This application is directed to cooling devices and instruments including them. More particularly, certain configurations described herein are directed to an instrument comprising a passive cooling device which includes, in part, a loop thermosyphon configured to thermally couple to a component of the instrument to be cooled.
Instruments are used in chemical and clinical analysis to identify analyte components present in a mixture. The instruments typically include one or more detectors which can detect the analyte components.
Certain illustrative configurations of cooling devices and instruments that include them are described in more detail below. While not every possible type of instrument is described, chemical analysis instruments and/or clinical instruments, for example, which comprise one or more components to be cooled can be used with the passive cooling devices described herein.
In one aspect, an instrument comprises an analyte introduction stage. In other instances, the instrument may also comprise one or more of an analyte preparation stage and an analyte detection stage. For example, the instrument may comprise an analyte preparation stage fluidically coupled to the analyte introduction stage and configured to receive analyte from the analyte introduction stage. The instrument may comprise an analyte detection stage fluidically coupled to the analyte preparation stage and configured to receive analyte from the analyte preparation stage, in which at least one of the analyte introduction stage, the analyte preparation stage and the analyte detection stage comprises a loop thermosyphon thermally coupled to a component in one of the analyte introduction stage, the analyte preparation stage and the analyte detection stage.
In certain configurations, the analyte introduction stage comprises one of a nebulizer, an injector and an atomizer. In other instances, the analyte preparation stage comprises one of a plasma, a flame, an arc, and a spark. In some embodiments, the analyte preparation stage comprises a torch, an induction device and a radio frequency generator electrically coupled to the induction device, in which the torch is configured to receive a section of the induction device and provide radio frequency energy into the section of the torch to sustain a plasma in the section of the torch, in which the loop thermosyphon is thermally coupled to a transistor or a transistor pair of the radio frequency generator. In other examples, the analyte detection stage comprises a mass analyzer fluidically coupled to a detector. In certain instances, the instrument comprises an interface between the analyte preparation stage and the mass analyzer, in which the interface is thermally coupled to the loop thermosyphon. In some examples, the instrument comprises an interface between the analyte preparation stage and the mass analyzer, in which the loop thermosyphon is integral to the interface. In other examples, the loop thermosyphon thermally couples to the interface through a first plate and a second plate. In certain examples, the second plate comprises a groove to receive an evaporator loop of the loop thermosyphon and the first plate couples to the second plate to sandwich the evaporator loop between the first plate and the second plate, wherein the second plate couples to the interface.
In some embodiments, the instrument further comprises a second loop thermosyphon thermally coupled to at least one of the analyte introduction stage, the analyte preparation stage and the analyte detection stage, wherein the loop thermosyphon is thermally coupled to a different stage than the second loop thermosyphon. In certain examples, the analyte preparation stage comprises a torch, an induction device and a radio frequency generator electrically coupled to the induction device, in which the torch is configured to receive a section of the induction device and provide radio frequency energy into the section of the torch to sustain a plasma in the section of the torch, in which the loop thermosyphon is thermally coupled to a transistor or a transistor pair of the radio frequency generator, and in which the second loop thermosyphon is thermally coupled to a pump present in the analyte detection stage. In some instances, the analyte preparation stage comprises a torch, an induction device and a radio frequency generator electrically coupled to the induction device, in which the torch is configured to receive a section of the induction device and provide radio frequency energy into the section of the torch to sustain a plasma in the section of the torch, in which the loop thermosyphon is thermally coupled to a transistor or a transistor pair of the radio frequency generator, and in which the second loop thermosyphon is thermally coupled to an interface present between the torch and the analyte detection stage. In certain examples, the second loop thermosyphon thermally couples to the interface through a first plate and a second plate. In further embodiments, the second plate comprises a groove to receive an evaporator loop of the loop thermosyphon and the first plate couples to the second plate to sandwich the evaporator loop between the first plate and the second plate, wherein the second plate couples to the interface. In some configurations, the analyte introduction stage comprises a nebulizer, the analyte preparation stage comprises a torch, an induction device and a radio frequency generator electrically coupled to the induction device, in which the torch is configured to receive a section of the induction device and provide radio frequency energy into the section of the torch to sustain a plasma in the section of the torch, in which the loop thermosyphon is thermally coupled to a transistor or a transistor pair of the radio frequency generator, in which the nebulizer is fluidically coupled to the torch, in which the analyte detection stage comprises a mass spectrometer, in which the mass spectrometer is fluidically coupled to the torch, and wherein the second loop thermosyphon is thermally coupled to a pump present in the mass spectrometer.
