The above and other features of the present invention will be described in reference to certain exemplary embodiments thereof with reference to the attached drawings in which:
Reference will now be made in detail to the embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. The embodiments are described below in order to explain the present invention by referring to the figures.
Referring to
The LED package 240 comprises an LED chip for emitting light, a lead frame 242 soldered to the electrode pad 233 for electrical contact of the LED chip, and a heat slug 241 arranged on its lower portion for efficient heat releasing. The heat slug 241 may be made of aluminum (Al), copper (Cu) or molybdenum (Mo).
The heat releasing substrate 210 and the PCB 230 are attached by an adhering means 220. As the adhering means 220, a thermal pad may be used to obtain heat endurance, and a heat resistant double-sided tape which is low in price may be used.
Alternatively, as the adhering means 220, a thin insulating adhesive, a soldering, or a thermal grease may be used.
The heat releasing substrate 210 is made of a material for releasing heat generated from an LED. A heat sink or heat plate may be used as the heat releasing substrate 210.
The PCB 230 is made of a material for releasing heat. As the PCB 230, the MC PCB may be used, but in order to reduce a manufacturing cost, a bismaleimide triazine (BT) or FR4 PCB may be used. FR4 can promote adhering flatness due to its flexibility.
Referring to
A location and number of the electrode pad 233 formed on the PCB 230 depend on a location and number of the lead frame 242 of the LED package 240. That is, a location and number of the electrode pad 233 (i.e., electrode pattern) formed on the PCB 230 are designed in light of a location of number of the lead frame 242 of the LED package 240.
A groove 232 is formed on a portion of the PCB 230, and the electrode pad 233 is mounted on the groove 232.
The depth of the groove 232 is designed such that the electrode pad 233 mounted in the groove 232 is equal in height to the lead frame 242 of the LED package 240 mounted through the penetrated portion 231 of the PCB 230. This makes the LED package 240 mounted without using a process for bending the lead frame 242.
The cooling device of the LED module of
In the cooling device of the LED module of
A method for fabricating the cooling device of the LED module according to one exemplary embodiment of the present invention is described below.
First, the PCB 230 having the penetrated portion 231 and the electrode pad 233 is fabricated. The penetrated portion 231 may be formed by using a punching technique according to the shape and size of the LED package 240.
The groove 232 is formed in a portion of the PCB 230 on which the electrode pad 233 is to be formed. The electrode pad 233 is mounted on the groove 232 to form an electrode pattern.
The depth of the groove 232 formed in the PCB 230 is determined in light of the height of the lead frame 242 of the LED package 240 to be mounted. The height of the electrode pad 233 mounted in the groove 232 is designed to be equal to the height of the lead frame 242.
Then, the LED package 240 is mounted such that it is inserted through the penetrated portion 231 of the PCB 230. As a technique for mounting the LED package 240, a surface mounted technology (SMT) may be used.
In case where the LED package 240 includes the heat slug 241, the heat slug 241 is attached directly to the heat releasing substrate 210, thereby improving a heat releasing performance. As the adhering means for adhering the heat slug 241 and the heat releasing substrate 210, a soldering or a thermal grease may be used.
In case where the LED package 240 does not include the heat slug 241, the electrode pattern is formed on the PCB 230, and a bottom surface of the LED package 240 is attached directly to the heat releasing substrate 210, thereby improving heat releasing efficiency.
Since the electrode pad 233 is designed and formed to be equal in height to the lead frame 242, the bending process for connecting the lead frame 242 to the electrode pad 233 is not required when the LED package 240 is mounted, whereby the manufacturing process is simplified.
During a high temperature reflow process for a soldering for mounting the LED package 240, the LED chip rarely deteriorates since the PCB 230 and the heat slug 241 directly contact each other, leading to a high thermal reliability.
Thereafter, the PCB 230 in which the LED package 240 is mounted is attached to the heat releasing substrate 210. As the adhering means for attaching the PCB 230 and the heat releasing substrate 210, a heat resistant double-sided tape may be used.
Next, a method for fabricating the cooling device of the LED module according to another exemplary embodiment of the present invention is described below.
First, the PCB 330 having the electrode pad 333 and the penetrated portion 331 in which the LED package 340 is to be mounted is fabricated.
Then, the LED package 340 is mounted such that it is inserted through the penetrated portion 331 of the PCB 330. As a technique for mounting the LED package 340, a surface mounted technology (SMT) may be used.
Here, the method for fabricating the PCB 330 is identical to that of one exemplary embodiment of the present invention described above, but it is different from one exemplary embodiment of the present invention in the fact that the overturned PCB 330 is used when the LED package 340 is mounted.
Thus, the LED package 340 is inserted through the penetrated portion 331 in a state that the PCB 330 is overturned, and the electrode pad 333 located on the bottom surface of the PCB 330 is soldered to the lead frame 342.
Through the above-described LED package mounting process, the lead frame 342 is formed below the electrode pad 333 formed on the bottom surface of the PCB 330.
Thereafter, the PCB 330 in which the LED package 340 is mounted is attached to the heat releasing substrate 310 by using the adhering means 320. At this time, since the heat releasing substrate 310 and the lead frame 342 of the LED package 340 are adhered by the adhering means 320, the lead frame 342 transfers heat generated in the LED chip to the heat releasing substrate 310, whereby the heat releasing effect is increased even though the heat slug is not used.
In order to verify the heat releasing effect of the cooling device of the LED module according to the present invention, an airtight space covered with an optical sheet was prepared as shown in
A temperature around the conventional cooling device of the LED module was 83.5° C. as shown in
As described above, according to the cooling device of the LED module and the method for fabricating the same of the present invention, a thickness competitive power is obtained since the thickness of the whole module is reduced, and also a heat resistance is small and it is easy to release heat since a final heat releasing path from a heat source is shortened.
In addition, the manufacturing cost is low since the MC PCB and the thermal pad which are high-priced are substituted, the processing efficiency and the productivity are improved and the manufacturing process is simplified since the LED package is mounted without using the bending process of the lead frame, and deterioration of the chip is prevented since the heat releasing substrate does not contact the MC PCB during the high temperature reflow process.
Although the present invention has been described with reference to certain exemplary embodiments thereof, it will be understood by those skilled in the art that a variety of modifications and variations may be made to the present invention without departing from the spirit or scope of the present invention defined in the appended claims, and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2006-0067250 | Jul 2006 | KR | national |