Device for delivery of antimicrobial agent into a medical device

Abstract
A system, method, and article for delivering an antimicrobial agent into the lumen of a trans-dermal catheter are disclosed. In an embodiment, the system comprises an elongate member configured for insertion into a lumen of a catheter, and the elongate member containing an antimicrobial. In the alternative an antimicrobial agent can be placed on an interior surface of a retaining ring.
Description
FIELD OF THE INVENTION

The present invention relates to medical devices for preventing infectious organisms from entering and occupying the lumen of catheters and drainage tubes, and more particularly, to systems, methods, and articles for delivering antimicrobial agents into the lumen and near the entry region (at the proximal end) of catheters and drainage tubes.


BACKGROUND OF THE INVENTION

Hemodialysis catheters allow patients with renal disease to have toxins removed from their bloodstream. Without the use of catheters, many of these patients would not survive. However, long-term hemodialysis catheters have a serious drawback in that a significant percentage of catheters fail due to infection, resulting in elevated mortality rates and large annual healthcare costs associated with treatment. Furthermore, bloodstream infections are a leading cause of death in the United States, and many of those infections are attributable to vascular access devices such as hemodialysis catheters. The mortality rate associated with such infections is considerable.


Therefore, a need exists for a manner in which infections relating to long-term hemodialysis catheters can be reduced.


SUMMARY OF THE INVENTION

The present application is directed, in part, to a device for delivering an antimicrobial agent into the lumen of a trans-dermal catheter. The device comprises an elongate member configured for insertion into the proximal end of a catheter and an antimicrobial composition positioned to be delivered into the catheter. At least a portion of the antimicrobial composition is delivered to the exterior of the proximal end of the catheter upon insertion of the elongate member into the proximal end of the catheter.


The application is also directed to a device for delivering an antimicrobial agent into the lumen of a trans-dermal catheter, the device comprising a capping member configured for placement over the proximal end of a catheter; and an antimicrobial composition positioned on the interior of the capping member.


The application is further directed to a method of applying an antimicrobial to the proximal end of a trans-dermal catheter. The method includes providing a transdermal catheter; filling at least a portion of the proximal end of the transdermal catheter with a lock solution; clamping the transdermal catheter near its proximal end to restrict flow of the lock solution into the distal end of the transdermal catheter; and inserting an elongate member into the proximal end of the transdermal catheter such that the elongate member sufficiently displaces lock solution so as to have the lock solution flow from the proximal end of the catheter. The elongate member includes or incorporates an antimicrobial material.


This summary is not intended to be limiting of the invention. The invention is further described in the following detailed description and claims.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention may be more completely understood in connection with the following drawings, in which:



FIG. 1A is a perspective view of a dual-shield with two caps made in accordance with the preferred implementation of the invention. One cap is inserted into the dual shield; the other cap is not inserted.



FIG. 1B is a side cross section view of two caps inserted into a dual-shield and is made in accordance with the preferred implementation of the invention.



FIG. 2A is a perspective view of an elongate member and mono shield made in accordance with an implementation of the invention. The cap is shown not inserted into the mono shield.



FIG. 2B is a side cross section view of a cap inserted into a mono shield made in accordance with an implementation of the invention.



FIG. 3A is a perspective view, looking from the distal end of a cap, made in accordance with the preferred implementation of the invention.



FIG. 3B is a side cross section view of a cap made in accordance with the preferred implementation of the invention.



FIG. 4A is a perspective view of two caps made in accordance with the preferred implementation of the invention, and a catheter. The caps are shown inserted into the catheter.



FIG. 4B is a side cross section view of a cap made in accordance with the preferred implementation of the invention, and inserted into a catheter.



FIG. 4C is an end cross section view of a cap made in accordance with the preferred implementation of the invention, and inserted into a catheter.



FIG. 5A is a side cross section view of a cap made in accordance with the preferred implementation of the invention, prior to cap being inserted into a catheter.



FIG. 5B is a side cross section view of a cap made in accordance with a preferred implementation of the invention, as the cap is being inserted into a catheter.



FIG. 5C is a side cross section view of a cap made in accordance with a preferred implementation of the invention, with the cap fully inserted into a catheter.



FIG. 6 is a side cross-section view of a cap with a seal at the distal end of the retaining ring made in accordance with an implementation of the invention, inserted into a catheter.



FIG. 7 is a side cross-section view of a cap with foam along the threads of the retaining ring made in accordance with an implementation of the invention, and inserted into a catheter.



FIG. 8A is a side cross-section view of a cap with a swellable tip made in accordance with an implementation of the invention, inserted into a catheter. The tip is shown in its unswollen state.



FIG. 8B is a side cross-section view of a cap with a swellable tip made in accordance with an implementation of the invention, inserted into a catheter. The tip is shown in its swollen state.



FIG. 9 is a side cross-section view of a cap not containing an elongate member made in accordance with an implementation of the invention.



FIG. 10A is a perspective view, looking from the distal end of a cap, made in accordance with a preferred implementation of the invention.



FIG. 10B is a perspective view, looking from the distal end of an insert, made in accordance with a preferred implementation of the invention.



FIG. 10C is a perspective view, looking from the proximal end of an insert, made in accordance with a preferred implementation of the invention.



FIG. 10D is a perspective view, looking from the distal end of a retaining ring, made in accordance with a preferred implementation of the invention.



FIG. 10E is a side section view of a retaining ring made in accordance with a preferred implementation of the invention.



FIG. 10F is a side cross section view of a cap made in accordance with a preferred implementation of the invention.



FIG. 11 is a table showing the effect of interference between a retaining ring and shoulder upon ring-insert torque.



FIG. 12 shows concentration of microbes grown in various catheter conditions.



FIG. 13 shows a chart of survival analysis of bacteria-free catheters under various conditions.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The present invention relates to devices, systems, and methods for treating, preventing and eliminating infectious organisms in medical devices, such as catheters and drainage tubes, and preventing the organisms from entering the bloodstream. The devices, systems, and methods deliver antimicrobial agents into the lumen and near the entry region of catheters and drainage tubes. The following detailed description presents a description of certain specific embodiments to assist in understanding the claims. However, one may practice the present invention in a multitude of different embodiments as defined and covered by the claims.


The present invention includes, in certain implementations, methods and devices for preventing organism proliferation and biofilm formation in catheters so that organisms aren't able to exit the catheter and enter the bloodstream of a patient. The device and system prevents, or reduces the number of, organisms reaching the bloodstream by employing any or all of the following three prevention methods: 1) physically blocking migration of organisms outside the catheter, 2) killing organisms along the threads, end face and luer connector at the proximal end (outside of the body) of the catheter using an antimicrobial, and/or 3) killing organisms within a confined region of the catheter using an antimicrobial agent and/or a physical barrier in the catheter lumen. A fourth mode of action, scrubbing the catheter wall (to physically remove organisms adhered to the catheter's proximal end (thread and/or end face) and/or the interior wall section upon removing the cap from the catheter) may also be used in conjunction with the other methods and devices, or independently in certain implementations.


In a first aspect, the present invention includes an organism barrier at the external end of the catheter, also referred to herein as the proximal end of the catheter. This barrier provides a seal to keep organisms from reaching the end face and luer portions of the connector on a catheter. This can be accomplished, for example, by using either of the following features: First, placing an elastomeric flap or gasket (i.e., silicone, neoprene, polyurethane, etc.) that is positioned at the end of the cap's connector or, alternatively, along the inner wall of the cap's locking-ring. The flap preferably makes a fluid tight seal against the outer wall of the catheter's connector, thereby decreasing the likelihood of microbial incursion and preventing microbial growth. Second, placing foam, either closed cell or open cell that preferably contains an antimicrobial, along the inner wall of the cap's retaining ring and/or at the most proximal location in the cap such that it will abut and seal against the proximal end of the catheter's connector surface (also called the end face).


An embodiment using an antimicrobial agent along the cap's tread region, but not containing an organism barrier, can also be used to reduce the number of organisms that can enter the catheter. This reduction in the number of organisms that can enter the catheter is accomplished by killing organisms within the tread and end face region. The cap is optionally designed to transfer antimicrobial agent from the cap to the catheter threads. This is accomplished by displacing fluid from the catheter into the thread region of the connector. The elongate member and luer, when entering the catheter, displace the catheter's fluid, causing the fluid to flow out into the thread region between the connector and the cap.


Antimicrobial agent dissolves in the fluid, causing the fluid to become saturated with antimicrobial agent. The antimicrobial fluid produces an effective antiseptic region, killing organisms on the connector. Furthermore, as the fluid dries, antimicrobial precipitates from the fluid and is deposited onto the catheter threads and end face. This process is repeated every time a new cap is placed onto the catheter, thus replenishing the antimicrobial agent on the catheter's proximal region with every new cap.


In a second aspect, the invention is directed to adding of an antimicrobial along a luer connector. This can be accomplished, for example, by coating a male luer connector with various antimicrobial agents.


In a third aspect, the invention is directed to an antimicrobial agent inside the catheter. The antimicrobial can be delivered as a coating that elutes from a coated elongate member, that is coated on (or impregnated into) a elongate member (such as 250 μg of chlorhexidine acetate in a layer approximately 2 μm thick along a 17 mm long×1.9 mm diameter elongate member/rod). The elongate member has the added benefit of displacing fluid from within the catheter as it is inserted, thereby transferring the solution to the outer proximal region of the catheter connector (end face and treads). Antimicrobial agent from the cap dissolves into the displaced fluid, and thereby disinfecting the proximal end of the connector. Furthermore, when the fluid dries, it deposits a coating of chlorhexidine acetate or other appropriate antimicrobial on the connector as described above. As an alternative to using the elongate member, the chlorhexidine acetate or other antimicrobial agent may be delivered by a coating on a luer tip (such as 250 μg of chlorhexidine acetate in a layer that is approximately 20 μm thick). A minimum of 10 μg of chlorhexidine acetate on the elongate member is effective for many organisms in some implementations. A desirable minimum of greater than 100 μg is effective for most organisms, and a further desired minimum of 250 μg is highly effective against all of the major organisms.


Types of antimicrobial agent can include chlorhexidine base, chlorhexidine acetate, chlorhexidine gluconate, EDTA, silver sulfadiazine, or Taurolidine; or combinations thereof. Other antimicrobial agents may also be used. Chlorhexidine acetate is preferred because it has a long history of human use, with a well understood safety and efficacy profile.


Typically these methods are also used in conjunction with confinement of the antimicrobial in the catheter, such as by relying on a catheter clamp to confine the antimicrobial agent in a portion of the proximal end of the catheter (that portion of the catheter outside of a patient and in particular that portion nearest the connector on the catheter by which fluids enter and leave the catheter). Extension tube clamps are part of each hemodialysis catheter and are currently used to confine lock solutions that are used to help ensure catheter patency. Using the existing clamp methodology, the risk of air embolus and lock solution entering the patient is very small and consistent with the current state of the art for conducting hemodialysis procedures. In other medical devices, such as catheters that do not possess catheter clamps, a swellable cap tip or other confinement technique, such as those described in United States patent application publication number US 2010/0106103 A1, may be used.


Organism mechanical removal can also be utilized. In this regard, a portion of the elongate member can scrap the catheter wall upon removal, such as by having ribs incorporated into the elongate member. In some implementations, after placing the elongate member into the catheter, anisotropic swelling moves ribs (or other projections) against wall, which provides a tighter fit against the wall after swelling and further promotes mechanical removal of the organisms. Also, it is possible for the tip of the elongate member to swell (or other portions such as ribs to swell), or swelling along the length of the elongate member. Preferably the elongate member's unswollen diameter is smaller than the catheter lumen when the elongate member is being inserted, but swells to conform to the inner shape (or larger) of the catheter lumen to enhance the mechanical removal of the organisms during removal. Various polyurethanes or other material may be used to produce suitable anisotropic swelling and mechanical stability; more specifically, Lubrizol 1065D is suitable for a non-swelling elongate member and TG-500 is suitable for an anisotropic swelling (or isotropic swelling) tip which may be bonded with each other using heat bonding or other suitable methods.


An embodiment of the invention, herein referred to as “the cap”, contains an elongate member that can be inserted into a medical device, such as a catheter or a drainage tube, for the prevention and treatment of infectious organisms within the medical device and in proximity to the elongate member, and further prevents the migration of infectious organisms into the body by providing an antimicrobial and/or physical barrier. For the sake of simplicity, the term “catheter” is used for all medical devices in which the present invention can be inserted and used to treat, prevent, and eliminate infectious organisms. The cap may be removed from the catheter to allow the catheter to be used in a dialysis procedure or other procedure. After the procedure is complete, a new cap may be used to seal and protect the catheter. The removal of one cap and the replacement with a new cap may be repeated an indefinite number of times. With each new cap, the antimicrobial agent inside and outside of the catheter is reestablished. Another aspect of the invention is that antimicrobial agent is transferred from the cap to the catheter with each use.


An example embodiment includes an elongated rod comprising a suitable material into which an antimicrobial agent has been incorporated. The term “antimicrobial,” as used here, includes any substance or substances that kills or inhibits the growth of organisms such as bacteria, fungi, protozoa, viruses, etc. It should also be noted that there can be one or more antimicrobial agents used. Therefore, throughout this document, antimicrobial agent refers to one or more antimicrobial agents. While the invention may be used in a variety of medical devices, a catheter, and more specifically a long-term hemodialysis catheter, will be used to describe the use of the invention. The use of these examples is not meant to confine or limit the use of the invention in other types of catheters or medical devices, such as peritoneal dialysis catheters, urinary catheters, PICC lines, central venous catheters, feeding tubes and drainage catheters.


One useful application of the invention is in preventing infections in people with hemodialysis catheters. The present invention prevents or eliminates infectious organisms on connector and the luminal wall of a catheter by providing a means for the prolonged presence of an antimicrobial agent and/or providing a means for periodically scrubbing the luminal wall of the catheter to remove the biofilm in which infectious organisms proliferate.


Competing methods for preventing, eliminating, and treating infectious organisms in the lumen of a catheter are in limited use. One method uses an antimicrobial coating on or in the internal wall of the catheter. The issues that have precluded widespread use include the antimicrobial coating eventually wearing off, losing potency, or becoming covered with blood products, rendering the coating ineffective. When antibiotics are used as the antimicrobial agent, there is an additional concern regarding the emergence of resistant organisms to antibiotics and the risk of anaphylaxis to the antibiotics. Another method for treating infectious organisms in the lumen is the use of an antibiotic or antimicrobial liquid, known as a locking agent or locking solution. In this method, an antimicrobial fluid is injected into the catheter, and a cap is attached to the hub of the catheter to prevent the fluid from leaking out of the catheter and to prevent infectious organisms from entering into the lumen.


One issue precluding widespread use of this method is concern for the emergence of resistant organisms if an antibiotic agent is used. This concern may be virtually eliminated, however, by using a non-antibiotic antimicrobial, such as taurolidine. Another issue when dialysis catheters are filled with locking solutions is that the locking solution spills into the bloodstream. This occurs for two reasons. First, when the catheter is filled with a volume equal to the catheter volume, a significant portion of the fluid leaks out due to the nature of the laminar flow profile in the catheter. Second, blood flow by the tip/distal end results in the injected catheter locking solution being pulled out due to the Venturi effect, and density differences between the lock solution result in spillage of the solution into the bloodstream. It has been reported that 60% or more of the locking solution is spilled into the bloodstream in the first few hours after instillation. Accidental overdosing, either from injecting too much volume or too high of concentration of the locking solution, can cause additional spillage into the bloodstream. Spillage has resulted in adverse events, including death. For instance, spillage has resulted in death from transient hypocalcemia when a citrate solution was used. In addition, other adverse events may occur as some types of locking solutions may build up in the body.


In the case of using the cap with dialysis catheters, the present invention is designed to be replaced regularly after each dialysis session, approximately three times per week. This replenishes the antimicrobial agent with each replacement, resulting in a consistent and high concentration of antimicrobial agent present within and upon the catheter on an ongoing basis resulting in decreased risk of infection. However, the confinement method, such as clamps, as used in conjunction with the invention, prevents a significant amount of antimicrobial agent from leaking into the bloodstream on a regular basis.


