This application is the U.S. National Phase under 35 U.S.C. § 371 of International Application No. PCT/EP2015/052072, filed on Feb. 2, 2015, which claims priority to Danish application Nos. PA201470045 and PA201470046, both filed on Jan. 31, 2014. The entire contents of these applications are incorporated by reference herein.
The present disclosure relates generally to a device for dispensing a mist of an ophthalmic liquid fluid.
Such devices are already known and vary in structure and design. By way of example devices are known that comprise a squeeze bottle squeezed by the user to expel the liquid fluid as a mist.
Below prior art references disclose different designs of such devices.
U.S. Pat. No. 5,997,518 A teach a device and method for delivering small microliter volumes of liquid preparations to the eye or other body part. The device and method propose to apply a gas stream to induce a controlled, preselected volume of liquid into the gas stream and to deliver the liquid in the form of small droplets to the desired site.
The present disclosure departs from U.S. Pat. No. 5,997,518 A inter alia in that the device according to the present disclosure includes a second drive, or a dosage drive/pump, for delivering liquid fluid to a user's eye.
U.S. Pat. No. 3,934,585 A teach a method and apparatus for applying therapeutic eye drops to the eye by metering a predetermined volume of fluid and rapidly applying a pressure to one end of the metered fluid for forcing the fluid from a nozzle.
US 2009/043269 A teach a liquid dispensing apparatus including a liquid storage space. The device includes a nozzle for dispensing liquid. Fluid is expelled through the nozzle by a movable wall operable to reduce the liquid storage space. The apparatus also includes an intermediate storage space having variable volume; the intermediate storage space including a liquid inlet in fluid communication with the liquid storage space for receiving liquid therefrom. A specific amount of the liquid is transferred from the liquid storage space to the intermediate storage space in a single operation.
US 2002/161344 A teach a device and use method for ejecting a liquid stream towards an eye. The device includes a pump mechanism operable to deliver at least part of the liquid from a container through the opening to form a stream of liquid. The pump mechanism may include a pump driver able to store cocked energy for driving the pump mechanism and at least one activation mechanism may be present and operable to initiate the device for the liquid delivery, whereby a driving mechanism is arranged to transform manual or stored energy into cocked energy.
US 2014/213989 A teach a fluid dispenser suitable for ophthalmic treatments and delivering of ophthalmic agents such as eye drops. The fluid dispenser incorporates a tube made from compliant materials as the key dosing component. A first point and a second point on the tube may be acted upon by folding the tube or by external elements, making the segment between the first point and the second point a squeezing section that houses a dosing chamber.
The squeezing section may be pressed by an anvil or other structures, pressurizing the fluid contained in the dosing chamber so that once the tube is released on one point, the fluid in the dosing chamber is discharged. With each dosing process, a single dose of the fluid is discharged. In addition, the fluid dispenser is capable of delivering a series of doses of the fluid by repeating the dosing process.
Generally, however, the liquid fluid exits the bottle as rather larger droplets and it is difficult if not impossible for the user to dispense an exact dose of the liquid fluid, which may be required where the user is under treatment for an ophthalmic disease or condition, such as dry eyes.
The present disclosure seeks to overcome such problems with the prior art dispensers, without compromising the need to provide a simple and user friendly dispenser which allows for repeated discharge of a dose of a medical ophthalmic fluid.
Broadly speaking the inventor has identified two fundamental aspects, as indicated in the appended claims and which may be combined.
According to one aspect fine, or relatively fine, droplets are achieved even where a liquid fluid of medium viscosity, such as in the order of 1-100 mPa.s is dispensed, through the action of a dedicated air flow, while according to another aspect a repeated discharge of identical doses is made possible. At the same time, through the disclosure it becomes possible to dispense the ophthalmic liquid fluid irrespectively of the user holding his head upright or tilted, or even if the user is in bed lying down.
