The present invention relates to a coupling component for transmitting medical substances, comprising two channels for conveyance of medical substances in two substantially opposite directions and a means for releasable connection to a second coupling component having a further channel, for creating a coupling. Furthermore, the invention relates to a coupling for transmitting medical substances, comprising a first component having two channels for conveyance of medical substances in two substantially opposite directions, a second component having a further channel and a means for releasable connection of the first and the second component to each other for creating the coupling. The invention also relates to a method for conveyance of medical substances to and from a container, in which method a coupling component having two channels for conveyance of medical substances in two substantially opposite directions be connected to a second coupling component of a container, which second coupling component has a further channel.
The invention may be applied in different situations when medical substances are to be handled, but hereinafter the particular, but not in any way limiting for the invention, fields of application constituting a means for administration of fluids to/from infusion bags, which is desired in medical treatment for instance, will be described for illuminating purposes.
Infusion bags are used for intravenous delivery of fluids and medically effective substances to human beings and animals. For this reason, the infusion bag is provided with an outlet through which fluid may flow to a component connected to the patient, such as a cannula or the like, and further into the body of the patient. When preparing the fluids which are to be administrated to the body from the infusion bag, a usual method is that medically effective substances are supplied to a pre-sealed infusion bag which is filled with a transport fluid, such as a sodium chloride solution or a glucose solution. The preparation is performed by injecting the medically effective substance via an inlet into the bag.
For accomplishing the desired transportations of fluid a combined inlet and outlet of the infusion bag together with a coupling device which is denoted “spike” are often used. The spike has a first pointed end by means of which a membrane arranged in a narrow passage of the infusion bag, constituting inlet/outlet of the infusion bag, may be penetrated so that the infusion bag be opened towards two channels arranged in the spike when the spike is introduced in the inlet/outlet of the infusion bag. One of the channels is intended for conveyance of fluid in a direction from the infusion bag towards the patient and the other channel is intended for injection of medical substances into the infusion bag. In the other end of the spike are members arranged at the mouths of the channels for connection to other components, such as flexible tubes for conveyance of the fluid further to the patient and cannulas for the injection of medical substances to the infusion bag.
However, it has appeared that during certain extreme conditions there is a risk that the spike, which by insertion in the above mentioned narrow passage of the infusion bag is relatively loosely interconnected to the infusion bag, may unintentionally come loose from the infusion bag if the equipment is handled carelessly or by carelessness in connection with other treatment of the patient. The system of spike and infusion bag is depended of the friction between the infusion bag and the spike to prevent the spike from coming loose from the infusion bag. Furthermore, the spike has the disadvantage that leakage from the infusion bag to the environment may occur when the spike is introduced and the membrane is penetrated. In some cases the fluids which are to be administrated to the patient may be harmful to other persons than the patient who has been prescribed the treatment as a result of an indication of a specific decease. This is particularly the case when repeated long-term exposure is concerned, which can happened to medical staff when preparing and connecting infusion bags every day if the requisite security regulations are not fulfilled. A further disadvantage with the use of a spike which during the connection penetrates a membrane of the infusion bag for providing the fluid administration channels is that the connection step itself cannot be made in advance to later on enable conveyance of fluid from the infusion bag to a receiving unit connected to the spike, but the channels have to be opened instantaneously at the connecting moment.
One object of the invention is to provide a coupling component/coupling of the kind defined by way of introduction for transmitting medical substances, in which coupling component/coupling at least some of the discussed disadvantages of such previously known coupling devices has been reduced to a great extent.
This object is achieved by providing a coupling component according to claim 1 and a coupling according to claim 8. By a coupling component/coupling having the feature that the connecting means is a thread/a thread joint it is ensured that the coupling not be unintentionally uncoupled when the coupling is tension loaded. By means of the thread/thread joint a coupling safe against tension load may be obtained at the same time as the connection may be accomplished quickly and safely in one simple operation. This implies that in the use of a device according to the invention, when an infusion bag is connected to a patient, an increased safety to the patient may be achieved at the same time as it is possible to deliver medical substances to the infusion bag and intravenously administrate fluid to the patient from the infusion bag. Furthermore the invention enables the use of other means, such as breakable fluid barrier plugs, for opening the infusion bag towards the channels and there is possible to ensure that leakage to the environment is prevented by tightening the thread joint before the infusion bag be opened towards the channels.
