Detection of wheat and barley fungal pathogens which are resistant to certain fungicides using the polymerase chain reaction

Information

  • Patent Application
  • 20060024740
  • Publication Number
    20060024740
  • Date Filed
    September 28, 2005
    18 years ago
  • Date Published
    February 02, 2006
    18 years ago
Abstract
Primers specific for races of pathogenic fungi which are resistant to certain fungicides are used in polymerase chain reaction assays for the detection of fungal pathogens. The use of these primers enables the detection of specific isolates of fungal pathogens and the monitoring of disease development in plant populations. The invention includes DNA sequences which show variability between different fungal pathotypes. Such DNA sequences are useful in the method of the invention as they can be used to derive primers for use in polymerase chain reaction (PCR)-based diagnostic assays. These primers generate unique fragments in PCR reactions in which the DNA template is provided by specific fungal pathotypes and can thus be used to identify the presence or absence of specific pathotypes in host plant material before the onset of disease symptoms.
Description
FIELD OF THE INVENTION

The present invention relates to the use of primers specific for races of pathogenic fungi which are resistant to certain fungicides in polymerase chain reaction assays for the detection of fungal pathogens. The use of these primers enables the detection of specific isolates of fungal pathogens and the monitoring of disease development in plant populations.


BACKGROUND OF THE INVENTION

Diseases in plants cause considerable crop loss from year to year resulting both in economic deprivation to farmers and additionally in many parts of the world to shortfalls in the nutritional provision for local populations. The widespread use of fungicides has provided considerable security against plant pathogen attack. However, despite $1 billion worth of expenditure on fungicides, worldwide crop losses amounted to approximately 10% of crop value in 1981 (James, 1981; Seed Sci. &Technol. 9: 679-685).


The severity of the destructive process of disease depends on the aggressiveness of the pathogen and the response of the host. One aim of most plant breeding programs is to increase the resistance of host plants to disease. Typically, different races of pathogens interact with different varieties of the same crop species differentially, and many sources of host resistance only protect against specific pathogen races. Furthermore, some pathogen races show early signs of disease symptoms, but cause little damage to the crop. Jones and Clifford (1983; Cereal Diseases, John Wiley) report that virulent forms of the pathogen are expected to emerge in the pathogen population in response to the introduction of resistance into host cultivars and that it is therefore necessary to monitor pathogen populations. In addition, there are several documented cases of the evolution of fungal strains which are resistant to particular fungicides. As early as 1981, Fletcher and Wolfe (1981; Proc. 1981 Brit. Crop Prot. Conf) contended that 24% of the powdery mildew populations from spring barley, and 53% from winter barley showed considerable variation in response to the fungicide triadimenol and that the distribution of these populations varied between varieties with the most susceptible variety also giving the highest incidence of less susceptible types. Similar variation in the sensitivity of fungi to fungicides has been documented for wheat mildew (also to triadimenol), Botrytis (to benomyl), Pyrenophora (to organomercury), Tapesia (to MBC-type fungicides) and Mycosphaerella fijiensis to triazoles to mention just a few (Jones and Clifford; Cereal Diseases, John Wiley, 1983).


Cereal species are grown world-wide and represent a major fraction of world food production. Although yield loss is caused by many pathogens, the necrotizing pathogens Septoria and Tapesia are particularly important in the major cereal growing areas of Europe and North America (Jones and Clifford; Cereal Diseases, John Wiley, 1983). In particular, the differential symptomology caused by different isolates and species of these fungi make the accurate predictive determination of potential disease loss difficult. Consequently, the availability of improved diagnostic techniques for the rapid and accurate identification of specific pathogens will be of considerable use to field pathologists.


The eyespot disease of cereals is caused by the fungi Tapesia yallundae and Tapesia acuformis is restricted to the basal culm of the plant. The two causal pathogens were previously classified as two subspecies of Pseudocercosporella herpotrichoides (Fron) Deighton (amamorph). T. yallundae refers to the variety herpotrichoides and the SF-, L-, I- or W-types. T. acuformis corresponds to the variety acuformis and the FE-, N-, II- or R-types (Leroux and Gredt, 1997; 51:321-327). Wheat, rye, oats and other grasses are susceptible to the eyespot disease which occurs in cool, moist climates and is prevalent in Europe, North and South America, Africa and Australia. Wheat is the most susceptible cereal species, but isolates have been identified which are also virulent on other cereals. The R-strain (T. acuformis) of the fungus, for example, has also been isolated from rye and grows more slowly on wheat than the W-strain (T. yallundae) which has been isolated from wheat. Although eyespot may kill tillers or plants outright, it more usually causes lodging and/or results in a reduction in kernel size and number. Yield losses associated with eyespot are of even greater magnitude than those associated with Septoria tritici and Septoria nodorum. Typical control measures for eyespot include treatment with growth regulators to strengthen internodes, and fungicide treatment. However, the differing susceptibility of cultivars to different strains of the fungus render the predictive efficacy of fungicide treatments difficult. In addition, both Leroux et al (1997; Pesticide Science, 51:321-327) and Dyer et al (2000; Appl. and Environ. Microbiol. 66:4599-4604) have reported on isolates of T. yallundae with reduced sensitivity to the imidazole DMI fungicide prochloraz (1-[N-propyl-N-[2-92,4,6-trichlorophenoxy)ethyl]carbamoyl]-imidazole). Following heavy treatments of benzimidazole fungicides such as benomyl, carbendazim and thiabendazole, acquired resistance to this class of fungicides was determined in both T. acuformis and T. yallundae (Leroux and Cavelier, 1983; Phytoma 351:40) and (Cavelier et al, 1985; Bull. OEPP 85:495).


Thus, there is a real need for the development of technology which will allow the identification of specific races of pathogen fungi which are resistance to certain fungicides early in the infection process. By identifying the specific race of a pathogen before disease symptoms become evident in the crop stand, the agriculturist can assess the likely effects of further development of the pathogen in the crop variety in which it has been identified and can choose an appropriate fungicide if such application is deemed necessary.


SUMMARY OF THE INVENTION

The present invention relates to the use of primers specific for races of pathogenic fungi which are resistant to certain fungicides in polymerase chain reaction assays for the detection of fungal pathogens. The invention provides DNA sequences which show variability between different fungal pathotypes. Such DNA sequences are useful in the method of the invention as they can be used to derive primers for use in polymerase chain reaction (PCR)-based diagnostic assays. These primers generate unique fragments in PCR reactions in which the DNA template is provided by specific fungal pathotypes and can thus be used to identify the presence or absence of specific pathotypes in host plant material before the onset of disease symptoms.


This invention provides the possibility of assessing potential damage in a specific crop variety-pathogen strain relationship and of utilizing judiciously the diverse armory of fungicides which is available. Furthermore, it can be used to provide detailed information on the development and spread of specific pathogen races over extended geographical areas.


Kits useful in the practice of the invention are also provided. The kits find particular use in the identification of Tapesia pathogens.


