COOLING DEVICE FOR INTERFACE CARD

Information

  • Patent Application
  • 20070285900
  • Publication Number
    20070285900
  • Date Filed
    May 15, 2007
    17 years ago
  • Date Published
    December 13, 2007
    16 years ago
Abstract
A cooling device for interface card for cooling a heating component on an interface card includes a heat sink and a water cooling head, wherein the heat sink has a heat conducting seat and a plurality of cooling fins. A cooling flow path is formed between any two adjacent cooling fins. In addition, the water block is attached onto the plural cooling fins of the heat sink. Thereby, the operational heat, generated from the heating element, is firstly absorbed by the heat-conducting seat and is then distributed uniformly cross to the plural fins. In addition to the heat dissipation proceeded between the fins and the ambient air, the operational heat is further conducted to the water block, undergoing a heat exchange with the coolant flowing in the water block, and thus a desired cooling effectiveness is achieved.
Description

BRIEF DESCRIPTION OF DRAWING

The features of the invention believed to be novel are set forth with particularity in the appended claims. The invention itself, however, may be best understood by reference to the following detailed description of the invention, which describes several exemplary embodiments of the invention, taken in conjunction with the accompanying drawings, in which:



FIG. 1 is an explosive illustration showing the perspective structure according to the present invention;



FIG. 2 is a perspective assembling view according to the present invention;



FIG. 3 is a sectional view illustrating the operation according to the present invention;



FIG. 4 is an explosive illustration showing the perspective structure of another embodiment according to the present invention;



FIG. 5 is a perspective assembling view of another embodiment according to the present invention;



FIG. 6 is a sectional view illustrating the operation of another embodiment according to the present invention; and



FIG. 7 is a structural illustration showing another embodiment of the heat sink according to the present invention.





DETAILED DESCRIPTION OF THE INVENTION

In cooperation with attached drawings, the technical contents and detailed description of the present invention will be as follows.


Please refer to FIG. 1 and FIG. 2, which respectively are perspective structural explosive illustration and perspective assembling view of a preferable embodiment according to the present invention, main structure of which is comprised of a heat sink 1 and a water block 2, wherein the heat sink 1 has a heat-conducting seat 11 and a plurality of cooling fins 12 formed thereon. The heat-conducting seat 11 is directly attached on a heating component 31 of an interface card, and a cooling flow path 13 is formed between any two adjacent cooling fins 12. On the other hand, a water block 2, which is attached on the heat sink 1, has a water inlet 21 and a water outlet 22, and in which a winding route is provided for circulating the coolant (which belongs to the prior arts, being not repetitiously described herein). In the meantime, the water inlet 21 and the water outlet 22 of the water block 2 are respectively interconnected with a pump 5 via a conduit 4, through which the pump 5 is also communicated with an accommodating tank 6, all of which belong to the prior arts, being not repetitiously described herein. In addition, the aforementioned heat sink 1 may also be an aluminum extrusion-molded heat sink 1, as shown in FIG. 7.


Please refer to FIG. 3, being a sectional view showing the operation of the present invention. After being generated by the heating component 31 on the interface card 3, the operational heat, directly absorbed by the heat-conducting seat 11 via a heat-conducting procedure, is further conducted cross the plural cooling fins 12 arranged on the heat-conducting heat 11, in the meantime, being heat exchanged with the ambience for undergoing an air-cooling process. Furthermore, the operational heat, conducted from the heat-conducting seat 11 to the plural cooling fins 12, is further conducted upwardly toward the water block 2 attached with the plural cooling fins 12, (directions of which are same as those of the arrows shown in the figure). The operational heat, absorbed by the water block 2, is further undergone a heat-exchanging operation with the coolant circulated therein, afterwards, the heat being carried away by the coolant, and thus the cooling operation for the interface card is significantly enhanced.


Please refer to FIG. 4 and FIG. 5, respectively showing a perspective structural explosive illustration and a perspective assembling view of another preferable embodiment according to the present invention. It may be noted that a hood 7, further arranged over the interface card 3, is formed as a reverse-U shape, its two sides further respectively being arranged an opening 71, while a through groove 72, arranged on top of the hood 7, is positioned directly with respect to the position of the heat sink 1 so that, after being connected to the interface card 3, the hood 7 houses the heat sink 1, the plural cooling fins 12 of which, in the meantime, are just explored out of the hood 7 via the through groove 72 in a way, such that the water block 2 may be directly attached to the heat sink 1. In addition, in order to promote the heat-conducting efficiency between the heat sink 1 and the water block 2, a heat-conducting medium 8 may also be provided between the water block 2 and the heat sink 1, such as a solder paste or a thermal conductive adhesive for example, as shown in FIG. 6. Additionally, a centrifugal fan 9 is arranged at one opening 71 of the hood 7, and the blowing direction of the fan 9 is parallel to the directions of the cooling flow paths 13 formed in the heat sink 1, so the air in the hood 7 may be accelerated forcedly and quickly.


Please refer to FIG. 6, showing a sectional illustration of the operation of another embodiment according to the present invention. After being generated by a heating component 31 on an interface card 3, the operational heat, which is firstly absorbed by a heat-conducting seat 11 of a heat sink 1, is then distributed cross a plurality of plural cooling fins 12 and is undergone a heat-exchanging operation with the air that is generated by the fan 9 and runs quickly along the hood 7, and thus the forced air carries the absorbed heat out of the heat sink 1 through the cooling flow paths 13 (the directions of which are same as those of the arrows shown in the figure), and finally exits another opening 13 of the hood 7, the air-cooling efficiency of the heat sink 1 being thereby enhanced.


Aforementioned description is only preferable embodiments according to the present invention, being not used to limit its executing scope. Any equivalent variation and modification made according to appended claims is all covered by the claims claimed by the present invention.

Claims
  • 1. A cooling device for interface card, for reducing the high temperature generated by a heating component of an interface card, comprising: a heat sink, having a heat conducting seat and a plurality of cooling fins formed thereon, the heat conducting seat being attached onto the heating component ; anda water block, attached to the heat sink, and having a water inlet and a water outlet, for provision of coolant flowing in and flowing out the water block.
  • 2. The cooling device for interface card according to claim 1, wherein the heat sink is an aluminum extrusion-molded heat sink.
  • 3. The cooling device for interface card according to claim 1, wherein a cooling flow path is respectively formed between any two adjacent cooling fins of the heat sink.
  • 4. The cooling device for interface card according to claim 1, wherein a heat conducting medium is arranged between the heat sink and the water block.
  • 5. The cooling device for interface card according to claim 4, wherein the heat conducting medium is a solder paste.
  • 6. The cooling device for interface card according to claim 4, wherein the heat conducting medium is a thermal conductive paste.
  • 7. The cooling device for interface card according to claim 1, further including a hood, which is connected to the interface card and houses the heat sink therein, and on top of which a through groove, corresponding to a position of the heat sink, is arranged in a way, such that the plurality of cooling fins are just explored out the through groove.
  • 8. The cooling device for interface card according to claim 7, wherein one opening is respectively arranged at two sides of the hood.
  • 9. The cooling device for interface card according to claim 8, further including a fan, arranged at one opening of the hood.
  • 10. The cooling device for interface card according to claim 9, wherein an air flowing direction of the fan is parallel to the cooling flow path of the heat sink.
Priority Claims (1)
Number Date Country Kind
095210096 Jun 2006 TW national