This application relates to cooling manifold and a method for manufacturing the cooling manifold.
In a typical air-cooled battery pack, ambient air from ambient atmosphere is directed across battery cells in the battery pack and is subsequently exhausted from the battery pack. However, the typical air-cooled battery pack has a major challenge in maintaining a temperature of the battery pack within a desired temperature range.
In particular, a maximum operating temperature of the battery cells can often be less than a temperature of ambient air utilized to cool the batteries. In this situation, it is impossible to maintain the battery cells within a desired temperature range in an air-cooled battery pack.
Accordingly, the inventors herein have recognized a need for an improved cooling manifold that minimizes and/or eliminates the above-mentioned deficiency.
A cooling manifold in accordance with another exemplary embodiment is provided. The cooling manifold includes a housing that defines an interior region having a serpentine flow path therein. The housing has a first plurality of grooves extending from a first surface of the housing into the housing. The grooves do not fluidly communicate with the interior region. The first plurality of grooves are configured to receive a portion of a thermally conductive member therein to conduct heat energy from the thermally conductive member to the housing. The cooling manifold further includes a top cap configured to seal a first end of the housing. The top cap has first and second apertures extending therethrough. The cooling manifold further includes a bottom cap configured to seal a second end of the housing. The cooling manifold further includes a first fluid port coupled to the top cap such that the first fluid port fluidly communicates with the first aperture in the top cap. The cooling manifold further includes a second fluid port coupled to the top cap such that the second fluid port fluidly communicates with the second aperture in the top cap.
A method for manufacturing a cooling manifold in accordance with another exemplary embodiment is provided. The method includes extruding a housing having an interior region utilizing an extrusion device. The housing has a plurality of grooves extending from a first surface of the housing into the housing. The grooves do not fluidly communicate with the interior region. The plurality of grooves are configured to receive a portion of a thermally conductive member therein to conduct heat energy from the thermally conductive member to the housing. The method further includes removing end portions of the housing within the interior region to form a serpentine flow path within the housing utilizing a milling device. The method further includes brazing a top cap to a first end of the housing to seal the first end utilizing a brazing device. The top cap has first and second apertures extending therethrough. The method further includes brazing a bottom cap to a second end of the housing to seal the second end utilizing the brazing device. The method further includes brazing a first fluid port to the top cap such that the first fluid port fluidly communicates with the first aperture in the top cap utilizing the brazing device. The method further includes brazing a second fluid port to the top cap such that the second fluid port fluidly communicates with the second aperture in the top cap utilizing the brazing device.
Referring to
For purposes of understanding, the term “fluid” means either a liquid or a gas. For example, a fluid can comprise either a coolant or a refrigerant. Exemplary coolants include ethylene glycol and propylene glycol. Exemplary refrigerants include R-11, R-12, R-22, R-134A, R-407C and R-410A.
Referring to
The battery cells 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93 are each provided to generate an operational voltage. Further, since each battery cell may have an identical structure, only the structure of the battery cell 80 will be described in further detail. As shown, the battery cell 80 includes a body portion 143, a peripheral extension portion 144, and electrodes 145, 146. The body portion 143 is generally rectangular-shaped and has the peripheral extension portion 144 extending around a periphery of the body portion 143. In an exemplary embodiment, the electrodes 145, 146 extend from a top portion of the battery cell 80 and have an operational voltage generated therebetween. In one exemplary embodiment, each battery cell is a lithium-ion battery cell. In alternative embodiments, the battery cells could be nickel-cadmium battery cells or nickel metal hydride battery cells for example. Of course, other types of battery cells known to those skilled in the art could be utilized.
Referring to
Referring to
Referring to
It should be noted that in an alternative embodiment, the grooves in the housing 160 of the cooling manifold 140 could have a different configuration or shape than the illustrated grooves, depending on a type of member being coupled to the cooling manifold 140 and a desired thermal performance for conducting heat energy away from the member. Further, in another alternative embodiment, the housing 160 of the cooling manifold 140 could be constructed without any grooves and could merely contact a member or a fluid to conduct heat energy away from the member or the fluid.