In addition, separation between the antimicrobial agent and blood can result in lower infection rate, fewer side effects, and less risk of developing resistant bacteria because a non-antibiotic antimicrobial is used. In certain embodiments, the present invention creates a physical barrier between the blood and the antimicrobial agent. The barrier greatly reduces the exchange of antimicrobial agent with blood circulating in the body, resulting in fewer side effects from the antimicrobial agent. This can result in a more consistent level of antimicrobial agent along the length of the catheter adjacent to the cap. Additionally, the barrier reduces the amount of antimicrobial agent entering the bloodstream, thus reducing the risk of an adverse reaction to the agent or developing organisms resistant to the antimicrobial agent. In comparison, it is well-known that liquid locking agents can and do routinely migrate into the bloodstream, and the blood can migrate into the catheter, thus reducing the effectiveness of the antimicrobial agent, increasing the possibility of bacteria entering the bloodstream and increasing the rate of thrombosis in the catheter. The act of flushing the catheter lumen with a fluid agent into the lumen will result in the removal of blood from the lumen and thus reduce the risk of thrombosis. If the liquid agent is an anti-thrombotic lock, such as heparinized saline or saline with 4% sodium citrate, the risk of thrombosis is further reduced. The use of a confinement means, as described in the present invention as a swellable elongate member tip, swellable elongate member, or catheter clamp, prevents the blood from reentering the lumen and results in a lower risk of thrombosis in the lumen.


A further aspect of the invention relates to protecting the caps from contamination prior to use and during handling in order to keep the elongate member and luer sterile prior to insertion into the catheter. A shield over the elongate member and luer may be used. A standard shield, which protects one luer and elongate member, is suitable for keeping one elongate member and luer sterile. A novel shield is hereafter described which improves handling while maintaining sterility protection, and facilitates low-cost injection molding. The novel shield holds two caps within one shield body, where the two caps are held 180 degrees opposed in an axially offset manner with at least a portion of the two elongate members axially overlapping one another, with a physical barrier between the two caps. The shield may have threads to provide a means for removably attaching the caps to the shield. This novel configuration allows the user to hold one piece rather than two, thus easing handling and decreasing the risk of dropping the caps. The barrier between the two caps ensures that, when one cap is removed from the shield, that the other cap remains sterile. The caps, secured within the shield, may be packaged in a pouch using a suitable packaging material, such as a metal film with a polymer laminate to facilitate heat sealing. The metal layer is useful to minimize adverse effects of humidity. The device, inside the pouch, may be sterilized using gamma radiation or other suitable sterilization method. Gamma radiation has the advantage of effectively sterilizing the product while it is contained within moisture-proof packaging.


This summary is an overview of some of the teachings of the present application and is not intended to be an exclusive or exhaustive treatment of the present subject matter. Further details are found in the detailed description and appended claims. Other aspects will be apparent to persons skilled in the art upon reading and understanding the following detailed description and viewing the drawings that form a part thereof, each of which is not to be taken in a limiting sense. The scope of the present invention is defined by the appended claims and their legal equivalents.


Research and development into preventing catheter-related bloodstream infections (CRBSI) over the last twenty years has been focused on methods for killing the bacteria along the inside and outside length of the catheter. This research has resulted in success at reducing the incidence of CRBSI in some catheter types. For instance, commercially successful antimicrobial coated catheters have resulted in a decrease in the incidence of infection in applications that use short-term (non-tunneled) catheters. However, these coating wash off with use and therefore are not effective for long-term applications. The use of long-term (tunneled, cuffed) hemodialysis catheters result in approximately 2.3 bloodstream infections every 1000 catheter days. Said another way, a patient dialyzing with a hemodialysis catheter can expect to develop a bloodstream infection, on average, every 14 months. To fix this remaining problem, much of today's research is focusing on ways to eliminate biofilm within catheters and on ways to produce longer lasting antimicrobial coatings that are capable of killing organisms within catheters.


Infectious organisms typically colonize a catheter in three distinct ways. First, the infectious organisms may colonize the catheter by traveling in the bloodstream and eventually adhering to the catheter. This form of transmission is believed to be rare. Second, the infectious organisms may colonize the catheter by traveling along the outer wall of the catheter after entering at the catheter's body exit site. This method of infection transmission has been greatly reduced by tunneling the catheter under the skin for several centimeters, and by the addition of a cuff on the outer wall of the catheter. Body tissue grows into the cuff and creates a barrier for infection. Third, the infectious organisms may colonize the inner lumen of the catheter, entering at the hub and/or adaptor of the catheter connector, eventually migrating down the lumen of the catheter to the bloodstream. This method of infection transmission is a leading cause of bloodstream infections in patients with long-term indwelling catheters. Therefore, a need exists for improved devices, systems, and methods for eliminating, treating, and preventing such contamination.


The present invention prevents, reduces and can even eliminate infectious organisms from the entry region of a catheter or tube, and from within the inner luminal surface of a catheter or other similar medical devices by providing a means for the prolonged presence of an antimicrobial agent and/or providing a means for periodically scrubbing the entry region and/or lumen of the catheter or other medical device to remove the infectious organisms and the biofilm in which infectious organisms proliferate.


The present invention includes methods and devices for killing organisms and preventing organism proliferation and biofilm formation in catheters so that organisms aren't able to exit the catheter and enter the bloodstream of a patient. The article of the present invention prevents, or reduces the number of, organisms reaching the bloodstream by employing any or all of the following three prevention methods: 1) physically blocking migration of organism outside the catheter, 2) killing organisms along the threads, end face and luer connector (inside and outside of the connector) at the proximal end (outside of the body) of the catheter using an antimicrobial, and/or 3) killing organisms within a confined region of the catheter using an antimicrobial agent and/or a physical barrier in the catheter lumen. A fourth mode of action, scrubbing the catheter wall (to physically remove organisms adhered to the interior wall section upon removing the cap from the catheter) may also be used in conjunction with the other methods and devices.


As noted above, the invention is directed in part to an antimicrobial agent inside the catheter. The antimicrobial agent can be delivered as a coating that elutes from a coated elongate member, that is coated on, or impregnated into, an elongate member (such as 250 μg of chlorhexidine acetate in a layer approximately 2 μm thick along a 17 mm long×1.9 mm diameter elongate member/rod). The elongate member has the added benefit of displacing fluid from within the catheter as it is inserted, transferring the solution to the outer proximal region of the catheter connector (end face and treads). Antimicrobial agent from the cap dissolves into the displaced fluid, and thereby disinfecting the proximal end of the connector. Furthermore, when the fluid dries, it deposits a coating of chlorhexidine acetate or other appropriate antimicrobial on the connector as described above. As an alternative to using the elongate member, chlorhexidine acetate or other antimicrobial agent may be delivered by a coating on a luer tip (such as 250 μg of chlorhexidine acetate in a layer that is approximately 20 μm thick). The luer portion is also coated with an antimicrobial agent (such as 50 μg of chlorhexidine acetate in a layer that is approximately 0.4 μm thick). It is also possible to inject an antimicrobial agent into the catheter using a syringe, or to deliver antimicrobial agents by way of the connector tip cavity (dry dissolvable amount, applicable for Citrate or others requiring large amounts of antimicrobial agent).


Referring now to the figures, example implementations of the invention are shown. Figure IA shows an exploded view of a dual shield system 10″ that includes an arterial cap 20′, a venous cap 20″ and a shield 50″; the colors are typically chosen to match the standard colors used in hemodialysis: red for the arterial cap 20′ and blue for the venous cap 20″. The dual shield system 10″ contains two caps within the same shield 50″. The shield 50″ provides for easier handling because there are fewer parts to handle and hold. The dual shield system 10″ is packaged within a heat-sealed foil-pouch (not shown) and gamma sterilized. The foil-pouch is opened at the clinic immediately before use of the caps. The cap threads 41 removably engage the dual shield threads 59 to allow easy removal of the caps 20′, 20″ from the shield 50″. The flattened side 57 creates a convenient means for gripping the shield as the caps 20′, 20″ are removed. In addition, the flattened side 57 disrupts the rotational symmetry of the shield 50″, thus making the shield system 10″ resistant to rolling onto the floor or being dropped.



FIG. 1B shows a cross section of a dual shield system 10″ with an arterial cap 20′ and a venous cap 20″ each inserted into a shield 50″. The shield 50″ is designed to keep the caps 20′, 20″ axially offset as shown by the arterial cap axis 54′ and the venous cap axis 54″. The offset axis is advantageous over a coaxial design because it decreases the length of the system 10″, allowing it to fit into a shorter pouch and making it easier to handle. In addition, the caps 20′, 20″ are 180 degrees opposed from each other, thus making the retaining rings 40′, 40″ physically separated from one another. This is makes the retaining rings 40′, 40″ easier to grasp because the arterial retaining ring 40′ does not physically block finger access to the venous retaining ring 40″, and vice versa. The shield 50″ provides protection to the caps 20′, 20″ and further aids maintenance of sterility prior to use because each of the caps 20′, 20″ are separated by a wall 56″. In an example embodiment, the most proximal portion 31′ of the male luer 31 contacts the receiving edge 58 of the dual shield 50″. The rest of the male lure 31 does not contact the wall 56″, and thereby minimizes the risk of removing the antimicrobial coating on the male luer 31. Typically the elongate member 33 also does not contact the wall 56″ so as to minimize the risk of removing the antimicrobial coating.



FIG. 2A shows a perspective view of a mono shield system 10′ with a cap 20, and a shield 50′. The shield 50′ contains one cap within the housing. The mono shield system 10′ is packaged within a heat-sealed foil-pouch (not shown) and gamma sterilized. The foil-pouch is opened at the clinic immediately before use of the cap. The cap threads 41 removably engage the mono shield threads 59 to allow easy removal of the cap 20 from the mono shield 50′.



FIG. 2B shows a cross sectional view of a mono shield system 10′ with a cap 20 inserted into a mono shield 50′. The mono shield 50′ provides protection to the cap 20 and further ensures that sterility is maintained prior to use. This is accomplished by enclosing the cap 20 by a wall 56″. In an example embodiment, the most proximal portion 31′ of the male luer 31 contacts the receiving edge 58 of the mono shield 50′. The rest of the male lure 31 does not contact the wall 56′, and thereby minimizes the risk of removing the antimicrobial coating on the male luer 31. The elongate member 33 also preferably does not contact the wall 56′ in order to minimize the risk of removing the antimicrobial coating.



FIG. 3A shows a cap 20 made in accordance with an example implementation of the invention. The cap 20 can be injected molded as a single unit out of a thermoplastic polymer resin to allow high volume production at low manufacturing costs. Suitable polymer will produce a durable part such that the elongate member 33 may be bent without breaking. Polymers with a minimum elongation at break of 100% are preferred. In addition, the polymer will typically allow a solvent (which is used in the antimicrobial coating process) to wet the surface evenly until the solvent evaporates, and the antimicrobial agent should adhere well to the surface such that the coating does not flake or fall off during handling. Various polymer materials may be used that meet these requirements, such as polyester, nylon, polyetherimide, polypropylene, polyvinyl chloride or other similar materials. Alternatively, the elongate member 33 may be manufactured using a dissolvable material which is impregnated with an antimicrobial agent, thus the antimicrobial is released into the solution when the elongate member 33 dissolves.


Portions of the cap 20 are typically coated and/or impregnated with an antimicrobial agent. In one embodiment, the antimicrobial agent is applied as a coating, with different amounts optionally applied to the elongate member 33, the male luer 31, and the cap threads 41. The antimicrobial agent can also be incorporated within the bulk polymer material, but coating the surface is preferred because surface coatings can generally be released into solution more rapidly than bulk agents; additionally surface coatings tend to require less overall antimicrobial agent than bulk agents because the antimicrobial agent on the surface is more readily dissolved. In some implementations a combination of surface coatings and incorporation into bulk polymer materials is used.


Suitable methods of coating the cap 20 are spraying and dipping, with spray coating being desirable because the amount of antimicrobial agent applied to each region (elongate member 33, male luer 33, and cap threads 41) can more easily be adjusted without affecting the amount located on other regions.



FIG. 3B shows a cross section of a cap 20 made in accordance with an embodiment of the invention. The length and diameter of the elongate member 33 is sized to fit into a medical device. In the embodiment described herein, the catheter is a hemodialysis catheter. The male lure 31 and the cap threads 41 can be manufactured in accordance with the International Organization for Standardization standard ISO 594-2:1998(E) to be compatible with all hemodialysis catheters which are made according to the standard.



FIG. 4A depicts a hemodialysis catheter 70 for use in conjunction with an embodiment of invention, and is shown with an arterial cap 20′ in the arterial hub 72′, and a venous cap 20″ in the venous hub 72″. When used with a hemodialysis patient, the two-lumen tube 87 is partially tunneled below the patient's skin, from the upper chest to the jugular vein. The two-lumen tube 72″ enters the jugular vein and continues until the catheter tip 89 is in the region of the right atrium of the heart. The arterial lumen 88′ runs inside the catheter 70 from the arterial hub 72′ until exiting at the catheter tip 89. The venous lumen 88″, similarly, runs inside the catheter 70 until it exits near the catheter tip 89. If bacteria or fungus are in either or both lumens 88′, 88″, these infection-causing organisms may enter the bloodstream and result in a systemic bloodstream infection, and therefore prevention of the entry and growth of microorganisms into the catheter 70 is important. The catheter contains a junction 86, where the extension tubes 80 transition from two tubes with two lumens into one tube with two lumens; the two lumens 88′, 88″ run the entire length of the catheter 70, from hub 72′, 72″ to catheter tip 89 without fluidly connecting with the other lumen. The arterial hub 72′ is attached to the proximal end of one extension tube 80, and the venous hub 72″ is attached to the proximal end of the other extension tube 80. In the depicted embodiment, a clamp 84 is positioned on each of the extension tubes 80, allowing the flow in the lumen to be blocked or opened. In practice, the clamps 84 are closed except during a dialysis session or other transferring of fluids within the catheter 70. The clamps 84 are typically repositioned each time the clamps 84 are opened in order to minimize the risk of damaging the extension tube 80 through multiple clamping in the same location.


In reference to FIG. 4B, the clamp 84 is shown located in close proximity to the hub 72. The clamp 84, when closed, creates a pinch point 85 which blocks the fluid flow in the lumen. Preferably the elongate member 33 will be short enough to ensure that the clamp 84 does not clamp onto the elongate member. In addition, the elongate member 33 must possess a small enough diameter to ensure that it can physically fit within the hub lumen 79. In embodiments where the elongate member 33 is long enough to enter the extension tube 80, the diameter of the extension tube must also fit within the extension tube lumen 82. The elongate member 33 should preferably be stiff enough to allow for insertion into the hub 72 without requiring sheaths, tubes or other insertion aids.


The surface area of the elongate member 33 should be large enough to allow for the desired amount of antimicrobial agent to be coated on the surface using spraying or dipping operations (or other application methods, including incorporation directly into the elongate member). The surface area is generally sized to produce an acceptable dissolution rate such that the antimicrobial agent enters the lock solution 90 at an acceptable rate and dosage. It is desirable for the antimicrobial agent to reach an effective level within an hour of the cap 20 being inserted into the catheter 70.


If the elongate member extends into the pinch point 85 of the clamp 84, it can potentially cause damage or leaking of the lock solution 90. Therefore the length of the elongate member 33 should be sufficiently short to ensure that it does not reach the pinch point 85 of the clamp 84. Suitable diameters for the elongate member 33 include 1.0 mm to 2.0 mm; and 1.7 mm to 1.9 mm. A suitable length includes less than 20 mm for the elongate member 33, alternatively less than 30 mm, less than 40 mm, or less than 10 mm. A particularly desirable length is 17 mm to 19 mm, but can vary for use with various catheters.


In reference to FIG. 4C, an embodiment is depicted showing the end section view A-A as indicated in FIG. 4B, the cap 20 is shown fully inserted into the catheter hub 72. When fully inserted, the male luer 31 contacts the female luer 75 to create a fluid tight seal. The cap threads 41 engage the catheter threads 78 to retain the cap 20 on the hub 72. However, after the cap 20 is fully inserted into the hub 72, a void 94 is present between the retaining ring 40 and the hub 72. This void 94 can be a pathway for pathogenic organisms to travel along, thus allowing contamination of the hub surfaces with pathogenic organisms in the region between the retaining ring 40 and the hub 72. In order to reduce the incidence of catheter-related bloodstream infections, it is desirable to reduce or eliminate the number of pathogenic organisms in this region.


