1. Field of the Invention
The present invention relates generally to semiconductors, and, more particularly, to deep trench heat sinks.
2. Background of Invention
As integrated circuits on semiconductor chips become denser, faster and more complex, their electrical performance requirements become higher and the need for dissipating heat becomes greater. Consequently, the problem may be complicated by the prevalent use of silicon-on-insulator substrates because an insulating layer may be known to prevent the transfer of heat into the entire substrate thereby trapping immense heat in a device layer. Therefore, integrated circuits built using SOI substrates may benefit from a greater and more effective method of removing heat from the device layer.
According to one embodiment of the present invention, a method is provided. The method may include providing a silicon-on-insulator (SOI) substrate including a SOI layer, a buried oxide layer, and a base layer; the buried oxide layer is located below the SOI layer and above the base layer, and the buried oxide layer insulates the SOI layer from the base layer; etching a deep trench into the SOI substrate, the deep trench having a sidewall and a bottom, the deep trench extends from a top surface of the SOI layer, through the buried oxide layer, down to a location within the base layer; forming a dielectric liner on the sidewall and the bottom of the deep trench; forming a conductive fill material on top of the dielectric liner and substantially filling the deep trench, the fill material being thermally conductive; and transferring heat from the SOI layer to the base layer via the fill material.
According to another exemplary embodiment of the present invention, a structure is provided. The structure may include a silicon-on-insulator (SOI) substrate including a SOI layer, a buried oxide layer, and a base layer; the buried oxide layer is located below the SOI layer and above the base layer, and the buried oxide layer insulates the SOI layer from the base layer; a deep trench extending into the SOI layer from a top surface of the SOI layer, through the buried oxide layer, down to a location within the base layer, the deep trench having a sidewall and a bottom; a dielectric liner located along the sidewall and the bottom of the deep trench; a conductive fill material located on top of the dielectric liner and substantially filling the deep trench, the fill material being thermally conductive.
The following detailed description, given by way of example and not intend to limit the invention solely thereto, will best be appreciated in conjunction with the accompanying drawings, in which:
The drawings are not necessarily to scale. The drawings are merely schematic representations, not intended to portray specific parameters of the invention. The drawings are intended to depict only typical embodiments of the invention. In the drawings, like numbering represents like elements.
Detailed embodiments of the claimed structures and methods are disclosed herein; however, it can be understood that the disclosed embodiments are merely illustrative of the claimed structures and methods that may be embodied in various forms. This invention may, however, be embodied in many different forms and should not be construed as limited to the exemplary embodiment set forth herein. Rather, these exemplary embodiments are provided so that this disclosure will be thorough and complete and will fully convey the scope of this invention to those skilled in the art. In the description, details of well-known features and techniques may be omitted to avoid unnecessarily obscuring the presented embodiments.
Referring now to
Referring now to
The BOX layer 106 may be formed from any of several dielectric materials known in the art. Non-limiting examples include, for example, oxides, nitrides, and oxynitrides of silicon. Oxides, nitrides and oxynitrides of other elements are also envisioned. In addition, the BOX layer 106 may include crystalline or non-crystalline dielectric material. Moreover, the BOX layer 106 may be formed using any of several known methods. Non-limiting examples include ion implantation methods, thermal or plasma oxidation or nitridation methods, chemical vapor deposition methods and physical vapor deposition methods. In one embodiment, the BOX layer 106 may be about 150 nm thick. Alternatively, the BOX layer 106 may include a thickness ranging from about 10 nm to about 500 nm.
The SOI layer 108 may include any of the several semiconductor materials included in the base layer 104. In general, the base layer 104 and the SOI layer 108 may include either identical or different semiconducting materials with respect to chemical composition, dopant concentration, and crystallographic orientation. In one embodiment of the present invention, the base layer 104 and the SOI layer 108 may include semiconducting materials that include at least different crystallographic orientations.
Typically the base layer 104 or the SOI layer 108 include a {101} crystallographic orientation and the other of the base layer 104 or the SOI layer 108 includes a {100} crystallographic orientation. Typically, the SOI layer 108 includes a thickness ranging from about 5 nm to about 100 nm. Methods for making the SOI layer 108 are well known in the art. Non-limiting examples include SIMOX (Separation by Implantation of Oxygen), wafer bonding, and ELTRAN® (Epitaxial Layer TRANsfer).
With continued reference to
Referring now to
Referring now to
The first conductive layer 116 may include any suitable conductive material, including but not limited to, doped polycrystalline or amorphous silicon, germanium, silicon germanium, a metal, a conducting metallic compound material, carbon nanotube, conductive carbon, or any suitable combination of these materials. Examples of metals may include tungsten, titanium, tantalum, ruthenium, and zirconium. Examples of conducting metallic compounds may include tantalum nitride, titanium nitride, tungsten silicide, tungsten nitride, titanium nitride, and tantalum nitride. In one embodiment, the first conductive layer 116 may include any material known in the art to have enhanced thermal conductivity properties, such as, for example, tungsten, titanium, and titanium nitride.
The first conductive layer 116 can be deposited by any suitable methods, including but not limited to, atomic layer deposition (ALD), chemical vapor deposition (CVD), low-pressure chemical vapor deposition (LPCVD), ultrahigh vacuum chemical vapor deposition (UHVCVD), metalorganic chemical vapor deposition (MOCVD), physical vapor deposition, sputtering, plating, evaporation, spin-on-coating, ion beam deposition, electron beam deposition, laser assisted deposition, and chemical solution deposition. In one particular embodiment, the first conductive layer 116 may include doped polysilicon deposited by LPCVD.
Referring now to
The second conductive layer 118 can be deposited by any suitable methods, including but not limited to, atomic layer deposition (ALD), chemical vapor deposition (CVD), low-pressure chemical vapor deposition (LPCVD), ultrahigh vacuum chemical vapor deposition (UHVCVD), metalorganic chemical vapor deposition (MOCVD), physical vapor deposition, sputtering, plating, evaporation, spin-on-coating, ion beam deposition, electron beam deposition, laser assisted deposition, and chemical solution deposition. In one particular embodiment, the second conductive layer 110 may include doped polysilicon deposited by LPCVD.
The arrangement of the dielectric liner 114, the first conductive layer 116, and the second conductive layer 118 described above and shown in
Referring now to
The deep trench heat sink 120 may not be in electrical connection with the semiconductor device 224, but rather the deep trench heat sink should be electrically insulated from the semiconductor device 224. Therefore, the deep trench heat sink 120 may be located in close proximity to the semiconductor device 224. It should be noted that the deep trench heat sink 120 may function as a heat sink and continue to transfer heat from the SOI layer 108 to the base layer 104 regardless of its positioning relative to the semiconductor device 224. However, because the semiconductor device 224 may be a primary source of heat, the deep trench heat sink 120 may be more effective the closer it is positioned to the semiconductor device 224.
Referring now to
The descriptions of the various embodiments of the present invention have been presented for purposes of illustration, but are not intended to be exhaustive or limited to the embodiments disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments. The terminology used herein was chosen to best explain the principles of the embodiment, the practical application or technical improvement over technologies found in the marketplace, or to enable other of ordinary skill in the art to understand the embodiments disclosed herein.