In other configurations, the instrument further comprises a third loop thermosyphon thermally coupled to at least one of the analyte introduction stage, the analyte preparation stage and the analyte detection stage. In some embodiments, the third loop thermosyphon is thermally coupled to a same stage as the first loop thermosyphon or the second look thermosyphon. In certain examples, the second loop thermosyphon thermally couples to the interface through a first plate and a second plate. In some instances, the analyte introduction stage comprises a nebulizer, the analyte preparation stage comprises a torch, an induction device and a radio frequency generator electrically coupled to the induction device, in which the torch is configured to receive a section of the induction device and provide radio frequency energy into the section of the torch to sustain a plasma in the section of the torch, in which the loop thermosyphon is thermally coupled to a transistor or a transistor pair of the radio frequency generator, in which the nebulizer is fluidically coupled to the torch, in which the analyte detection stage comprises a mass spectrometer, in which the mass spectrometer is fluidically coupled to the torch, and wherein the second loop thermosyphon is thermally coupled to a pump present in the mass spectrometer. In other examples, the analyte introduction stage comprises a nebulizer, the analyte preparation stage comprises a torch, an induction device and a radio frequency generator electrically coupled to the induction device, in which the torch is configured to receive a section of the induction device and provide radio frequency energy into the section of the torch to sustain a plasma in the section of the torch, in which the loop thermosyphon is thermally coupled to a transistor or a transistor pair of the radio frequency generator, in which the nebulizer is fluidically coupled to the torch, in which the analyte detection stage comprises a mass spectrometer, in which the mass spectrometer is fluidically coupled to the torch through an interface, wherein the second loop thermosyphon is thermally coupled to a pump present in the mass spectrometer, and wherein the third loop thermosyphon is thermally coupled to the interface.
In another aspect, an instrument comprises an interface thermally coupled to a passive cooling device. For example, the instrument may comprise an atomization device configured to sustain an atomization source. The instrument may also comprise an induction device configured to receive a portion of the atomization device to provide radio frequency energy into the received portion of the atomization device. The instrument may comprise a radio frequency generator electrically coupled to the induction device. The instrument may also comprise an interface fluidically coupled to the atomization device, in which the interface is thermally coupled to a passive cooling device. The instrument may further comprise a detector fluidically coupled to the interface.
In certain configurations, the instrument does not include a chiller configured to cool the interface. In other configurations, the passive cooling device is configured as a loop thermosyphon. In some examples, the loop thermosyphon comprises a closed loop heat pipe. In certain instances, the loop thermosyphon comprises an evaporator fluidically coupled to a condenser through a downcomer fluid line and fluidically coupled to the condenser through an upcomer fluid line. In some examples, the condenser is positioned external to a housing comprising the atomization device and the interface. In other examples, the evaporator is coupled to the interface with at least one plate. In some embodiments, the passive cooling device is further thermally coupled to a transistor of the radio frequency generator and is configured to simultaneously cool the interface and the transistor.
In other embodiments, the instrument comprises a second passive cooling device thermally coupled to a transistor of the radio frequency generator. In some instances, the second passive cooling device is configured as a second loop thermosyphon. In other examples, the second loop thermosyphon comprises an evaporator fluidically coupled to a condenser through a downcomer fluid line and fluidically coupled to the condenser through an upcomer fluid line. In some embodiments, the passive cooling device is further configured to provide heat to the interface to pre-heat the interface. In other embodiments, the passive cooling device comprises a plate configured to sandwich the evaporator to the interface to increase surface area contact between an evaporator loop of the cooling device and the interface. In certain instances, the passive cooling device is configured as a loop thermosyphon, in which the evaporator loop is sandwiched between the plate and a second plate comprising a groove to receive the evaporator loop, in which the second plate is coupled to the interface, and in which the evaporator loop, the plate and the second plate are coupled to each other through a solder joint. In other embodiments, the atomization device is configured to sustain an inductively coupled plasma. In some examples, the induction device comprises an induction coil comprising at least one radial fin. In other examples, the detector is a mass spectrometer. In some examples, the detector is an optical detector. In other examples, the atomization device is configured to sustain a flame. In some configurations, the atomization device is configured to sustain an inductively coupled plasma, the induction device comprises an induction coil comprising at least one radial fin, and the passive cooling device comprises a loop thermosyphon comprising an evaporator fluidically coupled to a condenser through a downcomer fluid line and fluidically coupled to the condenser through an upcomer fluid line, in which the evaporator of the loop thermosyphon is thermally coupled to the interface.
In an additional aspect, an instrument comprises an interface comprising an integral passive cooling device. For example, the instrument may comprise an atomization device configured to sustain an atomization source, an induction device configured to receive a portion of the atomization device to provide radio frequency energy into the received portion of the atomization device, a radio frequency generator electrically coupled to the induction device, and an interface fluidically coupled to the atomization device, in which the interface comprises an integral passive cooling device. In some instances, the instrument may also comprise a detector fluidically coupled to the interface.
In certain embodiments, the instrument does not include a chiller configured to cool the interface. In other embodiments, the passive cooling device is configured as a loop thermosyphon. In some examples, the loop thermosyphon comprises a closed loop heat pipe. In certain instances, the loop thermosyphon comprises an evaporator fluidically coupled to a condenser through a downcomer fluid line and fluidically coupled to the condenser through an upcomer fluid line. In some embodiments, the condenser is positioned external to a housing comprising the atomization device and the interface. In other examples, the evaporator is integral to the interface and the condenser is separated from the evaporator by the downcomer fluid line and the upcomer fluid line. In certain examples, the passive cooling device is further thermally coupled to the transistor of the radio frequency generator and is configured to simultaneously cool the interface and the transistor.
In other examples, the instrument comprises a second passive cooling device thermally coupled to a transistor of the radio frequency generator. In some embodiments, the second passive cooling device is configured as a second loop thermosyphon. In other embodiments, the second loop thermosyphon comprises an evaporator fluidically coupled to a condenser through a downcomer fluid line and fluidically coupled to the condenser through an upcomer fluid line.
