Coordinate measurement device

Information

  • Patent Grant
  • 8763266
  • Patent Number
    8,763,266
  • Date Filed
    Friday, January 14, 2011
    13 years ago
  • Date Issued
    Tuesday, July 1, 2014
    10 years ago
Abstract
A portable coordinate measurement device is provided. The coordinate measurement device includes at least one arm. A bracket is coupled to the arm that includes a magnetic member at one end. A probe is rotationally coupled to one end of the arm, the probe includes a first ferrous member on a first side, the probe is movable between a first position and a second position, wherein the ferrous member is adjacent the magnet when in the second position.
Description
BACKGROUND OF THE INVENTION

The present disclosure relates to a coordinate measuring machine, and in particular to a portable articulated arm coordinate measuring machine having a system for retaining and storing a probe end of the articulated arm.


Portable articulated arm coordinate measuring machines (AACMMs) have found widespread use in the manufacturing or production of parts where there is a need to rapidly and accurately verify the dimensions of the part during various stages of the manufacturing or production (e.g., machining) of the part. Portable AACMMs represent a vast improvement over known stationary or fixed, cost-intensive and relatively difficult to use measurement installations, particularly in the amount of time it takes to perform dimensional measurements of relatively complex parts. Typically, a user of a portable AACMM simply guides a probe along the surface of the part or object to be measured. The measurement data are then recorded and provided to the user. In some cases, the data are provided to the user in visual form, for example, three-dimensional (3-D) form on a computer screen. In other cases, the data are provided to the user in numeric form, for example when measuring the diameter of a hole, the text “Diameter=1.0034” is displayed on a computer screen.


An example of a prior art portable articulated arm CMM is disclosed in commonly assigned U.S. Pat. No. 5,402,582 ('582), which is incorporated herein by reference in its entirety. The '582 patent discloses a 3-D measuring system comprised of a manually-operated articulated arm CMM having a support base on one end and a measurement probe at the other end. Commonly assigned U.S. Pat. No. 5,611,147 ('147), which is incorporated herein by reference in its entirety, discloses a similar articulated arm CMM. In the '147 patent, the articulated arm CMM includes a number of features including an additional rotational axis at the probe end, thereby providing for an arm with either a two-two-two or a two-two-three axis configuration (the latter case being a seven axis arm).


Typically, the probe end of the arm is allowed to freely rotate about two or three axes, care must be taken, during shipment or storage for example, to avoid damaging the probe during use. Typically a strap, such as one having a hook and loop fastener for example, is used to hold the probe end against the adjacent arm segment during shipping. It should be appreciated that while the strap is convenient for shipping purposes, it is undesirable for use in operations since the dangling strap ends may interfere with the use of the arm or the probe.


Accordingly, while existing AACMM's are suitable for their intended purposes there remains a need for improvements, particularly in the securing of the probe when the articulated arm is shipped or not in use.


BRIEF DESCRIPTION OF THE INVENTION

According to one aspect of the invention, a portable coordinate measurement machine (AACMM) for measuring coordinates of an object in space is provided. The AACMM includes a manually positionable articulated arm having opposed first and second ends, the arm including a plurality of connected arm segments, the plurality of connected arm segments including an arm segment adjacent the first end, each arm segment including at least one position transducer for producing a position signal. A measurement device is attached to a first end of the AACMM. An electronic circuit is configured to receive the position signals from the transducers and provides data corresponding to a position of the measurement device. A probe end is disposed between the measurement device and the first end, the probe end being rotationally coupled to the first end and movable between a first position and a second position. A magnetic member coupling the probe end to the arm segment adjacent the first end when in the second position.


According to another aspect of the invention, AACMM for measuring coordinates of an object in space is provided. The AACMM includes a base. A manually positionable articulated arm is provided having opposed first and second ends. The second end is rotationally coupled to the base, the arm including a plurality of connected arm segments, the plurality of connected arm segments including an arm segment adjacent the first end, each arm segment including at least one position transducer for producing a position signal. A measurement device is attached to a first end of the AACMM. An electronic circuit is configured to receive the position signals from the transducers and provides data corresponding to a position of the measurement device. A probe end is disposed between the measurement device and the first end, the probe end being rotationally coupled to the first end, the probe end having a first member, the probe end movable between a first position and a second position. A magnetic member is operably coupled to the arm segment adjacent the first end, the magnetic member positioned to cooperate with the first member to magnetically couple the probe end to the arm segment adjacent the first end when the probe end is in the second position.


According to yet another aspect of the invention, another AACMM for measuring coordinates of an object in space is provided. The AACMM includes a manually positionable articulated arm having opposed first and second ends. The second end of the arm being rotationally coupled to the base, the arm including a plurality of connected arm segments, the plurality of connected arm segments including an arm segment adjacent the first end, each arm segment including at least one position transducer for producing a position signal. A measurement device is attached to a first end of the AACMM. An electronic circuit is configured to receive the position signals from the transducers and provides data corresponding to a position of the measurement device. A bracket having a first opening is sized to receive the arm segment adjacent the first end, the bracket being removably coupled to the arm segment adjacent the first end. A magnetic member is operably coupled to the bracket. A probe end is coupled to rotate about at least two axes to the first end, the probe end being movable between an operating position and a storage position. A first ferrous member is operably coupled to the probe end.


These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.





BRIEF DESCRIPTION OF THE DRAWING

The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:



FIG. 1, including FIGS. 1A and 1B, are perspective views of a portable articulated arm coordinate measuring machine (AACMM) having embodiments of various aspects of the present invention therewithin;



FIG. 2, including FIGS. 2A-2D taken together, is a block diagram of electronics utilized as part of the AACMM of FIG. 1 in accordance with an embodiment;



FIG. 3, including FIGS. 3A and 3B taken together, is a block diagram describing detailed features of the electronic data processing system of FIG. 2 in accordance with an embodiment;



FIG. 4 is an enlarged perspective view of the probe end of the AACMM of FIG. 1;



FIG. 5 is a perspective view of the probe end of the AACMM of FIG. 4;



FIG. 6 is a top plan view of the probe end of FIG. 5;



FIG. 7 is a top plan view of a probe end holder for use with the AACMM of FIG. 4;



FIG. 8 is a perspective view illustration of the probe end holder of FIG. 7; and,



FIG. 9 is a top plan view, partially in section, of the probe end coupled to the probe end holder.





The detailed description explains embodiments of the invention, together with advantages and features, by way of example with reference to the drawings.


DETAILED DESCRIPTION OF THE INVENTION

Operators of AACMMs are careful with the probe end and probe tip of the AACMM to avoid damage or changing the calibration of the AACMM. Embodiments of the present invention include advantages in incorporating a holding device that secures a probe end of the AACMM to an arm segment so that the probe end is not free to move when not in use, when being moved between installations, or during shipping. Embodiments of the present invention further include advantages in allowing the probe end to be quickly and easily secured with a holding device that does not interfere with the operation of the AACMM.



FIGS. 1A and 1B illustrate, in perspective, a portable articulated arm coordinate measuring machine (AACMM) 100 according to various embodiments of the present invention, an articulated arm being one type of coordinate measuring machine. As shown in FIGS. 1A and 1B, the exemplary AACMM 100 may comprise a six or seven axis articulated measurement device having a measurement probe housing 102 coupled to an arm portion 104 of the AACMM 100 at one end. The arm portion 104 comprises a first arm segment 106 coupled to a second arm segment 108 by a first grouping of bearing cartridges 110 (e.g., two bearing cartridges). A second grouping of bearing cartridges 112 (e.g., two bearing cartridges) couples the second arm segment 108 to the measurement probe housing 102. A third grouping of bearing cartridges 114 (e.g., three bearing cartridges) couples the first arm segment 106 to a base 116 located at the other end of the arm portion 104 of the AACMM 100. Each grouping of bearing cartridges 110, 112, 114 provides for multiple axes of articulated movement. Also, the measurement probe housing 102 may comprise the shaft of the seventh axis portion of the AACMM 100 (e.g., a cartridge containing an encoder system that determines movement of the measurement device, for example a probe 118, in the seventh axis of the AACMM 100). In use of the AACMM 100, the base 116 is typically affixed to a work surface.


