As is known in the art, a phased array antenna includes a plurality of active circuits spaced apart from each other by known distances. Each of the active circuits is coupled through a plurality of phase shifter circuits, amplifier circuits and/or other circuits to either or both of a transmitter and receiver. In some cases, the phase shifter, amplifier circuits and other circuits (e.g., mixer circuits) are provided in a so-called transmit/receive (T/R) module and are considered to be part of the transmitter and/or receiver.
The phase shifters, amplifier and other circuits (e.g., T/R modules) often require an external power supply (e.g., a DC power supply) to operate correctly. Thus, the circuits are referred to as “active circuits” or “active components.” Accordingly, phased array antennas which include active circuits are often referred to as “active phased arrays.”
Active circuits dissipate power in the form of heat. High amounts of heat can cause active circuits to be inoperable. Thus, active phased arrays must be cooled. In one example heat-sink(s) are attached to each active circuit to dissipate the heat.
In one example, an active, electronically scanned array (AESA) panel architecture system includes a first daughter board that include active circuits, a first thermal spreader coupled to the active circuits of the first daughter board, a first compliant board coupled to the first daughter board, a second daughter board that includes active circuits, a second thermal spreader coupled to the active circuits of the second daughter board, a second compliant board coupled to the second daughter board, a mother board assembly coupled to first and second compliant boards and a cold-plate assembly in contact with the first thermal spreader and the second thermal spreader. The first daughter board and the first thermal spreader have a first thickness and the second daughter board and the second thermal spreader have a second thickness different from the first thickness. Either of the first or second compliant boards is configured to expand or contract to account for the differences between the first and second thicknesses.
In another aspect, an active, electronically scanned array (AESA) panel architecture system includes a first daughter board that includes active circuits, a first thermal spreader coupled to the active circuits of the first daughter board, a first RF interface board coupled to the first daughter board, a second daughter board that includes active circuits, a second thermal spreader coupled to the active circuits of the second daughter board, a second RF interface board coupled to the second daughter board, a mother board assembly coupled to first and second RF interface boards, and a cold-plate assembly in contact with the first and second thermal spreaders. The first daughter board and the first thermal spreader have a first thickness and the second daughter board and the second thermal spreader have a second thickness different from the first thickness. The first and second RF interface boards each include compliant elements on at least one side of the first RF interface board. The first and second RF interface boards are configured to expand or contract to account for the differences in thicknesses between the first thickness and the second thickness. The first RF interface board provides electrical coupling between the active circuits of the first daughter board and the mother board and the second RF interface board provides electrical coupling between the active circuits of the second daughter board and the mother board.
In a further aspect, a system includes a first circuit board that includes integrated circuits, a first thermal spreader coupled to the integrated circuits of the first circuit board, a first compliant board coupled to the first circuit board, a second circuit board that includes integrated circuits and a second thermal spreader coupled to the integrated circuits of the second circuit board. The first circuit board and the first thermal spreader have a first thickness. The second daughter board and the second thermal spreader have a second thickness. The system further includes a second compliant board coupled to the second circuit board, a board assembly coupled to first and second compliant boards and a cold-plate assembly in contact with the first and second thermal spreaders. Either of the first or the second compliant boards is configured to expand or contract to account for the differences between the first and second thicknesses.
A “panel array” (or more simply “panel”) refers to a multilayer printed wiring board
(PWB) which includes an array of active circuits (or more simply “radiating elements” or “radiators”), as well as RF, logic and DC distribution circuits in one highly integrated PWB. A panel is also sometimes referred to herein as a tile array (or more simply, a “tile”).
An array antenna may be provided from a single panel (or tile) or from a plurality of panels. In the case where an array antenna is provided from a plurality of panels, a single one of the plurality of panels is sometimes referred to herein as a “panel sub-array” (or a “tile sub-array”).
Reference is sometimes made herein to an array antenna having a particular number of panels. It should of course, be appreciated that an array antenna may be comprised of any number of panels and that one of ordinary skill in the art will appreciate how to select the particular number of panels to use in any particular application.
It should also be noted that reference is sometimes made herein to a panel or an array antenna having a particular array shape and/or physical size or a particular number of active circuits. One of ordinary skill in the art will appreciate that the techniques described herein are applicable to various sizes and shapes of panels and/or array antennas and that any number of active circuits may be used.