The present invention provides a nucleic acid molecule comprising the nucleic acid sequence of SEQ ID NOS: 3-13 or 14. In a more preferred embodiment, the nucleic acid molecule has sequence identity with at least 10 contiguous nucleotides of SEQ ID NOS: 2-13 or 14. In another preferred embodiment, the nucleic acid molecule comprises a nucleotide sequence of SEQ ID NOs: 3-76 or 77.


The invention also provides a pair of oligonucleotide primers wherein at least one primer consists of the nucleotide sequence of SEQ ID NOS: 3-76 or 77. In a preferred embodiment, the pair of oligonucleotide primers comprises:

    • JB944 (SEQ ID NO:59) and JB943 (SEQ ID NO:58;
    • JB944 (SEQ ID NO:59) and JB945 (SEQ ID NO:60);
    • JB934 (SEQ ID NO:49) and JB935 (SEQ ID NO:50); and
    • JB937 (SEQ ID NO:52) and JB935 (SEQ ID NO:50).


The invention also provides a method for the detection of a fungal pathogen, comprising the steps of:

    • (a) isolating DNA from a plant tissue infected with a pathogen;
    • (b) subjecting said DNA to polymerase chain reaction amplification using at least one primer having sequence identity with at least 10 contiguous nucleotides of a randomly amplified polymorphic DNA sequence of a Tapesia spp.; and
    • (c) detecting said fungal pathogen by visualizing the product or products of said polymerase chain reaction amplification.


      In a preferred embodiment, the fungal pathogen is Tapesia yallundae, Tapesia acuformis. More preferably, the Tapesia yallundae is subtype Ic., and Tapesia acuformis subtypes IIs or IIp. In another preferred embodiment, at least one primer having the nucleotide sequence of SEQ ID NOS: 3-76 or 77.


The invention further provides a method for the detection of a fungal pathogen, comprising the steps of:

    • (a) isolating DNA from a plant tissue infected with a pathogen;
    • (b) subjecting said DNA to polymerase chain reaction amplification using at least one primer having sequence identity with at least 10 contiguous nucleotides of a randomly amplified polymorphic DNA from a Tapesia spp.; and
    • (c) detecting said fungal pathogen by visualizing the product or products of said polymerase chain reaction amplification.


      In a preferred embodiment, the fungal pathogen is Tapesia yallundae, Tapesia acuformis. More preferably, the Tapesia yallundae is subtype Ic, and Tapesia acuformis subtypes IIs or IIp. In another preferred embodiment, at least one primer having the nucleotide sequence of SEQ ID NOS: 3-76 or 77. In more preferred embodiment, the pair of primers comprises:
    • JB944 (SEQ ID NO:59) and JB943 (SEQ ID NO:58;
    • JB944 (SEQ ID NO:59) and JB945 (SEQ JD NO:60);
    • JB934 (SEQ ID NO:49) and JB935 (SEQ ID NO:50); or
    • JB937 (SEQ ID NO:52) and JB935 (SEQ ID NO:50).


The invenion also provides a diagnostic kit used in detecting a fungal pathogen comprising at least one primer having at least 10 contiguous nucleotides of a nucleic acid molecule of the nucleic acid molecules described above. In a preferred embodiment, at least one primer comprises SEQ ID NO: 3-76 or 77. In more preferred embodiments, the pair of primers are:

    • JB944 (SEQ ID NO:59) and JB943 (SEQ ID NO:58;
    • JB944 (SEQ ID NO:59) and JB945 (SEQ ID NO:60);
    • JB934 (SEQ ID NO:49) and JB935 (SEQ ID NO:50); or
    • JB937 (SEQ ID NO:52) and JB935 (SEQ ID NO:50).


