Embodiments of the present invention relate to a device and a method for coating a surface of a product and, for example, how the surface of a continuously transported product or material can be coated.
Coating materials is frequently carried out, for example, in the field of semiconductor production and structuring. Hereby, it is frequently necessitated to be able to adjust a layer thickness across the whole area of the surface to be coated in a manner that is as homogenous as possible. In the case of elements existing in individual pieces, coating can be easily made if, for example, a wafer, a foil or a pane of glass or a product to be coated is dipped entirely into a volume suitable for coating, which is filled at least partly with the coating material, or is brought into contact with the same on one or both sides. The coating itself can thereby be accelerated or triggered by different mechanisms. It is, for example, possible to add an activating chemical only when the surface to be coated is already in contact with the coating material. Chemicals having a short reaction time, i.e. that react quickly, can, for example, be mixed with each other only in the reaction volume itself or immediately prior to introducing them into the same or only on the surface of the product to be coated.
Additionally, in several fields of coating technology and semiconductor technology it is necessitated to coat large contiguous surfaces. This can, for example, be the case in flexible substrates, as they are used, among others, in the production of organic semiconductors. Also in the field of solar technology, where high production costs of solar cells frequently exceed obtainable yields, it can be desirable to provide a technology allowing the coating of foils, band-shaped substrates or metal foils, so that large areas can be coated in a short period of time for obtaining a significant reduction in production costs.
According to an embodiment, a device for coating a surface of a product, may have means for providing a liquid having reagents necessitated for coating; and transport means configured to effect a relative movement between a surface of the product to be coated and the liquid while the surface of the product to be coated is in contact with the liquid such that the surface to be coated remains in contact with the liquid for a predetermined period of time so as to cause coating thereof, the transport means being configured to effect the relative movement tangentially to the surface to be coated, continuously and without reversing the direction of movement; heating means implemented to heat the surface to be coated to a temperature where reaction of the reagents by which coating is effected takes place, while the surface of the product to be coated is in contact with the liquid; the heating means being implemented to heat a rotating transport roller of the transporter arranged on the side of the product opposite to the liquid in order to effect the relative motion, or to heat a hot-plate arranged on the side of the product opposite to the liquid such that the product rests on the hot-plate; and wherein the device is implemented to coat a product on one side.
According to another embodiment, a method for one-sided coating of a surface of a band-shaped product may have the steps of: providing a liquid having reagents necessitated for coating; and contacting the product and the liquid and generating a relative movement between a surface of the product to be coated and the liquid, while the surface of the product to be coated is contacted by the liquid such that the surface to be coated remains in contact with the liquid for a predetermined period of time so as to effect coating thereof, the relative movement being effected tangentially to the surface to be coated, continuously and without reversing the direction of movement, and while the surface of the product to be heated is contacted by the liquid, heating the surface to be coated to a temperature where the reagents by which coating is effected react, by heating a rotating transport roller arranged on the side of the product opposite to the liquid in order to effect the relative motion, or by heating a hot-plate arranged on the side of the product opposite to the liquid such that the product rests on the hot-plate.
According to another embodiment, a system for coating a web-shaped product may have: an inventive device for coating a surface of a product; a storage roller for storing the product to be coated and for providing the product to the transport means; and a withdrawal roller for receiving the coated product from the transport means and for storing the coated product.
In several embodiments of the present invention, coating a surface of a product is enabled by using a transport means bringing the surface of the product to be coated in contact with a liquid having the reagents necessitated for coating and passing the same by the surface. By varying the operational parameters of the transport means, such as the feed per time unit, it can be achieved that the surface to be coated remains in contact with the liquid for a predetermined time in order to effect coating of the same.
By varying the reaction parameters, such as temperature and concentration of reagents, the reaction rate and, in combination therewith by varying the contact time between material and liquid, the layer thickness of the coating can be varied freely. In several embodiments of transport means, variation of the contact time can be obtained by simple adjustment of the operational parameters of the same.
In further embodiments of the invention, the product is passed by the liquid or through a liquid volume by the transport means in a continuous manner and without reversing the direction of movement, so that it is possible to perform coating of extensive, for example band-shaped, materials or products in a continuous manner and without interruption.
In further embodiments or systems for coating, these materials are provided or wound off from a storage roller in order to be received and wound up on a withdrawal roller after coating by means of the transport means or after passing the transport means. This allows large areas of web-shaped materials to be coated efficiently and without interruption.
Further embodiments comprise a drying means for drying the coated product, so that the liquid of the coating is completely dried before the coated product is withdrawn or wound up on a withdrawal roller, so that the quality of the coating is not decreased by possible mechanical influences after the actual coating process. Further embodiments of the invention have a heating means for heating the surface of the product to be coated and/or the liquid with possible chemical reagents, so that an endothermal reaction becomes possible or for varying the reaction rate. This allows, for example, enabling the chemical reaction triggering the coating or forming the coating material only in immediate contact with the surface, or increasing the reaction rate such that the layer thickness to be obtained by the coating is obtained in the given transport means, i.e. at the given feed velocity or relative velocity between the surface of the product and the liquid.