A further object of the invention is to provide a method of the kind defined by way of introduction, in which method a container and a coupling component, having two channels for conveyance of medical substances in two substantially opposite directions, may be connected to each other for conveyance of medical substances via the channels without the container being instantaneously opened towards the two channels.
This object is achieved by providing a method according to claim 17. Hereby the connection may be accomplished so as to later on enable conveyance of a medical substance from the container via one first of said two channels and/or conveyance of a medical substance to the container via the other of said two channels.
The invention also relates to an infusion bag according to claim 15 and an infusion arrangement according to claim 16.
A description in greater detail of exemplifying embodiments of the invention will follow below with reference to the attached drawings.
In the drawings:
In
In
The connecting means 15 is a thread joint having the characteristic that said first 13 and second 14 components are locked against rectilinear movement relative to each other when being connected to each other and the coupling 12 is tension loaded. The first component 13 has a ring 20 partly enclosing the male fitting 16, which ring has a internal thread 21 constituting part of the thread joint. The ring 20 is concentrically arranged relative to the male fitting 16. The second component 14 comprises a female fitting 22 provided with said further channel 19 and an external thread 23 corresponding to said thread 21 of the ring 20 and constituting part of the thread joint. When the first and second components are to be connected to each other, i.e. when the first and the second components be screwed together, the male fitting 16 be introduced into the female fitting 22 to form a connection between said two channels 17, 18 of the first component 13 and the further channel 19 of the second component 14, which connection is sealed relative to the environment. For this purpose the male fitting 16 and/or female fitting 22 may be designed with a certain taper so that when the male fitting and the female fitting have been brought together a certain distance the outer surface 24 of the male fitting will abut against the inner surface 25 of the female fitting, and then further movement of the components in the introduction direction relative to each other is not longer possible and a sealing between the male fitting 16 and the female fitting 22 is obtained when tightening the thread joint 15.
Although the coupling component according to the invention, i.e. said first component, which has the both channels, is designed as a male fitting of the coupling in the illustrated example, in another embodiment it could be designed as a female fitting 22a of the coupling 12, such as illustrated in
Advantageously the design of the threads 21, 23, the male fitting 16 and the female fitting 22 may be in accordance with a so called luer fitting coupling such as in the illustrated embodiments.
The coupling component 13 according to the invention is provided with a port 26 for injection of a medical substance to the first of the channels 17 and further conveyance of this substance to the infusion bag 10. For this purpose, the first channel 17 has also an outlet 27 arranged at one end of the first coupling component 13 which exhibits the connecting means 15 and the second coupling component 14 has said further channel 19, which communicates with the first 17 and the second 18 channels, for introduction or removal of liquid to/from the infusion bag 10.
Within the frame of the invention the injection port 26 may be designed in different ways depending on which injection component is to be connected. In the illustrated embodiment the injection port 26 has a first flexible membrane 28 for co-operation with a second flexible membrane (not illustrated) arranged in an injection component 29 which is connectable to the injection port 26. The first membrane 28 is suitably air- and liquid proof and penetratable by an injection needle. To achieve a sealed connection of such a injection component 29 to the injection port 26, the injection part has a means 30 for holding said second flexible membrane with a pressure against said first flexible membrane 28. This holding means 30 may for example be constituted by a snap lock device, bayonet coupling or similar. The current pressure in question may suitably be chosen so that said first and second membranes are pressed together to a pressure exceeding the yield point of the both membranes, which implies that fluid cannot be pressed out through the contact surfaces of the membranes and a sealed connection is obtained.
If a pressure exceeding the yield point is applied the membranes will exhibit same properties at the compressed surfaces as in an arbitrary cross-section through the membranes, which implies that liquid cannot be pressed through the contact surfaces of the membranes. Such a characteristic may be obtained when the said first and second membranes has been pressed together to a pressure exceeding 150 kPa. Since the device risks to be destroyed if it is subjected to exceedingly large contact forces, the contact pressure should be restricted as much as possible. It has been proved in experiments that the sufficient sealing without any risk of failure is obtained with contact forces of up to 11, 1N, which corresponds to 656 kPA. Preferably, the contact pressure is within the interval 300-473 kPa.
