The present invention relates to a conveying apparatus that facilitates setting of an operation mode and setting of appropriate conditions during teaching.
Japanese Unexamined Patent Application Publication No. 2009-292066 discloses an apparatus for taking out a molded product (conveying apparatus) according to the related art, including a controller device (control device) configured to allow selection of one of a power-saving operation mode, in which the power consumption is reduced compared to operation in a standard operation mode determined in advance, and a soft operation mode (low-speed mode), in which vibration is reduced compared the operation in the standard operation mode. The controller device is configured to be able to set a desired operation mode by changing setting elements and/or setting data for the standard operation mode determined in advance. The apparatus described in this publication merely displays setting items set in advance in accordance with a selected operation mode, and cannot set appropriate conditions.
Meanwhile, Japanese Patent No. 5331376 discloses an apparatus configured to measure a weight and to select an operation mode that matches the weight.
However, Japanese Unexamined Patent Application Publication No. 2009-292066 and Japanese Patent No. 5331376 do not disclose how to set conditions of control parameters such as speed and acceleration. It takes time for even a skilled worker to set a desired operation mode (such as a power-saving operation mode and a soft operation mode) and conditions for the operation mode by changing setting elements and/or setting data for the standard operation mode. If an inexperienced worker performs this setting work, he/she occasionally makes settings for conveying work at a low speed in consideration of safety. Therefore, the function of the conveying apparatus cannot be fully utilized in the related art.
An object of the present invention is to provide a conveying apparatus that facilitates setting of an operation mode and setting of appropriate conditions during teaching.
Another object of the present invention is to provide a conveying apparatus that facilitates setting of an operation mode and setting of appropriate conditions during teaching, and that makes it possible to make full use of the vibration suppression function of the conveying apparatus.
The present invention provides a conveying apparatus including: a conveying mechanism including a take-out head operable to take out an object to be conveyed and a head moving mechanism operable to move the take-out head, the conveying mechanism being operable to convey the object to be conveyed; and a control device including a control section configured to control a power source for the conveying mechanism. The power source is one or more servomotors operable to move one or more movable portions of the head moving mechanism. In the present invention, the control device includes an input portion, an input determination section, a motor parameter determination section, and a parameter change section. The input portion is used to input at least a conveyable weight, which is obtained by adding a weight of the take-out head and a weight of the object to be conveyed, and an operation mode when teaching is performed. The operation mode is input as selected from a plurality of operation modes. The input determination section determines whether or not a combination of the conveyable weight and the operation mode input from the input portion is appropriate. The motor parameter determination section determines one or more motor parameters of at least one servoamplifier for the one or more servomotors based on the operation mode and the conveyable weight determined as appropriate by the input determination section. The parameter change section changes the one or more motor parameters determined by the motor parameter determination section. The one or more motor parameters include a maximum speed and a maximum acceleration of the one or more servomotors. The parameter change section allows a speed and an acceleration of the one or more servomotors to be changed up to the maximum speed and the maximum acceleration, respectively.
In the present invention, the input determination section determines whether or not a combination of the conveyable weight and the operation mode input from the input portion is appropriate. Thus, an inexperienced worker cannot set an erroneous combination of the conveyable weight and the operation mode even if he/she attempts to. The motor parameter determination section determines the one or more motor parameters of the at least one servoamplifier for the one or more servomotors based on the operation mode and the conveyable weight when the input determination section determines that a combination of the operation mode and the conveyable weight is appropriate. Thus, a worker that has little knowledge about setting of motor parameters may not erroneously set the parameters. In the present invention, in particular, the maximum speed and the maximum acceleration of the one or more servomotors, which are the most difficult to set during teaching, are included in the one or more motor parameters, which significantly reduces the burden on the worker who makes settings. Moreover, a worker that has some knowledge about setting of conditions can make more appropriate settings, since the parameter change section allows the speed and the acceleration of the one or more servomotors to be changed up to the maximum speed and the maximum acceleration, respectively. Also in such a case, the worker can be prevented from making settings that may break the conveying apparatus, since the maximum speed and the maximum acceleration are used as upper limit values.
