A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
The present disclosure relates to creating guided wiring systems. More specifically, to using a controller with an adjacent electronic display to input information concerning the wiring display, and then being able to display both the wiring and the information concerning the wiring simultaneously.
Today's “smart buildings” aren't smart at all—just connected. Expensive cloud add-ons that promise to “un-dumb” your control system can only provide low-value results and reduced reliability, all at the cost of more integration effort. Different parts of the building, down to individual pieces of equipment are all distinct systems that understand very little, if anything, about the rest of a building unless told explicitly using complex tagging methods. Each system still must be told about all the other systems, but the building itself knows very little in-toto. For example, wiring diagrams take hours to create, as many unconnected systems must be considered. Further, if a problem comes up when building a structure that requires that a wired device must be moved, the wiring diagram must be recreated from scratch, which can entail quite a bit of effort. When wiring diagrams are changed, the terminals that the devices are to be wired to may also need to be changed as well, which also may entail completely redoing the wiring diagrams from scratch.
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description section. This summary does not identify required or essential features of the claimed subject matter. The innovation is defined with claims, and to the extent this Summary conflicts with the claims, the claims should prevail.
In general, some technologies described herein describe a controller with a housing; computer hardware and a programmable memory attached to the housing; a moveable interactive screen attached to the housing controlled by the computer hardware and programmable memory; a side surface of the housing with a controller terminal attachment. The moveable interactive is able to display representations of the devices that the controllers are wired to; or devices that the controllers will be wired to. Users can use the moveable interactive display to label the devices, or modify the devices. This screen that shows the controller wiring can be moved such that the controller wiring is displayed, or moved such that the controller wiring is hidden.
In embodiments, a controller is described, comprising: a housing; computer hardware and a programmable memory attached to the housing; a moveable interactive screen attached to the housing controlled by the computer hardware and programmable memory; a side surface of the housing with a controller terminal attachment; the moveable interactive screen operationally able to display a representation of the controller terminal attachment; the controller operationally able to allow a user to define a parameter of the representation of the controller terminal attachment using the moveable interactive screen; the controller operationally able to allow the user to label the parameter, creating a labeled parameter using the moveable interactive screen; and the moveable interactive screen able to move such that the controller terminal attachment, the representation of the controller terminal attachment displayed on the moveable interactive screen, and the labeled parameter displayed on the moveable interactive screen can be seen simultaneously.
In embodiments, an updater is disclosed which is operationally able to update the representation of the controller terminal attachment on the moveable interactive screen when the controller terminal attachment is modified.
In embodiments, a resource with a location, is disclosed wherein the controller is operationally able to use the moveable interactive screen to allow a user to define the resource as being attached to a terminal within the controller, the moveable interactive screen is operationally able to accept resource location data, and wherein the computer hardware and the programmable memory are able to at least partially design a wiring diagram between the resource and the controller terminal attachment.
In embodiments, the resource location data further comprises a drawing of a designated space.
In embodiments, the drawing of the designated space comprises controller location.
In embodiments, a removable module, and wherein the controller terminal attachment comprises at least a portion of the removable module.
In embodiments, the moveable interactive screen is operationally able to display a representation of the removable module.
In embodiments, a controller is disclosed comprising: a housing with an inside and an outside; computer hardware and a programmable memory attached to the housing; a moveable interactive screen attached to the housing configurable such that the housing inside is displayed in a moveable interactive screen position and that the housing inside is hidden in another moveable interactive screen position, the controller operationally able to display images on the moveable interactive screen; a controller attachment on an inside surface of the housing operationally able to connect with a module attachment; the module attachment operationally able to be connected to a controller terminal attachment such that the controller attachment is operationally able to be connected to the controller terminal attachment through the module attachment; and the controller is operationally able to display, on the moveable interactive screen, a representation of the controller terminal attachment, a representation of a module operationally able to be attached to the controller attachment, and a representation of the device.
In embodiments, the moveable interactive screen is operationally able to allow a user to define a representation of a device, the device operationally able to connect to the controller terminal attachment.
In embodiments, the representation of the device comprises a label indicating a name of the device.
In embodiments, the representation of a device is defined to require a controller terminal attachment of a specific type.
In embodiments, the controller is operationally able to modify the controller terminal attachment to the specific type.
In embodiments, a display of the moveable interactive screen comprises multiple representations of terminal attachments and wherein the display of the moveable interactive screen is operationally able to take input from a user to move a device representation from a first terminal attachment representation to a second terminal attachment representation.