At one end of the first coupling component 13, which end exhibits the connecting means 15 for establishing communication with the further channel 19 of the second coupling component 14 of the infusion bag 10, the second channel 18 has a inlet 31. Furthermore, the first coupling component 13 has in the other end thereof a port 32 which works as an outlet for the second channel 18. Within the frame of the invention the outlet port 32 may be designed in several different ways depending on which unit is to be connected to the outlet port. For example a snap coupling 33 may be used in combination with a friction joint for retaining a connection unit at the outlet port. In accordance with an variant thereof the entire coupling component 13, or at least the part 13a closest to the outlet port 32a of the coupling component 13, may be made of a first material and the connection unit 34 corresponding to the outlet port may be made of a second material. In this connection, materials having considerably different elasticity may be chosen, preferably so that the second material has a considerable higher elasticity than the first material for providing sufficient sealing action between the coupling component 13 and the connection unit 34 and at the same time achieve that the coupling component 13 having a lower elasticity has a high resistance against deformation.
In the extension of the further channel 19, i.e. In a combined inlet and outlet 35 of the infusion bag 10 a breakable fluid barrier plug 36 is arranged. In a state of not has been broken the fluid barrier plug 36 prevents in-flowing and out-flowing via the combined inlet and outlet 35 of the infusion bag 10 which implies that the infusion bag 10 is sealed. After connecting the infusion bag 10 to the coupling component 13 according to the invention, and eventually to other components, the fluid barrier plug 36 may be broken so that the combined inlet and outlet 35 of the infusion bag 10 be opened towards the both channels 17, 18 in the coupling component 13 according to the invention.
The method according to the invention comprises connecting of a coupling component 13 having two channels 17, 18 for conveyance of medical substances in two substantially opposite directions to a second coupling component 14 of a container 10, such as a infusion bag 10, which second coupling component has a further channel 19. After the coupling component 13 and the container 10 have been connected to each other, the container 10 be opened by means of a member 36, preferably in the form of a breakable fluid barrier plug or similar, which member is suitably arranged in a combine inlet and outlet 35 of the container 10, towards the both channels 17, 18 for enabling transportation of a medical substance to the container 10 via one first 17 of said two channels, and for enabling transportation of a medical substances from the container 10.
Preferably, the first 13 and the second 14 coupling components are connected to each other by a thread joint 15. By means of the thread joint 15 a male fitting 16 of the first component 13 may be brought into contact with a corresponding female fitting 22 of the second component 14 to form a connection sealed relative to the environment between said two channels 17, 18 and the further channel 19 of the second coupling component 14.
Then, the container 10 be opened towards 17, 18 by breaking the breakable fluid barrier plug 36. Thereafter, a medical substance may be injected to the container via one first 17 of said channels. Advantageously, the medical substance is injected by means of a component via a port arranged in the first coupling component which port has a first flexible membrane for co-operation with a second flexible membrane arranged in the injection component. Preferably, said second flexible membrane is held against said first flexible membrane with a pressure during the injection to prevent leakage and wastage during the injection. It has been proved that by holding said second flexible membrane against said first flexible membrane with a pressure exceeding the yield point of the first and second membranes it is ensured that the membranes fit tightly to each other in such away that fluid transportation between these membranes is prevented and thereby leakage to the environment is avoided. Parallel with the injection, the liquid state medical substance in the container may be transported via the second 18 of said two channels to a receiving unit.
It is stressed that the invention is not restricted to the exemplifying embodiments; rather within the scope of protection defined by the following claims, the invention may be varied in several ways once the idea of the invention is disclosed.