Brief Description of the Sequences in the Sequence Listing





















SEQ-ID-NO: 1
M13 Sequencing Forward Primer



SEQ-ID-NO: 2
M13 Sequencing Reverse Primer



SEQ-ID-NO: 3
RAPD-PCR Clone Ib1-27



SEQ-ID-NO: 4
RAPD-PCR Clone Ib2-31



SEQ-ID-NO: 5
RAPD-PCR Clone Ib3-33



SEQ-ID-NO: 6
RAPD-PCR Clone Ic1-22



SEQ-ID-NO: 7
RAPD-PCR Clone Ic 020502Ic4and6



SEQ-ID-NO: 8
RAPD-PCR Clone Ic 020602D-20



SEQ-ID-NO: 9
RAPD-PCR Clone Ic 020602D-21



SEQ-ID-NO: 10
RAPD-PCR Clone IIp1-17



SEQ-ID-NO: 11
RAPD-PCR Clone IIp 020602A-11



SEQ-ID-NO: 12
RAPD-PCR Clone IIp 020602B-15



SEQ-ID-NO: 13
RAPD-PCR Clone IIp 020602B-16



SEQ-ID-NO: 14
RAPD-PCR Clone IIs2-39



SEQ-ID-NO: 15
JB900



SEQ-ID-NO: 16
JB901



SEQ-ID-NO: 17
JB902 Probe



SEQ-ID-NO: 18
JB903



SEQ-ID-NO: 19
JB904



SEQ-ID-NO: 20
JB905



SEQ-ID-NO: 21
JB906



SEQ-ID-NO: 22
JB907



SEQ-ID-NO: 23
JB908



SEQ-ID-NO: 24
JB909



SEQ-ID-NO: 25
JB910



SEQ-ID-NO: 26
JB911



SEQ-ID-NO: 27
JB912 Probe



SEQ-ID-NO: 28
JB913



SEQ-ID-NO: 29
JB914



SEQ-ID-NO: 30
JB915



SEQ-ID-NO: 31
JB916



SEQ-ID-NO: 32
JB917 Probe



SEQ-ID-NO: 33
JB918



SEQ-ID-NO: 34
JB919



SEQ-ID-NO: 35
JB920



SEQ-ID-NO: 36
JB921



SEQ-ID-NO: 37
JB922 Probe



SEQ-ID-NO: 38
JB923



SEQ-ID-NO: 39
JB924



SEQ-ID-NO: 40
JB925



SEQ-ID-NO: 41
JB926



SEQ-ID-NO: 42
JB927 Probe



SEQ-ID-NO: 43
JB928



SEQ-ID-NO: 44
JB929



SEQ-ID-NO: 45
JB930



SEQ-ID-NO: 46
JB931



SEQ-ID-NO: 47
JB932



SEQ-ID-NO: 48
JB933



SEQ-ID-NO: 49
JB934



SEQ-ID-NO: 50
JB935



SEQ-ID-NO: 51
JB936



SEQ-ID-NO: 52
JB937



SEQ-ID-NO: 53
JB938



SEQ-ID-NO: 54
JB939



SEQ-ID-NO: 55
JB940



SEQ-ID-NO: 56
JB941



SEQ-ID-NO: 57
JB942



SEQ-ID-NO: 58
JB943



SEQ-ID-NO: 59
JB944



SEQ-ID-NO: 60
JB945



SEQ-ID-NO: 61
JB946



SEQ-ID-NO: 62
JB947



SEQ-ID-NO: 63
JB948



SEQ-ID-NO: 64
JB949



SEQ-ID-NO: 65
JB950



SEQ-ID-NO: 66
JB951



SEQ-ID-NO: 67
JB952



SEQ-ID-NO: 68
JB953



SEQ-ID-NO: 69
JB954



SEQ-ID-NO: 70
JB955



SEQ-ID-NO: 71
JB956



SEQ-ID-NO: 72
JB957



SEQ-ID-NO: 73
JB958



SEQ-ID-NO: 74
JB959



SEQ-ID-NO: 75
JB960



SEQ-ID-NO: 76
JB961



SEQ-ID-NO: 77
JB962















DETAILED DESCRIPTION OF THE INVENTION

The present invention provides unique DNA sequences which are useful in identifying different pathotypes of plant pathogenic fungi. Particularly the DNA sequences can be used as primers in PCR based analysis for the identification of fungal pathotypes. The DNA sequences of the invention include product, cloned from RAPD primer analysis of particular fungal pathogens as well as primers which are derived from these regions which are capable of identifying the particular pathogen. These DNA sequences from different pathotypes within a pathogen species or genus which vary between the different members of the species or genus based on different fungicides' susceptibility can be used to identify those specific members.


Biomedical researchers have used PCR-based techniques for some time and with moderate success to detect pathogens in infected animal tissues. Only recently, however, has this technique been applied to detect plant pathogens. The presence of Gaumannomyces graminis in infected wheat has be en detected using PCR of sequences specific to the pathogen mitochondrial genome (Schlesser et al., 1991; Applied and Environ. Microbiol 57: 553-556) and random amplified polymorphic DNA (i.e. RAPD) markers were able to distinguish numerous races of Gremmeniella abietina, the causal agent of scleroderris canker in conifers.


The DNA sequences of the invention are from randomly amplified polymorphic DNA (RAPD) of different plant pathogens. The RAPD sequences from different pathotypes within a pathogen species or genus vary between the different members of the species or genus. Once having determined the unique RAPD sequences of a pathogen, primers can be derived from the sequences. That is, primers can be designed based on regions within the uniquely identified RAPD fragment sequence among the fungal pathotypes. These sequences and primers based on these sequences can be used to identify specific pathogen members.


Particular DNA sequences of interest include uniquely identified RAPD sequences from Tapesia, particularly, Tapesia acuformis and Tapesia yallundae, more particularly for the identification of T. acuformis subtypes IIs and IIp and T. yallundae subtypes Ia, Ib and Ic. Such DNA sequences as well as primers of interest are given in SEQ ID NO: 3-77. The sequences find use in the PCR-based identification of the pathotypes of interest.


Sequences from RAPD analysis of uniquely identified fragments include SEQ-ID NOs: 3-14. The sequences find use in the PCR-based identification of pathogens of interest. In a preferred embodiment the sequence disclosed as SEQ-ID-NO: 10 is useful in the development of primers for differentiating T. acuformis subtypes IIs and IIp. In another preferred embodiment the sequence disclosed as SEQ-ID-NO: 8 is useful in the development of primers for the detection of T. yallundae subtype Ic.


Sequences from oligonucleotide primers derived from the uniquely identified RAPD analysis fragments are disclosed as SEQ-ID-Nos: 15-77. In a preferrred embodiment, the pair of oligonucleotide primers consists of SEQ-ID-NO: 59 and SEQ-ID-NO: 58 is used for the detection of T. yallundae Ic. In another preferrred embodiment, the pair of oligonucleotide primers consists of SEQ-ID-NO: 59 and SEQ-ID-NO: 60 is used for the detection of T. yallundae Ic. In yet other embodiments, T. acuformis subtype IIs can be differentiated from T. acuformis subtype IIp using the primer combination consisting of oligonucleotide primers with SEQ-ID-NO: 49 and SEQ-ID-NO: 50 and the primer combination consisting of oligonucleotide primers with SEQ-ID-NO: 52 and SEQ-ID-NO: 50.


The present invention lends itself readily to the preparation of “kits” containing the elements necessary to carry out the process. Such a kit may comprise a carrier being compartmentalized to receive in close confinement therein one or more container means, such as tubes or vials. One of said container means may contain unlabeled or detectably labeled DNA primers. The labeled DNA primers may be present in lyophilized form, or in an appropriate buffer as necessary. One or more container means may contain one or more enzymes or reagents to be utilized in PCR reactions. These enzymes may be present by themselves or in admixtures, in lyophilized form or in appropriate buffers.


Finally, the kit may contain all of the additional elements necessary to carry out the technique of the invention, such as buffers, extraction reagents, enzymes, pipettes, plates, nucleic acids, nucleoside triphosphates, filter paper, gel materials, transfer materials, autoradiography supplies, and the like.


The examples below show, without limitation, typical experimental protocols which can be used in the isolation of unique RAPD sequences, the selection of suitable primer sequences, the testing of primers for selective and diagnostic efficacy, and the use of such primers for disease and fungal isolate detection. Such examples are provided by way of illustration and not by way of limitation.


EXAMPLES

Standard recombinant DNA and molecular cloning techniques used here are well known in the art and are described by J. Sambrook, E. F. Fritsch and T. Maniatis, Molecular Cloning: A Laboratory manual, Cold Spring Harbor laboratory, Cold Spring Harbor, N.Y. (1989) and by T. J. Silhavy, M. L. Berman, and L. W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. (1984) and by Ausubel, F. M. et al., Current Protocols in Molecular Biology, pub. by Greene Publishing Assoc. and Wiley-Interscience (1987).


Example 1
Fungal Isolates and Genomic Fungal DNA Extraction

See Table 1 for a listing of the fungal isolates used. Isolates for which fungicide sensitivity was characterized were obtained from Institut National de la Recherche Agronomique (INRA, Le Rheu, France). Fungi are grown on PDA (Potato Dextrose Agar) plates. Cultures are incubated for up to 10 days at 28° C. Mycelia are ground in liquid nitrogen, and total genomic DNA is extracted using the following modified CTAB protocol.

  • 1. Freeze-dried mycelium was homogenized in 1.5 ml Eppendorf tubes (two tungsten carbide 3 mm beads were added) using a Retsch mill (MM200, Retsch GmbH & Co., Haan, Germany).
  • 2. Add 600 μl extraction buffer (700 mM NaCl, 50 mM Tris HCl, 10 mM EDTA, 1% β-mercapthoethanol, 1% CTAB) and incubate for 1 hr at 65° C., vortexing every 10-20 minute interval.
  • 3. Add 400 μl chlorophorm:isoamylalcohol (24.1, v:v) shake for 15 min
  • 4. Centrifuge for 10 min (16000 g)
  • 5. Transfer the aqueous phase to a new tube and add 400 μl extraction buffer and 400 μl chloroform:isoamylalcool
  • 6. Shake for 15 min
  • 7. Centrifuge 10 min
  • 8. Transfer aqueous phase to a new tube
  • 9. Add 0.6× volumes of isopropanol
  • 10. Shake for 5 min
  • 11. Centrifuge for 5 min
  • 12. Discard supernatant and dry pellet
  • 13. Wash pellet with cold EtOH 70%
  • 14. Centrifuge 2 min
  • 15. Dry pellet