In some embodiments, the passive cooling device is configured as a loop thermosyphon, in which an evaporator loop of the loop thermosyphon is sandwiched between the plate and interface, and in which the evaporator loop, the plate and the interface are coupled to each other through a solder joint. In other examples, the loop thermosyphon comprises an air cooled condenser. In some instances, the integral passive cooling device is further configured to provide heat to the interface to pre-heat the interface.
In other examples, the atomization device is configured to sustain an inductively coupled plasma. In some embodiments, the induction device comprises an induction coil comprising at least one radial fin. In certain examples, the detector is a mass spectrometer. In some examples, the detector is an optical detector. In other examples, the atomization device is configured to sustain a flame. In some embodiments, the atomization device is configured to sustain an inductively coupled plasma, the induction device comprises an induction coil comprising at least one radial fin, and the integral passive cooling device comprises a loop thermosyphon comprising an evaporator fluidically coupled to a condenser through a downcomer fluid line and fluidically coupled to the condenser through an upcomer fluid line, in which the evaporator of the loop thermosyphon is integral to the interface.
In another aspect, an instrument may comprise a radio frequency generator electrically comprising a transistor or a transistor pair thermally coupled to a passive cooling device. For example, an instrument may comprise an atomization device configured to sustain an atomization source, an induction device configured to receive a portion of the atomization device to provide radio frequency energy into the received portion of the atomization device, a radio frequency generator electrically coupled to the induction device, in which the generator comprises a transistor or a transistor pair thermally coupled to a passive cooling device. If desired, the instrument may also comprise a detector fluidically coupled to the atomization device.
In certain instances, the instrument does not include a chiller configured to cool the transistor or the transistor pair. In other examples, the passive cooling device is configured as a loop thermosyphon. In some configurations, the loop thermosyphon comprises a closed loop heat pipe. In additional configurations, the loop thermosyphon comprises an evaporator fluidically coupled to a condenser through a downcomer fluid line and fluidically coupled to the condenser through an upcomer fluid line. In some embodiments, the condenser is positioned external to a housing comprising the atomization device and the radio frequency generator. In other embodiments, the evaporator is coupled to the transistor or the transistor pair through at least one plate. In certain instances, the passive cooling device is further thermally coupled to an interface of the instrument.
In some embodiments, the instrument comprises a second passive cooling device thermally coupled to at least one of the induction device and the detector. In other examples, the second passive cooling device is configured as a second loop thermosyphon. In certain embodiments, the second loop thermosyphon comprises an evaporator fluidically coupled to a condenser through a downcomer fluid line and fluidically coupled to the condenser through an upcomer fluid line.
In some examples, the passive cooling device is further configured to provide heat to the transistor or the transistor pair. In certain instances, the passive cooling device comprises a plate configured to sandwich the evaporator to the transistor or the transistor pair to increase surface area contact between an evaporator loop of the cooling device and the transistor or the transistor pair. In other examples, the passive cooling device is configured as a loop thermosyphon, in which the evaporator loop is sandwiched between the plate and a second plate comprising a groove to receive the evaporator loop, in which the second plate is thermally coupled to the transistor or the transistor pair, and in which the evaporator loop, the plate and the second plate are coupled to each other through a solder joint.
In some configurations, the atomization device is configured to sustain an inductively coupled plasma. In other configurations, the induction device comprises an induction coil comprising at least one radial fin. In some embodiments, the detector is a mass spectrometer. In certain examples, the detector is an optical detector. In other examples, the atomization device is configured to sustain a flame. In some embodiments, the atomization device is configured to sustain an inductively coupled plasma, the induction device comprises an induction coil comprising at least one radial fin, and the passive cooling device comprises a loop thermosyphon comprising an evaporator fluidically coupled to a condenser through a downcomer fluid line and fluidically coupled to the condenser through an upcomer fluid line, in which the evaporator of the loop thermosyphon is thermally coupled to the transistor or the transistor pair.
In another aspect, a system may comprise an interface thermally coupled to a passive cooling device comprising a loop thermosyphon configured to cool the interface. For example, the system may be configured to sustain an inductively coupled plasma and comprise an interface fluidically coupled to a torch configured to sustain a plasma in a section of the torch using an induction device, in which the interface is thermally coupled to a passive cooling device comprising a loop thermosyphon configured to cool the interface.
In certain configurations, the loop thermosyphon is configured as a closed loop heat pipe. In other configurations, the loop thermosyphon comprises an evaporator configured to thermally couple to the interface. In some examples, the evaporator is fluidically coupled to a condenser through a downcomer fluid line and fluidically coupled to the condenser through an upcomer line. In certain embodiments, the induction device comprises one of an induction coil comprising a radial fin, an induction coil and a plate electrode. In other examples, the system further comprises a radio frequency generator comprising a transistor or a transistor pair, in which the radio frequency generator is electrically coupled to the induction device.
In some instances, the system further comprises a second passive cooling device thermally coupled to the transistor or the transistor pair of the radio frequency generator. In other embodiments, the second passive cooling device is configured as a loop thermosyphon. In certain examples, the loop thermosyphon of the second passive cooling device comprises an evaporator fluidically coupled to a condenser through a downcomer fluid line and fluidically coupled to the condenser through an upcomer fluid line. In some embodiments, the system does not include a chiller configured to cool the interface.