Specifically, according to the first aspect as defined broadly in claim 1—the device comprises a discharge opening, possibly formed by a spray nozzle, for discharging a mist of fluid, a mixing chamber communicating with the discharge opening, an air chamber for holding a volume of air, a first drive operable to expel air from the air chamber, a fluid chamber for holding a volume of the fluid to be dispensed and communicating with the mixing chamber, a second drive for delivering a predetermined dose of the fluid to the fluid chamber and configured for communicating with a supply of the fluid, such as a container, the air chamber communicating with the fluid chamber and separately with the mixing chamber, and the device being configured for establishing one flow of the expelled air flowing into the fluid chamber, so as to drive the said volume of liquid from the fluid chamber into the mixing chamber, and another flow of the said expelled air flowing past the fluid chamber into the mixing chamber, for assisted atomizing of the fluid by the said other flow of air striking the fluid driven into the mixing chamber. This allows for the user to obtain a very fine mist of the fluid required where the fluid has a high viscosity and concentration, as may be the case in certain applications and for treating certain ophthalmic diseases or conditions, such as dry eyes, requiring the deposition of low to high viscosity fluid on a person's cornea.
To provide a high certainty that a uniform dose of the fluid is applied each time the device may include a peristaltic pump or similar in fluid connection with the aforementioned fluid chamber. It is also contemplated to include a mechanism allowing for a user to bring the device into a configuration ready for dispensing using a minimum of manual force, which may be required where to device is to be used by eg. an elderly person. For that purpose the device may further comprise a rotatable head or handle, a piston including a rod and a piston head received in a structure, such as a cylinder, defining the air chamber, the rod and the handle including a winding track and a stationary tab slidably received therein therewith, for displacing by rotation of the handle the piston to a retracted position for holding the volume of air in the air chamber, and a lock and release mechanism for locking and releasing the piston in and from the retracted position, for a spring forming the aforementioned first drive to drive the piston towards an advanced position, giving rise to said expelling.
According to another aspect, a high certainty that a uniform dose of the fluid is applied each time is achievable even where the liquid fluid does not require any fluid/air mixing by supply of a separate air flow as discussed above, by incorporating a peristaltic pump or equivalent positive displacement pump in a device for dispensing. The device having the following characteristics: a spray nozzle for generating a mist of a fluid, an air chamber for holding a volume of air, a first drive operable to expel air from the air chamber, a liquid fluid chamber for holding a volume of the liquid fluid to be dispensed and communicating with the nozzle, a second drive comprising the peristaltic pump and in fluid communication with the fluid chamber, for delivering a predetermined dose of the liquid fluid to the liquid fluid chamber, the peristaltic pump being configured for communicating with a supply of the fluid, such as a container, the air chamber being in fluid communication with the liquid fluid chamber, and by the device being configured for establishing a flow of the said expelled air flowing into the fluid chamber to force the said volume of fluid, or essentially all said volume of fluid therein, from the fluid chamber towards the nozzle.
Embodiments of the disclosure are defined in the dependent claims, the objects of which will appear from the following.
A presently preferred embodiment of the disclosure will now be described with reference to the appended drawings; the following description is not intended to limit the scope of the present disclosure which is defined by the claims.
The shown device 1 comprises an eyelid opener portion 10 and a casing portion 20. The eyelid opener portion 10 is configured for keeping a person's eyelid open by being held against the eye region during the dispensing and includes a collar 12 and a connecting structure 14 connecting the collar 12 with a front end F of the casing 20. A discharge opening or nozzle 25, which may by way of example be circular or oval, for dispensing the aforementioned mist in the direction towards the collar 12 and, hence, the eye (not shown), is located at the front end F.
The device 1 generally includes various mechanisms or drives located inside the casing 20 and operable by a person through various operating parts which may include, as shown, one or more of following: a rotatable handle 26, a depressible tab 30, and a rotatable head 28 defining the rear end R of the casing 20.
Two or more of the shown operating parts 26, 28, 30 may in other embodiments be combined into a single operating part such that more than one of the aforementioned mechanisms or drives are operable by the user manipulating only one operating part.
The component structure 50 comprises inter alia a container or barrel 70 containing the ophthalmic liquid fluid to be dispensed as a mist, and a first drive for user controlled advancing of a piston 55 with a piston rod and a head (the head not being visible in
The cylinder 60 is configured for storing a first volume of air in an internal air chamber when the piston 55 is in a first, normally fully retracted position. The barrel 70 preferably has a movable bottom 72 and/or may be collapsible, has an internal volume allowing for dispensing of multiple doses of the ophthalmic fluid, and may be replaceable to allow for replacement with another and, hence, continued use of the device 1 after one barrel 70 has been emptied.