16. Resuspend in 50 μl TE

TABLE 1Identification of Test IsolatesFungicide Sensitivity1FungalFungalSubtypeCyprodinilSpeciesIsolateIdentifierTriadimenolProchlorazCarbendazim(Unix)Tapesia yallundae627 NIaSSRSTapesia yallundae646 NIbRSRSTapesia yallundae572 NIcRRRSTapesia yallundae618 NIcRRRSTapesia acuformis634 LIIsRSSSTapesia acuformis643 LIIsRSSSTapesia acuformis567 LIIpRRRSTapesia acuformis617 LIIpRRRSTapesia acuformis626 LIIpRRRS
1S = Sensitive, R = Resistant


Example 2
Amplification of RAPD Products

Polymerase chain reactions are performed to obtain Randomly Amplified Polymorphic DNA (RAPD) profiles for each of the Tapesia spp. subtypes. Forty different RAPD 10-mer primers from Qiagen Operon (Operon Technologies Inc., Alameda, Calif., USA) kits AA and J identified individually as OPAA-01-OPAA-20 and OPJ01-OPJ-20 are used in amplifications to find RAPD products specific to subtypes Ic and IIp. A single 10-mer RAPD primer is used in RAPD-PCR reactions. Reactions are prepared using the GeneAmp Kit from Perkin-Elmer (Foster City, Calif.; part no. N8O8-0009) using 50 mM KCl, 2.0 mM MgCl2, 10 mM Tris-HCl, pH8.3 and containing 100 μM of each dTTP, dATP, dCTP, and dGTP in 25 μL reactions. In each reaction, 25 pmol of RAPD primer is used with 0.5 Units of AmpliTaq Polymerase. Approximately 25 ng of genomic DNA from the subtypes listed in Example 1 are used as template. Reactions are run in a GeneAmp Model 9700 thermal cycler (Applied Biosystems, Foster City, Calif.). Thermal cycling is run for 45 cycles of 30 s at 94° C., 30 s at 34° C., and 60 s at 72° C. and is proceeded by a hold at 94° C. for one minute and followed by a final hold at 72° C. for ten minutes before being stored at 4° C. The products are analyzed by loading 10 μl of each PCR sample with loading buffer on a 1.0% agarose gel and electrophoresing.


The gel is stained with ethidium bromide and separated RAPD-PCR bands are observed under ultraviolet light.


Example 3
Selection, Cloning, and Sequencing of Subtype-Specific RAPD-PCR Products

RAPD-PCR products for each Tapesia spp. subtype are compared. Bands that appear to be specific to a certain subtype are selected for further analysis by DNA sequencing. These bands are cut from the agarose gel by a sterile scalpel. The RAPD-PCR product is purified from the agarose using GenElute Minus EtBr Spin Columns (Product Code 5-6501, Sigma-Aldrich, St. Louis, Mo., USA). The purified product is cloned into the pCR4-TOPO vector and transformed into One Shot chemically compentent bacterial cells using the TOPO TA Cloning Kit for Sequencing (Invitrogen Corporation, Carlsbad, Calif., USA) under manufacturer's protocol. Transformed cells containing the vector plus RAPD-PCR product insert are identified by endonuclease digestion of minipreped DNA of isolated colonies. Minipreps of vector DNA containing the RAPD-PCR product are sequenced. Sequencing is performed on an ABI PRISM 377™ DNA sequencer (Applied Biosystems, Foster City, Calif.) using primers in the pCR4TOPO cloning vector: FORWARD (5′-gtaaaacgacggccagt-3′; SEQ ID NO: 1) and REVERSE (5′-caggaaacagctatgac-3′; SEQ ID NO:2). Sequences obtained for each Tapesia spp. subtype are identified in Table 2.

TABLE 2Tapesia spp. subtype-specific RAPD-PCR product sequencesRAPD-PCRSequenceSubtype andSequenceIdentifierFungal SpeciesSequence IDLengthSEQ-ID-NO: 3Tapesia yallundaeIb1-27525SEQ-ID-NO: 4Tapesia yallundaeIb2-31551SEQ-ID-NO: 5Tapesia yallundaeIb3-33520SEQ-ID-NO: 6Tapesia yallundaeIc1-22456SEQ-ID-NO: 7Tapesia yallundaeIc 020502Ic4and6711SEQ-ID-NO: 8Tapesia yallundaeIc 020602D-20555SEQ-ID-NO: 9Tapesia yallundaeIc 020602D-21625SEQ-ID-NO: 10Tapesia acuformisIIp1-17455SEQ-ID-NO: 11Tapesia acuformisIIp 020602A-11498SEQ-ID-NO: 12Tapesia acuformisIIp 020602B-15702SEQ-ID-NO: 13Tapesia acuformisIIp 020602B-16503SEQ-ID-NO: 14Tapesia acuformisIIs2-39513


Example 4
Design of Subtype-Specific Primers

PCR Primers are designed to amplify within the sequences of RAPD-PCR products obtained according to Example 3. Primers are designed to be used either in conventional PCR reactions or with an oligonucleotide probe in TaqMan PCR reactions. Multiple primers are developed to target each RAPD-PCR Tapesia spp. subtype-specific sequence. These primers are listed in Table 3.