The bottom cap 168 is fixedly coupled to a bottom surface of the housing 160 to seal a first end of the housing 160.
The top cap 166 is fixedly coupled to a top surface of the housing 160 to seal a second end of the housing 160. The fluid ports 170, 172 are disposed on the top cap 166 over first and second apertures, respectively, extending through the top cap 166 such that the fluid ports 170, 172 fluidly communicate with the first and second apertures, respectively. The top cap 166 further includes grooves 230, 231, 232, 233, 234, 235, 236, 237 extending therethrough that communicate with the grooves 209, 210, 212, 214, 216, 217, 218, 220, respectively in the housing 160 for receiving corresponding graphite sheets therein.
During operation, refrigerant flows through the fluid port 170 and into the interior region 162 of the housing 160 and then through the serpentine flow path defined therein and then out through the fluid port 172. The refrigerant extracts heat energy from the housing 160 to cool the housing 160 and the graphite sheets, that further cools the battery cells in the battery module 20.
Referring to
The bottom cap 242 is fixedly coupled to a bottom surface of the extruded housing 240 to seal a first end of the housing 240.
The top cap 241 is fixedly coupled to a top surface of the housing 240. The fluid ports 243, 244 are disposed on the top cap 241 over first and second apertures, respectively, extending through the top cap 241 such that the fluid ports 243, 240 fluidly communicate with the first and second apertures, respectively. The top cap 241 further includes grooves 260, 261, 262, 263, 264, 265, 266, 267 extending therethrough that communicate with the grooves 250, 251, 252, 253, 254, 255, 256, 257, respectively in the housing 240.
During operation, refrigerant flows through the fluid port 243 and into the interior region of the housing 240 and then through the serpentine flow path defined therein and then through the fluid port 244. The refrigerant extracts heat energy from the housing 240 to cool the housing 240 and the graphite sheets coupled thereto, that further cools the battery cells.
Referring to
At step 272, an extrusion device 268 extrudes a housing 160 having an interior region 162. The extruded housing 160 has a first plurality of grooves 210, 212, 214, 216, 218, 220 extending from a first surface of the extruded housing 160 into the housing 160. The grooves do not fluidly communicate with the interior region 162. Further, the first plurality of grooves are configured to receive a portion of a thermally conductive member (e.g., the graphite sheet 80) therein to conduct heat energy from the thermally conductive member to the extruded housing 160.
At step 273, a milling device 271 mills out end portions of the extruded housing 160 within the interior region 162 to form a serpentine flow path within the housing 160. For example, the milling device 271 mills out portions of a first end of the extruded housing 160 to form open regions 400, 402, 404, 406 therein. Further, the milling device 271 mills out portions of a second end of the extruded housing 160 to form open regions 408, 410, 412, 414 therein. The serpentine flow path within the housing 160 is defined by the open regions 400, 402, 404, 406, 408, 410, 412, 414 and the flow channels 180, 182, 184, 186, 188, 190, 192, 194.
At step 274, an operator brazes the top cap 166 to a first end of the extruded housing 160 to seal the first end utilizing a brazing device 269. The top cap 166 has first and second apertures extending therethrough.
At step 275, the operator brazes the bottom cap 168 to a second end of the extruded housing 160 to seal the second end utilizing the brazing device 269.
At step 276, the operator brazes a first fluid port 170 to the top cap 166 such that the first fluid port fluidly communicates with the first aperture in the top cap 166 utilizing the brazing device 269.
At step 277, the operator brazes a second fluid port 172 to the top cap 166 such that the second fluid port 172 fluidly communicates with the second aperture in the top cap 166 utilizing the brazing device 269.
Referring again to
The condenser 24 is provided to extract heat energy from the refrigerant flowing therethrough to cool the refrigerant. As shown, a conduit 32 is fluidly coupled between the condenser 24 and the compressor 22. After exiting the condenser 24, the refrigerant is further pumped through the conduit 32 to the compressor 22.
