This application claims priority to Korean Patent Application No. 10-2013-0040223, filed on Apr. 12, 2013, and all the benefits accruing therefrom under 35 U.S.C. §119, the content of which in its entirety is herein incorporated by reference.
1. Field
The disclosure relates to a data processing device and a display system including the data processing device, and more particularly, to a data processing device that selectively compensates data having information of text and a display system including the data processing device.
2. Description of the Related Art
A conventional display device displays an image using a display panel including a plurality of logical pixels, each of which includes sub-pixels that expresses red, green and blue, for example.
Recently, a pentile technology for improving brightness of a display device by designing one logical pixel to have parts of red, green, blue and optional color sub-pixels is being developed. In such a display device having a pentile structure, an opening ratio and a penetration ratio of the display device may be substantially improved.
In such a display device having the pentile structure, data having information of red, green, blue and optional color is applied to one logical pixel. However, since one logical pixel includes parts of red, green, blue and optional color sub-pixels, it may display only parts of red, green, blue and optional color.
An exemplary embodiment of a data processing device, which processes and provides data to a plurality of logical pixels of a display device, includes: a data analysis part which analyzes information of text, color, line or edge in each of the data; and a data compensation part which compensates text data corresponding to a logical pixel which does not express text color among the data having the information of text based on the information analyzed in the data analysis part, where each of the logical pixels of the display device includes at least one of red, green, blue and optional color sub-pixels.
An exemplary embodiment of a display system includes: a rendering part which receives an image data and renders the received image data to generate rendered image data; and a data processing device which processes and provides the rendered image data to the display device, where the data processing device includes: a data analysis part which analyzes information of text, color, line or edge of the rendered image data; and a data compensation part which compensates text data corresponding to a logical pixel which does not display a text color among data having the information of text based on the information analyzed in the data analysis part.
The above and other feature of the invention will become readily apparent by reference to the following detailed description when considered in conjunction with the accompanying drawings, in which:
The invention will be described more fully hereinafter with reference to the accompanying drawings, in which various embodiments are shown. This invention may, however, be embodied in many different forms, and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like reference numerals refer to like elements throughout.
It will be understood that when an element or layer is referred to as being “on”, “connected to” or “coupled to” another element or layer, it can be directly on, connected or coupled to the other element or layer or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly connected to” or “directly coupled to” another element or layer, there are no intervening elements or layers present. Like numbers refer to like elements throughout. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the invention.
Spatially relative terms, such as “beneath”, “below”, “lower”, “above”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the exemplary term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms, “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “includes” and/or “including”, when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
Exemplary embodiments are described herein with reference to cross section illustrations that are schematic illustrations of idealized embodiments. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments described herein should not be construed as limited to the particular shapes of regions as illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. For example, a region illustrated or described as flat may, typically, have rough and/or nonlinear features. Moreover, sharp angles that are illustrated may be rounded. Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the precise shape of a region and are not intended to limit the scope of the claims set forth herein.
All methods described herein can be performed in a suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”), is intended merely to better illustrate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention as used herein.
Hereinafter, exemplary embodiments of the invention will be described in detail with reference to the accompanying drawings.
Referring to
The rendering part 100 receives an image data RGB, and then renders the image data RGB to generate rendered image data RGBW. The rendered image data RGBW includes data corresponding to logical pixels in the display device 300.
The rendering part 100 maps image data RGB including red, green and blue data to the rendered image data RGBW including red, green, blue and optional color data. The optional color may be a color different from red, green and blue. The color data of the rendered image data RGBW may correspond to sub-pixels in the display device 300. In an exemplary embodiment, where the sub-pixels include red, green, blue and white sub-pixels, the image data RGBW may include red, green, blue and white data.
The rendering part 100 may map red, green and blue gamut based on red, green and blue data to red, green, blue and optional color gamut using a gamut mapping algorithm (“GMA”).