TABLE 3Tapesia spp. subtype-specific primer sequencesTarget DNASequenceRAPD-PCRIdentifierNameSpeciesSubtypeProductOligo Sequence (5′-3′)SEQ-ID-NO: 15JB900Tapesia yallundaeIbIb1-27 / Ib2-31TGCGGTAGGGCGAAGAAACSEQ-ID-NO: 16JB901Tapesia yallundaeIbIb1-27 / Ib2-31CATCCTCCACCAACCAATACGSEQ-ID-NO: 17JB902 ProbeTapesia yallundaeIbIb1-27/ Ib2-31AACACCAAAGCGGCTTCGCGAGASEQ-ID-NO: 18JB903Tapesia yallundaeIbIb1-27 / Ib2-31CAGCCGATTGATCCGGTCTASEQ-ID-NO: 19JB904Tapesia yallundaeIbIb1-27 / Ib2-31GGCAACGCTGATTCGACTCTASEQ-ID-NO: 20JB905Tapesia yallundaeIbIb1-27 / Ib2-31GGTTCGATCCCGTCATCCTSEQ-ID-NO: 21JB906Tapesia yallundaeIbIb1-27 / Ib2-31GTCGGTTCGATCCCGTCATSEQ-ID-NO: 22JB907Tapesia yallundaeIbIb1-27 / Ib2-31CAATACGCTCTGCGGTAGGGCGAASEQ-ID-NO: 23JB908Tapesia yallundaeIbIb1-27/ Ib2-31GCCGCTTTGGTGTTGGTTTSEQ-ID-NO: 24JB909Tapesia yallundaeIbIb1-27/ Ib2-31CAGCCGATTGATCCGGTCTATSEQ-ID-NO: 25JB910Tapesia yallundaeIb1b3-33AATTCGCCCTTGGACCTCTTSEQ-ID-NO: 26JB911Tapesia yallundaeIb1b3-33TTCGCCCTTGGACCTCTTGSEQ-ID-NO: 27JB912 ProbeTapesia yallundaeIbIb3-33AGTAACACGCCCCACGGACGGATSEQ-ID-NO: 28JB913Tapesia yallundaeIbIb3-33CTGCGGAGTCCTTGCTAGCTSEQ-ID-NO: 29JB914Tapesia yallundaeIbIb3-33GACCTGCGGAGTCCTTGCTSEQ-ID-NO: 30JB915Tapesia yallundaeIcIc1-22TTACACTGTATTTGTCTGGTGATTGCSEQ-ID-NO: 31JB916Tapesia yallundaeIcIc1-22GAGCCTCTCATATCTGGATCTCTAAATCSEQ-ID-NO: 32JB917 ProbeTapesia yallundaeIcIc1-22TTAACTAGCAGTCATCTGTCCTGTGCCAAGGSEQ-ID-NO: 33JB918Tapesia yallundaeIcIc1-22GACAAACTCTACCAAGGAGAGACAAAASEQ-ID-NO: 34JB919Tapesia yallundaeIcIc1-22CTACCAAGGAGAGACAAAACACAAAASEQ-ID-NO: 35JB920Tapesia acuformisIIpIIp1-17TCTTGTGAGACTGCATGGACTAGAGTSEQ-ID-NO: 36JB921Tapesia acuformisIIpIIp1-17GATCTTGTGAGACTGCATGGACTAGSEQ-ID-NO: 37JB922 ProbeTapesia acuformisIIpIIp1-17CATGCGAGAATTAAAGAGCTATAGTTGCGTGCSEQ-ID-NO: 38JB923Tapesia acuformisIIpIIp1-17CGCAATCCTTTCTCGACTTCTAASEQ-ID-NO: 39JB924Tapesia acuformisIIpIIp1-17GTTTCGCAATCCTTTCTCGACTTSEQ-ID-NO: 40JB925Tapesia acuformisIIsIIs2-39GCAGAATTCGCCCTTAAGTCGSEQ-ID-NO: 41JB926Tapesia acuformisIIsIIs2-39TCTGCAGAATTCGCCCTTAAGSEQ-ID-NO: 42JB927 ProbeTapesia acuformisIIsIIs2-39AAGGTAGCCGTATCGGAAGGTGCGGSEQ-ID-NO: 43JB928Tapesia acuformisIIsIIs2-39CCAGAACGGAGGTGATCCAGSEQ-ID-NO: 44JB929Tapesia acuformisIIs11s2-39TTCCAGAACGGAGGTGATCCSEQ-ID-NO: 45JB930Tapesia yallundaeIcIc1-22ATATTCTTGCTGAATTGGTCSEQ-ID-NO: 46JB931Tapesia yallundaeIcIc1-22CAAAATTATTTCATCCTTGGCACAGSEQ-ID-NO: 47JB932Tapesia yallundaeIcIc1-22AAATTATTTCATCCTTGGCACAGGSEQ-ID-NO: 48JB933Tapesia yallundaeIcIc1-22ATATTCTTGCTGAATTGGTCSEQ-ID-NO: 49JB934Tapesia acuformisIIpIIp1-17AGATGGGCAGAGTGTAGATCTTGTGSEQ-ID-NO: 50JB935Tapesia acuformisIIpIIp1-17CAGGAACCGAGAGAGTAGCAACAGAACSEQ-ID-NO: 51JB936Tapesia acuformisIIpIIb1-17CAGGAACCGAGAGAGTAGCAACAGSEQ-ID-NO: 52JB937Tapesia acuformisIIpIIp1-17GCGTTCGGCTTGAAGTCATGSEQ-ID-NO: 53JB938Tapesia acuformisIc020502Ic4and6CCTTTGGTCGGGTGGGAGAASEQ-ID-NO: 54JB939Tapesia acuformisIc020502Ic4and6GCCAGGCTGAATCTTGGGAASEQ-ID-NO: 55JB940Tapesia acuformisIc020502Ic4and6CCAGGCTGAATCTTGGGAAASEQ-ID-NO: 56JB941Tapesia acuformisIc020502Ic4and6CCAAGTACGCATCTCGGATGSEQ-ID-NO: 57JB942Tapesia acuformisIc020602D-20GAAGTGTTTACTCTTTGCCGSEQ-ID-NO: 58JB943Tapesia acuformisIc020602D-20AATATTGGTTCTTGATCCTGSEQ-ID-NO: 59JB944Tapesia acuformisIc020602D-20TCGAGACAATAGAGATTTTCSEQ-ID-NO: 60JB945Tapesia acuformisIc020602D-20GTGTGTCATTTTGGAAGATTSEQ-ID-NO: 61JB946Tapesia acuformisIc020602D-21ACATACCATCTTGTAAATAGCCSEQ-ID-NO: 62JB947Tapesia acuformisIc020602D-21CATAGTCAATCCAAGCTTTCSEQ-ID-NO: 63JB948Tapesia acuformisIc020602D-21ATACCATCTTGTAAATAGCCSEQ-ID-NO: 64JB949Tapesia acuformisIc020602D-21TATGCTTCTGGTCTTTGTTTSEQ-ID-NO: 65JB950Tapesia yallundaeIIp020602A-11AATCAATGTCATGCGGTTCGSEQ-ID-NO: 66JB951Tapesia yallundaeIIp020602A-11CACTTCCACGGCAGTGATAASEQ-ID-NO: 67JB952Tapesia yallundaeIIp020602A-11TTGTCTCTTGGGTAATCATGSEQ-ID-NO: 68JB953Tapesia yallundaeIIp020602A-11GTGCCAAAAGGAACTGATTGSEQ-ID-NO: 69JB954Tapesia yallundaeIIp020602B-16TGAGATTCCGGACTGCATTTSEQ-ID-NO: 70JB955Tapesia yallundaeIIp020602B-16CAAACTGAGATTTCTCAACGSEQ-ID-NO: 71JB956Tapesia yallundaeIIp020602B-15CCTTACCCGACCTGCCATGTSEQ-ID-NO: 72JB957Tapesia yallundaeIIp020602B-15CTGGCGGCCATATCGACTTCSEQ-ID-NO: 73JB958Tapesia yallundaeIIp020602B-15ATTAGCAACTGGAATGCACASEQ-ID-NO: 74JB595Tapesia yallundaeIIp020602B-15AAGCCAGCTGCATGATGTTCSEQ-ID-NO: 75JB960Tapesia yallundaeIIp020602B-16CGCCCTAGCACATCATCAAASEQ-ID-NO: 76JB961Tapesia yallundaeIIp020602B-16CCTAGCACATCATCAAAAGASEQ-ID-NO: 77JB962Tapesia yallundaeIIp020602B-16GGAGCATGGAAGCACTCGTA


Example 5
Synthesis and Purification of Oligonucleotides

Oligonucleotides (primers) are synthesized by, for example, either Integrated DNA Technologies (Coralville, Iowa) or Midland Certified Reagent Company (Midland, Tex.). Primer sequences labeled as “probe” are synthesized with a fluorescent-reporter group attached at the 5′ end for example 6-carboxy-fluorescein or “FAM” and a fluorescence quenching group attached at the 3′ end for example 6-carboxy-tetramethul-rhodamine or “TAMRA” or for example a dark quencher such as the proprietary Black Hole Quencher or “BHQ™” from Biosearch Technologies (Novato, Calif.).