The temperature sensor 36 is provided to generate a signal indicative of a temperature level of the battery module 20 that is received by the microprocessor 40.
The fan 38 is provided to urge air past the condenser 24 to cool the condenser 24 in response to a control signal from the microprocessor 40. As shown, the fan 38 is disposed proximate to the condenser 24. In an alternative embodiment, the condenser 24 is a liquid to refrigerant condenser.
The microprocessor 40 is provided to control operation of the battery system 10. In particular, the microprocessor 40 is configured to generate control signals for controlling operation of the compressor 22 and the fan 38, in response to a signal from the temperature sensor 36, as will be explained in greater detail below.
Referring to
At step 280, the temperature sensor 36 generates a first signal indicative of a temperature of the battery module 20 that is received by the microprocessor 40. The battery module 20 includes the battery cell 80, graphite sheets 102, 104, and cooling manifolds 140, 142. The graphite sheets 102, 104 are disposed on first and second sides, respectively, of the battery cell 80. The cooling manifolds 140, 142 are coupled to the graphite sheets 102, 104, respectively.
At step 282, the microprocessor 40 generates a second signal to induce the compressor 22 to pump refrigerant into the cooling manifolds 140, 142 of the battery module 20 when the first signal indicates the temperature of the battery module 20 is greater than a threshold temperature level.
At step 284, the microprocessor 40 generates a third signal to induce the fan 38 to blow air across the condenser 24 to cool the condenser 24 when the first signal indicates the temperature of the battery module 20 is greater than the threshold temperature level. The condenser 24 is fluidly coupled to the cooling manifolds 140, 142.
At step 286, the graphite sheets 102, 104 conduct heat energy from the battery cell 80 into the graphite sheets 102, 104 to cool the battery cell 20.
At step 288, the cooling manifolds 140, 142 conduct heat energy from the graphite sheets 102, 104 into the cooling manifolds 140, 142 and further conduct the heat energy into the refrigerant flowing through the cooling manifolds 140, 142.
At step 290, the condenser 24 receives the refrigerant from the cooling manifolds 140, 142 of the battery module 20 and extracts the heat energy from the refrigerant.
At step 292, the refrigerant is routed from the condenser 24 back to the compressor 22.
Referring to
The battery module 320 has an identical structure as the battery module 20 discussed above.
The pump 322 is configured to pump a coolant through the conduit 328 into the battery module 320 in response to a control signal from the microprocessor 340. As shown, the conduit 328 is fluidly coupled between the pump 322 and the battery module 320, and the conduit 330 is fluidly coupled between the battery module 320 and the heat exchanger 324. After exiting the battery module 320, the coolant is further pumped through the conduit 330 to the heat exchanger 324.
The heat exchanger 324 is provided to extract heat energy from the coolant flowing therethrough to cool the coolant. As shown, a conduit 331 is fluidly coupled between the heat exchanger 324 and the cold plate 325. After exiting the heat exchanger 324, the coolant is further pumped through the conduit 331 to the cold plate 325.
The fan 337 is provided to urge air past the heat exchanger 324 to cool the heat exchanger 324 in response to a control signal from the microprocessor 340. As shown, the fan 337 is disposed proximate to the heat exchanger 324.
The cold plate 325 is provided to extract heat energy from the coolant flowing therethrough to further cool the coolant. As shown, a conduit 322 is fluidly coupled between the cold plate 325 and the reservoir 326. After exiting the cold plate 325, the coolant is further pumped through the conduit 332 to the reservoir 326.
The reservoir 326 is provided to store at least a portion of the coolant therein. As shown, a conduit 334 is fluidly coupled between the reservoir 326 and the pump 322. After exiting the reservoir 326, the coolant is further pumped through the conduit 334 to the pump 322.
The temperature sensor 336 is provided to generate a signal indicative of a temperature level of the battery module 320 that is received by the microprocessor 340.
