The present invention relates to charged-particle optics and mass spectrometry, and in particular to systems used for charged particle transportation and manipulation.
Ion sources used in mass spectrometry produce continuous or quasi-continuous beams of charged particles. Even in the case of pulsed operation of an ion source, accumulation of charged particles during several cycles of operation in a special storage device may be necessary. Therefore, in the case of pulsed operation of mass-analysers, special devices are used to ensure decomposition or breaking-up of a continuous beam of charged particles or the contents of a storage device, into separate portions and transportation thereof to the mass-analyser input. In recent devices used for transportation of charged particles, the tasks of cooling and spatial compression of charged particle packets for the purpose of a reduction of their emittance (the size of a packet of particles in phase-space coordinates) can also be solved efficiently, and additional manipulations can be performed with the charged particles during transportation (for example, fragmentation of charged particles, generation of secondary charged particles, selective extraction of charged particles to be subject to detailed analysis, etc.).
Several types of radio-frequency (RF) devices are used in mass spectrometry for charged particle manipulation. The first group of such devices includes mass analysers (as well as mass separators and mass filters). The purpose of such devices is the selection of those particles featuring particular mass-to-charge ratio, from the totality of charged particles. The main types of RF mass analysers include quadrupole mass filters and ion traps.
Radio-frequency quadrupole mass filters and ion traps proposed by Paul are known starting from about 1960s. Both types of mass analysers have been proposed in U.S. Pat. No. 2,939,952. Rather recently, linear ion traps were proposed, with radial ejection of charged particles from the trap (U.S. Pat. No. 5,420,425) and ejection of ions from the trap along the axis (U.S. Pat. No. 617,768). A detailed description of the principle of operation of said devices can be found, for example, in R. E. March, J. F. J. Todd, Quadrupole Ion Trap Mass Spectrometry, 2nd edition, Wiley-Interscience, 2005; F. J. Major, V. N. Gheorghe, G. Werth, Charged Particle Traps, Springer, 2005; G. Werth, V. N. Gheorghe, F. J. Major, Charged Particle Traps II, Springer, 2009.
Functioning of quadrupole mass filters is based on the theory of solution stability of the Mathieu equation (see, for example, N. W. McLachlan, Theory and Application of Mathieu Functions, Claredon Press, Oxford, 1947 (chapter 4) or M. Abramovitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, 10ed., NBS, 1972 (chapter 20).). In the case of well-selected parameters of the intensity of quadrupole DC electric field, intensity of quadrupole RF field and the frequency of quadrupole RF field, charged particles having a particular mass-to-charge ratio would pass through the RF quadrupole mass filter. The other charged particles would lose the stability of their trajectories, and would be lost outside the boundaries of the channel of the mass filter.
Operation of mass analysers of the ion trap type is generally based on the theory of the Mathieu equation. In these mass analysers, a quadratic or nearly quadratic electric field is used, obtained through application of ideal hyperbolic electrodes, and the analysers are filled with a light gas at low enough pressure. In such devices, after slowing down the speed of motion of the charged particles due to multiple collisions with the molecules of neutral gas, the particles would then sequentially be extracted from the device by means of swinging/oscillating of the group of charged particles having the required mass-to-charge ratio, with the help of an RF electric field having the required frequency. The picture described above is somewhat approximate, since the practical ion trap mass spectrometry has developed and employed rather sophisticated methods for isolation, fragmentation and selective ejection of charged particles from ion traps by means of the action of specially configured RF fields on the particles.
Another important group of RF devices includes RF transporting devices for ion beams. The purpose of such devices is the confining of a beam of charged particles having different masses, within a bounded region inside the device (for example, near the axis of the device), and transfer of charged particles from one point within the space (point of inlet) to another point within the space (point of outlet).
A wide class of such devices is based on application of a two-dimensional multipole field, or approximate multipole field, extended along the third coordinate. The devices are used, for example, for transfer of ions from gas-filled ion sources operating at rather high gas pressures, into devices for mass-analysis of ions, operating at considerably lower pressure of gas, or in vacuum. Because of the fact that said linear multipole ion traps are not used directly for mass analysis, the requirements towards a strictly quadratic or strictly multipole field would not be vital, and for the purpose of simplification of the production technology while manufacturing such devices, hyperbolic and multipole electrodes, as a rule, would be replaced with cylindrical rods or even more coarsely shaped electrodes.
When charged particles are transferred into a linear multipole trap, collisions of the charged particles with gas molecules reduce their kinetic energy and force the particles to be groped near the axis of the device (U.S. Pat. No. 4,963,736). This ensures such an important function like beam cooling and spatial compressing of the beam of charged particle for the purpose of reduction of the beam emittance (i.e., the volume of an ensemble of charged particles, corresponding to the beam, in phase space). An RF electric field is capable of confining charged particles in a radial direction, at a stage where the reduction of kinetic energy of charged particles has not yet taken place, even in the case of relatively high kinetic energies, and “compresses” the particles towards the axis in the course of the loss of their kinetic energy.
The gas-filled linear multipole ion beam transporting devices described above are frequently used simultaneously, as collision cells for fragmentation of charged particles in tandem mass spectrometers (for example, see U.S. Pat. No. 6,093,929). A DC electric field directed along the axis of the device, the field created by additional electrodes, can be used for forced transfer of charged particles along the channel of transfer (ion transporting device proposed in U.S. Pat. No. 5,847,386, collision cell for fragmentation of ions proposed in U.S. Pat. No. 6,111,250).
If the ends of a linear multipole ion transporting device are closed using barriers formed by an electric field, another type of RF device used in mass spectrometry is formed—a linear multipole ion trap, or a storage device for charged particles. Such traps are widely used to accumulate charged particles and pulse transmission of charged particles into an analysing device (U.S. Pat. No. 5,179,278, WO02078046, U.S. Pat. No. 5,763,878, U.S. Pat. No. 6,020,586, U.S. Pat. No. 6,507,019 and GB2388248). Multipole ion traps are also frequently used to initiate task-oriented ion-molecular reactions between charged particles and neutral particles (U.S. Pat. No. 6,140,638 and U.S. Pat. No. 6,011,259), or electrons (patent Nos. GB2372877, GB2403845 and GB2403590), or charged particles with opposite charges (U.S. Pat. No. 6,627,875), to provide additional fragmentation of charged particles due to exposure of the same to an impact, for example, of photons, or other external physical factors.
The RF ion trap proposed by Paul, or a linear trap, can also be used for the same purpose as a multipole linear trap, when the total amount of ions is injected at once from the trap into an analysing device due to a pulse of electric voltage, instead of consecutive resonance ejection of the desired groups of ions (patent Nos. WO2006/129068 and US2008/0035841). In a similar way, a multipole linear trap, wherein the injection into the analysing device is made mass-selective, can be used as a rough mass filter, which selects the required groups of charged particles for further detailed analysis (patent No. 2007/0158545).
There are devices known to have functions similar to the above-mentioned transporting devices, which include transporting devices and/or storage devices wherein electrodes are used, in the form of an array of plates with apertures, and to which electrodes RF voltages are applied, with phase shift between adjacent plates (U.S. Pat. No. 6,812,453, U.S. Pat. No. 6,894,286 and U.S. Pat. No. 5,818,055), or between the parts forming one plate (patent No. PCT/GB2010/001076). In that case, because of the symmetry of electrodes, the generated RF field near the axis of the device would be practically zero, whereas it would grow abruptly near the boundaries of the transporting channel. Therefore, like in the case of the linear multipole ion transporting devices, the charged particles would be repelled from the electrodes and confined by the RF field within a limited space surrounding the axis of the device, and in the course of reduction of their kinetic energy due to collisions with gas molecules, the charged particles would be grouped near the axis of the device.
One can see that in the case of an absence of additional electric fields in the vicinity of the axis of the device, the forces enabling the movement of charged particles along the axis of the transporting device would practically be absent due to symmetry of the electrodes and high frequency of the electric field (U.S. Pat. No. 5,818,055 and U.S. Pat. No. 6,894,286), and the transfer of charged particles along the length of the channel for transportation would not be very efficient. Indeed, the capture of charged particles moving along the axis of the device is not mentioned in U.S. Pat. No. 5,818,055 and U.S. Pat. No. 6,894,286; furthermore, the particles having different masses and different initial conditions (coordinates and velocities) move along the channel of transportation with different effective velocities, and as a result, there would be no separation of the beam of charged particles into individual spatially separated and synchronically transferred packets of charged particles.
The superposition of radially non-uniform RF electric field, which enables localisation of charged particles in the vicinity of the axis of the device along the radial direction, and quasi-static progressive wave of electric field along the axis of the device enabling splitting of the beam of charged particles having different masses into spatially separated packets and synchronous transportation of said packets along the axis of the device may be the most successful solution from among the above-mentioned solutions (U.S. Pat. No. 6,812,453 and PCT/GB2010/001076).
However, since the positively charged particles are grouped in the vicinities of minima of the progressive wave of potential of the quasi-static electric field, and negatively charged particles are grouped in the vicinities of maxima of the progressive wave of potential of the quasi-static electric field, it would not be possible to ensure transportation of positively and negatively charged particles in an integrated packet of charged particles using this method.
The functioning of the majority of RF mass-spectrometry devices is based on the property of an RF electric field to “eject” the charged particles, regardless of the polarity of their charge, from the area of high amplitude of electric field into the area with lower amplitude of electric field. This property has been the consequence of the inertia of motion of charged particles having non-zero masses, under the influence of a fast oscillating electric field.
This phenomena is described quantitatively with the help of the theory of effective potential or pseudopotential, first introduced by P. L. Kapitza (see L. D. Landau, E. M. Lifshitz, Mechanics, Ser. Theoretical Physics, M., Fizmatlit, 2004, p. 124-127; G. M. Zaslaysky and R. Z. Sagdeev, Introduction to nonlinear physics: from pendulum to turbulence and chaos, M., Nauka, 1988, p. 49-51 and p. 52-54; M. I. Yavor, Optics of Charged Particle Analysers, Ser. Advances of Imaging and Electron Physics, Vol. 157, Elsevier, 2009, p. 142-144). That is, suppose the frequency ω of oscillations of electric field {right arrow over (E)}(x,y,z,t), which follows the law {right arrow over (E)}(x,y,z,t)={right arrow over (E)}0(x,y,z)cos(ωt+φ), is high enough (where {right arrow over (E)}0(x,y,z) is the amplitude of oscillations of electric field in a point within the space (x,y,z), ω—frequency of oscillations, φ—initial phase of oscillations, t—time), and the displacement of charged particle having the mass m and charge q, during one period of oscillations of the electric field is small, then the motion of the charged particle can be represented as an “averaged” or “slow” motion, with an added rapid oscillating motion, featuring, however, small amplitude. In that case, the equation for averaged motion would look like as if the averaged motion takes place within electric field having the potential Ū(x,y,z)=q|{right arrow over (E)}0(x,y,z)|2/(4mω2), where the values q, {right arrow over (E)}0(x,y,z), m and ω characterizing the oscillating electric field and the charged particle, have been defined above. The details and substantiation of the theory can be found in the references cited above.
Due to the fact that the expression for potential Ū(x,y,z) includes charge q and mass m, the potential Ū(x,y,z) affects equally both positively and negatively charged particles, and the effect is also dependent on the mass of a charged particle. In case of a real electric potential U(x,y,z) positively charged particles would undergo a force directed reversely with respect to the gradient of electrical potential, and negatively charged particles would undergo a force directed along the gradient of electrical potential, whereas such force would not be dependent on the mass of a particle. From the expression for potential Ū(x,y,z) it follows, that a charged particle would be <<pushed out>> from the area where the amplitude of oscillations of the RF field is high, into the area where said amplitude of oscillations of the RF field is lower (that is, from the area where the potential Ū(x,y,z) has a higher value, the particle would move into the area where the potential Ū(x,y,z) has a lower value). The extracting action of the RF electric field is not dependent on the polarity of charged particle, and moves both positive and negative charged particles in the same direction. The extracting action of the RF electric field is weaker with respect to those charged particles having heavier masses, than with respect to lighter charged particles. The extracting action of the RF electric field can be controlled by varying the frequency of oscillations of the electric field.