Example 6
Polymerase Chain Reaction Amplification

Polymerase chain reactions are performed with the GeneAmp Kit from Perkin-Elmer (Foster City, Calif.; part no. N808-0009) using 50 mM KCl, 2.5 mM MgCl2, 10 mM Tris-HCl, pH8.3, containing 200 μM of each dTTP, dATP, dCTP, and dGTP in 25 μL reactions containing 50 μM each primer, 0.25 U/μL of Taq polymerase and approximately 25 ng of genomic DNA per reaction. Reactions are run for 30-35 cycles of 15 s at 94° C., 15 s at 50° C.-70° C., and 45 s at 72° C. in a Perkin-Elmer Model 9600 or 9700 thermal cycler. The products are analyzed by loading 10 μl of each PCR sample on a 1.0% agarose gel and electrophoresing. The gel is stained with ethidium bromide and products are visualized under ultraviolet light.


Example 7
Determination of Primer Specificity to Purified Fungal Genomic DNA

PCRs are performed according to Example 6 using different primer combinations (Table 4) in an attempt to amplify single specific fragments. Specific PCR amplification products are produced from primers designed from RAPD-PCR product sequences of each Tapesia spp. subtype.

TABLE 4Possible combinations of PCR primers for the specific amplification ofTapesia spp. subtypes Ic and IIpTarget species subtypeSequenceSequence(RAPD-PCR Product)Primer 1IdentifierPrimer 2IdentifierTapesia yallundae Ib (Ib1-27/Ib2-31)JB900SEQ-ID-NO: 15JB903SEQ-ID-NO: 18Tapesia yallundae Ib (Ib1-27/Ib2-31)JB900SEQ-ID-NO: 15JB904SEQ-ID-NO: 19Tapesia yallundae Ib (Ib1-27/Ib2-31)JB901SEQ-ID-NO: 16JB903SEQ-ID-NO: 18Tapesia yallundae Ib (Ib1-27/Ib2-31)JB901SEQ-ID-NO: 16JB904SEQ-ID-NO: 19Tapesia yallundae Ib (Ib1-27/Ib2-31)JB905SEQ-ID-NO: 20JB908SEQ-ID-NO: 23Tapesia yallundae Ib (Ib1-27/Ib2-31)JB905SEQ-ID-NO: 20JB909SEQ-ID-NO: 24Tapesia yallundae Ib (Ib1-27/Ib2-31)JB906SEQ-ID-NO: 21JB908SEQ-ID-NO: 23Tapesia yallundae Ib (Ib1-27/Ib2-31)JB906SEQ-ID-NO: 21JB909SEQ-ID-NO: 24Tapesia yallundae Ib (Ib3-33)JB910SEQ-ID-NO: 25JB913SEQ-ID-NO: 28Tapesia yallundae Ib (Ib3-33)JB910SEQ-ID-NO: 25JB914SEQ-ID-NO: 29Tapesia yallundae Ib (Ib3-33)JB911SEQ-ID-NO: 26JB913SEQ-ID-NO: 28Tapesia yallundae Ib (Ib3-33)JB911SEQ-ID-NO: 26JB914SEQ-ID-NO: 29Tapesia yallundae Ic (Ic1-22)JB915SEQ-ID-NO: 30JB918SEQ-ID-NO: 33Tapesia yallundae Ic (Ic1-22)JB915SEQ-ID-NO: 30JB919SEQ-ID-NO: 34Tapesia yallundae Ic (Ic1-22)JB916SEQ-ID-NO: 31JB918SEQ-ID-NO: 33Tapesia yallundae Ic (Ic1-22)JB916SEQ-ID-NO: 31JB919SEQ-ID-NO: 34Tapesia yallundae Ic (Ic1-22)JB920SEQ-ID-NO: 35JB923SEQ-ID-NO: 38Tapesia yallundae Ic (Ic1-22)JB920SEQ-ID-NO: 35JB924SEQ-ID-NO: 39Tapesia yallundae Ic (Ic1-22)JB921SEQ-ID-NO: 36JB923SEQ-ID-NO: 38Tapesia yallundae Ic (Ic1-22)JB921SEQ-ID-NO: 36JB924SEQ-ID-NO: 39Tapesia acuformis IIs (IIs2-39)JB925SEQ-ID-NO: 40JB928SEQ-ID-NO: 43Tapesia acuformis IIs (IIs2-39)JB925SEQ-ID-NO: 40JB929SEQ-ID-NO: 44Tapesia acuformis IIs (IIs2-39)JB926SEQ-ID-NO: 41JB928SEQ-ID-NO: 43Tapesia acuformis IIs (IIs2-39)JB926SEQ-ID-NO: 41JB929SEQ-ID-NO: 44Tapesia yallundae Ic (Ic1-22)JB930SEQ-ID-NO: 45JB931SEQ-ID-NO: 46Tapesia yallundae Ic (Ic1-22)JB930SEQ-ID-NO: 45JB932SEQ-ID-NO: 47Tapesia yallundae Ic (Ic1-22)JB933SEQ-ID-NO: 48JB931SEQ-ID-NO: 46Tapesia yallundae Ic (Ic1-22)JB933SEQ-ID-NO: 48JB932SEQ-ID-NO: 47Tapesia acuformis IIs/IIp (IIp1-17)JB934SEQ-ID-NO: 49JB935SEQ-ID-NO: 50Tapesia acuformis IIp (IIp1-17)JB934SEQ-ID-NO: 49JB936SEQ-ID-NO: 51Tapesia acuformis IIs/IIp (IIp1-17)JB937SEQ-ID-NO: 52JB935SEQ-ID-NO: 50Tapesia acuformis IIp (IIp1-17)JB937SEQ-ID-NO: 52JB936SEQ-ID-NO: 51Tapesia yallundae Ic (020502Ic4and6)JB938SEQ-ID-NO: 53JB939SEQ-ID-NO: 54Tapesia yallundae Ic (020502Ic4and6)JB938SEQ-ID-NO: 53JB940SEQ-ID-NO: 55Tapesia yallundae Ic (020502Ic4and6)JB941SEQ-ID-NO: 56JB939SEQ-ID-NO: 54Tapesia yallundae Ic (020502Ic4and6)JB941SEQ-ID-NO: 56JB940SEQ-ID-NO: 55Tapesia yallundae Ic (020602D-20)JB942SEQ-ID-NO: 57JB943SEQ-ID-NO: 58Tapesia yallundae Ic (020602D-20)JB942SEQ-ID-NO: 57JB945SEQ-ID-NO: 60Tapesia yallundae Ic (020602D-20)JB944SEQ-ID-NO: 59JB943SEQ-ID-NO: 58Tapesia yallundae Ic (020602D-20)JB944SEQ-ID-NO: 59JB945SEQ-ID-NO: 60Tapesia yallundae Ic (020602D-21)JB946SEQ-ID-NO: 61JB947SEQ-ID-NO: 62Tapesia yallundae Ic (020602D-21)JB946SEQ-ID-NO: 61JB949SEQ-ID-NO: 64Tapesia yallundae Ic (020602D-21)JB948SEQ-ID-NO: 63JB947SEQ-ID-NO: 62Tapesia yallundae Ic (020602D-21)JB948SEQ-ID-NO: 63JB949SEQ-ID-NO: 64Tapesia acuformis IIp (020602A-11)JB952SEQ-ID-NO: 67JB950SEQ-ID-NO: 65Tapesia acuformis IIp (020602A-11)JB952SEQ-ID-NO: 67JB951SEQ-ID-NO: 66Tapesia acuformis IIp (020602A-11)JB953SEQ-ID-NO: 68JB950SEQ-ID-NO: 65Tapesia acuformis IIp (020602A-11)JB953SEQ-ID-NO: 68JB951SEQ-ID-NO: 66Tapesia acuformis IIp (020602B-16)JB954SEQ-ID-NO: 69JB955SEQ-ID-NO: 70Tapesia acuformis IIp (020602B-16)JB954SEQ-ID-NO: 69JB960SEQ-ID-NO: 75Tapesia acuformis IIp (020602B-16)JB954SEQ-ID-NO: 69JB961SEQ-ID-NO: 76Tapesia acuformis IIp (020602B-16)JB962SEQ-ID-NO: 77JB955SEQ-ID-NO: 70Tapesia acuformis IIp (020602B-16)JB962SEQ-ID-NO: 77JB960SEQ-ID-NO: 75Tapesia acuformis IIp (020602B-16)JB962SEQ-ID-NO: 77JB961SEQ-ID-NO: 76Tapesia acuformis IIp (020602B-15)JB956SEQ-ID-NO: 71JB957SEQ-ID-NO: 72Tapesia acuformis IIp (020602B-15)JB956SEQ-ID-NO: 71JB959SEQ-ID-NO: 74Tapesia acuformis IIp (020602B-15)JB958SEQ-ID-NO: 73JB957SEQ-ID-NO: 72Tapesia acuformis IIp (020602B-15)JB958SEQ-ID-NO: 73JB959SEQ-ID-NO: 74