In several embodiments, the product to be transported is led through a liquid bath by means of a cylindrical roll, wherein the roll can optionally be heated. Thereby, the geometry of the transport means can be selected such that the product is coated either on one or two sides, i.e. comes into contact with the liquid on one or two sides. In further embodiments, the transport means is provided with sealing means, which allow spatial limitation of the surface region of the product brought in contact with the liquid. These can, for example, be sealing lips sealing the material against the liquid at the edge of a band-shaped material, so that coating of the material or the product occurs only in a central region centered on the symmetry axis of the band.
In several further embodiments of the invention, transport rollers guiding the product after coating or after the transport means are constructed such that the same generate a water foil on the surface of the transport roller so that any coating material not yet completely dried or hardened is not removed from the surface of the product to be coated by the transport roller, or the coating is not damaged. In several embodiments, the water stream can additionally be used for flushing any possibly existing contamination from the surface of the coated product and thereby possibly allowing contact-free transport at the same time.
Other elements, features, steps, characteristics and advantages of the present invention will become more apparent from the following detailed description of the preferred embodiments with reference to the attached drawings.
Embodiments of the present invention will be detailed subsequently referring to the appended drawings, in which:
a-4c is an embodiment for one-sided coating of a limited surface region of a band-shaped product;
a, 5b is a further embodiment for coating a surface with linear feed of the product to be transported;
a, b is an embodiment with web-shaped product to be coated.
In
Hence, the product 4 to be coated is continuously moved tangentially to the surface to be coated (the product side) by the transport means 3, without any reversal of the direction of movement. This has the advantage that the material can be coated without interrupting the feed of the product, so that, for example, a roller-to-roller coating of web-shaped or flexible materials, such as foils or metal bands, is enabled.
In the case shown in
In that respect, it has to be noted that coating of foils or metals or similar band-shaped materials is possible both in a one-sided and a two-sided manner by means of the embodiment shown in
In the case of one-sided coating, in some embodiments, the first guiding roller 6 is implemented for generating a water foil on its surface, so that the coated product side of the surface is not damaged. If the material or product 4 is coated on two sides, in several embodiments the second guiding roller 8 can also be implemented for guiding the product or the material on a water film.
In some embodiments, the feed velocity or the velocity with which the product is passed by the liquid is adjusted such that the desired coating thickness results. This can be performed by using both a previously specified design and also a regulation, such that the velocity of the transport can be reduced, for example, when after the coating, it is noted that the layer thickness is too thin. In several embodiments, the liquid is transported or circulated in counter-flow to the product to be coated, i.e. against the direction of movement of the product. In this case, it is ensured that the medium at the contact point is fresh.
By varying the velocity, the predetermined time in which the liquid comes into contact with the surface of the product to be coated is varied. In several further embodiments, either the transport roller 3 or the liquid or the container 2, respectively, or both can be heated in the above-mentioned means, so that a reaction rate of a chemical used for coating in increased or that an endothermal reaction is made possible.
An appropriate adjustment of the temperature or the transport velocity, respectively, allows selecting the obtainable layer thicknesses or setting the coating velocity in an appropriate manner. An example of possible heating of the transport roller 3 is shown in
As long as, for the coating or the chemical reaction which is to take place on the surface of the product to be coated, a maximum relative velocity between the product to be coated and the liquid is not to be exceeded since the particles used for coating can otherwise no longer stick to the surface, the perimeter of the transport roller 3 can be varied at a constant rotation velocity or the rotation velocity can be reduced with a constant perimeter. For ensuring good exchange of the liquid, in several embodiments the liquid is transported against the rotation direction.
In addition to the above-described heating measures, the transport roller 3 can, in several embodiments, also be heated electrically. Further, the roller or the product can also be heated by means of radiation, for example using infrared radiation. The material of the transport roller 3 can be varied depending on the product to be transported or the desired heating capacity. For example, metals or metal alloys, glass or crystalline substances can be used.
As has already been mentioned above, by appropriate adaptation of the diameter of the drum and the rotation velocity, the system can be adapted to the respectively given boundary conditions. In alternative embodiments, this also leads to success even when the drum does not rotate but merely serves for defining the path of the product. This can, for example, be the case when the product slides across the drum 3 or floats on the same on a cushion of air or liquid.