In embodiments, the controller is operationally able to instruct the moveable interactive screen to modify the representation of the device when the moveable interactive screen is in position such that the housing inside is hidden.
In embodiments, the moveable interactive screen is operationally able to display the representation of the device when the movable interactive screen is in position such that the housing inside is displayed.
In embodiments, a building controller system with a processor and memory, is disclosed, comprising: a controller, the controller with an inside and an outside, the controller with device connections mounted on the inside; the device connections operationally able to couple to devices; a moveable screen operatively coupled to the controller, the moveable screen operationally able to move such that the inside of the controller is displayed and move such that the inside of the controller is hidden; the controller configured to display, on the moveable screen, representations of devices attached to the controller; and the controller configured to modify, on the moveable screen, the representations of the devices attached to the controller, the modification used for controlling subsequent operation and/or functionality of the device connection.
In embodiments, a module is operationally able to couple to the controller and is operationally able to couple to the device, such that the controller is operationally able to couple to the device through the module.
In embodiments, a modification for controlling subsequent operation of the device connection is disclosed, comprising changing an expected device coupled to the device connection.
In embodiments, a modification for controlling subsequent operation of the device connection comprises changing functionality of the device connection to match requirements of the device.
In embodiments, the representations of devices attached to the controller comprises device name, device location on the controller, or a device operating characteristic.
Non-limiting and non-exhaustive embodiments of the present embodiments are described with reference to the following FIGURES, wherein like reference numerals refer to like parts throughout the various views unless otherwise specified.
Corresponding reference characters indicate corresponding components throughout the several views of the drawings. Skilled artisans will appreciate that elements in the FIGURES are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of various embodiments. Also, common but well-understood elements that are useful or necessary in a commercially feasible embodiment are often not depicted in order to facilitate a less obstructed view of these various embodiments.
Disclosed below are representative embodiments of methods, computer-readable media, and systems having particular applicability to a control system having an adjacent electronic display for auto labeling and guided wiring. Described embodiments implement one or more of the described technologies.
For convenience, the present disclosure may be described using relative terms including, for example, left, right, top, bottom, front, back, upper, lower, up, and down, as well as others. It is to be understood that these terms are merely used for illustrative purposes and are not meant to be limiting in any manner.
In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present embodiments. It will be apparent, however, to one having ordinary skill in the art that the specific detail need not be employed to practice the present embodiments. In other instances, well-known materials or methods have not been described in detail in order to avoid obscuring the present embodiments.
Reference throughout this specification to “one embodiment”, “an embodiment”, “one example” or “an example” means that a particular feature, structure or characteristic described in connection with the embodiment or example is included in at least one embodiment of the present embodiments. Thus, appearances of the phrases “in one embodiment”, “in an embodiment”, “one example” or “an example” in various places throughout this specification are not necessarily all referring to the same embodiment or example. Furthermore, the particular features, structures or characteristics may be combined in any suitable combinations and/or sub-combinations in one or more embodiments or examples.
As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having,” or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a process, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such process, article, or apparatus.
Further, unless expressly stated to the contrary, “or” refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).
Additionally, any examples or illustrations given herein are not to be regarded in any way as restrictions on, limits to, or express definitions of any term or terms with which they are utilized. Instead, these examples or illustrations are to be regarded as being described with respect to one particular embodiment and as being illustrative only. Those of ordinary skill in the art will appreciate that any term or terms with which these examples or illustrations are utilized will encompass other embodiments which may or may not be given therewith or elsewhere in the specification and all such embodiments are intended to be included within the scope of that term or terms.
When originally designing and building a structure, the creation process can include designing the structure using a portion of the controller system that will eventually control the various devices (such as HVAC equipment, sensors, safety systems, etc.). In such a system, the specific wiring details and other characteristics about the devices will be input into the controller system during the design process. However, when constructing a building, no matter how much work went into the original design there is always the possibility that a device will need to be moved, or that a device is not available and needs to be substituted for another device. Rather than being forced to recreate an entire wiring diagram, the controller where the device is wired can display the current controller wiring on a display screen, allowing a user to change devices on the screen, modify the nature of the control terminals, etc. The controller can also change the nature of its terminals, as required by the chosen devices. When the building has been finished, the controller display, when open, may show the devices attached to the controller, with labels such as names, specific information about the wiring terminals, labels, etc. When the display screen is open, the actual wiring can be seen in the controller.
