CRISPR/CAS9-BASED TREATMENTS

Information

  • Patent Application
  • 20200010854
  • Publication Number
    20200010854
  • Date Filed
    July 05, 2016
    8 years ago
  • Date Published
    January 09, 2020
    4 years ago
Abstract
Described herein are methods for treating disorders affecting ocular and non-ocular tissue, such as corneal dystrophies and microsatellite expansion diseases. The methods use a nuclease system, such as Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR associated (Cas) 9 (CRISPR-Cas9), to cut and/or repair genomic DNA. Such methods may further comprise a DNA double-stranded break (DSB) repair system comprising a repair template in combination with a Non-Homologous End-Joining (NHEJ) or Homology Directed Repair (HDR) targeted to the one or more CRISPR-Cas9 cleavage sites.
Description
BACKGROUND

Corneal dystrophies are a group of disorders that are generally inherited, bilateral, symmetric, slowly progressive, and not predominantly related to environmental or systemic factors (1,2). Corneal dystrophies can affect any anatomic layer, cell type, or tissue of the cornea and result in loss of corneal clarity and reduction in vision (1,3). Corneal dystrophies as a group affect >4% of the US population, and corneal transplantation is definitive treatment for corneal dystrophies of sufficient severity to cause significant vision loss. Fuchs endothelial corneal dystrophy (FECD) is the most common corneal dystrophy affecting approximately 4% of the US population. Approximately 70% of FECD cases are caused by a microsatellite trinucleotide repeat expansion in the transcription factor 4 (TCF4) gene (4). Additional microsatellite expansion diseases have been described (5).


Thus there is a great need for novel and improved therapies for treating disorders affecting ocular and non-ocular tissues, like corneal dystrophies and microsatellite expansion diseases affecting the eye and other tissues and organs throughout the body.


SUMMARY OF THE INVENTION

Described herein are methods for treating disorders affecting ocular and non-ocular tissues, such as corneal dystrophies and microsatellite expansion diseases. The methods use a nuclease system, such as Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR associated (Cas) 9 (CRISPR-Cas9), to cut and/or repair genomic DNA. The CRISPR-Cas9-based gene editing can be used to inactivate or correct gene mutations causing corneal dystrophies and microsatellite expansion diseases, thereby providing a gene therapy approach for these groups of diseases.


One aspect of the invention relates to a method for treating a disorder affecting ocular tissue in a subject, the method comprising administering to the ocular area of the subject a therapeutically effective amount of a nuclease system comprising a genome targeted nuclease and a guide DNA comprising at least one targeted genomic sequence.


In certain embodiments, the nuclease can be provided as a protein, RNA, DNA, or an expression vector comprising a nucleic acid that encodes the nuclease.


In certain embodiments, the guide DNA can be provided as an RNA molecule (gRNA), DNA molecule, or an expression vector comprising a nucleic acid that encodes the gRNA.


In certain embodiments, the guide DNA may be provided as one, two, three, four, five, six, seven, eight, nine, or ten RNA molecules (gRNA), DNA molecules, or expression vectors comprising a nucleic acid that encodes the gRNA, or any combination thereof.


In certain embodiments, the nuclease system can be CRISPR-Cas9.


In certain embodiments, the nuclease system inactivates or excises gene mutations.


In certain embodiments, the system further comprises a DNA double-stranded break (DSB) repair system.


In certain embodiments, the DSB repair system comprises a repair template in combination with or without a Non-Homologous End-Joining (NHEJ) or Homology Directed Repair (HDR) targeted to the one or more CRISPR-Cas9 cleavage site, said site corrects or edits a genomic mutation.


In certain embodiments, the DSB repair system is provided by the host cell machinery.


In certain embodiments, the genome targeted nuclease can be Cas9.


In certain embodiments, the disorder can be a corneal dystrophy or microsatellite expansion disease.


In certain embodiments, the ocular area can be the cornea.


In certain embodiments, the guide DNA comprises at least one, two, three, four, five, six, seven, eight, nine, or ten targeted genomic sequences.


In certain embodiments, the target genomic sequences are selected from any one of the nucleotide sequences set forth in SEQ ID NOs: 1-172 and 174-342, or any combination thereof.


In certain embodiments, the nuclease system can be administered topically to the surface of the eye.


In certain embodiments, the nuclease system can be administered on or outside the cornea, sclera, to the intraocular, subconjunctival, sub-tenon, or retrobulbar space, or in or around the eyelids.


In certain embodiments, the nuclease system can be administered by implantation, injection, or virally.


Another aspect of the invention relates to a method for treating a disorder affecting non-ocular tissue in a subject, the method comprising administering to the non-ocular tissue of the subject a therapeutically effective amount of a nuclease system comprising a genome targeted nuclease and a guide DNA comprising at least one targeted genomic sequence.


In certain embodiments, the nuclease can be provided as a protein, RNA, DNA, or an expression vector comprising a nucleic acid encoding the nuclease.


In certain embodiments, the guide DNA can be provided as an RNA molecule (gRNA), DNA molecule, or an expression vector comprising a nucleic acid that encodes the gRNA.


In certain embodiments, the nuclease system can be CRISPR-Cas9.


In certain embodiments, the nuclease system inactivates or excises gene mutations.


In certain embodiments, the method further comprises a DNA double-stranded break (DSB) repair system.


In certain embodiments, the DSB repair system comprises a repair template in combination with a Non-Homologous End-Joining (NHEJ) or Homology Directed Repair (HDR) targeted to the one or more CRISPR-Cas9 cleavage site, said site corrects or edits a genomic mutation.


In certain embodiments, the genome targeted nuclease can be Cas9.


In certain embodiments, the disorder can be microsatellite expansion disease.


In certain embodiments, the guide DNA comprises at least one, two, three, four, five, six, seven, eight, nine, or ten targeted genomic sequences.


In certain embodiments, the target genomic sequences are selected from any one of the nucleotide sequences set forth in SEQ ID NOs: 1-172 and 174-342, or any combination thereof.


In certain embodiments, the nuclease system is administered topically, intravascularly, intradermally, transdermally, parenterally, intravenously, intramuscularly, intranasally, subcutaneously, regionally, percutaneously, intratracheally, intraperitoneally, intraarterially, intravesically, intratumorally, inhalationly, perfusionly, lavagely, directly via injection, or orally via administration and formulation.


Other objects, features and advantages of the present invention will become apparent from the following detailed description. It should be understood, however, that the detailed description and the specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 contains four panels (A)-(D) describing two identified sites as targetable by Cas9 using the gRNA sequences that overlap with the respective mutations and their ability to disrupt dominant mutations in genes known to be causative in corneal dystrophies. Panel (A) depicts targeting of TGFBI exon 124 in HEK293 cells using the CRISPR-Cas9 system. The % gene modification by non-homologous end-joining (% indel) is indicated below. Panel (B) depicts an image trace of the gel indicating the peaks used for quantification. Panel (C) depicts targeting of TGFBI exon 555 in HEK293 cells using the CRISPR-Cas9 system. The % gene modification by non-homologous end-joining (% indel) is indicated below. Panel (D) depicts an image trace of the gel indicating the peaks used for quantification.



FIG. 2 contains three panels (A)-(C) describing identified sites as targetable by Cas9 using the gRNA sequences that correspond to target sequences within the intron between exon 2 and exon 3 of the TCF4 gene. Panel (A) depicts in HEK293 cells using the CRISPR/Cas9 system 6 gRNAs targeting intronic sequences downstream (Table 4) of the trinucleotide repeat expansion which causes Fuchs corneal dystrophy. Molecular weight ladder is shown in the far left and far right lanes. Control lane indicates no gRNA and no Cas9 transfection. Cas9 lane indicates transfection with Cas9 but no gRNA. Arrows indicate major cleavage product produced by non-homologous end-joining, and % gene modification by non-homologous end-joining is indicated below. Panel (B) depicts image traces of the gel indicating the peaks used for quantification. Panel (C) depicts expected digest sizes for each gRNA.



FIG. 3 contains three panels (A)-(C) describing identified sites as targetable by Cas9 using the gRNA sequences that correspond to target sequences within the intron between exon 2 and exon 3 of the TCF4 gene. Panel (A) depicts in HEK293 cells using the CRISPR/Cas9 system 6 gRNAs targeting intronic sequences upstream (Table 3) of the trinucleotide repeat expansion which causes Fuchs corneal dystrophy. Molecular weight ladder is shown in the far right lane. Control lane indicates no gRNA and no Cas9 transfection. Arrows indicate major cleavage products produced by non-homologous end-joining, and % gene modification by non-homologous end-joining is indicated below. Panel (B) depicts image traces of the gel indicating the peaks used for quantification. Panel (C) depicts expected digest sizes for each gRNA.





DETAILED DESCRIPTION

Described herein are methods for treating eye disorders, such as corneal dystrophies and microsatellite expansion diseases. The methods use a nuclease system, such as Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR associated (Cas) 9 (CRISPR-Cas9), to cut, nick, and/or repair genomic DNA.


As used herein, the term “eye disease” may encompass disorders of the eye including, but not limited to corneal dystrophies and microsatellite expansion diseases.


As used herein, the term “corneal dystrophy” or “corneal dystrophies” describes a group of disorders that are generally inherited, bilateral, symmetric, slowly progressive, and not predominantly related to environmental or systemic factors (1,2). Corneal dystrophies, include (but may not be limited to) the following: Epithelial Basement Membrane Dystrophy (aka Map-Dot-Fingerprint Dystrophy, Cogan Microcystic Epithelial Dystrophy, Anterior Basement Membrane Dystrophy); Epithelial Recurrent Erosion Dystrophies (aka Franceschetti Corneal Dystrophy, Dystrophia Smolandiensis, Dystrophia Helsinglandica); Subepithelial Mucinous Corneal Dystrophy; Meesmann Corneal Dystrophy (aka Juvenile Hereditary Epithelial Dystrophy, Stocker Holt Dystrophy); Lisch Epithelial Corneal Dystrophy (aka Band-Shaped and Whorled Microcystic Dystrophy); Gelatinous Drop-like Corneal Dystrophy (aka Subepithelial Amyloidosis, Primary Familial Amyloidosis (of Grayson)); Reis-Bucklers Corneal Dystrophy (aka Corneal Dystrophy of Bowman layer, type I (CDB I), Geographic Corneal Dystrophy (of Weidle), Atypical Granular Corneal Dystrophy, Granular Corneal Dystrophy, Type 3, Anterior Limiting Membrane Dystrophy, Type 1, Superficial Granular Corneal Dystrophy); Thiel-Behnke Corneal Dystrophy (aka Corneal Dystrophy of Bowman layer, Type II (CDB2), Honeycomb-Shaped Corneal Dystrophy, Anterior Limiting Membrane Dystrophy, Type II, Curly Fibers Corneal Dystrophy, Waardenburg-Jonkers Corneal Dystrophy); Lattice Corneal Dystrophy, Type 1 (Classic) (aka Biber-Haab-Dimmer Dystrophy); Lattice Corneal Dystrophy, Type 2 (aka Familial Amyloidosis (Finnish Type or Gelsolin Type), Meretoja Syndrome); Lattice Corneal Dystrophy, Type III; Lattice Corneal Dystrophy, Type IIIA; Lattice Corneal Dystrophy, Type I/IIIA; Lattice Corneal Dystrophy, Type IV; Polymorphic (Corneal) Amyloidosis; Granular Corneal Dystrophy, Type 1 (aka Corneal Dystrophy Groenouw Type I); Granular Corneal Dystrophy, Type 2 (aka Avellino Dystrophy, Combined Granular-Lattice Dystrophy); Macular Corneal Dystrophy (aka Groenouw Corneal Dystrophy Type II, Fehr Speckled Dystrophy); Schnyder Corneal Dystrophy (aka Schnyder Crystalline Corneal Dystrophy (SCCD), Schnyder Crystalline Dystrophy Sine Crystals, Hereditary Crystalline Stromal Dystrophy of Schnyder, Crystalline Stromal Dystrophy, Central Stromal Crystalline Corneal Dystrophy, Corneal Crystalline Dystrophy of Schnyder, Schnyder Corneal Crystalline Dystrophy); Congenital Stromal Corneal Dystrophy (aka Congenital Hereditary Stromal Dystrophy); Fleck Corneal Dystrophy (aka François-Neetens Speckled (Mouchetée) Corneal Dystrophy); Posterior Amorphous Corneal Dystrophy (aka Posterior Amorphous Stromal Dystrophy); Central Cloudy Dystrophy of Francois; Pre-Descemet Corneal Dystrophy; Fuchs Endothelial Corneal Dystrophy (aka Endoepithelial Corneal Dystrophy); Posterior Polymorphous Corneal Dystrophy (aka Posterior Polymorphous Dystrophy, Schlichting Dystrophy); Congenital Hereditary Endothelial Dystrophy (aka Maumenee Corneal Dystrophy); X-linked Endothelial Corneal Dystrophy.


All of the above disorders are caused by known or putative genetic mutations. Corneal dystrophies yet to be described will be caused by known or putative genetic mutations. Thus, all genetic corneal dystrophies can be amenable to the nuclease system, like CRISPR-Cas9, for gene therapy involving correction or inactivation of the mutant allele.


As used herein, “microsatellite sequences”, also called short tandem repeats, are short DNA sequences (usually 2-5 nucleotides) which are repeated, typically in the range of 5-50 times. These sequences are present throughout the human genome and can become mutated and/or increased in the number of repeats. Some microsatellite sequences, if they expand beyond a certain length, can result in microsatellite expansion diseases. All known or yet to be described microsatellite expansion diseases will be caused by expansions in known or putative genes. Thus, all microsatellite expansion diseases can be amenable to CRISPR-Cas9 gene therapy involving correction or inactivation of the mutant allele.


