This invention relates to a system for, and a method of, providing cooling of a memory device. In an embodiment, the invention provides rapid memory cooling of a volatile memory device in the event of unexpected power loss.
Volatile RAM is often used as write cache in storage or processing systems. Although this has technical advantages, there is the significant disadvantage that if there is a loss of power before the data reaches the storage disk, then data can be lost before it has been safely stored. Various schemes to preserve the data are available. One such scheme uses high current battery systems to dump the data to disk, hopefully before the data is lost, or to maintain the contents until normal power is restored. None of these systems is perfect. For example, high current batteries might not be suitable for use in some environments due to the risk of fire, and there is still a risk that data will be lost due to a flat battery.
According to a first aspect of the present invention, there is provided a system for providing cooling of a memory device comprising a cooling system arranged to store a coolant, a valve system connected to the output of the cooling system, and a control system connected to the valve system and arranged to open the valve system when power is lost to the control system.
According to a second aspect of the present invention, there is provided a method for providing cooling of a memory device comprising storing a coolant in a cooling system, retaining the coolant in the cooling system with a valve system connected to the output of the cooling system, and opening the valve system when power is lost to the control system.
Owing to the invention, it is possible to provide cooling protection to a volatile memory device in the event of a power cut. This provides a method of reducing the chances of losing data that is stored by the memory device. A rapid physical cooling system is present, close to the memory device being protected, which is triggered mechanically/physically by the loss of power. Memory that is substantially cooled has been shown to retain data for an hour or more and the coolant will rapidly lower the temperature of the memory device being protected. Experiments have shown that cooling DRAM (Dynamic Random Access Memory), the most common form of volatile RAM in current usage, allows it to hold its data for considerably longer, even when no power is applied.
In a preferred embodiment, a canister of coolant, for example CO2 or a low boiling point liquid which is preferably non-toxic and that does not promote fire, is attached to a memory subsystem. The canister is connected to a pair of electrically controlled valves A and B and thermally connected, via piping or physical contact, with the memory subsystem being protected. Valve A is open when there is no energy applied. Valve B is closed by default, but may be unlocked by an electrical signal, and will maintain its open/closed state after removal of energy. The system starts with valve B closed and is unarmed. When the system boots, and starts writing to the memory device, firmware energises valve A and thus prevents release of the coolant and then locks valve B in the open position and the system is now armed. On a clean closedown, the system writes data out, locks valve B in the closed position and is now unarmed again. When in the armed state, any loss of power results in valve A opening, with no control signal needed since it is the loss of power itself that opens valve A and this results in rapid cooling of the memory device. When power is restored, the contents of the RAM may be dumped for analysis; the use of ECC RAM increases the chances that the data can be recovered. In a system with battery backup, valve A's power may come from the backup battery system so that only after battery power is lost is the system triggered. The system may include mechanisms for recycling coolant and/or easy replacement of the coolant canister.
Embodiments of the present invention will now be described, by way of example only, with reference to the following drawings, in which:
The system also comprises a delivery system 18, which is connected to the output of the valve system 14 and is arranged to deliver the coolant from the cooling system 12 to the memory device 10. The delivery system 18 is optional and will depend upon the specific implementation of the overall system. In this example, the delivery system 18 takes the form of a sealed pipe that is in close proximity to the memory device 10 and snakes to and from over the memory device 10. The cooling system 12 comprises a canister of low boiling point fluid and this is exhausted at the end of the delivery system 18.
The valve system 14 comprises a pair of valves A and B that are in series. The valve system 14 comprises a valve A that requires power to remain open. The valve B requires power to switch the valve B from open to closed position and vice versa, but the removal of power from the valve B does not change its configuration in any way. The two valves A and B are connected to the control system 16 which operates these two valves. The control system 16 is connected to other (not shown) components, as is the memory system 10. Both the control system 16 and the memory system 10 are powered by external power sources (not shown).
A second embodiment of the system for providing cooling of the memory device 10 is shown in
The control system 16 operates the valves A and B. When the system is not in operation, the valve B is in its closed position and the valve A is in its open position (since valve A requires power to keep it closed). Once the memory system 10 is being used, then the control system 16 energises valve A, closing that valve, and opens valve B (which requires power to open or close but not to remain open or closed). The system is now armed and is providing emergency protection to the memory system 10, in the event of an unexpected power cut. If the memory system 10 is no longer being used, then valve B is shut and valve A has power removed, which opens that valve.