In some embodiments, the moveable interactive screen 125 is operatively coupled to the controller such that a module attachment 110A and the display of the moveable interactive screen can be seen simultaneously. The housing also has at least one controller terminal attachment 140 attached to a side inner surface of the housing that allows the controller to connect to a device 145. This device may be a piece of equipment that can control state of a space that the controller would be in. States that can be controlled by a device comprise, without limitation, lighting, heat, noise, humidity, VOC, CO2 concentration, entertainment equipment states, security states (such as doors locked or unlocked, who is allowed in the building or a section of a building, or a space at a given time), radiant heat, and so on. Sensors may also be connected to the controller, as well as other resources. The controller 100 can send messages to and receive messages from the device 145 through the controller terminal attachment 140.
The controller also comprises a moveable interactive screen 125. The moveable interactive screen 125 may be any sort of display that allows a user to interact with the controller, such as a touch screen, a screen with a mouse, keyboard, or other input device, a spoken word interface that can be used without sight, a braille interface, etc. Software 120 stored in memory 115 may employ any combination of the technologies described herein. Digital representations on the moveable interactive screen can be derived from any technology that takes an image of a building, of a controller panel, etc., and turns it into a digital representation. So, for example, any of the imaging technologies described herein or known by those of skill in the digital arts can be used to generate the digital representations shown on the moveable interactive screen 125. Without limitation, the moveable interactive screen 125 can be hinged, such that the moveable interactive screen and the controller form a clamshell when closed; the moveable interactive screen can be attached at a corner, such that the moveable interactive screen can swing up 90 degrees or more from the controller; the moveable interactive screen can be hinged to a side of the controller; the moveable interactive screen can raise up to display the insides of the controller, and slide down, to hide the insides of the controller.
This will modify subsequent operation of the controller terminal attachment 140 or module attachment 110A as the controller will pass messages to the controller terminal attachment 140 or module attachment 110A that will be appropriate for the current and/or newly-defined parameter. The memory may also comprise a device representation 220. This device representation may be a representation of a device 145 that is attached to the controller, or a device that may be attached to the controller. This device representation may comprise any device operating characteristics, such as the protocol the device will use to talk to the controller, the wiring requirements; the number of wires the device requires, the specific codes issued by the unit model for various situations, the current and voltage accepted received at various times, etc. In embodiments, the controller 100, e.g., through memory, has access to databases of the devices represented by the device representation 220 including wiring diagrams and protocols, such that the controller can automatically create a wiring diagram that can be used to wire the building and the controller.
With reference to
In this embodiment, the interactive display holds eight modules, each which have six device connections, with which a device wire can be directly wired into the module. The module then passes information through the device connection 1505 to the controller hardware 110 and memory 115. A representation 1510 of a device connection 105B can also be seen. There is no module in module location 8 so the connections 1505 can be seen in the open controller, and so are represented on the interactive screen 1540 as a location 1510 with no module (no badge with a number, as described elsewhere).
In some embodiments, the user can associate a device, such as the thermostat 1605 with one or more terminals on the controller (or a module associated with the controller) using the interface shown with reference to
With further reference to
At 135 an updater is disclosed. This updater is operationally able to update the representation of the device connection 105B on the moveable interactive screen when the device connection 105B is modified. Embodiments of this can be seen with reference to
In some embodiments, when the moveable interactive screen is open, displaying the wiring, the controller can be configured to modify the representations of the devices attached to the controller on the display. An example of this is shown in
With further reference to
In some embodiments, and as discussed earlier, the controller accepts removable modules. A removable module in a controller can be seen with reference to
In some embodiments, when the moveable interactive screen is open, displaying the wiring, the controller can be configured to modify the representations of the devices attached to the controller on the display. An example of this is shown in
In view of the many possible embodiments to which the principles of the disclosed invention may be applied, it should be recognized that the illustrated embodiments are only examples of the invention and should not be taken as limiting the scope of the invention. Rather, the scope of the invention is defined by the following claims. We therefore claim as our invention all that comes within the scope and spirit of these claims.
The present application hereby incorporates by reference the entirety of, and claims priority to, U.S. Provisional Patent Application Ser. No. 63/070,460 filed 26 Aug. 2020.