Specifically, the operation mode is one operation mode selected from a plurality of operation modes determined in advance. The input determination section is configured to make a determination based on information on allowable combinations of the plurality of operation modes and a plurality of conveyable weight ranges, which are determined in advance. The motor parameter determination section is configured to determine the one or more motor parameters based on information on allowable relationships among the plurality of operation modes, the plurality of conveyable weight ranges, and the one or more motor parameters, which are determined in advance. Therefore, it is not necessary for the worker to have a full knowledge about the details of setting of conditions.
Preferably, the control section of the control device includes a function of suppressing vibration of the take-out head using a vibration suppression function with which the at least one servoamplifier for the one or more servomotors is equipped. In this case, preferably, the control device further includes a vibration suppression parameter determination section configured to determine one or more vibration suppression parameters of the at least one servoamplifier, the vibration suppression parameters being determined according to the conveyable weight and a stroke amount of the take-out head. The control section executes the vibration suppression function using the one or more vibration suppression parameters determined by the vibration suppression parameter determination section. In this manner, it is basically not necessary for the worker to set the vibration suppression parameters for vibration suppression, as well as to set conditions for teaching. As a result, it is possible to significantly reduce the burden on the worker required for the setting work.
Preferably, the vibration suppression parameter determination section receives the stroke amount input from the input portion when the teaching is performed. In this manner, the worker can set the vibration suppression parameters unintentionally.
Preferably, the one or more vibration suppression parameters include a frequency of a frequency filter of the at least one servoamplifier. Vibration can be suppressed by setting the frequency of the frequency filter to a value that is close to a natural frequency determined according to the conveyable weight and the stroke amount of the movable portion.
Preferably, the control device further includes a balance adjustment section configured to correct a balance of the one or more vibration suppression parameters.
When the conveying apparatus is used to take out a resin molded product, as the object to be conveyed, from a mold of the molding machine, preferably, the one or more vibration suppression parameters include at least a vibration suppression parameter for suppressing vibration of the take-out head in a pull-out direction which is a direction in which the take-out head is moved to take out the molded product. Operation in the pull-out direction relates to both suction and pull-out of the molded product, and it takes extra time since take-out fails if both suction and pull-out are not accurately performed. There is also a risk that the take-out head collides with a die when the take-out head vibrates significantly. However, it is necessary to reduce the time for which the die is open, and it is desired to increase the operation speed and acceleration as much as possible, because of the cycle time. Since the operation is performed in the die, however, forcible adjustment may cause unexpected vibration, which may cause a collision with the die or a failure to take out. With the present invention, teaching adjustment can be easily performed by setting the maximum speed and the maximum acceleration in the appropriate range in consideration of vibration. As a matter of course, the one or more vibration suppression parameters may include a vibration suppression parameter for suppressing vibration of the take-out head in the up-down direction and the transverse direction.
A conveying apparatus according to an embodiment of the present invention will be described in detail below with reference to the drawings.
In
The control device 5 includes the control section 50, the input portion 51, a display section 52, a storage section 53, an input determination section 54, a motor parameter determination section 55, a parameter change section 56, a vibration suppression parameter determination section 57, and a balance adjustment section 58. The input portion 51 is used to input a conveyable weight, which is obtained by adding at least the weight of the take-out head 11 and the weight of an object to be conveyed (molded product) to be taken out from the mold of the molding machine 3, and an operation mode during teaching, for example. In the present embodiment, one operation mode selected from a plurality of operation modes (a high-speed mode, a standard mode, and a low-speed mode in the present embodiment) is input.
The input determination section 54 determines whether or not a combination of the conveyable weight and the operation mode input from the input portion 51 is appropriate. That is, the combinations of the three operation modes and the allowable range of the conveyable weight indicated in
The motor parameter determination section 55 determines one or more motor parameters of the at least one servoamplifier 16 for the one or more servomotors 15 based on the operation mode and the conveyable weight determined as appropriate by the input determination section 54. The parameter change section 56 allows the speed and the acceleration of the one or more servomotors 15 to be changed up to a maximum speed MV and a maximum acceleration MA, respectively.