Number | Date | Country | Kind |
---|---|---|---|
0202174 | Jul 2002 | SE | national |
Number | Name | Date | Kind |
---|---|---|---|
1844342 | Berman | Feb 1932 | A |
2010417 | Schwab | Aug 1935 | A |
2697438 | Hickey | Dec 1954 | A |
2717599 | Huber | Sep 1955 | A |
3064651 | Henderson | Nov 1962 | A |
3071135 | Baldwin et al. | Jan 1963 | A |
3308822 | DeLuca | Mar 1967 | A |
3316908 | Burke | May 1967 | A |
3340671 | Loo | Sep 1967 | A |
3390677 | Razimbaud | Jul 1968 | A |
3448740 | Figge | Jun 1969 | A |
3542240 | Solowey | Nov 1970 | A |
3783895 | Weichselbaum | Jan 1974 | A |
3788320 | Dye | Jan 1974 | A |
3822700 | Pennington | Jul 1974 | A |
3938520 | Scislowicz et al. | Feb 1976 | A |
3976073 | Quick et al. | Aug 1976 | A |
4096860 | McLaughlin | Jun 1978 | A |
4296786 | Brignola | Oct 1981 | A |
4340049 | Munsch | Jul 1982 | A |
D270568 | Armstrong | Sep 1983 | S |
4479989 | Mahal | Oct 1984 | A |
4490139 | Huizenga et al. | Dec 1984 | A |
4516967 | Kopfer | May 1985 | A |
4564054 | Gustavsson | Jan 1986 | A |
4573967 | Hargrove et al. | Mar 1986 | A |
4576211 | Valentini et al. | Mar 1986 | A |
4581016 | Gettig | Apr 1986 | A |
4582223 | Kobe | Apr 1986 | A |
4588403 | Weiss et al. | May 1986 | A |
4600040 | Naslund | Jul 1986 | A |
4623343 | Thompson | Nov 1986 | A |
4629455 | Kanno | Dec 1986 | A |
4632673 | Tiitola et al. | Dec 1986 | A |
4636204 | Christopherson et al. | Jan 1987 | A |
4673400 | Martin | Jun 1987 | A |
4673404 | Gustavsson | Jun 1987 | A |
4737150 | Baeumle et al. | Apr 1988 | A |
4752287 | Kurtz et al. | Jun 1988 | A |
4759756 | Forman et al. | Jul 1988 | A |
4768568 | Fournier et al. | Sep 1988 | A |
4792329 | Schreuder | Dec 1988 | A |
4804015 | Albinsson | Feb 1989 | A |
4822340 | Kamstra | Apr 1989 | A |
4826492 | Magasi | May 1989 | A |
4826500 | Rautsola | May 1989 | A |
4834717 | Haber et al. | May 1989 | A |
4842585 | Witt | Jun 1989 | A |
4850978 | Dudar et al. | Jul 1989 | A |
4864717 | Baus, Jr. | Sep 1989 | A |
4872494 | Coccia | Oct 1989 | A |
4878897 | Katzin | Nov 1989 | A |
4889529 | Haindl | Dec 1989 | A |
4898209 | Zbed | Feb 1990 | A |
4909290 | Coccia | Mar 1990 | A |
4932937 | Gustavsson et al. | Jun 1990 | A |
4944736 | Holtz | Jul 1990 | A |
4964855 | Todd et al. | Oct 1990 | A |
4982769 | Fournier et al. | Jan 1991 | A |
4994048 | Metzger | Feb 1991 | A |
4997083 | Loretti et al. | Mar 1991 | A |
5017186 | Arnold | May 1991 | A |
5041105 | D'Alo | Aug 1991 | A |
5061264 | Scarrow | Oct 1991 | A |
5071413 | Utterberg | Dec 1991 | A |
5122116 | Kriesel et al. | Jun 1992 | A |
5122123 | Vaillancourt | Jun 1992 | A |
5137524 | Lynn et al. | Aug 1992 | A |
5158554 | Jepson et al. | Oct 1992 | A |
5176673 | Marrucchi | Jan 1993 | A |
5188629 | Shimoda | Feb 1993 | A |
5199947 | Lopez et al. | Apr 1993 | A |
5201725 | Kling | Apr 1993 | A |
5207658 | Rosen et al. | May 1993 | A |
5232109 | Tirrell et al. | Aug 1993 | A |
5254097 | Schock et al. | Oct 1993 | A |
5279576 | Loo et al. | Jan 1994 | A |
5279583 | Shober, Jr. et al. | Jan 1994 | A |
5279605 | Karrasch et al. | Jan 1994 | A |
5308347 | Sunago et al. | May 1994 | A |
5312366 | Vailancourt | May 1994 | A |
5328480 | Melker et al. | Jul 1994 | A |
5334163 | Sinnett | Aug 1994 | A |
5334180 | Adolf et al. | Aug 1994 | A |
