The present disclosure relates to silicon carbide power semiconductor devices. More specifically, the present invention relates to silicon carbide Schottky Barrier Diode (SBD) and Junction Barrier Schottky (JBS) diode structures capable of withstanding high voltages.
The Schottky diode (named after German physicist Walter H. Schottky) is a well-known semiconductor diode device that is achieved using a metal-semiconductor junction, frequently referred to as a Schottky barrier, in contrast to an ordinary PN junction of a conventional semiconductor diode. Compared with silicon-based PIN diodes, silicon carbide (SiC) Schottky barrier diodes (SBDs) are characterized by lower switching losses and very fast switching speed. However, SIC devices, due to their wider bandgap, are optimized to operate at higher electric fields. The leakage current across the reverse-biased metal-semiconductor junction in the SiC SBD at this higher electric field is much higher than leakage across a PN junction of the same barrier in a Si PIN diode.
Switching loss is low because, unlike silicon PIN diodes, SiC SBDs are majority carrier devices that do not inject minority carriers into the N-type drift region. Since these carriers do not need to be removed to switch the device off, the reverse current transient during switching is small and the switching energy is negligible. This reduction in switching energy has led to SIC SBDs replacing silicon PIN diodes in many power applications such as the front-end boost converter in switched-mode power supplies. One drawback with using SiC SBDs instead of Si PIN diodes is enhanced reverse-biased leakage current.
Silicon SBDs are generally unsuitable for high voltage operation because their reverse leakage current is relatively high, leading to high off-state power dissipation. Even though the leakage current is much smaller in SiC SBDs as compared to silicon SBDs, reverse leakage in SiC SBDs is still a performance limitation. The leakage is due to electrons that enter the semiconductor material from the metal by thermionic-field emission (TFE) under reverse bias. This leakage current increases exponentially with the electric field at the metal-semiconductor interface, i.e., where the semiconductor material directly contacts the metal forming the anode of the diode. The electric field is given by the slope of the conduction band at the surface.
Prior attempts to reduce the reverse leakage current in SiC SBDs have focused on reducing the electric field at the surface. One past approach has been to place isolated P+N junctions within the active area of the SBD. Such devices are commonly referred to as Junction-Barrier Schottky (JBS) diode structures. In JBS diodes, many of the electric field lines reaching the surface terminate on P+N junctions rather than on the Schottky junction, thus reducing the surface electric field and hence lowering the reverse leakage current. One drawback of this approach, however, is that the insertion of P+N junctions increases the overall area of the diode for the same current-carrying area of the Schottky junction, and thus increases the specific on-resistance in forward bias, and capacitance in reverse bias.
In JBS diode 10 deep P+ regions 12a & 12b are highly doped to a concentration of 1E19/cm3 to 1E21/cm3, which is about 1000 times higher or more than the doping concentration of N-type drift region 14. P+ regions 12a & 12b are typically formed to a vertical depth of 200 nm to 500 nm or more, with each P+ region having a lateral width of about 2.0 μm. In conventional JBS diode 10 P+ regions 12a & 12b are typically laterally separated by a distance of about 2.0 μm.
As discussed above, even though the JBS leakage current is less than that of a SiC SBD, the magnitude of the reverse bias leakage current still causes problems in certain applications. Furthermore, the addition of the highly-doped P+ regions reduces the Schottky diode contact area. The reduced contact area results in forward bias current reduction.
Non-limiting and non-exhaustive embodiments of the present invention are described with reference to the following figures, wherein like reference numerals refer to like parts throughout the various views unless otherwise specified.
Corresponding reference characters indicate corresponding components throughout the several views of the drawings. Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of various embodiments of the disclosed subject matter. Also, common but well-understood elements that are useful or necessary in a commercially feasible embodiment are often not depicted in order to facilitate a less obstructed view of these various embodiments presented. Additionally, persons of skill in the semiconductor arts will understand that regions and elements depicted in cross-sectional diagrams should not be limited to the particular shapes of the regions illustrated. For instance, implanted regions shown in rectangular form typically have rounded or curved features due to normal fabrication processing. Thus, the shapes of regions shown in the drawings are not intended to illustrate the precise shapes found in a manufactured device.
In the following description numerous specific details are set forth in order to provide a thorough understanding of the disclosed subject matter. It will be apparent, however, to one having ordinary skill in the art that the specific details need not be employed to practice the various embodiments described. In other instances, well-known systems, devices, or methods have not been described in detail in order to avoid obscuring the disclosed subject matter.