Similarly, reference is sometimes made herein to panel or tile sub-arrays having a particular geometric shape (e.g., square, rectangular, round) and/or size (e.g., a particular number of active circuits) or a particular lattice type or spacing of active circuits. One of ordinary skill in the art will appreciate that the techniques described herein are applicable to various sizes and shapes of array antennas as well as to various sizes and shapes of panels (or tiles) and/or panel sub-arrays (or tile sub-arrays).
Thus, although the description provided herein below describes the inventive concepts in the context of an array antenna having a substantially square or rectangular shape and comprised of a plurality of tile sub-arrays having a substantially square or rectangular-shape, those of ordinary skill in the art will appreciate that the concepts equally apply to other sizes and shapes of array antennas and panels (or tile sub-arrays) having a variety of different sizes, shapes, and types of elements. Also, the panels (or tiles) may be arranged in a variety of different lattice arrangements including, but not limited to, periodic lattice arrangements or configurations (e.g., rectangular, circular, equilateral or isosceles triangular and spiral configurations) as well as non-periodic or other geometric arrangements including arbitrarily shaped array geometries.
Reference is also sometimes made herein to the array antenna including an antenna element (active circuit) of a particular type, size and/or shape. For example, one type of radiating element is a so-called patch antenna element having a square shape and a size compatible with operation at a particular frequency (e.g., 10 GHz) or range of frequencies (e.g., the X-band frequency range). Reference is also sometimes made herein to a so-called “stacked patch” antenna element. Those of ordinary skill in the art will recognize, of course, that other shapes and types of antenna elements (e.g., an antenna element other than a stacked patch antenna element) may also be used and that the size of one or more active circuits may be selected for operation at any frequency in the RF frequency range (e.g., any frequency in the range of about 1 GHz to about 100 GHz). The types of radiating elements which may be used in the antenna of the present invention include but are not limited to notch elements, dipoles, slots or any other antenna elements (regardless of whether the antenna element is a printed circuit element) known to those of ordinary skill in the art. It should also be appreciated that the active circuits in each panel or tile sub-array can be provided having any one of a plurality of different antenna element lattice arrangements including periodic lattice arrangements (or configurations) such as rectangular, square, triangular (e.g., equilateral or isosceles triangular), and spiral configurations as well as non-periodic or arbitrary lattice arrangements. Applications of at least some examples of the panel array (sometimes referred to as a “tile array”) architectures described herein include, but are not limited to, radar, electronic warfare (EW) and communication systems for a wide variety of applications including ship based, airborne, missile and satellite applications. It should thus be appreciated that the panel (or tile sub-array) described herein can be used as part of a radar system or a communications system.
At least some examples as described herein are applicable, but not limited to, military, airborne, shipborne, communications, unmanned aerial vehicles (UAV) and/or commercial wireless applications.
The tile sub-arrays to be described herein below can also utilize embedded circulators; a slot-coupled, polarized egg-crate radiator; a single integrated monolithic microwave integrated circuit (MMIC); and a passive radio frequency (RF) circuit architecture. For example, as described further herein, technology described in the following commonly assigned United States Patents can be used in whole or in part and/or adapted to be used with at least some embodiments of the tile subarrays described herein: U.S. Pat. No. 6,611,180, entitled “Embedded Planar Circulator”; U.S. Pat. No. 6,624,787, entitled “Slot Coupled, Polarized, Egg-Crate Radiator”; and/or U.S. Pat. No. 6,731,189, entitled “Multilayer stripline radio frequency circuits and interconnection methods.” Each of the above patents is hereby incorporated herein by reference in their entireties.
Referring now to
As illustrated in tiles 12b and 12i, in the example of
In another example, each of the tile sub-arrays 12a-12N includes 16 active circuits. Thus, in the case where the array 10 includes sixteen (16) such tiles and each tiles includes sixteen (16) active circuits 15, the array 10 includes a total of two-hundred and fifty-six (256) active circuits 15.
In view of the above examples, it should thus be appreciated that each of the tile sub-arrays can include any desired number of active circuits 15. The particular number of active circuits to include in each of the tile sub-arrays 12a-12N can be selected in accordance with a variety of factors including but not limited to the desired frequency of operation, array gain, the space available for the antenna and the particular application for which the array antenna 10 is intended to be used and the size of each tile sub-array 12. For any given application, those of ordinary skill in the art will appreciate how to select an appropriate number of radiating active circuits to include in each tile sub-array. The total number of active circuits 15 included in an antenna array such as antenna array 10 depends upon the number of tiles included in the antenna array and as well as the number of active circuits included in each tile.