Each bearing cartridge within each bearing cartridge grouping 110, 112, 114 typically contains an encoder system (e.g., an optical angular encoder system). The encoder system (i.e., transducer) provides an indication of the position of the respective arm segments 106, 108 and corresponding bearing cartridge groupings 110, 112, 114 that all together provide an indication of the position of the probe 118 with respect to the base 116 (and, thus, the position of the object being measured by the AACMM 100 in a certain frame of reference—for example a local or global frame of reference). The arm segments 106, 108 may be made from a suitably rigid material such as but not limited to a carbon composite material for example. A portable AACMM 100 with six or seven axes of articulated movement (i.e., degrees of freedom) provides advantages in allowing the operator to position the probe 118 in a desired location within a 360° area about the base 116 while providing an arm portion 104 that may be easily handled by the operator. However, it should be appreciated that the illustration of an arm portion 104 having two arm segments 106, 108 is for exemplary purposes, and the claimed invention should not be so limited. An AACMM 100 may have any number of arm segments coupled together by bearing cartridges (and, thus, more or less than six or seven axes of articulated movement or degrees of freedom).


The probe 118 is detachably mounted to the measurement probe housing 102, which is connected to bearing cartridge grouping 112. A handle 126 is removable with respect to the measurement probe housing 102 by way of, for example, a quick-connect interface. The handle 126 may be replaced with another device (e.g., a laser line probe, a bar code reader), thereby providing advantages in allowing the operator to use different measurement devices with the same AACMM 100. In exemplary embodiments, the probe housing 102 houses a removable probe 118, which is a contacting measurement device and may have different tips 118 that physically contact the object to be measured, including, but not limited to: ball, touch-sensitive, curved and extension type probes. In other embodiments, the measurement is performed, for example, by a non-contacting device such as a laser line probe (LLP). In an embodiment, the handle 126 is replaced with the LLP using the quick-connect interface. Other types of measurement devices may replace the removable handle 126 to provide additional functionality. Examples of such measurement devices include, but are not limited to, one or more illumination lights, a temperature sensor, a thermal scanner, a bar code scanner, a projector, a paint sprayer, a camera, or the like, for example.


As shown in FIGS. 1A and 1B, the AACMM 100 includes the removable handle 126 that provides advantages in allowing accessories or functionality to be changed without removing the measurement probe housing 102 from the bearing cartridge grouping 112. As discussed in more detail below with respect to FIG. 2, the removable handle 126 may also include an electrical connector that allows electrical power and data to be exchanged with the handle 126 and the corresponding electronics located in the probe end.


In various embodiments, each grouping of bearing cartridges 110, 112, 114 allows the arm portion 104 of the AACMM 100 to move about multiple axes of rotation. As mentioned, each bearing cartridge grouping 110, 112, 114 includes corresponding encoder systems, such as optical angular encoders for example, that are each arranged coaxially with the corresponding axis of rotation of, e.g., the arm segments 106, 108. The optical encoder system detects rotational (swivel) or transverse (hinge) movement of, e.g., each one of the arm segments 106, 108 about the corresponding axis and transmits a signal to an electronic data processing system within the AACMM 100 as described in more detail herein below. Each individual raw encoder count is sent separately to the electronic data processing system as a signal where it is further processed into measurement data. No position calculator separate from the AACMM 100 itself (e.g., a serial box) is required, as disclosed in commonly assigned U.S. Pat. No. 5,402,582 ('582).


The base 116 may include an attachment device or mounting device 120. The mounting device 120 allows the AACMM 100 to be removably mounted to a desired location, such as an inspection table, a machining center, a wall or the floor for example. In one embodiment, the base 116 includes a handle portion 122 that provides a convenient location for the operator to hold the base 116 as the AACMM 100 is being moved. In one embodiment, the base 116 further includes a movable cover portion 124 that folds down to reveal a user interface, such as a display screen.


In accordance with an embodiment, the base 116 of the portable AACMM 100 contains or houses an electronic data processing system that includes two primary components: a base processing system that processes the data from the various encoder systems within the AACMM 100 as well as data representing other arm parameters to support three-dimensional (3-D) positional calculations; and a user interface processing system that includes an on-board operating system, a touch screen display, and resident application software that allows for relatively complete metrology functions to be implemented within the AACMM 100 without the need for connection to an external computer.


The electronic data processing system in the base 116 may communicate with the encoder systems, sensors, and other peripheral hardware located away from the base 116 (e.g., a LLP that can be mounted to the removable handle 126 on the AACMM 100). The electronics that support these peripheral hardware devices or features may be located in each of the bearing cartridge groupings 110, 112, 114 located within the portable AACMM 100.



FIG. 2 is a block diagram of electronics utilized in an AACMM 100 in accordance with an embodiment. The embodiment shown in FIG. 2 includes an electronic data processing system 210 including a base processor board 204 for implementing the base processing system, a user interface board 202, a base power board 206 for providing power, a Bluetooth module 232, and a base tilt board 208. The user interface board 202 includes a computer processor for executing application software to perform user interface, display, and other functions described herein.


As shown in FIG. 2, the electronic data processing system 210 is in communication with the aforementioned plurality of encoder systems via one or more arm buses 218. In the embodiment depicted in FIG. 2, each encoder system generates encoder data and includes: an encoder arm bus interface 214, an encoder digital signal processor (DSP) 216, an encoder read head interface 234, and a temperature sensor 212. Other devices, such as strain sensors, may be attached to the arm bus 218.


Also shown in FIG. 2 are probe end electronics 230 that are in communication with the arm bus 218. The probe end electronics 230 include a probe end DSP 228, a temperature sensor 212, a handle/LLP interface bus 240 that connects with the handle 126 or the LLP 242 via the quick-connect interface in an embodiment, and a probe interface 226. The quick-connect interface allows access by the handle 126 to the data bus, control lines, and power bus used by the LLP 242 and other accessories. In an embodiment, the probe end electronics 230 are located in the measurement probe housing 102 on the AACMM 100. In an embodiment, the handle 126 may be removed from the quick-connect interface and measurement may be performed by the laser line probe (LLP) 242 communicating with the probe end electronics 230 of the AACMM 100 via the handle/LLP interface bus 240. In an embodiment, the electronic data processing system 210 is located in the base 116 of the AACMM 100, the probe end electronics 230 are located in the measurement probe housing 102 of the AACMM 100, and the encoder systems are located in the bearing cartridge pairs 110, 112, 114. The probe interface 226 may connect with the probe end DSP 228 by any suitable communications protocol, including commercially-available products from Maxim Integrated Products, Inc. that embody the 1-Wire® communications protocol 236.



FIG. 3 is a block diagram describing detailed features of the electronic data processing system 210 of the AACMM 100 in accordance with an embodiment. In an embodiment, the electronic data processing system 210 is located in the base 116 of the AACMM 100 and includes the base processor board 204, the user interface board 202, a base power board 206, a Bluetooth module 232, and a base tilt module 208.


In an embodiment shown in FIG. 3, the base processor board 204 includes the various functional blocks illustrated therein. For example, a base processor function 302 is utilized to support the collection of measurement data from the AACMM 100 and receives raw arm data (e.g., encoder system data) via the arm bus 218 and a bus control module function 308. The memory function 304 stores programs and static arm configuration data. The base processor board 204 also includes an external hardware option port function 310 for communicating with any external hardware devices or accessories such as an LLP 242. A real time clock (RTC) and log 306, a battery pack interface (IF) 316, and a diagnostic port 318 are also included in the functionality in an embodiment of the base processor board 204 depicted in FIG. 3.


The base processor board 204 also manages all the wired and wireless data communication with external (host computer) and internal (display processor 202) devices. The base processor board 204 has the capability of communicating with an Ethernet network via an Ethernet function 320 (e.g., using a clock synchronization standard such as Institute of Electrical and Electronics Engineers (IEEE) 1588), with a wireless local area network (WLAN) via a LAN function 322, and with Bluetooth module 232 via a parallel to serial communications (PSC) function 314. The base processor board 204 also includes a connection to a universal serial bus (USB) device 312.


The base processor board 204 transmits and collects raw measurement data (e.g., encoder system counts, temperature readings) for processing into measurement data without the need for any preprocessing, such as disclosed in the serial box of the aforementioned '582 patent. The base processor 204 sends the processed data to the display processor 328 on the user interface board 202 via an RS485 interface (IF) 326. In an embodiment, the base processor 204 also sends the raw measurement data to an external computer.


Turning now to the user interface board 202 in FIG. 3, the angle and positional data received by the base processor is utilized by applications executing on the display processor 328 to provide an autonomous metrology system within the AACMM 100. Applications may be executed on the display processor 328 to support functions such as, but not limited to: measurement of features, guidance and training graphics, remote diagnostics, temperature corrections, control of various operational features, connection to various networks, and display of measured objects. Along with the display processor 328 and a liquid crystal display (LCD) 338 (e.g., a touch screen LCD) user interface, the user interface board 202 includes several interface options including a secure digital (SD) card interface 330, a memory 332, a USB Host interface 334, a diagnostic port 336, a camera port 340, an audio/video interface 342, a dial-up/cell modem 344 and a global positioning system (GPS) port 346.