In the present embodiment, the input determination section 54 determines whether or not a combination of the conveyable weight and the operation mode input from the input portion 51 is appropriate. Thus, safety is ensured, since an inexperienced worker cannot set an erroneous combination of the conveyable weight and the operation mode even if he/she attempts to. In addition, the motor parameter determination section 55 determines at least the maximum speed MV and the maximum acceleration MA as the one or more motor parameters of the at least one servoamplifier 16 for the one or more servomotors 15 based on the operation mode and the conveyable weight when the input determination section 54 determines that a combination of the operation mode and the conveyable weight is appropriate. Thus, safe settings can be made by using the maximum speed MV and the maximum acceleration MA as the upper limit values.
The display screen 52A for changing the speed V and the acceleration A illustrated in
With such a configuration, a worker that has little knowledge about setting of motor parameters may not erroneously set the parameters. In the present embodiment, in particular, the maximum speed MV and the maximum acceleration MA of the one or more servomotors 15, which are the most difficult to set during teaching, are included in the one or more motor parameters, which significantly reduces the burden on the worker who makes settings. Moreover, a worker that has some knowledge about setting of conditions can make more appropriate settings, since the parameter change section 56 allows the speed and the acceleration of the one or more servomotors 15 to be changed up to the maximum speed MV and the maximum acceleration MA, respectively. Also in such a case, the worker can be prevented from making settings that may break the conveying apparatus, since the maximum speed MV and the maximum acceleration MA are used as upper limit values.
In the present embodiment, the control section 50 of the control device includes a function of suppressing vibration of the take-out head 11 using a vibration suppression function with which the at least one servoamplifier 16 for the one or more servomotors 15 is equipped. Thus, the control device 5 is provided with the vibration suppression parameter determination section 57 and the balance adjustment section 58. The vibration suppression parameter determination section 57 determines one or more vibration suppression parameters of the at least one servoamplifier, the vibration suppression parameters being determined according to the conveyable weight and the stroke amount of the take-out head. The control section 50 executes the vibration suppression function using the one or more vibration suppression parameters determined by the vibration suppression parameter determination section 57. In this manner, it is basically not necessary for the worker to set the vibration suppression parameters for vibration suppression, as well as to set conditions for teaching. As a result, it is possible to significantly reduce the burden on the worker required for the setting work.
The vibration suppression parameter determination section 57 has received, in advance, the stroke amount input from the input portion 51 and determined when the teaching is performed. The stroke amount may be stored in advance in the storage section 53. In addition, the storage section 53 stores, in advance, data on one or more vibration suppression parameters of the at least one servoamplifier, the vibration suppression parameters being determined according to the conveyable weight and the stroke amount of the take-out head.
In the present embodiment, as illustrated in
In the present embodiment, as illustrated in
The stroke amount may be input during setting of the conveyable weight and setting of the operation mode, rather than during teaching.
When the conveying mechanism 1 is used to take out a resin molded product, as the object to be conveyed, from a mold of the molding machine 3, preferably, the one or more vibration suppression parameters include at least a vibration suppression parameter for suppressing vibration of the take-out head 11 in a pull-out direction which is a direction in which the take-out head 11 is moved to take out the molded product. This is because operation in the pull-out direction relates to both suction and pull-out of the molded product, and it takes extra time since take-out fails if both suction and pull-out are not accurately performed. Another reason is the risk that the take-out head 11 collides with a die if significant vibration is caused during pull-out. As a matter of course, the one or more vibration suppression parameters may include a vibration suppression parameter for suppressing vibration of the take-out head in the up-down direction and the transverse direction.
In the present invention, the input determination section determines whether or not a combination of the conveyable weight and the operation mode input from the input portion is appropriate. Thus, an inexperienced worker cannot set an erroneous combination of the conveyable weight and the operation mode even if he/she attempts to. The motor parameter determination section determines the one or more motor parameters of the at least one servoamplifier for the one or more servomotors based on the operation mode and the conveyable weight when the input determination section determines that a combination of the operation mode and the conveyable weight is appropriate. Thus, a worker that has little knowledge about setting of motor parameters may not erroneously set the parameters. Moreover, a worker that has some knowledge about setting of conditions can make more appropriate settings, since the parameter change section allows the speed and the acceleration of the one or more servomotors to be changed up to the maximum speed and the maximum acceleration, respectively. Also in such a case, the worker can be prevented from making settings that may break the conveying apparatus, since the maximum speed and the maximum acceleration are used as upper limit values.
Number | Date | Country | Kind |
---|---|---|---|
2020-202991 | Dec 2020 | JP | national |