Microsatellite expansion diseases as used herein may encompasses diseases that affect ocular and non-ocular tissues, including (but may not be limited to) the following disorders: Blepharophimosis, ptosis and epicanthus inversus syndactyly; Cleidocranial dysplasia; Congenital central hypoventilation syndrome, Haddad syndrome DM (Myotonic dystrophy); FRAXA (Fragile X syndrome); FRAXE (Fragile XE mental retardation); FRDA (Friedreich's ataxia); Fuchs' Endothelial Corneal Dystrophy; FXTAS (Fragile X-associated tremor/ataxia syndrome); Hand-foot-genital syndrome; HD (Huntington's disease); Holoprosencephaly; Mental retardation with growth hormone deficiency; Mental retardation, epilepsy, West syndrome, Partington syndrome; Oculopharyngeal muscular dystrophy; SBMA (Spinal and bulbar muscular atrophy); SCA1 (Spinocerebellar ataxia Type 1); SCA12 (Spinocerebellar ataxia Type 12); SCA17 (Spinocerebellar ataxia Type 17); SCA2 (Spinocerebellar ataxia Type 2); SCA3 (Spinocerebellar ataxia Type 3 or Machado-Joseph disease); SCA6 (Spinocerebellar ataxia Type 6); SCAT (Spinocerebellar ataxia Type 7); SCA8 (Spinocerebellar ataxia Type 8); Synpolydactyly.


As used herein, the term “eye”, “eye area” or “ocular area” of the subject encompasses the cornea, conjunctiva, sclera, fovea, macula, optic nerve, retina, lens, iris, pupil, to the intraocular, subconjunctival, sub-tenon, or retrobulbar space, or in or around the eyelids, and other anatomical features of the eye.


As used herein the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR associated (Cas) 9 nuclease are an extremely versatile and accurate approach to cut and/or repair genomic DNA (6). CRISPR-Cas9-based gene editing can be used to inactivate or correct gene mutations causing corneal dystrophies and microsatellite expansion diseases, thereby providing a gene therapy approach for these groups of diseases. The naturally occurring CRISPR system from S. pyogenes has been modified to utilize a single guide RNA (gRNA) consisting of a 20 nucleotide (nt) target sequence and an additional structural RNA portion which binds the Cas9 double strand nuclease (6,7). The CRISPR-Cas9 system from S. pyogenes has the potential to cut at any 20 nt sequence adjacent to a 5′-NGG-3′ protospacer-adjacent motif (PAM), or alternate PAM sequences and bioinformatics provides tools to map target sites (8, 10). DNA cut by Cas9 is repaired by endogenous cellular mechanisms, including non-homologous end-joining (NHEJ), which produces insertion deletion mutations that can inactivate the original mutant allele. Thus, CRISPR-Cas9 can correct disease causing genetic mutations by cutting DNA in close enough proximity to a protein coding mutation to inactivate it through frameshifting. Alternatively, CRISPR-Cas9 can correct disease causing genetic mutations, either coding or non-coding, by cutting DNA on both sides of a mutation to excise it, or nicking on different strands flanking the mutation or repeat, if the distance is under 200 bp or so, or through the use of a repair template and homology directed repair (HDR) targeted to one or more CRISPR-Cas9 cleavage sites. Thus, specific mutant sequences can be gene edited and repaired.


CRISPR-Cas9 applied to corneal cells can correct the genetic defect causing corneal dystrophies and thus be used to treat these disorders. The CRISPR-Cas9 treatment could be administered topically to the surface of the eye, via implant, or via injection. The implant or injection could be administered to the cornea, sclera, to the intraocular, subconjunctival, sub-tenon, or retrobulbar space, or in or around the eyelids. CRISPR-Cas9 can also be applied outside the cornea or eye to treat other microsatellite expansion diseases in addition to Fuchs endothelial corneal dystrophy. CRISPR-Cas9 approaches to treat corneal dystrophies and microsatellite expansion diseases could employ single or multiple guide RNAs to inactivate or excise gene mutations, or using a repair template to correct gene mutations. In other embodiments, the CRISPR-Cas9 treatment may be applied to non-ocular tissue to correct the genetic defect causing microsatellite expansion diseases.


In certain embodiments, the routes of CRISPR-Cas9 treatment administration can vary with the location and nature of the cells or tissues to be contacted, and include, e.g., intravascular, intradermal, transdermal, parenteral, intravenous, intramuscular, intranasal, subcutaneous, regional, percutaneous, intratracheal, intraperitoneal, intraarterial, intravesical, intratumoral, inhalation, perfusion, lavage, direct injection, and oral administration and formulation, or any of the following routes of administration. The term “systemic administration” refers to administration in a manner that results in the introduction of the composition into the subject's circulatory system or otherwise permits its spread throughout the body. “Regional” administration refers to administration into a specific, and somewhat more limited, anatomical space, such as intraperitoneal, intrathecal, subdural, or to a specific organ. “Local administration” refers to administration of a composition or drug into a limited, or circumscribed, anatomic space, such as intratumoral injection into a tumor mass, subcutaneous injections, intradermal or intramuscular injections. Those of skill in the art will understand that local administration or regional administration may also result in entry of a composition into the circulatory system i.e., rendering it systemic to one degree or another. For example, the term “intravascular” is understood to refer to delivery into the vasculature of a patient, meaning into, within, or in a vessel or vessels of the patient, whether for systemic, regional, and/or local administration. In certain embodiments, the administration can be into a vessel considered to be a vein (intravenous), while in others administration can be into a vessel considered to be an artery. Veins include, but are not limited to, the internal jugular vein, a peripheral vein, a coronary vein, a hepatic vein, the portal vein, great saphenous vein, the pulmonary vein, superior vena cava, inferior vena cava, a gastric vein, a splenic vein, inferior mesenteric vein, superior mesenteric vein, cephalic vein, and/or femoral vein. Arteries include, but are not limited to, coronary artery, pulmonary artery, brachial artery, internal carotid artery, aortic arch, femoral artery, peripheral artery, and/or ciliary artery. It is contemplated that delivery may be through or to an arteriole or capillary.


The CRISPR-Cas system may be used facilitate targeted genome editing in eukaryotic cells, including mammalian cells, such as human cells. To facilitate genome editing, the cell to be modified is co-transfected with an expression vector encoding Cas9 or the Cas9 protein, DNA, or RNA itself, along with a guide-RNA molecule itself, or an expression vector comprising a nucleic acid molecule encoding the guide-RNA molecule. For example, in certain embodiments, the introduction of Cas9 can be done by transfecting in Cas9 as a protein, RNA, DNA, or expression vector comprising a nucleic acid that encodes Cas9. In certain embodiments, the guide DNA can itself be administered directly as an RNA molecule (gRNA), DNA molecule, or as expression vector comprising a nucleic acid that encodes the gRNA.


While many different CRISPR-Cas systems could be modified to facilitate targeted genome modification, the most commonly used CRISPR-Cas system in targeted genome modification is the CRISPR-Cas9 system from S. pyogenes. The CRISPR-Cas9 system requires only a single protein, Cas9, to catalyze double-stranded DNA breaks at sites targeted by a guide-RNA molecule.


Multiple guide RNA sequences can be encoded in a single CRISPR array to facilitate the simultaneous editing of multiple sites within a cell's genome. For example, a pair of guide RNAs can target proximally located sequences to facilitate the deletion of the intervening sequence. In some embodiments, Cas9 is encoded by a codon-optimized sequence. Plasmids encoding Cas9, including codon-optimized plasmids and plasmids encoding engineered Cas9 nickase are publicly available from Addgene (http://www.addgene.org/CRISPR/).


Additional information on the application of CRISPR-Cas systems to targeted genome engineering can be found in Jinek et al., Science 337:816-821 (2012); Cho et al., Nature Biotechnology 31:230-232 (2013); Cong et al., Science 339:819-823 (2013); Jinek et al., eLife 2:e00471 (2013); Mali et al., Science 339:823-826 (2013); Qi et al., Cell 152:1173-1183 (2013); Fu et al., Nature Biotechnology 31:822-826 (2013); Fu et al., Nature Biotechnology 31:822-826 (2013); Hsu et al., Nature Biotechnology 31:827-832 (2013); Mali et al., Nature Biotechnology 31:833-838 (2013); Pattanayak et al., Nature Biotechnology 31:839-843 (2013) and WO/2013/142578, each of which is hereby incorporated by reference in its entirety.


In some embodiments of the methods provided herein, the target nucleic acid sequence is modified using a CRISPR/Cas system. In some embodiments, the CRISPR/Cas system is a CRISPR-Cas9 system. In some embodiments, the subject is administered a nucleic acid encoding Cas9 and a nucleic acid encoding a guide-RNA that is specific to a target nucleic acid sequence in the eye.


In some embodiments, the guide-RNA comprises a target-specific guide sequence (e.g., a sequence that is complementary to a sequence of the target DNA sequence) and a guide-RNA scaffold sequence. In some embodiments, the target-specific guide sequence is a nucleic acid sequence selected from any one of SEQ ID NOs: 1-172 and 174-342, or any combination thereof. The target-specific guide sequence may comprise two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, nineteen, or twenty nucleic acid sequences selected from the nucleotide sequences set forth in SEQ ID NOs: 1-172 and 174-342.


Having now fully described this invention, it will be appreciated by those skilled in the art that the same can be performed within a wide range of equivalent parameters, concentrations, and conditions without departing from the spirit and scope of the invention and without undue experimentation.


The present description is further illustrated by the following examples, which should not be construed as limiting in any way.


Examples

CRISPR-Cas9 guide RNAs (gRNAs) targeting known mutations causing corneal dystrophies were identified (Table 1a-1c). Human genomic sequences corresponding to gRNA IDs in Table 1 are listed in Table 2.


Mutations in transforming growth factor beta-induced (TGFBI) gene are known to cause several forms of corneal dystrophies including Reis-Bücklers corneal dystrophy, Thiel-Behnke corneal dystrophy, Lattice corneal dystrophy, Granular corneal dystrophy, type 1, and Granular corneal dystrophy, type 2 (1). Missense mutations at two hotspots, R124 and R555, account for nearly 50% of the TGFBI-related corneal dystrophies (9).


In order to demonstrate the feasibility of CRISPR-based treatments for corneal dystrophies, two Cas9 targeting sites were identified that overlap with the genomic sequence encoding both R124 and R555 of TGFBI: 5′-TCAGCTGTACACGGACCGCACGG-3′ (SEQ ID NO: 145), and 5′-AGAGAACGGAGCAGACTCTTGGG-3′(SEQ ID NO: 171), located in exons 4 and 12, respectively. Specific amino acid substitutions at these residues result in clinically distinct corneal dystrophies: R124C—Lattice corneal dystrophy, type I; R124H—Granular corneal dystrophy, type 2; R555W—Granular corneal dystrophy, type 1; and R555Q—Reis-Bücklers corneal dystrophy.


The two target sites were cloned in pH1v1 (Addgene 60244) as described (8), and HEK293 cells were co-transfected with Cas9 and guide RNA (gRNA) constructs. Forty-eight or sixty hours post transfection, genomic DNA was harvested and the sequence surrounding the target cut sites were amplified according to the primers listed in the Appendix A (see below). The PCR products were then purified and quantified before performing the T7 Endo I assay.


Briefly, 200 ng of PCR product was denatured and then slowly re-annealed to allow for the formation of heteroduplexes, T7 Endonuclease I was added to the PCR products and incubated at 37° C. for 25/30 minutes to cleave heteroduplexes. The reaction was stopped by putting PCR products on ice, purified and finally run on a 6% TBE PAGE gel to resolve the products. The gel was stained with SYBR-Gold/Diamond Nucleic Acid dye from Promega, visualized, and quantified using ImageJ. Non-homologous end joining (NHEJ) frequencies were calculated using the binomial-derived equation:








%





gene





modification

=

1
-



1
-


(

a
+
b

)


(

a
+
b
+
c

)




×
100



;




where the values of “a” and “b” are equal to the integrated area of the cleaved fragments after background subtraction and “c” is equal to the integrated area of the un-cleaved PCR product after background subtraction.


The results (FIG. 1) indicate that all identified sites were targetable by Cas9 using the gRNA sequences that either overlap with the respective mutations (TGFB1) or targets 5′ or 3′ of the repeat region (TCF4). These results demonstrate the ability to disrupt dominant mutations in genes known to be causative in corneal dystrophies.


CRISPR-Cas9 approaches to treat corneal dystrophies and microsatellite expansion diseases could employ single or multiple guide RNAs to inactivate or excise gene mutations, or using a repair template and homology directed repair to correct a gene mutation. In the case of the TCF4 microsatellite expansion causing FECD, one or more gRNAs targeting a region on one side of a microsatellite expansion or regions on both sides of a microsatellite expansion could be used. Table 3 shows IDs and corresponding human genomic sequences for gRNA target sequences upstream of the TCF4 microsatellite expansion causing FECD. Table 4 shows IDs and corresponding human genomic sequences for gRNA target sequences downstream of the same TCF4 microsatellite expansion. These gRNAs or others in the TCF4 gene could be used in any combination to correct the microsatellite expansion causing FECD. A similar approach using one or more gRNAs targeting a region on one side of a microsatellite expansion or regions on both sides of a microsatellite expansion could be used for other microsatellite expansion diseases, including but not limited to those listed in Table 5.