5356406 | Schraga | Oct 1994 | A |
5385545 | Kriesel et al. | Jan 1995 | A |
5385547 | Wong et al. | Jan 1995 | A |
5389085 | D'Alessio et al. | Feb 1995 | A |
5405326 | Haber et al. | Apr 1995 | A |
5445630 | Richmond | Aug 1995 | A |
5447501 | Karlsson et al. | Sep 1995 | A |
5456675 | Wolbring et al. | Oct 1995 | A |
5470522 | Thome et al. | Nov 1995 | A |
5478328 | Silverman et al. | Dec 1995 | A |
5478337 | Okamoto et al. | Dec 1995 | A |
5492531 | Post et al. | Feb 1996 | A |
5514117 | Lynn | May 1996 | A |
5515871 | Bittner et al. | May 1996 | A |
5536259 | Utterberg | Jul 1996 | A |
5575780 | Saito | Nov 1996 | A |
5593028 | Haber et al. | Jan 1997 | A |
5613954 | Nelson et al. | Mar 1997 | A |
5632735 | Wyatt et al. | May 1997 | A |
5647845 | Haber et al. | Jul 1997 | A |
5662642 | Isono et al. | Sep 1997 | A |
5685866 | Lopez | Nov 1997 | A |
5735841 | Bourguignon et al. | Apr 1998 | A |
5752942 | Doyle et al. | May 1998 | A |
5755712 | Szempruch et al. | May 1998 | A |
5766147 | Sancoff et al. | Jun 1998 | A |
5766211 | Wood et al. | Jun 1998 | A |
5782872 | Muller | Jul 1998 | A |
5795336 | Romano et al. | Aug 1998 | A |
5817083 | Shemesh et al. | Oct 1998 | A |
5820609 | Saito | Oct 1998 | A |
5827262 | Neftel et al. | Oct 1998 | A |
5837262 | Golubev et al. | Nov 1998 | A |
5875931 | Py | Mar 1999 | A |
5879345 | Aneas | Mar 1999 | A |
5897526 | Vaillancourt | Apr 1999 | A |
5934510 | Anderson | Aug 1999 | A |
5984899 | D'Alessio et al. | Nov 1999 | A |
6063068 | Fowles et al. | May 2000 | A |
D427308 | Zinger | Jun 2000 | S |
6070623 | Aneas | Jun 2000 | A |
6071270 | Fowles et al. | Jun 2000 | A |
6090091 | Fowles et al. | Jul 2000 | A |
6113068 | Ryan | Sep 2000 | A |
6113583 | Fowles et al. | Sep 2000 | A |
6142446 | Leinsing | Nov 2000 | A |
6146362 | Turnbull et al. | Nov 2000 | A |
6209738 | Jansen et al. | Apr 2001 | B1 |
6221065 | Davis | Apr 2001 | B1 |
6245056 | Walker et al. | Jun 2001 | B1 |
D445501 | Niedospial, Jr. | Jul 2001 | S |
6253804 | Safabash | Jul 2001 | B1 |
6258078 | Thilly | Jul 2001 | B1 |
6364143 | Knierbein | Apr 2002 | B1 |
6387074 | Horppu et al. | May 2002 | B1 |
6453956 | Safabash | Sep 2002 | B2 |
6471674 | Emig et al. | Oct 2002 | B1 |
6517523 | Kaneko et al. | Feb 2003 | B1 |
6537263 | Aneas | Mar 2003 | B1 |
6571837 | Jansen et al. | Jun 2003 | B2 |
6591876 | Safabash | Jul 2003 | B2 |
6644367 | Savage et al. | Nov 2003 | B1 |
6685692 | Fathallah | Feb 2004 | B2 |
6715520 | Andreasson et al. | Apr 2004 | B2 |
6726672 | Hanly et al. | Apr 2004 | B1 |
6761286 | Py | Jul 2004 | B2 |
D495416 | Dimeo et al. | Aug 2004 | S |
6786244 | Jones | Sep 2004 | B1 |
D506256 | Miyoshi et al. | Jun 2005 | S |
6960194 | Hommann et al. | Nov 2005 | B2 |
7000806 | Py | Feb 2006 | B2 |
7080672 | Fournie et al. | Jul 2006 | B2 |
7297140 | Orlu et al. | Nov 2007 | B2 |
D570477 | Gallogly et al. | Jun 2008 | S |
D572820 | Gallogly et al. | Jul 2008 | S |
D577438 | Gallogly et al. | Sep 2008 | S |
D577822 | Gallogly et al. | Sep 2008 | S |
D582033 | Baxter et al. | Dec 2008 | S |
D605755 | Baxter et al. | Dec 2009 | S |
7703486 | Costanzo | Apr 2010 | B2 |
D616984 | Gilboa | Jun 2010 | S |
7744581 | Wallen et al. | Jun 2010 | B2 |
20010021825 | Becker et al. | Sep 2001 | A1 |
20020002352 | Becker et al. | Jan 2002 | A1 |