Each tile sub-array is electrically autonomous (except any mutual coupling which occurs between active circuits 15 within a tile and on different tiles). Thus, the RF feed circuitry which couples RF energy to and from each radiator on a tile is incorporated entirely within that tile (i.e., all of the RF feed and beamforming circuitry which couples RF signals to and from active circuits 15 in tile 12b are contained within tile 12b). In one example, each tile includes one or more RF connectors and the RF signals are provided to the tile through the RF connector(s) provided on each tile sub-array.
Also, signal paths for logic signals and signal paths for power signals which couple signals to and from transmit/receive (T/R) circuits are contained within the tile in which the T/R circuits exist. RF signals are provided to the tile through one or more power/logic connectors provided on the tile sub-array.
The RF beam for the entire array 10 is formed by an external beamformer (i.e., external to each of the tile subarrays 12) that combines the RF outputs from each of the tile sub-arrays 12a-12N. As is known to those of ordinary skill in the art, the beamformer may be conventionally implemented as a printed wiring board stripline circuit that combines N sub-arrays into one RF signal port (and hence the beamformer may be referred to as a 1:N beamformer).
It should be appreciated that the examples of the tile sub-arrays described herein (e.g., tile sub-arrays 12a-12N) differ from conventional array architectures in that the microwave circuits of the tile sub-arrays are contained in circuit layers which are disposed in planes that are parallel to a plane defined by a face (or surface) of an array antenna (e.g., surface 10a of array antenna 10) made up from the tiles. In
Advantageously, the tile sub-array embodiments described herein can be manufactured using standard printed wiring board (PWB) manufacturing processes to produce highly integrated, passive RF circuits, using commercial, off-the-shelf (COTS) microwave materials, and highly integrated, active monolithic microwave integrated circuits (MMIC's). This results in reduced manufacturing costs. Array antenna manufacturing costs can also be reduced since the tile sub-arrays can be provided from relatively large panels or sheets of PWBs using conventional PWB manufacturing techniques.
Referring to
In one example, each daughter board 32a-32h includes sixteen active circuits 15. Instead of having one large daughter board with active circuits 15 connected to one thermal spreader, this configuration increases yield during manufacturing by reducing the size of the daughter board into smaller pieces. In addition, it is easier to rework problems with smaller daughter boards as opposed to larger one piece daughter boards. For example, it is more cost effective to throw away sixteen active circuits 15 because of an active circuit failure than one hundred twenty-eight active circuits.
Cooling a number of substantially coplanar active circuits 15 (e.g., integrated circuits) with a single cold plate in direct contact with top surfaces of the thermal spreaders 34a-34h is difficult because of the many tolerances that exist resulting from height variations (thicknesses). In particular, a cold plate 40 with channels 42 for receiving coolant is unable to make contact with all of the thermal spreaders 34e-34h (
In one example, the active circuits 15, the thermal spreaders 34 and the daughter boards 32 may have different thicknesses. With respect to
Referring to
In another example, the interface board 124, including the conductive elastomeric contacts 200, is also electrically conductive and configured to provide an RF insertion loss of less than 0.1 dB. In other examples, only one side of the RF interface board 124 includes the conductive elastomeric contacts 200 and the opposite side is either integrated with the daughter board 32 or the mother board 20.
Referring to
The thermal spreaders (e.g., the thermal spreader 234e shown in
In one example, either of the bosses 210a, 210b have a thickness tolerance, TB, of about +/−0.001 inches and either of the bosses 212a, 212b have a thickness tolerance, TA, of about +/−0.001 inches. If the daughter board 32e has a thickness tolerance of about +/−0.010 inches, then the compliant RF interface board 124 is configured to have an adjustable thickness of at least +/−0.012 inches.
Screws 214a, 214b are used to mount the thermal spreader 234e/daughter board 32e subassembly to the mother board 20 and the circulator/radiator assembly 150. The screws 214a, 214b extend through the bosses 210a, 210b respectively and through the mother board 20, the interface 174 and the circulator/radiator assembly 150. In one example, the screws 214a, 214b pass through a clearance hole (not shown) in the respective bosses 210a, 210b and the mother board 20, RF interface board 124 and engage threads (not shown) in the circulator/radiator assembly 150.