For the reason explained below the rod of the piston 55 is preferably held against rotation about its longitudinal axis and is generally movable to its first, retracted position from a second, advanced position shown in
A proximal end part of the rod of the piston 55 remote from the head is shown in
The component structure 50 also may include a second drive, preferably in the form of a peristaltic dosing pump 82 or similar, for dispensing a required dose of the liquid fluid into a liquid chamber and/or a mixing chamber to be discussed further below and located at the fore end of the cylinder 60, inside thereof and closest to the discharge opening 25. Shown in
The peristaltic pump 82 includes a housing with a peripheral wall portion 87, shown as a semi-circular wall portion 87, as well as a rotatable disc 84 carrying on the one hand a handle 26 for manually operating the pump 82 and on the other hand two radially oppositely lodged shoes or rollers, of which one roller 86 is seen best in
Other forms of dosing pumps, or positive displacement pumps, may be applied and/or incorporated without departing from the present disclosure.
The second drive may be provided with, integrally or not, not shown valve means configured for hindering flow of liquid fluid when the second drive is passive. In embodiments wherein the second drive includes a piston pump, said not shown valve means may be actuated by the piston resting in an extended, i.e. not retracted, position.
The device 1 may be configured such that the first and the second drives may be activated and/or retracted by means of one button or handle only; eg. the device head 28 and the handle 26. Furthermore, the device 1 may be configured such that first and/or the second drives may be activated and/or retracted and/or released by means of applying a linear force to a pushbutton.
The container 70 may, in one embodiment, constitute a collapsible bag or pouch made eg. from thin and/or flexible foil; possibly closed by welding. Alternatively, the container 70 may constitute a moulded plastic component.
The container 70 may, in one embodiment, constitute a cylinder including a movable piston. The movable piston may define the bottom of the cylinder and the distal fixed end may be provided with means for hydraulic and/or mechanical interface to the device 1. Means, such as a spring, may be provided in order to urge or push the piston into the cylinder. By this, liquid dosing may be facilitated.
The container 70 may, in one embodiment, be joined to a preferably moulded plastic component allowing for hydraulic and/or mechanical interface to the device 1.
The liquid container 70 may be integrated with the wet part of the device 1, preferably in a manner allowing for exchangeability of the container 70.
The separate container 70 may have a unique shape for mechanical orientation and/or fixation of the container with respect to the device 1.
As can be seen the device 1 of the shown embodiment has a relatively flat casing 20, such as one with a length and width in the order of about 90 mm and 60 mm, respectively, allowing it to be conveniently held by the user.
Turning to
In the first position of the piston 55 shown in
As shown in
As the piston 55 is displaced by the user towards the retracted first position, in the depicted embodiment by rotation of the rotatable head 28, air is simultaneously drawn into this air chamber 58 through an air access port. The discharge opening 25 for discharging the mist may be used for this purpose; however, to reduce the risk of contamination of the air chamber 58 by already dispensed liquid fluid being drawn back in together with fresh air the air access port is preferably located elsewhere, such as in the peripheral wall of the cylinder 60 and is preferably equipped with a one-way valve (not shown). Another not shown one-way valve may be located in connection with the discharge opening 25 to prevent or restrict air entry, to prevent the aforementioned contamination. In this manner there is a reduced need for using liquid fluids with preservatives.
The dispensing structure 90 is preferably inserted into the cylinder 60 to define the foremost end thereof, opposite the rear closure 62. As shown, a passage 91 for a first air flow leads from the air chamber 58 into an internal liquid chamber 92 within the structure 90. One or more secondary passages 97, such as three, preferably winding (eg. spirally) around the dispensing structure 90 as in the shown embodiment, are formed and arranged to communicate with the air chamber 58 on the one hand and with a mixing chamber 95 on the other hand. The mixing chamber 95 is located in front of the dispensing structure 90 and defined between the dispensing structure 90 and a front casing part 23 that has an aperture defining the discharge opening 25. The one or more secondary passages 97, which may have circular cross-section(s), allow for a second air flow to flow past the structure 90 and, hence, the liquid chamber 92, i.e. not through the liquid chamber 92, to enter the mixing chamber 95.