If, for example, a maximum relative velocity between the product to be coated and the liquid of 1 mm/s is predetermined and if the overall coating period is to be 7 minutes, the drum diameter can be estimated as follows. Thereby, as a working hypothesis, it is assumed that the liquid level within the container 2 is selected such that 40% of the perimeter of the transport roller 3 is within the liquid. When a relative velocity of 1 mm/s and a 7 minutes' coating period is assumed, a path of 420 mm to be covered within the liquid results. In addition, the rotation frequency of the same results immediately from the tangential velocity of 1 mm/s and the diameter of the drum to be calculated as follows. The perimeter of the drum, which is within the liquid, has to be 420 mm. Since the following applies for the radius r of the drum:
and, in addition, 40% of the perimeter corresponds to 420 mm (from which a length of 1,050 mm results for the full perimeter) the necessitated radius of the transport roller 3 results in:
Hence, a drum with a diameter of 334 mm fulfils the above requested conditions, wherein the same rotates with a frequency immediately given by the maximum relative velocity of 1 mm/s and the radius of the drum.
If a relative velocity of 2 mm/s is necessitated in a coating period of 7 minutes, using the above considerations a drum with twice the diameter, i.e. d=668 mm, would result. At such a relative velocity, a relative velocity of 120 mm/min would result. Consequently, 840 mm of path are covered within the liquid or in contact with the liquid, in 7 minutes coating time, which can be achieved by means of a drum of the above dimensions.
The mixer 10 can store, for example, a liquid consisting of several reagents, in an already premixed state, for supplying the same to the inlet, i.e. the introduction position 12, with a predetermined dosage velocity or amount. In other embodiments where a possible early reaction of the reagents in the liquid is not desired, the mixer 10 can store the individual reagents separately and mix them only immediately prior to supplying the same to the introduction position 12. Basically, mixing can also be performed within the container 2, so that in further embodiments the mixer 10 supplies the individual reagents separately to the introduction position. If, for example, a foil or a band-shaped material is to be coated with CdS, ZnS or alternative materials (buffers), as is desirable in the production of thin-film solar cells, the following reagents can be included in the liquid: CdSO4, THS and NH3. The same react chemically above a reaction temperature, so that a layer of CdS is deposited on the surface of the product 4. For the mentioned chemical components, this reaction temperature is 53° C.
In order to avoid early or premature reaction and hence unnecessary chemical consumption, these chemicals can be stored separately, wherein storage can take place both above the reaction temperature of 53° C. and below the same. If the storage is below the reaction temperature, in several embodiments the reagents can also be already mixed. Also, parts can be stored already in a premixed manner, for example CdSO4 and NH3, wherein their storage can be cold or warm, as long as THS is added and dosed separately.
Alternatively and/or additionally, as described above, the transport roller 3 can be heated in order to cause a reaction particularly on the surface of the transport roller. This can lead to a reduction of chemical consumption when in the other volume a reaction of the chemicals does not take place, or only at reduced velocity, since the reagent temperature is merely exceeded in the close vicinity of the roller.
In the cutout enlargement shown in
As can be seen in the cutout enlargement, the chemicals are stored individually and supplied to the container 2 at the introduction position 12 by means of appropriate dosage methods. Transporting the chemicals or liquids can take place, for example, by means of impeller or dosage pumps. Alternatively, the tank can also be pressurized, so that dosed transport takes place by means of clocked opening and closing of a valve. Further, a mixer can be positioned in the transport path or in front of the introduction position 12, mixing the individual components, for example under the influence of gravity. Alternatively, chemical introduction can be regulated by a floater determining the amount of liquid removed from the storage basin, so that the same can basically also be discharged under the influence of gravity, as long as the floater level regulates a valve.
Due to the low chemical consumption, the chemical in the gap itself can also be heated to processing temperature immediately after entry into the (reactor) gap.
In the embodiment shown in
The means for circulating the liquid 40 has a cooling means 42 and a filter means 44 which are sequentially arranged along a return direction 46. The cooling means serves for cooling the chemical or reagent mixture for bringing the same again below a temperature necessitated for reaction, so that no chemical consumption takes place during recirculation. Material that has already reacted, for example crystallized material, is removed from the recirculated or recycled chemical or liquid flow by the filter 40.
Hence, in addition to minimizing the chemical consumption by reducing the reactor volume, it is possible to reduce the overall consumption of chemicals or liquids by recycling and reusing the liquid. In the embodiment described in
a-4c show an embodiment of the present invention in different views, wherein the surface region of the product 4 brought in contact with the liquid is limited by providing sealing elements 64 separating the liquid from the surface region of the product 4 not to be brought into contact. Thereby,
The embodiment shown in
In the view of the embodiment of
Thereby, a sealing means 64 is mounted between the product 4 running on the transport roller 3 and the inner volume of the container 2, one side wall of which is illustrated schematically, which prevents free exit of the liquid from inside the container 2. The sealing can be carried out, for example, by means of lip sealing of flexible materials, such as rubber, CPDM or silicon. Alternatively, sealing can be accomplished with any other sealing means, for example via a flow of compressed air whose flow velocity is so large that discharge of large amounts of liquid can be prevented. In alternative embodiments, the fitting, i.e. the distance between the transport roller and the container can be accomplished in such an exact manner that, when the foil is present, the resulting gap width is so small that discharge of liquid is almost completely prevented. Liquid that is still discharged can, for example, be collected in an overflow 66 for supplying the same to recycling, if applicable. Further embodiments can use a slip ring or a slip ring seal of plastic or similar materials. When using plastic, the whole device can be flushed and cleaned with acidic materials, such as with HCl.