Number | Name | Date | Kind |
---|---|---|---|
4353653 | Zimmerman | Oct 1982 | A |
5208765 | Turnbull | May 1993 | A |
5530643 | Hodorowski | Jun 1996 | A |
6275962 | Fuller et al. | Aug 2001 | B1 |
6301341 | Gizara et al. | Oct 2001 | B1 |
6362734 | McQuade | Mar 2002 | B1 |
6606731 | Baum et al. | Aug 2003 | B1 |
6645066 | Gutta et al. | Nov 2003 | B2 |
6813777 | Weinberger et al. | Nov 2004 | B1 |
7304855 | Milligan et al. | Dec 2007 | B1 |
7578135 | Mattheis | Aug 2009 | B2 |
7587250 | Coogan et al. | Sep 2009 | B2 |
7702421 | Sullivan et al. | Apr 2010 | B2 |
7729882 | Seem | Jun 2010 | B2 |
7734572 | Wiemeyer et al. | Jun 2010 | B2 |
7835431 | Belge | Nov 2010 | B2 |
7917232 | McCoy et al. | Mar 2011 | B2 |
8024054 | Mairs et al. | Sep 2011 | B2 |
8099178 | Mairs et al. | Jan 2012 | B2 |
8503943 | Spanhake | Aug 2013 | B2 |
8628239 | Merrow et al. | Jan 2014 | B2 |
8643476 | Pinn et al. | Feb 2014 | B2 |
8749959 | Riley et al. | Jun 2014 | B2 |
8782619 | Wu et al. | Jul 2014 | B2 |
8925358 | Kasper | Jan 2015 | B2 |
9130385 | Chen | Sep 2015 | B2 |
9441847 | Grohman | Sep 2016 | B2 |
9521724 | Berry et al. | Dec 2016 | B1 |
9544209 | Gielarowski et al. | Jan 2017 | B2 |
9602301 | Averitt | Mar 2017 | B2 |
9664400 | Wroblewski et al. | May 2017 | B2 |
9678494 | Hyde et al. | Jun 2017 | B2 |
9740385 | Fadell et al. | Aug 2017 | B2 |
9791872 | Wang et al. | Oct 2017 | B2 |
9857238 | Malhotra et al. | Jan 2018 | B2 |
9860961 | Chemel et al. | Jan 2018 | B2 |
9952573 | Sloo et al. | Apr 2018 | B2 |
10042730 | Zebian | Aug 2018 | B2 |
10094586 | Pavlovski et al. | Oct 2018 | B2 |
10223721 | Bhatia | Mar 2019 | B1 |
10331259 | Hotelling | Jun 2019 | B2 |
10334758 | Ramirez et al. | Jun 2019 | B1 |
10512143 | Ikehara et al. | Dec 2019 | B1 |
10528016 | Noboa | Jan 2020 | B2 |
10557889 | Montoya et al. | Feb 2020 | B2 |
10558183 | Piaskowski et al. | Feb 2020 | B2 |
10558248 | Adrian | Feb 2020 | B2 |
10627124 | Walser et al. | Apr 2020 | B2 |
10640211 | Whitten et al. | May 2020 | B2 |
10672293 | Labutov et al. | Jun 2020 | B2 |
10687435 | Adrian et al. | Jun 2020 | B2 |
10736228 | Kho et al. | Aug 2020 | B2 |
10892946 | Correia e Costa et al. | Jan 2021 | B2 |
10900489 | Rendusara et al. | Jan 2021 | B2 |
10942871 | Cawse et al. | Mar 2021 | B2 |
10943444 | Boyd et al. | Mar 2021 | B2 |
10966068 | Tramiel et al. | Mar 2021 | B2 |
10966342 | Lairsey et al. | Mar 2021 | B2 |
10969133 | Harvey | Apr 2021 | B2 |
11080336 | Van et al. | Aug 2021 | B2 |
11088989 | Gao et al. | Aug 2021 | B2 |
11222298 | Abelow et al. | Jan 2022 | B2 |
11294254 | Patterson et al. | Apr 2022 | B2 |
20030020715 | Sakakura | Jan 2003 | A1 |
20040236547 | Rappaport et al. | Nov 2004 | A1 |
20050040247 | Pouchak | Feb 2005 | A1 |
20070067063 | Ahmed | Mar 2007 | A1 |
20070096902 | Seeley et al. | May 2007 | A1 |
20070162288 | Springhart et al. | Jul 2007 | A1 |
20080183316 | Clayton | Jul 2008 | A1 |
20080277486 | Seem et al. | Nov 2008 | A1 |
20090189764 | Keller et al. | Jul 2009 | A1 |
20100025483 | Hoeynck et al. | Feb 2010 | A1 |
20100131933 | Kim et al. | May 2010 | A1 |
20100262673 | Chang | Oct 2010 | A1 |
20110087988 | Ray et al. | Apr 2011 | A1 |
20110125930 | Tantos et al. | May 2011 | A1 |
20120102472 | Wu et al. | Apr 2012 | A1 |