Reference throughout this specification to “one embodiment”, “an embodiment” “one example” or “an example” means that a particular feature, structure or characteristic described in connection with the embodiment or example is included in at least one embodiment of the disclosed subject matter. Thus, appearances of the phrases “in one embodiment”, “in an embodiment”, “one example” or “an example” in various places throughout this specification are not necessarily all referring to the same embodiment or example. Furthermore, the particular features, structures or characteristics may be combined in any suitable combinations and/or sub-combinations in one or more embodiments or examples. Particular features, structures or characteristics may be included in an integrated circuit, an electronic circuit, a combinational logic circuit, or other suitable components that provide the described functionality. In addition, it is appreciated that the figures provided herewith are for explanation purposes to persons ordinarily skilled in the art and that the drawings are not necessarily drawn to scale.
As used herein, a “wafer” is a thin slice of crystalline material, such as silicon carbide, used in the fabrication of semiconductor devices and integrated circuits. The term “substrate” refers to the semiconductor supporting material upon which or within which the elements of a semiconductor device are fabricated, which substantially comprises the thickness of a wafer. Upon completion of the fabrication process the wafer is typically scribed and broken into individual semiconductor die, each of which consists of one or more semiconductor devices.
In the context of the present application, when a diode is in an “off state” or “off” the diode does not substantially conduct current. Conversely, when a diode is in an “on state” or “on” the diode is able to substantially conduct current in a forward-biased direction.
It is appreciated that each the diode structures shown and disclosed herein may represent a single device cell or unit. Each of the diode cells shown may be replicated in a mirrored or translated fashion many times in in two-dimensional layouts across a wafer to form a completely fabricated SiC device.
A SiC counter-doped Schottky diode that incorporates a relatively thin or shallow P-type layer at the surface of the semiconductor layer to substantially reduce the surface electric field, and hence the reverse-bias leakage current, is described. The doping and thickness of the P-type layer are determined to insure that the P-type layer is completely depleted at zero bias. In the off-state, the negatively-charged acceptors in the depleted P-type layer reduce the electric field at the Schottky metal interface, thereby reducing the reverse leakage. It has been demonstrated that the counter-doped Schottky diode disclosed herein has a lower electric field at the surface as compared with a conventional Schottky diode. Compared to a conventional JBS diode, the counter-doped Schottky diode has a Schottky interface over the entire anode and hence conducts with lower resistance in forward bias.
By way of example, in a typical 1200 V counter-doped Schottky barrier diode, P-type regions 22a & 22b are shown disposed in an upper N+ current spreading layer (CSL) or region 27 to predetermined implant depth of about 100 nm, or less, beneath top planar surface 23. Each P-type region may have a doping concentration in a range of about 1E16/cm3 to 2E16/cm3. Within this combined doping range and thickness, P-type regions 22a & 22b are fully depleted at zero bias, so as to avoid introducing an additional forward voltage drop in the on-state (forward biased).
In one embodiment, the lateral width of P-type regions 22a & 22b is about 500 nm. P-type region 22a is laterally separated from P-type region 22b by a distance of about 0.5 μm. It should be appreciated that SBD 20 with shallow P-type regions 22 effectively reduces the electric field at surface 23 without impacting forward bias current. Unlike the conventional JBS diode structure shown in
Practitioners in the art will further appreciate that compared with conventional JBS diodes SBD 20 has an advantage of being much narrower in pitch while reducing reverse bias leakage current considerably, but without a significant reduction in forward current.
Continuing with the example of
In one embodiment, for a 1200 volt diode N-type drift region 24 may have a doping concentration of about 9E15/cm3 and a thickness of about 10 μm. SiC substrate 28 may have a doping concentration of about 4E18/cm3 and a thickness in a range of 100 μm to 360 μm.
It is appreciated that in other embodiments the depth or thickness of P-type regions 22a & 22b may be less than or slightly greater than 100 nm (e.g., 120 nm) while still insuring that P-type regions 22a & 22b are fully depleted at zero bias. Considering only depletion due to the PN junctions, the extent or width WP the depletion region in each of P-type regions 22a & 22b is given as
where NA and ND are the doping concentrations of the P-type and N-type regions 22 and 27, respectively, εS is the semiconductor dielectric constant, q is the electronic charge, k is Boltzmann's constant, T is absolute temperature, and ni is the intrinsic carrier concentration at temperature T. For a given P-type doping NA, keeping the thickness (depth) of each P-type region 22 less than WP insures that each P-type region 22 is totally depleted at zero bias.
In counter-doped SBD 20, the holes in the P-type regions 22 are depleted by diffusing both to the N-type region 27 on one side, and to the top metal layer 21 on the other side where they recombine with free electrons. When the anode is raised to a positive potential the depletion region in each of the shallow, counter-doped P-type regions 22 contracts from both ends. However, by careful selection of the top metal and the combined doping concentration and thickness, each counter-doped P-type region 22 is kept depleted even at the rated forward bias operating condition of the diode.