Referring now to FIG. 5A to 5C, various stages of installation of cap 20 are shown, wherein the insertion of the cap (with an elongate member) results in the flow of an anti-microbial containing liquid out the end of the catheter hub to kill microorganisms that would otherwise potentially intrude into the hub and then the catheter lumen. In FIG. 5A, the cap 20 is shown immediately prior to being inserted into the hub 72 of a catheter 70. Within the hub lumen 79 is a liquid locking solution 90, the most proximal portion of which forms a meniscus 92. The locking solution for hemodialysis catheters is most often heparinized saline (100 IU/ml to 5000 IU/ml of heparin), sodium citrate solution (typically 4% sodium citrate), or saline. Patient care technicians and nurses are trained to keep the meniscus 92 at the proximal end 74 of the hub 72. However, it is not unusual for the meniscus to fall several millimeters within the hub lumen 79. The antimicrobial agent must produce the desired effect in any of the standard lock solutions. In practice, the clamp 84 remains closed (producing a pinch point 85) unless fluids are being transferred through the catheter 70; this is standard practice because it decreases the risk of introducing an air embolus into the patient's bloodstream through catheter 70.


In reference to FIG. 5B, the elongate member 33 is shown partially inserted into the hub lumen 79. The elongate member 33 displaces lock solution 90, which results in the meniscus 92 being pushed out of the lumen 90 and onto the end face 76 of the hub 70. Eventually, as the cap 20 continues to be inserted, the meniscus 92 (and lock solution 79) will travel over the catheter threads 78.


Next, referring to FIG. 5C, the cap 20 is shown fully inserted into the catheter 70. In this embodiment, the meniscus 92 travels beyond the void 94, completely filling the void 94 with lock solution. The lock solution causes the antimicrobial agent to dissolve, resulting in a transfer of antimicrobial agent from one or more of the coated parts (the elongate member 33, the male luer 31, and cap threads 41) into the solution. In addition, insertion of the elongate member into the locking solution further causes a transfer of antimicrobial agent to the previously uncoated parts such as the wall defining the inner hub lumen 79 and extension lumen 82, the female luer 75, the end face 76, and the catheter threads 78. Within several hours the solution within the void 94 may dry. In this manner an antimicrobial coating becomes transferred to the catheter threads 78 and the end face 76, resulting in an enhanced ability to kill any organisms on the catheter threads 78 and the end face 76, even if the organisms contaminate the surfaces after the solution dries. In practice, the void is often times infiltrated with sweat that contains organisms. In this scenario the dried antimicrobial agent becomes hydrated by the sweat, killing organisms that may be present in the sweat. Furthermore, the catheter threads 78 and the end face 76 become replenished with antimicrobial agent every time a new cap 20 is inserted. In current practice, a new cap is used after every dialysis session. The ability of the cap 20 to replenish the antimicrobial agent on a catheter 70, into a targeted location with a high risk of serving as a microorganism source, overcomes a significant shortcoming of antimicrobial coated catheters in which the antimicrobial agent wears off with use or is only applied to the interior of the catheter. A desirable amount of antimicrobial agent on the catheter threads 78 is 20 μg to 2 mg, alternatively 200 μg to 1.5 mg, and desirably 500 μg to 1.2 mg of chlorhexidine acetate. However, it will be understood that different levels can also be achieved with success.


The male luer 31 makes contact with the female luer 75 to create a fluid tight seal. These parts are typically manufactured in accordance with the International Organization for Standardization standard ISO 594-2:1998(E) in order to ensure proper sealing and intermateability. However, the junction between the male luer 31 and the female luer 75 is not fluid tight along the entire length of the interface. Some manufacturers of medical device hubs intentionally manufacture their female luers such that the male luer contacts the female luer near the male luer end face. This is done in order to reduce the risk of the splitting the hub. However, the unintended consequence is that proximal end of the luer interface allows for the potential infiltration of organisms. Once the organisms are present, they may be pushed further into hub lumen 79 by current caps (or other devices) the next time a cap (or other device) is inserted. Once the organisms are within the hub lumen (distal to the male luer) they can multiply, resulting in planktonic and sessile organisms, and eventually a biofilm. This problem can be countered by placing an antimicrobial agent along the male luer 31. The antimicrobial agent kills organisms that may be or become present along the female luer 75 before the organisms have a chance to be pushed into the hub lumen 79 or further multiply. Even with these protective measures, there is still a possibility that some organisms can make it beyond the female luer 75. To overcome that potential shortcoming, the preferred embodiment also contains antimicrobial on the elongate member 33, which dissolves or elutes into the lock solution 90, to kill organisms in the hub lumen.


The minimum amount of antimicrobial agent on elongate member 33 was determined through laboratory testing in which elongate members were placed into catheters under a variety of lock solutions and challenge organisms. The type of lock solution was varied among saline, heparinized-saline, 4% sodium citrate solution, and human serum. A variety of challenge organisms were used, such as Candida albicans, Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli. Testing performed by the inventors showed a dose response; the more chlorhexidine acetate contained on the elongate member 33, the more organisms that are killed in the catheter 70.


The maximum amount of antimicrobial agent that is placed on each of the cap's surfaces was developed by first reviewing how much antimicrobial is safe for the patient and then comparing that to how much antimicrobial agent the patient can potentially be exposed to by each of the cap's 20 surfaces that contain antimicrobial agent (elongate member 33, male luer 31, and cap threads 41). The amount of antimicrobial that is safe for the patient was determined by reviewing published information on levels (especially bloodstream levels) that are generally regarded as safe for patients.


Testing was conducted in order to derive how much antimicrobial agent the patient can potentially be exposed to from cap 20. The testing was designed to determine the transfer efficiency of antimicrobial agent from each applicable component (elongate member 33, male luer 31, and cap threads 41) to the bloodstream. In order to determine the potential bloodstream level, consideration was given for potential patient exposure that could occur under a variety of conditions, including unusual use or misuse (such as injecting the lock solution into the patient's bloodstream instead of aspirating the solution). The potential patient exposure was determined for each component individually and for the entire cap 20.


The minimum amount of antimicrobial agent on the elongate member 33 is the amount required to obtain an acceptable reduction (also referred to as kill) of infection causing organisms. The volume of solution that the antimicrobial agent dissolves into is important to understand because the more solution that is present, the more dilute the antimicrobial agent can become. The confined volume of lock solution 90 within the lumen is defined by the location of the meniscus 92, the geometry of the hub lumen 79, the geometry of the extension lumen 82, and the location of the pinch point 85. Since each of these items may vary, there is a considerable range of confined fluid volumes that is possible. After accounting for the design variations of existing hemodialysis catheters, it is evident that the preferred embodiment needs to produce a therapeutic concentration of antimicrobial agent within a 0.7 ml volume. In one embodiment, the amount of chlorhexidine acetate on the elongate member 33 is greater is 10 μg to 5 mg. In an alternative embodiment, the amount of chlorhexidine acetate is 100 μg to 2 gm. In yet another embodiment, the elongate member contains 250 μg to 550 μg.


These embodiments can produce broad spectrum kill of the target organisms, yet result in a low enough dose of chlorhexidine acetate that, even if all of the lock solution containing chlorhexidine acetate is injected directly into the bloodstream, it will result in a bloodstream level that remains at safe levels.


In reference to FIG. 6, a cap 20 is shown fully inserted into a catheter 70. This embodiment contains an end seal 47. The end seal 47 provides additional benefit by preventing organisms from entering the distal opening 44 thereby preventing the organisms from subsequently progressing through the void 94 where they could then contaminate the end face 76 and female luer 75. Reducing the number of organisms that can enter distal opening 44 can further reduce the incidence of CRBSI. The end seal 47 can be made of an elastic material so it is capable of stretching over the catheter threads 78 while the cap 20 is being inserted, and it should also conform to the shape of the hub 72 so it creates an effective organism-blocking seal. The end seal 47 is preferably made of a durable material so it does not rip or tear. It should be thin and flexible enough so it is easy to insert. The end seal 44 allows fluid to escape as the cap 20 is being inserted onto the catheter 70, yet acts as a barrier to substantially retain the lock solution that was pushed into the void 94 during insertion. In the preferred embodiment, this is accomplished by keeping the wall thin and flexible enough to allow the increased pressure to escape where the end seal 47 contacts the hub 72. In an example embodiment, the end seal 47 is over molded onto the retaining ring 40. A thermoplastic elastomer, such as Exxon Mobile's Santoprene, can be used. However, other materials, such as silicone, may be suitable. In an embodiment, the end seal 47 is in the range of 0.005 inch to 0.100 inch thick. In another embodiment, the end seal 47 is in the range of 0.010 inches to 0.040 inches thick.


The lock solution in void 94 also acts as a barrier to organism infiltration. It contains antimicrobial agent that has dissolved from the cap 20 surfaces (elongate member 33, male luer 31, and catheter threads 78). In a desired embodiment, the antimicrobial levels result in an antimicrobial concentration that is highly effectively at killing a broad spectrum of organisms.


In reference to FIG. 7, the cap 20 is shown fully in cross section inserted into a catheter 70. This embodiment can contain a thread seal 48 that is impregnated with an antimicrobial agent in the same amount as (and in place of) the amount on the cap threads 41 of FIG. 5C. The thread seal 48 provides additional benefit by preventing organisms from entering the distal opening 44 and, since the void 94 is now occupied with the thread seal 48, it prevents organisms from progressing through the occupied void 94 where they would otherwise contaminate the end face 76 and female luer 75. Reducing the number of organism that can enter distal opening 44 can further reduce the incidence of CRBSI. The thread seal 47′ is preferably made of an elastic foam material that is capable of conforming around the catheter threads 78 while the cap 20 is being inserted, and it should also conform to the shape of the hub 72 so it creates an effective organism-blocking seal. The most distal end of the thread seal 47′ often has a thin layer of closed polyurethane to help reduce evaporation of the solution. The thread seal 48 is desirably made of a durable material so it does not rip or tear. One aspect of the thread seal 48 is that it allows fluid to escape as the cap 20 is being inserted into the catheter 70, yet it acts as a barrier to substantially retain the lock solution that was pushed into the filled void 94 during insertion. In the preferred embodiment, this is accomplished by manufacturing the thread seal 48 out of an open cell hydrophilic medical polyurethane foam and having a thin layer of solid polyurethane at the most distal end of the thread seal 47′. The distal end of the thread seal 47′ is desirably thin, such as 0.001 to 0.020 inch, and flexible enough to allow the increased pressure to escape where it contacts the hub 72. The thread seal 48 and the antimicrobial agent incorporated therein also acts as a barrier to organism infiltration. It contains antimicrobial agent that has dissolved from the cap 20 surfaces (such as one or more of the elongate member 33, male luer 31, and thread shield 48).



FIG. 8A refers to an alternative embodiment of the cap 20 which possesses a novel tip 34′ that has a diameter that is smaller than the diameter of the hub lumen 79 when the tip 34′ is inserted into a catheter 70, but subsequently expands in size. This embodiment is especially beneficial when the cap 20 is used in a catheter 70 that does not have a clamp for confining the solution, or in cases where it is desirable to further limit the amount of antimicrobial agent required (less is required because the volume of confined solution is lower). The tip 34′ is shown in FIG. 8A in its unswollen state during insertion in order to allow the elongate member to be easily inserted and to minimize its potential for pushing organisms distal to the tip 34′ by a plowing action. The elongate member in a preferred embodiment remains sufficiently stiff while it is being inserted onto into the catheter 70 and it does not require any extra parts or aids for insertion.



FIG. 8B refers to an alternative embodiment of the cap 20 as described in reference to FIG. 8A, except the tip 34″ is shown in its swollen state. In the depicted embodiment the diameter of the tip 34″ is equal to the diameter of the hub lumen 79 in its swollen state; the tip 34″ preferably conforms to the surface of the hub lumen 79 as it swells. The swollen tip 34″ is beneficial for confining the solution, or in cases where it is desirable to further limit the amount of antimicrobial agent required (less is required because the volume of confined solution is lower). The tip 34″ is removable from the hub lumen 79 when reasonable removal force is applied to the cap 20. This is achieved by choosing the material and size the tip 34″ such that, when it is in its swollen state, the normal force that the tip 34″ applies to the wall of the hub lumen 79 is sufficiently low to allow acceptable removal force. In an example embodiment the diameter of the unswollen tip 34′ (reference FIG. 8A) is 0.060 inches, the diameter of the confined swollen tip 34″ is 0.098 inches (the same diameter as the hub lumen 79), and the diameter of the unconfined swollen tip is 0.110 inches when placed in normal saline. However, these diameters will vary to match the diameter of the device that the cap is being used with. The preferred unconfined swollen diameter (defined as the diameter the tip will expand to if it is not confined by a lumen wall) is slightly larger than the diameter of the hub lumen 79. An additional beneficial effect of the swollen tip is that it produces a scrubbing effect on the catheter wall that will physically remove organisms adhered to the interior wall section upon removing the cap from the catheter.


In one embodiment, the tip is manufactured to produce anisotropic swelling, such that the diameter increases but the length does not substantially increase. In another embodiment the entire elongate member is made of an anisotropically swelling material such that the diameter increases but the length does not substantially increase.


In one implementation, the material of the tip 34″ consists of a swellable polyurethane, such as Lubrizol TG-500, that has been heat fused onto the elongate member 33 which is a non-swell able polyurethane, such as Lubrizol 1065D. These materials provide acceptable swelling, durability, strength and flexibility. The elongate member is coated with antimicrobial agent in an amount sufficient to obtain an adequate antimicrobial effect, yet low enough to remain safe for the patient.


In reference to FIG. 9, this alternative embodiment of the invention is useful in applications where an elongate member will not fit into a catheter because the internal diameter of the catheter is too small, such as with peripherally inserted central catheters (PICC). In this embodiment, the cap 20 does not contain an elongate member as in previous embodiments. Instead, the cap has a luer end face 38 that is flat or slightly recessed, and the end face 38 is coated with an antimicrobial layer 39. The preferred type and amount of antimicrobial in the antimicrobial layer 39 is the same as the elongate member (reference the description for FIG. 5C). Similarly, the male luer 31 and the catheter threads 78 preferably contain the same type and amount of antimicrobial agent as the other embodiments. The antimicrobial agent is preferably applied to the end face using a precision metering pump with 15% chlorhexidine acetate in a methanol solution. Other solvent, percentages and coating methods may be used.


In reference to FIG. 10A, an alternative embodiment of the invention is shown in which the cap 20′″ is manufactured from two components, a retaining ring 40′″ and an insert 30. It is desirable to have a highly controlled and repeatable amount of antimicrobial agent placed upon the desired regions of the cap 20′″. Itis also preferred to have different amounts of antimicrobial on the different regions. It becomes easier to coat each region of the cap 20′″ if the retaining ring 40′″ is not blocking access to the male luer 31 (and vice versa). This is accomplished by manufacturing the cap 20′″ as two separate pieces, the retaining ring 40′″ and the insert 30. The preferred amount of antimicrobial agent within each region remains the same as presented above (refer to Ref. SC).


In reference to FIG. 10B, the insert 30 is coated with chlorhexidine acetate the elongate member 33 and along the male luer 31. The plate 32, cap shoulder 36, and the retaining flange 37 do not require coating. The two parts that are coated are the male luer 31 and the elongate member 33; contain the same amount of antimicrobial as referenced above.


In reference to FIG. 10C, the plate 32 at the proximal end of the insert 30 has a hole 35. The purpose of this hole 35 is to improve manufacturing. For instance, the hole 35 creates a convenient feature that can be used for holding and rotating the insert 30 to allow the part to be spun as it is being coated. The hole 35 also reduces shrinkage in the injected molded insert 30 by creating more uniform wall thickness.