The electronic data processing system 210 shown in FIG. 3 also includes a base power board 206 with an environmental recorder 362 for recording environmental data. The base power board 206 also provides power to the electronic data processing system 210 using an AC/DC converter 358 and a battery charger control 360. The base power board 206 communicates with the base processor board 204 using inter-integrated circuit (12C) serial single ended bus 354 as well as via a DMA serial peripheral interface (DSPI) 356. The base power board 206 is connected to a tilt sensor and radio frequency identification (RFID) module 208 via an input/output (I/O) expansion function 364 implemented in the base power board 206.


Though shown as separate components, in other embodiments all or a subset of the components may be physically located in different locations and/or functions combined in different manners than that shown in FIG. 3. For example, in one embodiment, the base processor board 204 and the user interface board 202 are combined into one physical board.


Referring now to FIG. 4, an embodiment of the AACMM 100 having a holding system 402 is shown. The AACMM 100 includes a plurality of arm segments 106, 108 that are mounted for rotation with multiple degrees of freedom as described herein above. Coupled to the end of the second arm segment 108 is a probe end 408 having a housing or body 410, a handle 126 and a tip portion 414. The tip portion 414 includes an attachment arrangement, such as a screw thread for example, that allows for the coupling of detachable probe tip 118 (FIG. 1A) that is used to contact an object during operation.


The probe end 408 is coupled to the second arm segment 108 by a grouping of bearing cartridges 112 that allows the probe end 408 to be rotated about two axes, 418, 422. In the exemplary embodiment, the grouping of bearing cartridges 112 are arranged to minimize the restriction of movement of the probe end 408. It should be appreciated that it is desirable to have a probe end 408 that is relatively free to move during use to avoid inducing an operator error when measuring an object. It should be appreciated that since the probe end 408 may move freely, the opportunity for unintended contact of the probe end 408 and the probe tip 118 with undesired objects may be increased during use or when located in congested areas. Depending on the nature of the unintended contact, the probe end 408 or the probe tip 118 may be damaged or the calibration affected. To reduce this risk, the holding system 402 provides a means to easily, quickly and removably couple the probe end 408 to a holding bracket 424 attached to arm segment 108. This provides advantages in securing the probe 118 and probe end in a stowed position in a manner that allows the arm segments to be rotated freely around the base 116 without the probe 118 or probe end contacting any of the base 116 surfaces. This provides further advantages in preventing damage to the probe tip 118 and cosmetic damage to the paint, LCD display, power button, and other features of the base assembly.


In the exemplary embodiment, the holding system 402 includes a member 426A on the body 410 as shown in FIGS. 5-6. The member 426A may be made from any material that is attracted to a magnet, including ferrous metals such as steel for example. In one embodiment, the member 426A may be made from, but not limited to: iron; nickel; cobalt; an aluminum-nickel-cobalt alloy; titanium-cobalt-nickel-aluminum alloys; manganese compounds; and, rare earth alloys. In the exemplary embodiment, the member 426A is the head of a member having a domed cap and a threaded shaft that is used to attach a panel 428 on the body 410. In one embodiment, the probe end 408 includes two members 426A, 426B (FIG. 6) on opposite sides of the body 410. In one embodiment, the members 426A, 426B are substantially identical. In the exemplary embodiment, the member 426A has a curved outer surface 427 on one end and a threaded portion 429 on an opposite end. The curved surface 427 has at least a portion that extends beyond or outside the surface of the panel 428. It should be appreciated that the use of two members 426A, 426B provide advantages in allowing the operator to couple the probe end 408 with the handle 126 oriented in two different directions.


The holding bracket 424 is removably coupled to the second arm segment 108 (FIG. 4). In the exemplary embodiment, the holding bracket 424 includes a first body member 430 coupled to a second body member 432. The first body member 430 includes an opening 434 sized to receive a fastener 436 (FIG. 9), such as bolt for example. The opening 434 cooperates with an opening 438 in the second body member 432 that contains a corresponding fastener 440, such as a captured nut for example. In one embodiment, the first body member 430 has a substantially uniform wall that defines an inner surface 442 and a recessed area 444.


Similarly, the second body member 432 has a substantially uniform wall that defines an inner surface 446 and an interior portion 448. The second body member 432 also includes a projection portion 450 on a side opposite the first body member 430. An opening 452 is formed in projection portion 450 that is defined by a wall 458. The opening 452 includes a lip 454 adjacent the outer surface 456 and the wall 458. The lip 454 defines an opening 460 in the outer surface 456. As will be discussed in more detail below, in one embodiment the thickness of the lip 454 and the diameter of opening 460 are sized to receive the curved outer surface of the member 426A, 426B. The opening 452 is sized to receive a magnetic member 462. The opening 460 is smaller than the diameter of opening 452 such that the magnetic member is captured within the opening 452. In the exemplary embodiment, the magnet is made from Neodymium Iron Borate material and is adhesively bonded within the opening 452. It should be appreciated that the front surface 464 of the magnetic member 462 is offset from the outer surface 456 by the thickness of the lip 454. The first body member 430 and second body member 432 may be fabricated by an injection molding process.


The location of the magnetic member 462 in the holding bracket 424 instead of the body 410 provides advantages in reducing the opportunity for the magnetic member 462 to pick up metal particles that may be common near the machined surface of a part to be measured. The domed cap portion of the member 426A, 426B is positioned within the opening defined by the lip 454 around the magnetic member 462 so it cannot slide sideways and come loose. By rotating the handle 126, such as about the axis 422 for example, the lip 454 and domed cap arrangement creates a mechanical advantage that releases or frees the magnetic hold without having to pull straight away from the magnetic member 462. This motion avoids making the operator overcome the holding strength of the magnetic member 462, which would also tend to pull the arm 104 away from a rest position. Similarly, when attaching the probe end the process of rotating the member 426A, 426B onto the magnetic member 462 may be reversed allowing for a smooth engagement as the components are magnetically coupled.


It should be appreciated that while embodiments of the invention illustrate the magnetic member 462 as being coupled to the second arm segment 108 and the member 426A, 426B as being coupled to the body 410, the claimed invention should not be so limited. In one embodiment, the magnetic member 462 is coupled to the body 410 and the member 426A, 426B is coupled to the second arm segment 108.


The inner surfaces 442, 446 of the first body member 430 and the second body member 432 define an opening 466 sized to receive the second arm segment 108. Forming the holding bracket 424 in two halves provides an advantage in that the holding bracket 424 may be repeatably removed and installed on the second arm segment 108 without having to disassemble the AACMM 100. Further, by loosening the fasteners 440, the holding bracket 424 may be easily and quickly repositioned on the second arm segment 406 to a desired position.


It should be appreciated that while embodiments herein describe the magnetic member as being coupled to the second arm segment 108 by the holding bracket 424, the claimed invention should not be so limited. In one embodiment, the magnetic member 462 may be formed as an integral member of or molded into the second arm segment 108. In another embodiment, the magnetic member 462 is coupled to the second arm segment 108 by an adhesive.


During operation, or in preparation for shipping or moving the AACMM 100, the operator may desire to secure the probe end 408. The operator rotates the probe end 408 about one or more of the axes 418, 420, 422 as from an operating or first position to a storage or second position wherein the tip portion 414 is directed towards the bearing cartridges 110 and the handle 126 is extending towards the front (e.g. display side) or the back of the AACMM 100. As the probe end 408 is rotated to the storage position, the magnetic member 462 will attract and engage the member 426A, 426B. In one embodiment, the curved surface 427 contacts the wall 458 and a portion of the curved surface 427 is positioned within the opening 460 to hold the probe end 408 securely to the holding bracket 424. To release the probe end 408, the operator uses the handle 126 to gain a mechanical advantage and rotate the probe end 408 causing the curved surface 427 to move away from the front surface 464 allowing the magnet to disengage from the member 426A, 426B leaving the probe end 408 free for the operator to use in the measurement of objects.


While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.