Conversely, when the anode is negative the depletion region of the PN junction expands into each P-type region 22. Thus, if P-type regions 22 are totally depleted at a zero bias condition, they remain depleted at all non-zero reverse biases.
Practitioners in the art will appreciate that to a first order, inclusion of shallow P-type regions 22 beneath top metal layer 21 has a minimal effect on the on-state (forward bias) performance of diode 20. In reverse bias the electric field at the metal-semiconductor interface is substantially reduced in counter-doped SBD 20, as compared with conventional SBD devices.
It should also be noted that in certain embodiments the P-type region 22 doping-thickness product may be less than NA×WP. For example, the doping of P-type regions 22 can be reduced to zero (an intrinsic layer), or even become slightly N-type provided that remains more lightly doped than N-type drift region 24.
It is further appreciated that in still other embodiments N+ CSL 27 may optionally be eliminated such that the N-type drift region 24 extends upward to top surface 23.
In one embodiment, P+ JBS regions 33 are disposed in N+ CSL region 37 with each having a lateral width of about 2.0 μm and a vertical depth typically of about 0.3 μm to 1.5 μm. In certain embodiments, P+ JBS regions may be formed to a depth of 1.0 μm. P+ JBS regions 33a & 33b may be doped to a concentration of 1E19/cm3 to 2E20/cm3. N+ CSL 27 extends vertically from top surface 39 down to an N-type drift region 34. N-type drift region 34 vertically separates N+ CSL 37 from underlying N+ SiC substrate 38. A bottom metal layer 36, which is disposed directly beneath N+ SiC substrate 38, forms the cathode of JBS diode 30.
As was the case with SBD 20 shown in
Practitioners skilled in the art will appreciate that the inclusion of P-type layer 32 beneath top metal layer 31 advantageously improves on-state (forward bias) performance of JBS diode 30, as compared with conventional JBS devices. In addition, the incorporation of shallow P-type layer 32 in combination with heavily-doped, deep P+ JBS regions 33 functions to further reduce reverse bias leakage current as compared to the prior art JBS diodes.
After removal of the masking layer a vertical implant may be performed to form the horizontal portion of P-type layer 42 beneath top planar surface 49. Following formation of the counter-doped horizontal and vertical portions of P-type layer 42, top metal layer 41 may be formed directly on P-type layer 42 on both the top and sidewall portions of the mesa, as well at the bottom of trenches 62 in contact with P+ regions 43. Top metal layer 41 forms a Schottky contact which functions as the anode of trench JBS diode 40.
Like the previous embodiments discussed above, shallow P-type layer 42 may be formed to a depth or thickness of about 100 nm or less along the top and sidewall areas of the SiC mesa. For a given top metal type (e.g., titanium), the depth and doping concentration of P-type layer 42, along with the doping concentration of N+ CSL 47 are selected to insure that P-type layer 42 is fully depleted at zero applied bias.
Also shown in
Note that in the example of
Persons of skill in the art will understand that N+ CSL 47 may optionally be omitted in certain embodiments such that N-type drift region 44 extends vertically from substrate 48 to the counter-doped P-type layer 42 at the top of the mesa. In one embodiment, N+ CSL 47, when included, has a doping concentration is a range from about 2E16/cm3 to 1E17/cm3. In the example of
It is appreciated that in trench JBS diode 40 shown in
The example trench JBS diode 50 of
Persons of ordinary skill will understand that the sidewall Schottky barrier is exposed to higher electric fields than the mesa-top, but it also has a higher effective Schottky barrier due to the counter-doped P-type regions 52 disposed along the vertical sidewall areas; hence, P-type regions 52 further shield the mesa-top Schottky barrier.
The depth and doping concentration of P-type regions 52, disposed along the sidewalls of the mesa are selected, along with the doping concentration of N+ CSL 57, to insure that, for a given top metal type, P-type regions 52 are fully depleted at zero bias. As shown, N-type drift region 54 is formed over N+ SiC substrate 58. A bottom metal layer 56, which is disposed directly beneath N+ SiC substrate 58, forms the cathode of trench JBS diode 50.