20120221986 | Whitford et al. | Aug 2012 | A1 |
20130182558 | Orten et al. | Jul 2013 | A1 |
20140088772 | Lelkens | Mar 2014 | A1 |
20140101082 | Matsuoka et al. | Apr 2014 | A1 |
20140215446 | Araya et al. | Jul 2014 | A1 |
20140277757 | Wang et al. | Sep 2014 | A1 |
20140358291 | Wells | Dec 2014 | A1 |
20140364985 | Tiwari et al. | Dec 2014 | A1 |
20150005952 | Sasaki et al. | Jan 2015 | A1 |
20150081928 | Wintzell et al. | Mar 2015 | A1 |
20150198938 | Steele et al. | Jul 2015 | A1 |
20150234381 | Ratilla et al. | Aug 2015 | A1 |
20160016454 | Yang et al. | Jan 2016 | A1 |
20160062753 | Champagne | Mar 2016 | A1 |
20160073521 | Marcade et al. | Mar 2016 | A1 |
20160086242 | Schafer et al. | Mar 2016 | A1 |
20160088438 | O'Keeffe | Mar 2016 | A1 |
20160092427 | Bittmann | Mar 2016 | A1 |
20160132308 | Muldoon | May 2016 | A1 |
20160195856 | Spero | Jul 2016 | A1 |
20160205784 | Kyle et al. | Jul 2016 | A1 |
20160209868 | Hartman et al. | Jul 2016 | A1 |
20160285715 | Gielarowski et al. | Sep 2016 | A1 |
20160295663 | Hyde et al. | Oct 2016 | A1 |
20170075323 | Shrivastava et al. | Mar 2017 | A1 |
20170097259 | Brown et al. | Apr 2017 | A1 |
20170131611 | Brown et al. | May 2017 | A1 |
20170176034 | Hussain et al. | Jun 2017 | A1 |
20170235848 | Van Dusen et al. | Aug 2017 | A1 |
20170322579 | Goparaju et al. | Nov 2017 | A1 |
20170365908 | Hughes et al. | Dec 2017 | A1 |
20170373875 | Kolasa et al. | Dec 2017 | A1 |
20180005195 | Jacobson | Jan 2018 | A1 |
20180075168 | Tiwari et al. | Mar 2018 | A1 |
20180089172 | Needham | Mar 2018 | A1 |
20180123272 | Mundt et al. | May 2018 | A1 |
20180202678 | Ahuja et al. | Jul 2018 | A1 |
20180210429 | Jundt et al. | Jul 2018 | A1 |
20180266716 | Bender et al. | Sep 2018 | A1 |
20180307781 | Byers et al. | Oct 2018 | A1 |
20180350180 | Onischuk et al. | Dec 2018 | A1 |
20190011891 | Davis, II | Jan 2019 | A1 |
20190087076 | Dey et al. | Mar 2019 | A1 |
20190138704 | Shrivastava et al. | May 2019 | A1 |
20190156443 | Idle | May 2019 | A1 |
20190173109 | Wang | Jun 2019 | A1 |
20190278442 | Liang | Sep 2019 | A1 |
20190294018 | Shrivastava et al. | Sep 2019 | A1 |
20200003444 | Yuan et al. | Jan 2020 | A1 |
20200018506 | Ruiz et al. | Jan 2020 | A1 |
20200045519 | Raleigh et al. | Feb 2020 | A1 |
20200050161 | Noboa | Feb 2020 | A1 |
20200133257 | Cella et al. | Apr 2020 | A1 |
20200150508 | Patterson et al. | May 2020 | A1 |
20200167442 | Roecker et al. | May 2020 | A1 |
20200182486 | Haynes et al. | Jun 2020 | A1 |
20200187147 | Meerbeek et al. | Jun 2020 | A1 |
20200221269 | Tramiel et al. | Jul 2020 | A1 |
20200226223 | Reichl | Jul 2020 | A1 |
20200228759 | Ryan et al. | Jul 2020 | A1 |
20200255142 | Whitten et al. | Aug 2020 | A1 |
20200279482 | Berry et al. | Sep 2020 | A1 |
20200287786 | Anderson et al. | Sep 2020 | A1 |
20200288558 | Anderson et al. | Sep 2020 | A1 |
20200342526 | Ablanczy | Oct 2020 | A1 |
20200379730 | Graham et al. | Dec 2020 | A1 |
20200387041 | Shrivastava et al. | Dec 2020 | A1 |
20200387129 | Chandaria | Dec 2020 | A1 |
20210073441 | Austern et al. | Mar 2021 | A1 |
20210081504 | Mccormick et al. | Mar 2021 | A1 |
20210081880 | Bivins et al. | Mar 2021 | A1 |
20210123771 | Vega et al. | Apr 2021 | A1 |
20210157312 | Cella et al. | May 2021 | A1 |