APPENDIX A







CRISPR Targets:


TGFBI (124)


hs101533615: TCAGCTGTACACGGACCGCACGG (SEQ ID NO: 145)





TGFBI (555)


hs101534962: AGAGAACGGAGCAGACTCTTGGG (SEQ ID NO: 171)





TCF4 (downstream of trinucleotide repeat)


hs056193532-AAGTGCAACAAGCAGAAAGGGGG (SEQ ID NO: 333)





hs056193533-GGCTGCAAAGCTGCCTGCCTAGG (SEQ ID NO: 334)





hs056193534-GCTGCAAAGCTGCCTGCCTAGGG (SEQ ID NO: 335)





hs056193535-CTGCCTAGGGCTACGTTTCCTGG (SEQ ID NO: 336)





hs056193536-CAGGAAACGTAGCCCTAGGCAGG (SEQ ID NO: 337)





hs056193537-TTGCCAGGAAACGTAGCCCTAGG (SEQ ID NO: 338)





TCF4 (upstream of trinucleotide repeat)


hs056193542-AAAGAGCCCCACTTGGAAGGCGG (SEQ ID NO: 195)





hs056193543-GCCCCACTTGGAAGGCGGTTTGG (SEQ ID NO: 196)





hs056193545-TCCAAACCGCCTTCCAAGTGGGG (SEQ ID NO: 198)





hs056193546-ATCCAAACCGCCTTCCAAGTGGG (SEQ ID NO: 199)





gRNA Primers:


TGFBI (124) humanF; CTTATAAGTTCTGTATGAGACCACTTTTTCCCTCAGCT


GTACACGGACCGCAG (SEQ ID NO: 173)





TGFBI (124) humanR; CCTTATTTTAACTTGCTATTTCTAGCTCTAAAACTGCG


GTCCGTGTACAGCTGAGG (SEQ ID NO: 343)





TGFBI (555) humanF; CTTATAAGTTCTGTATGAGACCACTTTTTCCCAGAGA


ACGGAGCAGACTCTTG (SEQ ID NO: 344)





TGFBI (555) humanR; CCTTATTTTAACTTGCTATTTCTAGCTCTAAAACAAG


AGTCTGCTCCGTTCTCTGG (SEQ ID NO: 345)





hs537_H1for; CTTATAAGTTCTGTATGAGACCACTTTTTCCCTTGCCAGGAA


ACGTAGCCCTG (SEQ ID NO: 352)





hs537_H1rev; CCTTATTTTAACTTGCTATTTCTAGCTCTAAAACAGGGCTAC


GTTTCCTGGCAAG (SEQ ID NO: 353)





hs536_H1for; CTTATAAGTTCTGTATGAGACCACTTTTTCCCCAGGAAACGT


AGCCCTAGGCG (SEQ ID NO: 354)





hs536_H1rev; CCTTATTTTAACTTGCTATTTCTAGCTCTAAAACGCCTAGGG


CTACGTTTCCTGG; (SEQ ID NO: 355)





hs535_H1for; CTTATAAGTTCTGTATGAGACCACTTTTTCCCCTGCCTAGGG


CTACGTTTCCG (SEQ ID NO: 356)





hs535_H1rev; CCTTATTTTAACTTGCTATTTCTAGCTCTAAAACGGAAACGT


AGCCCTAGGCAGG (SEQ ID NO: 357)





hs534_H1for; CTTATAAGTTCTGTATGAGACCACTTTTTCCCGCTGCAAAGC


TGCCTGCCTAG (SEQ ID NO: 358)





hs534_H1rev; CCTTATTTTAACTTGCTATTTCTAGCTCTAAAACTAGGCAGG


CAGCTTTGCAGCG (SEQ ID NO: 359)





hs533_H1for; CTTATAAGTTCTGTATGAGACCACTTTTTCCCGGCTGCAAAG


CTGCCTGCCTG (SEQ ID NO: 360)





hs533_H1rev; CCTTATTTTAACTTGCTATTTCTAGCTCTAAAACAGGCAGGC


AGCTTTGCAGCCG (SEQ ID NO: 361)





hs532_H1for; CTTATAAGTTCTGTATGAGACCACTTTTTCCCAAGTGCAACA


AGCAGAAAGGG (SEQ ID NO: 362)





hs532_H1rev; CCTTATTTTAACTTGCTATTTCTAGCTCTAAAACCCTTTCTGC


TTGTTGCACTTG (SEQ ID NO: 363)





hs542_H1for; CTTATAAGTTCTGTATGAGACCACTTTTTCCCAAAGAGCCCC


ACTTGGAAGGG (SEQ ID NO: 364)





hs542_H1rev; CCTTATTTTAACTTGCTATTTCTAGCTCTAAAACCCTTCCAA


GTGGGGCTCTTTG (SEQ ID NO: 365)





hs543_H1for; CTTATAAGTTCTGTATGAGACCACTTTTTCCCGCCCCACTTG


GAAGGCGGTTG (SEQ ID NO: 366)





hs543_H1rev; CCTTATTTTAACTTGCTATTTCTAGCTCTAAAACAACCGCCT


TCCAAGTGGGGCG (SEQ ID NO: 367)





hs545_H1for; CTTATAAGTTCTGTATGAGACCACTTTTTCCCTCCAAACCGC


CTTCCAAGTGG (SEQ ID NO: 368)





hs545_H1rev; CCTTATTTTAACTTGCTATTTCTAGCTCTAAAACCACTTGGA


AGGCGGTTTGGAG (SEQ ID NO: 369)





hs546_H1for; CTTATAAGTTCTGTATGAGACCACTTTTTCCCATCCAAACCG


CCTTCCAAGTG (SEQ ID NO: 370)





hs546_H1rev; CCTTATTTTAACTTGCTATTTCTAGCTCTAAAACACTTGGAA


GGCGGTTTGGATG (SEQ ID NO: 371)





T7Endo I Genomic Amplification Primers:


TGFBI124.1F; CCACCTGTAGATGTACCGTGCTCTC (SEQ ID NO: 346)





TGFBI124.1R; AGGGGCTGCAGACTCTGTGTTTAAG (SEQ ID NO: 347)





TGFBI555.1F; AAGGAAAATACCTCTCAGCGTGGTG (SEQ ID NO: 348)





TGFBI555.1R; AGGCCTAGGGGTAGTAAAGGCTTCC (SEQ ID NO: 349)





TCF4.3F: TGCTTTGGATTGGTAGGACCTGTTC (SEQ ID NO: 372)





TCF4.3R: GGATAATGCACACCTTCCCTGAGTC (SEQ ID NO: 373)





TGFBI exon 4 amplicon:


CCACCTGTAGATGTACCGTGCTCTCTGTCAGAGAAGGGAGGGTGTGGTTGGGCT


GGACCCCCAGAGGCCATCCCTCCTTCTGTCTTCTGCTCCTGCAGCCCTACCACTC


TCAAACCTTTACGAGACCCTGGGAGTCGTTGGATCCACCACCACTCAGCTGTAC


ACGGACCGCACGGAGAAGCTGAGGCCTGAGATGGAGGGGCCCGGCAGCTTCAC


CATCTTCGCCCCTAGCAACGAGGCCTGGGCCTCCTTGCCAGCTGTGAGATGACC


TCCGTCTGCCCGGGGGACTCTTATGGGGAACTGCCTTACTTCCCCGAGGGGTGG


GCATGATGAATGGGAGTCTGCAGTCATTTCCTACTGTTTCAGGAAGCTTTCTCCT


TAACCCCTTAGAAAAGGCTGTGGAACTTGAGCTAAAATATGTCTTACCAGGTTG


CGTCTAATGCCCCCCGTTCCCTACTGGGCAGAAAGACTTGGGTGCTTCCTGAGG


AGGGATCCTTGGCAGAAGAGAGGCCTGGGCTCACGAGGGCTGAGAACATGTTT


CCCAGAGTTGCAAGGACCCATCTCTTAAACACAGAGTCTGCAGCCCCT (SEQ ID


NO: 350)





TGFBI exon 12 amplicon:


AAGGAAAATACCTCTCAGCGTGGTGAGGTATTTAAGGAAAATACCTGTTGACA


GGTGACATTTTCTGTGTGTGTATCTACAGCATGCTGGTAGCTGCCATCCAGTCTG


CAGGACTGACGGAGACCCTCAACCGGGAAGGAGTCTACACAGTCTTTGCTCCC


ACAAATGAAGCCTTCCGAGCCCTGCCACCAAGAGAACGGAGCAGACTCTTGGG


TAAAGACCAACTTAAGTACACGTCTCCATTTTTCTAAAGTAGTGATCCCTCAGG


GCCCCAGCAGCAAACAGTTGGCACATCAAGGATTGACTTGAAGGGATTTTATG


ACAAGACTATTAGTGAAAGAGTGGGCGGGACTAAAGGAACTAGCAAAGGATG


AGGCCAACCAGGGACTAGCAACCCTGGGAAGCCTTTACTACCCCTAGGCCT


(SEQ ID NO: 351)





TCF4 gene amplicon:


TGCTTTGGATTGGTAGGACCTGTTCCTTACATCTTACCTCCTAGTTACATCTTTT


CCTAGGATTCTTAAAACTAGTATGGATATGCTGAGCATACATTCTTTAGAACCT


TTTGGACTGTTTTGGTAAATTTCGTAGTCGTAGGATCAGCACAAAGCGGAACTT


GACACACTTGTGGAGTTTTACGGCTGTACTTGGTCCTTCTCCATCCCTTTGCTTC


CTTTTCCTAAACCAAGTCCCAGACATGTCAGGAGAATGAATTCATTTTTAATGC


CAGATGAGTTTGGTGTAAGATGCATTTGTAAAGCAAAATAAAAAGAATCCACA


AAACACACAAATAAAATCCAAACCGCCTTCCAAGTGGGGCTCTTTCATGCTGCT


GCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG


CTGCTGCTGCTGCTCCTCCTCCTCCTCCTCCTTCTCCTCCTCCTCCTCCTCTTCTA


GACCTTCTTTTGGAGAAATGGCTTTCGGAAGTTTTGCCAGGAAACGTAGCCCTA


GGCAGGCAGCTTTGCAGCCCCCTTTCTGCTTGTTGCACTTTCTCCATTCGTTCCT


TTGCTTTTTGCAGGCTCTGACTCAGGGAAGGTGTGCATTATCC (SEQ ID NO: 374)
















TABLE 1a







Known gene mutations affecting the cornea and overlapping gRNA target


sequences by ID and gene(s).








Gene ID: Mutation
Gene(s)