In reference to FIG. 10D, the retaining ring 40′″ is a commercially available product from Value Plastics, Inc. with the exception that the cap threads 41 are coated with an antimicrobial agent. The antimicrobial agent in the preferred embodiment is chlorhexidine acetate in the same preferred amount as disclosed above. The retaining ring 40′″ is readily coated using a spraying technique where the retaining ring 40′″ is spun along its axis, and the antimicrobial is sprayed directly onto the cap threads. As an alternative coating method, the cap threads 41 were coated by filling the internal portion of the ring 40′″ with 7% chlorhexidine methanol solution, subsequently draining the solution and allowing the parts to dry. This resulted in approximately 1.2 mg of chlorhexidine acetate on the cap threads 41. The dose of antimicrobial may be adjusted by adjusting the solution concentration.


In reference to FIG. 10E, the retaining shoulder 46 comes into contact with the insert (not shown) when the insert is inserted inside the retaining ring 40′″. The proximal opening 43 is used to initially receive the insert 30 (refer to FIG. 10F) during assembly. The retaining fingers 45 are designed to retain the retaining ring 40′″ onto the insert, as will be described in the reference below. The ring shoulder 46 helps secure the insert.


In reference to FIG. 10F, the preferred embodiment for the two-piece cap 20′″ is shown. The insert 30 is shown fully inserted into the retaining ring 40′″. The tip 34 was pushed through the proximal opening until retaining ring 40′″ bottomed out on the plate 32. The retaining fingers 45 are engaged with the retaining flange 37 to secure the retaining ring 40′″ on the insert 30.


It is desirable to have the retaining ring 40′″ not rotate freely on the insert 30. Instead, it is preferred to have the torque be greater than 0 pound-inches (lb-in) but less than 2.0 lb-in. In a more preferred embodiment, the torque is between 0.1 lb-in and 1.25 lb-in. In the most preferred embodiment, the torque is between 0.2 lb-in and 0.5 lb-in. By controlling the diameter of the insert shoulder 36 such that it interferes with ring shoulder 46, the torque can be controlled as shown in the graph depicted in FIG. 11.


It is preferred to keep the interference between the ring shoulder 46 and the insert shoulder 36 within the range of 0.002 inch and 0.009 inch in order to keep the rotation torque within an acceptable range.


Antimicrobial Agent


An antimicrobial agent can be incorporated both into the elongate member material and/or on the elongate member surface of the present invention. In a preferred embodiment, the antimicrobial agent is chlorhexidine acetate; approximately 250 μg of chlorhexidine acetate is coated onto a 17 mm long×1.9 mm diameter rod-shaped elongate member, resulting in a chlorhexidine acetate layer approximately 2 μm thick along. The luer portion is coated with 50 μg of chlorhexidine acetate, resulting in a layer that is approximately 0.4 μm thick. It is also possible to inject an antimicrobial agent into the catheter using a syringe, or to deliver antimicrobial agents by way of the connector tip cavity (dry dissolvable amount, applicable for Citrate or others requiring large amounts of antimicrobial agent).


The elongate member has the added benefit of displacing fluid from within the catheter as it is inserted, transferring the solution to the outer proximal region of the catheter connector (end face and treads). Antimicrobial agent from the cap dissolves into the displaced fluid, and thereby disinfecting the proximal end of the connector. Furthermore, when the fluid dries, it deposits a coating of chlorhexidine acetate or other appropriate antimicrobial on the connector as described above. As an alternative to using the elongate member, is the chlorhexidine acetate or other antimicrobial agent may be delivered by a coating on a luer tip (such as 250 μg of chlorhexidine acetate in a layer that is approximately 20 μm thick).


An antimicrobial composition is located on the outer surface of the elongate member, the male luer connector, and the retaining ring The antimicrobial composition elutes from the elongate member after insertion of the elongate member/rod into a catheter. When the system is inserted into the catheter, the antimicrobial agent dissolves into the fluid contained within the catheter, thus coming into contact with infectious organisms that might be present along the connector surfaces and lumen wall of the catheter or in solution. Additionally, the antimicrobial agent and any infectious organisms are confined together in the small space along within the catheter. Another benefit is that the confining action of the clamp traps any infectious microbes within the catheter and prevents them from being transmitted to other areas of the catheter or to the body to prevent a systemic infection.


The antimicrobial agents should kill and/or provide stasis of Gram-positive and Gram-negative bacteria and fungi. The agents may also have efficacy at killing organisms within an established biofilm and/or degrading the extracellular matrix of the film. However, this is not necessary for the invention to be beneficial because the invention is designed to kill organisms before they have an opportunity to form a biofilm. The preferred antimicrobial agent is chlorhexidine acetate, also known as chlorhexidine diacetate. Other compounds containing chlorhexidine may be used (such as chlorhexidine free base, chlorhexidine gluconate and chlorhexidine with dyes). Chlorhexidine acetate has an advantage over chlorhexidine gluconate because the risks associated with para chloroaniline may be minimized. Other suitable antimicrobial agents may also be used. In general, the preferred antimicrobials are soluble in water, they have a history of clinical use with a demonstrated safety profile, they are antibiotic-free, they can be applied onto a medical device, and they can be subsequently dissolved into a composition having an effective concentration to inhibit growth of bacterial and fungal organisms. Suitable materials include tetrasodium ethylenediaminetetraacetic acid (tetrasodium EDTA), sodium citrate (yielding a concentration of 30% or higher), iodine, taurolidine, disodium EDTA, silver compounds (including silver nanoparticles and ions), silver sulfadiazine, and, triclosan.


While one particular drug or antimicrobial agent may provide relief from a wide range of challenging organisms that could potentially lead to catheter-related bloodstream infection, two or more agents may be used to increase efficacy against a broad range of infectious organisms (bacteria and fungi).


In particular, catheter-related infections arise from three broad classes of organisms: fungi, Gram-negative bacteria, and Gram-positive bacteria. If an antimicrobial agent can be identified that would abate one or two of these types of organisms, while this would certainly be beneficial, it would leave the patient vulnerable to the remaining type(s). By pairing agents with different modes of action, infections by an increased spectrum of organisms can be prevented. This synergy would likely lead to further decreases in catheter-related morbidity and mortality, lessening the impact of the implanted catheter on the patient's quality of life. The preferred combinations of antimicrobial agents are chlorhexidine acetate and EDTA, silver sulfadiazine and sodium dodecyl sulfate, and silver sulfadiazine and methylene blue.


Although treating, preventing, and eliminating infectious organisms for the prevention of infections is the primary use of the cap, ancillary benefits can also be envisioned which would involve incorporating additional agents. An antithrombotic agent eluting from the elongate member can be used to improve the action of the heparin used currently in the locking solution. An enzyme or agent which promoted degradation of the extra-cellular matrix of biofilm (generally composed of polysaccharides) could enable use of the cap for treatment as well as prevention.


In principle, antibiotics (rifampin, minocycline, etc.) can be incorporated into the cap or similar device and be as effective as non-antibiotic antimicrobials. However, continuous exposure to one antibiotic can lead to antibiotic resistant bacteria strains, for example, methicillin resistant S. aureus (MRSA). Therefore, the preferred embodiment uses an antimicrobial agent selected from the subset of those which are not antibiotics. If, for some reason, an antibiotic is used, the risk of developing antibiotic resistant strains of bacteria may be mitigated by preparing a second, complimentary, cap containing a different antibiotic. By using the two caps in an alternating fashion with successive dialysis treatments, infectious organisms that are resistant to one antibiotic may be killed by the other.


Experiments have been conducted to examine the performance of the preferred embodiment of the invention, which is called “Pursuit Vascular's ClearGuard HD” or the “ClearGuard HD”. These experiments demonstrate that the ClearGuard HD is effective at substantially reducing organisms within catheters as intended. Two of the experiments are highlighted below.


In an experiment conducted at Pursuit Vascular, coated caps were effective at consistently transferring more than 50 μg of chlorhexidine acetate (also referred to as chlorhexidine diacetate) onto the catheter's threads with a single connection. Such transfer provides the catheter with a means of further reducing infection-causing organisms which is replenished with every use of the invention. IO μg or more of chlorhexidine is effective at reducing bacteria and other infection-causing organisms at the threads, and further preventing the organisms from infiltrating the catheter's connector end face, luer and lumen. Chlorhexidine acetate has a wide safety profile when used outside the catheter where there is little risk of it entering the bloodstream. A preferred range of chlorhexidine on the cap threads is 100 μg to 2500 μg. 500 μg to 1200 μg is more preferred.


For instance, if using a chlorhexidine based antimicrobial, approximately 50 μg of chlorhexidine acetate can be effective in some embodiments. This was demonstrated in an experiment conducted at Pursuit Vascular in which 50 μg of chlorhexidine was coated on the cap's luer portion. The caps containing the coated luers killed all of the Candida albicans that were seeded within the catheter's luer region. Within the same experiment, the Candida albicans remained viable when uncoated caps were used. Greater than 5 μg chlorhexidine acetate on the luer region is effective; 10 μg to 300 μg is preferred, and 30 μg to 80 μg is most preferred.


Laboratory testing conducted for Pursuit Vascular, Inc. demonstrated that 250 μg of chlorhexidine acetate on the elongate member produces greater than a 10,000× reduction in number of infection-causing organisms when the cap is used in a standard hemodialysis catheters containing saline, heparin-saline, or saline with 4% sodium citrate. The safety profile of the invention can be enhanced by limiting the amount of chlorhexidine acetate available to enter the bloodstream, the preferred maximum amount of chlorhexidine acetate on the elongate member is 2000 μg, more preferred is 1000 μg, and most preferred is 350 μg.


Experiment 1

The objective of this experiment was to assess the antimicrobial effectiveness of Pursuit Vascular's ClearGuard HD device in the most difficult clinically-relevant model. Since the ClearGuard HD is intended to be placed in catheter hubs, but not extend into the extension tubing, the catheter model was chosen to be a female luer connector, extension tube and clamp. The total length of the female luer connector and the extension tubing was manufactured to maximize the length and volume that would be expected to be encountered clinically. Candida albicans (fungus) was chosen as the challenge microorganism, because in previous tests Candida albicans was shown to be the most challenging microorganism for the ClearGuard HD to eradicate. Candida albicans were added to three different lock solutions: heparin-serum, saline-serum, and SDB broth. These solutions represent the most relevant (and challenging) solutions that would be expected clinically. The catheters were filled with the lock solutions and Candida albicans, next the caps (either the ClearGuard HD or a standard cap) were secured, and then the catheters were incubated for approximately 46 hours to simulate the time between dialysis sessions. After incubation, the caps were removed and the lock solution was tested for the presence of organisms.


Experiment 1 results: The organism count is shown in FIG. 11 for ClearGuard HD caps and standard caps (shown as “with CGHD” and “without CGHD”, respectively).












Organism Count at Study End











With
Without
Organism


Solution
CGHD
CGHD
Reduction*





5000 IU/ml Hep-Saline
0.0E+00
3.6E+06
3.6E+06


with 25% Serum


Saline with 25% Serum
0.0E+00
3.8E+03
3.8E+03


SDB Broth
0.0E+00
7.7E+08
7.7E+08





*Actual reduction in organism count is likely higher than calculated in this test because no organisms survived in the CGHD arm of the study.






The antimicrobial effectiveness of the ClearGuard HD was assessed against Candida albicans, the microorganism which has been the most difficult to eradicate when tested in a clinically relevant catheter model containing the most challenging and clinically relevant fluids.


All test samples using the ClearGuard HD had complete kill of the Candida albicans. In comparison, all control samples demonstrated growth of the CA. Since no Candida albicans survived during the ClearGuard HD portion of the test, the actual Candida albicans reduction may be significantly higher (better) than the sensitivity of this test. The minimum reduction of Candida albicans, when using the ClearGuard HD in place of a standard cap, was shown to be:


a. 3.6×106 CFU/ml for Heparin with 25% Serum


b. 3.8×103 CFU/ml for Saline with 25% Serum


c. 7.7×108 CFU/ml for SDB Broth


This test demonstrates that the ClearGuard HD produces a significant reduction in Candida albicans within a clinically relevant catheter and with clinically solutions. Candida albicans was previously shown to be the most difficult organism to reduce of the other clinically relevant microorganisms tested, therefore concluding that the ClearGuard HD produces broad-spectrum reduction in clinically relevant microorganisms.


Experiment 2

The objective of this experiment was to assess the relative rate of microorganism contamination in hemodialysis catheter lumens when using the ClearGuard HD versus standard caps in a simulated clinical environment. This experiment was intended to examine the effectiveness of the ClearGuard HD at preventing microorganism contamination of hemodialysis catheter lumens (both proximal and distal to the extension tubing clamp), compared to standard caps in a simulated clinical environment. Growth media was used inside of the catheter instead of the standard locking solution in order to provide an extremely sensitive means of detecting whether any microorganisms entered inside the catheter.


The primary route for infections-causing microorganisms to enter and colonize a hemodialysis (HD) catheter is generally accepted to be through the catheter's hub. During clinical use, hemodialysis catheter hubs are routinely exposed to microorganisms because the catheter and hub lies against the patient's skin. All commercially available catheter caps are primarily designed to keep fluid inside the catheter lumen but they are not well designed for preventing microorganisms from reaching and colonizing catheter lumens.


In order to compare whether the rate of microorganism colonization is affected by cap type (ClearGuard HD versus standard cap), twenty identical catheters were affixed to clothing, in a manner that would keep the catheters in contact with human skin, which occurs during clinical use. The catheters were kept in contact with the skin for a maximum of 26 days. Once a catheter's lumen was determined to be contaminated, the catheter was allowed to be removed from the study. The test consisted of two arms: 1) the ClearGuard HD arm, and 2) the standard cap arm. Except for the cap type used, the two arms were identical in all other ways (i.e., identical catheters, solutions, handling, etc.).


The study was designed to mimic the hemodialysis clinical practice as closely as practical. The entire volume of lock solution, including the solution distal to the clamp, was included in the microbiological testing to ensure with high probability that if any microorganisms were present anywhere within the catheter that they would be detected. Standard microbiological techniques were used to test for the presence of organisms.


The number of catheters that remained free from microorganism contamination as time progressed is illustrated in FIG. 13 below. Within fourteen days, all catheters using standard caps had become contaminated, while none of the catheters using the ClearGuard HD had become contaminated throughout the full twenty-six days of the experiment.


This experiment showed that, when catheters were filled with a growth media, were worn to simulate actual patient end use and were subjected to a standard dialysis fluid exchange schedule, the catheters using standard caps became contaminated with microorganisms at a mean time to failure of 8.9 days, and all of these catheters (10 out of 10) became contaminated by 14 days. In comparison, none of the catheters using the ClearGuard HD (0 out of 10) became contaminated throughout the entire 26 day test. The ClearGuard HD performs significantly better than standard caps (the current standard of care) at reducing microorganism contamination inside of catheters in a simulated clinical environment. While the invention has been particularly shown and described as referenced to the embodiments thereof, those skilled in the art will understand that the foregoing and other changes in form and detail may be made therein without departing from the spirit and scope of the invention.