The refrigerant system 338 is provided to cool the heat exchanger 324 in response to a control signal from the microprocessor 340. As shown, the refrigerant system 338 is operably coupled to the cold plate 325.
The microprocessor 340 is provided to control operation of the battery system 310. In particular, the microprocessor 340 is configured to generate control signals for controlling operation of the pump 322, the fan 337, and the refrigerant system 338 in response to a signal from the temperature sensor 336, as will be explained in greater detail below.
Referring to
At step 360, the temperature sensor 336 generates a first signal indicative of a temperature of the battery module 320 that is received by the microprocessor 340. The battery module 320 includes a battery cell, first and second graphite sheets, and first and second cooling manifolds. The first and second graphite sheets are disposed on first and second sides, respectively, of the battery cell. The first and second cooling manifolds are coupled to the first and second graphite sheets, respectively.
At step 362, the microprocessor 340 generates a second signal to induce the pump 322 to pump coolant from the reservoir 326 into the first and second cooling manifolds of the battery module 320 when the first signal indicates the temperature of the battery module 320 is greater than a threshold temperature level.
At step 363, the microprocessor 340 generates a third signal to induce the fan 337 to blow air across the heat exchanger 324 to cool the heat exchanger 324 when the first signal indicates the temperature of the battery module 320 is greater than the threshold temperature level. The heat exchanger 324 is fluidly coupled to first and second cooling manifolds of the battery module 320.
At step 364, the microprocessor 340 generates a fourth signal to induce the refrigerant system 338 to pump a refrigerant through a portion of the cold plate 325 to cool the cold plate 325 when the first signal indicates the temperature of the battery module 320 is greater than the threshold temperature level. The cold plate 325 is fluidly coupled to the heat exchanger 324.
At step 366, the first and second graphite sheets conduct heat energy from the battery cell into the first and second graphite sheets, respectively, to cool the battery cell.
At step 368, the first and second cooling manifolds conduct heat energy from the first and second graphite sheets, respectively, into the first and second cooling manifolds and further conduct the heat energy into the coolant flowing through the first and second cooling manifolds, respectively.
At step 370, the heat exchanger 324 receives the coolant from the first and second cooling manifolds of the battery module 320 therein and extracts the heat energy from the coolant flowing therethrough.
At step 371, the cold plate 325 receives the coolant from the heat exchanger 324 and extracts the heat energy from the coolant flowing therethrough.
At step 372, the reservoir 326 receives the coolant from the cold plate 325 and the coolant is routed from the reservoir 326 back to the pump.
The cooling manifold and the method for manufacturing the cooling manifold provide a substantial advantage over other devices and methods. In particular, the cooling manifold utilizes an extruded housing that defines a serpentine flow path therethrough for effectively removing heat energy from a thermally conductive member coupled to the cooling manifold.
While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed for carrying this invention, but that the invention will include all embodiments falling within the scope of the appended claims. Moreover, the use of the terms, first, second, etc. are used to distinguish one element from another. Further, the use of the terms a, an, etc. do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced items.