NM_005202.3(COL8A2): c.1363_1364delCAinsGT
COL8A2


NM_005202.3(COL8A2): c.1363C > A (p.Gln455Lys)
COL8A2


NM_005202.3(COL8A2): c.1349T > G (p.Leu450Trp)
COL8A2


NM_001920.3(DCN): c.962delA (p.Lys321Argfs)
DCN


NM_001920.3(DCN): c.947delG (p.Gly316Aspfs)
DCN


NM_001920.3(DCN): c.967delT (p.Ser323Leufs)
DCN


NM_001920.3(DCN): c.941delC (p.Pro314Hisfs)
DCN


NM_000223.3(KRT12): c.55C > T (p.Arg19Trp)
KRT12


NM_000223.3(KRT12): c.43C > T (p.Pro15Ser)
KRT12


NM_000223.3(KRT12): c.427G > T (p.Val143Leu)
KRT12


NM_000223.3(KRT12): c.409G > C (p.Ala137Pro)
KRT12


NM_000223.3(KRT12): c.405A > C (p.Arg135Ser)
KRT12


NM_000223.3(KRT12): c.399T > G (p.Asn133Lys)
KRT12


NM_000223.3(KRT12): c.389A > C (p.Gln130Pro)
KRT12


NM_000223.3(KRT12): c.385A > G (p.Met129Val)
KRT12


NM_000223.3(KRT12): c.1298T > G (p.Leu433Arg)
KRT12


NM_000223.3(KRT12): c.1289G > C (p.Arg430Pro)
KRT12


NM_000223.3(KRT12): c.1286A > G (p.Tyr429Cys)
KRT12


NM_000223.3(KRT12): c.1277T > G (p.Ile426Ser)
KRT12


NM_000223.3(KRT12): c.1276A > G (p.Ile426Val)
KRT12


NM_000223.3(KRT12): c.*360A > C
KRT12


NM_000223.3(KRT12): c.386T > C (p.Met129Thr)
KRT12


NM_000223.3(KRT12): c.419T > G (p.Leu140Arg)
KRT12


NM_000223.3(KRT12): c.1285T > G (p.Tyr429Asp)
KRT12


NM_000223.3(KRT12): c.404G > T (p.Arg135Ile)
KRT12


NM_000223.3(KRT12): c.403A > G (p.Arg135Gly)
KRT12


NM_000223.3(KRT12): c.427G > C (p.Val143Leu)
KRT12


NM_057088.2(KRT3): c.109G > A (p.Gly37Arg)
KRT3


NM_057088.2(KRT3): c.1347C > A (p.Ala449=)
KRT3


NM_057088.2(KRT3): c.1508G > C (p.Arg503Pro)
KRT3


NM_057088.2(KRT3): c.1493A > T (p.Glu498Val)
KRT3


NM_057088.2(KRT3): c.1525G > A (p.Glu509Lys)
KRT3


NM_015040.3(PIKFYVE): c.1370C > T (p.Ser457Phe)
PIKFYVE


NM_015040.3(PIKFYVE): c.5018T > A (p.Phe1673Tyr)
PIKFYVE


NM_015040.3(PIKFYVE): c.4167_4170delAGTA (p.Glu1389Aspfs*16)
PIKFYVE


NM_015040.3(PIKFYVE): c.2962C > T (p.Gln988Ter)
PIKFYVE


NM_015040.3(PIKFYVE): c.3308A > G (p.Lys1103Arg)
PIKFYVE


NM_000351.4(STS): c.1331A > G (p.His444Arg)
STS


NM_000351.4(STS): c.1115G > C (p.Trp372Ser)
STS


NM_000358.2(TGFBI): c.593C > T (p.Ser198Phe)
TGFBI


NM_000358.2(TGFBI): c.1998G > C (p.Arg666Ser)
TGFBI


NM_000358.2(TGFBI): c.1526T > G (p.Leu509Arg)
TGFBI


NM_000358.2(TGFBI): c.1619T > C (p.Phe540Ser)
TGFBI


NM_000358.2(TGFBI): c.370C > A (p.Arg124Ser)
TGFBI


TGFBI, 3-BP DEL
TGFBI


NM_000358.2(TGFBI): c.1868G > A (p.Gly623Asp)
TGFBI


NM_000358.2(TGFBI): c.371G > A (p.Arg124His)
TGFBI


NM_000358.2(TGFBI): c.370C > T (p.Arg124Cys)
TGFBI


NM_000358.2(TGFBI): c.1663C > T (p.Arg555Trp)
TGFBI


NM_000358.2(TGFBI): c.[1637C > A; 1652C > A]
TGFBI


NM_000358.2(TGFBI): c.371G > T (p.Arg124Leu)
TGFBI


NM_000358.2(TGFBI): c.1664G > A (p.Arg555Gln)
TGFBI


NM_000358.2(TGFBI): c.1501C > A (p.Pro501Thr)
TGFBI


NM_013319.2(UBIAD1): c.530G > A (p.Gly177Glu)
UBIAD1


NM_013319.2(UBIAD1): c.708C > G (p.Asp236Glu)
UBIAD1


NM_013319.2(UBIAD1): c.335A > G (p.Asp112Gly)
UBIAD1


NM_013319.2(UBIAD1): c.355A > G (p.Arg119Gly)
UBIAD1


NM_013319.2(UBIAD1): c.556G > A (p.Gly186Arg)
UBIAD1


NM_013319.2(UBIAD1): c.511T > C (p.Ser171Pro)
UBIAD1


NM_013319.2(UBIAD1): c.695A > G (p.Asn232Ser)
UBIAD1


NM_013319.2(UBIAD1): c.524C > T (p.Thr175Ile)
UBIAD1


NM_013319.2(UBIAD1): c.529G > C (p.Gly177Arg)
UBIAD1


NM_013319.2(UBIAD1): c.305A > G (p.Asn102Ser)
UBIAD1


NM_030751.5(ZEB1): c.2519A > C (p.Gln840Pro)
ZEB1


NM_030751.5(ZEB1): c.233A > C (p.Asn78Thr)
ZEB1
















TABLE 1b







Known gene mutations affecting the cornea and overlapping gRNA target


sequences by ID and condition(s).








Gene ID: Mutation
Condition(s)





NM_005202.3(COL8A2): c.1363_1364delCAinsGT
Corneal dystrophy Fuchs



endothelial 1


NM_005202.3(COL8A2): c.1363C > A (p.Gln455Lys)
Corneal dystrophy Fuchs



endothelial 1|Corneal dystrophy,



posterior polymorphous, 2


NM_005202.3(COL8A2): c.1349T > G (p.Leu450Trp)
Corneal dystrophy Fuchs



endothelial 1|Corneal dystrophy,



posterior polymorphous, 2


NM_001920.3(DCN): c.962delA (p.Lys321Argfs)
Congenital Stromal Corneal



Dystrophy


NM_001920.3(DCN): c.947delG (p.Gly316Aspfs)
Congenital Stromal Corneal



Dystrophy


NM_001920.3(DCN): c.967delT (p.Ser323Leufs)
Congenital Stromal Corneal



Dystrophy


NM_001920.3(DCN): c.941delC (p.Pro314Hisfs)
Congenital Stromal Corneal



Dystrophy


NM_000223.3(KRT12): c.55C > T (p.Arg19Trp)
not provided


NM_000223.3(KRT12): c.43C > T (p.Pro15Ser)
not provided


NM_000223.3(KRT12): c.427G > T (p.Val143Leu)
not provided


NM_000223.3(KRT12): c.409G > C (p.Ala137Pro)
not provided


NM_000223.3(KRT12): c.405A > C (p.Arg135Ser)
not provided


NM_000223.3(KRT12): c.399T > G (p.Asn133Lys)
not provided


NM_000223.3(KRT12): c.389A > C (p.Gln130Pro)
not provided


NM_000223.3(KRT12): c.385A > G (p.Met129Val)
not provided


NM_000223.3(KRT12): c.1298T > G (p.Leu433Arg)
not provided


NM_000223.3(KRT12): c.1289G > C (p.Arg430Pro)
not provided


NM_000223.3(KRT12): c.1286A > G (p.Tyr429Cys)
not provided


NM_000223.3(KRT12): c.1277T > G (p.Ile426Ser)
not provided


NM_000223.3(KRT12): c.1276A > G (p.Ile426Val)
not provided


NM_000223.3(KRT12): c.*360A > C
not provided


NM_000223.3(KRT12): c.386T > C (p.Met129Thr)
Meesman's corneal dystrophy|not



provided


NM_000223.3(KRT12): c.419T > G (p.Leu140Arg)
Meesman's corneal dystrophy|not



provided


NM_000223.3(KRT12): c.1285T > G (p.Tyr429Asp)
Meesman's corneal dystrophy|not



provided


NM_000223.3(KRT12): c.404G > T (p.Arg135Ile)
Meesman's corneal dystrophy|not



provided


NM_000223.3(KRT12): c.403A > G (p.Arg135Gly)
Meesman's corneal dystrophy|not



provided


NM_000223.3(KRT12): c.427G > C (p.Val143Leu)
Meesman's corneal dystrophy|not



provided


NM_057088.2(KRT3): c.109G > A (p.Gly37Arg)
Malignant melanoma


NM_057088.2(KRT3): c.1347C > A (p.Ala449=)
Malignant melanoma


NM_057088.2(KRT3): c.1508G > C (p.Arg503Pro)
Meesman's corneal dystrophy|not



provided


NM_057088.2(KRT3): c.1493A > T (p.Glu498Val)
Meesman's corneal dystrophy|not



provided


NM_057088.2(KRT3): c.1525G > A (p.Glu509Lys)
Meesman's corneal dystrophy|not



provided


NM_015040.3(PIKFYVE): c.1370C > T (p.Ser457Phe)
Malignant melanoma


NM_015040.3(PIKFYVE): c.5018T > A
Malignant melanoma


(p.Phe1673Tyr)


NM_015040.3(PIKFYVE): c.4167_4170delAGTA
Fleck corneal dystrophy


(p.Glu1389Aspfs*16)


NM_015040.3(PIKFYVE): c.2962C > T (p.Gln988Ter)
Fleck corneal dystrophy


NM_015040.3(PIKFYVE): c.3308A > G
Fleck corneal dystrophy


(p.Lys1103Arg)


NM_000351.4(STS): c.1331A > G (p.His444Arg)
X-linked ichthyosis with steryl-



sulfatase deficiency


NM_000351.4(STS): c.1115G > C (p.Trp372Ser)
X-linked ichthyosis with steryl-



sulfatase deficiency


NM_000358.2(TGFBI): c.593C > T (p.Ser198Phe)
Malignant melanoma


NM_000358.2(TGFBI): c.1998G > C (p.Arg666Ser)
Corneal epithelial dystrophy


NM_000358.2(TGFBI): c.1526T > G (p.Leu509Arg)
Corneal epithelial dystrophy


NM_000358.2(TGFBI): c.1619T > C (p.Phe540Ser)
Lattice corneal dystrophy type 3A


NM_000358.2(TGFBI): c.370C > A (p.Arg124Ser)
Groenouw corneal dystrophy type I


TGFBI, 3-BP DEL
Reis-Bucklers' corneal dystrophy


NM_000358.2(TGFBI): c.1868G > A (p.Gly623Asp)
Reis-Bucklers' corneal dystrophy


NM_000358.2(TGFBI): c.371G > A (p.Arg124His)
Avellino corneal dystrophy


NM_000358.2(TGFBI): c.370C > T (p.Arg124Cys)
Lattice corneal dystrophy Type I


NM_000358.2(TGFBI): c.1663C > T (p.Arg555Trp)
Groenouw corneal dystrophy type I


NM_000358.2(TGFBI): c.[1637C > A; 1652C > A]
Lattice corneal dystrophy Type I


NM_000358.2(TGFBI): c.371G > T (p.Arg124Leu)
Reis-Bucklers' corneal dystrophy


NM_000358.2(TGFBI): c.1664G > A (p.Arg555Gln)
Thiel-Behnke corneal dystrophy


NM_000358.2(TGFBI): c.1501C > A (p.Pro501Thr)
Lattice corneal dystrophy type 3A


NM_013319.2(UBIAD1): c.530G > A (p.Gly177Glu)
Schnyder crystalline corneal



dystrophy


NM_013319.2(UBIAD1): c.708C > G (p.Asp236Glu)
Schnyder crystalline corneal



dystrophy


NM_013319.2(UBIAD1): c.335A > G (p.Asp112Gly)
Schnyder crystalline corneal



dystrophy


NM_013319.2(UBIAD1): c.355A > G (p.Arg119Gly)
Schnyder crystalline corneal



dystrophy


NM_013319.2(UBIAD1): c.556G > A (p.Gly186Arg)
Schnyder crystalline corneal



dystrophy


NM_013319.2(UBIAD1): c.511T > C (p.Ser171Pro)
Schnyder crystalline corneal



dystrophy


NM_013319.2(UBIAD1): c.695A > G (p.Asn232Ser)
Schnyder crystalline corneal



dystrophy


NM_013319.2(UBIAD1): c.524C > T (p.Thr175Ile)
Schnyder crystalline corneal



dystrophy


NM_013319.2(UBIAD1): c.529G > C (p.Gly177Arg)
Schnyder crystalline corneal



dystrophy


NM_013319.2(UBIAD1): c.305A > G (p.Asn102Ser)
Schnyder crystalline corneal



dystrophy


NM_030751.5(ZEB1): c.2519A > C (p.Gln840Pro)
Corneal dystrophy, fuchs



endothelial, 6


NM_030751.5(ZEB1): c.233A > C (p.Asn78Thr)
Corneal dystrophy, fuchs



endothelial, 6
















TABLE 1c







Known gene mutations affecting the cornea and overlapping gRNA target


sequences by ID and gRNA(s).








Gene ID: Mutation
gRNAs





NM_005202.3(COL8A2): c.1363_1364delCAinsGT



NM_005202.3(COL8A2): c.1363 C > A (p.Gln455Lys)
hs002677511, hs002677512,



hs002677505, hs002677513,



hs002677506, hs002677516,



hs002677517, hs002677510,



hs002677518


NM_005202.3(COL8A2): c.1349T > G (p.Leu450Trp)
hs002677507, hs002677508,



hs002677509, hs002677511,



hs002677512, hs002677505,



hs002677513, hs002677506


NM_001920.3(DCN): c.962delA (p.Lys321Argfs)
hs028999998, hs029000002,



hs029000003, hs028999999,



hs029000004, hs029000000


NM_001920.3(DCN): c.947delG (p.Gly316Aspfs)
hs028999999, hs029000004,



hs029000000, hs029000001,



hs029000005


NM_001920.3(DCN): c.967delT (p.Ser323Leufs)
hs028999998, hs029000002,



hs029000003


NM_001920.3(DCN): c.941delC (p.Pro314Hisfs)
hs029000000, hs029000001,



hs029000005


NM_000223.3(KRT12): c.55C > T (p.Arg19Trp)
hs051021143, hs051021144,



hs051021148, hs051021149,



hs051021150, hs051021151,



hs051021154, hs051021155


NM_000223.3(KRT12): c.43C > T (p.Pro15Ser)
hs051021148, hs051021149,



hs051021150, hs051021151,



hs051021154, hs051021155,



hs051021157


NM_000223.3(KRT12): c.427G > T (p.Val143Leu)
hs051021071, hs051021069,



hs051021070


NM_000223.3(KRT12): c.409G > C (p.Ala137Pro)
hs051021072, hs051021073


NM_000223.3(KRT12): c.405A > C (p.Arg135Ser)
hs051021073


NM_000223.3(KRT12): c.399T > G (p.Asn133Lys)


NM_000223.3(KRT12): c.389A > C (p.Gln130Pro)


NM_000223.3(KRT12): c.385A > G (p.Met129Val)


NM_000223.3(KRT12): c.1298T > G (p.Leu433Arg)
hs051020754, hs051020755,



hs051020748, hs051020750,



hs051020752, hs051020756,



hs051020758, hs051020753,



hs051020759, hs051020760,



hs051020763


NM_000223.3(KRT12): c.1289G > C (p.Arg430Pro)
hs051020752, hs051020756,



hs051020758, hs051020753,



hs051020759, hs051020760,



hs051020763


NM_000223.3(KRT12): c.1286A > G (p.Tyr429Cys)
hs051020758, hs051020753,



hs051020759, hs051020760,



hs051020763


NM_000223.3(KRT12): c.1277T > G (p.Ile426Ser)
hs051020757, hs051020761,



hs051020762


NM_000223.3(KRT12): c.1276A > G (p.Ile426Val)
hs051020757, hs051020761,



hs051020762


NM_000223.3(KRT12): c.*360A > C


NM_000223.3(KRT12): c.386T > C (p.Met129Thr)


NM_000223.3(KRT12): c.419T > G (p.Leu140Arg)
hs051021069, hs051021070,



hs051021072, hs051021073


NM_000223.3 (KRT12): c.1285T > G (p.Tyr429Asp)
hs051020758, hs051020753,



hs051020759, hs051020760,



hs051020763


NM_000223.3(KRT12): c.404G > T (p.Arg135Ile)
hs051021073


NM_000223.3(KRT12): c.403A > G (p.Arg135Gly)
hs051021073


NM_000223.3(KRT12): c.427G > C (p.Val143Leu)
hs051021071, hs051021069,



hs051021070


NM_057088.2(KRT3): c.109G > A (p.Gly37Arg)
hs027503914, hs027503915,



hs027503916, hs027503917,



hs027503911, hs027503912,



hs027503918, hs027503919,



hs027503921


NM_057088.2(KRT3): c.1347C > A (p.Ala449=)
hs027503292, hs027503297,



hs027503293, hs027503299,



hs027503294


NM_057088.2(KRT3): c.1508G > C (p.Arg503Pro)


