This application claims priority to Chinese Patent Application No. 201711039233.2 filed on Oct. 30, 2017, the contents of which are incorporated by reference herein.
The subject matter herein generally relates to a detection method, especially relates to a detection method for a light emitting diode chip.
Generally, an LED (light emitting diode) chip with high brightness, long life, energy conservation and environment protection is widely used in lighting area and display area.
While the LED chip is used in display area, the LED chip is always used as a backlight module in a display device. Nowadays, with the development of the display device, a size of the display device is more and more smaller, so a smaller size of LED chip is also needed to used in the display device. However, because of a smaller size of the LED chip, while the LED chip is manufactured, a detection method for the LED chip to ensure a good quality of the LED chip is needed and difficult.
Implementations of the present technology will now be described, by way of example only, with reference to the attached figures.
It will be appreciated that for simplicity and clarity of illustration, numerous specific details are set forth in order to provide a thorough understanding of the embodiments described herein. However, it will be understood by those of ordinary skill in the art that the embodiments described herein can be practiced without these specific details. In other instances, methods, procedures and components have not been described in detail so as not to obscure the related relevant feature being described. The drawings are not necessarily to scale and the proportions of certain parts have been exaggerated to better illustrate details and features of the present disclosure. The description is not to be considered as limiting the scope of the embodiments described herein.
Several definitions that apply throughout this disclosure will now be presented. The term “comprising” means “including, but not necessarily limited to”; it specifically indicates open-ended inclusion or membership in a so-described combination, group, series and the like. The term “coupled” is defined as connected, whether directly or indirectly through intervening components, and is not necessarily limited to physical connections. The connection can be such that the objects are permanently connected or releasably connected.
Referring to
In the exemplary embodiment, the first semiconductor layer 10 is an N type semiconductor layer, the second semiconductor layer 30 is a P type semiconductor layer.
The first semiconductor layer 10 includes a main portion 11 and a extending portion 12 extended from a center of a top surface of the main portion 11. The extending portion 12 is perpendicular to the top surface of the main portion 11.
The light active layer 20, the second semiconductor layer 30 and the first electrode 40 are in order formed on the extending portion 12. The second electrode 50 is formed on periphery of the main portion 11. A outer periphery of the light active layer 20, an outer periphery of the second semiconductor layer 30 and an outer periphery of the first electrode 40 are coplanar with an outer periphery of the extending portion 12. An outer periphery of the second electrode 50 is coplanar with an outer periphery of the main portion 11.
Further, the first electrode 40 has a first top surface 41. The second electrode 50 has a second top surface 51. The first top surface 41 and the second top surface 51 are located on the same horizontal plane.
Also referring to
First, referring to
The solvent 200 includes IPA (IsoPropyl Alcohol) and an organic matter having a viscous coefficient more than that of IPA.
Second, referring to
The base 300 has a first surface 301 and a second surface 302 opposite to the first surface 301. A longitudinal section of each receiving holes 310 is trapezoidal. A diameter of each receiving hole 310 decreases from the first surface 301 to the second surface 302 of the base 300. An outline of each receiving holes 310 is corresponding to the LED chip 100. The first electrode 40 and the second electrode 50 of the LED chip 100 are coupled with the N electrode and the P electrode of the base 300 for detecting electrical parameters of the LED chip 100.
Referring to
A method for transferring the solvent 200 and the LED chips 100 mixed in the solvent 200 on the base includes spray, coating or scour. After transferring the solvent 200 and the LED chip 100 mixed in the solvent 200 on the base 300, part of the LED chips 100 are on the first surface 301, and part of the LED chips 100 are received in the receiving holes 310.
Fourth, referring to
A method for removing the LED chips 100 located on the first surface 301 from the base 300 includes trasonic vibration, mechanical vibration or electromagnetic vibration etc. Detecting the LED chip received in the receiving holes 310 is by electrical test or light intensity test.
Fifth, referring to
In the process of the detection method for the LED chips 100 of the present disclosure, the LED chips 100 is classified according to a electronic test or light intensity test to ensure a good quality of the LED chips 100.
The embodiments shown and described above are only examples. Many details are often found in the art such as the other features of a detecting method for LED chip. Therefore, many such details are neither shown nor described. Even though numerous characteristics and advantages of the present technology have been set forth in the foregoing description, together with details of the structure and function of the present disclosure, the disclosure is illustrative only, and changes can be made in the detail, including in matters of shape, size and arrangement of the parts within the principles of the present disclosure up to, and including the full extent established by the broad general meaning of the terms used in the claims. It will therefore be appreciated that the embodiments described above can be modified within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
2017 1 1039233 | Oct 2017 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
7687277 | Sharma | Mar 2010 | B2 |
20070224713 | Han | Sep 2007 | A1 |
20170062492 | Bae | Mar 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
20190128951 A1 | May 2019 | US |