The present invention relates to apparatus for chilling the contents of containers and to methods for chilling contents of containers.
Consumers often prefer to consume a beverage at a certain temperature. For example, many consumers prefer to drink cold soda and beer. As these beverages warm, the beverage becomes less enjoyable. A beverage that is initially cold will eventually warm when removed from a refrigerated or cold environment such as, for example, a refrigerator, freezer, ice chest, or cooler. Ice can be added to beverages in open containers, but melting ice dilutes the intended flavor. Furthermore, some beverage containers, such as bottles and cans, do not have openings big enough for most types of ice cubes, resulting in a race against time to finish a cold beverage on a warm day. Insulated beverage container sleeves may reduce contact of the beverage container with the air or a user's hand, but serve only to slow the rising temperature of the beverage. Most coasters do little to delay beverage warming.
Thus, improved apparatus and methods are desired to keep container contents such as beverages cold while a beverage is being consumed.
Chilled cooling apparatus in which the top is contoured to conform to the bottom of a container to be cooled and where the width of the apparatus is equal to or less than the outer diameter of a container are disclosed. The apparatus can be used in conjunction with an insulating elastic band or sleeve to retain the apparatus and the container.
In a first aspect, apparatus for cooling a container is provided, comprising: a base comprising a top, a bottom, a sidewall, and at least one internal volume, wherein: a shape of the top is configured to conform to a shape of a bottom of a container; and the sidewall is characterized by an outer diameter that is substantially the same as or less than an outer diameter of the container; a chilling agent contained within the at least one internal volume; and a band configured to retain the base and the container.
In a second aspect, methods for cooling a container are provided, comprising: providing an apparatus comprising a base comprising a top, a bottom, a sidewall, and at least one internal volume, wherein: a shape of the top is configured to conform to a shape of a bottom of a container; and the sidewall is characterized by an outer diameter that is substantially the same as or less than an outer diameter of the container; a chilling agent contained within the at least one internal volume; and a band configured to retain the base and the container; contacting a beverage container against the top of the base; and retaining the beverage container and the base with the band.
Reference is now made to certain embodiments of methods and apparatus for chilling the contents of containers. The disclosed embodiments are not intended to be limiting of the claims. To the contrary, the claims are intended to cover all alternatives, modifications, and equivalents.
Apparatus provided by the present disclosure can be used to chill the contents of a container such as a beverage within a beverage container.
The apparatus includes a base having a top, a bottom, and a sidewall. Overall, the apparatus has the shape of a puck. The sidewall has a diameter that can be substantially the same as or smaller than the outer diameter of the container to be chilled. For example, when the container is a soda or beer can, the sidewall has a diameter of about 2.5 inches or less. Having substantially the same diameter means that when a container is resting on the base, the sidewall and the outer diameter of the container are flush and the outer diameter of the sidewall is not greater than that of the container such that the container can rest within the outer diameter of the sidewall and/or be retained by features incorporated within the sidewall that fixedly engage the container.
The top of the base is configured to efficiently chill the container when contacting the base of the container. For example certain beverage containers such as soda and beer cans have a concave surface at the bottom. Thus, for use with these containers, a base will have a convex surface that substantially conforms to the convex bottom surface of the can. In general, the top of a base will have a shape that is configured to mate with the shape of the bottom of the container to be chilled. Mating of the top surface of a base to the bottom surface of the container is intended to facilitate thermal transfer between the two.
A base can also include one or more internal volumes. The internal volumes may be unfilled, that is filled with air, an insulating material, or a chilling agent. In certain embodiments, a base includes at least one internal volume at the top, such as directly beneath and adjacent a convex surface. Other internal volumes may be used for providing insulation at the bottom of the base and/or adjacent the sidewalls. Insulating volumes may contain air or an insulation material such as a foam. The size, location, and contents of the volumes within the base can be selected to insulate the chilling agent from the environment and to facilitate thermal transfer between the chilling agent and the contents of the container. One or more of the internal volumes are filled with a chilling agent.
The top of a base may be any appropriate shape such as concave, convex, flat or textured and are designed to mate with the bottom of a container to be chilled to facilitate thermal transfer between the chilling agent and the contents of the container.
In certain embodiments, the bottom of the base may be any appropriate shape such as, for example, substantially flat. In certain embodiments, a based may include additional features and/or materials that can further serve to insulate the base. For example, a base may include a plurality of standoffs or bumps disposed on the bottom such that the base is stable and that contact of the base with an underlying surface is reduced or minimized. In certain embodiments, a base may include an insulating layer such as a foam or an elastomer that provides additional insulation and can prevent the base from moving or slipping on an underlying surface. In certain embodiments, the insulating layer is made from a material that insulates the base from ambient air or an underlying surface. The insulating layer may be applied to the bottom and/or sidewalls of a base.
The base may be made out of any appropriate material or combination of materials. For example, a base may be made from a thermoplastic. The base may include materials such as a metal that facilitates thermal transfer or portions of the base may include thermally conductive thermoplastic material. In certain embodiments, a base can be injection molded as a single part. Any suitable thermoplastic material may be used. The base may be made from a combination of materials having different thermal transfer characteristics. For example, at the top of the base it is desirable that thermal transfer be efficient in order to cool the contents of a container. Thus, the top of the base may be made of a material or a combination of materials that have good thermal transfer properties and that facilitate cooling of the container contents. Conversely, it may be desirable to insulate the bottom and the sidewalls of the base to minimize thermal transfer to the ambient environment, to a user's hand, or to an underlying surface. Thus, the bottom and sidewalls of the base may be made from a material or combination of materials having poor thermal transfer properties and that facilitates insulation of the base and sidewalls.