NM_057088.2(KRT3): c.1493A > T (p.Glu498Val)


NM_057088.2(KRT3): c.1525G > A (p.Glu509Lys)


NM_015040.3(PIKFYVE): c.1370C > T (p.Ser457Phe)
hs070544033, hs070544034,



hs070544030, hs070544031


NM_015040.3(PIKFYVE): c.5018T > A (p.Phe1673Tyr)
hs070545604, hs070545605,



hs070545601, hs070545606


NM_015040.3(PIKFYVE): c.4167_4170delAGTA
hs070544848, hs070544849,


(p.Glu1389Aspfs*16)
hs070544850, hs070544847,



hs070544851


NM_015040.3(PIKFYVE): c.2962C > T (p.Gln988Ter)
hs070544887, hs070544888


NM_015040.3(PIKFYVE): c.3308A > G
hs131603026, hs131603028


(p.Lys1103Arg)


NM_000351.4(STS): c.1331A > G (p.His444Arg)
hs131602458, hs131602459,



hs131602461, hs131602462,



hs131602463, hs131602464


NM_000351.4(STS): c.1115G > C (p.Trp372Ser)


NM_000358.2(TGFBI): c.593C > T (p.Ser198Phe)


NM_000358.2(TGFBI): c.1998G > C (p.Arg666Ser)
hs101535656, hs101535663,



hs101535663, hs101535656


NM_000358.2(TGFBI): c.1526T > G (p.Leu509Arg)
hs101534814, hs101534815,



hs101534824


NM_000358.2(TGFBI): c.1619T > C (p.Phe540Ser)
hs101534957


NM_000358.2(TGFBI): c.370C > A (p.Arg124Ser)
hs101533619, hs101533615,



hs101533616, hs101533625


TGFBI, 3-BP DEL


NM_000358.2(TGFBI): c.1868G > A (p.Gly623Asp)
hs101535371, hs101535375,



hs101535372, hs101535376


NM_000358.2(TGFBI): c.371G > A (p.Arg124His)
hs101533619, hs101533615,



hs101533616, hs101533625


NM_000358.2(TGFBI): c.370C > T (p.Arg124Cys)
hs101533619, hs101533615,



hs101533616, hs101533625


NM_000358.2(TGFBI): c.1663C > T (p.Arg555Trp)
hs101534964, hs101534958,



hs101534965, hs101534966,



hs101534967, hs101534968,



hs101534961, hs101534962


NM_000358.2(TGFBI): c.[1637C > A;1652C > A]
hs101534959, hs101534960


NM_000358.2(TGFBI): c.371G > T (p.Arg124Leu)
hs101533619, hs101533615,



hs101533616, hs101533625


NM_000358.2(TGFBI): c.1664G > A (p.Arg555Gln)
hs101534964, hs101534958,



hs101534965, hs101534966,



hs101534967, hs101534968,



hs101534961, hs101534962


NM_000358.2(TGFBI): c.1501C > A (p.Pro501Thr)
hs101534807, hs101534813,



hs101534808, hs101534809,



hs101534816, hs101534812,



hs101534817, hs101534818,



hs101534819, hs101534820,



hs101534821


NM_013319.2(UBIAD1): c.530G > A (p.Gly177Glu)
hs001050141, hs001050144,



hs001050142 & hs001050500,



hs001050502, hs001050507,



hs001050504


NM_013319.2(UBIAD1): c.708C > G (p.Asp236Glu)
hs001050535, hs001050534,



hs001050538, hs001050546,



hs001050540, hs001050547,



hs001050542, hs001050543


NM_013319.2(UBIAD1): c.335A > G (p.Asp112Gly)
hs001050116


NM_013319.2(UBIAD1): c.355A > G (p.Arg119Gly)
hs001050115, hs001050119,



hs001050117


NM_013319.2(UBIAD1): c.556G > A (p.Gly186Arg)
hs001050505, hs001050506


NM_013319.2(UBIAD1): c.511T > C (p.Ser171Pro)
hs001050143, hs001050140,



hs001050141


NM_013319.2(UBIAD1): c.695A > G (p.Asn232Ser)
hs001050539, hs001050541,



hs001050534, hs001050535,



hs001050544, hs001050538,



hs001050546


NM_013319.2(UBIAD1): c.524C > T (p.Thr175Ile)
hs001050143, hs001050140,



hs001050141, hs001050144,



hs001050142


NM_013319.2(UBIAD1): c.529G > C (p.Gly177Arg)
hs001050141, hs001050144,



hs001050142 & hs001050500,



hs001050502, hs001050507,



hs001050504


NM_013319.2(UBIAD1): c.305A > G (p.Asn102Ser)
hs001050114


NM_030751.5(ZEB1): c.2519A > C (p.Gln840Pro)
hs013097041, hs013097042,



hs013097045, hs013097046


NM_030751.5(ZEB1): c.233A > C (p.Asn78Thr)
hs013095774, hs013095775,



hs013095776
















TABLE 2







The gRNA target sequences by ID in Table 1 and corresponding


human genomic sequence.












#
ID
Genomic Sequence





  1
hs001050117
GAGTGATGACAGGACACTTGTGG (SEQ ID NO: 1)





  2
hs001050505
TGGATTCAAGTACGTGGCTCTGG (SEQ ID NO: 2)





  3
hs001050119
TCCTGTCATCACTCTTTTTGTGG (SEQ ID NO: 3)





  4
hs001050140
TCTGGCTCCTTTCTCTACACAGG (SEQ ID NO: 4)





  5
hs001050141
GGCTCCTTTCTCTACACAGGAGG (SEQ ID NO: 5)





  6
hs001050141
GGCTCCTTTCTCTACACAGGAGG (SEQ ID NO: 6)





  7
hs001050539
GTTGGAATGGAGAATGGCCTCGG (SEQ ID NO: 7)





  8
hs001050142
TCTACACAGGAGGTAAGATTTGG (SEQ ID NO: 8)





  9
hs001050142
TCTACACAGGAGGTAAGATTTGG (SEQ ID NO: 9)





 10
hs001050141
GGCTCCTTTCTCTACACAGGAGG (SEQ ID NO: 10)





 11
hs001050144
CTTACCTCCTGTGTAGAGAAAGG (SEQ ID NO: 11)





 12
hs001050500
TCTCTGGATTTTCTGGCCGCAGG (SEQ ID NO: 12)





 13
hs001050502
GATTTTCTGGCCGCAGGAATTGG (SEQ ID NO: 13)





 14
hs001050504
AGGAATTGGATTCAAGTACGTGG (SEQ ID NO: 14)





 15
hs001050114
GTAAGTGTTGACCAAATTACCGG (SEQ ID NO: 15)





 16
hs028999998
ACCCGAATAAGAAGCCTTTTTGG (SEQ ID NO: 16)





 17
hs001050504
AGGAATTGGATTCAAGTACGTGG (SEQ ID NO: 17)





 18
hs001050535
TCTCCATTCCAACAACACCAGGG (SEQ ID NO: 18)





 19
hs001050506
GGATTCAAGTACGTGGCTCTGGG (SEQ ID NO: 19)





 20
hs001050143
TGTAGAGAAAGGAGCCAGACAGG (SEQ ID NO: 20)





 21
hs001050507
GTACTTGAATCCAATTCCTGCGG (SEQ ID NO: 21)





 22
hs001050534
TTCTCCATTCCAACAACACCAGG (SEQ ID NO: 22)





 23
hs001050535
TCTCCATTCCAACAACACCAGGG (SEQ ID NO: 23)





 24
hs001050538
TTCCAACAACACCAGGGACATGG (SEQ ID NO: 24)





 25
hs001050540
CCAGGGACATGGAGTCCGACCGG (SEQ ID NO: 25)





 26
hs001050541
GGTGTTGTTGGAATGGAGAATGG (SEQ ID NO: 26)





 27
hs001050542
CAGGGACATGGAGTCCGACCGGG (SEQ ID NO: 27)





 28
hs001050543
GGACATGGAGTCCGACCGGGAGG (SEQ ID NO: 28)





 29
hs001050116
CTTTTTGTGGTCAATGCCCTTGG (SEQ ID NO: 29)





 30
hs001050115
ACCACAAAAAGAGTGATGACAGG (SEQ ID NO: 30)





 31
hs001050544
TGTCCCTGGTGTTGTTGGAATGG (SEQ ID NO: 31)





 32
hs001050546
CTCCATGTCCCTGGTGTTGTTGG (SEQ ID NO: 32)





 33
hs001050546
CTCCATGTCCCTGGTGTTGTTGG (SEQ ID NO: 33)





 34
hs001050143
TGTAGAGAAAGGAGCCAGACAGG (SEQ ID NO: 34)





 35
hs001050547
CCGGTCGGACTCCATGTCCCTGG (SEQ ID NO: 35)





 36
hs002677505
CCAAGTCACCTTTCTGCCCCAGG (SEQ ID NO: 36)





 37
hs002677506
CAAGTCACCTTTCTGCCCCAGGG (SEQ ID NO: 37)





 38
hs002677506
CAAGTCACCTTTCTGCCCCAGGG (SEQ ID NO: 38)





 39
hs013097041
GCAAACGATTCTGATTCCCCAGG (SEQ ID NO: 39)





 40
hs002677508
AAGGTGACTTGGGGCTCCCTGGG (SEQ ID NO: 40)





 41
hs002677509
AAAGGTGACTTGGGGCTCCCTGG (SEQ ID NO: 41)





 42
hs002677510
CCCAGGGCTCCTGCCACCCCTGG (SEQ ID NO: 42)





 43
hs002677511
TGGGGCAGAAAGGTGACTTGGGG (SEQ ID NO: 43)





 44
hs002677512
CTGGGGCAGAAAGGTGACTTGGG (SEQ ID NO: 44)





 45
hs002677513
CCTGGGGCAGAAAGGTGACTTGG (SEQ ID NO: 45)





 46
hs002677516
GCAGGAGCCCTGGGGCAGAAAGG (SEQ ID NO: 46)





 47
hs002677517
CAGGGGTGGCAGGAGCCCTGGGG (SEQ ID NO: 47)





 48
hs002677518
CCAGGGGTGGCAGGAGCCCTGGG (SEQ ID NO: 48)





 49
hs002677507
TTGGGGCTCCCTGGGCAGCCTGG (SEQ ID NO: 49)





 50
hs013095775
AGGGAATGCTAAGAACTGCTGGG (SEQ ID NO: 50)





 51
hs013095776
GAATGCTAAGAACTGCTGGGAGG (SEQ ID NO: 51)





 52
hs013097042
AACGATTCTGATTCCCCAGGTGG (SEQ ID NO: 52)





 53
hs013097045
GAGTAGGTGTATGCCACCTGGGG (SEQ ID NO: 53)





 54
hs013097046
TGAGTAGGTGTATGCCACCTGGG (SEQ ID NO: 54)





 55
hs013095774
AAGGGAATGCTAAGAACTGCTGG (SEQ ID NO: 55)





 56
hs027503293
CTCTCCATGCTGCTCGGCCTCGG (SEQ ID NO: 56)





 57
hs027503294
ATGCTGCTCGGCCTCGGCAATGG (SEQ ID NO: 57)





 58
hs027503297
GGCCGAGCAGCATGGAGAGATGG (SEQ ID NO: 58)





 59
hs027503299
ATTGCCGAGGCCGAGCAGCATGG (SEQ ID NO: 59)





 60
hs027503911
CTCCGCCAGCTCCCCCAGAGTGG (SEQ ID NO: 60)





 61
hs027503912
TCCGCCAGCTCCCCCAGAGTGGG (SEQ ID NO: 61)





 62
hs027503914
GGAGCTGGCGGAGGGGCCTATGG (SEQ ID NO: 62)





 63
hs027503915
CTCTGGGGGAGCTGGCGGAGGGG (SEQ ID NO: 63)





 64
hs027503916
ACTCTGGGGGAGCTGGCGGAGGG (SEQ ID NO: 64)





 65
hs027503917
CACTCTGGGGGAGCTGGCGGAGG (SEQ ID NO: 65)





 66
hs027503918
GCCCACTCTGGGGGAGCTGGCGG (SEQ ID NO: 66)





 67
hs027503919
GTGGCCCACTCTGGGGGAGCTGG (SEQ ID NO: 67)





 68
hs027503921
AGCTGTGTGGCCCACTCTGGGGG (SEQ ID NO: 68)





 69
hs027503292
GGCCATCTCTCCATGCTGCTCGG (SEQ ID NO: 69)





 70
hs028999999
GCCTTTTTGGTGTTGTGTCCAGG (SEQ ID NO: 70)





 71
hs029000000
TTTTTGGTGTTGTGTCCAGGTGG (SEQ ID NO: 71)





 72
hs029000000
TTTTTGGTGTTGTGTCCAGGTGG (SEQ ID NO: 72)





 73
hs028999999
GCCTTTTTGGTGTTGTGTCCAGG (SEQ ID NO: 73)





 74
hs029000001
TTTTGGTGTTGTGTCCAGGTGGG (SEQ ID NO: 74)





 75
hs029000002
ACCAAAAAGGCTTCTTATTCGGG (SEQ ID NO: 75)





 76
hs029000003
CACCAAAAAGGCTTCTTATTCGG (SEQ ID NO: 76)





 77
hs029000003
CACCAAAAAGGCTTCTTATTCGG (SEQ ID NO: 77)





 78
hs029000000
TTTTTGGTGTTGTGTCCAGGTGG (SEQ ID NO: 78)