Number | Name | Date | Kind |
---|---|---|---|
2273244 | Cornelius | Feb 1942 | A |
2391859 | Earl | Jan 1946 | A |
3503558 | Galiulo et al. | Mar 1970 | A |
3522100 | Lindstrom | Jul 1970 | A |
3550681 | Stier et al. | Dec 1970 | A |
3668757 | Rieder | Jun 1972 | A |
3964930 | Reiser | Jun 1976 | A |
4009752 | Wilson | Mar 1977 | A |
4063590 | McConnell | Dec 1977 | A |
4298904 | Koenig | Nov 1981 | A |
4322776 | Job et al. | Mar 1982 | A |
4390841 | Martin et al. | Jun 1983 | A |
4444994 | Baker et al. | Apr 1984 | A |
4518663 | Kodali et al. | May 1985 | A |
4646202 | Hook et al. | Feb 1987 | A |
4701829 | Bricaud et al. | Oct 1987 | A |
4777561 | Murphy et al. | Oct 1988 | A |
4849858 | Grapes et al. | Jul 1989 | A |
4995240 | Barthel et al. | Feb 1991 | A |
5057968 | Morrison | Oct 1991 | A |
5071652 | Jones et al. | Dec 1991 | A |
5214564 | Metzler et al. | May 1993 | A |
5270131 | Diethelm et al. | Dec 1993 | A |
5322745 | Yanagihara et al. | Jun 1994 | A |
5329988 | Juger | Jul 1994 | A |
5346786 | Hodgetts | Sep 1994 | A |
5356735 | Meadows et al. | Oct 1994 | A |
5510203 | Hamada et al. | Apr 1996 | A |
5520976 | Giannetti et al. | May 1996 | A |
5606242 | Hull et al. | Feb 1997 | A |
5652502 | Van Phuoc et al. | Jul 1997 | A |
5658682 | Usuda et al. | Aug 1997 | A |
5663007 | Ikoma et al. | Sep 1997 | A |
5736836 | Hasegawa et al. | Apr 1998 | A |
5756227 | Suzuki et al. | May 1998 | A |
5796239 | Van Phuoc et al. | Aug 1998 | A |
5825155 | Ito et al. | Oct 1998 | A |
5937664 | Matsuno et al. | Aug 1999 | A |
5941303 | Gowan et al. | Aug 1999 | A |
5982403 | Inagaki | Nov 1999 | A |
6016047 | Notten et al. | Jan 2000 | A |
6087036 | Rouillard et al. | Jul 2000 | A |
6111387 | Kouzu et al. | Aug 2000 | A |
6176095 | Porter | Jan 2001 | B1 |
6344728 | Kouzu et al. | Feb 2002 | B1 |
6353815 | Vilim et al. | Mar 2002 | B1 |
6362598 | Laig-Horstebrock et al. | Mar 2002 | B2 |
6399238 | Oweis et al. | Jun 2002 | B1 |
6441586 | Tate, Jr. et al. | Aug 2002 | B1 |
6462949 | Parish, IV et al. | Oct 2002 | B1 |
6512347 | Hellmann et al. | Jan 2003 | B1 |
6515454 | Schoch | Feb 2003 | B2 |
6534954 | Plett | Mar 2003 | B1 |
6563318 | Kawakami et al. | May 2003 | B2 |
6569556 | Zhou et al. | May 2003 | B2 |
6662891 | Misu et al. | Dec 2003 | B2 |
6689510 | Gow et al. | Feb 2004 | B1 |
6696197 | Inagaki et al. | Feb 2004 | B2 |
6724172 | Koo | Apr 2004 | B2 |
6750630 | Inoue et al. | Jun 2004 | B2 |
6775998 | Yuasa et al. | Aug 2004 | B2 |
6780538 | Hamada et al. | Aug 2004 | B2 |
6821671 | Hinton et al. | Nov 2004 | B2 |
6826948 | Bhatti et al. | Dec 2004 | B1 |
6829562 | Sarfert | Dec 2004 | B2 |
6832171 | Barsoukov et al. | Dec 2004 | B2 |
6876175 | Schoch | Apr 2005 | B2 |
6878485 | Ovshinsky et al. | Apr 2005 | B2 |
6892148 | Barsoukov et al. | May 2005 | B2 |
6927554 | Tate, Jr. et al. | Aug 2005 | B2 |
6943528 | Scoch | Sep 2005 | B2 |
6967466 | Koch | Nov 2005 | B2 |
6982131 | Hamada et al. | Jan 2006 | B1 |
7012434 | Koch | Mar 2006 | B2 |
7039534 | Ryno et al. | May 2006 | B1 |
7061246 | Dougherty et al. | Jun 2006 | B2 |