In an additional aspect, a system may comprise a radio frequency generator comprising at least one transistor or transistor pair thermally coupled to a passive cooling device configured to cool the transistor or transistor pair. For example, the system may be configured to sustain a plasma and comprise a torch configured to sustain the plasma, an induction device configured to receive a portion of the torch to provide radio frequency energy to the received portion of the torch, and a radio frequency generator electrically coupled to the induction device, in which at least one transistor or transistor pair of the radio frequency generator is thermally coupled to a passive cooling device configured to cool the transistor or the transistor pair.
In certain configurations, the passive cooling device is configured as a loop thermosyphon. In other configurations, the loop thermosyphon comprises a closed loop heat pipe. In further examples, the loop thermosyphon comprises an evaporator fluidically coupled to a condenser through a downcomer fluid line and fluidically coupled to the condenser through an upcomer fluid line. In some embodiments, the condenser is positioned at a higher height than the evaporator. In certain examples, the induction device comprises one of an induction coil comprising a radial fin, an induction coil and a plate electrode.
In other examples, the system comprises a second passive cooling device configured to thermally couple to the induction device or the torch. In some examples, the second passive cooling device is configured as a loop thermosyphon. In other examples, the loop thermosyphon of the second passive cooling device comprises an evaporator fluidically coupled to a condenser through a downcomer fluid line and fluidically coupled to the condenser through an upcomer fluid line. In some embodiments, the system does not include a chiller configured to cool the transistor or the transistor pair.
In some examples, a method of cooling an interface in a system comprises passively removing heat from the interface using a loop thermosyphon thermally coupled to the interface. In some examples, the method comprises configuring the loop thermosyphon with an evaporator fluidically coupled to a condenser through a downcomer fluid line and fluidically coupled to the condenser through an upcomer fluid line. In other examples, the method comprises simultaneously cooling a transistor of a radio frequency generator electrically coupled to an induction device of the system. In further examples, the method comprises operating the system without the use of a shear gas to terminate the plasma. In some embodiments, the method comprises configuring the loop thermosyphon with a heat pipe. In certain instances, the method comprises configuring the system with a fan to provide air to the loop thermosyphon. In other examples, the method comprises configuring the loop thermosyphon to be partially external to a housing of the system. In certain instances, the method comprises configuring the system with a mass spectrometer fluidically coupled to the interface. In some examples, the method comprises configuring the system with an optical detector. In some embodiments, the method comprises operating the plasma without using a chiller to cool the interface.
In another aspect, a method of cooling a transistor or a transistor pair of a radio frequency generator electrically coupled to an induction device of a system comprises passively removing heat from the transistor using a loop thermosyphon thermally coupled to the transistor or the transistor pair. In some examples, the method comprises configuring the loop thermosyphon with an evaporator fluidically coupled to a condenser through a downcomer fluid line and fluidically coupled to the condenser through an upcomer fluid line. In some examples, the method comprises simultaneously cooling an interface fluidically coupled to the plasma. In other examples, the method comprises operating the system without the use of a shear gas to terminate the plasma. In certain embodiments, the method comprises configuring the loop thermosyphon with a heat pipe. In some examples, the method comprises configuring the system with a fan to provide air to the loop thermosyphon. In certain instances, the method comprises configuring the loop thermosyphon to be partially external to a housing of the system. In some embodiments, the method comprises configuring the system with a mass spectrometer fluidically coupled to the plasma. In certain examples, the method comprises configuring the system with an optical detector. In some instances, the method comprises operating the plasma without using a chiller to cool the transistor or the transistor pair.
In another aspect, a system constructed and arranged to sustain a plasma using an induction device configured to provide radio frequency energy into a torch to sustain the plasma comprises an interface configured to fluidically couple to the sustained plasma and receive species from the sustained plasma, the interface thermally coupled to a loop thermosyphon configured to cool the interface.
In an additional aspect, a system constructed and arranged to sustain a plasma using an induction device configured to provide radio frequency energy into a torch to sustain the plasma comprises an interface configured to fluidically couple to the sustained plasma and receive species from the sustained plasma, the interface comprising a loop thermosyphon configured to cool the interface.
In another aspect, a system constructed and arranged to sustain a plasma using an induction device configured to provide radio frequency energy into a torch to sustain the plasma comprises a radio frequency generator configured to electrically couple to the induction device, the radio frequency generator comprising at least one transistor or transistor pair thermally coupled to a loop thermosyphon configured to cool the transistor of the transistor pair.
In an additional aspect, a kit comprising a loop thermosyphon constructed and arranged to thermally couple to an interface of an instrument to cool the interface during operation of the instrument is provided. In some instances, the kit also comprises a first plate configured to couple to the loop thermosyphon and the interface. In other instances, the kit also comprises a second plate configured to couple to the loop thermosyphon and the second plate to sandwich an evaporator loop of the loop thermosyphon between the first and second plates.
In another aspect, a kit comprising a loop thermosyphon integral to an interface of an instrument, in which the loop thermosyphon is configured to cool the interface during operation of the instrument is described.
In an additional aspect, a kit comprising a loop thermosyphon constructed and arranged to thermally couple to a transistor or a transistor pair of a radio frequency generator of an instrument to cool the transistor or the transistor pair during operation of the instrument is provided.
Additional aspects, features, examples and embodiments are described in more detail below.