Screws 202a, 202b are used to mount the RF panel assembly to the cold plate 40 (not shown in
The screws 202a, 202b, 214a, 214b perform a clamping function ensuring that the RF interface board 124 has adequate compression for RF transmission and control the gap between the thermal spreader 234e and the cold plate 40 to ensure efficient transfer of heat.
While screws 202a, 202b, 214a, 214b have been described one of ordinary skill in the art would recognize that the screws 202a, 202b, 214a, 214b may be replaced with fasteners (e.g., standoffs and so forth) or other clamping structures. Also, one of ordinary skill in the art would recognize other known methods or techniques to ensure contact between the cold plate and the thermal spreaders and to ensure compression between the daughter board 234e, mother board 20 and the compliant RF interface board 124.
The processes described herein are not limited to the specific embodiments described. Elements of different embodiments described herein may be combined to form other embodiments not specifically set forth above. Other embodiments not specifically described herein are also within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3091743 | Wilkinson | May 1963 | A |
3665480 | Fassett | May 1972 | A |
4489363 | Goldberg | Dec 1984 | A |
4527165 | deRonde | Jul 1985 | A |
4698663 | Sugimoto et al. | Oct 1987 | A |
4706094 | Kubick | Nov 1987 | A |
4751513 | Daryoush et al. | Jun 1988 | A |
4835658 | Bonnefoy | May 1989 | A |
5005019 | Zaghloul et al. | Apr 1991 | A |
5055852 | Dusseux et al. | Oct 1991 | A |
5099254 | Tsukii et al. | Mar 1992 | A |
5276455 | Fitzsimmons et al. | Jan 1994 | A |
5398010 | Klebe | Mar 1995 | A |
5400040 | Lane et al. | Mar 1995 | A |
5404148 | Zwarts | Apr 1995 | A |
5451969 | Toth et al. | Sep 1995 | A |
5459474 | Mattioli et al. | Oct 1995 | A |
5488380 | Harvey et al. | Jan 1996 | A |
5493305 | Wooldridge et al. | Feb 1996 | A |
5563613 | Schroeder et al. | Oct 1996 | A |
5592363 | Atarashi et al. | Jan 1997 | A |
5646826 | Katchmar | Jul 1997 | A |
5675345 | Pozgay et al. | Oct 1997 | A |
5724048 | Remondiere | Mar 1998 | A |
5786792 | Bellus et al. | Jul 1998 | A |
5796582 | Katchmar | Aug 1998 | A |
5854607 | Kinghorn | Dec 1998 | A |
5907304 | Wilson et al. | May 1999 | A |
6011507 | Curran et al. | Jan 2000 | A |
6037903 | Lange et al. | Mar 2000 | A |
6061027 | Legay et al. | May 2000 | A |
6078289 | Manoogian et al. | Jun 2000 | A |
6087988 | Pozgay | Jul 2000 | A |
6091373 | Raguenet | Jul 2000 | A |
6104343 | Brookner et al. | Aug 2000 | A |
6127985 | Guler | Oct 2000 | A |
6166705 | Mast et al. | Dec 2000 | A |
6181280 | Kadambi et al. | Jan 2001 | B1 |
6184832 | Geyh et al. | Feb 2001 | B1 |
6208316 | Cahill | Mar 2001 | B1 |
6211824 | Holden et al. | Apr 2001 | B1 |
6218214 | Panchou et al. | Apr 2001 | B1 |
6222493 | Caille et al. | Apr 2001 | B1 |
6225695 | Chia et al. | May 2001 | B1 |
6297775 | Haws et al. | Oct 2001 | B1 |
6388620 | Bhattacharyya | May 2002 | B1 |
6392890 | Katchmar | May 2002 | B1 |
6424313 | Navarro et al. | Jul 2002 | B1 |
6480167 | Matthews | Nov 2002 | B2 |
6483705 | Snyder et al. | Nov 2002 | B2 |
6611180 | Puzella et al. | Aug 2003 | B1 |
6621470 | Boeringer et al. | Sep 2003 | B1 |