The rendering part 100 may linearize the image data RGB using a gamma function before rendering the image data RGB. The rendering part 100 may non-linearize the linearized image data RGB using a reverse gamma function.
The data processing device 200 receives the rendered image data RGBW, and then performs a data processing on the received rendered image data RGBW to output compensated data RGBW′.
In an exemplary embodiment, the display device 300 includes a display panel 310, a timing controller 320, a gate drive circuit 330 and a data drive circuit 340.
The display panel 310 includes a screen for displaying an image and includes a plurality of sub-pixels. In such an embodiment, the sub-pixels may have a pentile structure or a multi-primary color (“MPC”) structure.
The sub-pixels may include base color sub-pixels and an optional color sub-pixel. The base color sub-pixels may include a red sub-pixel, a green sub-pixel and a blue sub-pixel. The optional color sub-pixel may include at least one of white, yellow, cyan and magenta sub-pixels. In an exemplary embodiment, as shown in
A plurality of logical pixels 1LP to 4LP is defined in the display panel 310. In an exemplary embodiment, as shown in
Each of the first through fourth logical pixels 1LP to 4LP includes at least one of red, green, blue and optional color sub-pixels. In one exemplary embodiment, for example, each of the first logical pixel 1LP and the fourth logical pixel 4LP includes a red (“R”) sub-pixel and a green (“G”) sub-pixel, and each of the second logical pixel 2LP and the third logical pixel 3LP includes a blue (“B”) sub-pixel and a white (“W”) sub-pixel. In an exemplary embodiment, as shown in
Image data that the display device 300 receives from the data processing device 200, e.g., the compensated image data RGBW′, may include red, green, blue and white data corresponding to the first through fourth logical pixels 1LP to 4LP. In an exemplary embodiment, each of the first through fourth logical pixels 1LP to 4LP may display a portion of red, green, blue and white data. In such an embodiment, first data corresponding to the first logical pixel 1LP includes red, green, blue and white data, but only red and green may be displayed by the first logical pixel 1LP. In such an embodiment, second data corresponding to the second logical pixel 2LP includes red, green, blue and white data, but only blue and white may be displayed by the second logical pixel 2LP.
The data processing device 200 provides the compensated data RGBW′ to the timing controller 320. In an exemplary embodiment, the data processing device 200 may be included in the display device 300, e.g., in the timing controller 320 of the display device 300.
The timing controller 320 converts a data format of the compensated data RGBW′ into a data format corresponding to the data drive circuit 340, and provides the compensated data RGBW′ to the data drive circuit 340. The timing controller 320 receives control signals O-CS and converts the control signals O-CS into a data control signal DCS and a gate control signal GCS. The timing controller 320 provides the data control signal DCS to the data drive circuit 340, and provides the gate control signal GCS to the gate drive circuit 330.
The data drive circuit 340 converts the compensated data RGBW′ into a data voltage in response to the data control signal DCS, and provides the data voltage to the display panel 310. The gate drive circuit 330 sequentially outputs gate signals for driving the sub-pixels on a row-by-row basis in response to the gate control signal GCS.
Referring to
The data analysis part 201 analyzes data provided thereto on a block-by-block basis, e.g., analyzes each image block of an image corresponding to the rendered image data RGBW, and the data analysis part 201 provides a result of analysis to the data compensation part 250. The data analysis part 201 analyzes information of text, color, line and edge in each data corresponding to the block.
As shown in
Referring to
The histogram analysis part 210 analyzes the distribution of grayscale value of red, green and blue data of the data corresponding to the first logical pixel block LB1, and detects color having a grayscale value greater than a first predetermined value. In such an embodiment, when each of two or more colors have a grayscale value greater than the first predetermined value, the histogram analysis part 210 detects a color having the smallest volume of distribution in the first logical pixel block LB1 as a text color, and detects the other colors as a background color. The first predetermined value may be set based on the minimum grayscale value of the color of text that is displayed in the first logical pixel block LB1.