The dispensing structure 90 may be provided with a laterally oriented port or passage to allow for a liquid flow to the internal liquid fluid chamber 92 from the second portion 81′ of the tube 80 via connection point 81″, and also has a discharge opening 93 opposite the passage 91. The mixing chamber 95 may, as shown in
The volume of the liquid fluid chamber 92 corresponds to the aforementioned volume of the dose of liquid fluid dispensed or dosed by the peristaltic pump 82 upon correct manipulation thereof, i.e. proper rotation of the disc 84 through a given angle, by means of handle 26, and may by way of example be in the order of about 50 mm3. The passage 91, opening 93 and fluid chamber 92 may have a circular cross-section.
When preparing the device 1 for use after a previous discharge/dispensing or when taking the device 1 into use for the first time, a person will fill the fluid chamber 92 using the second drive, in the shown embodiment the peristaltic pump 82, and also withdraw the piston 55 to the retracted, first position. This may, in principle, occur in any sequence, or simultaneously if a single operating part is used for the peristaltic pump 82 and the piston 55. In
On subsequent release of the first drive, in the shown embodiment constituted by the spring 61 which advances the piston 55, air in the air chamber 58 drawn into the cylinder 60 during the preceding withdrawal of the piston 55 is forced out of the cylinder 60 into the liquid fluid chamber 92 within the structure 90 through the passage 91, and preferably also leaves the cylinder 60 as the aforementioned second air flow through the series of additional passages 97 opening up into the mixing chamber 95. The terms “first” and “second” used in this respect are not intended to imply any necessary time wise delay between the two flows of air but primarily to reflect that several flows of air are generated, normally having different purposes, the first air flow primarily serving to force liquid fluid out of the liquid fluid chamber 92. After all liquid fluid has been forced/driven out of liquid fluid chamber 92 any remaining air in the air chamber 58 may still be discharged into the mixing chamber 95 through the liquid fluid chamber 92.
It will be understood that the speed of the second flow of air leaving the air chamber 58 is preferably high and that the first flow of air discharged by the action of the spring 61 ejects or pushes the liquid fluid out from the liquid fluid chamber 92 through the discharge opening 93 at the forward end of the liquid fluid chamber 92, into the mixing chamber 95. Flow of the liquid fluid into the mixing chamber 95 may be assisted by any venturi effect arising from the inflow into the mixing chamber 95 of the secondary air flow. A fine mist of the liquid fluid is generated, even where the fluid has a medium to high viscosity, by the second air flow leaving the secondary passages 97 impinging on the simultaneously ejected liquid fluid, in front of the discharge opening 93.
It is contemplated to design the course of the one or more passages 97 such that the forward second air flow preferably strikes the ejected liquid fluid at an acute angle with respect to the general forward direction of flow of the ejected liquid fluid. The fine mist generated thereby exits the device 1 through the discharge opening 25 with high inertia, as determined i.a. by the spring 61, towards the eye of the user, which eye is held open by the eyelid opener portion 10. By properly adjusting the volume of air in the air chamber 58 it may be ensured that all dispensed fluid is blown away from the device 1 during each dispensing.
By selecting the relative dimensions of the one or more passages 97 in relation to the dimension of passage 91 leading into the liquid fluid chamber 92 and the discharge opening 93 leading out there from any desired flow and droplet size may be obtained. It may in some instances be preferred that the liquid fluid is ejected into a second flow of air already prevailing in the mixing chamber 95.
The design of the discharge opening 25, normally located about 20-30 mm from the eye when the device 1 is correctly held, ensures that the mist is deposited only on the eye, and this may be achieved with the device 1 held in any orientation, horizontally or vertically.
As noted, in the shown embodiment the volume of the liquid fluid standing in the second tube portion 81′ will remain therein during discharge of the liquid fluid in the liquid fluid chamber 92. The seal provided by the roller 86′ of the peristaltic pump 82 prevents this volume from being drawn into the liquid fluid chamber 92 as the liquid fluid therein is ejected by the air.