 79
hs029000004
ACCTGGACACAACACCAAAAAGG (SEQ ID NO: 79)





 80
hs029000005
TCAAGTGACTTCTGCCCACCTGG (SEQ ID NO: 80)





 81
hs028999998
ACCCGAATAAGAAGCCTTTTTGG (SEQ ID NO: 81)





 82
hs029000005
TCAAGTGACTTCTGCCCACCTGG (SEQ ID NO: 82)





 83
hs070544033
GAGTTCACTGAGTCACTGTCGGG (SEQ ID NO: 83)





 84
hs051020748
CTTGGGCCTCCCCGTCCAGCAGG (SEQ ID NO: 84)





 85
hs051020750
GGGCCTCCCCGTCCAGCAGGCGG (SEQ ID NO: 85)





 86
hs051020752
CCTCCCCGTCCAGCAGGCGGCGG (SEQ ID NO: 86)





 87
hs051020753
CCCGTCCAGCAGGCGGCGGTAGG (SEQ ID NO: 87)





 88
hs051020755
CTGCTGGACGGGGAGGCCCAAGG (SEQ ID NO: 88)





 89
hs051020756
CCGCCGCCTGCTGGACGGGGAGG (SEQ ID NO: 89)





 90
hs051020758
CTACCGCCGCCTGCTGGACGGGG (SEQ ID NO: 90)





 91
hs051020759
CCTACCGCCGCCTGCTGGACGGG (SEQ ID NO: 91)





 92
hs051020760
ACCTACCGCCGCCTGCTGGACGG (SEQ ID NO: 92)





 93
hs051020761
TCTCAATCTCCAGCTCCAGGCGG (SEQ ID NO: 93)





 94
hs051020762
CTCAATCTCCAGCTCCAGGCGGG (SEQ ID NO: 94)





 95
hs051020757
AGGTCTCAATCTCCAGCTCCAGG (SEQ ID NO: 95)





 96
hs051020762
CTCAATCTCCAGCTCCAGGCGGG (SEQ ID NO: 96)





 97
hs051021069
CTAGAGCTCGCACCTTATCCAGG (SEQ ID NO: 97)





 98
hs051020763
TGAGACCTACCGCCGCCTGCTGG (SEQ ID NO: 98)





 99
hs051020752
CCTCCCCGTCCAGCAGGCGGCGG (SEQ ID NO: 99)





100
hs051020763
TGAGACCTACCGCCGCCTGCTGG (SEQ ID NO: 100)





101
hs051020757
AGGTCTCAATCTCCAGCTCCAGG (SEQ ID NO: 101)





102
hs051020763
TGAGACCTACCGCCGCCTGCTGG (SEQ ID NO: 102)





103
hs051020758
CTACCGCCGCCTGCTGGACGGGG (SEQ ID NO: 103)





104
hs051020763
TGAGACCTACCGCCGCCTGCTGG (SEQ ID NO: 104)





105
hs051021073
TGATAGATTAGCTTCCTACCTGG (SEQ ID NO: 105)





106
hs051021073
TGATAGATTAGCTTCCTACCTGG (SEQ ID NO: 106)





107
hs051021071
TAAGGTGCGAGCTCTAGAAGAGG (SEQ ID NO: 107)





108
hs051021069
CTAGAGCTCGCACCTTATCCAGG (SEQ ID NO: 108)





109
hs051021070
AGCTCGCACCTTATCCAGGTAGG (SEQ ID NO: 109)





110
hs051021070
AGCTCGCACCTTATCCAGGTAGG (SEQ ID NO: 110)





111
hs051021072
ATTAGCTTCCTACCTGGATAAGG (SEQ ID NO: 111)





112
hs051021072
ATTAGCTTCCTACCTGGATAAGG (SEQ ID NO: 112)





113
hs051021073
TGATAGATTAGCTTCCTACCTGG (SEQ ID NO: 113)





114
hs051020758
CTACCGCCGCCTGCTGGACGGGG (SEQ ID NO: 114)





115
hs051021073
TGATAGATTAGCTTCCTACCTGG (SEQ ID NO: 115)





116
hs051021073
TGATAGATTAGCTTCCTACCTGG (SEQ ID NO: 116)





117
hs051020754
TGCTGGACGGGGAGGCCCAAGGG (SEQ ID NO: 117)





118
hs051021143
CACTCTGCGAGGAGAGCCGCCGG (SEQ ID NO: 118)





119
hs051021144
ACTCTGCGAGGAGAGCCGCCGGG (SEQ ID NO: 119)





120
hs051021148
GGAGAGCCGCCGGGACAGTCCGG (SEQ ID NO: 120)





121
hs051021149
GAGAGCCGCCGGGACAGTCCGGG (SEQ ID NO: 121)





122
hs051021150
AGAGCCGCCGGGACAGTCCGGGG (SEQ ID NO: 122)





123
hs051021151
GAGCCGCCGGGACAGTCCGGGGG (SEQ ID NO: 123)





124
hs051021154
GCACCCCCGGACTGTCCCGGCGG (SEQ ID NO: 124)





125
hs051021155
TGCGCACCCCCGGACTGTCCCGG (SEQ ID NO: 125)





126
hs051021155
TGCGCACCCCCGGACTGTCCCGG (SEQ ID NO: 126)





127
hs051021148
GGAGAGCCGCCGGGACAGTCCGG (SEQ ID NO: 127)





128
hs051021157
TCACTCTCAGTGCGCACCCCCGG (SEQ ID NO: 128)





129
hs051021071
TAAGGTGCGAGCTCTAGAAGAGG (SEQ ID NO: 129)





130
hs070544030
CAGTGACTCAGTGAACTCCGTGG (SEQ ID NO: 130)





131
hs070544031
GACTCAGTGAACTCCGTGGAAGG (SEQ ID NO: 131)





132
hs070545604
GCAAAAGCAATGATGGAGCTGGG (SEQ ID NO: 132)





133
hs070544034
GGAGTTCACTGAGTCACTGTCGG (SEQ ID NO: 133)





134
hs070544847
GATGACCAACAAGATGCTTTAGG (SEQ ID NO: 134)





135
hs070544849
CATCTTGTTGGTCATCCACAGGG (SEQ ID NO: 135)





136
hs070544850
GCATCTTGTTGGTCATCCACAGG (SEQ ID NO: 136)





137
hs070544851
CGCTGCCTAAAGCATCTTGTTGG (SEQ ID NO: 137)





138
hs070544887
GGAGGAAGAAACAGCTGCTCAGG (SEQ ID NO: 138)





139
hs070544888
GAGGAAGAAACAGCTGCTCAGGG (SEQ ID NO: 139)





140
hs131603026
ATGGAAGAGAAACTCATGATCGG (SEQ ID NO: 140)





141
hs070545601
CCATCATTGCTTTTGCTCTCAGG (SEQ ID NO: 141)





142
hs070545605
AGCAAAAGCAATGATGGAGCTGG (SEQ ID NO: 142)





143
hs070545606
CCTGAGAGCAAAAGCAATGATGG (SEQ ID NO: 143)





144
hs070544848
TGTTGGTCATCCACAGGGAGTGG (SEQ ID NO: 144)





145
hs101533615
TCAGCTGTACACGGACCGCACGG (SEQ ID NO: 145)





146
hs101533616
CGGACCGCACGGAGAAGCTGAGG (SEQ ID NO: 146)





147
hs101533625
CAGGCCTCAGCTTCTCCGTGCGG (SEQ ID NO: 147)





148
hs101533619
GCGGTCCGTGTACAGCTGAGTGG (SEQ ID NO: 148)





149
hs101533625
CAGGCCTCAGCTTCTCCGTGCGG (SEQ ID NO: 149)





150
hs101534964
GTTCTCTTGGTGGCAGGGCTCGG (SEQ ID NO: 150)





151
hs101533625
CAGGCCTCAGCTTCTCCGTGCGG (SEQ ID NO: 151)





152
hs101535371
CCTGACATCATGGCCACAAATGG (SEQ ID NO: 152)





153
hs101534808
CGGGTGCTGACCCCCCCAATGGG (SEQ ID NO: 153)





154
hs101534809
GGGTGCTGACCCCCCCAATGGGG (SEQ ID NO: 154)





155
hs101534812
CCCCCCAATGGGGACTGTCATGG (SEQ ID NO: 155)





156
hs101534813
CCATTGGGGGGGTCAGCACCCGG (SEQ ID NO: 156)





157
hs101534815
ACTGTCATGGATGTCCTGAAGGG (SEQ ID NO: 157)





158
hs101534816
CATGACAGTCCCCATTGGGGGGG (SEQ ID NO: 158)





159
hs101534817
CCATGACAGTCCCCATTGGGGGG (SEQ ID NO: 159)





160
hs101534818
TCCATGACAGTCCCCATTGGGGG (SEQ ID NO: 160)





161
hs101534819
ATCCATGACAGTCCCCATTGGGG (SEQ ID NO: 161)





162
hs101534820
CATCCATGACAGTCCCCATTGGG (SEQ ID NO: 162)





163
hs101534821
ACATCCATGACAGTCCCCATTGG (SEQ ID NO: 163)





164
hs101534824
TAAAGCGATTGTCTCCCTTCAGG (SEQ ID NO: 164)





165
hs101534957
AGACTGTGTAGACTCCTTCCCGG (SEQ ID NO: 165)





166
hs101533619
GCGGTCCGTGTACAGCTGAGTGG (SEQ ID NO: 166)





167
hs101534958
GAGCCCTGCCACCAAGAGAACGG (SEQ ID NO: 167)





168
hs101534960
GGCTCGGAAGGCTTCATTTGTGG (SEQ ID NO: 168)





169
hs101533619
GCGGTCCGTGTACAGCTGAGTGG (SEQ ID NO: 169)





170
hs101534961
AAGAGAACGGAGCAGACTCTTGG (SEQ ID NO: 170)





171
hs101534962
AGAGAACGGAGCAGACTCTTGGG (SEQ ID NO: 171)





172
hs101534807
CCGGGTGCTGACCCCCCCAATGG (SEQ ID NO: 172)





173
hs101534962
AGAGAACGGAGCAGACTCTTGGG (SEQ ID NO: 171)





174
hs101534959
GCTCGGAAGGCTTCATTTGTGGG (SEQ ID NO: 174)





175
hs101534965
GCTCCGTTCTCTTGGTGGCAGGG (SEQ ID NO: 175)





176
hs101534966
TGCTCCGTTCTCTTGGTGGCAGG (SEQ ID NO: 176)





177
hs101534967
AGTCTGCTCCGTTCTCTTGGTGG (SEQ ID NO: 177)





178
hs101534968
AAGAGTCTGCTCCGTTCTCTTGG (SEQ ID NO: 178)





179
hs101535372
CATCATGGCCACAAATGGCGTGG (SEQ ID NO: 179)





180
hs101535375
CCATTTGTGGCCATGATGTCAGG (SEQ ID NO: 180)





181
hs101535376
GACATGGACCACGCCATTTGTGG (SEQ ID NO: 181)





182
hs101533619
GCGGTCCGTGTACAGCTGAGTGG (SEQ ID NO: 182)





183
hs101535656
TTTTCTTTCAGGCTTCCCAGAGG (SEQ ID NO: 183)





184
hs101535656
TTTTCTTTCAGGCTTCCCAGAGG (SEQ ID NO: 184)





185
hs101534814
GACTGTCATGGATGTCCTGAAGG (SEQ ID NO: 185)





186
hs101535663
ACCTAGTCGCACAGACCTCTGGG (SEQ ID NO: 186)





187
hs131602459
AGGAGGAAAAGCAAACAACTGGG (SEQ ID NO: 187)





188
hs131602461
GGAAAAGCAAACAACTGGGAAGG (SEQ ID NO: 188)





189
hs131602462
AAAGCAAACAACTGGGAAGGAGG (SEQ ID NO: 189)





190
hs131602463
ACAACTGGGAAGGAGGTATCCGG (SEQ ID NO: 190)





191
hs131602464
CAACTGGGAAGGAGGTATCCGGG (SEQ ID NO: 191)





192
hs002677511
TGGGGCAGAAAGGTGACTTGGGG (SEQ ID NO: 192)





193
hs131603028
TTAAGTAGGCGTTGCAGTAATGG (SEQ ID NO: 193)





194
hs131602458
TAGGAGGAAAAGCAAACAACTGG (SEQ ID NO: 194)
















TABLE 3







The gRNA target sequences by ID and human genomic sequence


in the TCF4 gene upstream of the microsatellite expansion


causing Fuchs endothelial corneal dystrophy.