Certain configurations of cooling devices and instruments and other devices which include them are described below with reference to the accompanying figures in which:
It will be recognized by the person of ordinary skill in the art, given the benefit of this disclosure, that the lengths and dimensions of the loop thermosyphon components in the figures are not necessarily drawn to scale. The dimensions of the condenser, the evaporator loop length and the downcomer and upcomer fluid line lengths may vary depending on the exact cooling desired and the configuration of the loop thermosyphon.
Various components are described below in connection with instruments and cooling devices. It will be recognized by the person of ordinary skill in the art, given the benefit of this disclosure, that other components can be included in the instruments or cooling devices or certain components or portions of an instrument or a cooling device can be omitted while still providing a functional device. For ease of illustration and to facilitate a better understanding of the technology, not every component of a particular instrument is shown or described. In some examples other components or other types of components can also be present. For example, charge-coupled detectors, complimentary metal-oxide-semiconductor detectors or other detectors can be used and, if desired, can be cooled using the devices described herein.
While various aspects and configurations are described in reference to a cooling device, if desired, one or more heating devices or heating modules can be thermally coupled to any one or more of the components described herein to assist in temperature control or selection. Further, heat shielding, heat reflection or other heating means and heating dissipation means may also be present on any one or more of the components or stages described herein. If desired, the heating device can be present in addition to the cooling device or as noted below the cooling device itself can be used to provide heat to one or more components. The exact power of any heating device may vary from about 50 Watts to about 200 Watts, e.g., about 100 Watts and other suitable powers can also be used.
In certain configurations, the cooling devices described herein may comprise an interface configured to thermally couple the cooling device to one or more components of an instrument to be cooled. The particular component or components to be cooled can vary from instrument to instrument, and typical components to be cooled include, for example, transistors on printed circuit boards present in high voltage radio frequency generators, induction devices present in plasma based instruments, pumps of spectrometry instruments such as mass spectrometers, interfaces between various components of the system and other electrical or physical components. In many conventional instruments, a liquid cold plate which includes a cooling fluid circulated to and from a chiller is present and used to cool the devices. This type of cooler has several disadvantages including the need for the chiller, the possibility of cooling fluid leakage in the instrument and the additional power requirements needed to cool and circulate the cooling fluid. In some instances herein, the cooling devices described herein can be configured to provide cooling without the use of any chiller to circulate liquid through a liquid cold plate. The omission of the chiller reduces the overall size of the instrument and simplifies cooling of the instrument.
In certain examples, a general schematic of an instrument is shown in
In some instances, one or more of the stages 110, 120, 130 may comprise a cooling device as described herein, e.g., a passive cooling device comprising a thermosyphon, thermally coupled to one or more components of that particular stage. Various illustrations are shown in
In other instances, a single passive cooling device can be thermally coupled to more than one of the stages 110, 120 and 130 if desired. Where the instrument comprises more than one cooling device, the cooling devices may be the same or they may be different. In some configurations, the cooling devices present in any one or more of the stages 110, 120 and 130 may be thermally coupled to a non-processor component of the instrument stage. For example, microprocessors often include heat sinks thermally coupled to them to maintain the microprocessor below a desired temperature. While the cooling devices described herein can be used to cool a microprocessor present in one or more of the stages 110, 120, and 130, certain configurations use the cooling devices to cool non-microprocessor components including non-microprocessor transistors, pump motors, induction devices, interfaces between the instrument stages, injectors, nebulizers and other non-microprocessor components that can be present in one of the stages 110, 120 and 130. If desired, a passive cooling device as described herein can be used to cool a microprocessor and a non-microprocessor component in any one or more of the stages 110, 120 and 130.
In certain examples, the cooling devices can be thermally coupled to an interface between various instrument stages. Referring to
In certain examples, the cooling devices used with the instrument components may comprise a loop thermosyphon, or be configured as a loop thermosyphon, to permit passive operation of the cooling device. Without wishing to be bound by any particular scientific theory, a loop thermosyphon uses passive heat exchange without the need to use a mechanical pump to force a fluid through the system. Convection results when heat is transferred from a component to the thermosyphon. This heat transfer provides a temperature difference from one side of a loop to the other. The fluid which receives the heat from the component to be cooled is less dense than the cooler fluid of the loop and will move or float above the cooler fluid. This exchange causes the cooler fluid to sink below the warmer fluid. Where the thermosyphon is constructed where the fluid loop is not entirely full of liquid, evaporation and condensation of the liquid can provide a thermosyphon heat pipe. The thermosyphon may comprise a condenser to place the heated vapor back into a liquid form and return the liquid to an interface which is thermally coupled to the component of the instrument to be cooled. In some instances, the thermosyphon can be constructed and arranged so the condenser is present on an upper portion of the loop, e.g., is at a high point of the loop relative to gravity, to permit the heat vapor to naturally rise and to permit the condensed liquid to naturally fall under gravitational forces. Heat is released as the vapor is condensed back into a liquid at the condenser. If desired, some portion of the cooling device, e.g., the condenser, can be positioned outside of the instrument housing to assist in cooling of the vapor and recondensing the vapor back to a liquid.