In an exemplary embodiment, as shown in
The first logical pixel block LB1 may be defined by at least about 10,000 logical pixels that are adjacent to one another. In one exemplary embodiment, for example, the first logical pixel block LB1 may be defined by 100×100 logical pixels. In an exemplary embodiment, the display panel 310 may include 2,000×1,000 logical pixels, and the histogram analysis part 210 performs a histogram analysis on every data corresponding to 200 first logical pixel blocks LB1.
In such an embodiment, the first logical pixel block LB1 is defined by logical pixels greater than 100×100, such that text color and background color are substantially accurately detected when the background has more than one color, or text is large and thick.
The histogram analysis part 210 may perform a function (e.g., determining whether text exists in the data corresponding to the first logical pixel block LB1), which may be performed in another part (e.g., text judgment part 220), such that accuracy in detecting information of text is substantially improved.
In an exemplary embodiment, the histogram analysis part 210 outputs the information of text and a background of data corresponding to the first logical pixel block LB1 as a first histogram signal SGN_H1. In such an embodiment, when data corresponding to the first logical pixel block LB1 do not include information of text, for example, when the first logical pixel block LB1 is displayed with a solid color background, the histogram analysis part 210 outputs a second histogram signal SGN_H2.
The histogram analysis part 210 provides the first histogram signal SGN_H1 or the second histogram signal SGN_H2 to the data compensation part 250.
In an exemplary embodiment, as described above, each of the logical pixels, e.g., each of first to ninth logical pixels LP1 to LP9, may include red and green sub-pixels or blue and white sub-pixels. Each of the first logical pixel LP1, the third logical pixel LP3, the fifth logical pixel LP5, the seventh logical pixel LP7 and the ninth logical pixel LP9 may include red and green sub-pixels. Each of the second logical pixel LP2, the fourth logical pixel LP4, the sixth logical pixel LP6 and the eighth logical pixel LP8 may include blue and white sub-pixels.
Data corresponding to the second logical pixel LP2, the fourth logical pixel LP4 and the eighth logical pixel LP8 have information of green. However, in such an embodiment, each of the second logical pixel LP2, the fourth logical pixel LP4 and the eighth logical pixel LP8 does not include a green sub-pixel such that green may not be displayed therein. Accordingly, a boundary of a text, e.g., “H” in
Referring to
In an exemplary embodiment, as shown in
The rendered image data RGBW includes first through ninth data corresponding to the first through ninth logical pixels LP1 to LP9 of the second logic al pixel block LB2, respectively.
The text judgment part 220 compares the maximum grayscale value of red, green and blue data of each of the first through ninth data with a second predetermined value to detect the information of text therein. The second predetermined value is the minimum grayscale value to be recognized as text having a color. The text judgment part 220 analyzes the first through ninth data to detect grayscale values of red, green, blue and white data therein. In such an embodiment, where each of the first data, the second data, the fourth data, the fifth data, the seventh data and the eighth data has a same specific grayscale value of green, the text judgment part 220 detect one of the grayscale value of the first data, the second data, the fourth data, the fifth data, the seventh data and the eighth data as the maximum grayscale value. When the detected maximum gradation value is greater than the second predetermined value with respect to the green color, the text judgment part 220 determines that the information of text exists in the first through ninth data. When the detected maximum gradation value is less than the second predetermined value with respect to the green color, the text judgment part 220 determines that the information of text does not exist in the first through ninth data. In an exemplary embodiment, where the second predetermined value may be 100, for example, when the detected maximum grayscale value is 200, the text judgment part 220 determines that the information of text exists in the first through ninth data, and when the detected maximum grayscale value is 10, the text judgment part 220 determines that the information of text does not exist in the first through ninth data.