Claims
  • 1. A portable articulated arm coordinate measurement machine (AACMM) for measuring coordinates of an object in space, comprising: a manually positionable articulated arm having opposed first and second ends, the articulated arm including a plurality of connected arm segments, the plurality of connected arm segments including a first arm segment having the first end;a probe end disposed between a measurement device and the first end, the probe end being rotationally coupled to the first end and movable between a first position and a second position;each arm segment and the probe end including at least one position transducer for producing a position signal;an electronic circuit which receives the position signals from the transducers and provides data corresponding to a position of the measurement device; anda magnetic member coupling the probe end to the first arm segment when in the second position.
  • 2. The AACMM of claim 1 wherein the probe end is substantially parallel to the first arm segment when in the second position.
  • 3. The AACMM of claim 1 further comprising: a first member arranged on a first side of the probe end;wherein the magnetic member is operably coupled to the first arm segment; andwherein the first member is magnetically coupled to the magnetic member when in the second position.
  • 4. The AACMM of claim 3 wherein the probe end further includes a second member on a second side; and wherein the second member is magnetically coupled to the magnetic member when the probe end is in a third position.
  • 5. The AACMM of claim 3 wherein the first member includes a head portion and a fastener portion.
  • 6. The AACMM of claim 3 further comprising: a bracket coupled to the first arm segment;wherein the magnetic member is coupled to an end of the bracket; andwherein the bracket comprises a first frame member coupled to a second frame member, the first frame member and the second frame member defining an opening sized to receive the first arm segment.
  • 7. The AACMM of claim 6 wherein the bracket is removably coupled to the first arm segment.
  • 8. A portable articulated arm coordinate measurement machine (AACMM) for measuring coordinates of an object in space, comprising: a base;a manually positionable articulated arm having opposed first and second ends, the second end being rotationally coupled to the base, the arm including a plurality of connected arm segments, the plurality of connected arm segments including a first arm segment at the first end;a measurement device attached to the first end of the AACMM;a probe end disposed between the measurement device and the first end, the probe end being rotationally coupled to the first end, the probe end having a first member, the probe end movable between a first position and a second position; anda magnetic member operably coupled to the first arm segment adjacent the first end, the magnetic member positioned to cooperate with the first member to magnetically couple the probe end to the first arm segment adjacent the first end when the probe end is in the second position.
  • 9. The AACMM of claim 8 further comprising a bracket coupled between the magnetic member and the first arm segment adjacent the first end, the bracket having an opening therein, wherein the magnetic member is disposed in the opening.
  • 10. The AACMM of claim 9 wherein: the magnetic member has a first surface;the bracket has a second surface, the opening disposed on the second surface; andthe magnetic member is positioned within the opening such that the first surface is offset from the second surface.
  • 11. The AACMM of claim 10 wherein a portion of the first member is positioned within the opening when the probe end is in the second position.
  • 12. The AACMM of claim 11 wherein the bracket includes a first portion coupled to a second portion by at least one fastener.
  • 13. The AACMM of claim 12 wherein the bracket is removably mounted on the arm segment adjacent the first end.
  • 14. The AACMM of claim 13 wherein the probe end further includes a second member positioned on a side opposite the first member.
  • 15. A portable articulated arm coordinate measurement machine (AACMM) for measuring coordinates of an object in space, comprising: a manually positionable articulated arm having opposed first and second ends, the second end being rotationally coupled to the base, the arm including a plurality of connected arm segments, the plurality of connected arm segments including a first arm segment at the first end;a measurement device attached to a first end of the AACMM;a bracket having a first opening sized to receive the first arm segment, the bracket being removably coupled to the first arm segment;a magnetic member operably coupled to the bracket;a probe end coupled to rotate relative to the first end, the probe end being movable between first position and a second position; anda first ferrous member operably coupled to the probe end.
  • 16. The AACMM of claim 15 wherein the magnetic member and the first ferrous member cooperate to couple the probe end to the first arm segment when the probe end is in the second position.
  • 17. The AACMM of claim 16 wherein the bracket includes a second opening disposed between the first opening and an outer surface, the second opening having a lip disposed adjacent the outer surface.
  • 18. The AACMM of claim 17 wherein the magnetic member is disposed within the second opening adjacent the lip.
  • 19. The AACMM of claim 18 wherein the first ferrous member includes a curved surface, the curved surface being in contact with the lip when the probe end is in the second position.
  • 20. The AACMM of claim 19 wherein the first ferrous member includes a threaded portion opposite the curved surface.
  • 21. The AACMM of claim 20 further comprising a second ferrous member coupled to a side of the probe end opposite the first ferrous member.
  • 22. The AACMM of claim 21 wherein the bracket includes a first member and a second member coupled by a fastener.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims the benefit of provisional application No. 61/296,555 filed Jan. 20, 2010, the content of which is hereby incorporated by reference in its entirety.