Referring to
In some embodiments, the evaporator of the cooling device can be placed directly in contact with the component of the instrument to be cooled. For example and referring to
In configurations where the evaporator is configured as a plate, the evaporator loop portion of the plate may be integral to the plate or can be coupled to the plate in a suitable manner. For example, the plate may comprise an integral loop which fluidically couples to the downcomer and upcomer fluid lines to deliver liquid to the plate and/or carry vapor away from the plate. In other examples, the evaporator can be configured as a separate loop which can thermally couple to a plate or other device that contacts the component to be cooled. For example, the evaporator loop may sit on top of a plate which contacts the component to be cooled or the evaporator loop can contact the component to be cooled and a plate can be placed on top of the evaporator loop to retain the evaporator loop to the component. In other configurations, two plates can be present with the evaporator loop sandwiched between them. For example, where a circular component or circular area is to be cooled, then the evaporator may take the form of a circular loop or circular plate which can be placed directly in contact with the circular area to be cooled. One illustration is shown in
In certain configurations, the condenser of the loop thermosyphons described herein may comprise one or more fins or be configured similar to a radiator to enhance cooling of the vapor received from the evaporator. One configuration is shown in
In certain examples, the downcomer fluid line and/or the upcomer fluid lines may be produced from the same materials present in the body 705. In some instances, the upcomer fluid line may comprise a metal, and the downcomer fluid line may comprise a metal or other material such as a plastic. The exact shape and configuration of the upcomer and downcomer fluid lines is not critical. The upcomer fluid line desirably maintains the working fluid in a vapor phase to permit flow into the condenser. Heat from the instrument can transfer to the upcomer fluid line (at least to some extent) to keep the upcomer fluid line at a certain temperature The downcomer fluid line may be insulated to permit the liquid from the condenser to remain as a liquid until it reaches the evaporator component of the loop thermosyphon. The insulation may be, for example, metal coatings such as ceramics, glass coatings, fiber insulation, foam insulation or may take other forms. If desired, the loop thermosyphon may comprise two or more condensers to assist in converting the vapor of the working fluid back to a liquid. These condensers can be coupled in parallel, for example, to increase the overall capacity of the loop thermosyphon. In some examples, the condenser may be fluidically coupled to its own cooling device, e.g., a fan, Peltier cooler, etc. to assist in providing a temperature difference between the evaporator and the condenser. In addition, one or more valves or other components can be present in the condenser to restrict or promote fluid flow within the loop thermosyphon and/or to assist in pressure control.
In certain examples, the cooling devices described herein can be used to cool one or more electrical component of a radio frequency generator present in an instrument. For example, inductively coupled plasma instruments use a gas and induction devices to generate a plasma. The plasma can ionize and/or atomize analyte species, which are provided to a detector for detection. To provide the inductive fields used to sustain the plasma in a torch, one or more induction devices provide radio frequency energy into the torch. A radio frequency generator is electrically coupled to the induction device, which typically surrounds some portion of the torch. This generator comprises a pair (or pairs) of high power transistors which are used to power the induction devices. The transistors should be kept below a threshold temperature for proper operation, to reduce the likelihood of transistor breakdown and extend the overall life of the transistors. The presence of the hot plasma acts to increase the overall temperature near the power transistors. By thermally coupling one or more of the cooling devices described herein to the power transistors, the temperature of the power transistors can be better controlled.
Referring to
In certain configurations, the instrument 800 does not include a chiller configured to cool the interface. For example, many existing plasma devices use a liquid cooled by a chiller to cool various components. The chiller adds complexity, cost and requires increased space. The cooling devices described herein can be used in place of the chiller to simplify overall instrument assembly and operation. In some examples, cooling device 870 is configured as a loop thermosyphon. For example, the loop thermosyphon can take any of the configurations described herein. In some instances, the loop thermosyphon comprises a plate evaporator, whereas in other configurations, the evaporator is coupled to the interface with at least one plate. In other examples, the loop thermosyphon comprises an evaporator fluidically coupled to a condenser through a downcomer fluid line and fluidically coupled to the condenser through an upcomer fluid line. In certain examples, the condenser is positioned external to a housing comprising the atomization device and the interface. For example, the condenser can be moved away from the hot atomization source 820 by placing the condenser outside of the instrument housing. In some configurations, the passive cooling device 870 is further thermally coupled to a transistor of the radio frequency generator 880 and is configured to simultaneously cool the interface 850 and the transistor of the radio frequency generator 880. In other configurations, a second passive cooling device separate from the cooling device 870 may be present in the instrument 800. For example, a second passive cooling device thermally coupled to a transistor of the radio frequency generator 880 while the cooling device 870 remains thermally coupled to the interface 850. In some examples, the second passive cooling device is configured as a second loop thermosyphon, which may be configured similar or different as the loop thermosyphon of the cooling device 870. For example, the second loop thermosyphon may comprise an evaporator fluidically coupled to a condenser through a downcomer fluid line and fluidically coupled to the condenser through an upcomer fluid line.
In certain instances, the cooling device 870 can be configured to provide heat to the interface to pre-heat the interface 850. For example, it may be desirable to heat the interface 850 to a certain temperature prior to initiating measurements using the instrument 800. In such cases, hot air can be blow over the condenser, for example, to provide heated liquid to the interface 850. Thermal transfer from the cooling device 870 to the interface 850 can pre-heat the interface. Once the instrument is operating, the hot air can be removed to permit the cooling device to operate in a normal loop thermosyphon manner to remove heat from the interface 850. In some instances as described in more detail herein, the passive cooling device 870 comprises a plate configured to sandwich the evaporator to the interface 850 to increase surface area contact between an evaporator loop of the cooling device 870 and the interface 850. For example, the passive cooling device 870 can be configured as a loop thermosyphon, in which the evaporator loop is sandwiched between the plate and a second plate comprising a groove to receive the evaporator loop, in which the second plate is coupled to the interface 850, and in which the evaporator loop, the plate and the second plate are coupled to each other through a solder joint. The presence of a solder joint may enhance heat transfer from the interface 850 to the evaporator loop of the cooling device 870.