7070874 | Blanchet et al. | Jul 2006 | B2 |
7072871 | Tinnemeyer | Jul 2006 | B1 |
7098665 | Laig-Hoerstebrock | Aug 2006 | B2 |
7109685 | Tate, Jr. et al. | Sep 2006 | B2 |
7126312 | Moore | Oct 2006 | B2 |
7143124 | Garthwaite | Nov 2006 | B2 |
7150935 | Hamada et al. | Dec 2006 | B2 |
7197487 | Hansen et al. | Mar 2007 | B2 |
7199557 | Anbuky et al. | Apr 2007 | B2 |
7250741 | Koo et al. | Jul 2007 | B2 |
7253587 | Meissner | Aug 2007 | B2 |
7264902 | Horie et al. | Sep 2007 | B2 |
7278389 | Kirakosyan | Oct 2007 | B2 |
7315789 | Plett | Jan 2008 | B2 |
7321220 | Plett | Jan 2008 | B2 |
7327147 | Koch | Feb 2008 | B2 |
7467525 | Ohta et al. | Dec 2008 | B1 |
7531270 | Buck et al. | May 2009 | B2 |
7795845 | Cho | Sep 2010 | B2 |
7797958 | Alston et al. | Sep 2010 | B2 |
7816029 | Takamatsu et al. | Oct 2010 | B2 |
7846573 | Kelly | Dec 2010 | B2 |
7879480 | Yoon et al. | Feb 2011 | B2 |
7883793 | Niedzwiecki et al. | Feb 2011 | B2 |
7976978 | Shin et al. | Jul 2011 | B2 |
7981538 | Kim et al. | Jul 2011 | B2 |
7997367 | Nakamura | Aug 2011 | B2 |
8007915 | Kurachi | Aug 2011 | B2 |
8030886 | Mahalingam et al. | Oct 2011 | B2 |
8067111 | Koetting et al. | Nov 2011 | B2 |
20010035739 | Laig-Horstebrock et al. | Nov 2001 | A1 |
20020130637 | Schoch | Sep 2002 | A1 |
20020169581 | Sarfert | Nov 2002 | A1 |
20020182493 | Ovshinsky et al. | Dec 2002 | A1 |
20030052690 | Schoch | Mar 2003 | A1 |
20030184307 | Kozlowski et al. | Oct 2003 | A1 |
20030211384 | Hamada et al. | Nov 2003 | A1 |
20040000892 | Jae-Seung | Jan 2004 | A1 |
20040032264 | Schoch | Feb 2004 | A1 |
20040189257 | Dougherty et al. | Sep 2004 | A1 |
20050001627 | Anbuky et al. | Jan 2005 | A1 |
20050026014 | Fogaing et al. | Feb 2005 | A1 |
20050035742 | Koo et al. | Feb 2005 | A1 |
20050046388 | Tate, Jr. et al. | Mar 2005 | A1 |
20050089750 | Ng et al. | Apr 2005 | A1 |
20050100786 | Ryu et al. | May 2005 | A1 |
20050103486 | Demuth et al. | May 2005 | A1 |
20050110460 | Arai et al. | May 2005 | A1 |
20050127874 | Lim et al. | Jun 2005 | A1 |
20050134038 | Walsh | Jun 2005 | A1 |
20050194936 | Cho | Sep 2005 | A1 |
20060097698 | Plett | May 2006 | A1 |
20060100833 | Plett | May 2006 | A1 |
20060111854 | Plett | May 2006 | A1 |
20060111870 | Plett | May 2006 | A1 |
20060234119 | Kruger et al. | Oct 2006 | A1 |
20060286450 | Yoon et al. | Dec 2006 | A1 |
20070035307 | Scoch | Feb 2007 | A1 |
20070046292 | Plett | Mar 2007 | A1 |
20070087266 | Bourke et al. | Apr 2007 | A1 |
20070103120 | Plett | May 2007 | A1 |
20070120533 | Plett | May 2007 | A1 |
20070188143 | Plett | Aug 2007 | A1 |
20070236182 | Plett | Oct 2007 | A1 |
20080003491 | Yahnker et al. | Jan 2008 | A1 |
20080041079 | Nishijima et al. | Feb 2008 | A1 |
20080094035 | Plett | Apr 2008 | A1 |
20080182151 | Mizusaki et al. | Jul 2008 | A1 |
20080248338 | Yano et al. | Oct 2008 | A1 |
20090029239 | Koetting et al. | Jan 2009 | A1 |
20090087727 | Harada et al. | Apr 2009 | A1 |
20090104512 | Fassnacht et al. | Apr 2009 | A1 |
20090155680 | Maguire et al. | Jun 2009 | A1 |