US Referenced Citations (377)
Number Name Date Kind
1535312 Hosking Apr 1925 A
1918813 Kinzy Feb 1932 A
2316573 Egy Apr 1943 A
2333243 Glab Nov 1943 A
2702683 Cosser et al. Feb 1955 A
2748926 Leahy Jun 1956 A
2924495 Haines Feb 1960 A
2966257 Littlejohn Dec 1960 A
2983367 Paramater et al. May 1961 A
3066790 Armbruster Dec 1962 A
3458167 Cooley, Jr. Jul 1969 A
4138045 Baker Feb 1979 A
4340008 Mendelson Jul 1982 A
4379461 Nilsson et al. Apr 1983 A
4424899 Rosenberg Jan 1984 A
4430796 Nakagawa Feb 1984 A
4457625 Greenleaf et al. Jul 1984 A
4506448 Topping et al. Mar 1985 A
4537233 Vroonland et al. Aug 1985 A
4606696 Slocum Aug 1986 A
4659280 Akeel Apr 1987 A
4663852 Guarini May 1987 A
4664588 Newell et al. May 1987 A
4676002 Slocum Jun 1987 A
4714339 Lau et al. Dec 1987 A
4751950 Bock Jun 1988 A
4790651 Brown et al. Dec 1988 A
4816822 Vache et al. Mar 1989 A
4882806 Davis Nov 1989 A
4954952 Ubhayakar et al. Sep 1990 A
4982841 Goedecke Jan 1991 A
4996909 Vache et al. Mar 1991 A
5025966 Potter Jun 1991 A
5027951 Johnson Jul 1991 A
5189797 Granger Mar 1993 A
5205111 Johnson Apr 1993 A
5211476 Coudroy May 1993 A
5213240 Dietz et al. May 1993 A
5219423 Kamaya Jun 1993 A
5239855 Schleifer et al. Aug 1993 A
5289264 Steinbichler Feb 1994 A
5319445 Fitts Jun 1994 A
5332315 Baker et al. Jul 1994 A
5372250 Johnson Dec 1994 A
5373346 Hocker Dec 1994 A
5402582 Raab Apr 1995 A
5412880 Raab May 1995 A
5430384 Hocker Jul 1995 A
5455670 Payne et al. Oct 1995 A
5510977 Raab Apr 1996 A
5528505 Granger et al. Jun 1996 A
5535524 Carrier et al. Jul 1996 A
5611147 Raab Mar 1997 A
5623416 Hocker, III Apr 1997 A
5682508 Hocker, III Oct 1997 A
5724264 Rosenberg et al. Mar 1998 A
5752112 Paddock et al. May 1998 A
5754449 Hoshal et al. May 1998 A
5768792 Raab Jun 1998 A
5829148 Eaton Nov 1998 A
5832416 Anderson Nov 1998 A
5926782 Raab Jul 1999 A
5956857 Raab Sep 1999 A
5973788 Pettersen et al. Oct 1999 A
5978748 Raab Nov 1999 A
5983936 Schwieterman et al. Nov 1999 A
5996790 Yamada et al. Dec 1999 A
5997779 Potter Dec 1999 A
D423534 Raab et al. Apr 2000 S
6050615 Weinhold Apr 2000 A
6060889 Hocker May 2000 A
6067116 Yamano et al. May 2000 A
6125337 Rosenberg et al. Sep 2000 A
6131299 Raab et al. Oct 2000 A
6151789 Raab et al. Nov 2000 A
6163294 Talbot Dec 2000 A
6166504 Iida et al. Dec 2000 A
6166809 Pettersen et al. Dec 2000 A
6166811 Long et al. Dec 2000 A
6219928 Raab et al. Apr 2001 B1
D441632 Raab et al. May 2001 S
6240651 Schroeder et al. Jun 2001 B1
6253458 Raab et al. Jul 2001 B1
6282195 Miller et al. Aug 2001 B1
6298569 Raab et al. Oct 2001 B1
6366831 Raab Apr 2002 B1
6418774 Schwieterman et al. Jul 2002 B1
6438856 Kaczynski Aug 2002 B1
6442419 Chu et al. Aug 2002 B1
6470584 Stoodley Oct 2002 B1
6477784 Schroeder et al. Nov 2002 B2
6519860 Bieg et al. Feb 2003 B1
D472824 Raab et al. Apr 2003 S
6547397 Kaufman et al. Apr 2003 B1
6598306 Eaton Jul 2003 B2
6611346 Granger Aug 2003 B2
6611617 Crampton Aug 2003 B1
6612044 Raab et al. Sep 2003 B2
6621065 Fukumoto et al. Sep 2003 B1
6626339 Gates et al. Sep 2003 B2
6633051 Holloway et al. Oct 2003 B1
6668466 Bieg et al. Dec 2003 B1
D491210 Raab et al. Jun 2004 S
6764185 Beardsley et al. Jul 2004 B1
6789327 Roth et al. Sep 2004 B2
6820346 Raab et al. Nov 2004 B2
6822749 Christoph Nov 2004 B1
6826664 Hocker, III et al. Nov 2004 B2
6868359 Raab Mar 2005 B2
6879933 Steffey et al. Apr 2005 B2
6892465 Raab et al. May 2005 B2
6895347 Dorny et al. May 2005 B2
6901673 Cobb et al. Jun 2005 B1
6904691 Raab et al. Jun 2005 B2
6920697 Raab et al. Jul 2005 B2
6925722 Raab et al. Aug 2005 B2
6931745 Granger Aug 2005 B2
6935748 Kaufman et al. Aug 2005 B2
6948255 Russell Sep 2005 B2
6965843 Raab et al. Nov 2005 B2
7003892 Eaton et al. Feb 2006 B2
7006084 Buss et al. Feb 2006 B1
7024032 Kidd et al. Apr 2006 B2
7032321 Raab et al. Apr 2006 B2
7040136 Forss et al. May 2006 B2
7051447 Kikuchi et al. May 2006 B2
7106421 Matsuura et al. Sep 2006 B2
7117107 Dorny et al. Oct 2006 B2
7152456 Eaton Dec 2006 B2
7174651 Raab et al. Feb 2007 B2
7184047 Crampton Feb 2007 B1
7191541 Weekers et al. Mar 2007 B1
7193690 Ossig et al. Mar 2007 B2
7196509 Teng Mar 2007 B2
7199872 Van Cranenbroeck Apr 2007 B2
7230689 Lau Jun 2007 B2
7242590 Yeap et al. Jul 2007 B1
7249421 MacManus et al. Jul 2007 B2
7269910 Raab et al. Sep 2007 B2
7285793 Husted Oct 2007 B2
7296979 Raab et al. Nov 2007 B2
7306339 Kaufman et al. Dec 2007 B2
7312862 Zumbrunn et al. Dec 2007 B2
7313264 Crampton Dec 2007 B2
7319512 Ohtomo et al. Jan 2008 B2
7337344 Barman et al. Feb 2008 B2
7348822 Baer Mar 2008 B2
7352446 Bridges et al. Apr 2008 B2
7360648 Blaschke Apr 2008 B1
7372558 Kaufman et al. May 2008 B2
7372581 Raab et al. May 2008 B2
7383638 Granger Jun 2008 B2
7388654 Raab et al. Jun 2008 B2
7389870 Slappay Jun 2008 B2
7395606 Crampton Jul 2008 B2
7430068 Becker et al. Sep 2008 B2
7447931 Rischar et al. Nov 2008 B1
7449876 Pleasant et al. Nov 2008 B2
7454265 Marsh Nov 2008 B2
7463368 Morden et al. Dec 2008 B2
7508971 Vaccaro et al. Mar 2009 B2
7525276 Eaton Apr 2009 B2
7545517 Rueb et al. Jun 2009 B2
7546689 Ferrari et al. Jun 2009 B2
7552644 Haase et al. Jun 2009 B2
7561598 Stratton et al. Jul 2009 B2
7564250 Hocker Jul 2009 B2
7578069 Eaton Aug 2009 B2
D599226 Gerent et al. Sep 2009 S
7589595 Cutler Sep 2009 B2
7591077 Pettersson Sep 2009 B2
7591078 Crampton Sep 2009 B2
7602873 Eidson Oct 2009 B2
7604207 Hasloecher et al. Oct 2009 B2
7610175 Eidson Oct 2009 B2
7614157 Granger Nov 2009 B2
7624510 Ferrari Dec 2009 B2
D607350 Cooduvalli et al. Jan 2010 S
7693325 Pulla et al. Apr 2010 B2
7701592 Saint Clair et al. Apr 2010 B2
7712224 Hicks May 2010 B2
7721396 Fleischman May 2010 B2
7735234 Briggs et al. Jun 2010 B2
7743524 Eaton et al. Jun 2010 B2
7752003 MacManus Jul 2010 B2
7765707 Tomelleri Aug 2010 B2
7769559 Reichert Aug 2010 B2
7774949 Ferrari Aug 2010 B2
7779548 Ferrari Aug 2010 B2
7779553 Jordil et al. Aug 2010 B2
7800758 Bridges et al. Sep 2010 B1
7804602 Raab Sep 2010 B2
7805851 Pettersson Oct 2010 B2
7805854 Eaton Oct 2010 B2
7809518 Zhu et al. Oct 2010 B2
RE42055 Raab et al. Jan 2011 E
RE42082 Raab et al. Feb 2011 E
7881896 Atwell et al. Feb 2011 B2
7903261 Saint Clair et al. Mar 2011 B2
7908757 Ferrari Mar 2011 B2
8052857 Townsend Nov 2011 B2
8065861 Caputo Nov 2011 B2
8082673 Desforges et al. Dec 2011 B2
8099877 Champ Jan 2012 B2
8123350 Cannell et al. Feb 2012 B2
8327555 Champ Dec 2012 B2
20010004269 Shibata et al. Jun 2001 A1
20020032541 Raab et al. Mar 2002 A1
20020087233 Raab Jul 2002 A1
20020128790 Woodmansee Sep 2002 A1
20020170192 Steffey et al. Nov 2002 A1
20030033104 Gooche Feb 2003 A1
20030053037 Blaesing-Bangert et al. Mar 2003 A1
20030125901 Steffey et al. Jul 2003 A1
20030167647 Raab et al. Sep 2003 A1
20030172536 Raab et al. Sep 2003 A1
20030172537 Raab et al. Sep 2003 A1
20030208919 Raab et al. Nov 2003 A1
20030221326 Raab et al. Dec 2003 A1
20040022416 Lemelson et al. Feb 2004 A1
20040040166 Raab et al. Mar 2004 A1
20040103547 Raab et al. Jun 2004 A1
20040111908 Raab et al. Jun 2004 A1
20040139265 Hocker et al. Jul 2004 A1
20040162700 Rosenberg et al. Aug 2004 A1
20040259533 Nixon et al. Dec 2004 A1
20050016008 Raab et al. Jan 2005 A1
20050028393 Raab et al. Feb 2005 A1
20050085940 Griggs et al. Apr 2005 A1
20050115092 Raab et al. Jun 2005 A1
20050144799 Raab et al. Jul 2005 A1
20050151963 Pulla et al. Jul 2005 A1
20050166413 Crampton Aug 2005 A1
20050188557 Raab et al. Sep 2005 A1
20050259271 Christoph Nov 2005 A1
20050276466 Vaccaro et al. Dec 2005 A1
20050283989 Pettersson Dec 2005 A1