All components of the device mentioned above may be of any desired material, such as a plastics material, a metal material or combinations thereof. Notably, the collar for keeping the user's eyelid open may carry a surface material with antibacterial properties or be formed from such a material. Furthermore, the components and/or surfaces defining and/or surrounding the discharge opening 25 and/or nozzle may be made from a material with antibacterial properties.
While it may be preferred to configure the device according to the disclosure such that first and second flows of air are established, which may be preferred where the liquid fluid has a high viscosity, in other cases it may not be required to provide for a secondary flow of air, by configuring the discharge opening 25 as a nozzle suitable for establishing by its geometry alone a small droplet size of the liquid fluid dispensed by the first drive.
Number | Date | Country | Kind |
---|---|---|---|
2014 70045 | Jan 2014 | DK | national |
2014 70046 | Jan 2014 | DK | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/052072 | 2/2/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/114139 | 8/6/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2524720 | Watrous | Oct 1950 | A |
3934585 | Maurice | Jan 1976 | A |
5997518 | Laibovitz et al. | Dec 1999 | A |
6053364 | van der Heijden | Apr 2000 | A |
6159188 | Laibovitz et al. | Dec 2000 | A |
6213982 | Py | Apr 2001 | B1 |
7226435 | Darnell | Jun 2007 | B2 |
7314187 | Hochrainer et al. | Jan 2008 | B2 |
7621897 | Berke | Nov 2009 | B1 |
7883031 | Collins, Jr. et al. | Feb 2011 | B2 |
8012136 | Collins, Jr. et al. | Sep 2011 | B2 |
8545463 | Collins, Jr. et al. | Oct 2013 | B2 |
8684980 | Hunter et al. | Apr 2014 | B2 |
8936021 | Collins, Jr. | Jan 2015 | B2 |
RE45589 | Py | Jun 2015 | E |
20020161344 | Peclat et al. | Oct 2002 | A1 |
20050240162 | Chen et al. | Oct 2005 | A1 |
20060011657 | Wright | Jan 2006 | A1 |
20080097359 | Hochrainer et al. | Apr 2008 | A1 |
20090043269 | Skou et al. | Feb 2009 | A1 |
20090247967 | Delli Paoli, Jr. | Oct 2009 | A1 |
20100222752 | Collins, Jr. | Sep 2010 | A1 |
20100331765 | Sullivan | Dec 2010 | A1 |
20120272952 | Hsiao | Nov 2012 | A1 |
20140213989 | Kelly | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
925799 | Jun 1999 | EP |
1262307 | Dec 2002 | EP |
1624938 | Feb 2006 | EP |
2361075 | Aug 2011 | EP |
1321506 | Jun 1973 | GB |
2005-21254 | Jan 2005 | JP |
WO-9713585 | Apr 1997 | WO |
WO-02062488 | Aug 2002 | WO |
WO-2005016219 | Feb 2005 | WO |
WO-2006044029 | Apr 2006 | WO |
WO-2006076922 | Jul 2006 | WO |
WO-2007132446 | Nov 2007 | WO |
WO-2008041177 | Apr 2008 | WO |
WO-2010018118 | Feb 2010 | WO |
WO-2011010310 | Jan 2011 | WO |
WO-2012009696 | Jan 2012 | WO |
WO-2012009702 | Jan 2012 | WO |
WO-2012009706 | Jan 2012 | WO |
WO-2012072551 | Jun 2012 | WO |
WO-2012101634 | Aug 2012 | WO |
WO-2012159026 | Nov 2012 | WO |
WO-2013090459 | Jun 2013 | WO |
WO-2013090468 | Jun 2013 | WO |
WO-2013155201 | Oct 2013 | WO |
WO-2013158967 | Oct 2013 | WO |
WO-2013169988 | Nov 2013 | WO |
WO-2013169990 | Nov 2013 | WO |
WO-2013173321 | Nov 2013 | WO |
WO-2013173495 | Nov 2013 | WO |
Entry |
---|
Patent Abstracts of Japan for JP 2005021254, dated Jan. 27, 2005, 1 page. |
English Translation of Notice of Reasons for Rejection for Japanese application No. 2016-567158, dated Nov. 26, 2018, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20170007449 A1 | Jan 2017 | US |