6624787 | Puzella et al. | Sep 2003 | B2 |
6661376 | Maceo et al. | Dec 2003 | B2 |
6670930 | Navarro | Dec 2003 | B2 |
6686885 | Barkdoll et al. | Feb 2004 | B1 |
6703976 | Jacomb-Hood et al. | Mar 2004 | B2 |
6711814 | Barr et al. | Mar 2004 | B2 |
6731189 | Puzella et al. | May 2004 | B2 |
6756684 | Huang | Jun 2004 | B2 |
6856210 | Zhu et al. | Feb 2005 | B2 |
6900765 | Navarro et al. | May 2005 | B2 |
6943330 | Ring | Sep 2005 | B2 |
6961248 | Vincent et al. | Nov 2005 | B2 |
6995322 | Chan et al. | Feb 2006 | B2 |
7030712 | Brunette et al. | Apr 2006 | B2 |
7061446 | Short, Jr. et al. | Jun 2006 | B1 |
7129908 | Edward et al. | Oct 2006 | B2 |
7132990 | Stenger et al. | Nov 2006 | B2 |
7180745 | Mandel et al. | Feb 2007 | B2 |
7187342 | Heisen et al. | Mar 2007 | B2 |
7298235 | Hauhe et al. | Nov 2007 | B2 |
7348932 | Puzella et al. | Mar 2008 | B1 |
7417598 | Navarro et al. | Aug 2008 | B2 |
7443354 | Navarro et al. | Oct 2008 | B2 |
7444737 | Worl | Nov 2008 | B2 |
7489283 | Ingram et al. | Feb 2009 | B2 |
7508338 | Pluymers et al. | Mar 2009 | B2 |
7597534 | Hopkins | Oct 2009 | B2 |
7671696 | Puzella et al. | Mar 2010 | B1 |
20020051342 | Kanada | May 2002 | A1 |
20050110681 | Londre | May 2005 | A1 |
20060268518 | Edward et al. | Nov 2006 | A1 |
20070152882 | Hash et al. | Jul 2007 | A1 |
20080106467 | Navarro et al. | May 2008 | A1 |
20080106482 | Cherrette et al. | May 2008 | A1 |
20080150832 | Ingram et al. | Jun 2008 | A1 |
20080316139 | Blaser et al. | Dec 2008 | A1 |
20100066631 | Puzella et al. | Mar 2010 | A1 |
20100126010 | Puzella et al. | May 2010 | A1 |
20100245179 | Puzella et al. | Sep 2010 | A1 |
20110248796 | Pozgay | Oct 2011 | A1 |
20120063098 | Paquette et al. | Mar 2012 | A1 |
20120146862 | Danello et al. | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
0 481 417 | Apr 1992 | EP |
1 764 863 | Mar 2007 | EP |
1 436 859 | Aug 2007 | EP |
1 978 597 | Oct 2008 | EP |
61 224504 | Oct 1986 | JP |
4-122107 | Apr 1992 | JP |
06-097710 | Apr 1994 | JP |
07-212125 | Aug 1995 | JP |
2000-138525 | May 2000 | JP |
2003179429 | Jun 2003 | JP |
2005 505963 | Feb 2005 | JP |
1020010079872 | Aug 2001 | KR |
WO 9826642 | Jun 1998 | WO |
WO 9966594 | Dec 1999 | WO |
WO 0106821 | Jan 2001 | WO |
WO 0120720 | Mar 2001 | WO |
WO 0133927 | May 2001 | WO |
WO 0141257 | Jun 2001 | WO |
WO 03003031 | Apr 2003 | WO |
WO 2007136941 | Nov 2007 | WO |
WO 2007136941 | Nov 2007 | WO |
WO 2008010851 | Jan 2008 | WO |
WO 2008010851 | Jan 2008 | WO |
WO 2008036469 | Mar 2008 | WO |
Entry |
---|
Notification of International Search Report and Written Opinion of the International Searching Authority for PCT/US2010/049261, dated Feb. 7, 2011, 11 pages. |
Div. Application (with translation of amended claims) as filed on Dec. 1, 2008 and assigned App. No. 10-2008-7029396. |
Decision of Rejection dated Jul. 30, 2008 from KR Pat. App. No. 10-2004-7003900. |
Notice of Trial Decision dated Mar. 23, 2010 from KR Pat. App. No. 10-2004-7003900. |
EP Search Report for 06021905.2; dated Feb. 9, 2007; 8 page. |
European Office Action dated Nov. 3, 2005 from EP Pat. App. No. 02800372.1. |
Response to European Office Action filed Jan. 12, 2007 from EP Pat. App. No. 02800372.1. |