The text judgment part 220 moves the second logical pixel block LB2 in a row or column direction after analyzing the first through ninth data corresponding to the second logical pixel block LB2, and then analyzes data corresponding to a next second logical pixel block LB2′ to detect whether the information of text exists in the next second logical pixel block LB2′. The text judgment part 220 analyzes an entire of the data in the first logical pixel block LB1 in such a manner by using the second logical pixel block LB2 as a unit of analysis. In an exemplary embodiment, as described above, the text judgment part 220 may scan the second logical pixel block LB2 while moving the second logical pixel block LB2 by one logical pixel row unit or one logical pixel column unit. In an alternative exemplary embodiment, the text judgment part 220 may scan the second logical pixel block LB2 while moving the second logical pixel block LB2 by more than one logical pixel row unit or more than one logical pixel column unit. In such an embodiment, the second logical pixel block LB2 may not be moved by more than three logical pixel row unit or more than three logical pixel column unit to scan the entire of the data of the first logical pixel block LB1.
In an exemplary embodiment, when data corresponding to the second logical pixel block LB2 include information of the text, the text judgment part 220 outputs a first text signal SGN_T1 to the line/edge detection part 230 and the color analysis part 240. In such an embodiment, when data corresponding to the second logical pixel block LB2 do not include information of text, the text judgment part 220 outputs a second text signal SGN_T2 to the data compensation part 250.
In such an embodiment, where the text judgment part 220 judges whether the information of text exists or not, based on the maximum grayscale value of data corresponding to the second logical pixel block LB2 when the maximum grayscale value is greater than the second predetermined value, the text judgment part 220 outputs the first text signal SGN_T1 even in a case where all of the nine data correspond to text or a background.
The line/edge detection part 230 detects whether or not the data corresponds to a line or an edge with respect to the red, green and blue colors, based on the first text signal SGN_T1 provided from the text judgment part 220. The line/edge detection part 230 scans the entire of the data corresponding to the first logical pixel block LB1 using the second logical pixel block LB2 as a unit of scanning.
The second logical pixel block LB2 includes a reference logical pixel and adjacent logical pixels, which are adjacent to the reference logical pixel and surround the reference logical pixel. In
The line/edge detection part 230 detects a grayscale difference between data corresponding to the reference logical pixel (hereinafter, referred to as “reference data”) and data corresponding to the adjacent logical pixels (hereinafter, referred to as “adjacent data”) for each of the red, green and blue data. The line/edge detection part 230 detects a number of the grayscale difference greater than a third predetermined value among the grayscale differences between the reference data and the adjacent data. The line/edge detection part 230 detects the reference data as a line, an edge or a remainder other than the line and the edge based on the detected number of the grayscale difference greater than a third predetermined value. In an exemplary embodiment, the third predetermined value may be set to the minimum value of a grayscale difference between a text and a background. In such an embodiment, the third predetermined value may be less than the second predetermined value.
The line/edge detection part 230 determines the reference data as an edge when the detected number (N) of the grayscale difference greater than the third predetermined value satisfies the following in equation: 0≦N≦3, determines the reference data as a line when the detected number (N) of the grayscale difference greater than the third predetermined value satisfies the following in equation: 3≦N≦8, and determines the reference data as the remainder when the detected number (N) of the grayscale difference greater than the third predetermined value is zero (0), that is, N=0. As described above, the remainder means that the reference data does not correspond to an edge or a line. When all of the nine data in the second logical pixel block LB2 correspond to text or a background, the data are determined as the remainder. When the reference data is determined as a line, the reference data means that text and a background are constituted by a single line. When the reference data is determined as an edge, the reference data constitutes an outer covering of a text or background.
In the second logical pixel block LB2 illustrated in
The line/edge detection part 230 scans the entire of the data corresponding to the first logical pixel block LB1 using the second logical pixel block LB2 as a unit of scanning while moving the second logical pixel block LB2 by one logical pixel row unit or one logical pixel column unit.
When the data corresponding to the second logical pixel block LB2 is detected as a line or an edge, the line/edge detection part 230 provides a first detection signal SGN_D1 to the data compensation part 250. When the data is detected as the remainder, the line/edge detection part 230 provides a second detection signal SGN_D2 to the data to the data compensation part 250.