20090186265 | Koetting et al. | Jul 2009 | A1 |
20090258288 | Weber et al. | Oct 2009 | A1 |
20090280395 | Nemesh et al. | Nov 2009 | A1 |
20090325052 | Koetting et al. | Dec 2009 | A1 |
20090325054 | Payne et al. | Dec 2009 | A1 |
20090325055 | Koetting et al. | Dec 2009 | A1 |
20100112419 | Jang et al. | May 2010 | A1 |
20100203376 | Choi et al. | Aug 2010 | A1 |
20100209760 | Yoshihara et al. | Aug 2010 | A1 |
20100262791 | Gilton | Oct 2010 | A1 |
20100275619 | Koetting et al. | Nov 2010 | A1 |
20100279152 | Payne | Nov 2010 | A1 |
20100279154 | Koetting et al. | Nov 2010 | A1 |
20110027640 | Gadawski et al. | Feb 2011 | A1 |
20110041525 | Kim et al. | Feb 2011 | A1 |
20110052959 | Koetting et al. | Mar 2011 | A1 |
20120082880 | Koetting et al. | Apr 2012 | A1 |
Number | Date | Country |
---|---|---|
1577966 | Sep 2005 | EP |
1852925 | Nov 2007 | EP |
08111244 | Apr 1996 | JP |
09129213 | May 1997 | JP |
09219213 | Aug 1997 | JP |
2001105843 | Apr 2001 | JP |
2002038033 | Feb 2002 | JP |
2002319383 | Oct 2002 | JP |
2003188323 | Jul 2003 | JP |
2005126315 | May 2005 | JP |
2005349955 | Dec 2005 | JP |
2006139928 | Jun 2006 | JP |
2007305425 | Nov 2007 | JP |
2008054379 | Mar 2008 | JP |
2008062875 | Mar 2008 | JP |
2008080995 | Apr 2008 | JP |
2008159440 | Jul 2008 | JP |
2009009889 | Jan 2009 | JP |
2009054297 | Mar 2009 | JP |
20050092605 | Sep 2005 | KR |
100637472 | Oct 2006 | KR |
100765659 | Oct 2007 | KR |
20080047641 | May 2008 | KR |
20090082212 | Jul 2009 | KR |
100921346 | Oct 2009 | KR |
2006101343 | Sep 2006 | WO |
2007007503 | Jan 2007 | WO |
2007115743 | Oct 2007 | WO |
2009073225 | Jun 2009 | WO |
Entry |
---|
U.S. Appl. No. 12/165,100, filed Jun. 30, 2008 entitled Battery Cell Assembly Having Heat Exchanger with Serpentine Flow Path. |
U.S. Appl. No. 12/164,780, filed Jun. 30, 2008 entitled Battery Module Having Battery Cell Assembly with Heat Exchanger. |
U.S. Appl. No. 12/164,627, filed Jun. 30, 2008 entitled Liquid Cooled Battery Manifold Assembly with Flow Balancing Feature. |
U.S. Appl. No. 12/246,073, filed Oct. 6, 2008 entitled Battery Cell Carrier That Engages Side Walls of Active Cell. |
U.S. Appl. No. 12/164,445, filed Jun. 30, 2008 entitled Battery Module Having a Rubber Cooling Manifold. |
U.S. Appl. No. 12/016,630, filed Jan. 18, 2008 entitled Battery Cell Assembly and Method for Assembling the Battery Cell Assembly. |
U.S. Appl. No. 12/258,696, filed Oct. 27, 2008 entitled Battery Module Having Cooling Manifold with Ported Screws and Method for Cooling the Battery Module. |
U.S. Appl. No. 12/433,155, filed Apr. 30, 2009 entitled Cooling System for a Battery and a Method for Cooling the Battery System. |
U.S. Appl. No. 12/433,485, filed Apr. 30, 2009 entitled Battery Systems, Battery Module, and Method for Cooling the Battery Module. |
U.S. Appl. No. 12/433,534, filed Apr. 30, 2009 entitled Battery Systems, Battery Modules, and Method for Cooling a Battery Module. |
U.S. Appl. No. 12/433,397, filed Apr. 30, 2009 entitled Battery Systems, Battery Modules, and Method for Cooling a Battery Module. |