In certain examples, the atomization device, atomization source, and induction device of the instrument 800 may vary in configuration. In some instances, the atomization device takes the form of a torch as shown in
In some configuration of the instrument 800, the atomization device 810 is configured to sustain an inductively coupled plasma, the induction device 830 comprises an induction coil comprising at least one radial fin, and the passive cooling device 870 comprises a loop thermosyphon comprising an evaporator fluidically coupled to a condenser through a downcomer fluid circuit and fluidically coupled to the condenser through an upcomer fluid circuit, and in which the evaporator of the loop thermosyphon is thermally coupled to the interface 850.
In some examples, where the instrument comprises an induction device, the induction device is typically electrically coupled to a radio frequency generator comprising a pair or pair of power transistors. A general illustration of such an instrument is shown in
In some examples, the instrument 1000 may comprise a second passive cooling device thermally coupled to at least one of the induction device 1030 and the detector 1050. For example, the second passive cooling device can be thermally coupled to an induction device as described in connection with the induction devices shown in
In some configurations, the cooling device 1040 may comprise a plate configured to sandwich the evaporator to the transistor or the transistor pair (or a backside of a printed circuit board where the transistor or the transistor pair is mounted) to increase surface area contact between an evaporator loop of the cooling device 1040 and the transistor or the transistor pair. In other configurations, the passive cooling device 1040 can be configured as a loop thermosyphon, in which the evaporator loop is sandwiched between a first plate and a second plate comprising a groove to receive the evaporator loop, in which the second plate is thermally coupled to the transistor or the transistor pair (or a backside of a printed circuit board where the transistor or the transistor pair is mounted), and in which the evaporator loop, the plate and the second plate are coupled to each other through a solder joint. As noted herein, the presence of a solder joint can increase the efficiency of heat transfer from the plates to the evaporator loop of the cooling device 1040. The atomization device 1010 can be configured similar to any of the atomization devices discussed in connection with atomization device 1010, e.g., a flame, inductively coupled plasma, arc, spark, etc. The induction device 1030 can be configured similar to the induction devices discussed in connection with the induction device 1030, e.g., one or more plate electrodes, an induction coil, an induction coil comprising a radial fin, or the induction device can be replaced with a capacitive device if desired. The detector 1050 may be similar to the detector 1060, e.g., can include an optical detector, mass spectrometer or other types of detectors. In some configurations of the instrument 1000, the atomization device 1010 is configured to sustain an inductively coupled plasma, the induction device 1030 comprises an induction coil comprising at least one radial fin, and the passive cooling device 1040 comprises a loop thermosyphon comprising an evaporator fluidically coupled to a condenser through a downcomer fluid line and fluidically coupled to the condenser through an upcomer fluid line, in which the evaporator of the loop thermosyphon is thermally coupled to the transistor or the transistor pair of the radio frequency generator 1035. If desired, the loop thermosyphon may be integral to a printed circuit board comprising the transistor or the transistor pair to facilitate easier assembly of the instrument 1000. For example, the evaporator loop of the loop thermosyphon may be soldered to or otherwise coupled to the printed circuit board at a site where the transistor of the transistor pair is intended to be present to provide heat removal from the transistor or the transistor pair.
In certain examples, the passive cooling devices described herein can be used in non-instrument systems if desired. For example, the system can be configured to sustain an inductively coupled plasma and comprise an interface fluidically coupled to a torch configured to sustain a plasma in a section of the torch using an induction device, in which the interface is thermally coupled to a passive cooling device comprising a loop thermosyphon configured to cool the interface. The system can be used, for example, as a chemical reactor, to deposit materials onto a surface or substrate, in welding or cutting operations or in other instances where a plasma can be used. In some examples, the loop thermosyphon is configured as a closed loop heat pipe. For example, the loop thermosyphon comprises an evaporator configured to thermally couple to the interface, and may comprise a condenser fluidically coupled to the evaporator through a downcomer fluid line and through an upcomer fluid line. In some examples, the induction device of the system may comprise one of an induction coil comprising a radial fin, an induction coil and a plate electrode as described in connection with
In other configurations, a system may comprise a torch configured to sustain the plasma, an induction device configured to receive a portion of the torch to provide radio frequency energy to the received portion of the torch, and a radio frequency generator electrically coupled to the induction device, in which at least one transistor or transistor pair of the radio frequency generator is thermally coupled to a passive cooling device configured to cool the transistor or the transistor pair. In some configurations, the passive cooling device is configured as a loop thermosyphon as described herein. In certain examples, the loop thermosyphon comprises a closed loop heat pipe. For examples, the loop thermosyphon comprises an evaporator fluidically coupled to a condenser through a downcomer fluid line and fluidically coupled to the condenser through an upcomer fluid line. In some examples, the condenser is positioned at a higher height than the evaporator. In other examples, the induction device comprises one of an induction coil comprising a radial fin, an induction coil and a plate electrode. In some embodiments, the system comprises a second passive cooling device configured to thermally couple to the induction device or the torch. In some examples, the second passive cooling device is also configured as a loop thermosyphon which may be the same or may be different than the loop thermosyphon of the first cooling device, e.g., the evaporator, condenser, etc. may have a different size or different materials can be present. The second loop thermosyphon may comprise an evaporator fluidically coupled to a condenser through a downcomer fluid line and fluidically coupled to the condenser through an upcomer fluid line. In some configurations, the system does not include a chiller configured to cool the transistor or the transistor pair.