The line/edge detection part 230 detects whether or not the data provided thereto corresponds to a line or an edge with respect to the red, green and blue colors based on the first text signal SGN_T1 provided from the text judgment part 220.
Referring to
The color analysis part 240 compares the adjacent data with a reference data to generate an analysis signal SGN_A of the data for each of the red, green and blue data. When the color analysis part 240 analyzes the adjacent data with respect to one color, the analysis signal SGN_A includes an analysis signal of a reference color and an analysis signal of remaining colors other than the reference color. The analysis signal of the reference color and the analysis signal of the remaining colors may be a top signal, a bottom signal, a high signal or a low signal.
Referring to
The bottom signal is a signal which is generated when data of the reference color does not exist in the reference data and exists in at least a portion of the adjacent data. In the next second logical pixel block LB2′ of
The high signal is a signal which is generated when data of the reference color exists in the reference data and all of the adjacent data. When green is the reference color, when all data corresponding to the second logical pixel block LB2 have data of green, the color analysis part 240 generates the high signal with respect to the green color.
The low signal is a signal which is generated when data of the reference color does not exist in the reference data and all of the adjacent data. When green is the reference color and all data corresponding to the second logical pixel block LB2 do not have data of green, the color analysis part 240 generates the low signal with respect to the green color.
Referring to
The color analysis part 240 provides the analysis signal SGN_A to the data compensation part 250.
As shown in (A) of
Referring to
The data compensation part 250 compensates data corresponding to a logical pixel that does not include a color pixel corresponding to the color of text among data having information of text (hereinafter it is referred to as text data) based on information analyzed by and provided from the data analysis part 201. The data compensation part 250 generates and provides compensated data RGBW′ to the display device 300 of
In an exemplary embodiment, as shown in
In such an embodiment, the data compensation part 250 selectively compensates data corresponding to text. Accordingly, in of the exemplary embodiment of
The data compensation part 250 may not compensate data not having information of text. The data compensation part 250 may not perform a compensation operation when the data compensation part 250 receives the second histogram signal SGN_H2, the second text signal SGN_T2 and/or the second detection signal SGN_D2, and the data compensation part 250 may not perform a compensation operation when all of the analysis signal SGN_A are the high signals or the low signals.
In an alternative exemplary embodiment, data compensation method of the data compensation part 250 may be variously modified.
The data compensation part 250 may independently compensate an edge and line of the text data.
In an exemplary embodiment, the data compensation part 250 may compensate at least one of an edge and line of the text data. In one exemplary embodiment, for example, the data compensation part 250 may compensate only an edge and may not compensate a line. In one alternative exemplary embodiment, for example, the data compensation part 250 may compensate only a line and may not compensate an edge. The data compensation part 250 may compensate both an edge and a line.
The data compensation part 250 may compensate an edge and line of the text data based on different grayscale values from each other. In the exemplary embodiment of
The data compensation part 250 may compensate an edge and line of the text data based on different colors from each other. In the exemplary embodiment of
The data compensation part 250 may compensate the text data based on a background color. The data compensation part 250 may differently compensate text data having a first background color and text data having a second background color different from the first background color. The data compensation part 250 may differently compensate a grayscale value of the text data when the text data is a green text on a black background and a grayscale value of the text data when the text data is a green text on a blue background.
The data compensation part 250 may compensate a grayscale range based on a compensation color of the text data. The data compensation part 250 may compensate a white grayscale of the text data by about 5% to about 20% of the maximum grayscale, and may compensate an optional color grayscale other than red, green, blue and white by about 3% to about 5% of the maximum grayscale.
As shown in
The display panel 311 in
Referring to
Each of the first logical pixel 11LP and the fourth logical pixel 41LP may include red R sub-pixel, a green G sub-pixel and a blue B sub-pixel. Each of the second logical pixel 21LP and the third logical pixel 31LP may include a cyan C sub-pixel, a yellow Y sub-pixel and a blue B sub-pixel. The red R, green G, blue B, cyan C and yellow Y sub-pixels may have a same size.