The potential Ū(x,y,z) is called an effective potential, or a pseudopotential, and represents a useful mathematical tool for describing and analysing the averaged motion of a charged particle (though in fact, it does not actually correspond to any physical fields). We shall take for granted, some of its properties. For electric field {right arrow over (E)}(x,y,z,t), which varies with time t under the law of harmonic oscillations {right arrow over (E)}(x,y,z,t)={right arrow over (E)}0(x,y,z)cos(ωt+φ) with a constant amplitude {right arrow over (E)}0(x,y,z) at a point (x,y,z), with a constant frequency ω and with a constant phase shift φ=const, the pseudopotential Ū(x,y,z), which affects a charged particle having the charge q and mass m, is calculated using the above formula Ū(x,y,z)=q|{right arrow over (E)}0(x,y,z)|2/(4mω2). If the phase of the RF field is not constant over the entire space, but varies from point to point in a predetermined manner φ=φ(x,y,z), so that the law of variation of the RF electrical field with time t has a more sophisticated form {right arrow over (E)}(x,y,z,t)={right arrow over (E)}0(x,y,z)·cos(ωt+φ(x,y,z))={right arrow over (E)}c(x,y,z)·cos ωt+{right arrow over (E)}s(x,y,z)·sin ωt, where {right arrow over (E)}c(x,y,z) is the amplitude of harmonic component cos ωt in the point of space (x,y,z), {right arrow over (E)}s(x,y,z) is the amplitude of harmonic component sin ωt in the point of space (x,y,z), and the values {right arrow over (E)}0(x,y,z), ω and φ(x,y,z) were defined earlier, then the pseudopotential Ū(x,y,z) corresponding to the given RF electrical field would be calculated using the formula Ū(x,y,z)=q(|{right arrow over (E)}c|2+|{right arrow over (E)}s|2)/(4mω2), where q is the charge of a particle, and m is its mass. If the RF field under consideration is a time-dependent periodic function, so that the electric filed intensity {right arrow over (E)}(x,y,z,t) in the point of space (x,y,z) at the point of time t can be represented as a Fourier series in the form of {right arrow over (E)}(x,y,z,t)=Σ{right arrow over (E)}c(k)(x,y,z)cos(kωt)+{right arrow over (E)}s(k)(x,y,z)sin(kωt), where {right arrow over (E)}c(k)(x,y,z) is the amplitude of harmonic component cos kωt of electric field in the point of space (x,y,z), {right arrow over (E)}s(k)(x,y,z) is the amplitude of harmonic component sin kωt of electric field in the point of space (x,y,z), k is the number of harmonic component, ω is fundamental frequency of the RF electric field, then the pseudopotential Ū(x,y,z) of such RF electric field would be calculated as a sum of contributions of individual harmonic components, using the formula Ū(x,y,z)=qΣ(|{right arrow over (E)}c(k)(x,y,z)|2+|{right arrow over (E)}s(k)(x,y,z)|2)/(4mω2k2), where q is the charge of a particle, and m is its mass. If in addition to the RF electric field {right arrow over (E)}(x,y,z,t), there is an electrostatic field having potential of U(x,y,z), the electrostatic potential U(x,y,z) and the pseudopotential Ū(x,y,z) would be summed. If there are several different RF electric fields with essentially different frequencies, then individual pseudopotentials would be summed for these electric fields, however, if the difference between the frequencies of these RF fields is insignificant, this rule would not be valid. If, for the purpose of simulation of charged particle kinetic energy reduction as a result of collisions with gas molecules, an effective viscous friction is introduced, having an impact on the charged particle with a force {right arrow over (F)}=−γ({right arrow over (v)}−{right arrow over (v)}0), where {right arrow over (v)}(t) is the velocity of particle at time t, {right arrow over (v)}(x,y,z) is the velocity of gas molecules in the point (x,y,z), and γ is the viscous friction coefficient, which does not depend on time, coordinates, and electric field, then the result of “slow” motion of charged particle would be as if all the three factors (electrostatic potential, pseudopotential and viscous friction) were affecting the charged particle simultaneously and independently.
It should be emphasised that the description of motion of a charged particle, using pseudopotential, only represents a mathematical approximation, obtained under certain assumptions as regards the motion of charged particle, and may not correspond to its actual motion. In this respect, for the purpose of analysis of charged particle motion in the above mentioned radio-frequency quadrupole mass filters and radio-frequency ion traps, it would be necessary to perform a rigorous analysis of motion of a charged particle in the actual electric fields (i.e., Mathieu equation theory), in order to obtain the correct structure of the zones of stability of motion. The approach based on the use of pseudopotential would not give a correct solution, because under the conditions where a charged particle moves near the boundary of the zone of stability, and a resonance takes place between “slow” oscillations of the charged particle and the RF electric field, the displacement of the charged particle during one period of the RF electric field under no conditions could be considered to be small.
The present inventors have considered the operation of the device of U.S. Pat. No. 6,812,453 in more detail.
The device under consideration contains a system of electrodes representing a series of coaxially positioned plates with apertures arranged to create internal space between the electrodes, the space directed along the longitudinal axis of the device, and intended for transmission of ions within the same. The device also includes a source of power supply, which provides supply voltage to be applied to the electrodes, including alternating high frequency voltage component, the positive and negative phases of which are applied alternately to the electrodes, and quasi-static voltage component, for creation of which, static or quasi-static voltages are applied to the electrodes successively and alternately, in particular, in the form of unipolar or bipolar pulses of a DC voltage.
The said device creates an electric field, the intensity of which {right arrow over (E)}(x,y,z,t) is described by the expression {right arrow over (E)}(x,y,z,t)={right arrow over (E)}a(x,y,z,t)+{right arrow over (E)}0(x,y,z)ƒ(t), where {right arrow over (E)}a(x,y,z,t) is a quasi-static electric field varying along the length of the channel for charged particles transportation, depending on the spatial coordinates (x,y,z) and time t, {right arrow over (E)}0(x,y,z) is time-independent and non-uniform, at least in a radial direction, amplitude of the RF electric field, depending on spatial coordinates (x,y,z) and independent on time t, ƒ(t)=cos(ωt+φ) is the rapidly oscillating function of time t, which in this particular case describes strictly harmonic oscillations with the frequency ω and initial phase φ. Quasi-static behaviour of the function {right arrow over (E)}a(x,y,z,t) and the rapidness of oscillations of the function ƒ(t) are understood in the sense that during a period where the function ƒ(t) has time to perform several oscillations, the function {right arrow over (E)}a(x,y,z,t) remains practically unchanged. Mathematical notation of this condition is written in the form of inequality |∂{right arrow over (E)}a/∂t|2/|{right arrow over (E)}0|2<<|df/dt|2, which should be satisfied, in order that the device would function properly. Thereby variation of the electric field {right arrow over (E)}(x,y,z,t) with time would have two time scales: a “fast time”, during which the value of the function {right arrow over (E)}0(x,y,z)ƒ(t) would be noticeably changed, and a “slow time”, during which the value of the function {right arrow over (E)}a(x,y,z,t) would be noticeably changed.
According to U.S. Pat. No. 6,812,453 the charged particles are “forced” towards the axis of the device as a result of the action of the RF field and formation of the pseudopotential Ū0(x,y,z) over the radius thereby forming a barrier farther from the axis of the device, and after damping of kinetic energy to equilibrium value, appear to be collected in the neighbourhood of the axis of the device. Due to the presence of the distribution of the quasi-static electric potential with alternating local minima and maxima along the axis of the device, positively charged particles are not just concentrated around the axis of the device, but are collected in local minima of the quasi-static electric potential, as soon as their kinetic energy proves to be lower than the local maxima of the quasi-static electric potential. Respectively, the negatively charged particles, after cooling as a result of collisions with gas molecules, are collected in local maxima of the quasi-static electric potential (the positively charged particles are affected by the force directed against the gradient of the electric potential, while negatively charged particles are affected by the force directed along the gradient of the electric potential).
The fact that at some interval along the length of the axis (in particular, in the neighbourhood of the minima of electric potential for positively charged particles and in the neighbourhood of the maxima of electric potential for negatively charged particles), while moving away from the axis, the radial electric field of quasi-static potential repels the charged particles from the axis of the device, is of no importance, since the repelling action of the RF field, returning the charged particles back to the axis of the device is overbalancing i.e. dominant. When the wave of the quasi-static potential Ua(x,y,z,t) travels slowly along the axis of the device, it captures the charged particles, located near the axis of the device in the neighbourhood of local maxima and minima of the quasi-static potential, while forcing the particles having different masses and different kinetic energies to move synchronously. The process is shown schematically in
Numerical simulation by the present inventors of the actual motion of charged particles in the described electric fields confirms this qualitative picture of motion. For output devices operating in pulsed mode, this method of separation of a continuous flow of charged particles into discrete portions seems to be the most successful. With a correct setting of time intervals between arrivals of individual discrete portions of charged particles from the output of the transporting device and correspondingly, to the input of the next device (which, as a rule, represents a mass analyser operating in pulsed mode), and the time of the next analysis of arrived portion of charged particles, this method allows analysis of all the charged particles from the continuous beam into the analyser, practically without losses.
However, the device of U.S. Pat. No. 6,812,453 does not provide a capability of combining positively and negatively charged particles in a single transported packet.
At its most general, the present invention proposes that a device for manipulating charged particles contains a set of electrodes arranged to form a channel for transportation of charged particles, as well as a source of power supply that provides supply voltage to be applied to the electrodes, the voltage to ensure creation, inside the said channel, of a non-uniform electric field, the pseudopotential of which field has one or more local extrema along the length of the channel for charged particle transportation wherein at least one of the said extrema of the pseudopotential moves along the length of the channel with time for transportation of the charged particles. The non-uniform electric field can be an RF electric field.
Thus the present invention is distinguished from the device of U.S. Pat. No. 6,812,453 at least in that the pseudopotential of the electric field created inside the channel for charged particle transportation has one or more local extrema along the length of the channel for charged particle transportation, at least within a certain interval of time, whereas, at least one said extrema of the pseudopotential moves with time (i.e. moves within a certain interval of time along a certain part of the length of the channel for transportation of charged particles).
With reference to the device of the present invention, it can be stated that in applying the voltages specified in the above mentioned patents (U.S. Pat. No. 5,818,055 and U.S. Pat. No. 6,894,286), there would be no wave of pseudopotential propagating along the channel of transportation of charged particles and enabling capture of the charged particles into local zones of the pseudopotential minima. Indeed, transportation along the axis of the device could be achieved through applying of constant difference of voltages between adjacent plates, enabling the creation of an electrostatic field along the axis of the device by analogy with U.S. Pat. No. 5,847,386 and U.S. Pat. No. 6,111,250, however, extraction of charged particles from the device would still not be discrete and synchronised in time.
The device of the present invention is referred to herein as an “Archimedean device” and the movement of the extrema of the pseudopotential along the channel is referred to herein as an “Archimedean wave”.
The present invention also includes an instrument/apparatus comprising the device, in particular a mass spectrometer comprising the device.
The present invention also includes methods corresponding to the device. In particular, the present invention provides a method of operating the device and also a method comprising steps corresponding to the functions referred to herein with respect to the operation of the device.
An advantage of the present invention is the capability of combining positively and negatively charged particles in a single transported packet.
Where the present application refers to “charged particle(s)”, this includes a reference to ion(s), being a preferred charged particle with which the present application is concerned.
Where the present application refers to “with a certain interval of time”, this includes a reference to a desired or predetermined or preselected interval or period of time.
The power supply can also encompass the generation and/or provision of additional voltages to the electrodes as discussed herein.
As discussed herein in more detail, the present inventors have found that further advantages are achievable when the voltages supplied by the power supply are generated using a digital method. That is, the supply voltages have the form of a digital waveform. The advantages associated with digital drive/digital method approach and the implementation of such an approach are discussed in more detail below.
The present inventors have also found that significant advantages can be achieved if the supply voltages are one or more selected from high-frequency harmonic voltages, periodic non-harmonic high-frequency voltages, high-frequency voltages having a frequency spectrum which contains two or more frequencies, high-frequency voltages having frequency spectrum which contains an infinite set of frequencies, and high-frequency pulsed voltages, wherein the said voltages are suitably converted into time-synchronised trains of high-frequency voltages and/or a superposition of the said voltages is used. The use of these waveforms, singly or in combination, optionally with the methods of modulation disclosed herein, allow the device to be configured to the wide range of applications described herein by adjusting the shape of the created pseudopotential. The shape of the pseudopotential is important for the optimizing the device for application to which it is being applied or the mode of operation within a particular device. For example by adjusting the harmonics provided by the voltage supply the device can be configured to provide optimum performance for a particular application, for example one or more of achieving a maximum mass range of transmission, maximum amount charge transmitted, allowing ions to be resonantly excited within certain regions, collecting ions with high energy spread, separating ions according to mass or mobility, and fragmenting ions by low energy electrons. Thus, this feature permits a wider range of applications to be achieved in a more flexible, reliable and efficient manner compared with prior art devices.
In embodiments, the pseudopotential has alternating maxima and minima, at least along a part of the length of the channel for transportation of charged particles.
In embodiments, the extremum (maximum or minimum), or extrema (maxima or minima) of the pseudopotential move with time (e.g. according to a specified law) at least along a part of the length of the channel, at least within a certain interval of time.
In embodiments, the direction of travelling of the extremum or extrema of the pseudopotential, at least for a part of the length of the said channel, changes its sign at a certain point or points in time.
In embodiments, relocation of the extremum or extrema of the pseudopotential, at least along a part of the length of the said channel, has an oscillatory behaviour at least within a certain interval of time. That is, the location of the extremum or extrema suitably oscillates, for example between first and second locations.
In embodiments, the pseudopotential is uniform along the length of the channel, at least within a certain interval of time, at least along a part of the transporting channel.