20060016086 Raab et al. Jan 2006 A1
20060017720 Li Jan 2006 A1
20060026851 Raab et al. Feb 2006 A1
20060028203 Kawashima et al. Feb 2006 A1
20060053647 Raab et al. Mar 2006 A1
20060056459 Stratton et al. Mar 2006 A1
20060056559 Pleasant et al. Mar 2006 A1
20060059270 Pleasant et al. Mar 2006 A1
20060096108 Raab et al. May 2006 A1
20060123649 Muller Jun 2006 A1
20060129349 Raab et al. Jun 2006 A1
20060169050 Kobayashi et al. Aug 2006 A1
20060169608 Carnevali Aug 2006 A1
20060287769 Yanagita et al. Dec 2006 A1
20060291970 Granger Dec 2006 A1
20070030841 Lee et al. Feb 2007 A1
20070043526 De Jonge et al. Feb 2007 A1
20070050774 Eidson et al. Mar 2007 A1
20070055806 Stratton et al. Mar 2007 A1
20070058162 Granger Mar 2007 A1
20070097382 Granger May 2007 A1
20070105238 Mandl et al. May 2007 A1
20070142970 Burbank et al. Jun 2007 A1
20070147265 Eidson Jun 2007 A1
20070147435 Hamilton et al. Jun 2007 A1
20070147562 Eidson Jun 2007 A1
20070153297 Lau Jul 2007 A1
20070163134 Eaton Jul 2007 A1
20070176648 Baer Aug 2007 A1
20070177016 Wu Aug 2007 A1
20070183459 Eidson Aug 2007 A1
20070185682 Eidson Aug 2007 A1
20070217169 Yeap et al. Sep 2007 A1
20070217170 Yeap et al. Sep 2007 A1
20070221522 Yamada et al. Sep 2007 A1
20070223477 Eidson Sep 2007 A1
20070248122 Hamilton Oct 2007 A1
20070256311 Ferrari Nov 2007 A1
20070257660 Pleasant et al. Nov 2007 A1
20070258378 Hamilton Nov 2007 A1
20070282564 Sprague et al. Dec 2007 A1
20080046221 Stathis Feb 2008 A1
20080052936 Briggs et al. Mar 2008 A1
20080066583 Lott Mar 2008 A1
20080068103 Cutler Mar 2008 A1
20080080562 Burch et al. Apr 2008 A1
20080096108 Sumiyama et al. Apr 2008 A1
20080098272 Fairbanks et al. Apr 2008 A1
20080148585 Raab et al. Jun 2008 A1
20080154538 Stathis Jun 2008 A1
20080179206 Feinstein et al. Jul 2008 A1
20080183065 Goldbach Jul 2008 A1
20080196260 Pettersson Aug 2008 A1
20080204699 Benz et al. Aug 2008 A1
20080216552 Ibach et al. Sep 2008 A1
20080228331 McNerney et al. Sep 2008 A1
20080232269 Tatman et al. Sep 2008 A1
20080235969 Jordil et al. Oct 2008 A1
20080235970 Crampton Oct 2008 A1
20080240321 Narus et al. Oct 2008 A1
20080245452 Law et al. Oct 2008 A1
20080246943 Kaufman et al. Oct 2008 A1
20080252671 Cannell et al. Oct 2008 A1
20080256814 Pettersson Oct 2008 A1
20080257023 Jordil et al. Oct 2008 A1
20080263411 Baney et al. Oct 2008 A1
20080271332 Jordil et al. Nov 2008 A1
20080282564 Pettersson Nov 2008 A1
20080295349 Uhl et al. Dec 2008 A1
20080298254 Eidson Dec 2008 A1
20080309460 Jefferson et al. Dec 2008 A1
20090000136 Crampton Jan 2009 A1
20090016475 Rischar et al. Jan 2009 A1
20090031575 Tomelleri Feb 2009 A1
20090046140 Lashmet et al. Feb 2009 A1
20090046895 Pettersson et al. Feb 2009 A1
20090049704 Styles et al. Feb 2009 A1
20090083985 Ferrari Apr 2009 A1
20090089004 Vook et al. Apr 2009 A1
20090089078 Bursey Apr 2009 A1
20090089233 Gach et al. Apr 2009 A1
20090089623 Neering et al. Apr 2009 A1
20090109797 Eidson Apr 2009 A1
20090113183 Barford et al. Apr 2009 A1
20090113229 Cataldo et al. Apr 2009 A1
20090122805 Epps et al. May 2009 A1
20090125196 Velazquez et al. May 2009 A1
20090139105 Granger Jun 2009 A1
20090157419 Bursey Jun 2009 A1
20090165317 Little Jul 2009 A1
20090177435 Heininen Jul 2009 A1
20090177438 Raab Jul 2009 A1
20090187373 Atwell et al. Jul 2009 A1
20090241360 Tait et al. Oct 2009 A1
20090249634 Pettersson Oct 2009 A1
20090265946 Jordil et al. Oct 2009 A1
20100040742 Dijkhuis et al. Feb 2010 A1
20100057392 York Mar 2010 A1
20100078866 Pettersson Apr 2010 A1
20100095542 Ferrari Apr 2010 A1
20100122920 Butter et al. May 2010 A1
20100123892 Miller et al. May 2010 A1
20100128259 Bridges et al. May 2010 A1
20100134596 Becker Jun 2010 A1
20100148013 Bhotika et al. Jun 2010 A1
20100208062 Pettersson Aug 2010 A1
20100277747 Rueb et al. Nov 2010 A1
20100281705 Verdi et al. Nov 2010 A1
20100286941 Merlot Nov 2010 A1
20100312524 Siercks et al. Dec 2010 A1
20100318319 Maierhofer Dec 2010 A1
20100325907 Tait Dec 2010 A1
20110007305 Bridges et al. Jan 2011 A1
20110007326 Daxauer et al. Jan 2011 A1
20110013199 Siercks et al. Jan 2011 A1
20110019155 Daniel et al. Jan 2011 A1
20110023578 Grasser Feb 2011 A1
20110043515 Stathis Feb 2011 A1
20110094908 Trieu Apr 2011 A1
20110107611 Desforges et al. May 2011 A1
20110107612 Ferrari et al. May 2011 A1
20110107613 Tait May 2011 A1
20110107614 Champ May 2011 A1
20110111849 Sprague et al. May 2011 A1
20110112786 Desforges et al. May 2011 A1
20110164114 Kobayashi et al. Jul 2011 A1
20110173827 Bailey et al. Jul 2011 A1
20110173828 York Jul 2011 A1
20110178755 York Jul 2011 A1
20110178762 York Jul 2011 A1
20110178764 York Jul 2011 A1
20110178765 Atwell et al. Jul 2011 A1
20110192043 Ferrari Aug 2011 A1
20110273568 Lagassey Nov 2011 A1
20120181194 McEwan et al. Jul 2012 A1
20120210678 Alcouloumre et al. Aug 2012 A1
20120260611 Jones Oct 2012 A1
20130025143 Bailey et al. Jan 2013 A1
20130025144 Briggs et al. Jan 2013 A1
20130062243 Chang et al. Mar 2013 A1
Foreign Referenced Citations (93)
Number Date Country
2236119 Sep 1996 CN
2508896 Sep 2002 CN
2665668 Dec 2004 CN
1818537 Aug 2006 CN
201266071 Jul 2009 CN
3245060 Jul 1983 DE
4410775 Oct 1995 DE
29622033 Feb 1997 DE
19543763 May 1997 DE
19820307 Nov 1999 DE
10026357 Jan 2002 DE
202005000983 Apr 2005 DE
102004015668 Sep 2005 DE
19720049 Jan 2006 DE
10114126 Aug 2006 DE
102004010083 Nov 2006 DE
102005060967 Jun 2007 DE
102006023902 Nov 2007 DE
102006035292 Jan 2008 DE
102008039838 Mar 2010 DE
102005036929 Jun 2010 DE
102008062763 Jul 2010 DE
102009001894 Sep 2010 DE
0546784 Jun 1993 EP
0730210 Sep 1996 EP
0614517 Mar 1997 EP
1160539 Dec 2001 EP
1189124 Mar 2002 EP
0767357 May 2002 EP
1361414 Nov 2003 EP
1468791 Oct 2004 EP
1669713 Jun 2006 EP
1734425 Dec 2006 EP
1429109 Apr 2007 EP
1764579 Dec 2007 EP
1878543 Jan 2008 EP
1967930 Sep 2008 EP
2023077 Feb 2009 EP
2060530 May 2009 EP
2068067 Jun 2009 EP
2108917 Oct 2009 EP
2400261 Dec 2011 EP
2935043 Feb 2010 FR
894320 Apr 1962 GB
2255648 Nov 1992 GB
2341203 Mar 2000 GB
2420241 May 2006 GB
2452033 Feb 2009 GB
5581525 Jun 1955 JP
5827264 Feb 1983 JP
6313710 Nov 1994 JP
7210586 Aug 1995 JP
2004257927 Sep 2004 JP
2005517908 May 2005 JP
2006241833 Sep 2006 JP
2006301991 Nov 2006 JP
2009524057 Jun 2009 JP
9208568 May 1992 WO
9808050 Feb 1998 WO
9910706 Mar 1999 WO
0014474 Mar 2000 WO
0033149 Jun 2000 WO
0034733 Jun 2000 WO
02101323 Dec 2002 WO
2004096502 Nov 2004 WO
2005072917 Aug 2005 WO
2005075875 Aug 2005 WO
2005100908 Oct 2005 WO
2006051264 May 2006 WO
2007002319 Jan 2007 WO
2007028941 Mar 2007 WO
2007125081 Nov 2007 WO
2007144906 Dec 2007 WO
2008027588 Mar 2008 WO
2008047171 Apr 2008 WO
2008064276 May 2008 WO
2008066896 Jun 2008 WO
2008075170 Jun 2008 WO
2008157061 Dec 2008 WO
2009001165 Dec 2008 WO
2009016185 Feb 2009 WO
2009083452 Jul 2009 WO
2009127526 Oct 2009 WO
2009130169 Oct 2009 WO
2009149740 Dec 2009 WO
2010040742 Apr 2010 WO
2010092131 Aug 2010 WO
2010108089 Sep 2010 WO
2010148525 Dec 2010 WO
2011000435 Jan 2011 WO
2011000955 Jan 2011 WO
2011057130 May 2011 WO
2012038446 Mar 2012 WO
Non-Patent Literature Citations (109)
Entry
International Preliminary Report on Patentability for International Application Serial No. PCT/US2011/021259. International filing date Jan. 14, 2011. Date of Issuance Jul. 24, 2012.
Examination Report under Section 18(3); Report dated Nov. 1, 2012; Application No. GB1210311.5.
Examination Report under Section 18(3); Report dated Nov. 6, 2012; Application No. GB1210306.5.