The display panel 312 may include first through fourth logical pixels 12LP to 42LP. In
Each of the first logical pixel 12LP and the fourth logical pixel 42LP may include cyan C sub-pixel and a yellow Y sub-pixel. Each of the second logical pixel 22LP and the third logical pixel 32LP may include a blue B sub-pixel and a white W sub-pixel. The white W, blue B, cyan C and yellow Y sub-pixels may have a same size.
The display panel 313 may include first through fourth logical pixels 13LP to 43LP. In
Each of the first logical pixel 13LP and the fourth logical pixel 43LP may include red R sub-pixel, a green G sub-pixel, a blue B sub-pixel and a white W sub-pixel. Each of the second logical pixel 23LP and the third logical pixel 33LP may include a cyan C sub-pixel, a yellow sub-pixel, a blue B sub-pixel and a white W sub-pixel. The red R, green G, blue B, cyan C, yellow Y and white W sub-pixels may have a same size.
The display panel 314 may include first through fourth logical pixels 14LP to 44LP. In
Each of the first logical pixel 14LP and the fourth logical pixel 44LP may include red R sub-pixel and a green G sub-pixel. Each of the second logical pixel 24LP and the third logical pixel 34LP may include a blue B sub-pixel and a green G sub-pixel.
Two sub-pixels in each of the first through fourth logical pixels 14LP to 44LP may have different sizes from each other. A shorter side length of one sub-pixel of the two sub-pixels may be about twice a shorter side length of the other sub-pixel of the two sub-pixels. In the first logical pixel 14LP, a shorter side length of red R sub-pixel may be about twice a shorter side length of green G sub-pixel. Similarly, in the second logical pixel 24LP, a shorter side length of blue B sub-pixel may be about twice a shorter side length of green G sub-pixel.
The display panel 315 may include first through fourth logical pixels 15LP to 45LP. In
Each of the first logical pixel 15LP and the fourth logical pixel 45LP may include red R sub-pixel and a green G sub-pixel. Each of the second logical pixel 25LP and the third logical pixel 35LP may include a blue B sub-pixel and a green G sub-pixel.
Two sub-pixels included in each of the first through fourth logical pixels 15LP to 45LP may have different shapes from each other.
The green G sub-pixel has a rhombus shape and the red R sub-pixel and the blue sub-pixel may have a hexagonal shape. An area of the green G sub-pixel may be smaller than an area of the blue B sub-pixel and an area of the red R sub-pixel. The sum of the number of the red R sub-pixels and the number of the blue B sub-pixels may be the same as the number of the green G sub-pixels.
A length of a side of the rhombus shape of the green G sub-pixel may be substantially the same as a length of a corresponding side of the hexagonal shape of the blue B sub-pixel and as a length of a corresponding side of the hexagonal shape of the red R sub-pixel. A side of the green G sub-pixel may be disposed to be adjacent and substantially parallel to a side of the red R sub-pixel. A side of the green G sub-pixel may be disposed to be adjacent and substantially parallel to a side of the blue B sub-pixel. The two red R sub-pixels and the two blue B blue sub-pixels may be disposed to surround the green G sub-pixel.
The display panel 316 may include first and fourth logical pixels 16LP and 26LP. In
The first logical pixel 16LP may include a blue B sub-pixel and a red R sub-pixel. The second logical pixel 26LP may include a white W sub-pixel and a green G sub-pixel. The blue B, red R, white W and green G sub-pixels may have a same size.
According to exemplary embodiments of a data processing device and a display system, readability of text displayed in a display device is substantially improved by compensating data corresponding to a logical pixel that may not display color of the text among data having information of the text.
Although a few embodiments of the invention have been shown and described, it will be appreciated by those skilled in the art that changes may be made in these embodiments without departing from the principles and spirit of the invention, the scope of which is defined in the appended claims and their equivalents. Therefore, the above-disclosed subject matter is to be considered illustrative, and not restrictive.