In embodiments, the consecutive extrema, or only the consecutive maxima, or only the consecutive minima of the pseudopotential are monotone increasing (increase monotonically), at least along a part of the channel, at least within a certain interval of time.
In embodiments, consecutive extrema, or only the consecutive maxima, or only the consecutive minima of the pseudopotential are monotone decreasing (decrease monotonically), at least along a part of the channel, at least within a certain interval of time.
In embodiments, the value of the pseudopotential at one or more points of the local maximum of the pseudopotential varies along the length of the channel, at least within a certain interval of time.
In embodiments, the value of the pseudopotential at one or more points of the local minimum of the pseudopotential varies along the length of the channel, at least within a certain interval of time.
In embodiments, additional DC voltages, and/or quasi-static voltages, and/or AC voltages, and/or pulsed voltages, and/or RF voltages are applied to the electrodes, the voltages providing the control of radial confinement of charged particles within the area (region) of the channel used for transportation of charged particles. Thus, in embodiments, the device comprises DC voltage supply means and/or quasi-static voltage supply means and/or AC voltage supply means and/or pulsed voltage supply means and/or RF voltage supply means configured to apply the said voltage to the electrodes so as to control the radial confinement of the charged particles. The said voltage supply means can be part of the power supply unit that provides the supply voltages to create the high frequency electric field.
In embodiments, additional DC voltages, and/or quasi-static voltages, and/or AC voltages, and/or pulsed voltages, and/or RF voltages are applied to the electrodes, the voltages providing unlocking and/or locking the escaping of charged particles through the ends of the channel used for transportation of charged particles. Thus, in embodiments, the device comprises DC voltage supply means and/or quasi-static voltage supply means and/or AC voltage supply means and/or pulsed voltage supply means and/or RF voltage supply means configured to apply the said voltage to the electrodes so as to provide the said unlocking and/or locking (i.e. selective blocking of escape/exit of charged particles). The said voltage supply means can be part of the power supply unit that provides the supply voltages to create the high frequency electric field.
In embodiments, additional DC voltages, and/or quasi-static voltages, and/or AC voltages, and/or pulsed voltages, and/or RF voltages are applied to the electrodes, the voltages providing the control of spatial isolation of the packets of charged particles from each other along the length of the channel used for transportation of charged particles. Thus, in embodiments, the device comprises DC voltage supply means and/or quasi-static voltage supply means and/or AC voltage supply means and/or pulsed voltage supply means and/or RF voltage supply means configured to apply the said voltage to the electrodes so as to control the said spatial isolation. The said voltage supply means can be part of the power supply unit that provides the supply voltages to create the high frequency electric field.
In embodiments, additional DC voltages, and/or quasi-static voltages, and/or AC voltages, and/or pulsed voltages, and/or RF voltages are applied to the electrodes, the voltages providing control of time synchronisation of transportation of the packets of charged particles. Thus, in embodiments, the device comprises DC voltage supply means and/or quasi-static voltage supply means and/or AC voltage supply means and/or pulsed voltage supply means and/or RF voltage supply means configured to apply the said voltage to the electrodes so as to control the said time synchronisation. The said voltage supply means can be part of the power supply unit that provides the supply voltages to create the high frequency electric field.
In embodiments, additional DC voltages, and/or quasi-static voltages, and/or AC voltages, and/or pulsed voltages, and/or RF voltages are applied to the electrodes, the voltages providing additional control of the transportation of charged particles. Thus, in embodiments, the device comprises DC voltage supply means and/or quasi-static voltage supply means and/or AC voltage supply means and/or pulsed voltage supply means and/or RF voltage supply means configured to apply the said voltage to the electrodes so as to control the said transportation of charged particles. The said voltage supply means can be part of the power supply unit that provides the supply voltages to create the high frequency electric field.
In embodiments, additional DC voltages, and/or quasi-static voltages, and/or AC voltages, and/or pulsed voltages, and/or RF voltages are applied to the electrodes, the voltages providing the control of motion of charged particles inside local zones of capture of charged particles. Thus, in embodiments, the device comprises DC voltage supply means and/or quasi-static voltage supply means and/or AC voltage supply means and/or pulsed voltage supply means and/or RF voltage supply means configured to apply the said voltage to the electrodes so as to control the said motion of charged particles. The said voltage supply means can be part of the power supply unit that provides the supply voltages to create the high frequency electric field.
In embodiments, additional DC voltages, and/or quasi-static voltages, and/or AC voltages, and/or pulsed voltages, and/or RF voltages are applied to the electrodes, the voltages providing creation of additional potential or pseudopotential barriers, and/or potential or pseudopotential wells along the channel for transportation of charged particles, at least at one point of the charged particle path within the said channel, at least within some interval of time. Thus, in embodiments, the device comprises DC voltage supply means and/or quasi-static voltage supply means and/or AC voltage supply means and/or pulsed voltage supply means and/or RF voltage supply means configured to apply the said voltage to the electrodes so as to provide the said potential or pseudopotential barriers. The said voltage supply means can be part of the power supply unit that provides the supply voltages to create the high frequency electric field.
In embodiments, the said potential or pseudopotential barriers, and/or potential or pseudopotential wells vary with time or travel with time along the transportation channel, at least within some interval of time.
In embodiments, additional DC voltages, and/or quasi-static voltages, and/or AC voltages, and/or pulsed voltages, and/or RF voltages are applied to the electrodes, the voltages providing creation of additional zones of stability and/or additional zones of instability along the channel used for transportation of charged particles, at least at one point of the charged particle path within the said channel, at least within some interval of time. Thus, in embodiments, the device comprises DC voltage supply means and/or quasi-static voltage supply means and/or AC voltage supply means and/or pulsed voltage supply means and/or RF voltage supply means configured to apply the said voltage to the electrodes so as to control the said zones of stability and/or instability. The said voltage supply means can be part of the power supply unit that provides the supply voltages to create the high frequency electric field.
In embodiments, the said zones of stability and/or zones of instability vary with time or travel with time along the transportation channel, at least within some interval of time.
In embodiments, additional DC voltages, and/or quasi-static voltages, and/or AC voltages, and/or pulsed voltages, and/or RF voltages are applied to the electrodes, the voltages providing selective extraction of charged particles. Thus, in embodiments, the device comprises DC voltage supply means and/or quasi-static voltage supply means and/or AC voltage supply means and/or pulsed voltage supply means and/or RF voltage supply means configured to apply the said voltage to the electrodes so as to provide selective extraction of charged particles. The said voltage supply means can be part of the power supply unit that provides the supply voltages to create the high frequency electric field.
In embodiments, additional DC voltages, and/or quasi-static voltages, and/or AC voltages, and/or pulsed voltages, and/or RF voltages are applied to the electrodes, the voltages providing the control of essential dependence of the motion of charged particles on the mass of charged particles. Thus, in embodiments, the device comprises DC voltage supply means and/or quasi-static voltage supply means and/or AC voltage supply means and/or pulsed voltage supply means and/or RF voltage supply means configured to apply the said voltage to the electrodes so as to provide control of the dependence of the motion of the charged particles on the mass of the charged particles.
In embodiments, a supply voltage is applied to the electrodes, the frequency of which voltage varies at least within some interval of time. Thus, in embodiments, the device comprises supply voltage means configured to apply a voltage to the electrodes, the frequency of which varies with time.
In embodiments, the channel for charged particle transportation has a rectilinear orientation. That is, the channel is a rectilinear channel.
In embodiments, the channel for charged particle transportation has a curvilinear orientation. That is, the channel is a curvilinear channel.
In embodiments, the channel for charged particle transportation has variable profile along the length of the channel. That is, the cross-section of the channel varies along its length.
In embodiments, the channel for charged particle transportation is closed to form a loop or a ring. That is, the channel is a closed channel, suitably a loop channel or ring channel.
In embodiments, an additional electrode or electrodes are located in the central part of the channel for charged particle transportation.
In embodiments, the channel for charged particle transportation is subdivided into segments. That is, the channel comprises a plurality of segments.
In embodiments, the channel for charged particle transportation consists of a series of channels attached to each other, possibly, interfaced by additional zones or devices. That is, the device comprises a plurality of channels, which plurality of channels are attached or joined to each other.
In embodiments at least in a part of the channel, the channel is formed by a number of parallel channels for charged particle transportation.
In embodiments, at least in a part of the channel, the channel for charged particle transportation is split into a plurality of parallel channels.
In embodiments, a number of parallel channels for charged particle transportation are connected or joined together, suitably along a sector thereof, to form a single channel for charged particle transportation.
In embodiments, the channel for charged particle transportation contains a storage region/area, which storage region/area performs the function of a storage volume for charged particles, the said storage region/area being located at the inlet to the channel, and/or at the outlet from the channel, and/or inside the channel (that is, located in the channel between the inlet and outlet).
In embodiments, the channel for charged particle transportation is plugged/closed, at least, at either end, at least, within a certain interval of time. That is, the device is configured to (e.g. comprises channel closing means configured to) close one or both ends of the channel (inlet and/or outlet).
In embodiments, the channel for charged particle transportation has a stopper controlled by electric field, at least at one of the ends.
In embodiments, the channel for charged particle transportation contains a mirror controlled by electric field, the said mirror placed in the channel for charged particle transportation, at least at one of the ends. That is, the device comprises an electric field mirror in the channel for reflection of charged particles, the mirror suitably being located at one or both ends of the channel (inlet and/or outlet).
In embodiments, the device contains an inlet device for inlet (i.e. introduction) of charged particles to the channel, and located in the channel for charged particle transportation, wherein the said inlet device may operate in a continuous mode.
In embodiments, the device contains an inlet device used for inlet (i.e. introduction) of charged particles to the channel, and located in the channel for charged particle transportation, wherein the said inlet device may operate in a pulsed mode.
In embodiments, the device contains an inlet device used for inlet (i.e. introduction) of charged particles to the channel, and located in the channel for charged particle transportation, wherein the said inlet device is capable of switching between a continuous mode of operation and a pulsed mode of operation.
In embodiments, the device contains an outlet device for outlet (i.e. exit or ejection) of charged particles (from the channel), and located in the channel for charged particle transportation, wherein the said outlet device may operate in a continuous mode.
In embodiments, the device contains an outlet device for outlet (i.e. exit or ejection) of charged particles, and located in the channel for charged particle transportation, wherein the said outlet device may operate in a pulsed mode.
In embodiments, the device contains an outlet device for outlet (i.e. exit or ejection) of charged particles, and located in the channel for charged particle transportation, wherein the said outlet device is capable of switching between a continuous mode of operation and a pulsed mode of operation.
In embodiments, the device contains generation means (e.g. a generation device) for generation of charged particles, and located in the channel for charged particle transportation, wherein the said charged particle generating device may operate in a continuous mode.
In embodiments, the device contains generation means (e.g. a generation device) for generation of charged particles, and located in the channel for charged particle transportation, wherein the said charged particle generating device may operate in a pulsed mode.
In embodiments, the device contains generation means (e.g. a generation device) for generation of charged particles, and located in the channel for charged particle transportation, wherein the said charged particle generating device is capable of switching between a continuous mode of operation and a pulsed mode of operation.
In embodiments, the supply voltages used have the form of high-frequency harmonic voltages, and/or periodic non-harmonic high-frequency voltages, and/or high-frequency voltages having frequency spectrum, which contains two or more frequencies, and/or high-frequency voltages having frequency spectrum, which contains an infinite set of frequencies, and/or high-frequency pulsed voltages, wherein the said voltages suitably undergo amplitude modulation and/or a superposition of the said voltages is used. That is, the device comprises voltage supply means configured to provide the above-mentioned frequency, amplitude and superposition characteristics. The said voltage supply means can be part of the said power supply unit.
In embodiments, the supply voltages used have the form of high-frequency harmonic voltages, and/or periodic non-harmonic high-frequency voltages, and/or high-frequency voltages having frequency spectrum, which contains two or more frequencies, and/or high-frequency voltages having frequency spectrum, which contains an infinite set of frequencies, and/or high-frequency pulsed voltages, wherein the said voltages suitably undergo amplitude modulation and/or a superposition of the said voltages is used, and wherein the said voltages suitably undergo frequency modulation and/or a superposition of the said voltages is used. That is, the device comprises voltage supply means configured to provide the above-mentioned frequency, amplitude and superposition characteristics. The said voltage supply means can be part of the said power supply unit.
In embodiments, the supply voltages used have the form of high-frequency harmonic voltages, and/or periodic non-harmonic high-frequency voltages, and/or high-frequency voltages having frequency spectrum, which contains two or more frequencies, and/or high-frequency voltages having frequency spectrum, which contains an infinite set of frequencies, and/or high-frequency pulsed voltages, wherein the said voltages suitably undergo phase modulation and/or a superposition of the said voltages is used. That is, the device comprises voltage supply means configured to provide the above-mentioned frequency, phase and superposition characteristics. The said voltage supply means can be part of the said power supply unit.