International Preliminary Report on Patentability mailed May 9, 2012 for International Application Serial No. PCT/US2011/021253 International filing date Jan. 14, 2011. Date of Completion May 9, 2012.
A. Hart; “Kinematic Coupling Interchangeability” Precision Engineering; vol. 28, No. 1; Jan. 1, 2004 pp. 1-15.
ABB Flexible Automation AB: “Product Manual IRB 6400R M99, On-line Manual”; Sep. 13, 2006; XP00002657684; Retrieved from the Internet: URL: http://pergatory.mit.edu/kinematiccouplings/case—studies/ABB—Robotics/general/6400R%20Product%20Manual.pdf (retrieved Aug. 26, 2011).
International Search Report for International Application No. PCT/US2011/021248 mailed Sep. 19, 2011.
International Search Report for International Application No. PCT/US2011/021253 mailed Sep. 26, 2011.
International Search Report for International Application No. PCT/US2011/021794 mailed Sep. 23, 2011.
Patrick Willoughby; “Elastically Averaged Precision Alignment”; In: “Doctoral Thesis” ; Jun. 1, 2005; Massachusetts Institute of Technology; XP55005620; Abstract 1.1 Motivation; Chapter 3, Chapter 6.
Written Opinion of the International Searching Authority for International Application No. PCT/US2011/021248 mailed Sep. 19, 2011.
Written Opinion of the International Searching Authority for International Application No. PCT/US2011/021253 mailed Sep. 26, 2011.
Written Opinion of the International Searching Authority for International Application No. PCT/US2011/021794 mailed Sep. 23, 2011.
Written Opinion of the International Searching Authority mailed Apr. 12, 2011 for International Application No. PCT/US2011/021246 filed Jan. 14, 2011.
International Search Report mailed Apr. 12, 2011 for International Application No. PCT/US2011/021246 filed Jan. 14, 2011.
Information on Electro-Optical Information Systems; EOIS 3D Mini-Moire C.M.M. Sensor for Non-Contact Measuring & Surface Mapping; Direct Dimensions, Jun. 1995.
International Preliminary Report on Patentability for PCT/US2011/021274; Date of Completion Apr. 12, 2012.
International Search Report for International Application No. PCT/US2011/021273 filed Jan. 14, 2011.
International Serach Report for International Application No. PCT/US2011/050787; Mailing date Mar. 11, 2011.
Romer “Romer Absolute Arm Maximum Performance Portable Measurement” (Printed Oct. 2010); Hexagon Metrology, Inc. htt://us:ROMER.com; Hexagon Metrology, Inc., 2010.
Romer Romer Absolute Arm Product Brochure: (2010); Hexagon Metrology; www.hexagonmetrology.com; Hexagon AB, 2010.
Trimble—Trimble SPS630, SPS730 and SPS930 Universal Total Stations, [on-line] http://www.trimble.com/sps630—730—930.shtml (1 of 4), [Retreived Jan. 26, 2010 8:50:29AM].
Written Opinion of the International Searching Authority for International Application No. PCT/US2011/050787 mailed Nov. 3, 2011.
International Preliminary Report on Patentability for International Application Serial No. PCT/US2011/021246 International filing date Jan. 14, 2011. Date of Issuance Jul. 24, 2012.
International Preliminary Report on Patentability for International Application Serial No. PCT/US2011/021249 International filing date Jan. 14, 2011. Date of Issuance Jul. 24, 2012.
International Preliminary Report on Patentability for International Application Serial No. PCT/US2011/021250 International filing date Jan. 14, 2011. Date of Issuance Jul. 24, 2012.
International Preliminary Report on Patentability for International Application Serial No. PCT/US2011/021252 International filing date Jan. 14, 2011. Date of Issuance Jul. 24, 2012.
International Preliminary Report on Patentability for International Application Serial No. PCT/US2011/021247 International filing date Jan. 14, 2011. Date of Issuance Jul. 24, 2012.
International Preliminary Report on Patentability for International Application Serial No. PCT/US2011/021262. International filing date Jan. 14, 2011. Date of Issuance Jul. 24, 2012.
International Preliminary Report on Patentability for International Application Serial No. PCT/US2011/021263. International filing date Jan. 14, 2011. Date of Issuance Jul. 24, 2012.
International Preliminary Report on Patentability for International Application Serial No. PCT/US2011/021264. International filing date Jan. 14, 2011. Date of Issuance Jul. 24, 2012.
International Preliminary Report on Patentability for International Application Serial No. PCT/US2011/021270. International filing date Jan. 14, 2011. Date of Issuance Jul. 24, 2012.
International Preliminary Report on Patentability for International Application Serial No. PCT/US2011/021272. International filing date Jan. 14, 2011. Date of Issuance Jul. 24, 2012.
International Preliminary Report on Patentability for International Application Serial No. PCT/US2011/021273. International filing date Jan. 14, 2011. Date of Issuance Jul. 24, 2012.
International Preliminary Report on Patentability for International Application Serial No. PCT/US2011/021276. International filing date Jan. 14, 2011. Date of Issuance Jul. 24, 2012.
International Preliminary Report on Patentability for International Application Serial No. PCT/US2011/021278. International filing date Jan. 14, 2011. Date of Issuance Jul. 24, 2012.
International Preliminary Report on Patentability for International Application Serial No. PCT/US2011/021794. International filing date Jan. 20, 2011. Date of Issuance Jul. 24, 2012.
International Preliminary Report on Patentability for PCT/US2011/020625; Date of Issuance Jul. 17, 2012.
International Search Report for International Application No. PCT/US2011/021247 mailed Aug. 26, 2011.
Written Opinion of the International Searching Authority for International Application No. PCT/US2011/021247 mailed Aug. 26, 2011.
GoMeasure3D—Your source for all things measurement, Baces 3D 100 Series Portable CMM from GoMeasure3D, [online], [retrieved Nov. 29, 2011], http://www.gomeasure3d.com/baces100.html.
It is Alive in the Lab, Autodesk University, Fun with the Immersion MicroScribe Laser Scanner, [online], [retrieved Nov. 29, 2011], http://labs.blogs.com/its—alive—in—the—lab/2007/11/fun-with-the-im.html.
GHOST 3D Systems, Authorized MicroScribe Solutions, FAQs—MicroScribe 3D Laser, MicroScan Tools, & related info, [online], [retrieved Nov. 29, 2011], http://microscribe.ghost3d.com/gt—microscan-3d—faqs.htm.
Electro-Optical Information Systems, “The Handy Handheld Digitizer” [online], [retrieved on Nov. 29, 2011], http://vidibotics.com/htm/handy.htm.
Kreon Laser Scanners, Getting the Best in Cutting Edge 3D Digitizing Technology, B3-D MCAD Consulting/Sales [online], [retrieved Nov. 29, 2011], http://www.b3-d.com/Kreon.html.
MicroScan 3D User Guide, RSI GmbH, 3D Systems & Software, Oberursel, Germany, email: info@rsi-gmbh.de, Copyright RSI Roland Seifert Imaging GmbH 2008.
Laser Reverse Engineering with Microscribe, [online], [retrieved Nov. 29, 2011], http://www.youtube.com/watch?v=8VRz—2aEJ4E&feature=PlayList&p=F63ABF74F30DC81B&playnext=1&playnext—from=PL&index=1.
Examination Report under Section 18(3); Report dated Oct. 31, 2012; Application No. GB1210309.9.
Dylan, Craig R., High Precision Makes the Massive Bay Bridge Project Work. Suspended in MidAir—Cover Story—Point of Beginning, Jan. 1, 2010, [online] http://www.pobonline.com/Articles/Cover—Story/BNP—GUID—9-5-2006—A—10000000000...[Retreived Jan. 25, 2010].
Franklin, Paul F., What IEEE 1588 Means for Your Next T&M System Design, Keithley Instruments, Inc., [on-line] Oct. 19, 2010, http://www.eetimes.com/General/DisplayPrintViewContent?contentItemId=4209746, [Retreived Oct. 21, 2010].