Persons of skill in the art will understand that N+ CSL 57 is optional and may be omitted in certain embodiments, such that N-type drift region 54 extends vertically from substrate 58 to top surface 59 of the mesa. In one embodiment, N+ CSL 57 has a doping concentration is a range from about 2E16/cm3 to 1E17/cm3. In the example of
The above description of illustrated example embodiments, including what is described in the Abstract, are not intended to be exhaustive or to be limited to the precise forms or structures disclosed. While specific embodiments and examples of the subject matter described herein are for illustrative purposes, various equivalent modifications are possible without departing from the broader spirit and scope of the present invention. Indeed, it is appreciated that the specific example thicknesses, material types, concentrations, voltages, etc., are provided for explanation purposes and that other values may also be employed in other embodiments and examples in accordance with the teachings of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
3775200 | De Nobel et al. | Jan 1973 | A |
4543595 | Vora | Sep 1985 | A |
4745445 | Mun et al. | May 1988 | A |
4946547 | Palmour et al. | Aug 1990 | A |
5200022 | Kong et al. | Apr 1993 | A |
5602418 | Imai et al. | Feb 1997 | A |
5612567 | Baliga | Mar 1997 | A |
5686738 | Moustakas | Nov 1997 | A |
5741724 | Ramdani et al. | Apr 1998 | A |
5785606 | Marquez | Jul 1998 | A |
5874747 | Redwing et al. | Feb 1999 | A |
5877558 | Nakamura et al. | Mar 1999 | A |
6051340 | Kawakami et al. | Apr 2000 | A |
6121121 | Koide | Sep 2000 | A |
6139628 | Yur et al. | Oct 2000 | A |
6146457 | Solomon | Nov 2000 | A |
6184570 | MacDonald, Jr. et al. | Feb 2001 | B1 |
6239033 | Kawai | May 2001 | B1 |
6685804 | Ikeda et al. | Feb 2004 | B1 |
7026665 | Smart et al. | Apr 2006 | B1 |
7235330 | Fujimoto et al. | Jun 2007 | B1 |
7547928 | Germain et al. | Jun 2009 | B2 |
7696540 | Francis et al. | Apr 2010 | B2 |
7696598 | Francis et al. | Apr 2010 | B2 |
8901699 | Ryu et al. | Dec 2014 | B2 |
20020015833 | Takahashi et al. | Feb 2002 | A1 |
20030015708 | Parikh et al. | Jan 2003 | A1 |
20040016965 | Ui et al. | Jan 2004 | A1 |
20040021152 | Nguyen et al. | Feb 2004 | A1 |
20040119063 | Guo et al. | Jun 2004 | A1 |
20050087763 | Kanda et al. | Apr 2005 | A1 |
20060108606 | Saxler et al. | May 2006 | A1 |
20060151868 | Zhu et al. | Jul 2006 | A1 |
20060186422 | Gaska et al. | Aug 2006 | A1 |
20060244010 | Saxler | Nov 2006 | A1 |
20070045764 | Hatakeyama | Mar 2007 | A1 |
20090039456 | Bhalla | Feb 2009 | A1 |
20090191674 | Germain et al. | Jul 2009 | A1 |
20110278599 | Nakao | Nov 2011 | A1 |
20140048847 | Yamashita | Feb 2014 | A1 |
20150028350 | Suvorov | Jan 2015 | A1 |
20190006526 | Kitada | Jan 2019 | A1 |
20190267370 | Sato | Aug 2019 | A1 |
Number | Date | Country |
---|---|---|
101689561 | Mar 2010 | CN |
0081414 | Jun 1983 | EP |
0514018 | Nov 1992 | EP |
1612866 | Jan 2006 | EP |
2844099 | Mar 2004 | FR |
11040847 | Feb 1992 | JP |
08050922 | Feb 1996 | JP |
09306504 | Nov 1997 | JP |
11135115 | May 1999 | JP |
11145514 | May 1999 | JP |
2000216409 | Aug 2000 | JP |
2000512075 | Sep 2000 | JP |
2001357855 | Dec 2001 | JP |
2002083594 | Mar 2002 | JP |
2003506903 | Feb 2003 | JP |
2005209377 | Aug 2005 | JP |
2006155959 | Jun 2006 | JP |
9641906 | Dec 1996 | WO |
0131722 | May 2001 | WO |
0143174 | Jun 2001 | WO |
03032397 | Apr 2003 | WO |
WO-2017188105 | Nov 2017 | WO |
Entry |
---|
Arulkumaran et al. “Studies on the Influences of I-GaN, N-GaN, P-GaN and InGaN Cap Layers in AlGaN/GaN High-Electron-Mobility Transistors,” Japanese Journal of Applied Physics, Japan Society of Applied Physics, JP, vol. 44, No. 5A, May 10, 2005, pp. 2953-2960, XP001502490, ISSN: 0021-4922. |
Hashizume Tamotsu et al. “Chemisty and Electrical Properties of Surfaces of GaN and GaN/AlGaN Heterostructures,” Journal of Vacuum Science and Technology: Part B, AVS/AIP, Melville, New York, NY, US, vol. 19, No. 4, Jul. 1, 2001, pp. 1675-1681, XP012008931. |
Yoshida et al. “A New GaN Based Field Effect Schottky Barrier Diode with a Very Low On-Voltage Operation,” Proceedings of 2004 Power Semiconductor Devices & ICs, Kitakyushu, May 24, 2004, pp. 323-326, XP010723404, ISBN: 978-4-88686-060-6. |