Claims
  • 1. A method of providing an antimicrobial cap that is configured to disinfect a medical connector or catheter when the antimicrobial cap is inserted into the medical connector or catheter, the method comprising: forming a proximal plate and an elongate rod as a single unit, wherein the elongate rod has a closed distal end;forming a retaining ring with a proximal opening, a distal opening configured to receive a catheter hub, and interior threads, the retaining ring being formed separately from the proximal plate and the elongate rod;spraying the retaining ring with a spraying solution comprising a spraying solvent and a soluble antimicrobial agent, thereby providing a dry soluble antimicrobial agent on the retaining ring;joining the retaining ring to the proximal plate and the elongate rod by inserting the elongate rod through the proximal opening in the retaining ring, such that an interior space is formed by interior surfaces of the retaining ring and the proximal plate, and the elongate rod extends distally from within the interior space to outside of the interior space; anddipping the elongate rod into a dipping solution comprising a dipping solvent and the soluble antimicrobial agent and, thereby providing a dry soluble antimicrobial agent on the elongate rod.
  • 2. The method of claim 1, wherein the retaining ring has a shoulder configured to secure the elongate rod.
  • 3. The method of claim 1, wherein the retaining ring has a shoulder configured to engage with a portion of the elongate rod to inhibit a rotation of the retaining ring relative to the elongate rod and/or the proximal plate.
  • 4. The method of claim 1, wherein the retaining ring has retaining fingers that engage with a retaining flange on the elongate rod to secure the retaining ring on the elongate rod.
  • 5. The method of claim 1, wherein the elongate rod is sized to fit within a standard connector on a hemodialysis catheter when the antimicrobial cap is attached to the connector, wherein the standard connector is one made according to ISO 594-2:1998(E).
  • 6. The method of claim 1, wherein at least the elongate rod is retained by the retaining ring with one or more retaining tabs that are configured to engage a recess in the elongate rod.
  • 7. The method of claim 1, wherein the elongate rod is dipped into the dipping solution before joining the retaining ring to the proximal plate and the elongate rod.
  • 8. The method of claim 1, wherein the elongate rod is dipped into the dipping solution after joining the retaining ring to the proximal plate and the elongate rod.
  • 9. The method of claim 1, wherein the elongate rod is solid.
  • 10. The method of claim 1, wherein the elongate rod includes a tapered portion.
  • 11. The method of claim 10, wherein the tapered portion is shaped as a male luer.
  • 12. The method of claim 11, wherein the male luer portion of the elongate rod is shorter than the remainder of the elongate rod.
  • 13. A method of providing an antimicrobial cap to be inserted by a user into a catheter hub, the method of providing comprising: forming a proximal plate and an elongate rod as a single unit;forming a retaining ring with interior threads separately from the proximal plate and elongate rod;dipping the elongate rod in a solution with a soluble antimicrobial agent before joining the retaining ring to the proximal plate and the elongate rod;spraying the soluble antimicrobial agent onto the retaining ring before joining the retaining ring to the proximal plate and the elongate rod, such that an amount of the antimicrobial agent is applied to the interior threads of the retaining ring; andbefore inserting the elongate rod into the catheter hub, joining the retaining ring to the proximal plate and the elongate rod such that an interior space is formed by interior surfaces of the retaining ring and the proximal plate, and the elongate rod extends distally from within the interior space to outside of the interior space.
  • 14. The method of claim 13, wherein the elongate rod is sized to fit within a connector for a hemodialysis catheter.
  • 15. The method of claim 13, wherein applying the soluble antimicrobial agent to the retaining ring comprises applying an evaporating solvent and the soluble antimicrobial agent to the retaining ring.
  • 16. The method of claim 13, wherein applying the soluble antimicrobial agent to the elongate rod comprises applying an evaporating solvent and the soluble antimicrobial agent to the elongate rod.
  • 17. The method of claim 13, wherein the retaining ring has a shoulder configured to secure the elongate rod.
  • 18. The method of claim 13, wherein the retaining ring has a shoulder configured to engage with a portion of the elongate rod to inhibit a rotation of the retaining ring relative to the elongate rod and/or the proximal plate.
  • 19. The method of claim 13, wherein the retaining ring has retaining fingers that engage with a retaining flange on the elongate rod to secure the retaining ring on the elongate rod.
  • 20. The method of claim 13, wherein at least the elongate rod is retained by the retaining ring with one or more retaining tabs that are configured to engage a recess in the elongate rod.
  • 21. The method of claim 13, wherein the elongate rod has a closed distal end.
  • 22. A method of using the antimicrobial cap provided in claim 13, comprising inserting the elongate rod into a catheter hub.
  • 23. A method of providing an antimicrobial cap to be inserted by a user into a catheter, the method of providing the antimicrobial cap comprising: forming a proximal plate and an elongate rod having a closed distal end, wherein the elongate rod is affixed to the proximal plate;dipping the elongate rod in a solution with a soluble antimicrobial agent to provide the soluble antimicrobial agent in a dried form on the elongate rod prior to packaging the antimicrobial cap in a packaging material and prior to use of the antimicrobial cap for disinfecting a catheter;forming a threaded retaining ring separately from the proximal plate and elongate rod;applying the solution comprising the soluble antimicrobial agent to an interior surface of the threaded retaining ring before joining the threaded retaining ring to the proximal plate;joining the threaded retaining ring to the proximal plate and the elongate rod such that the elongate rod extends distally outside of an interior space created by the proximal plate and retaining ring;wherein: the proximal plate is affixed to the threaded retaining ring before the antimicrobial cap is packaged in the packaging material;the elongate rod is sized to be insertable into and contained within a connector of the catheter when the threaded retaining ring is attached to the connector;the elongate rod comprises a tapered portion shaped as a male luer and a projection extending axially from the tapered portion, the projection having a smaller cross-section than the tapered portion; andat least the elongate rod is retained by the threaded retaining ring with one or more retaining tabs that are configured to engage a recess in the elongate rod;packaging the antimicrobial cap in the packaging material.
  • 24. The method of claim 23, wherein the proximal plate and the elongate rod are formed together as a single unit.
  • 25. The method of claim 23, wherein the evaporating solvent and the soluble antimicrobial agent are applied to the elongate rod before joining the retaining ring to the proximal plate and the elongate rod.
  • 26. The method of claim 23, wherein the evaporating solvent and the soluble antimicrobial agent are applied to the elongate rod after joining the retaining ring to the proximal plate and the elongate rod.
  • 27. The method of claim 23, wherein the solution comprising the antimicrobial agent comprises an evaporating solvent and the soluble antimicrobial agent.
  • 28. A method of using the antimicrobial cap provided in claim 23, further comprising using the antimicrobial cap for disinfecting a catheter.
Parent Case Info

This application is a continuation of U.S. Utility application Ser. No. 15/850,351, filed Dec. 21, 2017, which is a continuation of U.S. Utility application Ser. No. 13/547,572, filed Jul. 12, 2012 (now U.S. Pat. No. 9,849,276), which claims the benefit of U.S. Provisional Application No. 61/506,979, filed Jul. 12, 2011, the contents of which are herein incorporated by reference.

