ordinary skill in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
This application claims benefit from U.S. Provisional Patent Application No. 60/562,386, filed Mar. 17, 2005, which application is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60662386 | Mar 2005 | US |