#
ID
Genomic Sequence





 1
hs056193542
AAAGAGCCCCACTTGGAAGGCGG (SEQ ID NO: 195)





 2
hs056193543
GCCCCACTTGGAAGGCGGTTTGG (SEQ ID NO: 196)





 3
hs056193544
GATTTTATTTGTGTGTTTTGTGG (SEQ ID NO: 197)





 4
hs056193545
TCCAAACCGCCTTCCAAGTGGGG (SEQ ID NO: 198)





 5
hs056193546
ATCCAAACCGCCTTCCAAGTGGG (SEQ ID NO: 199)





 6
hs056193547
AATCCAAACCGCCTTCCAAGTGG (SEQ ID NO: 200)





 7
hs056193548
CATCTTACACCAAACTCATCTGG (SEQ ID NO: 201)





 8
hs056193549
TTTTTAATGCCAGATGAGTTTGG (SEQ ID NO: 202)





 9
hs056193550
ATTCATTCTCCTGACATGTCTGG (SEQ ID NO: 203)





10
hs056193551
TTCATTCTCCTGACATGTCTGGG (SEQ ID NO: 204)





11
hs056193552
CTCCTGACATGTCTGGGACTTGG (SEQ ID NO: 205)





12
hs056193553
ACATGTCTGGGACTTGGTTTAGG (SEQ ID NO: 206)





13
hs056193554
CTGGGACTTGGTTTAGGAAAAGG (SEQ ID NO: 207)





14
hs056193555
GGTTTAGGAAAAGGAAGCAAAGG (SEQ ID NO: 208)





15
hs056193556
GTTTAGGAAAAGGAAGCAAAGGG (SEQ ID NO: 209)





16
hs056193557
AACCAAGTCCCAGACATGTCAGG (SEQ ID NO: 210)





17
hs056193558
AGGAAAAGGAAGCAAAGGGATGG (SEQ ID NO: 211)





18
hs056193559
AGGAAGCAAAGGGATGGAGAAGG (SEQ ID NO: 212)





19
hs056193560
TGGAGTTTTACGGCTGTACTTGG (SEQ ID NO: 213)





20
hs056193561
GACACACTTGTGGAGTTTTACGG (SEQ ID NO: 214)





21
hs056193562
AGCGGAACTTGACACACTTGTGG (SEQ ID NO: 215)





22
hs056193563
GTCGTAGGATCAGCACAAAGCGG (SEQ ID NO: 216)





23
hs056193564
ATTTACCAAAACAGTCCAAAAGG (SEQ ID NO: 217)





24
hs056193565
TTGGTAAATTTCGTAGTCGTAGG (SEQ ID NO: 218)





25
hs056193566
TAGAACCTTTTGGACTGTTTTGG (SEQ ID NO: 219)





26
hs056193567
ATACATTCTTTAGAACCTTTTGG (SEQ ID NO: 220)





27
hs056193568
ATACTAGTTTTAAGAATCCTAGG (SEQ ID NO: 221)





28
hs056193569
TCCTAGGAAAAGATGTAACTAGG (SEQ ID NO: 222)





29
hs056193570
TAGGAAAAGATGTAACTAGGAGG (SEQ ID NO: 223)





30
hs056193571
TAGGATTCTTAAAACTAGTATGG (SEQ ID NO: 224)





31
hs056193572
TAACTAGGAGGTAAGATGTAAGG (SEQ ID NO: 225)





32
hs056193573
GGAGGTAAGATGTAAGGAACAGG (SEQ ID NO: 226)





33
hs056193574
TCCTAGTTACATCTTTTCCTAGG (SEQ ID NO: 227)





34
hs056193575
TAATGATGCTTTGGATTGGTAGG (SEQ ID NO: 228)





35
hs056193576
AAGCTAATGATGCTTTGGATTGG (SEQ ID NO: 229)





36
hs056193577
TAAAACTTTAAAGAGACAACTGG (SEQ ID NO: 230)





37
hs056193578
AAAACTTTAAAGAGACAACTGGG (SEQ ID NO: 231)





38
hs056193579
GTTTTAAGCTAATGATGCTTTGG (SEQ ID NO: 232)





39
hs056193580
GGAAATGGAAAATAGAAAATAGG (SEQ ID NO: 233)





40
hs056193581
TTATTTATTGTTTTTGGAAATGG (SEQ ID NO: 234)





41
hs056193582
TTCGTTTTATTTATTGTTTTTGG (SEQ ID NO: 235)





42
hs056193583
GTAGTCTCAGTGTTCAGACATGG (SEQ ID NO: 236)





43
hs056193584
TTCAGACATGGCCAAGTTTTAGG (SEQ ID NO: 237)





44
hs056193585
TCAGACATGGCCAAGTTTTAGGG (SEQ ID NO: 238)





45
hs056193586
CAGACATGGCCAAGTTTTAGGGG (SEQ ID NO: 239)





46
hs056193587
ACATGGCCAAGTTTTAGGGGTGG (SEQ ID NO: 240)





47
hs056193588
TTTAGGGGTGGTTTAGTTTTAGG (SEQ ID NO: 241)





48
hs056193589
TTAGGGGTGGTTTAGTTTTAGGG (SEQ ID NO: 242)





49
hs056193590
TAGGGGTGGTTTAGTTTTAGGGG (SEQ ID NO: 243)





50
hs056193591
ACTAAACCACCCCTAAAACTTGG (SEQ ID NO: 244)





51
hs056193592
TGTCTATTTTTGCTTTCCACTGG (SEQ ID NO: 245)





52
hs056193593
GTCTATTTTTGCTTTCCACTGGG (SEQ ID NO: 246)





53
hs056193594
TCTATTTTTGCTTTCCACTGGGG (SEQ ID NO: 247)





54
hs056193595
TGGGGTGAGATTCCATTATTTGG (SEQ ID NO: 248)





55
hs056193596
GGGGTGAGATTCCATTATTTGGG (SEQ ID NO: 249)





56
hs056193597
GGGTGAGATTCCATTATTTGGGG (SEQ ID NO: 250)





57
hs056193598
CCATTATTTGGGGTAATCAGTGG (SEQ ID NO: 251)





58
hs056193599
CATTATTTGGGGTAATCAGTGGG (SEQ ID NO: 252)





59
hs056193600
ATTTGGGGTAATCAGTGGGTAGG (SEQ ID NO: 253)





60
hs056193601
ATAATGGAATCTCACCCCAGTGG (SEQ ID NO: 254)





61
hs056193602
TTTGGGGTAATCAGTGGGTAGGG (SEQ ID NO: 255)





62
hs056193603
ATCAGTGGGTAGGGAATTGAAGG (SEQ ID NO: 256)





63
hs056193604
CCACTGATTACCCCAAATAATGG (SEQ ID NO: 257)





64
hs056193605
TTTTTTTTGAGTTTTATTACTGG (SEQ ID NO: 258)





65
hs056193606
TGTGGTGTGATGGAAGATTCAGG (SEQ ID NO: 259)





66
hs056193607
ACTATAATTTTGTGGTGTGATGG (SEQ ID NO: 260)





67
hs056193608
AGTTTTTAACTATAATTTTGTGG (SEQ ID NO: 261)





68
hs056193609
AAAGACCTTCATATTTACCAAGG (SEQ ID NO: 262)





69
hs056193610
TGAATCCTTGGTAAATATGAAGG (SEQ ID NO: 263)





70
hs056193611
TTTTTAATTGGCTGAATCCTTGG (SEQ ID NO: 264)





71
hs056193612
ACTGTCCTTTAGATTCCTACTGG (SEQ ID NO: 265)





72
hs056193613
GGACAGTAATAATTTTTAATTGG (SEQ ID NO: 266)





73
hs056193614
TGGTTTCTAGCTGAAGTGTTTGG (SEQ ID NO: 267)





74
hs056193615
GGTTTCTAGCTGAAGTGTTTGGG (SEQ ID NO: 268)





75
hs056193616
AGAAACCAGTAGGAATCTAAAGG (SEQ ID NO: 269)





76
hs056193617
CACTTCAGCTAGAAACCAGTAGG (SEQ ID NO: 270)





77
hs056193618
AGTGCGGTAAGAAAGAACGGTGG (SEQ ID NO: 271)





78
hs056193619
TTCAGTGCGGTAAGAAAGAACGG (SEQ ID NO: 272)





79
hs056193620
TGATTTACTGGATTTCAGTGCGG (SEQ ID NO: 273)
















TABLE 4







The gRNA target sequences by ID and human genomic sequence


in the TCF4 gene downstream of the microsatellite expansion


causing Fuchs endothelial corneal dystrophy.









#
ID
Genomic Sequence





 1
hs056193473
AGATCTTTGAGGAGCTCTGAAGG (SEQ ID NO: 274)





 2
hs056193474
AACAGTATGAAAGATCTTTGAGG (SEQ ID NO: 275)





 3
hs056193475
ACAGCTTAGAGTTTATGCTAAGG (SEQ ID NO: 276)





 4
hs056193476
CAGCTTAGAGTTTATGCTAAGGG (SEQ ID NO: 277)





 5
hs056193477
AGCATAAACTCTAAGCTGTTTGG (SEQ ID NO: 278)





 6
hs056193478
TCTTTTAGTTTTAAGTTGGATGG (SEQ ID NO: 279)





 7
hs056193479
TTTCTCTTTTAGTTTTAAGTTGG (SEQ ID NO: 280)





 8
hs056193480
GTGATAATGGGGGCTGGGGTGGG (SEQ ID NO: 281)





 9
hs056193481
AGTGATAATGGGGGCTGGGGTGG (SEQ ID NO: 282)





10
hs056193482
TCTGTTCTTTCTTTTTCCTCAGG (SEQ ID NO: 283)





11
hs056193483
CAGAGTGATAATGGGGGCTGGGG (SEQ ID NO: 284)





12
hs056193484
ACAGAGTGATAATGGGGGCTGGG (SEQ ID NO: 285)





13
hs056193485
AACAGAGTGATAATGGGGGCTGG (SEQ ID NO: 286)





14
hs056193486
AAAGAACAGAGTGATAATGGGGG (SEQ ID NO: 287)





15
hs056193487
GAAAGAACAGAGTGATAATGGGG (SEQ ID NO: 288)





16
hs056193488
AGAAAGAACAGAGTGATAATGGG (SEQ ID NO: 289)





17
hs056193489
AAGAAAGAACAGAGTGATAATGG (SEQ ID NO: 290)





18
hs056193490
TTTTCCTCAGGTTCATTAGATGG (SEQ ID NO: 291)





19
hs056193491
TTGGCCATCTAATGAACCTGAGG (SEQ ID NO: 292)





20
hs056193492
AGCAGTACTACTGCTACATTTGG (SEQ ID NO: 293)





21
hs056193493
AATGTAGCAGTAGTACTGCTTGG (SEQ ID NO: 294)





22
hs056193494
CCATAATGTTATCAAGATTCAGG (SEQ ID NO: 295)





23
hs056193495
AATGTTATCAAGATTCAGGTTGG (SEQ ID NO: 296)





24
hs056193496
GTTATCAAGATTCAGGTTGGAGG (SEQ ID NO: 297)





25
hs056193497
TGAATCTTGATAACATTATGGGG (SEQ ID NO: 298)





26
hs056193498
CTGAATCTTGATAACATTATGGG (SEQ ID NO: 299)





27
hs056193499
CCTGAATCTTGATAACATTATGG (SEQ ID NO: 300)





28
hs056193500
GAAAAACACTAGTTTCACCAAGG (SEQ ID NO: 301)





29
hs056193501
TGTTTTTCTAGAGAGGCTGCTGG (SEQ ID NO: 302)





30
hs056193502
AAACTAGTGTTTTTCTAGAGAGG (SEQ ID NO: 303)





31
hs056193503
AACAACTTTTTTCTTCTCCTTGG (SEQ ID NO: 304)





32
hs056193504
TTGTTTTATATTGAAAACCTTGG (SEQ ID NO: 305)





33
hs056193505
GAAAACCTTGGCCATAAACGTGG (SEQ ID NO: 306)





34
hs056193506
TGTCCATTTCCATCTCGTATAGG (SEQ ID NO: 307)





35
hs056193507
CATTGCCACGTTTATGGCCAAGG (SEQ ID NO: 308)





36
hs056193508
AATGGACATTGCCACGTTTATGG (SEQ ID NO: 309)





37
hs056193509
AATCCTATACGAGATGGAAATGG (SEQ ID NO: 310)





38
hs056193510
CAGGCAAATCCTATACGAGATGG (SEQ ID NO: 311)





39
hs056193511
TATTTGGGTTCACATATGACAGG (SEQ ID NO: 312)





40
hs056193512
TGGCACTTTTATTTTTATTTGGG (SEQ ID NO: 313)





41
hs056193513
GTGGCACTTTTATTTTTATTTGG (SEQ ID NO: 314)





42
hs056193514
ATTCTCATTTCGTCTCTAACAGG (SEQ ID NO: 315)





43
hs056193515
AAATGAGAATTTAGTGCAGGTGG (SEQ ID NO: 316)





44
hs056193516
ACGAAATGAGAATTTAGTGCAGG (SEQ ID NO: 317)





45
hs056193517
GCATTTATTTCGACCCTAATTGG (SEQ ID NO: 318)





46
hs056193518
CTCTTCTTCGACGTATCTAGTGG (SEQ ID NO: 319)





47
hs056193519
AAGAAGAGGGAAACCAATTAGGG (SEQ ID NO: 320)





48
hs056193520
GAAGAAGAGGGAAACCAATTAGG (SEQ ID NO: 321)





49
hs056193521
ACTAGATACGTCGAAGAAGAGGG (SEQ ID NO: 322)





50
hs056193522
CACTAGATACGTCGAAGAAGAGG (SEQ ID NO: 323)





51
hs056193523
TCAGAGCCTGCAAAAAGCAAAGG (SEQ ID NO: 324)





52
hs056193524
GCAAAAAGCAAAGGAACGAATGG (SEQ ID NO: 325)





53
hs056193525
TGCAGGCTCTGACTCAGGGAAGG (SEQ ID NO: 326)





54
hs056193526
TTTTTGCAGGCTCTGACTCAGGG (SEQ ID NO: 327)





55
hs056193527
CTTTTTGCAGGCTCTGACTCAGG (SEQ ID NO: 328)





56
hs056193528
TTCGTTCCTTTGCTTTTTGCAGG (SEQ ID NO: 329)





57
hs056193529
AGAAAGTGCAACAAGCAGAAAGG (SEQ ID NO: 330)





58
hs056193530
GAAAGTGCAACAAGCAGAAAGGG (SEQ ID NO: 331)





59
hs056193531
AAAGTGCAACAAGCAGAAAGGGG (SEQ ID NO: 332)





60
hs056193532
AAGTGCAACAAGCAGAAAGGGGG (SEQ ID NO: 333)





61
hs056193533
GGCTGCAAAGCTGCCTGCCTAGG (SEQ ID NO: 334)





62
hs056193534
GCTGCAAAGCTGCCTGCCTAGGG (SEQ ID NO: 335)





63
hs056193535
CTGCCTAGGGCTACGTTTCCTGG (SEQ ID NO: 336)





64
hs056193536
CAGGAAACGTAGCCCTAGGCAGG (SEQ ID NO: 337)





65
hs056193537
TTGCCAGGAAACGTAGCCCTAGG (SEQ ID NO: 338)





66
hs056193538
AAAGCCATTTCTCCAAAAGAAGG (SEQ ID NO: 339)





67
hs056193539
TGGCTTTCGGAAGTTTTGCCAGG (SEQ ID NO: 340)





68
hs056193540
TCTTTTGGAGAAATGGCTTTCGG (SEQ ID NO: 341)





69
hs056193541
TAGACCTTCTTTTGGAGAAATGG (SEQ ID NO: 342)
















TABLE 5





Microsatellite expansion diseases/conditions


with affected gene(s) in brackets.