In embodiments, the supply voltages used have the form of high-frequency harmonic voltages, and/or periodic non-harmonic high-frequency voltages, and/or high-frequency voltages having frequency spectrum, which contains two or more frequencies, and/or high-frequency voltages having frequency spectrum, which contains an infinite set of frequencies, and/or high-frequency pulsed voltages, wherein the said voltages suitably feature two or more neighbour fundamental frequencies and/or a superposition of the said voltages is used. That is, the device comprises voltage supply means configured to provide the above-mentioned frequency superposition characteristics. The said voltage supply means can be part of the said power supply unit.
In embodiments, the supply voltages used have the form of high-frequency harmonic voltages, and/or periodic non-harmonic high-frequency voltages, and/or high-frequency voltages having frequency spectrum, which contains two or more frequencies, and/or high-frequency voltages having frequency spectrum, which contains an infinite set of frequencies, and/or high-frequency pulsed voltages, wherein the said voltages are suitably converted into time-synchronised trains of high-frequency voltages and/or a superposition of the said voltages is used. That is, the device comprises voltage supply means (e.g. the said power supply unit) configured to provide the above-mentioned frequency and superposition characteristics. As noted above and discussed in more detail below, the provision of the above-mentioned specific voltages is particularly preferred.
In embodiments, the supply voltages used have the form of high-frequency voltages synthesised using a digital method. That is the device includes digital voltage supply means configured to provide a digital waveform. The digital voltage supply means can be part of the said power supply unit. As noted above and discussed in more detail below, the provision of a digital waveform (i.e. generation of supply voltages using a digital method) is particularly preferred.
In embodiments, the electrodes forming the channel comprise a plurality, group or aggregate of electrodes.
In embodiments, the aggregate of electrodes represents repetitive electrodes. That is, the group or aggregate of electrodes comprises a series of electrodes, suitably arranged along the length of the channel.
In embodiments, the aggregate of electrodes represents repetitive cascades of electrodes, wherein configuration of electrodes in an individual cascade is not necessarily periodical, i.e. can be periodical or non-periodical. That is, the electrodes can be in the form of, or comprise a, plurality of sub-groups. Within each sub-group the electrodes can be periodical or non-periodical. Respective sub-groups or cascades can be the same or different.
In embodiments, some of the electrodes or all the electrodes can be solid (i.e. continuous), whereas the other electrodes or a part of the other electrodes are disintegrated (i.e. discontinuous) to form a periodic string/series of elements.
In embodiments, high-frequency voltages may not be applied to certain electrodes. That is, the supply voltage is applied to some but not all of the electrodes.
In embodiments, certain electrodes, or all the electrodes in the aggregate of electrodes have a multipole profile. That is, the electrodes form or are a multipole.
In embodiments, certain electrodes, or all the electrodes in the aggregate of electrodes have a multipole profile, e.g. a coarsened multipole profile, formed by plane, stepped, piecewise-stepped, linear, piecewise-linear, circular, rounded, piecewise-rounded, curvilinear, piecewise-curvilinear profiles, or by a combination of the said profiles.
In embodiments, certain electrodes, or all the electrodes in the aggregate of electrodes, are formed from thin metallic films deposited on a non-conductive substrates.
In embodiments, certain electrodes, or all the electrodes in the aggregate of electrodes are wire and/or mesh, and/or have slits and/or other additional apertures making the said electrodes transparent for gas flow, or enabling reduction of the resistance for the gas flow through the said electrodes. That is, some or all of the electrodes are configured (e.g. by provision of a slit or other aperture) to permit gas flow through the electrode.
In embodiments, vacuum is created in the channel used for charged particle transportation. That is, the device comprises vacuum generation means to provide a vacuum in the channel.
In embodiments, the channel for charged particle transportation is filled with a neutral gas, and/or (partly) ionised gas. That is, the device comprises gas supply means for supplying gas to the channel, suitably to achieve a gas flow in the channel.
In embodiments, a flow of neutral and/or (partly) ionised gas is created in the channel used for charged particle transportation.
In embodiments, several electrodes or all of the electrodes have slits and/or apertures intended for inlet of charged particles into the device, and/or outlet of charged particles from the device. That is, some or all of the electrodes are configured (e.g. by provision of a slit or other aperture) to permit inlet into and/or outlet from the channel of charged particles through the electrode.
In embodiments, the gap between the electrodes is used for inlet of charged particles into the device, and/or outlet of charged particles from the device. That is, the electrodes are configured such that a gap is provided between adjacent electrodes through which charged particles are delivered into or exit from the channel.
In embodiments, additional pulsed or stepwise voltages are applied, at least to a part of electrodes, at least within some interval of time, the said voltages enabling inlet of charged particles into the device, and/or outlet of charged particles from the device, and/or confinement of charged particles within the device. That is, the device comprises additional voltage supply means configured to provide the above-mentioned pulsed or stepwise characteristics so as to effect the said inlet and/or outlet and/or confinement. The additional voltage supply means can be part of the said power supply unit.
In the device of the present application, as opposed to the device of U.S. Pat. No. 6,812,453 described above, the behaviour of rapidly oscillating electric field, the said field being non-uniform along the channel used for transportation of charged particles, is governed by different regularities. This enables not only splitting of the existing ensemble of charged particles into spatially separated packets of charged particles and move them synchronously along the channel used for transportation regardless of their masses and kinetic energies, but additionally the combining of both positively charged and negatively charged particles, in a single packet.
We shall consider the features of behaviour of a high-frequency electric field used in the device of the present application, through a case study. We shall take an electric field having intensity {right arrow over (E)}(x,y,z,t), which is described by the expression {right arrow over (E)}(x,y,z,t)={right arrow over (E)}a(x,y,z,t)ƒ(t), where {right arrow over (E)}a(x,y,z,t) is a quasi-static amplitude of oscillations of electric filed, varying along the length and along the radius of the channel for charged particle transportation, which amplitude is dependent on spatial coordinates (x,y,z) and time t, and ƒ(t) is a rapidly oscillating function of time with zero average value, in particular case, having the form of harmonic oscillations ƒ(t)=cos(ωt+ω), where ω is the frequency of harmonic oscillations, and φ is the initial phase of harmonic oscillations. Quasi-static behaviour of the function {right arrow over (E)}a(x,y,z,t) and the rapidness of oscillations of the function ƒ(t) are understood in the sense that during a period where the function ƒ(t) has time to perform several oscillations, the function {right arrow over (E)}a(x,y,z,t) remains practically unchanged. Mathematical notation of this condition can be written in the form of inequality |∂{right arrow over (E)}a/∂t|2/|{right arrow over (E)}a|2<<|df/dt|2/|ƒ(t)|2, and total derivative with respect to time t of the intensity of electric field ∂{right arrow over (E)}(x,y,z,t)/∂t=(∂{right arrow over (E)}a/∂t)ƒ(t)+{right arrow over (E)}a(df(t)/dt), contribution of the term {right arrow over (E)}a(df(t)/dt) outbalances considerably contribution of the term (∂{right arrow over (E)}a/∂t)ƒ(t).
Variation of the above electric field {right arrow over (E)}(x,y,z,t) with time t has two time scales: “fast time”, within which time the value of the function ƒ(t) would be noticeably changed, and “slow time”, within which time the value of the function {right arrow over (E)}a(x,y,z,t) would be noticeably changed. In the first approximation “slow”, or “averaged” motion of charged particle in such a field is described by “slowly” varying pseudopotential Ū(x,y,z,t) with time, where the term “slowly” means that characteristic time interval of noticeable variation of the pseudopotential Ū(x,y,z,t) is much greater than characteristic time interval required for a single oscillation is much greater than characteristic time interval necessary to perform a single oscillation of the high-frequency electric field according to the law ƒ(t).
For the case where the law of electric field variation with time has the form of {right arrow over (E)}(x,y,z,t)={right arrow over (E)}a(x,y,z,t)cos(ωt+φ), where {right arrow over (E)}a(x,y,z,t) is a “slow” time-varying function, and cos(ωt+φ) is a “fast” time-varying function, describing harmonic oscillations with the frequency ω and initial phase φ, the slowly varying pseudopotential Ū(x,y,z,t), affecting a charged particle having the charge q and mass m, is expressed through quasi-static amplitude {right arrow over (E)}Ea(x,y,z,t) of the oscillations of electric field, as Ū(x,y,z,t)=q|{right arrow over (E)}a(x,y,z,t)|2/(4mω2). In a more general case, where the law of time-dependent variation of electric field is periodic, but not harmonic, and the intensity of electric field {right arrow over (E)}(x,y,z,t) in the point of space (x,y,z) as a time-varying function of t is presented in a canonical form as Fourier series {right arrow over (E)}(x,y,z,t)=Σ{right arrow over (E)}c(k)(x,y,z,t)cos(kωt)+{right arrow over (E)}s(k)(x,y,z,t)sin(kωt), where {right arrow over (E)}c(k)(x,y,z,t) is a “slow” amplitude of “fast” harmonic component cos(kωt) of electric field {right arrow over (E)}(x,y,z,t), {right arrow over (E)}s(k)(x,y,z,t) is a “slow” amplitude of “fast” harmonic component sin(kωt) of electric field {right arrow over (E)}(x,y,z,t), k is harmonic number, ω=2π/T is fundamental circular frequency of time-periodic function {right arrow over (E)}(x,y,z,t), having the period T, then the pseudopotential Ū(x,y,z,t) varying slowly with time is calculated as Ū(x,y,z,t)=qΣ(|{right arrow over (E)}c(k)(x,y,z,t)|2+|{right arrow over (E)}s(k)(x,y,z,t)|2)/(4mω2k2), where q is the charge of a particle m is the mass of a particle. In the most general case, if the intensity of electric field {right arrow over (E)}(x,y,z,t) in the point of space (x,y,z) at time t allows expression in the form of {right arrow over (E)}(x,y,z,t)=Σ{right arrow over (E)}c(k)(x,y,z,t)cos(ωkt)+{right arrow over (E)}s(k)(x,y,z,t)sin(ωkt), where {right arrow over (E)}c(k)(x,y,z,t) and {right arrow over (E)}s(k)(x,y,z,t) are “slow” functions of time t, and where cos(ωkt) and sin(ωkt) are “fast” harmonic oscillations with frequencies ωk, far enough from each other, then the pseudopotential varying slowly with time would be calculated as Ū(x,y,z,t)=qΣ(|{right arrow over (E)}c(k)(x,y,z,t)|2+|{right arrow over (E)}s(k)(x,y,z,t)|2)/(4mωk2), where q is the charge of a particle and m is the mass of a particle.
For the purpose of subdivision of the time-varying functions into “slow” and “fast”, the upper boundary δ is introduced for “slow” frequencies and the lower boundary Δ is introduced for “fast” frequencies, where Δ>>δ. The function h(t) is referred to as “slow”, if its spectrum is zero (or is negligibly small) outside the frequency interval ω∈(−δ,+δ). The function H(t) is referred to as “fast”, if its spectrum is zero (or is negligibly small) within the frequency interval ω∈(−Δ,+Δ). The above restriction on the spectrum of the functions necessitate the inequalities, valid “on the average” |dh(t)/dt|2/|h(t)2≦δ2 and |dH(t)/dt|2/H(t)|2≧Δ2. The condition that the frequency ωk is considered to be “fast”, would be equivalent to the inequality |ωk|≧Δ. The condition that the frequencies ωm and ωn are located “far enough” from each other, would be equivalent to the inequality |ωm−ωn|≧Δ. In order to represent the electric field in the form of Σ({right arrow over (E)}c(k)(x,y,z,t)cos(ωkt)+{right arrow over (E)}s(k)(x,y,z,t)sin(ωkt)), it would be enough that the voltages applied to the electrodes vary as ƒ(t)=Σpk(t) cos(ωkt)+qk(t)sin(ωkt), where pk(t) and qk(t) are “stow” functions, and ωk are “fast” frequencies, which are “far from each other”. In this way, in order that the signal ƒ(t) could be represented in such canonical form, it would be required that after Fourier transformation, the spectrum of the signal should be broken up into intervals, which intervals should be far from each other, and short enough, outside which intervals the spectral function F(ω) could be considered to be equal to zero (see
We shall consider a particular case of the claimed device, where the radial OZ component of electric field is identically zero, and the axial component Ez(z,t) of electric field varies with time t under the law Ez(z,t)=E0 cos(z/L−t/T)·cos(ωt), where E0 is the amplitude of alternating maxima and minima of the axial distribution of electric field, z is the spatial coordinate along the axis of the device, L is characteristic spatial scale along the axis of the device, T is characteristic time scale for “slow” time, ω is the “fast” frequency of harmonic oscillations of electric field. The condition of quasi-static behaviour of the amplitude of oscillations of the electric field is reduced to the condition ωT>>1.
Two-dimensional plot of the pseudopotential of this high-frequency electric field is shown in
Thus, a substantial difference between the electric fields used in U.S. Pat. No. 6,812,453, and the electric fields used in the device of the present invention consists in qualitatively different laws of time-dependent variation of electric fields, which is clearly illustrated by
Numerical simulation of the motion of charged particles in the mentioned high-frequency electric field in the presence of neutral gas confirms the qualitative pattern of motion described above.