20020082586 | Finley et al. | Jun 2002 | A1 |
20020127150 | Sasso | Sep 2002 | A1 |
20020177819 | Barker et al. | Nov 2002 | A1 |
20030010717 | Brugger et al. | Jan 2003 | A1 |
20030070726 | Andreasson et al. | Apr 2003 | A1 |
20030106610 | Roos et al. | Jun 2003 | A1 |
20030107628 | Fowles et al. | Jun 2003 | A1 |
20030199846 | Fowles et al. | Oct 2003 | A1 |
20030233083 | Houwaert et al. | Dec 2003 | A1 |
20040116858 | Heinz et al. | Jun 2004 | A1 |
20040199139 | Fowles et al. | Oct 2004 | A1 |
20040215147 | Wessman et al. | Oct 2004 | A1 |
20050215977 | Uschold | Sep 2005 | A1 |
20060025747 | Sullivan et al. | Feb 2006 | A1 |
20060106360 | Wong | May 2006 | A1 |
20060111667 | Matsuura et al. | May 2006 | A1 |
20060157984 | Rome et al. | Jul 2006 | A1 |
20060186045 | Jensen et al. | Aug 2006 | A1 |
20070021725 | Villette | Jan 2007 | A1 |
20070060841 | Henshaw | Mar 2007 | A1 |
20070088313 | Zinger et al. | Apr 2007 | A1 |
20070106244 | Mosler et al. | May 2007 | A1 |
20070179441 | Chevallier | Aug 2007 | A1 |
20070270759 | Pessin | Nov 2007 | A1 |
20070270778 | Zinger et al. | Nov 2007 | A9 |
20080045919 | Jakob et al. | Feb 2008 | A1 |
20080103453 | Liversidge | May 2008 | A1 |
20080103485 | Kruger | May 2008 | A1 |
20080172039 | Raines | Jul 2008 | A1 |
20080223484 | Horppu | Sep 2008 | A1 |
20080287920 | Fangrow et al. | Nov 2008 | A1 |
20080312634 | Helmerson et al. | Dec 2008 | A1 |
20090254042 | Gratwohl et al. | Oct 2009 | A1 |
20100137827 | Warren et al. | Jun 2010 | A1 |
20100204671 | Kraushaar et al. | Aug 2010 | A1 |
20100243099 | Yodfat | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
200112863 | May 2003 | AU |
2005519 | Oct 1979 | DE |
0255025 | Feb 1988 | EP |
0259582 | Mar 1988 | EP |
0285424 | Oct 1988 | EP |
0311787 | Apr 1989 | EP |
0376629 | Jul 1990 | EP |
0803267 | Oct 1997 | EP |
0819442 | Jan 1998 | EP |
0995453 | Apr 2000 | EP |
1060730 | Dec 2000 | EP |
1484073 | Dec 2004 | EP |
1731128 | Dec 2006 | EP |
2757405 | Jun 1998 | FR |
2780878 | Jan 2000 | FR |
1579065 | Nov 1980 | GB |
49-12690 | May 1972 | JP |
288664 | Jul 1990 | JP |
3030963 | Aug 1996 | JP |
2000167022 | Jun 2000 | JP |
2001505092 | Apr 2001 | JP |
2001293085 | Oct 2001 | JP |
482670 | Apr 2002 | TW |
WO 8404672 | Dec 1984 | WO |
WO 8404673 | Dec 1984 | WO |
WO 9003536 | Apr 1990 | WO |
WO 9819724 | May 1998 | WO |
WO 9927886 | Jun 1999 | WO |
WO 9962578 | Dec 1999 | WO |
WO 0005292 | Feb 2000 | WO |
WO 0035517 | Jun 2000 | WO |
WO 0180928 | Nov 2001 | WO |
WO 0202048 | Jan 2002 | WO |
WO 0211794 | Feb 2002 | WO |
WO 02064077 | Aug 2002 | WO |
WO 02076540 | Oct 2002 | WO |
WO 2005074860 | Aug 2005 | WO |
WO 2006082350 | Aug 2006 | WO |
WO 2006083333 | Aug 2006 | WO |
WO 2008115102 | Sep 2008 | WO |
WO 2006138184 | Dec 2009 | WO |
Entry |
---|
Taiwan Search Report for Taiwan Patent Application 092106323 dated Mar. 21, 2003 (4 pages). |
Japan Application No. 2003-583539, Official Action dated May 1, 2009 (3 pages). |
Japan Application No. 2003-577789, Official Action dated Feb. 24, 2009 (4 pages). |
International Search Report, PCT/EP2008/067535 dated Oct. 13, 2009 (3 pages). |
International Search Report, PCT/EP2008/067522 dated Aug. 12, 2009 (2 pages). |
Number | Date | Country | |
---|---|---|---|
20050182383 A1 | Aug 2005 | US |