In an initial screen for specificity, PCR reaction mixtures are made according to Example 6 for each of the primer combinations in Table 4. These are run against a negative control (no DNA added) and approximately 25 ng of fungal DNA for each of the Tapesia spp. subtypes listed in Table 1 prepared as described in example 1.


When visualized on an ethidium bromide stained gel several primer pairs give satisfactory results: good amplification of target DNA from multiple isolates of the target species subtype with all other reactions (negative control and other fungal DNAs) free of both specific and nonspecific reaction products. Some give unsatisfactory results including nonspecific amplification, no amplification of target DNA, and amplification of DNAs from fungal species other that the target. The primer pairs that give good specific amplification for T. yallundae subtype Ic target DNA with no cross-amplification are summarized in Table 5.

TABLE 5PCR primer pairs providing specific and sensitive amplificationof target DNAs for Tapesia yallundae subtype Ic.Target species subtypeSequencePrimerSequence(RAPD-PCR Product)Primer 1Identifier2IdentifierTapesia yallundae IcJB944SEQ-ID-NO:JB943SEQ-ID-NO:(020602D-20)5958Tapesia yallundae IcJB944SEQ-ID-NO:JB945SEQ-ID-NO:(020602D-20)5960


When primers JB944 and JB943 or primers JB944 and JB945 are run against DNA preparations of the eyespot subtypes listed in Table 1 the following results are recorded (Table 6).

TABLE 6Results of primer pairs JB944 and JB943 and JB944 andJB945 on test isolates of Tapesia spp.FungalFungalSubtypePCR Results (+/−)SpeciesIsolateIdentifierJB944/JB943JB944/JB945Tapesia yallundae627 NIaTapesia yallundae646 NIbTapesia yallundae572 NIc++Tapesia yallundae618 NIc++Tapesia acuformis634 LIisTapesia acuformis643 LIisTapesia acuformis567 LIipTapesia acuformis617 LIipTapesia acuformis626 LIip


Thus, primer pairs JB944 and JB943 and primers JB944 and JB945 are useful in the differentiation of subtypes within the Tapesia yallundae species.


For specificity to T. acuformis subtypes IIs and Up primer pairs were selected that amplify from both T. acuformis subtypes but with different sized PCR products that allow differentiation of the subtype by product size. Again, primers were selected based on good amplification of target DNA from multiple isolates of the target species subtype with all other reactions (negative control and other fungal DNAs) free of both specific and nonspecific reaction products. Some give unsatisfactory results including nonspecific amplification, no amplification of target DNA, and amplification of DNAs from fungal species other that the target. The primer pairs that give good specific amplification for T. acuformis subtypes IIs and IIp with different sized products for each subtype with no cross-amplification are summarized in Table 7.

TABLE 7PCR primer pairs providing specific and sensitive amplificationof target DNAs for Tapesia acuformis subtypes IIs and IIp.Target speciessubtype (RAPD-SequenceSequencePCR Product)Primer 1IdentifierPrimer 2IdentifierTapesia acuformisJB934SEQ-ID-NO:JB935SEQ-ID-NO:IIs/IIp (IIp1-17)4950Tapesia acuformisJB937SEQ-ID-NO:JB935SEQ-ID-NO:IIs/IIp (IIp1-17)5250


Primers JB934 and JB935 are run against DNA preparations of the eyespot subtypes listed in Table 1. The results are presented in Table 8).

TABLE 8Results of primer pairs JB934 and JB935 on test isolates of Tapesia spp.PCR Results (+/−)FungalFungalSubtypeAmplificationSpeciesIsolateIdentifier(+/−)Product SizeTapesia yallundae627 NIaTapesia yallundae646 NIbTapesia yallundae572 NIcTapesia yallundae618 NIcTapesia acuformis634 LIIs+˜600Tapesia acuformis643 LIIs+˜600Tapesia acuformis567 LIIp+˜400Tapesia acuformis617 LIIp+˜400Tapesia acuformis626 LIIp+˜400


Thus, primer pairs JB934 and JB935 are specific to Tapesia acuformis at the species level and provide differently sized PCR products that are useful in the differentiation of IIs and IIp subtypes within the Tapesia acuformis species.


Example 8
TaqMan Based Detection of Tapesia spp. Subtypes

Some of the primers detailed in Table in 3 were designed for the additional possible use in TaqMan reactions for detection of specific Tapesia spp. subtypes. Possible primer combinations for these reactions are listed in Table 9.