The above situation would exist both in the case of transportation of charged particles in vacuum, and in the case of transportation of charged particles in rarefied gas, where scattering of charged particles due to collisions with the molecules of neutral gas is simulated using the Monte-Carlo method. The difference is in the presence of damping gas, those charged particles, not occurred initially in the zone of stability in the neighbourhood of the pseudopotential minimum would skip into one of the preceding zones of stability, then would be captured by the same and continue moving synchronously along the transportation channel with the respective constant displacement of the packet of charged particles along the transportation channel (this process can be seen clearly in
The example shown above illustrates the general principle which forms the basis of the operation of the device of the present invention. If the high-frequency field of some device is characterised by a time-varying pseudopotential having a minimum along the transportation channel for charged particles, the minimum moving with time along the transportation channel, then the charged particles, as a result of action of the said high-frequency field, would be grouped in the neighbourhood of the minimum of the pseudopotential, and while the minimum moves along the transportation channel, time-synchronised movement of thus formed packet of charged particles would take place (
Thus, a technical result achieved through the implementation of the present invention is the provision of a capability of combining of positively and negatively charged particles in a single transported packet.
In this way, the device of the present invention, as will be shown below, provides vast capabilities for charged particle manipulation.
In the device of the present invention, the presence of buffer gas in the channel used for transportation of charged particles, for the purpose of damping of their kinetic energies would not be absolutely necessary, and the process of movement of charged particles can be realised in vacuum, if the pseudopotential barriers are high enough.
The electric fields implemented in the device of the present invention and the device of U.S. Pat. No. 6,812,453, are used to perform two different functions: confinement of charged particles in the neighbourhood of the transporting channel and movement of charged particles along the transportation channel. If we were to subdivide the high-frequency voltages applied to the electrodes of the device as described in the U.S. Pat. No. 6,812,453, into confining voltages (that is, primarily those providing confinement of charged particles in radial direction), and control voltages (that is, primarily those providing movement of charged particles along the channel used for transportation of the charged particles), then the control voltages and the electric field thus created in the device of the present invention would be principally different as compared to those used in the device of U.S. Pat. No. 6,812,453, as regards the form and the action of the same on the charged particles. The same would be true in the case of the complete electric field, which represents a sum of the controlling electric field and the confining electric field.
Generally speaking, the availability of additional confining fields in the device of the present invention is not actually necessary, since this function could be successfully performed by the same electric fields, which provide transportation of charged particles. In the case where confining electric fields are provided in the device of the present invention (see below) the confining fields would mostly have the same form as for the device of U.S. Pat. No. 6,812,453. However whereas for the device of U.S. Pat. No. 6,812,453 the presence of confining high-frequency electric fields forms an inherent component of the device, the device of the present invention would not necessarily need the presence of separate confining high-frequency fields, provided that the pseudopotential barriers formed by the controlling high-frequency field are high enough.
To identify that the particular high frequency electric field is related to the claimed class of high-frequency electric fields, it would be necessary to determine the method of calculation of the value of slowly varying pseudopotential as per the prescribed high-frequency electric field. By definition, the pseudopotential Ū(x,y,z,t) is such a scalar function to be calculated according to certain rules through the high-frequency field existing in the system, that the averaged motion of charged particle in the given high-frequency electric field is described by the equation of motion of charged particle in pseudoelectric field Ū(x,y,z,t) accurate within the correction terms of small order. When the voltages Un(t)=Un0·ƒn(t), applied to the electrodes, vary with time like ƒn(t)=Σpnk(t)cos(ωkt)+qnk(t) sin(ωkt), where pnk(t) and qnk(t) are the “slow” functions, and ωk are “fast” and “located far from each other” frequencies, high-frequency electric field {right arrow over (E)}(x,y,z,t) in the point of space (x,y,z) at the point of time t can be represented in the form of {right arrow over (E)}(x,y,z,t)=Σ{right arrow over (E)}c(k)(x,y,z,t)cos(ωkt)+{right arrow over (E)}s(k)(x,y,z,t)sin(ωkt), where the functions {right arrow over (E)}c(k)(x,y,z,t) and {right arrow over (E)}s(k)(x,y,z,t) are the “slow” time functions, and cos(ωkt) and sin(ωkt) are the “fast” frequencies ωk, oscillating according to harmonic law, being far from each other. In that case, the pseudopotential varying slowly with time Ū(x,y,z,t), which describes averaged motion of charged particle, shall be calculated according to the formula Ū(x,y,z,t)=qΣ(|{right arrow over (E)}c(k)(x,y,z,t)|2+|{right arrow over (E)}s(k)(x,y,z,t)|2)/4mωk2), where q is the charge of a particle, and m is the mass of a particle. In order that the signals denoted as ƒn(t) could be presented in the required canonical form, it would be required that after Fourier transformation, the spectrum of the signal should be broken up into intervals, which should be far enough from each other, and short enough, outside which intervals the spectral function could be considered to be equal to zero (see
Breaking-up of charged particles into local spatially separated packets and transportation thereof from the inlet of the device to the outlet of the device is far from being the only possibility to control behaviour of charged particles with the help of the said high-frequency electric fields.
If, instead the axial high-frequency electric field, varying according to the law Ez(z,t)=E0 cos(z/L−t/T)·cos(ωt), where E0 is the amplitude of the high-frequency field; ω is the frequency of the high-frequency field; L and T are characteristic length and time scales, respectively, we synthesise a high-frequency electric field, the axial component of which would vary under the law Ez(z,t)=E0 cos(z/L−g(t))·cos(ωt), where g(t) is a specified quasi-static function of time, slowly varying with time as compared against the function ωt, then we would thus ensure movement of the centres of packets of charged particles according to the law zk(t)=L·g(t)−πL(k+½) along the transportation channel, instead of a uniform movement. In particular, we would thus obtain a capability to transfer the charged particles to the inlet of the next device at specified points in time, synchronised in time with the pulsed mode of operation of the output device, if necessary.
If, instead of the function z/L in this formula, we use an arbitrary function h(z), we would then obtain a capability of controlling the locations of the centres of packets of charged particles
The function g(t), mentioned above, shall not necessarily be a monotone function of time. If it has an oscillating behaviour, then the movement of packets of charged particles along the transportation channel would feature an oscillating pattern. In particular, this could be used to organise cyclic transposition of the packets of charged particles from the inlet to the outlet and back, thus creating a trap for charged particles or a storage volume for intentional manipulations with charged particles.
A purposeful construction of high-frequency electric fields with the values of pseudopotential at the points of minimum and maximum, complying with certain additional requirements, offers additional capabilities for manipulations with charged particles on the basis of the specified general principle. Let us consider, for example, a device, wherein the law of variation of the axial component Ez(z,t) of high-frequency electric field as a function of time t is defined as Ez(z,t)=E0(π/2+arctan(z/H))·cos(z/L−t/T)·cos(ωt), where E0 is characteristic scale of variation of the amplitude of axial distribution of electric field, z is spatial coordinate along the axis of the channel of transposition of charged particles, H is characteristic spatial scale of “damping” of the oscillations of the pseudopotential, L is characteristic spatial scale of single oscillation of the pseudopotential, T is characteristic “slow” time scale of the transposition of oscillations of the pseudopotential along the axis of the device, ω if “fast” frequency of the high-frequency harmonic oscillations of electric field, where H>>L and ωT>>1, as shown in
When supplementing the structure of the pseudopotential described above, with a high-frequency field with distribution along the axis of the device in the form of Ez(z,t)=0.45E0(π/2−arctan(z/H))·sin(ωt), where E0 is characteristic scale of variation of the amplitude of axial distribution of the electric field, z is spatial coordinate on the axis of the charged particles' transfer channel, H is characteristic spatial scale of “damping” of the oscillations of the pseudopotential, ω is “fast” frequency of the high-frequency harmonic oscillations of electric field; we obtain a segment with monotonically decreasing maxima and minima, as shown in
A similar addition to the pseudopotential could be organised with the help of a DC electric field to provide the potential U(z)=U0(π/2−arctan(z/H))2, where U0=qE02/4mω2 is the scale of electrostatic potential jump, H is characteristic spatial scale of the “damping” of oscillations of the pseudopotential of high-frequency electric field, E0 is characteristic scale of variation of the amplitude of axial distribution of the electric field, q is the charge of a particle, m is the mass of a particle. However, in that case, attracting of the charged particles having only one polarity of their charges into the trapping zone would take place (
Dynamic decrease, at a certain point of time in the course of transportation of charged particles, of the amplitude of pseudopotential at the point of maximum of the pseudopotential, the point separating two adjacent minima of the pseudopotential, offers new additional capabilities for purposeful manipulations of charged particles. With such an operation, it becomes possible to combine the content of two adjacent packets of charged particles into a single packet of charged particles. In this way, depending on the level to which the maximum of the pseudopotential is decreased, a possibility would exist, of complete integration of the adjacent packets of charged particles, as well as partial transition of charged particles from one packet to the other. In particular, considering the fact that the same distribution of high-frequency field creates different pseudopotentials with different height of barriers for different masses, it is possible to provide a mass-selective exchange of charged particles between adjacent packets.
Instead of variation of the pseudopotential value in the point of maximum, or in parallel with variations of the pseudopotential value in the point of maximum, it is possible to intentionally vary the pseudopotential value in the point of minimum. With an increase of the value of the selected minimum of the pseudopotential above a certain threshold, it would be possible to selectively destroy individual packets of charged particles. Using the same scheme, it would be possible to “transfer” the content of a packet of charged particles into an adjacent packet of charged particles by means of synchronised drop of the maximum of the pseudopotential, located between two minima of the pseudopotential, and rise of one of the two minima of the pseudopotential, and then, restoration of the used area of capture of the charged particles to the previous state, but with no charged particles inside the area. Due to the fact, that the pseudopotential value depends on the mass of a charged particle, and would differ for different particles, this process can be mass-selective.
For the purpose of particularly reliable radial containment of charged particles in the neighbourhood of the transportation channel, the existence of a basic high-frequency electric field characterised by slowly varying pseudopotential with an extremum or extrema travelling along the transportation channel may be supplemented. For provision of particularly reliable radial containment of charged particles, an additional high-frequency or pulsed electric field can be used, the pseudopotential of which has no extremum or extrema travelling along the transportation channel, but which forms an RF barrier for charged particles in case of their retreat from the axis of the device while approaching the electrodes. In the case where it is necessary to temporarily of permanently block the escape of charged particles through an end or both ends of the channel used for transportation of charged particles, the said high-frequency electric fields and RF barriers created by the same may be localised on the axis of the transportation channel, near the respective end or ends of the transportation channel.
In place of high-frequency electric fields, static or quasi-static electric fields can be used for the same purpose. In this way, radial confinement of the beam can be provided using the system of a series of electrostatic lenses, and blocking of the exit of charged particles through an end or ends of the transportation device can be provided using an additional potential barrier, created by means of DC voltage, for example applied to the end electrodes of the transportation channel.
Additional high-frequency or pulsed electric fields, as well as additional static or quasi-static fields can be used in the device for manipulations of charged particles, for purposes other than the enhancement of radial containment of charged particles and/or blocking of the escape of charged particles through the ends of the transportation channel. These purposes include: a) improved spatial isolation of individual packets of charged particles from each other, and/or b) enhancement of time synchronisation of movement of the packets of charged particles along the transportation channel and/or time synchronisation of extraction of the packets of charged particles from the device and/or time synchronisation of arrival of charged particles into the device, and/or c) additional control of the transportation of charged particles in the device.
A particular case of additional control of the transportation of charged particles is the creation of local potential barriers and/or local potential wells along the route of transportation of charged particles. The said potential barriers and/or potential wells can be created by high-frequency electric fields, as well as static and quasi-static electric fields. High-frequency barriers and/or wells can be used, in particular, for introduction of mass-selective effects into the process of transportation of charged particles. Static and quasi-static barriers and/or wells can be used, in particular, for separation of positively charged particles from negatively charged particles. Potential barriers and/or wells of one type, as well as another type, can be used for blocking and/or unblocking of the transfer of charged particles, variation of kinetic energies of charged particles, etc. The specified potential barriers and/or wells can exist permanently, be switched on and/or switched off within a certain interval or at certain points in time, alter the parameters (height and/or depth), move along the channel of transportation or along a part of length of the transportation channel.
A particular case of additional control of the transportation of charged particles represents the creation of local zones of stability and/or local zones of instability of motion of charged particles along length of the transportation channel. The specified local zones of stability and/or local zones of instability of motion can exist permanently, be switched on and/or switched off within a certain interval or at certain points in time, alter the parameters (height and/or depth), move along the transportation channel, or along a part of length of the transportation channel.
For example, a superposition of static or quasi-static field and a high-frequency field, as it occurs in quadrupole mass-filters, allows creating separate zones, through which zones, only those particles having a defined controllable mass range could be transported. Another way to control the stability of motion, and in particular, to readjust the mass range, corresponding to stable motion of charged particles, consists in readjusting of carrier frequency of the high-frequency voltage, and/or applying of additional high-frequency voltages with multiple frequencies (which corresponds, in the theory of quadrupole RF mass-filters and ion traps, to transition from Mathieu equation to more general Hill equation, thus offering wider capabilities in terms of configuration of the zones of stability).