The embodiments of the invention shown in
In some alternative embodiments, the entire apparatus is additionally tilted around the axis 82 so that, under the influence of gravity, the liquid on the surface to be coated in the central region 50 flows over the surface so that both the liquid and the product 4 move. In order to achieve a constant flow rate of the liquid or chemicals, optionally a flow interferer 84 which is arranged within the means for providing the liquid, i.e. within the volume limited by the sealing agents 74a and 74b, may be used.
Depending on the demands on the apparatus, the flow direction of the liquid may thus be parallel or anti-parallel to the direction of feed or direction of movement of the product or foil 4.
b shows a perspective view of a potential implementation of the transport means 3 of
In the sectional view of another embodiment using linear feed, shown in
Alternatively and/or additionally, as has already been discussed using some of the embodiments discussed before, the mixture of chemicals or liquid may be refreshed and/or regenerated permanently. This necessitates exchanging the liquid on the surface of the product to be transported. For this purpose, the liquid may be guided either in the direction of transport of the product or against the direction of transport of the product.
Like in the other embodiments, it is desirable for the materials used for forming elements which are in direct contact with the product to be transported to be resistant against chemicals used and temperatures occurring. Thus, the materials may be chosen approximately as desired and be adapted to the chemicals and/or process temperatures used. Exemplarily, the materials within the process distance 108 and/or the transport drum 3 of the previous embodiments may be made of quartz glass or stainless steel. Additional potential materials are plastics and metals or metal alloys. Advantageously, these can be cleaned using an acid without being destroyed.
In the embodiment shown in
The case as shown in
This allows two-sided coating of materials which have the flexibility for the bent travel path without any complicated sealing measures.
The product 4 to be coated is, in the case shown in
One-sided coating of a product is, of course, also possible in
At first, in a step of providing 200, a liquid comprising the reagents necessitated for coating is provided. In a feeding step 202, a surface of the product to be coated is contacted by the liquid and passed by same so that the surface to be coated remains in contact with the liquid for a certain period of time.
It is ensured by means of passing by or the relative movement to the material or product to be coated that coating is continuous, even when materials of a very large dimension in a lateral direction, i.e. exemplarily band-shaped, are to be coated.
In an alternative method also illustrated in
As is illustrated in
Further potential redirection rollers are provided in further embodiments of the invention. When the redirecting rollers contact the product side, in some embodiments, they either comprise a device for providing a liquid film on the surface of the redirecting rollers or generating an air cushion on which the product may float. Thus, even when redirection in the direction of the product side is necessitated for reasons of process technology, the coated foil and/or the coated product is prevented from deteriorating in quality.
a and 14b show another embodiment of the invention in which, as has already been discussed using
In other words, in the embodiments shown in
The geometries shown in
Although mainly foils or flexible substrates were coated in the previous embodiments, applying the concept described is not limited to such materials. Rather, in particular with the embodiments using linear feed, non-flexible materials may also be coated, such as, for example, glass substrates, semiconductor substrates or other mono- or polycrystalline substrates or similar materials.
When fast drying or complete drying of the coating before winding up or processing the coated product cannot be achieved without external measures, further embodiments may additionally comprise drying means by means of which the coating on the surface of the product to be coated is dried before being processed further.
The geometries of the respective devices discussed using the previous embodiments are only to be interpreted as being exemplary and may be adapted to the circumstances as desired, as long it is ensured that the product to be coated is passed by the liquid and/or moved relative to the liquid.
Additionally, when redirecting rollers having a film of water or vacuum slides or components having air cushions are used, a band or product to be transported can be redirected in an almost unlimited manner without contacting the coating. When the rollers are pre-redirected or pressed against the product to be transported using a predetermined force, a band tension necessitated for an unlapped transport of a band-shaped material may additionally be maintained.
While this invention has been described in terms of several advantageous embodiments, there are alterations, permutations, and equivalents which fall within the scope of this invention. It should also be noted that there are many alternative ways of implementing the methods and compositions of the present invention. It is therefore intended that the following appended claims be interpreted as including all such alterations, permutations, and equivalents as fall within the true spirit and scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
102007053065.1 | Nov 2007 | DE | national |
102008007570.1 | Feb 2008 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP08/09379 | 11/6/2008 | WO | 00 | 7/7/2010 |