US Referenced Citations (951)
Number Name Date Kind
382297 Fry May 1888 A
559697 Tiugti et al. May 1896 A
877946 Overton Feb 1908 A
975939 William et al. Nov 1910 A
1445642 O'Neill Feb 1923 A
1793068 Dickinson Feb 1931 A
2098340 Henahan Nov 1937 A
2436297 Guarnaschelli Feb 1948 A
2457052 Le Clair Dec 1948 A
2771644 Martin Nov 1956 A
2842382 Franck Jul 1958 A
2968497 Treleman Jan 1961 A
3127892 Bellamy, Jr. et al. Apr 1964 A
3262448 Ring et al. Jul 1966 A
3270743 Gingras Sep 1966 A
3301392 Eddingfield Jan 1967 A
3304047 Martin Feb 1967 A
3334860 Bolton, Jr. Aug 1967 A
3411665 Blum Nov 1968 A
3484121 Quinton Dec 1969 A
3485416 Fohrman Dec 1969 A
3538950 Porteners Nov 1970 A
3595241 Sheridan Jul 1971 A
3604582 Boudin Sep 1971 A
3707972 Villari et al. Jan 1973 A
3729031 Baldwin Apr 1973 A
3882858 Klemm May 1975 A
3977401 Pike Aug 1976 A
3977517 Kadlecik et al. Aug 1976 A
3987930 Fuson Oct 1976 A
3993066 Virag Nov 1976 A
4041934 Genese Aug 1977 A
4046889 Ondetti et al. Sep 1977 A
4052511 Cushman et al. Oct 1977 A
4053052 Jasper Oct 1977 A
4053651 Ondetti et al. Oct 1977 A
4066067 Micheli Jan 1978 A
4076285 Martinez Feb 1978 A
4078686 Karesh et al. Mar 1978 A
4079738 Dunn et al. Mar 1978 A
4095810 Kulle Jun 1978 A
4113751 Arnold Sep 1978 A
4121585 Becker, Jr. Oct 1978 A
4129571 Ondetti et al. Dec 1978 A
4133441 Mittleman et al. Jan 1979 A
4143853 Abramson Mar 1979 A
4150845 Kopacz et al. Apr 1979 A
4154840 Ondetti et al. May 1979 A
4154960 Ondetti et al. May 1979 A
4192443 McLaren Mar 1980 A
4194509 Pickering et al. Mar 1980 A
4195632 Parker et al. Apr 1980 A
4233982 Bauer et al. Nov 1980 A
4243035 Barrett Jan 1981 A
4245635 Kontos Jan 1981 A
4264664 Kunz Apr 1981 A
4280632 Yuhara Jul 1981 A
4294370 Toeppen Oct 1981 A
4317446 Ambrosio et al. Mar 1982 A
4324239 Gordon et al. Apr 1982 A
4325368 Kaemmerer Apr 1982 A
4331783 Stoy May 1982 A
4334551 Pfister Jun 1982 A
4335756 Sharp et al. Jun 1982 A
4337327 Stoy Jun 1982 A
4340049 Munsch Jul 1982 A
4340052 Dennehey et al. Jul 1982 A
4354490 Rogers Oct 1982 A
4369294 Stoy Jan 1983 A
4370451 Stoy Jan 1983 A
4379458 Bauer et al. Apr 1983 A
4379874 Stoy Apr 1983 A
4384589 Morris May 1983 A
4387879 Tauschinski Jun 1983 A
4390016 Riess Jun 1983 A
4397442 Larkin Aug 1983 A
4402691 Rosenthal et al. Sep 1983 A
4405312 Gross et al. Sep 1983 A
4417890 Dennehey et al. Nov 1983 A
4420589 Stoy Dec 1983 A
4427126 Ostrowsky Jan 1984 A
4430073 Bemis et al. Feb 1984 A
4432764 Lopez Feb 1984 A
4432766 Bellotti et al. Feb 1984 A
4436125 Blenkush Mar 1984 A
4439179 Lueders et al. Mar 1984 A
4439184 Wheeler Mar 1984 A
4440207 Genatempo et al. Apr 1984 A
4444310 Odell Apr 1984 A
4446967 Halkyard May 1984 A
4447419 Quadro May 1984 A
4457749 Bellotti et al. Jul 1984 A
4461368 Plourde Jul 1984 A
4461896 Portlock Jul 1984 A
4480940 Woodruff Nov 1984 A
4507111 Gordon et al. Mar 1985 A
4511359 Vaillancourt Apr 1985 A
4534764 Mittleman et al. Aug 1985 A
4538836 Kruetten Sep 1985 A
4559043 Whitehouse Dec 1985 A
4568675 Bush et al. Feb 1986 A
4585758 Huang et al. Apr 1986 A
4602042 Chantler et al. Jul 1986 A
4610469 Wolff-Mooij Sep 1986 A
4619640 Potolsky et al. Oct 1986 A
4623332 Lindmayer et al. Nov 1986 A
4624664 Peluso et al. Nov 1986 A
4626545 Taub Dec 1986 A
4629159 Wellenstam Dec 1986 A
4631188 Stoy Dec 1986 A
4642091 Richmond Feb 1987 A
4660803 Johnston et al. Apr 1987 A
4662878 Lindmayer May 1987 A
4666057 Come et al. May 1987 A
4666427 Larsson et al. May 1987 A
4671306 Spector Jun 1987 A
4671412 Gatten Jun 1987 A
4681886 Haugwitz et al. Jul 1987 A
4692458 Ryan et al. Sep 1987 A
4692459 Ryan et al. Sep 1987 A
4700744 Rutter et al. Oct 1987 A
4703762 Rathbone et al. Nov 1987 A
4705790 Hubele et al. Nov 1987 A
4723603 Plummer Feb 1988 A
4728075 Paradis Mar 1988 A
4728321 Chen Mar 1988 A
4738668 Bellotti et al. Apr 1988 A
4745950 Mathieu May 1988 A
4747502 Luenser May 1988 A
4748160 Bennion et al. May 1988 A
4752983 Grieshaber Jun 1988 A
4769013 Lorenz et al. Sep 1988 A
4774964 Bonaldo Oct 1988 A
4774965 Rodriguez et al. Oct 1988 A
4778447 Velde et al. Oct 1988 A
4781702 Herrli Nov 1988 A
4799926 Haber Jan 1989 A
4804015 Albinsson Feb 1989 A
4808158 Kreuzer et al. Feb 1989 A
4810241 Rogers Mar 1989 A
4811847 Reif et al. Mar 1989 A
4813933 Turner Mar 1989 A
4816024 Sitar et al. Mar 1989 A
4834271 Litwin May 1989 A
4862913 Wildfang Sep 1989 A
4874366 Zdeb et al. Oct 1989 A
4883483 Lindmayer Nov 1989 A
4889255 Schiemann et al. Dec 1989 A
4894056 Bommarito Jan 1990 A
4898580 Crowley Feb 1990 A
4915687 Sivert Apr 1990 A
4917669 Bonaldo Apr 1990 A
4919658 Badia Apr 1990 A
4927019 Haber et al. May 1990 A
4935010 Cox et al. Jun 1990 A
4941873 Fischer Jul 1990 A
4950260 Bonaldo Aug 1990 A
4957637 Cornell Sep 1990 A
4963132 Gibson Oct 1990 A
D313277 Haining Dec 1990 S
D314050 Sone Jan 1991 S
4983161 Dadson et al. Jan 1991 A
4985017 Theeuwes Jan 1991 A
4989733 Patry Feb 1991 A
4991629 Ernesto et al. Feb 1991 A
4997371 Fischer Mar 1991 A
4999210 Solomon et al. Mar 1991 A
5002964 Loscalzo Mar 1991 A
5006114 Rogers et al. Apr 1991 A
5015238 Solomon et al. May 1991 A
5019096 Fox, Jr. et al. May 1991 A
5021059 Kensey et al. Jun 1991 A
5024657 Needham et al. Jun 1991 A
5025001 Loscalzo et al. Jun 1991 A
5026359 Burroughs Jun 1991 A
5031622 LaHaye Jul 1991 A
5033961 Kandler et al. Jul 1991 A
5047021 Utterberg Sep 1991 A
5049139 Gilchrist Sep 1991 A
5059186 Yamamoto et al. Oct 1991 A
5065783 Ogle, II Nov 1991 A
5070885 Bonaldo Dec 1991 A
5071411 Hillstead Dec 1991 A
5071413 Utterberg Dec 1991 A
5098385 Walsh Mar 1992 A
5108376 Bonaldo Apr 1992 A
5122123 Vaillancourt Jun 1992 A
5127626 Hilal et al. Jul 1992 A
5129824 Keller Jul 1992 A
5139483 Ryan Aug 1992 A
5143104 Iba et al. Sep 1992 A
5147333 Raines Sep 1992 A
5154703 Bonaldo Oct 1992 A
5154920 Flesher et al. Oct 1992 A
5184742 DeCaprio et al. Feb 1993 A
5190534 Kendell Mar 1993 A
5195957 Tollini Mar 1993 A
RE34223 Bonaldo Apr 1993 E
5199948 McPhee Apr 1993 A
5201725 Kling Apr 1993 A
5203775 Frank et al. Apr 1993 A
5205820 Kriesel Apr 1993 A
5205821 Kruger et al. Apr 1993 A
5207706 Menaker May 1993 A
5211634 Vaillancourt May 1993 A
5212204 Keefer et al. May 1993 A
5215537 Lynn et al. Jun 1993 A
5240675 Wilk et al. Aug 1993 A
5242421 Chan Sep 1993 A
5242425 White et al. Sep 1993 A
5246011 Caillouette Sep 1993 A
5250550 Keefer et al. Oct 1993 A
5251873 Atkinson et al. Oct 1993 A
D342134 Mongeon Dec 1993 S
5269771 Thomas et al. Dec 1993 A
5278192 Fung et al. Jan 1994 A
5281206 Lopez Jan 1994 A
5284475 Mackal Feb 1994 A
5295657 Atkinson Mar 1994 A
5297310 Cox et al. Mar 1994 A
5301686 Newman Apr 1994 A
5304130 Button Apr 1994 A
5306243 Bonaldo Apr 1994 A
5312377 Dalton May 1994 A
5324270 Kayan et al. Jun 1994 A
5324647 Rubens et al. Jun 1994 A
5330235 Wagner et al. Jul 1994 A
5330426 Kriesel et al. Jul 1994 A
5330450 Lopez Jul 1994 A
5330899 Devaughn et al. Jul 1994 A
5337730 Maguire Aug 1994 A
5344414 Lopez et al. Sep 1994 A
5352410 Hansen et al. Oct 1994 A
5354267 Niermann et al. Oct 1994 A
5356396 Wyatt et al. Oct 1994 A
5360413 Leason et al. Nov 1994 A
5366505 Farber Nov 1994 A
5366997 Keefer et al. Nov 1994 A
5370614 Amundson et al. Dec 1994 A
5370636 Von Witzleben Dec 1994 A
5370640 Kolff Dec 1994 A
5375589 Bhatta Dec 1994 A
5380306 Brinon Jan 1995 A
5380758 Stamler et al. Jan 1995 A
5391150 Richmond Feb 1995 A
5402826 Molnar et al. Apr 1995 A
5405331 Behnke et al. Apr 1995 A
5405333 Richmond Apr 1995 A
5405919 Keefer et al. Apr 1995 A
5407807 Markus Apr 1995 A
5409012 Sahatjian Apr 1995 A
5411499 Dudar et al. May 1995 A
5417673 Gordon May 1995 A
5425465 Healy Jun 1995 A
5428070 Cooke et al. Jun 1995 A
5433330 Yatsko et al. Jul 1995 A
5433705 Giebel et al. Jul 1995 A
5439451 Collinson et al. Aug 1995 A
5441487 Vedder Aug 1995 A
5445623 Richmond Aug 1995 A
5456668 Ogle, II Oct 1995 A
5456675 Wolbring et al. Oct 1995 A
5464399 Boettger Nov 1995 A
5470307 Lindall Nov 1995 A
5470327 Helgren et al. Nov 1995 A
5471706 Wallock et al. Dec 1995 A
5474536 Bonaldo Dec 1995 A
5480393 Bommarito Jan 1996 A
5492147 Challender et al. Feb 1996 A
5496288 Sweeney Mar 1996 A
5501426 Atkinson et al. Mar 1996 A
5507733 Larkin et al. Apr 1996 A
5507744 Tay et al. Apr 1996 A
5514177 Kurz et al. May 1996 A
5518026 Benjey May 1996 A
5520665 Fleetwood May 1996 A
5520666 Choudhury et al. May 1996 A
5485827 Zapol et al. Jun 1996 A
5525357 Keefer et al. Jun 1996 A
5531695 Swisher Jul 1996 A
5533708 Atkinson et al. Jul 1996 A
5533983 Haining Jul 1996 A
5535785 Werge et al. Jul 1996 A
5536241 Zapol Jul 1996 A
5536258 Folden Jul 1996 A
5540661 Tomisaka et al. Jul 1996 A
5545614 Stamler et al. Aug 1996 A
5549566 Elias et al. Aug 1996 A
5549651 Lynn Aug 1996 A
5552115 Malchesky Sep 1996 A
5552118 Mayer Sep 1996 A
5554127 Crouther et al. Sep 1996 A
5554135 Menyhay Sep 1996 A
5555908 Edwards et al. Sep 1996 A
5569235 Ross et al. Oct 1996 A
5573516 Tyner Nov 1996 A
5575769 Vaillancourt Nov 1996 A
5578059 Patzer Nov 1996 A
5580530 Kowatsch et al. Dec 1996 A
5584819 Kopfer Dec 1996 A
5591137 Stevens Jan 1997 A
5591143 Trombley, III et al. Jan 1997 A
5597536 Mayer Jan 1997 A
5599352 Dinh et al. Feb 1997 A
5605696 Eury et al. Feb 1997 A
5607072 Rigney et al. Mar 1997 A
5613615 Zeyfang et al. Mar 1997 A
5616130 Mayer Apr 1997 A
5620088 Martin et al. Apr 1997 A
5620427 Werschmidt et al. Apr 1997 A
5624402 Imbert Apr 1997 A
5628733 Zinreich et al. May 1997 A
RE35539 Bonaldo Jun 1997 E
5645538 Richmond Jul 1997 A
5665077 Resen et al. Sep 1997 A
5674206 Allton et al. Oct 1997 A
5676346 Leinsing Oct 1997 A
5685835 Brugger Nov 1997 A
5685866 Lopez Nov 1997 A
5685868 Lundquist Nov 1997 A
5688253 Lundquist Nov 1997 A
5694978 Heilmann Dec 1997 A
5699821 Paradis Dec 1997 A
5700248 Lopez Dec 1997 A
5702017 Goncalves Dec 1997 A
5716339 Tanaka et al. Feb 1998 A
5722537 Sigler Mar 1998 A
5735826 Richmond Apr 1998 A
5738144 Rogers Apr 1998 A
5743892 Loh et al. Apr 1998 A
5749861 Guala et al. May 1998 A
5763409 Bayol et al. Jun 1998 A
5770645 Stamler et al. Jun 1998 A
5776116 Lopez Jul 1998 A
5782808 Folden Jul 1998 A
5782816 Werschmidt et al. Jul 1998 A
5785693 Haining Jul 1998 A
5792120 Menyhay Aug 1998 A
5797887 Rosen et al. Aug 1998 A
5806831 Paradis Sep 1998 A
5810792 Fangrow, Jr. et al. Sep 1998 A
5814024 Thompson et al. Sep 1998 A
5814666 Green et al. Sep 1998 A
5820601 Mayer Oct 1998 A
5820604 Fox et al. Oct 1998 A
5827244 Boettger Oct 1998 A
5839715 Leinsing Nov 1998 A
5848994 Richmond Dec 1998 A
5902631 Wang et al. May 1999 A
5941857 Nguyen et al. Aug 1999 A
5947954 Bonaldo Sep 1999 A
5951519 Utterberg Sep 1999 A
5954957 Chin-Loy et al. Sep 1999 A
5971972 Rosenbaum Oct 1999 A
D416086 Parris et al. Nov 1999 S
5989229 Chiappetta Nov 1999 A
5994444 Trescony Nov 1999 A
6029946 Doyle Feb 2000 A
6036171 Weinheimer et al. Mar 2000 A
6041805 Gydesen et al. Mar 2000 A
6045539 Menyhay Apr 2000 A
6045623 Cannon Apr 2000 A
6050978 Orr et al. Apr 2000 A
6059107 Nosted et al. May 2000 A
6063062 Paradis May 2000 A
6068011 Paradis May 2000 A
6068475 Stoyka, Jr. et al. May 2000 A
6068617 Richmond May 2000 A
6071413 Dyke Jun 2000 A
6079432 Paradis Jun 2000 A
6087479 Stamler et al. Jul 2000 A
6093743 Lai et al. Jul 2000 A
6095356 Rits Aug 2000 A
6099519 Olsen et al. Aug 2000 A
6105812 Riordan Aug 2000 A
6106502 Richmond Aug 2000 A
6113068 Ryan Sep 2000 A
6113572 Gailey et al. Sep 2000 A
6116468 Nilson Sep 2000 A
6117114 Paradis Sep 2000 A
6126640 Tucker et al. Oct 2000 A
6142446 Leinsing Nov 2000 A
6143318 Gilchrist et al. Nov 2000 A
6146363 Giebel et al. Nov 2000 A
6152913 Feith et al. Nov 2000 A
6158614 Haines et al. Dec 2000 A
6170522 Tanida Jan 2001 B1
6171287 Lynn et al. Jan 2001 B1
6174539 Stamler et al. Jan 2001 B1
6179141 Nakamura Jan 2001 B1
6183450 Lois Feb 2001 B1
6202870 Pearce Mar 2001 B1
6202901 Gerber et al. Mar 2001 B1
6206134 Stark et al. Mar 2001 B1
6206860 Richmond Mar 2001 B1
6207855 Toone et al. Mar 2001 B1
6217564 Peters et al. Apr 2001 B1
6227391 King May 2001 B1
6232406 Stoy May 2001 B1
6232434 Stamler et al. May 2001 B1
6237800 Barrett et al. May 2001 B1
6242393 Ishida et al. Jun 2001 B1
6245048 Fangrow et al. Jun 2001 B1
6245056 Walker et al. Jun 2001 B1
6248380 Kocher et al. Jun 2001 B1
6250315 Ernster Jun 2001 B1
6255277 Stamler et al. Jul 2001 B1
6267754 Peters Jul 2001 B1
6299132 Weinheimer et al. Oct 2001 B1
6315113 Britton et al. Nov 2001 B1
6315761 Shcherbina et al. Nov 2001 B1
6359167 Toone et al. Mar 2002 B2
6359182 Stamler et al. Mar 2002 B1
6375231 Picha et al. Apr 2002 B1
6379660 Saavedra et al. Apr 2002 B1
6379691 Tedeschi et al. Apr 2002 B1
6394983 Mayoral et al. May 2002 B1
6402207 Segal et al. Jun 2002 B1
6403759 Stamler et al. Jun 2002 B2
6409716 Sahatjian et al. Jun 2002 B1
6428520 Lopez Aug 2002 B1
6431219 Redler et al. Aug 2002 B1
6444318 Guire et al. Sep 2002 B1
6468259 Djokic et al. Oct 2002 B1
6471978 Stamler et al. Oct 2002 B1
6488951 Toone et al. Dec 2002 B2
6491965 Berry et al. Dec 2002 B1
6499719 Clancy et al. Dec 2002 B1
6508792 Szames et al. Jan 2003 B2
6508807 Peters Jan 2003 B1
6538116 Stamler et al. Mar 2003 B2
6541802 Doyle Apr 2003 B2
6543745 Enerson Apr 2003 B1
6550493 Williamson et al. Apr 2003 B2
6555504 Ayai et al. Apr 2003 B1
6562781 Berry et al. May 2003 B1
6581906 Pott et al. Jun 2003 B2
6583311 Toone et al. Jun 2003 B2
6585691 Vitello Jul 2003 B1
6595964 Finley et al. Jul 2003 B2
6595981 Huet Jul 2003 B2
6605294 Sawhney Aug 2003 B2
6605751 Gibbins et al. Aug 2003 B1
6609696 Enerson Aug 2003 B2
6632199 Tucker et al. Oct 2003 B1
6634498 Kayerod et al. Oct 2003 B2