The local areas of capture of charged particles, limited maxima of the pseudopotential, travelling along the transportation channel, actually represent a set of local ion traps, and these can be treated the same way as in ion traps mass spectrometry. Application of resonance swinging high-frequency voltages to slowly moving along the axis, local areas of capture of charged particles, concentrated around the minima of the pseudopotential of the basic high-frequency field, enables selective extraction of charged particles of certain mass, as it takes place in RF ion traps, as well as realisation of other operations of selective control of the ensemble of charged particles, the operations being well-developed in the mass spectrometry of RF ion traps. The advantage of these operations with local capture areas, rather than with an individual device of the type of a radio-frequency ion trap, is in that these rather time-consuming operations in this case would not cause special pauses in operation of an ion source and ion-analysing device. Really, the specified operations only slow down the time required for transportation of a particular group of particles from the inlet to the outlet, because during the course of operations with a local capture zone, new packets of charged particles continue to enter the device for transportation of charged particles, and the already processed packets of charged particles enter the analysing device.
For the purpose of creation of the above high-frequency, pulsed, static, quasi-static and AC electric fields, one can use additional electrodes of the device, as well as already existing electrodes of the device, to which electrodes, the respective additional voltages can be applied.
The channel for transportation of charged particles can be rectilinear or curvilinear (see
The profile of the section of the transportation channel can vary along the length of the channel. A particular case of varying profile is the profile of transportation channel having configuration of funnel, and performs compression of the beam of charged particles in the course of transportation (see
The channel for transportation can have an additional electrode in the section of the central part, thus performing transportation of annular-shaped packets of charged particles. Thus, the device can be configured to provide transportation of annular-shaped pockets of charged particles, suitably achieved by an annular cross-section profile, for example the provision of a central electrode. For example,
Instead of creation of the packets of charged particles with annular cross-section, the additional electrode or additional system of electrodes in the centre of the channel for charged particle transportation can be used to subdivide the main channel into a number of uncoupled areas of capture of charged particles, i.e., a number of daughter channels for charged particle transportation. An example of single aperture which provides such electrode configuration is shown in
The channel for transportation can be can be subdivided into separate segments, with transportation of charged particles in each of the segments having its own specificity, i.e. operating independently. The channel for transportation can comprise a series of transportation channels separated by transition zones and/or devices.
The transportation channel can comprise a number of channels, which channels can operate in parallel. The channel for transportation can split into a number of parallel/daughter channels (see
In the case of alternately-bidirectional transportation of charged particles, or in the case where the charged particles are used, and/or analysed directly within the channel of transportation, one or both the ends of the channel of transportation can be plugged (i.e. blocked or closed). The plug can have a form of a permanent design feature, or can be controlled by electric field. For reflection of charged particles towards the opposite direction, and for creation of a delay required for readjustment of the control voltages for transportation of charged particles in the opposite direction, the plug can be arranged as an electron-optical mirror, using both static and quasi-static electric fields, as well as high-frequency electric fields. Thus, the device can comprise one or more mirrors, suitably at one or both ends (inlet and outlet) of the channel.
For the charged particles to enter the channel for transportation of charged particles, an input device for charged particles can be arranged, operating in a continuous mode, or in pulsed mode, or capable of switching between pulsed mode and continuous mode of operation. For the purpose of extraction of charged particles from the channel of transportation of charged particles, there can be a extraction device for extraction of charged particles, operating in a continuous mode, or in pulsed mode, or capable of switching between pulsed mode and continuous mode of operation. For the purpose of generation of charged particles directly in the channel for transportation of the charged particles, there can be a generation device, generating charged particles, operating in a continuous mode, or in a pulsed mode, or capable of switching between pulsed mode and continuous mode of operation. In particular, for the purpose of generation of charged particles directly in the channel for transportation of the charged particles, the process of fragmentation of the primary charged particles, the process of formation of secondary charged particles as a result of interaction with neutral or oppositely charged particles, ionization of the charged particles with the help of this or that process of ionisation can be used.
For the purpose of creation of the required high-frequency electric field within the space of the channel for transportation of charged particles, electric voltages of different types can be used.
As an example, we shall consider a channel for transportation of charged particles, using axial high-frequency electric field in the form of Ez(z,t)=(U0/L)cos(z/L−t/T)·cos(ωt), where U0—amplitude; ω—frequency of the high-frequency field; L, T—characteristic length and time, respectively; defined by electric potential U(z,r,t)=U0 sin(z/L−t/T)·(1+r2/4L2+r4/64L4+ . . . )·cos(ωt) (the value r is determined as r=√{square root over (x2+y2)}). A pseudopotential having the value of Ū(z,t)=(U02/(2L)2)(1+cos(2z/L−2t/T)) on the axis (see
Good approximation of axially symmetric electrostatic field having axial distribution U0 sin(z/L), (where U0 is amplitude; L, is characteristic length), can be organised as follows. We shall consider a series of coaxial annular apertures having radius R, combined in the groups of four electrodes, placed in a succession along the length of the transportation channel, with a period of 2πL (see
It remains necessary to calculate superposition of the specified electric fields. Thus, the first electrode in each group of four, shall be supplied with high-frequency electric voltage in the form of cos(ωt+φ), amplitude-modulated according to the law UR(cos(t/T)−sin(t/T))=√{square root over (2)}UR cos(t/T+π/4), the second one shall be supplied with amplitude-modulated voltage, according to UR(cos(t/T)+sin(t/T))=√{square root over (2)}UR sin(t/T+π/4), the third one shall be supplied with amplitude-modulated voltage, according to UR(−cos(t/T)+sin(t/T))=−√{square root over (2)}UR cos(t/T+π/4), the third electrode shall be supplied with amplitude-modulated voltage, according to UR(−cos(t/T)−sin(t/T))=−√{square root over (2)}UR sin(t/T+π/4).
Graphs of the voltages applied to the first, the second, the third and the fourth electrode in each group of four are presented in
With the help of the technique shown above, it would be possible to synthesise easily the electric voltage required for the periodically located systems of apertures, in order to create high-frequency electric field, featuring the pseudopotential having the form of Ū*(z,t)=U*[1−cos(z/L−t/T)]n, where U* is the amplitude of the pseudopotential, L is the characteristic length between consecutive minima of the pseudopotential, T is the characteristic time of moving of minima of the pseudopotential along the length of the channel, n is a positive whole number, characterising the steepness of the walls of thus formed pseudopotential areas of capture of charged particles. For example,
Mathematically, the equivalent electric field can also be created using different technology, without the use of amplitude modulation of high-frequency voltage. Suppose, high-frequency voltages with a shift of frequencies are given as U1(t)=UR cos((w−1/T)t+φ), U2(t)=UR sin((w−1/T)t+φ), U3(t)=UR cos((w+1/T)t+ω), U4(t)=UR sin((w+1/T)t+φ), where UR=U0(1+R2/4L2+R4/64L4+ . . . ), where U0 is the amplitude; L, is the characteristic length, R is the radius of annular aperture; T is characteristic time; w is the frequency of high-frequency voltage; φ is the initial phase of the high-frequency voltage. Should the first electrode be supplied with the sum of electric voltages (U1+U2+U3−U4)/2, the second electrode be supplied with the sum of electric voltages (U1−U2+U3+U4)/2, the third electrode be supplied with the sum of electric of voltages (−U1−U2−U3+U4)/2, and the fourth electrode be supplied with the sum of electric (−U1+U2−U3−U4)/2, then we shall obtain electric voltages on each of the electrodes, identically the same as previous ones. In the place of high-frequency voltages featuring closely located frequencies and differing from each other by phase difference of π/2, one can use high-frequency voltages with closely located frequencies and other nonzero phase shift for summing of voltages.
In return for the amplitude modulation of high-frequency voltages, or combining of a number of high-frequency voltages, differing from each other due to a constant frequency shift and phase shift, one can use phase-modulated high-frequency voltages, frequency-modulated high-frequency voltages, trains of high-frequency voltages, time-synchronised in a proper manner. Finally, the required electric voltages can be synthesised using digital method with the help of computer, microprocessor or programmable impulse device.
The voltages applied to the electrodes need not be strictly periodic (see
It would not be absolutely necessary to use exactly harmonic voltage varying as per the law of cos(ωt+φ) as a basic high-frequency voltage, which undergoes amplitude modulation, phase modulation, frequency modulation and so on. For this voltage, one could use periodic non-harmonic high-frequency voltages, and/or high-frequency voltages containing two or more frequencies in the frequency spectrum, and/or high-frequency voltages containing an infinite set of frequencies in the frequency spectrum, and/or pulsed high-frequency voltages, as well.
For the purpose of creation of the required high-frequency electric field within the space of the channel for transportation of charged particles, different types of electrode configurations can be used.
The configuration of repetitive circular apertures shown in
In terms of construction, the electrodes of the device can be manufactured in the form of three-dimensional objects, thin continuous surfaces; they can be conducting layers of metal deposited on dielectric substrate, or reticulate. Reticulate electrodes are useful where the transportation of charged particles is performed in a flow of gas, and it is required to ensure configuration of electrodes to minimise resistance to the flow of gas. The same task can be solved, for example, using wire electrodes and electrodes with slots and/or specially arranged holes having no effect, of minimal effect on the electric field created by the electrodes.
The device can be used for transportation of charged particles, and for manipulation of charged particles in vacuum, as well as in neutral or partly ionised gas. Such an arrangement would be useful where the transportation of charged particles takes place in gas flow, since this situation corresponds to an interface between a gas-filled ion source and an analysing device operating in vacuum. For the purpose of injection of charged particles into, and/or extraction from the device, some of the electrodes can have additional apertures or slits. Injection of charged particles into, and/or extraction from the device can also be provided via the gaps between electrodes. For the purpose of injection of charged particles into, and/or extraction from the device, it could be necessary to apply additional pulsed or stepwise voltages, not associated directly with transportation of charged particles inside the device.
In embodiments the device for manipulation of charged particles (see
The device also includes an arrangement (not shown in the drawing), which generates electrical supply voltages to be applied to the electrodes 1, thus providing creation of a non-uniform high-frequency electric field within the said channel, the pseudopotential of which field has one or more local extrema along the length of the channel for transportation of charged particles, at least, within a certain interval of time, whereas, at least one of the extrema of the pseudopotential is transposed with time, at least within a certain interval of time, at least within a part of the length of the channel for transportation of charged particles.
For completeness it is noted that each of the following embodiments, and indeed all of the embodiments disclosed herein, may be combined with one or more of the other embodiments.
It should be noted that in embodiments, in the course of operation of the device (the device being configured accordingly, e.g. having corresponding means), a method of manipulation with charged particles is realised, including the effect on an aggregate of charged particles, localised in the space for manipulation with charged particles, of a non-uniform high-frequency electric field, the pseudopotential of which has one or more local extrema along the length of the space for manipulation with charged particles, at least, within a certain interval of time, whereas, at least one of said extrema of the pseudopotential high-frequency electric field is transposed with time, at least, along a part of the length of the space used for manipulation with charged particles, at least within a certain interval of time.
If, in embodiments, in the course of operation of the device (the device being configured accordingly, e.g. having corresponding means), a beam of charged particles comes into the inlet of the device, wherein, at least within a certain interval of time, the pseudopotential of high-frequency electric field has alternating maxima and minima along the length of the area for manipulations with charged particles, then as a result, breaking-up of the beam of charged particles into spatially segmented packets of charged particles is realised.
If, embodiments, in in the course of operation of the device (the device being configured accordingly, e.g. having corresponding means), an aggregate of charged particles is located within the device, wherein, at least within a certain interval of time, the pseudopotential of high-frequency electric field has alternating maxima and minima along the length of the area for manipulations with charged particles, then as a result, grouping of charged particles into spatially segmented packets of charged particles is realised.
In embodiments, the device can be coupled to a storage device containing charged particles. In that case, an aggregate of charged particles would be captured, at least within a certain area of the storage device, at least within a certain interval of time, by the high-frequency electric field with the pseudopotential having one or more local extrema along the length of the space used for manipulations with charged particles, where at least one of said extrema of the pseudopotential of high-frequency electric field is transposed with time, at least, within a part of the length of the space used for manipulations with charged particles, at least within a certain interval of time.
In this way, extraction of charged particles can be performed, in the form of spatially separated packets, at least, of a part of charged particles available in the storage device, due to capture of charged particles by high-frequency electric field and transposition of the extremum or extrema of the pseudopotential of high-frequency electric field, along at least a part of the length of the channel, at least within a certain interval of time.
In embodiments, in the course of operation of the device (the device being configured accordingly, e.g. having corresponding means), an aggregate of charged particles can be effected by a high-frequency electrostatic field, the pseudopotential of which field has alternating maxima and minima along the length of the area for manipulations with charged particles, transposing with time in a predetermined manner, as a result of which, a time-synchronised transportation of charged particles is realised, in accordance with this time dependence.