20210182660 | Amirguliyev et al. | Jun 2021 | A1 |
20210248286 | Poluri | Aug 2021 | A1 |
20210096824 | Stump et al. | Nov 2021 | A1 |
20210366793 | Hung et al. | Nov 2021 | A1 |
20210383041 | Harvey et al. | Dec 2021 | A1 |
20210400787 | Abbo et al. | Dec 2021 | A1 |
20220058306 | Mabote | Feb 2022 | A1 |
20220070293 | Harvey et al. | Mar 2022 | A1 |
20220156653 | Abelow | May 2022 | A1 |
20230180420 | Harvey et al. | Jun 2023 | A1 |
20230228437 | Bonvini et al. | Jul 2023 | A1 |
Number | Date | Country |
---|---|---|
103926912 | May 2014 | CN |
206002869 | Aug 2016 | CN |
206489622 | Sep 2017 | CN |
6301341 | Mar 2018 | JP |
2008016500 | Mar 2008 | WO |
2012019328 | Feb 2012 | WO |
Entry |
---|
De Meester et al., SERIF:A Semantic Exercise Interchange FormatConference: Proceedings of the 1st International Workshop on LINKed EDucation, Oct. 2015. |
Kalagnanam et al., “A System For Automated Mapping of Bill-of_Materials Part Numbers”, KDD '04: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, Aug. 2004, pp. 805-810. |
Mouser Electronics News Release, Aug. 16, 2018. |
Ouf et al., Effectiveness of using WiFi technologies to detect and predict building occupancy, Sust. Buildi. 2, 7 (2017). |
RadioMaze, Inc., “WiFi signals enable motion recognition throughout the entire home,” Dec. 4, 2017. |
Sensorswarm, 2018. |
Serale G., et al., Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities, Energies 2018, 11, 631; doi:10.3390, Mar. 12, 2018. |
Siano, P, “Demand response and smart grids—A survey”, Renewable and Sustainable Energy Reviews 30 (2014) 461-478. |
Wang et al., “A Practical Multi-Sensor Cooling Demand Estimation Approach Based on Visual Indoor and Outdoor Information Sensing,” Sensors 2018, 18, 3591; doi:10.3390. |
Yegulap, Serdar, “What is LLVM? The power behind Swift, Rust, Clang, and more,” Infoworld, Mar. 11, 2020. |
BigLadder Software Full Ref, Occupant Thermal Comfort: Engineering Reference, 2014, The Board of Trustees of the University of Illinois and the Regents of the University of California through the Ernest Orlando Lawrence Berkeley National Laboratory (Year: 2014). |
Hagentoft et al. Full Reference, Assessment Method of Numerical Prediction Models for Combined Heat, Air and Moisture Transfer in Building Components: Benchmarks for One-dimensional Cases, Journal of Thermal Env. & Bldg. Sci., vol. 27, No. 4, Apr. 2004. |
U.S. Appl. No. 15/995,019 (7340.2.2) Office Action mailed Jul. 26, 2019. |
U.S. Appl. No. 15/995,019 (7340.2.2) Office Action mailed Oct. 8, 2020. |
U.S. Appl. No. 15/995,019 (7340.2.2) Office Action mailed Apr. 15, 2020. |
Amin, Massoud, “Toward self-healing energy infrastructure systems,” IEEE Computer Applications in Power 14.1 (2002): pp. 20-28. |
Gou, Wenqi, and Mengchu Zhou, “An emerging technology for improved building automation control,” 2009, IEEE International Conference on Systems, Man and Cybernetics, IEEE, 2009, pp. 337-342. |
Gungor et al., “Industrial Wireless Sensor Networks: Challenges, Design Principles, and Technical Approaches,” IEEE Transactions on Industrial Electronics, vol. 56, No. 10, Oct. 2009. |
Zigbee, Wikipedia, p. 1, (Year:2018). |
Number | Date | Country | |
---|---|---|---|
20220066432 A1 | Mar 2022 | US |
Number | Date | Country | |
---|---|---|---|
63070460 | Aug 2020 | US |