Blepharophimosis, ptosis and epicanthus inversus syndactyly [FOXL2]


Cleidocranial dysplasia [RUNX2 CBFA1)]


Congenital central hypoventilation syndrome, Haddad syndrome


[PHOX2B]


DM (Myotonic dystrophy) [DMPK]


DRPLA (Dentatorubropallidoluysian atrophy) [ATN1 or DRPLA]


FRAXA (Fragile X syndrome) [FMR1]


FRAXE (Fragile XE mental retardation) [AFF2 or FMR2]


FRDA (Friedreich's ataxia) [FXN or X25]


Fuchs' Endothelial Corneal Dystrophy [TCF4]


FXTAS (Fragile X-associated tremor/ataxia syndrome) [FMR1]


Hand-foot-genital syndrome [HOXA13]


HD (Huntington's disease) [HTT (Huntingtin)]


Holoprosencephaly (HPE5) [ZIC2]


Mental retardation with growth hormone deficiency [SOX3]


Mental retardation, epilepsy, West syndrome, Partington syndrome [ARX]


Oculopharyngeal muscular dystrophy [PABPN1]


SBMA (Spinal and bulbar muscular atrophy) [AR]


SCA1 (Spinocerebellar ataxia Type 1) [ATXN1]


SCA12 (Spinocerebellar ataxia Type 12) [PPP2R2B or SCA12]


SCA17 (Spinocerebellar ataxia Type 17) [TBP]


SCA2 (Spinocerebellar ataxia Type 2) [ATXN2]


SCA3 (Spinocerebellar ataxia Type 3 or Machado-Joseph disease)


[ATXN3]


SCA6 (Spinocerebellar ataxia Type 6) [CACNA1A]


SCA7 (Spinocerebellar ataxia Type 7) [ATXN7]


SCA8 (Spinocerebellar ataxia Type 8) [OSCA or SCA8]


Synpolydactyly [HOXD13]









REFERENCES



  • 1. Weiss J S, Moller H U, Aldave A J, et al. IC3D classification of corneal dystrophies—edition 2. Cornea 2015; 34:117-159.

  • 2. Afshari N A, Bouchard C S, Colby K A, et al. Corneal dystrophies and ectasias. In: Weisenthal R W, ed. 2014-2015 Basic and Clinical Science Course, Section 8: External Disease and Cornea. San Francisco; American Academy of Ophthalmology; 2014:253-287.

  • 3. Weiss J S, Moller H U, Lisch W et al. The IC3D classification of the corneal dystrophies. Cornea 2008; 27(suppl2):S1-S83.

  • 4. Wieben E D, Aleff R A, Eckloff B W, Atkinson E J, Baheti S, Middha S, et al. Comprehensive Assessment of Genetic Variants Within TCF4 in Fuchs' Endothelial Corneal Dystrophy. Investigative ophthalmology & visual science. 2014; 55(9):6101-7.

  • 5. Nelson D L, Orr H T, Warren S T. The unstable repeats—three evolving faces of neurological disease. Neuron. 2013 Mar. 6; 77(5):825-43.

  • 6. Hsu P D, Lander E S, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014; 157(6):1262-78.

  • 7. Doudna J A, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014; 346(6213):1258096.

  • 8. Ranganathan V, Wahlin K, Maruotti J, Zack D J. Expansion of the CRISPR-Cas9 genome targeting space through the use of H1 promoter-expressed guide RNAs. Nature Communications. 2014; 5:4516.

  • 9. Munier F L, Frueh B E, Othenin-Girard P, Uffer S, Cousin P, Wang M X, Heon E, Black G C M, Blasi M A, Balestrazzi E, Lorenz B, Escoto R, Barraquer R, Hoeltzenbein M, Gloor B, Fossarello M, Singh A D, Arsenijevic Y, Zografos L, Schorderet D F. BIGH3 mutation spectrum in corneal dystrophies. Invest. Ophthal. Vis. Sci. 43: 949-954, 2002.

  • 10. Kleinstiver B P, Prew M S, Tsai S Q, Topkar V V, Nguyen N T, Zheng Z, Gonzales A P, Li Z, Peterson R T, Yeh J J, Aryee M J, Joung J K. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. 2015 Jun. 22. doi: 10.1038/nature14592.



EQUIVALENTS

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. While specific embodiments of the subject invention have been discussed, the above specification is illustrative and not restrictive. Many variations of the invention may become apparent to those skilled in the art upon review of this specification. The full scope of the invention should be determined by reference to the claims, along with their full scope of equivalents, and the specification, along with such variations. Such equivalents are intended to be encompassed by the following claims.

Claims
  • 1. A method for treating a disorder affecting ocular tissue in a subject, the method comprising administering to the ocular area of the subject a therapeutically effective amount of a nuclease system comprising a genome targeted nuclease and a guide DNA comprising at least one targeted genomic sequence.
  • 2. The method of claim 1, wherein the nuclease is provided as a protein, RNA, DNA, or an expression vector comprising a nucleic acid that encodes the nuclease.
  • 3. The method of claim 1, wherein the guide DNA is provided as an RNA molecule (gRNA), DNA molecule, or an expression vector comprising a nucleic acid that encodes the gRNA.
  • 4. The method of claim 1, wherein the nuclease system is CRISPR-Cas9.
  • 5. The method of claim 1, wherein the nuclease system inactivates or excises gene mutations.
  • 6. The method of claim 1, further comprising a DNA double-stranded break (DSB) repair system.
  • 7. The method of claim 6, wherein the DSB repair system comprises a repair template in combination with or without a Non-Homologous End-Joining (NHEJ) or Homology Directed Repair (HDR) targeted to the one or more CRISPR-Cas9 cleavage site, said site corrects or edits a genomic mutation.
  • 8. The method of claim 1, wherein the genome targeted nuclease is Cas9.
  • 9. The method of claim 1, wherein the disorder is a corneal dystrophy or microsatellite expansion disease.
  • 10. The method of claim 1, wherein the ocular area is the cornea.
  • 11. The method of claim 1, wherein the guide DNA comprises at least one, two, three, four, five, six, seven, eight, nine, or ten targeted genomic sequences.
  • 12. The method of claim 11, wherein the target genomic sequences are selected from any one of the nucleotide sequences set forth in SEQ ID NOs: 1-172 and 174-342, or any combination thereof.
  • 13. The method of claim 9, wherein the corneal dystrophy is selected from the group consisting of Epithelial Basement Membrane Dystrophy, Epithelial Recurrent Erosion Dystrophies, Subepithelial Mucinous Corneal Dystrophy, Meesmann Corneal Dystrophy, Lisch Epithelial Corneal Dystrophy, Gelatinous Drop-like Corneal Dystrophy, Reis-Bucklers Corneal Dystrophy, Thiel-Behnke Corneal Dystrophy, Lattice Corneal Dystrophy, Type 1 (Classic), Lattice Corneal Dystrophy, Type 2, Lattice Corneal Dystrophy, Type III, Lattice Corneal Dystrophy, Type IIIA, Lattice Corneal Dystrophy, Type I/IIIA, Lattice Corneal Dystrophy, Type IV, Polymorphic (Corneal) Amyloidosis, Granular Corneal Dystrophy, Type 1, Granular Corneal Dystrophy, Type 2, Macular Corneal Dystrophy, Schnyder Corneal Dystrophy, Congenital Stromal Corneal Dystrophy, Fleck Corneal Dystrophy, Posterior Amorphous Corneal Dystrophy, Central Cloudy Dystrophy of Francois, Pre-Descemet Corneal Dystrophy, Fuchs Endothelial Corneal Dystrophy, Posterior Polymorphous Corneal Dystrophy, Congenital Hereditary Endothelial Dystrophy, and X-linked Endothelial Corneal Dystrophy.
  • 14. The method of claim 9, wherein the microsatellite expansion diseases is selected from the group consisting of Blepharophimosis, ptosis and epicanthus inversus syndactyly, Cleidocranial dysplasia, Congenital central hypoventilation syndrome, Haddad syndrome DM (Myotonic dystrophy), FRAXA (Fragile X syndrome), FRAXE (Fragile XE mental retardation), FRDA (Friedreich's ataxia), Fuchs' Endothelial Corneal Dystrophy, FXTAS (Fragile X-associated tremor/ataxia syndrome), Hand-foot-genital syndrome, HD (Huntington's disease), Holoprosencephaly, Mental retardation with growth hormone deficiency, Mental retardation, epilepsy, West syndrome, Partington syndrome, Oculopharyngeal muscular dystrophy, SBMA (Spinal and bulbar muscular atrophy), SCA1 (Spinocerebellar ataxia Type 1), SCA12 (Spinocerebellar ataxia Type 12), SCA17 (Spinocerebellar ataxia Type 17), SCA2 (Spinocerebellar ataxia Type 2), SCA3 (Spinocerebellar ataxia Type 3 or Machado-Joseph disease), SCA6 (Spinocerebellar ataxia Type 6), SCAT (Spinocerebellar ataxia Type 7), SCA8 (Spinocerebellar ataxia Type 8), and Synpolydactyly.
  • 15. The method of claim 1, wherein the nuclease system is administered topically to the surface of the eye.
  • 16. The method of claim 1, wherein the nuclease system is administered on or outside the cornea, sclera, to the intraocular, subconjunctival, sub-tenon, or retrobulbar space, or in or around the eyelids.
  • 17. The method of claim 1, wherein the nuclease system is administered by implantation, injection, or virally.
  • 18. A method for treating a disorder affecting non-ocular tissue in a subject, the method comprising administering to the non-ocular tissue of the subject a therapeutically effective amount of a nuclease system comprising a genome targeted nuclease and a guide DNA comprising at least one targeted genomic sequence.
  • 19. The method of claim 18, wherein the nuclease is provided as a protein, RNA, DNA, or an expression vector comprising a nucleic acid encoding the nuclease.
  • 20. The method of claim 18, wherein the guide DNA is provided as an RNA molecule (gRNA), DNA molecule, or an expression vector comprising a nucleic acid that encodes the gRNA.
  • 21. The method of claim 18, wherein the nuclease system is CRISPR-Cas9.
  • 22. The method of claim 18, wherein the nuclease system inactivates or excises gene mutations.
  • 23. The method of claim 18, further comprising a DNA double-stranded break (DSB) repair system.
  • 24. The method of claim 23, wherein the DSB repair system comprises a repair template in combination with a Non-Homologous End-Joining (NHEJ) or Homology Directed Repair (HDR) targeted to the one or more CRISPR-Cas9 cleavage site, said site corrects or edits a genomic mutation.
  • 25. The method of claim 18, wherein the genome targeted nuclease is Cas9.
  • 26. The method of claim 18, wherein the disorder is microsatellite expansion disease.
  • 27. The method of claim 18, wherein the guide DNA comprises at least one, two, three, four, five, six, seven, eight, nine, or ten targeted genomic sequences.
  • 28. The method of claim 27, wherein the target genomic sequences are selected from any one of the nucleotide sequences set forth in SEQ ID NOs: 1-172 and 174-342, or any combination thereof.
  • 29. The method of claim 26, wherein the microsatellite expansion diseases is selected from the group consisting of Blepharophimosis, ptosis and epicanthus inversus syndactyly, Cleidocranial dysplasia, Congenital central hypoventilation syndrome, Haddad syndrome DM (Myotonic dystrophy), FRAXA (Fragile X syndrome), FRAXE (Fragile XE mental retardation), FRDA (Friedreich's ataxia), Fuchs' Endothelial Corneal Dystrophy, FXTAS (Fragile X-associated tremor/ataxia syndrome), Hand-foot-genital syndrome, HD (Huntington's disease), Holoprosencephaly, Mental retardation with growth hormone deficiency, Mental retardation, epilepsy, West syndrome, Partington syndrome, Oculopharyngeal muscular dystrophy, SBMA (Spinal and bulbar muscular atrophy), SCA1 (Spinocerebellar ataxia Type 1), SCA12 (Spinocerebellar ataxia Type 12), SCA17 (Spinocerebellar ataxia Type 17), SCA2 (Spinocerebellar ataxia Type 2), SCA3 (Spinocerebellar ataxia Type 3 or Machado-Joseph disease), SCA6 (Spinocerebellar ataxia Type 6), SCAT (Spinocerebellar ataxia Type 7), SCA8 (Spinocerebellar ataxia Type 8), and Synpolydactyly.
  • 30. The method of claim 18, wherein the nuclease system is administered topically, intravascularly, intradermally, transdermally, parenterally, intravenously, intramuscularly, intranasally, subcutaneously, regionally, percutaneously, intratracheally, intraperitoneally, intraarterially, intravesically, intratumorally, inhalationly, perfusionly, lavagely, directly via injection, or orally via administration and formulation.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application No. 62/188,013, filed Jul. 2, 2015, the contents of which is incorporated herein by reference in its entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2016/040962 7/5/2016 WO 00
Provisional Applications (1)
Number Date Country
62188013 Jul 2015 US