6656217 Herzog, Jr. et al. Dec 2003 B1
6666852 Niedospial, Jr. Dec 2003 B2
6673891 Stamler et al. Jan 2004 B2
6679395 Pfefferkorn et al. Jan 2004 B1
6679870 Finch et al. Jan 2004 B1
6681803 Taneya et al. Jan 2004 B2
6685694 Finch et al. Feb 2004 B2
6692468 Waldenburg Feb 2004 B1
6695817 Fangrow Feb 2004 B1
6716396 Anderson Apr 2004 B1
6722705 Korkor Apr 2004 B2
6725492 Moore et al. Apr 2004 B2
6745998 Doyle Jun 2004 B2
6786884 DeCant, Jr. et al. Sep 2004 B1
6808510 DiFiore Oct 2004 B1
6827766 Carnes et al. Dec 2004 B2
6840501 Doyle Jan 2005 B2
6871087 Hughes et al. Mar 2005 B1
6875205 Leinsing Apr 2005 B2
6875840 Stamler et al. Apr 2005 B2
6880706 Braconnot et al. Apr 2005 B2
6887994 Stamler et al. May 2005 B2
6899315 Mailville et al. May 2005 B2
6911025 Miyahar Jun 2005 B2
6916051 Fisher Jul 2005 B2
6929005 Sullivan et al. Aug 2005 B2
6943035 Davies et al. Sep 2005 B1
6955669 Curutcharry Oct 2005 B2
6964406 Doyle Nov 2005 B2
7004934 Vaillancourt Feb 2006 B2
7015347 Toone et al. Mar 2006 B2
7030238 Stamler et al. Apr 2006 B2
7037302 Vaillancourt May 2006 B2
7040598 Raybuck May 2006 B2
7044441 Doyle May 2006 B2
7045585 Berry et al. May 2006 B2
7049308 Stamler et al. May 2006 B2
7052711 West et al. May 2006 B2
7056308 Utterberg Jun 2006 B2
7067659 Stamler et al. Jun 2006 B2
7081109 Tighe Jul 2006 B2
7083605 Miyahara Aug 2006 B2
7087709 Stamler et al. Aug 2006 B2
7097850 Chappa et al. Aug 2006 B2
7100891 Doyle Sep 2006 B2
7125396 Leinsing et al. Oct 2006 B2
7140592 Phillips Nov 2006 B2
7147625 Sarangapani et al. Dec 2006 B2
7160272 Eyal et al. Jan 2007 B1
7182313 Doyle Feb 2007 B2
7195615 Tan Mar 2007 B2
7198611 Connell et al. Apr 2007 B2
7244249 Leinsing et al. Jul 2007 B2
7259250 Stamler et al. Aug 2007 B2
7279176 West et al. Oct 2007 B1
7282186 Lake, Jr. et al. Oct 2007 B2
7306197 Parrino et al. Dec 2007 B2
7306198 Doyle Dec 2007 B2
7306566 Raybuck Dec 2007 B2
7309326 Fangrow, Jr. Dec 2007 B2
7316669 Ranalletta Jan 2008 B2
7347458 Rome et al. Mar 2008 B2
7347853 DiFiore et al. Mar 2008 B2
7350764 Raybuck Apr 2008 B2
7361164 Simpson et al. Apr 2008 B2
7417109 Stamler et al. Aug 2008 B2
7431712 Kim Oct 2008 B2
7442402 Chudzik et al. Oct 2008 B2
7452349 Miyahar Nov 2008 B2
7485107 DiFiore et al. Feb 2009 B2
7491192 DiFiore Feb 2009 B2
7497484 Ziman Mar 2009 B2
7516846 Hansen Apr 2009 B2
7588563 Guala Sep 2009 B2
7611505 Ranalletta et al. Nov 2009 B2
7614426 Kitani et al. Nov 2009 B2
7615034 DiFiore Nov 2009 B2
7625907 Stamler et al. Dec 2009 B2
7635344 Tennican et al. Dec 2009 B2
D607325 Rogers et al. Jan 2010 S
7645274 Whitley Jan 2010 B2
7651481 Raybuck Jan 2010 B2
7666170 Guala Feb 2010 B2
7708714 Connell et al. May 2010 B2
7731678 Tennican et al. Jun 2010 B2
7731679 Tennican et al. Jun 2010 B2
7749189 Tennican et al. Jul 2010 B2
7753891 Tennican et al. Jul 2010 B2
7758530 DiFiore et al. Jul 2010 B2
7758566 Simpson et al. Jul 2010 B2
7762524 Cawthon et al. Jul 2010 B2
7763006 Tennican Jul 2010 B2
7766182 Trent et al. Aug 2010 B2
7766897 Ramsey et al. Aug 2010 B2
7776011 Tennican et al. Aug 2010 B2
7780794 Rogers et al. Aug 2010 B2
7785616 Stamler et al. Aug 2010 B2
7794675 Lynn Sep 2010 B2
7799010 Tennican Sep 2010 B2
7803139 Fangrow, Jr. Sep 2010 B2
7803140 Fangrow, Jr. Sep 2010 B2
7815614 Fangrow, Jr. Oct 2010 B2
7857793 Raulerson et al. Dec 2010 B2
7922701 Buchman Apr 2011 B2
7922711 Ranalletta et al. Apr 2011 B2
7928079 Hrabie et al. Apr 2011 B2
7938795 DiFiore et al. May 2011 B2
7956062 Stamler et al. Jun 2011 B2
7959026 Bertani Jun 2011 B2
7963565 Suter Jun 2011 B2
7972137 Rosen Jul 2011 B2
7972322 Tennican Jul 2011 B2
7981090 Plishka et al. Jul 2011 B2
7985302 Rogers et al. Jul 2011 B2
7993309 Schweikert Aug 2011 B2
7998134 Fangrow et al. Aug 2011 B2
8034454 Terry Oct 2011 B2
8065773 Vaillancourt et al. Nov 2011 B2
8066670 Cluff et al. Nov 2011 B2
8069523 Vaillancourt et al. Dec 2011 B2
8113837 Zegarelli Feb 2012 B2
8146757 Abreu et al. Apr 2012 B2
8162899 Tennican Apr 2012 B2
8167847 Anderson et al. May 2012 B2
8172825 Solomon et al. May 2012 B2
8177761 Howlett et al. May 2012 B2
8177772 Christensen et al. May 2012 B2
8197749 Howlett et al. Jun 2012 B2
8206514 Rogers et al. Jun 2012 B2
8231587 Solomon et al. Jul 2012 B2
8231602 Anderson et al. Jul 2012 B2
8252247 Ferlic Aug 2012 B2
8262628 Fangrow, Jr. Sep 2012 B2
8262643 Tennican Sep 2012 B2
8273303 Ferlic et al. Sep 2012 B2
8281824 Molema et al. Oct 2012 B2
8328767 Solomon et al. Dec 2012 B2
8336152 Kerr et al. Dec 2012 B2
8343112 Solomon et al. Jan 2013 B2
8361408 Lynn Jan 2013 B2
8372045 Needle et al. Feb 2013 B2
8377040 Burkholz et al. Feb 2013 B2
8414547 DiFiore et al. Apr 2013 B2
8454579 Fangrow, Jr. Jun 2013 B2
8480968 Lynn Jul 2013 B2
8491546 Hoang et al. Jul 2013 B2
8500717 Becker Aug 2013 B2
8506527 Carlyon Aug 2013 B2
8506538 Chelak Aug 2013 B2
8523798 DiFiore Sep 2013 B2
8523831 Solomon et al. Sep 2013 B2
8533887 Hirst Sep 2013 B2
8545479 Kitani et al. Oct 2013 B2
8568371 Siopes et al. Oct 2013 B2
8622995 Ziebol et al. Jan 2014 B2
8622996 Ziebol et al. Jan 2014 B2
8641684 Utterberg et al. Feb 2014 B2
8647308 Solomon et al. Feb 2014 B2
8647326 Solomon et al. Feb 2014 B2
8651271 Shen Feb 2014 B1
8740864 Hoang et al. Jun 2014 B2
8758307 Grimm et al. Jun 2014 B2
8777504 Shaw et al. Jul 2014 B2
8791073 West et al. Jul 2014 B2
8845593 Anderson et al. Sep 2014 B2
8877231 Rosen Nov 2014 B2
8910919 Bonnal et al. Dec 2014 B2
8920404 DiFiore et al. Dec 2014 B2
8968268 Anderson et al. Mar 2015 B2
8981139 Schoenfisch et al. Mar 2015 B2
8999073 Rogers et al. Apr 2015 B2
9022984 Ziebol et al. May 2015 B2
9072296 Mills et al. Jul 2015 B2
9072868 Ziebol et al. Jul 2015 B2
9078992 Ziebol et al. Jul 2015 B2
9089680 Ueda et al. Jul 2015 B2
9101685 Li et al. Aug 2015 B2
9149624 Lewis Oct 2015 B2
9192449 Kerr et al. Nov 2015 B2
9205248 Wu et al. Dec 2015 B2
9248093 Kelley, III et al. Feb 2016 B2
9248229 Devouassoux et al. Feb 2016 B2
9259284 Rogers et al. Feb 2016 B2
9259535 Anderson et al. Feb 2016 B2
9283367 Hoang et al. Mar 2016 B2
9283368 Hoang et al. Mar 2016 B2
9296525 Murphy et al. Mar 2016 B2
9302049 Tekeste Apr 2016 B2
9320858 Grimm et al. Apr 2016 B2
9320859 Grimm et al. Apr 2016 B2
9320860 Grimm et al. Apr 2016 B2
9352080 Goodall et al. May 2016 B2
9352142 Ziebol et al. May 2016 B2
9381339 Wu et al. Jul 2016 B2
9399125 Burkholz Jul 2016 B2
9527660 Tennican Dec 2016 B2
9592375 Tennican Mar 2017 B2
9700676 Anderson et al. Jul 2017 B2
9700677 Anderson et al. Jul 2017 B2
9700710 Anderson et al. Jul 2017 B2
9707348 Anderson et al. Jul 2017 B2
9707349 Anderson et al. Jul 2017 B2
9707350 Anderson et al. Jul 2017 B2
9809355 Solomon et al. Nov 2017 B2
9849276 Ziebol et al. Dec 2017 B2
9867975 Gardner et al. Jan 2018 B2
9869975 Gardner et al. Jan 2018 B2
9907617 Rogers Mar 2018 B2
9933094 Fangrow Apr 2018 B2
9999471 Rogers et al. Jun 2018 B2
10016587 Gardner et al. Jul 2018 B2
10046156 Gardner Aug 2018 B2
10159829 Ziebol et al. Dec 2018 B2
10166381 Gardner et al. Jan 2019 B2
10195000 Rogers et al. Feb 2019 B2
10201692 Chang Feb 2019 B2
10328207 Anderson et al. Jun 2019 B2
10524982 Fangrow Jan 2020 B2
10525250 Ziebol et al. Jan 2020 B1
10695550 Gardner et al. Jun 2020 B2
10744316 Fangrow Aug 2020 B2
10806919 Gardner et al. Oct 2020 B2
10821278 Gardner Nov 2020 B2
11160932 Anderson et al. Nov 2021 B2
11229746 Anderson et al. Jan 2022 B2
11351353 Ziebol et al. Jun 2022 B2
11389634 Ziebol et al. Jul 2022 B2
11400195 Ziebol et al. Aug 2022 B2
11433215 Ziebol et al. Sep 2022 B2
11497904 Fangrow et al. Nov 2022 B2
11517732 Ziebol et al. Dec 2022 B2
11517733 Fangrow Dec 2022 B2
11534595 Ziebol et al. Dec 2022 B2
11541220 Ziebol et al. Jan 2023 B2
11541221 Ziebol et al. Jan 2023 B2
11559467 Fangrow Jan 2023 B2
20020077693 Barclay et al. Jun 2002 A1
20020082682 Barclay et al. Jun 2002 A1
20020098278 Bates et al. Jun 2002 A1
20030039697 Zhao et al. Feb 2003 A1
20030062376 Sears et al. Apr 2003 A1
20030072783 Stamler et al. Apr 2003 A1
20030153865 Connell et al. Aug 2003 A1
20030199835 Leinsing et al. Oct 2003 A1
20030208165 Christensen et al. Nov 2003 A1
20040034042 Tsuji et al. Feb 2004 A1
20040034329 Mankus et al. Feb 2004 A1
20040037836 Stamler et al. Feb 2004 A1
20040048542 Thomaschefsky et al. Mar 2004 A1
20040052689 Yao Mar 2004 A1
20040052831 Modak et al. Mar 2004 A1
20040156908 Polaschegg et al. Aug 2004 A1
20040210201 Farnan Oct 2004 A1
20040215148 Hwang et al. Oct 2004 A1
20040247640 Zhao et al. Dec 2004 A1
20040249337 DiFiore Dec 2004 A1
20040249338 DeCant, Jr. et al. Dec 2004 A1
20040258560 Lake, Jr. et al. Dec 2004 A1
20050013836 Raad Jan 2005 A1
20050015075 Wright et al. Jan 2005 A1
20050065479 Schiller et al. Mar 2005 A1
20050098527 Yates et al. May 2005 A1
20050124942 Richmond Jun 2005 A1
20050124970 Kunin et al. Jun 2005 A1
20050147524 Bousquet Jul 2005 A1
20050147525 Bousquet Jul 2005 A1
20050148930 Hseih et al. Jul 2005 A1
20050152891 Toone et al. Jul 2005 A1
20050171493 Nicholls Aug 2005 A1
20050214185 Castaneda Sep 2005 A1
20050220882 Pritchard et al. Oct 2005 A1
20050228362 Vaillancourt Oct 2005 A1
20050228482 Herzog et al. Oct 2005 A1
20050256461 DiFiore et al. Nov 2005 A1
20050265958 West et al. Dec 2005 A1
20050267421 Wing Dec 2005 A1
20050271711 Lynch et al. Dec 2005 A1
20050288551 Callister et al. Dec 2005 A1
20060004316 DiFiore et al. Jan 2006 A1
20060024372 Utterberg et al. Feb 2006 A1
20060030827 Raulerson et al. Feb 2006 A1
20060058734 Phillips Mar 2006 A1
20060096348 DiFiore May 2006 A1
20060118122 Martens et al. Jun 2006 A1
20060129109 Shaw et al. Jun 2006 A1
20060142730 Proulx et al. Jun 2006 A1
20060149191 DiFiore Jul 2006 A1
20060161115 Fangrow Jul 2006 A1
20060195117 Rucker et al. Aug 2006 A1
20060202146 Doyle Sep 2006 A1
20060206178 Kim Sep 2006 A1
20060253084 Nordgren Nov 2006 A1
20060261076 Anderson Nov 2006 A1
20070003603 Karandikar et al. Jan 2007 A1
20070088292 Fangrow Apr 2007 A1
20070088293 Fangrow Apr 2007 A1
20070088294 Fangrow Apr 2007 A1
20070106205 Connell et al. May 2007 A1
20070112333 Hoang et al. May 2007 A1
20070156118 Ramsey et al. Jul 2007 A1
20070167910 Tennican et al. Jul 2007 A1
20070176117 Redmond Aug 2007 A1
20070179453 Lim et al. Aug 2007 A1
20070187353 Fox et al. Aug 2007 A1
20070202177 Hoang Aug 2007 A1
20070212381 DiFiore et al. Sep 2007 A1
20070231315 Lichte et al. Oct 2007 A1
20070248676 Stamler et al. Oct 2007 A1
20070249996 Tennican et al. Oct 2007 A1
20070265578 Tennican et al. Nov 2007 A1
20070282280 Tennican Dec 2007 A1
20070287989 Crawford et al. Dec 2007 A1
20080027399 Harding et al. Jan 2008 A1
20080027401 Ou-Yang Jan 2008 A1
20080033371 Updegraff et al. Feb 2008 A1
20080039803 Lynn Feb 2008 A1
20080058733 Vogt et al. Mar 2008 A1
20080093245 Periasamy et al. Apr 2008 A1
20080095680 Steffens et al. Apr 2008 A1
20080097315 Miner et al. Apr 2008 A1
20080097407 Plishka Apr 2008 A1
20080103485 Kruger May 2008 A1
20080287920 Fangrow et al. May 2008 A1
20080014005 Shirley Jun 2008 A1
20080128646 Clawson Jun 2008 A1
20080132880 Buchman Jun 2008 A1
20080147047 Davis et al. Jun 2008 A1
20080161763 Harding et al. Jul 2008 A1
20080172007 Bousquet Jul 2008 A1
20080173651 Ping Jul 2008 A1
20080177250 Howlett et al. Jul 2008 A1
20080187460 Utterberg et al. Aug 2008 A1
20080188791 DiFiore et al. Aug 2008 A1
20080190485 Guala Aug 2008 A1
20080235888 Vaillancourt et al. Oct 2008 A1
20080262465 Zinger et al. Oct 2008 A1
20080318333 Nielsen et al. Dec 2008 A1
20080319423 Tanghoj et al. Dec 2008 A1
20090008393 Howlett et al. Jan 2009 A1
20090012426 Tennican Jan 2009 A1
20090024096 Hai et al. Jan 2009 A1
20090028750 Ryan Jan 2009 A1
20090062766 Howlett Mar 2009 A1
20090093757 Tennican Apr 2009 A1
20090099529 Anderson et al. Apr 2009 A1
20090126867 Decant, Jr. et al. May 2009 A1
20090137969 Colantonio et al. May 2009 A1
20090149820 DiFiore Jun 2009 A1
20090163876 Chebator et al. Jun 2009 A1
20090205151 Fisher et al. Aug 2009 A1
20090205656 Nishibayashi et al. Aug 2009 A1
20090247485 Ahmed et al. Oct 2009 A1
20090259194 Pinedjian et al. Oct 2009 A1
20090270832 Vancaillie et al. Oct 2009 A1
20090293882 Terry Dec 2009 A1
20100004510 Kuroshima Jan 2010 A1
20100047123 Solomon et al. Feb 2010 A1
20100049170 Solomon et al. Feb 2010 A1
20100050351 Colantonio et al. Mar 2010 A1
20100064456 Ferlic Mar 2010 A1
20100074932 Talsma Mar 2010 A1
20100106102 Ziebol et al. Apr 2010 A1
20100106103 Ziebol Apr 2010 A1
20100137472 Ou-Yang Jun 2010 A1
20100143427 King et al. Jun 2010 A1
20100152670 Low Jun 2010 A1
20100160894 Julian et al. Jun 2010 A1
20100172794 Ferlic et al. Jul 2010 A1
20100242993 Hoang et al. Sep 2010 A1
20100253070 Cheon et al. Oct 2010 A1
20100280805 DiFiore Nov 2010 A1
20100292673 Korogi et al. Nov 2010 A1
20100292674 Jepson et al. Nov 2010 A1
20100306938 Rogers et al. Dec 2010 A1
20100318040 Kelley, III et al. Dec 2010 A1
20110030726 Vaillancourt et al. Feb 2011 A1
20110044850 Solomon et al. Feb 2011 A1
20110046564 Zhong Feb 2011 A1
20110046603 Felsovalyi et al. Feb 2011 A1
20110054440 Lewis Mar 2011 A1
20110062703 Lopez Mar 2011 A1
20110064512 Shaw et al. Mar 2011 A1
20110071475 Horvath et al. Mar 2011 A1
20110082431 Burgess et al. Apr 2011 A1
20110175347 Okiyama Jul 2011 A1
20110184338 McKay Jul 2011 A1
20110184382 Cady Jul 2011 A1
20110208128 Wu et al. Aug 2011 A1
20110232020 Rogers et al. Sep 2011 A1
20110265825 Rogers et al. Nov 2011 A1
20110276031 Hoang et al. Nov 2011 A1
20110277788 Rogers et al. Nov 2011 A1
20110282302 Lopez et al. Nov 2011 A1
20110290799 Anderson et al. Dec 2011 A1
20110314619 Schweikert Dec 2011 A1