In embodiments, in the course of operation of the device (the device being configured accordingly, e.g. having corresponding means), alternately-bidirectional movement of charged particles can be realised, because of the fact that the direction of transposition of the extremum of extrema of the pseudopotential of high-frequency electric field, at least for a part of the length of the space used for manipulations with charged particles, at a certain point of time, or certain points of time, reverses its sign.
In embodiments, in the course of operation of the device (the device being configured accordingly, e.g. having corresponding means), oscillating transposition of charged particles can be realised, because of the fact that transposition of the extremum of extrema of the pseudopotential of high-frequency electric field with time, at least, within a part of the length of the space used for manipulations with charged particles, at least within a certain interval of time, has an oscillating pattern.
In embodiments, in the course of operation of the device (the device being configured accordingly, e.g. having corresponding means), integration of two or more adjacent, spatially separated packets of charged particles can be realised, as a result of the fact that the value of the pseudopotential of high-frequency electric field in the maximum of the pseudopotential, which separates the spatially separated packets, drops, during at least, a certain interval of time.
In embodiments, in the course of operation of the device (the device being configured accordingly, e.g. having corresponding means), transition of at least some of charged particles between the adjacent spatially separated packets of charged particles can be realised, at least within a certain interval of time, as a result of the fact that the value of the pseudopotential of high-frequency electric field in the maximum of the pseudopotential, which separates the spatially separated packets, drops, during at least, a certain interval of time.
In embodiments, in the course of operation of the device (the device being configured accordingly, e.g. having corresponding means), disintegration of at least, one packet of charged particles can be realised, as a result of the fact that the value of the pseudopotential of high-frequency electric field in the minimum of the pseudopotential, which minimum corresponds to the location of the packet of charged particles of interest, rises above the barrier level, during at least, a certain interval of time.
In embodiments, in the course of operation of the device (the device being configured accordingly, e.g. having corresponding means), escape of at least, some of the charged particles from a packet can be realised, at least, within a certain interval of time, as a result of the fact that the value of the pseudopotential of high-frequency electric field in the minimum of the pseudopotential, which minimum corresponds to the location of the packet of charged particles of interest, rises, during at least, a certain interval of time.
In embodiments, in the course of operation of the device (the device being configured accordingly, e.g. having corresponding means), transfer of all or some of charged particles from one packet of charged particles to adjacent packet of charged particles can be realised, as a result of the fact that the value of the pseudopotential of high-frequency electric field in the maximum of the pseudopotential, which separates the spatially separated packets, drops, whereas the value of the pseudopotential of high-frequency electric field in the minimum of the pseudopotential, which minimum corresponds to the location of the packet of charged particles of interest, rises, during at least, a certain interval of time.
In embodiments, in the course of operation of the device (the device being configured accordingly, e.g. having corresponding means), creation or restoration of the area of capture of charged particles can be realised, as a result of the fact that the value of the pseudopotential of high-frequency electric field, varies, at least over a certain portion of transportation channel, at least within a certain interval of time, thus creating a local minimum.
In embodiments, in the course of operation of the device (the device being configured accordingly, e.g. having corresponding means), a zone can be created, for storage of charged particles, because of the fact that at least within a certain interval of time, at least for a certain length of transportation channel, the pseudopotential of high-frequency electric field has no maxima and minima.
In embodiments, in the course of operation of the device (the device being configured accordingly, e.g. having corresponding means), for the purpose of enhancement of radial containment of charged particles within the space used for manipulations with charged particles, additional static electric fields, and/or additional quasi-static electric fields, and/or additional AC electric fields, and/or additional pulsed electric fields, and/or additional high-frequency electric fields, and/or superposition of said fields can be used.
In embodiments, in the course of operation of the device (the device being configured accordingly, e.g. having corresponding means), for the purpose of enhancement of spatial isolation of the packets of charged particles along the length of the space used for manipulations with charged particles, additional static electric fields, and/or additional quasi-static electric fields, and/or additional AC electric fields, and/or additional AC electric fields, and/or additional pulsed electric fields, and/or additional high-frequency electric fields, and/or superposition of said fields can be used.
In embodiments, in the course of operation of the device (the device being configured accordingly, e.g. having corresponding means), for the purpose of enhancement of time synchronisation of transportation of the packets of charged particles, additional static electric fields, and/or additional quasi-static electric fields, and/or additional AC electric fields, and/or additional pulsed electric fields, and/or additional high-frequency electric fields, and/or superposition of said fields can be used.
In embodiments, in the course of operation of the device (the device being configured accordingly, e.g. having corresponding means), in order to ensure control of the behaviour of charged particles in the process of transportation of charged particles, additional static electric fields, and/or additional quasi-static electric fields, and/or additional AC electric fields, and/or additional pulsed electric fields, and/or additional high-frequency electric fields, and/or superposition of said fields can be used, the fields being created within the space used for manipulations with charged particles.
In embodiments, in the course of operation of the device (the device being configured accordingly, e.g. having corresponding means), in order to ensure control of the behaviour of charged particles with the help of creation of additional potential barriers, and/or pseudopotential barriers, and/or potential wells, or pseudopotential wells, at least within a part of the space used for manipulations with charged particles, at least within a certain interval of time, additional static electric fields, and/or additional quasi-static electric fields, and/or additional AC electric fields, and/or additional pulsed electric fields, and/or additional high-frequency electric fields, and/or superposition of said fields can be used.
In this way, said potential and pseudopotential barriers and wells can vary with time and/or move in time within the space used for manipulations with charged particles, at least, within a certain interval of time, thus ensuring controllable behaviour of charged particles.
In embodiments, in the course of operation of the device (the device being configured accordingly, e.g. having corresponding means), in order to ensure control of the behaviour of charged particles with the help of additional zones of stability and/or additional zones of instability, at least within a portion of the space used for manipulations with charged particles, at least within a certain interval of time, additional static electric fields, and/or additional quasi-static electric fields, and/or additional AC electric fields, and/or additional pulsed electric fields, and/or additional high-frequency electric fields, and/or superposition of said fields can be used.
In this way, said stability and instability zones can vary with time and/or move with time, within the space used for manipulations with charged particles, at least, within a certain interval of time, thus ensuring controllable behaviour of charged particles.
In embodiments, in the course of operation of the device (the device being configured accordingly, e.g. having corresponding means), for the purpose of selective extraction of charged particles, additional static electric fields, and/or additional quasi-static electric fields, and/or additional AC electric fields, and/or additional pulsed electric fields, and/or additional high-frequency electric fields, and/or superposition of said fields can be used.
In embodiments, in the course of operation of the device (the device being configured accordingly, e.g. having corresponding means), for the purpose of control of the essential dependence of motion of charged particles on the mass of charged particles, additional static electric fields, and/or additional quasi-static electric fields, and/or additional AC electric fields, and/or additional pulsed electric fields, and/or additional high-frequency electric fields, and/or superposition of said fields are used.
In embodiments, the channel used for charged particle transportation in the device can have a varying profile, at least along a part of the length of the space used for manipulations with charged particles, in this way, in the course of operation of the device, collection, and/or focussing, and/or compression of the beam of charged particles can be realised in said channel.
In embodiments, the channel used for charged particle transportation in the device can be closed to form a ring, in this way, in the course of operation of the device, it can be used to create a storage volume for charged particles, and/or trap for charged particles, and/or the space used for manipulations with charged particles, where the channel for charged particle transportation is closed to form a ring.
In embodiments, for the purpose of creation of storage volume for charged particles, and/or trap for charged particles, and/or space for manipulations with charged particles, the channel for charged particle transportation, operation in an alternately-bidirectional mode, at least within a certain interval of time can be used.
In embodiments, in the course of operation of the device (the device being configured accordingly, e.g. having corresponding means), manipulations with charged particles can be performed in vacuum.
In embodiments, in the course of operation of the device (the device being configured accordingly, e.g. having corresponding means), manipulations with charged particles can be performed in neutral or ionised gas.
In embodiments, in the course of operation of the device (the device being configured accordingly, e.g. having corresponding means), manipulations with charged particles can be performed in the flow of neutral or ionised gas.
In embodiments, in the course of operation of the device (the device being configured accordingly, e.g. having corresponding means)e, the charged particles can arrive into the inlet of the device from an external source.
In embodiments, in the course of operation of the device (the device being configured accordingly, e.g. having corresponding means), one can perform manipulations with charged particles generated within the device.
In embodiments, in the course of operation of the device (the device being configured accordingly, e.g. having corresponding means), one can perform manipulations with c secondary charged particles generated within the device.
In embodiments, in the course of operation of the device (the device being configured accordingly, e.g. having corresponding means), one can perform manipulations with fragmented charged particles generated within the device.
In embodiments, fragmented charged particles can be generated in case of acceleration of charged particles with the help of electric fields created in the device, due to collisions of said charged particles with molecules of neutral gas and/or with the surfaces inside the device.
In embodiments, fragmented charged particles can be generated within the device (the device being configured accordingly, e.g. having corresponding means) as a result of interaction between positively charged and negatively charged particles, integrated into a single spatially separated packet of charged particles.
In embodiments, in the course of operation of the device (the device being configured accordingly, e.g. having corresponding means), the charged particles can be extracted from the device in the direction along the channel used for charged particle transportation.
In embodiments, in the course of operation of the device (the device being configured accordingly, e.g. having corresponding means), the charged particles can be extracted from the device in the direction, orthogonal or slanting with respect to the channel used for charged particle transportation.
In embodiments, in the course of operation of the device (the device being configured accordingly, e.g. having corresponding means), in the process of transportation, equalisation of kinetic energies of charged particles can take place, due to collisions and energy exchange between charged particles and neutral gas molecules.
In embodiments, in the course of operation of the device (the device being configured accordingly, e.g. having corresponding means), in the process of movement, mass-filtration of charged particles can take place.
In embodiments, in the course of operation of the device (the device being configured accordingly, e.g. having corresponding means), in the process of movement, fragmentation of charged particles can take place.
In embodiments, in the course of operation of the device (the device being configured accordingly, e.g. having corresponding means), in the process of movement of charged particles, formation of secondary charged particles can take place.
In embodiments, in the course of operation of the device (the device being configured accordingly, e.g. having corresponding means), in the process of movement of charged particles, formation of secondary charged particles can take place as a result of charge-exchange between the charged particles in case of collisions, and charge-exchange between charged particles and neutral gas molecules.
In embodiments, in the course of operation of the device (the device being configured accordingly, e.g. having corresponding means), in the process of movement of charged particles, formation of secondary charged particles can take place as a result of charge-exchange between the charged particles in case of collisions, and charge-exchange between charged particles having opposite signs of charge.
In embodiments, in the course of operation of the device (the device being configured accordingly, e.g. having corresponding means), in the process of movement of charged particles, formation of secondary charged particles can take place as a result of creation of composite ions in case of collisions and interaction between charged particles and neutral gas molecules.
In embodiments, in the course of operation of the device (the device being configured accordingly, e.g. having corresponding means), in the process of movement of charged particles formation of secondary charged particles can take place as a result of creation of composite ions in case of collisions and interactions between the charged particles.
In embodiments, in the course of operation of the device (the device being configured accordingly, e.g. having corresponding means), manipulations with charged particles can be realised while operating with the packets of charged particles, consisting of positively and negatively charged particles simultaneously.
We shall consider some variants of application of the device.
The device can be used for conversion of continuous ion beam into a series of time-synchronised ion pulses, and thus, it can be used as an ion source (ion preparation system). The capability of the device, in terms of manipulations with charged particles, the capability of defining the time dependences for transposition and output of the packets of charged particles, prove to be inestimable when the device is used being coupled to the various outlet devices operating in a pulsed mode. When coupled to such devices, a provision should be made, in order that the intervals of time between successive packets of charged particles exceed the intervals of time required for the output device to perform processing of every next packet, to avoid losses of the charged particles. For the output device, one can use a device, which performs analysis of charged particles (for example, time-of-flight mass spectrometer or RF ion trap), or otherwise, performs a predefined modification of the packet of charged particles (for example, collision cell), or extracts a sub-group of charged particles featuring the required characteristics (for example, mass filter), or transfers the packet of charged particles to another device (for example, another device for transportation of charged particles), or makes use of the pulse of charged particles for some technical applications, or combines intrinsically a number of functions at once.
The device enables to efficiently convert a continuous beam of charged particles into a series of successive pulses of charged particles, since with an appropriate selection of the velocity of movement of the packets of charged particles along the axis of the device for transportation of charged particles, and respectively, selection of the pulse repetition frequency for the ejecting voltages, analysis of all arriving charged particles would be possible without losses. Note that the velocity of movement of the packets along the axis of the device for transportation of charged particles in the proposed device is defined by the frequency of amplitude modulation and phase shift between the control high-frequency voltages, applied to the electrodes (of frequency difference between close frequencies of high-frequency harmonics, if for the synthesis of control voltages this particular method is used) and can easily be adjusted using electronics. The number of charged particles in each packet can be rather considerable, and according to a tentative assessment, it should be close to the capacity of linear ion trap.