In certain embodiments, a base may include multiple materials. For example, the top of a base may include one or more materials that facilitate thermal transfer and the materials forming the sidewalls and/or the bottom may comprise one or more materials that serve to insulate the chilling agent within the base. For example, a thin metal may be positioned and insert molded at the top of the base. Alternatively, the top of the base may include a thermally conductive thermoplastic comprising a thermally conductive filler with other parts of the base being fabricated using a thermoplastic without a thermally conductive filler. Similarly, the sidewalls and/or the bottom of the base could be made using a foamed thermoplastic to improve insulation.
Thermal transfer properties of features of the base may also be modified after the base is formed. For example, a metal foil or other metal surface may be affixed or bonded to the top surface to improve thermal transfer properties. In addition or as an alternative, a thermally conductive layer such as a thermally conductive elastomeric layer could be affixed to the top of the base to both improve thermal transfer and to facilitate mating between the top of the base and the bottom surface of the container to be chilled. A layer on the upper surface or top of the base may have metal features extending through the top of the base and into the chilling agent to improve thermal transfer from the chilling agent to the top surface of the base.
The thickness of the walls of a base may also be selected to optimize the ability of the apparatus to chill a container. For example, the thickness of the wall at the top may be thin to improve thermal transfer, whereas the thickness of the material at the sidewalls and the bottom may be thicker to insulate the chilling agent and also to provide physical integrity to the apparatus.
Bases provided by the present disclosure can be made, for example, by injection molding, blow molding, or other suitable plastic molding method. Thermally conductive and/or non-conductive elements and/or features can be included using insert molding. Chilling agent can be injected into an internal volume and the hole filled, for example, with an adhesive or a plug. Layers of thermally conductive or thermally non-conductive material may be applied to one or more of the outer surfaces of the base to modify the thermal transfer properties of the base.
One or more internal volumes within the base may be filled with a chilling agent. In certain embodiments, the based comprises an internal volume directly below and adjacent the convex surface toward the top of the base. The chilling agent may be selected from a composition or material that has a freezing point less than or substantially the same as that of water. For example, the chilling agent may have a temperature when fully chilled of 0° C. or less, −10° C. or less, or −20° C. or less. The chilling agent can be frozen, for example, by storing the base with the chilling agent in a refrigerator or contacting the base with ice such as in an ice chest. In certain embodiments, a chilling agent is selected from a refrigerant gel.
Views of certain embodiments of a base provided by the present disclosure are shown in
The thickness of the base can be selected to provide a suitable volume to retain an appropriate amount of chilling agent and appropriate for a particular application. For example, in applications in which the base is attached to a can and hand-held, the base should not be too heavy or cumbersome. The radial recess 103, if necessary, is configured to accept the bottom of a container. For example, the recess shown in
Examples of various embodiments of a base are shown in
In certain embodiments, it is desirable that a container be fixedly attached to a base such that the container and base function as a single unit. For example, people drinking a beverage often stand and walk around while drinking a beverage. It is therefore useful to chill a beverage while the user is mobile and holding the beverage container.
To address these and other needs, in certain embodiments, a container may be fixedly attached to a base using a band. A band is configured to retain a container and a base. An example of a band is illustrated in
Apparatus disclosed herein may be used in several applications such as for chilling a container and/or chilling a beverage container. A base may be used similar to an ice pack to chill the interior or contents of a container. For chilling a beverage container, a beverage may be placed on top of the base and used as a coaster. The base chills the beverage when the beverage is placed on top of the base. A beverage container may also be chilled by retaining the base and the beverage container using a band. In this application, the beverage container is continuously chilled while the person drinking the beverage is holding the beverage with the attached chilling base. In another application, such as in a lunch box, the chilling base may be attached to a beverage container with a band and placed in the lunch box to cool both the interior of the lunch box as well as directly keeping the beverage cold.
While the embodiments disclosed herein have focused on use with cans and more specifically beverage cans such as soda and beer cans, it can be appreciated that the apparatus disclosed herein can be adapted for use with other containers. For example, beverages are available in boxes, plastic bottles, and glass bottles. For each container configuration, a based can be configured in an appropriate shape to facilitate chilling. Similarly, a band may be shaped to facilitate retention of the base and the container.
For example,
Other embodiments may be used to chill contents of containers that are primarily stationary. For example, a chilling apparatus may be configured to retain and chill the contents of a pitcher or a bowl. In other embodiments, a chilling apparatus may be configured to retain and chill food within a container such as salads. In such embodiments in which size a weight are not as limiting as in portable beverage container uses, the sidewalls of the apparatus may be configured to be wider than those of the container such that the container fits at least partially within the chilling apparatus. Containers and chilling apparatus may be designed to work in combination.
Embodiments provided by the present disclosure are further illustrated by reference to the following example. It will be apparent to those skilled in the art that many modifications, both to materials, and methods, may be practiced without departing from the scope of the disclosure.
A standard 12 fl-oz beverage can retained by a band against a chilling apparatus having a sidewall height of about 0.5 inches and a similar beverage can without the chilling apparatus were left at room temperature for about 20 minutes. The temperature of the contents of the beverage can with the chilling apparatus was about 10° F. cooler than the temperature of the contents of the beverage without the chilling apparatus.
Finally, it should be noted that there are alternative ways of implementing the embodiments disclosed herein. Accordingly, the present embodiments are to be considered as illustrative and not restrictive. Furthermore, the claims are not to be limited to the details given herein, and are entitled their full scope and equivalents thereof.
This application claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Application No. 61/824,879, filed on May 17, 2013, U.S. Provisional Application No. 61/849,415 filed on Jan. 28, 2013, and U.S. Provisional Application No. 61/742,991 filed on Aug. 24, 2012, each of which is incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61742991 | Aug 2012 | US | |
61849415 | Jan 2013 | US | |
61824879 | May 2013 | US |