20120022469 Albert et al. Jan 2012 A1
20120029483 Griffith et al. Feb 2012 A1
20120031904 Kuhn et al. Feb 2012 A1
20120039764 Solomon et al. Feb 2012 A1
20120083730 Rush et al. Apr 2012 A1
20120083750 Sansoucy Apr 2012 A1
20120157965 Wotton et al. Jun 2012 A1
20120191029 Hopf Jul 2012 A1
20120195807 Ferlic Aug 2012 A1
20120216359 Rogers et al. Aug 2012 A1
20120216360 Rogers et al. Aug 2012 A1
20120220955 Maseda et al. Aug 2012 A1
20120283693 Anderson et al. Nov 2012 A1
20120283696 Cronenberg et al. Nov 2012 A1
20120296284 Anderson et al. Nov 2012 A1
20120302968 Tennican Nov 2012 A1
20120302970 Tennican Nov 2012 A1
20120302997 Gardner Nov 2012 A1
20120315201 Ferlic et al. Dec 2012 A1
20130006194 Anderson et al. Jan 2013 A1
20130023828 Anderson et al. Jan 2013 A1
20130030414 Gardner et al. Jan 2013 A1
20130035667 Anderson et al. Feb 2013 A1
20130039953 Dudnyk et al. Feb 2013 A1
20130053751 Holtham Feb 2013 A1
20130072908 Solomon et al. Mar 2013 A1
20130072909 Solomon et al. Mar 2013 A1
20130085313 Fowler et al. Apr 2013 A1
20130085474 Charles et al. Apr 2013 A1
20130098938 Efthimiadis Apr 2013 A1
20130102950 DiFiore Apr 2013 A1
20130123754 Solomon et al. May 2013 A1
20130134161 Fogel et al. May 2013 A1
20130138085 Tennican May 2013 A1
20130144258 Ziebol et al. Jun 2013 A1
20130150795 Snow Jun 2013 A1
20130164189 Hadden Jun 2013 A1
20130171030 Ferlic et al. Jul 2013 A1
20130183635 Wilhoit Jul 2013 A1
20130184679 Ziebol et al. Jul 2013 A1
20130197485 Gardner et al. Aug 2013 A1
20130204231 Ziebol et al. Aug 2013 A1
20130274686 Ziebol et al. Oct 2013 A1
20140042116 Shen et al. Feb 2014 A1
20140048079 Gardner et al. Feb 2014 A1
20140052074 Tekeste Feb 2014 A1
20140101876 Rogers et al. Apr 2014 A1
20140155868 Nelson et al. Jun 2014 A1
20140227144 Liu et al. Aug 2014 A1
20140228775 Burkholz et al. Aug 2014 A1
20140243797 Jensen et al. Aug 2014 A1
20140336610 Michel et al. Nov 2014 A1
20150086441 She et al. Mar 2015 A1
20150141934 Gardner et al. May 2015 A1
20150148287 Woo et al. May 2015 A1
20150217106 Banik et al. Aug 2015 A1
20150258324 Chida et al. Sep 2015 A1
20150298893 Welp Oct 2015 A1
20150306367 DiFiore Oct 2015 A1
20150314119 Anderson et al. Nov 2015 A1
20150320992 Bonnet et al. Nov 2015 A1
20150343174 Ziebol et al. Dec 2015 A1
20160001056 Nelson et al. Jan 2016 A1
20160001058 Ziebol et al. Jan 2016 A1
20160015863 Gupta et al. Jan 2016 A1
20160045629 Gardner et al. Feb 2016 A1
20160088995 Ueda et al. Mar 2016 A1
20160089530 Sathe Mar 2016 A1
20160101223 Kelley, III et al. Apr 2016 A1
20160101276 Tekeste Apr 2016 A1
20160106969 Neftel Apr 2016 A1
20160158521 Hoang et al. Jun 2016 A1
20160158522 Hoang et al. Jun 2016 A1
20160213912 Daneluzzi Jul 2016 A1
20160250420 Maritan et al. Sep 2016 A1
20160354596 DiFiore Dec 2016 A1
20170020911 Berry et al. Jan 2017 A1
20170042636 Young Feb 2017 A1
20170143447 Rogers et al. May 2017 A1
20170182241 DiFiore Jun 2017 A1
20170203092 Ryan et al. Jul 2017 A1
20170239443 Abitabilo et al. Aug 2017 A1
20180028403 Fangrow Feb 2018 A1
20180200500 Ziebol et al. Jul 2018 A1
20180214684 Avula et al. Aug 2018 A1
20190201681 Ziebol et al. Jul 2019 A1
20200069931 Fangrow Mar 2020 A1
20200085690 Fangrow Mar 2020 A1
20200121858 Anderson et al. Apr 2020 A1
20200139037 Ziebol et al. May 2020 A1
20200139101 Ziebol et al. May 2020 A1
20200139102 Ziebol et al. May 2020 A1
20200139103 Ziebol et al. May 2020 A1
20200139104 Ziebol et al. May 2020 A1
20200155794 Ziebol May 2020 A1
20200324102 Fangrow Oct 2020 A1
20200330741 Fangrow Oct 2020 A1
20200406020 Fangrow Dec 2020 A1
20210106805 Fangrow Apr 2021 A1
20210162194 Gardner Jun 2021 A1
20210205596 Ziebol et al. Jul 2021 A1
20210308442 Gardner Oct 2021 A1
20220288258 Gardner Sep 2022 A1
20220288376 Ziebol Sep 2022 A1
20220379035 Anderson Dec 2022 A1
20220387685 Ziebol Dec 2022 A1
20220401652 Anderson Dec 2022 A1
20230069367 Ziebol Mar 2023 A1
20230105566 Fangrow Apr 2023 A1
20230121450 Ziebol Apr 2023 A1
Foreign Referenced Citations (147)
Number Date Country
2013 224680 Sep 2016 AU
2 148 847 Dec 1995 CA
2825217 Mar 2007 CA
2 841 832 Jun 2019 CA
2402327 Oct 2000 CN
2815392 Sep 2006 CN
201150420 Nov 2008 CN
101405042 Apr 2009 CN
201519335 Jul 2010 CN
102202716 Sep 2011 CN
102 844 073 Dec 2012 CN
103796704 Dec 2016 CN
106902402 Jun 2017 CN
106902405 Jun 2017 CN
3515665 May 1986 DE
89 06 628 Sep 1989 DE
43 34 272 Apr 1995 DE
29617133 Jan 1997 DE
102007025900 Dec 2008 DE
0 088 341 Sep 1983 EP
0 108 785 May 1984 EP
0 174 162 Mar 1986 EP
0 227 219 Jul 1987 EP
0 237 239 Sep 1987 EP
0 245 872 Nov 1987 EP
0 257 485 Mar 1988 EP
0 639 385 Feb 1995 EP
0 734 721 Oct 1996 EP
0 769 265 Apr 1997 EP
1 061 000 Oct 2000 EP
1 331 020 Jul 2003 EP
1 471 011 Oct 2004 EP
1 442 753 Feb 2007 EP
1 813 293 Aug 2007 EP
1 977 714 Oct 2008 EP
1 312 008 Apr 2009 EP
2 444 117 Apr 2012 EP
2 606 930 Jun 2013 EP
2 671 604 Dec 2013 EP
2 731 658 May 2014 EP
2 493 149 May 1982 FR
2 506 162 Nov 1982 FR
2 782 910 Mar 2000 FR
123221 Feb 1919 GB
2 296 182 Jun 1996 GB
2 333 097 Jul 1999 GB
2 387 772 Oct 2003 GB
57-131462 Aug 1982 JP
04-99950 Feb 1992 JP
09-216661 Aug 1997 JP
2000-157630 Jun 2000 JP
2002-210011 Jul 2002 JP
2002-234567 Aug 2002 JP
2002-291906 Oct 2002 JP
2005-218649 Aug 2005 JP
2006-182663 Jul 2006 JP
2011-036691 Feb 2011 JP
2011-528647 Nov 2011 JP
2013-520287 Jun 2013 JP
2014-117461 Jun 2014 JP
2014-533593 Dec 2014 JP
2015-526195 Sep 2015 JP
2016-506856 Mar 2016 JP
2017-515553 Jun 2017 JP
2 246 321 Feb 2005 RU
WO 8303975 Nov 1983 WO
WO 8505040 Nov 1985 WO
WO 9320806 Oct 1993 WO
WO 9507691 Mar 1995 WO
WO 9635416 Nov 1996 WO
WO 9638136 Dec 1996 WO
WO 199719701 Jun 1997 WO
WO 9812125 Mar 1998 WO
WO-9848872 Nov 1998 WO
WO 199944665 Sep 1999 WO
WO 200170199 Sep 2001 WO
WO 200205188 Jan 2002 WO
WO 200247581 Jun 2002 WO
WO 200249544 Jun 2002 WO
WO 2003015677 Feb 2003 WO
WO 2003070296 Aug 2003 WO
WO 2004035129 Apr 2004 WO
WO 2004112846 Dec 2004 WO
WO 2005112954 Dec 2005 WO
WO 2005112974 Dec 2005 WO
WO 2006007690 Jan 2006 WO
WO 2006044236 Apr 2006 WO
WO 2006102756 Oct 2006 WO
WO 2007008511 Jan 2007 WO
WO 2007056773 May 2007 WO
WO 2007137056 Nov 2007 WO
WO 2008042285 Apr 2008 WO
WO 2008086631 Jul 2008 WO
WO 2008089196 Jul 2008 WO
WO 2008100950 Aug 2008 WO
WO 2008140807 Nov 2008 WO
WO 2009002474 Dec 2008 WO
WO 2009060322 May 2009 WO
WO 2009117135 Sep 2009 WO
WO 2009123709 Oct 2009 WO
WO 2009136957 Nov 2009 WO
WO 2009153224 Dec 2009 WO
WO 2010002757 Jan 2010 WO
WO 2010002808 Jan 2010 WO
WO 2010011616 Jan 2010 WO
WO 2010034470 Apr 2010 WO
WO 2010039171 Apr 2010 WO
WO 2010062589 Jun 2010 WO
WO-2011012379 Feb 2011 WO
WO 2011028722 Mar 2011 WO
WO 2011053924 May 2011 WO
WO 2011106374 Sep 2011 WO
WO 2011119021 Sep 2011 WO
WO 2012118829 Sep 2012 WO
WO 2012162006 Nov 2012 WO
WO 2013009998 Jan 2013 WO
WO 2013023146 Feb 2013 WO
WO 2013082180 Jun 2013 WO
WO 2012184716 Dec 2013 WO
WO 2013192574 Dec 2013 WO
WO 2014031628 Feb 2014 WO
WO 2014074929 May 2014 WO
WO 2014126867 Aug 2014 WO
WO 2014140949 Sep 2014 WO
WO 14159346 Oct 2014 WO
WO 2015074087 May 2015 WO
WO 2015119940 Aug 2015 WO
WO 2015120336 Aug 2015 WO
WO 2015164129 Oct 2015 WO
WO 2015164134 Oct 2015 WO
WO 2015168677 Nov 2015 WO
WO 2015174953 Nov 2015 WO
WO 2016025775 Feb 2016 WO
WO 2016182822 Nov 2016 WO
WO 2017015047 Jan 2017 WO
WO 2017127364 Jul 2017 WO
WO 2017127365 Jul 2017 WO
WO 2018009653 Jan 2018 WO
WO 2018071717 Apr 2018 WO
WO 2018204206 Nov 2018 WO
WO 2018237090 Dec 2018 WO
WO 2018237122 Dec 2018 WO
WO 2019178560 Sep 2019 WO
WO 2019246472 Dec 2019 WO
WO 2020097366 May 2020 WO
WO 2020251947 Dec 2020 WO
WO 2022125474 Jun 2022 WO
Non-Patent Literature Citations (51)
Entry
Machine translation of DE-102007025900-A1 (Year: 2008).
International Standard ISO 594-2, Second Edition, Published Sep. 1, 1998 (Year: 1998).
U.S. Appl. No. 15/850,351, filed Dec. 21, 2017, Device for Delivery of Antimicrobial Agent Into Trans-Dermal Catheter.
U.S. Appl. No. 16/227,651, filed Dec. 20, 2018, Packaging Container for Antimicrobial Caps.
U.S. Appl. No. 16/691,242, filed Nov. 21, 2019, Antimicrobial Device Comprising a Cap With Ring and Insert.
U.S. Appl. No. 16/444,486, filed Jun. 18, 2019, Device for Delivering an Antimicrobial Composition Into an Infusion Device.
U.S. Appl. No. 16/447,671, filed Jun. 20, 2019, Needleless Connector With Antimicrobial Properties.
U.S. Appl. No. 16/449,180, filed Jun. 21, 2019, Tubing Set With Antimicrobial Properties.
U.S. Appl. No. 16/553,704, filed Aug. 28, 2019, Peritoneal Dialysis Transfer Set With Antimicrobial Properties.
U.S. Appl. No. 16/558,921, filed Sep. 3, 2019, Syringe With Antimicrobial Properties.
U.S. Appl. No. 17/143,082, filed Jan. 6, 2021, Antimicrobial Cap for Luer Connector.
U.S. Appl. No. 16/694,564, filed Nov. 25, 2019, Medical Connectors Configured to Receive Emitters of Therapeutic Agents.
U.S. Appl. No. 16/717,199, filed Dec. 17, 2019, Priming Cap.
U.S. Appl. No. 16/918,896, filed Jul. 1, 2020, Sanitizing Caps for Medical Connectors.
U.S. Appl. No. 16/669,303, filed Oct. 30, 2019, Medical Fluid Connectors and Methods for Providing Additives in Medical Fluid Lines.
U.S. Appl. No. 17/021,226, filed Sep. 15, 2020, Sanitizing Caps for Medical Connectors.
U.S. Appl. No. 17/125,515, filed Dec. 17, 2020, System for Sterilizing Intravenous Connectors and Tubing.
U.S. Appl. No. 16/882,210, filed May 22, 2020, Caps for Needleless Connectors.
U.S. Appl. No. 17/025,201, filed Sep. 18, 2020, Antiseptic Cap.
U.S. Appl. No. 13/968,151, filed Aug. 15, 2013, Disinfecting Mouth Guard for VAP Prevention.
U.S. Appl. No. 14/547,125, filed Nov. 18, 2014, Medicant Injection Device.
U.S. Appl. No. 14/554,018, filed Nov. 25, 2014, Catheter Lock Solution Formulations.
U.S. Appl. No. 14/616,593, filed Feb. 6, 2015, Swab Devices.
U.S. Appl. No. 17/085,197, filed Oct. 30, 2020, Strip Package for Antiseptic Cap.
U.S. Appl. No. 14/826,180, filed Aug. 13, 2015, Disinfectant Caps.
Antibiotic Lock Therapy Guideline, Stanford Hospital and Clinics, Pharmacy Department Policies and Procedures, issued Jun. 2011.
Otto, Mosby's Pocket Guide to Infusion Therapy. Elsevier Health Sciences, 2004. pp. 65-66. Accessed at: http://books.google.com/books?id=j8T14HwWdS4C&lpg=PP1&pg=PP1#v=onepage&f=false (Year: 2004).
“Small-bore connectors for liquids and gases in healthcare applications—Part : Connectors for intravascular or hypodermic applications,” ISO 80369-7, Corrected version dated Dec. 1, 2016 (50 pages).
Hospira, “You Work in Neverland,” Lifeshield Product Brochure in 2 pages, Published 2009.
Baxter Minicap: Photographs of the Baxter Minicap (Sep. 1, 1998) (4 pages).
Baxter, “Peritoneal Dialysis Patient Connectology,” Product Descriptions in 1 page, downloaded Jul. 1, 2011.
Beta Cap II Advertisement from Quinton Instrument Co. (Aug. 1981).
Catheter Connections, “Introducing DualCap,” Product Brochure in 1 page, Copyright 2011.
Charney, “Baxter Healthcare InterlinkTM IV Access System” in 1 page, from Handbook of Modern Hospital Safety. Published Mar. 1999.
Clave® Needlefree Connector, icumedial, human connections, 2 page brochure. 2012, M1-1065 Rev. 04.
Conical Fittings: International Standard, “Conical fittings with 6% (Luer) Taper for Syringes, Needles and certain Other Medical Equipment—Part 2: Lock Fittings”, Ref. No. ISO 594-2:1998. International Organization for Standardization (Sep. 1, 1998) 2nd ed. (16 pages).
Devine, redacted version of letter from David A. Divine, Esq. of Lee & Hayes, dated May 16, 2011 (3 pages).
Devine, redacted version of letter from David A. Divine, Esq. of Lee & Hayes, dated May 27, 2011 (3 pages).
Du. Y, et al. Protein adsorption on polyurethane catheters modified with a novel antithrombin-heparin covalent complex, Journal of Biomedical Materials Research Part A, 2006, 216-225.
Holmer, E. et al. The molecular-weight dependence of the rate-enhancing effect of heparin on the inhibition of thrombin, Factor Xa, Factor IXa, Factor XIa, Factor XIIa and kallikrein by antithrombin, Biochem. J. (1981) 193, 395-400.
Hyprotek, “Port Protek,” Product Brochure in 1 page, downloaded Sep. 19, 2011 from http://www.hyprotek.com/products.html.
ICU Medical Antimicrobial Microclave, first sold Jan. 21, 2010, p. 1-2.
Klement, P. et al. Chronic performance of polyurethane catheters covalently coated with ATH complex: A rabbit jugular vein model, Biomaterials, (2006), 27, 5107-5117.
Menyhay et al., “Disinfection of Needleless Catheter Connectors and Access Ports with Alcohol May Not Prevent Microbial Entry: The Promise of a Novel Antiseptic-Barrier Cap” Infection Control Hospital and Epidemiology, vol. 27, No. 1 (Jan. 2006) (5 pages).
Photographs of the Baxter Minicap (Sep. 1, 1998) (4 pages).
Small-bore connectors for liquids and gases in healhcare applications—Part 7: Connectors for intravascular or hypodermic applications, ISO 80369-7, Corrected version dated Dec. 1, 2016 (50 pages).
V-Link Luer Activated Device, with VitalShield Protective Coating, 2 page brochure, Baxter Dec. 2009.
U.S. Appl. No. 17/108,887, filed Mar. 31, 2022.
U.S. Appl. No. 16/882,210, filed May 22, 2020. (Atty. Docket No. EMCRP.003C1).
U.S. Appl. No. 17/832,277, filed Jun. 3, 2022.
Value Plastics, Inc., “Finger Snap Luer Lock Ring (FSLLR),” drawn by Frank Lombardi, May 29, 2011.
Related Publications (1)
Number Date Country
20220226629 A1 Jul 2022 US
Provisional Applications (1)
Number Date Country
61506979 Jul 2011 US
Continuations (2)
Number Date Country
Parent 15850351 Dec 2017 US
Child 17710887 US
Parent 13547572 Jul 2012 US
Child 15850351 US