TABLE 9Possible combinations of TaqMan primers and probes for thespecific amplification of Tapesia spp. subtypesTarget species subtype(RAPD-PCR Product)Primer 1Sequence IdentifierProbeSequence IdentifierPrimer 2Sequence IdentifierTapesia yallundae Ib (Ib1-27/Ib2-31)JB900SEQ-ID-NO: 15JB902SEQ-ID-NO: 17JB903SEQ-ID-NO: 18Tapesia yallundae Ib (Ib1-27/Ib2-31)JB900SEQ-ID-NO: 15JB902SEQ-ID-NO: 17JB904SEQ-ID-NO: 19Tapesia yallundae Ib (Ib1-27/Ib2-31)JB901SEQ-ID-NO: 16JB902SEQ-ID-NO: 17JB903SEQ-ID-NO: 18Tapesia yallundae Ib (Ib1-27/Ib2-31)JB901SEQ-ID-NO: 16JB902SEQ-ID-NO: 17JB904SEQ-ID-NO: 19Tapesia yallundae Ib (Ib1-27/Ib2-31)JB905SEQ-ID-NO: 20JB907SEQ-ID-NO: 22JB908SEQ-ID-NO: 23Tapesia yallundae Ib (Ib1-27/Ib2-31)JB905SEQ-ID-NO: 20JB907SEQ-ID-NO: 22JB909SEQ-ID-NO: 24Tapesia yallundae Ib (Ib1-27/Ib2-31)JB906SEQ-ID-NO: 21JB907SEQ-ID-NO: 22JB908SEQ-ID-NO: 23Tapesia yallundae Ib (Ib1-27/Ib2-31)JB906SEQ-ID-NO: 21JB907SEQ-ID-NO: 22JB909SEQ-ID-NO: 24Tapesia yallundae Ib (Ib3-33)JB910SEQ-ID-NO: 25JB912SEQ-ID-NO: 27JB913SEQ-ID-NO: 28Tapesia yallundae Ib (Ib3-33)JB910SEQ-ID-NO: 25JB912SEQ-ID-NO: 27JB914SEQ-ID-NO: 29Tapesia yallundae Ib (Ib3-33)JB911SEQ-ID-NO: 26JB912SEQ-ID-NO: 27JB913SEQ-ID-NO: 28Tapesia yallundae Ib (Ib3-33)JB911SEQ-ID-NO: 26JB912SEQ-ID-NO: 27JB914SEQ-ID-NO: 29Tapesia yallundae Ic (1c1-22)JB915SEQ-ID-NO: 30JB917SEQ-ID-NO: 32JB918SEQ-ID-NO: 33Tapesia yallundae Ic (1c1-22)JB915SEQ-ID-NO: 30JB917SEQ-ID-NO: 32JB919SEQ-ID-NO: 34Tapesia yallundae Ic (1c1-22)JB916SEQ-ID-NO: 31JB917SEQ-ID-NO: 32JB918SEQ-ID-NO: 33Tapesia yallundae Ic (1c1-22)JB916SEQ-ID-NO: 31JB917SEQ-ID-NO: 32JB919SEQ-LD-NO: 34Tapesia yallundae Ic (1c1-22)JB920SEQ-ID-NO: 35JB922SEQ-ID-NO: 37JB923SEQ-ID-NO: 38Tapesia yallundae Ic (1c1-22)JB920SEQ-ID-NO: 35JB922SEQ-ID-NO: 37JB924SEQ-ID-NO: 39Tapesia yallundae Ic (1c1-22)JB921SEQ-ID-NO: 36JB922SEQ-ID-NO: 37JB923SEQ-ID-NO: 38Tapesia yallundae Ic (1c1-22)JB921SEQ-ID-NO: 36JB922SEQ-ID-NO: 37JB924SEQ-ID-NO: 39Tapesia yallundae IIs (IIs2-39)JB925SEQ-ID-NO: 40JB927SEQ-ID-NO: 42JB928SEQ-ID-NO: 43Tapesia yallundae IIs (IIs2-39)JB925SEQ-ID-NO: 40JB927SEQ-ID-NO: 42JB929SEQ-ID-NO: 44Tapesia yallundae IIs (IIs2-39)JB926SEQ-ID-NO: 41JB927SEQ-ID-NO: 42JB928SEQ-ID-NO: 43Tapesia yallundae IIs (IIs2-39)JB926SEQ-ID-NO: 41JB927SEQ-ID-NO: 42JB929SEQ-ID-NO: 44


The combinations listed in Table 7 are tested in initial TaqMan™ screens for subtype level specificity. Primer and probe combinations are tested for their ability to amplify from the target subtypes's DNA. Reaction conditions are held constant (1X TaqMan™ Universal Master Mix (Perkin Elmer, Norwalk, Conn.; part no. N430-4447), 300 nM each primer, 200 nM probe, approximately 25 ng pre reaction of fungal target genomic DNA, thermal cycling: 50° C. for 2 min., 95° C. for 10 min., 40 cycles of 95° C. for 15 s, 60° C. for 60 s). In initial screens for specificity under these conditions no primer/probe combination provides absolute specificity. It is prophetic that further experimentation with reaction conditions will provide subtype specific tests using these primers that are designed for specificity.


This invention also provides the possibility of assessing potential damage in a specific crop variety-pathogen strain relationship and of utilizing judiciously the diverse armory of fungicides which is available. Furthermore, it can be used to provide detailed information on the development and spread of specific pathogen races over extended geographical areas.


Kits useful in the practice of the invention are also provided. The kits find particular use in the identification of Tapesia pathogens.


While the present invention has been described with reference to specific embodiments thereof, it will be appreciated that numerous variations, modifications, and further embodiments are possible, and accordingly, all such variations, modifications and embodiments are to be regarded as being within the scope of the present invention.


Numerous patents, applications and references are discussed or cited within this specification, and all are incorporated by reference in their entireties.

Claims
  • 1-3. (canceled)
  • 4. A pair of oligonucleotide primers wherein at least one primer consists of the nucleotide sequence of SEQ ID NOS: 59 or 60.
  • 5. A pair of oligonucleotide primers comprising: JB944 (SEQ ID NO:59) and JB945 (SEQ ID NO:60).
  • 6. A method for the detection of a fungal pathogen, comprising the steps of: (a) isolating DNA from a plant tissue infected with a pathogen; (b) subjecting said DNA to polymerase chain reaction amplification using at least one primer that comprises the sequence of SEQ ID NO:50 or SEQ ID NO:60; and (c) detecting said fungal pathogen by visualizing the product or products of said polymerase chain reaction amplification.
  • 7. The method of claim 6, wherein the fungal pathogen is Tapesia yallundae, Tapesia acuformis.
  • 8. The method of claim 7, wherein the Tapesia yallundae is subtype Ic., Tapesia acuformis subtypes IIs or IIp.
  • 9-15. (canceled)
  • 16. A diagnostic kit used in detecting a fungal pathogen comprising at least one primer that comprises SEQ ID NO: 59 or SEQ ID NO:60.
  • 17. The diagnostic kit of claim 16, wherein the pair of primers are: JB944 (SEQ ID NO:59) and JB945 (SEQ ID NO:60).
Parent Case Info

This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/369,796 filed Apr. 3, 2002, which is incorporated by reference in its entirety.

Provisional Applications (1)
Number Date Country
60369796 Apr 2002 US
Divisions (1)
Number Date Country
Parent 10401343 Mar 2003 US
Child 11237807 Sep 2005 US