HYDROpro Navigation, Hydropgraphic Survey Software, Trimble, www.trimble.com, Copyright 1997-2003.
Anonymous : So wird's gemacht: Mit T-DSL und Windows XP Home Edition gemeinsam ins Internet (Teil 3) Internet Citation, Jul. 2003, XP002364586, Retrieved from Internet: URL:http://support.microsfot.com/kb/814538/DE/ [retrieved on Jan. 26, 2006]eh whole document.
Cho, et al., Implementation of a Precision Time Protocol over Low Rate Wireless Personal Area Networks, IEEE, 2008.
Cooklev, et al., An Implementation of IEEE 1588 Over IEEE 802.11b for Syncrhonization of Wireless Local Area Network Nodes, IEEE Transactions on Instrumentation and Measurement, vol. 56, No. 5, Oct. 2007.
International Search Report and Written Opinion for International Application No. PCT/US2011/021273 filed Jan. 14, 2011.
International Search Report for International Application No. PCT/2011/020625 mailed Feb. 25, 2011.
International Search Report for International Application No. PCT/US2011/021270 mailed May 2, 2011.
International Search Report for International Application No. PCT2011/021274 filed Jan. 14, 2011.
International Search Report for International Application No. PCT2011/021276 filed Jan. 14, 2011.
International Search Report for International Application No. PCT/US2011/021246 mailed Apr. 12, 2011.
International Search Report for International Application No. PCT/US2011/021249 mailed Apr. 21, 2011.
Internation Search Report for International Application No. PCT/US2011/021250 mailed Apr. 18, 2011.
International Search Report for International Application No. PCT/US2011/021252 mailed Apr. 27, 2011.
International Search Report for International Application No. PCT/US2011/021259 mailed May 25, 2011.
International Search Report for International Application No. PCT/US2011/021262 mailed May 11, 2011.
International Search Report for International Application No. PCT/US2011/021263 mailed May 4, 2011.
International Search Report for International Application No. PCT/US2011/021264 mailed May 31, 2011.
International Search Report for International Application No. PCT/US2011/021272 mailed Apr. 7, 2011.
International Search Report for International Application No. PCT/US2011/021278 mailed May 25, 2011.
Jasperneite, et al., Enhancements to the Time Synchronization Standard IEEE-1588 for a System of Cascaded Bridges, IEEE, 2004.
Sauter, et al., Towards New Hybrid Networks for Industrial Automation, IEEE, 2009.
Spada, et al., IEEE 1588 Lowers Integration Costs in Continuous Flow Automated Production Lines, XP-002498255, ARC Insights, Insight # 2003-33MD&H, Aug. 20, 2003.
Written Opinion of the International Searching Authority for International Application No. PCT/US2011/021246 mailed Apr. 12, 2011.
Written Opinion of the International Searching Authority for International Application No. PCT/US2011/021249 mailed Apr. 21, 2011.
Written Opinion of the International Searching Authority for International Application No. PCT/US2011/021250 mailed Apr. 18, 2011.
Written Opinion of the International Searching Authority for International Application No. PCT/US2011/021252 mailed Apr. 27, 2011.
Written Opinion of the International Searching Authority for International Application No. PCT/US2011/021259 mailed May 25, 2011.
Written Opinion of the International Searching Authority for International Application No. PCT/US2011/021262 mailed May 11, 2011.
Written Opinion of the International Searching Authority for International Application No. PCT/US2011/021263 mailed May 4, 2011.
Written Opinion of the International Searching Authority for International Application No. PCT/US2011/021264 mailed May 31, 2011.
Written Opinion of the International Searching Authority for International Application No. PCT/US2011/021272 mailed Apr. 7, 2011.
Written Opinion for International Application No. PCT/US2011/021273 mailed Jan. 14, 2011.
Written Opinion of the International Searching Authority for International Application No. PCT/US2011/021278 mailed May 25, 2011.
Written Opinion of the International Searching Authority for International Application No. PCT/US2011/020625 mailed Feb. 25, 2011.
Written Opinion of the International Searching Authority for Internationl Application No. PCT/US2011/021270 mailed May 2, 2011.
Written Opinion for International Application No. PCT2011/021274 filed Jan. 14, 2011.
Written Opinion for International Application No. PCT/US2011/021276 filed Jan. 14, 2011.
German Office Action and English Language summary for DE 112011100292.0 filed Jul. 3, 2012, based on PCT Application US2011/021252 filed Jan. 14, 2011.
German Patent Application No. 11 2011 100 291.2 dated Dec. 20, 2012.
Japanese Office Action and English Language summary for JP2012-550042 filed Jul. 20, 2012; based on International Application No. PCT/US2011/021249 filed Jan. 14, 2011.
Japanese Office Action and English Language summary for JP2012-550044 filed Jul. 20, 2012; based on International Application No. PCT/US2011/021252 filed Jan. 14, 2011.
Japanese Office Action and English Language summary for JP2012-550043 filed Jul. 20, 2012; based on International Application No. PCT/US2011/021250 filed Jan. 14, 2011.
Examination Report for German Application No. 11 2011 100 193.2 Report dated Dec. 20, 2012; based on PCT/US2011/021249.
FARO Product Catalog; Faro Arm; 68 pages; Faro Technologies Inc. 2009; printed Aug. 3, 2009.
Romer Measuring Arms; Portable CMMs for the shop floor; 20 pages; Hexagon Metrology, Inc. (2009) http//us.ROMER.com.
International Search Report of the International Searching Authority for Application No. PCT/US2013/0022186; Date of Mailing: May 29, 2013.
Written Opinion of the International Searching Authority for Application No. PCT/US2013/022186; Dated of Mailing: May 29, 2013.
MG Lee; “Compact 3D LIDAR based on optically coupled horizontal and vertical Scanning mechanism for the autonomous navigation of robots” (13 pages) vol. 8037; downloaded from http://proceedings.spiedigitallibrary.org/ on Jul. 2, 2013.
P. Ben-Tzvi, et al “Extraction of 3D Images Using Pitch-Actuated 2D Laser Range Findre for Robotic Vision” (6 pages) BNSDOCID <XP 31840390A—1—>.
International Search Report for International Application No. PCT/US2013/040321 mailed Jul. 15, 2013.
YK Cho, et al. “Light-weight 3D LADAR System for Construction Robotic Operations” (pp. 237-244); 26th International Symposium on Automation and Robotics in Construction (ISARC 2009).
Written Opinion for International Applicaton No. PCT/US2013/040321 mailed Jul. 15, 2013.
International Search Report for International Application No. PCT/US2013/040309 mailed Jul. 15, 2013.
Written Opinion for International Application No. PCT/US2013/040309 mailed Jul. 15, 2013.
Jgeng “DLP-Based Structured Light 3D Imaging Technologies and Applications” (15 pages) Emerging Digital Micromirror Device Based Systems and Application III; edited by Michael R. Douglass, Patrick I. Oden, Proc. of SPIE, vol. 7932, 79320B; (2011) SPIE.
International Search Report for International Application No. PCT/US/2013/041826 filed May 20, 2013; mailed Jul. 29, 2013.
Written Opinion for International Application No. PCT/US/2013/041826 filed May 20, 2013; mailed Jul. 29, 2013.
Romer “Romer Measuring Arms Portable CMMs for R&D and shop floor” (Mar. 2009) Hexagon Metrology (16 pages).
Examination Report for German Application No. 11 2011 100 290.4 Report dated Jul. 16, 2013; based on PCT/US2011/021247.
Related Publications (1)
Number Date Country
20110173824 A1 Jul 2011 US
Provisional Applications (1)
Number Date Country
61296555 Jan 2010 US