However, if the valve system 14 is armed (valve B open and valve A closed), then should there be a power cut, then valve A will automatically open, since this valve requires power to keep it closed. At this point, the coolant being stored by the cooling system 12 is released into the delivery system 18 and will instantaneously cool the memory system 10, providing protection against the power loss to the memory system 10. Whatever data is being stored by the memory system 10 will be retained by the memory system 10, as the sudden cooling of the volatile memory will help that device retain the data that is present.
A third embodiment of the system for providing cooling of the memory device 10 is shown in
The system shown in
The advantage of the battery 22 is that should the power be cut to the control system 16 and the memory system 10, the battery 22 will provide power first, before the deployment of any coolant. Only if this battery fails will the control system 16 be without power and the coolant within the cooling system 12 be delivered to cool the memory system. The battery 22 provides a first layer of protection to the memory system 10 and should allow the data within the memory system 10 to be written out to disk before it is lost. Should this battery 22 be flat or run out of sufficient power, then the control system 16 will lose power, causing the valve A to open, with the result that the coolant exits the canister 12.
The final step of the method comprises step S4.3, which comprises opening the valve system 14 when power is lost to the control system 16. Once the control system 16 is armed, then any power loss to the control system 16 will cause the valve system 14 to open, since the armed condition means that power is required to keep the valve system 14 closed. Once power is lost, then the valve system 14 will open and the coolant within the cooling system 12 will be deployed to cool the memory device 10. The opening of the valve system 14 happens automatically after power is lost to the control system 16.
As described above, the valve system 14 has two main conditions, armed and unarmed. In the unarmed condition, there is no power to the control system 16 and the valve system 14 is closed. The memory device 10 is assumed not to be in use. In the armed condition, the control system 16 is powered 16 and the valve system 14 is closed, but the valve system 14 (in the armed condition) will open should there be any power loss to the control system 16. This is the condition used when the memory device 10 is assumed to be in use and in need of protection from any sudden power loss.
Number | Date | Country | Kind |
---|---|---|---|
1222696.5 | Dec 2012 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
4721589 | Harris | Jan 1988 | A |
5239664 | Verrier | Aug 1993 | A |
6178928 | Corriveau | Jan 2001 | B1 |
6707748 | Lin et al. | Mar 2004 | B2 |
7403440 | Perner | Jul 2008 | B2 |
7681410 | Bean, Jr. | Mar 2010 | B1 |
8090988 | Hoang | Jan 2012 | B2 |
8266398 | Manczak et al. | Sep 2012 | B2 |
8518588 | Wake | Aug 2013 | B2 |
9052722 | Chainer | Jun 2015 | B2 |
20040027001 | Reed, III | Feb 2004 | A1 |
20040047788 | Abe | Mar 2004 | A1 |
20050270738 | Hellriegel | Dec 2005 | A1 |
20060196634 | Sato | Sep 2006 | A1 |
20080114521 | Doering | May 2008 | A1 |
20090000779 | Hickam | Jan 2009 | A1 |
20090303630 | Zhou | Dec 2009 | A1 |
20100028740 | Kume | Feb 2010 | A1 |
20100073871 | Flynn | Mar 2010 | A1 |
20100246117 | Brunschwiler | Sep 2010 | A1 |
20110282619 | Laursen | Nov 2011 | A1 |
Number | Date | Country |
---|---|---|
2459543 | Nov 2009 | GB |
2012026620 | Feb 2012 | JP |
2006060237 | Jun 2006 | WO |
Entry |
---|
IPCOM000073582D, “Method to Mitigate Data Loss in a Multiple Failure Scenario,” Feb. 22, 2005. |
J. Alex Halderman et al., “Lest We Remember: Cold Boot Attacks on Encryption Keys,” Published in Proc. 2008 USENIX Security Symposium; Feb. 21, 2008. |
Number | Date | Country | |
---|---|---|---|
20140168888 A1 | Jun 2014 | US |