U.S. Appl. No. 12/164,741, filed Jun. 30, 2008 entitled Battery Module Having Battery Cell Assemblies with Alignment-Coupling Features. |
U.S. Appl. No. 12/426,795, filed Apr. 20, 2009 entitled Frame Member, Frame Assembly and Battery Cell Assembly Made Therefrom and Methods of Making the Same. |
“Gasket”. Merriam-Webster. Merriam-Webster. Web. May 30, 2012. <http://www.merriam-webster.com/dictionary/gasket>. |
International Search Report; International Application No. PCT/KR2009/000258; International Filing Date: Jan. 16, 2009; Date of Mailing: Aug. 28, 2009; 2 pages. |
International Search Report; International Application No. PCT/KR2009/003428, International Filing Date: Jun. 25, 2009; Date of Mailing: Jan. 22, 2010; 2 pages. |
International Search Report; International Application No. PCT/KR2009/003429; International Filing Date: Jun. 25, 2009; Date of Mailing: Jan. 12, 2010; 3 pages. |
International Search Report; International Application No. PCT/KR2009/003430; International Filing Date: Jun. 25, 2009; Date of Mailing: Feb. 3, 2010; 2 pages. |
International Search Report; International Application No. PCT/KR2009/003434; International Filing Date: Jun. 25, 2009; Date of Mailing: Jan. 18, 2010; 2 pages. |
International Search Report; International Application No. PCT/KR2009/003436; International Filing Date: Jun. 25, 2009; Date of Mailing: Jan. 22, 2010; 2 pages. |
International Search Report; International Application No. PCT/KR2009/006121; International Filing Date: Oct. 22, 2009; Date of Mailing: May 3, 2010; 2 pages. |
International Search Report; International Application No. PCT/KR2010/002334; International Filing Date: Apr. 15, 2010; Date of Mailing: Nov. 29, 2010; 2 pages. |
International Search Report; International Application No. PCT/KR2010/002336; International Filing Date: Apr. 15, 2010; Date of Mailing: Jan. 31, 2011; 2 pages. |
International Search Report; International Application No. PCT/KR2010/002337; International Filing Date: Apr. 15, 2010; Date of Mailing: May 3, 2010; 2 pages. |
International Search Report; International Application No. PCT/KR2010/002340; International Filing Date: Apr. 15, 2010; Date of Mailing: Jan. 31, 2011; 2 pages. |
International Search Report; International Application No. PCT/KR2010/004944; International Filing Date: Jul. 28, 2010; Date of Mailing: Apr. 29, 2011; 2 pages. |
International Search Report; International Application No. PCT/KR2010/005639; International Filing Date: Aug. 24, 2010; Date of Mailing: Jun. 3, 2011; 2 pages. |
Machine translation of Japanese Patent Application No. 2009-009889 A, published Jan. 15, 2009. |
Thomas J. Gadawski et al., pending U.S. Appl. No. 13/433,649 entitled “Battery System and Method for Cooling the Battery System,” filed with the U.S. Patent and Trademark Office on Mar. 29, 2012. |
U.S. Appl. No. 13/475,963, filed May 19, 2012 entitled Battery Cell Assembly and Method for Manufacturing a Cooling Fin for the Battery Cell Assembly. |
Number | Date | Country | |
---|---|---|---|
20100276132 A1 | Nov 2010 | US |