Number | Date | Country | Kind |
---|---|---|---|
10-2013-0040223 | Apr 2013 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
5630037 | Schindler | May 1997 | A |
6243070 | Hill | Jun 2001 | B1 |
6266439 | Pollard et al. | Jul 2001 | B1 |
6392759 | Kuwata | May 2002 | B1 |
7263223 | Irwin | Aug 2007 | B2 |
7283683 | Nakamura et al. | Oct 2007 | B1 |
7352374 | Brown Elliott | Apr 2008 | B2 |
7386168 | Misawa | Jun 2008 | B2 |
7417648 | Credelle | Aug 2008 | B2 |
7787702 | Brown et al. | Aug 2010 | B2 |
8111926 | Liao | Feb 2012 | B2 |
8421820 | Brown Elliott | Apr 2013 | B2 |
8698834 | Brown Elliott | Apr 2014 | B2 |
8872861 | Botzas | Oct 2014 | B2 |
8884994 | Brown Elliott | Nov 2014 | B2 |
9153200 | Brown Elliott | Oct 2015 | B2 |
20020031263 | Yamakawa | Mar 2002 | A1 |
20020093502 | Koyama | Jul 2002 | A1 |
20030011603 | Koyama et al. | Jan 2003 | A1 |
20030128179 | Credelle | Jul 2003 | A1 |
20030227466 | Stamm et al. | Dec 2003 | A1 |
20040051724 | Elliott et al. | Mar 2004 | A1 |
20040080479 | Credelle | Apr 2004 | A1 |
20040095521 | Song et al. | May 2004 | A1 |
20040165782 | Misawa | Aug 2004 | A1 |
20040234163 | Lee et al. | Nov 2004 | A1 |
20050069217 | Mukherjee | Mar 2005 | A1 |
20050179675 | Hekstra | Aug 2005 | A1 |
20070109327 | Cok | May 2007 | A1 |
20070217701 | Liu | Sep 2007 | A1 |
20070257866 | Cok | Nov 2007 | A1 |
20080049048 | Credelle et al. | Feb 2008 | A1 |
20080056604 | Choe | Mar 2008 | A1 |
20090058873 | Elliott et al. | Mar 2009 | A1 |
20090244366 | Kamimura | Oct 2009 | A1 |
20100149204 | Han | Jun 2010 | A1 |
20110148908 | Jeong | Jun 2011 | A1 |
20120026216 | Brown Elliott | Feb 2012 | A1 |
20120287143 | Brown Elliott | Nov 2012 | A1 |
20120287146 | Brown Elliott | Nov 2012 | A1 |
20120287147 | Brown Elliott | Nov 2012 | A1 |
20120287148 | Brown Elliott | Nov 2012 | A1 |
20120287168 | Botzas | Nov 2012 | A1 |
20130027285 | Inada | Jan 2013 | A1 |
20130215360 | Pollack | Aug 2013 | A1 |
20150062140 | Levantovsky | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
101176108 | May 2008 | CN |
2639785 | Apr 2014 | EP |
H09139856 | May 1997 | JP |
H11213149 | Aug 1999 | JP |
2002006303 | Jan 2002 | JP |
2004029598 | Jan 2004 | JP |
2004260327 | Sep 2004 | JP |
2008546006 | Dec 2008 | JP |
2009055121 | Mar 2009 | JP |
2010507126 | Mar 2010 | JP |
1020030045956 | Jun 2003 | KR |
1020030086397 | Nov 2003 | KR |
1020100054242 | May 2010 | KR |
1020110026786 | Mar 2011 | KR |
2006127555 | Nov 2006 | WO |
2008047313 | Apr 2008 | WO |
2011129376 | Oct 2011 | WO |
Number | Date | Country | |
---|---|---|---|
20140306983 A1 | Oct 2014 | US |