European Office Action dated Oct. 18, 2007 from EPO Pat. App. No. 06021905.2. |
Response to European Office Action dated Oct. 18, 2007 filed in the EPO on Aug. 11, 2008 from EP Pat. App. No. 06021905.2. |
Response to European Office Action dated Mar. 19, 2009 filed in the EPO on Nov. 19, 2009 from EP Pat. App. No. 06021905.2. |
European Office Action dated Feb. 18, 2010 from EPO Pat. App. No. 06021905.2. |
Notice of Allowance dated Feb. 2, 2007 from EP Pat. App. No. 02800372.1. |
Korean Office Action dated Oct. 31, 2007 from KR Pat. App. No. 10-2004-7003900. |
Response to Korean Office Action filed Mar. 26, 2008 from KR Pat. App. No. 10-2004-7003900. |
Korean Office Action dated Feb. 25, 2009 from KR Pat. App. No. 10-2008-7029396. |
Korean Office Action dated Nov. 27, 2009 from KR Pat. App. No. 10-2008-7029396. |
Japanese Office Action dated Mar. 7, 2007 from JP Pat. App. No. 2003-533378. |
Japanese Office Action dated Feb. 15, 2008 from JP Pat. App. No. 2003-533378. |
Japanese Office Action dated Feb. 18, 2009 from JP Pat. App. No. 2003-533378. |
Response to Japanese Office Action filed Jul. 5, 2007 from JP App. No. 2003-533378. |
Response to Japanese Office Action filed Jun. 19, 2009 from App JP App. No. 2003-533378. |
PCT Search Report of the ISA for PCT/US2010/026861 dated Jun. 18, 2010; 6 pages. |
PCT Written Opinion of the ISA for PCT/US2010/026861 dated Jun. 18, 2010; 5 pages. |
Bash et al,; “Improving Heat Transfer From a Flip-Chip Package;” Technology Industry; Email Alert RSS Feed; Hewlett-Packard Journal, Aug. 1997; 3 pages. |
Marsh et al.; “5.4 Watt GaAs MESFET MMIC for Phased Array Radar Systems;” 1997 Workshop on High Performance Electron Devices for Microwave and Optoelectronic Applications, Nov. 24-25, 1997; pp. 169-174. |
Carter; “‘Fuzz Button’ Interconnects at Microwave and MM-Wave Frequencies;” IEEE Seminar; London, UK; Mar. 1-Mar. 6, 2000; 7 sheets. |
Jerinic, et al.; “X-Band “Tile” Array for Mobile Radar;” internal Raytheon Company publication; Spring 2003; 4 pages. |
Puzella, et al.; “Digital Subarray for Large Apertures;” slide presentation; internal Raytheon Company publication; Sep. 14, 2004; pp. 1-22. |
Puzella; “Deliverable Demonstration Sub-Array;” slide presentation; internal Raytheon Company publication; Fall 2003; pp. 1-17. |
PCT International Preliminary Examination Report and Written Opinion of the ISA for PCT/US2002/30677 dated Nov. 27, 2003; 10 pages. |
PCT International Preliminary Examination Report mailed on Apr. 2, 2009 for PCT Pat. App. No. PCT/US2007/074795 filed on Jul. 31, 2007. |
PCT Search Report mailed on Dec. 19, 2007 for PCT Pat. App. No. PCT/US2007/074795 filed on Jul. 31, 2007. |
PCT Written Opinion mailed on Dec. 19, 2007 for PCT Pat. App. No. PCT/US2007/074795 filed on Jul. 31, 2007. |
U.S. Appl. No. 61/163,002, filed Mar. 24, 2009. |
U.S. Appl. No. 12/484,626, filed Jun. 15, 2009. |
U.S. Appl. No. 12/482,061, filed Jun. 10, 2009. |
U.S. Appl. No. 12/566,818, filed Sep. 25, 2009. |
U.S. Appl. No. 12/948,858, filed Nov. 18, 2010. |
U.S. Appl. No. 12/580,356, filed Oct. 16, 2009. |
U.S. Appl. No. 12/880,350, filed Sep. 13, 2010 |
U.S. Appl. No. 12/694,450, filed Jan. 27, 2010. |
Number | Date | Country | |
---|---|---|---|
20120162922 A1 | Jun 2012 | US |