In certain embodiments, the cooling devices described herein can be used in a system configured to perform mass spectrometry (MS). For example and referring to
In certain embodiments, the torches described herein can be used in optical emission spectroscopy (OES). Referring to
In certain examples, the torches described herein can be used in an atomic absorption spectrometer (AAS). Referring to
In other instances, the loop thermosyphons described herein can be used to remove heat from an interface, a transistor, a transistor pair or other components. Further, additional loop thermosyphons can be present as desired to cool other components of the instruments and systems. A single loop thermosyphon can simultaneously cool two or more separate components if desired. The presence of a loop thermosiphon may also permit operation of plasma devices without the use of a shear gas to terminate the plasma at the end of a torch. This configuration may be particularly desirable as it simplifies the assemblies used to sustain plasmas. The loop thermosyphons can be thermally coupled to one or more fans, active cooling devices (e.g., refrigerant cooling devices comprising a compressor) or other devices which can assist in the loop thermosyphon cooling one or more components. As noted herein, the condenser of the loop thermosyphon can be positioned higher than the evaporator (relative to a surface which the system resides on) to facilitate natural flow through the loop thermosyphon. A portion of the condenser or all of the condenser may also be positioned outside of the housing of the system to increase flow through the loop thermosyphon.
The loop thermosyphons described herein can be present in a kit which permits an end user to thermally couple the loop thermosyphon to a desired component. Instructions may also be present in the kit to provide guidance to use the loop thermosyphon with a particular component to be cooled. In some instances, the kit comprises a loop thermosyphon constructed and arranged to thermally couple to an interface of an instrument (or other system) to cool the interface during operation of the instrument (or other system). In certain instances, the kit may also comprise a first plate configured to couple to the loop thermosyphon and the interface. In some embodiments, the kit may comprise a second plate configured to couple to the loop thermosyphon and the second plate to sandwich an evaporator loop of the loop thermosyphon between the first and second plates. In other configurations, the kit may comprise a loop thermosyphon integral to an interface of an instrument (or other system), in which the loop thermosyphon is configured to cool the interface during operation of the instrument (or other system). For example, an existing interface in an instrument or system can be removed and replaced with the interface comprising the integral loop thermosyphon. The passive nature of the loop thermosyphon permits its use without the need to electrically couple it to any power source. In additional configurations, a kit comprises a loop thermosyphon constructed and arranged to thermally couple to a transistor or a transistor pair of a radio frequency generator of an instrument to cool the transistor or the transistor pair during operation of the instrument. The kit may comprise instructions to mount the loop thermosyphon to the backside of a printed circuit board where the transistors reside.
Certain specific examples of cooling devices are described in more detail below.
Loop thermosyphon cooling devices of various loop lengths were tested for their ability to transfer heat. The basic setup of the device is shown in
A cooling device can be produced by coupling a loop thermosyphon to an evaporator plate. Referring to
A side view of a plate which can be coupled to an evaporator loop is shown in
An air cooled condenser can be used in the cooling devices. The condenser can be sized and arranged to provide a heat dissipation of about 1 kW at 30 deg. Celsius using 75-100 CFM of air blown onto the fins of the condenser. In some instances, the condenser can be about 4-6 inches in finned length, by about 3-5 inches in finned height by about 3-5 inches case depth. The exact number of fins per inch on the condenser may vary from about 10 fins to about 30 fins, for example.
The condenser can be sized to work with an evaporator loop temperature of about 60 deg. Celsius. to about 80 deg. Celsius. In one configuration, the evaporator loop may comprise ⅜″ outer diameter flattened copper tubing with a loop length of about 10-11 inches. The upcomer fluid line may comprise the same ⅜″ outer diameter copper tubing with a length of about 7-8 inches long, and the downcomer fluid line may comprise the same ⅜″ outer diameter tubing with a length of about 9-10 inches long.
An exploded view of an interface comprising a loop thermosiphon is shown in
Two 100 Watt cartridge heaters were added to the interface. One cartridge heater was placed at a top right corner of the interface, and the other cartridge heater was placed at a bottom left corner of the interface. Various values were measured to determine the signal stability in the absence of heating using the cartridge heaters (
As shown in
When introducing elements of the examples disclosed herein, the articles “a,” “an,” “the” and “said” are intended to mean that there are one or more of the elements. The terms “comprising,” “including” and “having” are intended to be open-ended and mean that there may be additional elements other than the listed elements. It will be recognized by the person of ordinary skill in the art, given the benefit of this disclosure, that various components of the examples can be interchanged or substituted with various components in other examples.
Although certain aspects, examples and embodiments have been described above, it will be recognized by the person of ordinary skill in the art, given the benefit of this disclosure, that additions, substitutions, modifications, and alterations of the disclosed illustrative aspects, examples and embodiments are possible.
This application is related to and claims priority to and the benefit of U.S. Provisional Application No. 62/478,348 filed on Mar. 29, 2017, the entire disclosure of which is hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62478348 | Mar 2017 | US |