For those output devices operating in a pulsed mode this method of separation of a continuous beam of charged particles into discrete portions is envisioned to be the most successful. With a proper adjustment of the time intervals between arrival of individual discrete portions of charged particles to the outlet of the transportation device, and respectively, to the inlet of the next device (which, for example, represents a mass analyser operating in a pulsed mode), and the time required to analyse the arrived portion of charged particles, this method allows to analyse all the charged particles received from the continuous beam into the analyser, with almost no losses.
In addition to conversion of a continuous beam into a series of packets, this device can also have other applications.
The device can be used in the composition of a range of specialised physical instruments (apparatus), where the above mentioned schemes of its application can be integrated together in case where necessary.
In particular, the device can be used in the composition of a physical instrument (i.e. be part of the instrument/apparatus), which includes a) device for creation generation of charged particles, b) inlet intermediate device, c) the claimed device for manipulations with charged particles, d) outlet intermediate device, e) a device for detection of charged particles (see
In embodiments, in the physical instrument, the inlet intermediate device is used for storage of charged particles, or for conversion of properties of the beam of charged particles, or for fragmentation of charged particles, or for generation of secondary charged particles, or filtration of the required group of charged particles, or initial detection of charged particles, or for execution of a number of the aforementioned functions at once.
In embodiments, in the physical instrument, the inlet intermediate device can represent a sequence of inlet intermediate devices, separated, or not separated by transportation devices.
In embodiments, in the physical instrument, the inlet intermediate device may be absent.
In embodiments, in the physical instrument, the outlet intermediate device is used for storage of charged particles, or for conversion of properties of the beam of charged particles, or for fragmentation of charged particles, or for generation of secondary charged particles, or filtration of the required group of charged particles, or initial detection of charged particles, or for execution of a number of the aforementioned functions at once.
In embodiments, in the physical instrument, the outlet intermediate device can represent a sequence of outlet intermediate devices, either separated, or not separated by transportation devices.
In embodiments, in the physical instrument, the outlet intermediate device may be absent.
In embodiments, in the physical instrument, generation of charged particles can take place within the space of the device for transportation and manipulations with charged particles.
In embodiments, in the physical instrument, detection of charged particles can take place within the space of the device for transportation and manipulations with charged particles.
In embodiments, in the physical instrument, escape of charged particles from the device for generation of charged particles and/or the outlet intermediate device, can be locked at certain points of time.
In embodiments, in the physical instrument, transfer of charged particles to the device for detection of charged particles and/or to the outlet intermediate device, can be locked at certain points of time.
In embodiments, in the physical instrument, the device for generation of charged particles can represent an ion source operating in a continuous mode.
In embodiments, in the physical instrument, the ion source operating in a continuous mode can belong to the group of types of ion sources, which includes: 1) Electrospray Ionisation (ESI) ion source, 2) Atmospheric Pressure Ionization (API) ion source, 3) Atmospheric Pressure Chemical Ionization (APCI) ion source, 4) Atmospheric Pressure Photo Ionisation (APPI) ion source, 5) Inductively Coupled Plasma (ICP) ion source, 6) Electron Impact (EI) ion source, 7) Chemical Ionisation (CI) ion source, 8) Photo Ionisation (PI) ion source, 9) Thermal Ionisation (TI) ion source, 10) various types of gas discharge ionisation ion sources, 11) fast atom bombardment (FAB) ion source, 12) ion bombardment ionisation in Secondary Ion Mass Spectrometry (SIMS), 13) ion bombardment ionisation in Liquid Secondary Ion Mass Spectrometry (LSIMS).
In embodiments, in the physical instrument, the device for generation of charged particles can represent an ion source operating in a pulsed mode.
In embodiments, in the physical instrument, the ion source operating in a pulsed mode can belong to the group of types of ion sources, which includes: 1) Laser Desorption/Ionisation (LDI) ion source, 2) Matrix-Assisted Laser Desorption/Ionisation (MALDI) ion source, 3) ion source with orthogonal extraction of ions from continuous ion beam, 4) ion trap, whereas the ion trap, in particular, may belong to a group of device, including: 1) RF ion trap, including linear ion trap, and/or Paul ion trap, and/or RF ion trap with pulsed electric field, 2) electrostatic ion trap, including electrostatic Orbitrap type ion trap, 3) Penning ion trap.
In embodiments, in the physical instrument, the inlet intermediate device can represent: 1) a device, transporting the beam of charged particles from a source of charged particles, 2) a device for accumulation and storage of charged particles, 3) mass-selective device for separation of charged particles of interest, 4) a device for separation of charged particles based on the property of ion mobility or derivatives from ion mobility, 5) a cell for fragmentation of charged particles using various methods, 6) a cell for generation of secondary charged particles using various methods, 7) a combination of the above devices, where said devices can operate in a continuous mode, as well as devices operating in a pulsed mode.
In embodiments, in the physical instrument, the outlet intermediate device can represent: 1) a device, transporting the beam of charged particles to detecting device, 2) a device for accumulation and storage of charged particles, 3) mass-selective device for separation of charged particles of interest, 4) a device for separation of charged particles based on the property of ion mobility or derivatives from ion mobility, 5) a cell for fragmentation of charged particles using various methods, 6) a cell for generation of secondary charged particles using various methods, 7) a combination of the above devices, where said devices can operate in a continuous mode, as well as devices operating in a pulsed mode.
In embodiments, in the physical instrument, the following devices can be used for detection: 1) a detector of the base of micro-channel plates, 2) diode detectors, 3) semiconductor detectors, 4) detectors based on the measurement of induced charge, 5) mass analyser (mass spectrometer, mass spectrograph, or mass filter), 6) optical spectrometer, 7) spectrometers performing separation of charged particles based on the property of ion mobility or derivatives thereof, where said devices can operate in a continuous mode, as well as devices operating in a pulsed mode.
In embodiments, in the device of the present invention, in the course of operation thereof within the structure of the physical instrument under consideration, equalisation kinetic energies of charged particles can take place, due to collisions and energy exchange between charged particles and neutral gas molecules.
In embodiments, in the device of the present invention, in the course of operation thereof within the structure of the physical instrument under consideration, mass-filtration of charged particles can take place.
In embodiments, in the device of the present invention, in the course of operation thereof within the structure of the physical instrument under consideration, fragmentation of charged particles can take place.
In embodiments, in the device of the present invention, in the course of operation thereof within the structure of the physical instrument under consideration, formation of secondary charged particles can take place.
In embodiments, in the device of the present invention, in the course of operation thereof within the structure of the physical instrument under consideration, conversion of continuous beam of charged particles into a discrete series of spatially separated packets of charged particles, required for correct operation of the outlet intermediate device and/or detecting device can take place.
In embodiments, in the device of the present invention, in the course of operation thereof within the structure of the physical instrument under consideration, conversion of continuous beam of charged particles into a discrete series of time-synchronised packets of charged particles, required for correct operation of the outlet intermediate device and/or detecting device can take place.
In embodiments, in the physical instrument under consideration, operation of the device for generation of charged particles and/or operation of the inlet intermediate device can be essentially time-synchronised with operation of the device.
In embodiments, in the physical instrument under consideration, operation of the claimed device can be essentially time-synchronised with operation of the device for detection of charged particles and/or operation of the outlet intermediate device.
In embodiments, the device can be used as transportation device for a beam of charged particles.
In embodiments, the device can be used as transportation device for a beam of charged particles with damping of velocities of charged particles due to collisions with gas molecules.
In embodiments, the device can be used as ion trap.
In embodiments, the device can be used as a cell for fragmentation of ions.
In embodiments, the device can be used as storage device for ions.
In embodiments, the device can be used as a reactor for ion-molecular reactions.
In embodiments, the device can be used as a cell for ion spectroscopy.
In embodiments, the device can be used as an ion source for continuous injecting of ions into a mass analyser, or into an intermediate device placed before the mass analyser.
In embodiments, the device can be used as an ion source for pulsed injecting of ions into a mass analyser or into an intermediate device placed before the mass analyser.
In embodiments, the device can be used as a mass filter.
In embodiments, the device can be used as a mass-selective storage device.
In embodiments, the device can be used as a mass analyser.
In embodiments, the device can be used in an interface for transportation of charged particles from gas-filled ion sources into mass analyser.
In embodiments, in the case of its application in an interface for transportation of charged particles into mass analyser, the device can be used, in particular, for transportation of ions, at least over a part of the path between the ion source and the mass analyser.
In embodiments, in the case of its application in an interface for transportation of charged particles into mass analyser, the device, in particular, can encompass several stages of differential pumping.
In embodiments, in the case of its application in an interface for transportation of charged particles into mass analyser, the device can be used, in particular, for combining of ion beams from several sources, including: 1) alternate operation with individual sources transferring ions into the device for transportation, focussing and performing manipulations with ions, 2) periodical switching between the main source and the source containing a substance used for calibration, 3) simultaneous operation with a number of sources for mixing of ion beams, or for the purpose to initiate reactions between ions of various types, or for the purpose of mass analyser mass calibration, or for the purpose of mass analyser sensitivity calibration.
In embodiments, in the case of its application in an interface for transportation of charged particles into mass analyser, the device can be used, in particular, for additional excitation of internal energy of ions, for the purpose of: 1) disintegration of ion clusters, 2) fragmentation of ions, 3) stimulation of ion-molecular reactions, and 4) suppression of ion-molecular reactions.
In embodiments, in the case of its application in an interface for transportation of charged particles into mass analyser, the device can be used, in particular, for: 1) direct and continuous, or pulsed injection of ions into continuously operating mass analyser, 2) pulsed injection of ions into mass analyser operating in a pulsed mode, 3) pulsed injection of ions into mass analyser, operating in a pulsed mode, with the help of conversion of continuous ion beam into pulsed ion beam, through the instrumentality of orthogonal acceleration device.
In embodiments, the device can be used in a convertor of continuous ion beam into discrete (i.e. packeted) ion beam.
In embodiments, in the case of its application for conversion of continuous ion beam into discrete ion beam, the device, in particular, can receive continuous ion beam at the inlet and produce a beam consisting of discrete packets of ions at the outlet, directly into an output device operating is pulsed mode.
In embodiments, in the case of its application for conversion of continuous ion beam into discrete ion beam, the output discrete packets of ions in the device, in particular, can be essentially time-synchronised.
In embodiments, in the case of its application for conversion of continuous ion beam into discrete ion beam, the device, in particular, can encompass several stages of differential pumping; in that way, the pressure of gas can vary essentially along the length of said device, and injecting of ions into the mentioned device can take place at essentially higher pressure as compared with the ion outlet area and the mentioned device.
In embodiments, the device can be used in an ion accumulation device, wherein accumulation of ions takes place within the device.
In embodiments, in the case where the device is used in an ion accumulation device, the device can provide mass selectivity of the device.
In embodiments, the device can be used in the structure of ion source; in that case, the generation of ions can take place within the device.
In embodiments, in the case where the device is used in the structure of an ion source, the high-frequency fields created in the claimed device can be used for: 1) confinement of ions, 2) transportation of ions along a defined path, 3) excitation of internal energy of ions, 4) collisional damping of the velocity of ions, 5) collisional cooling of internal energy of ions, 6) conversion of discrete ion beam into continuous or quasicontinuous ion beam, 7) protection of solid surfaces of ion source against contamination with the material under investigation and accumulation of electric charges, 8) confinement of ions with opposite charges, 9) confinement of ions within a wide mass range, 10) coarse filtration of ions based on the parameter of mass-to-charge ratio.
In embodiments, the device can be used in the structure of a cell for fragmentation of ions, wherein, confinement of ions within the device can be realised due to the effect of high-frequency electric fields of the device, and fragmentation of ions is caused by: 1) injecting of ions into said device with sufficiently high kinetic energy, 2) drop of ions onto the surface of the elements of said device, 3) fast-particle bombardment of ions, 4) lighting of ions with photons, 5) fast electron impact on ions, 6) slow electron impact on ions and dissociation of ions as a result of electron capture, 7) ion-molecular reactions of ions with particles having opposite charges, 8) ion-molecular reactions with aggressively acting vapours.
The following numbered paragraphs contain statements of broad combinations of the inventive technical features herein disclosed:
1. Device for manipulations with charged particles, containing a series of electrodes located so as to form a channel used for transportation of charged particles; a power supply unit to provide supply voltages to be applied to said electrodes for the purpose of creation of a non-uniform high-frequency electric field within said channel; pseudopotential of said field having one or more local extrema along the length of said channel for transportation of charged particles, at least within a certain interval of time; whereas at least one of said extrema of the pseudopotential is transposed with time, at least within a certain interval of time, at least within a part of the length of the channel used for transportation of charged particles.
2. Device according to paragraph 1, wherein, said pseudopotential has alternating maxima and minima along the length of the channel used for transportation of charged particles.
3. Device according to any one of the preceding paragraphs, wherein, extremum or extrema of said pseudopotential is transposed with time, in accordance with a certain time law, at least within a part of the length of the channel, at least within a certain interval of time.
4. Device according to any one of the preceding paragraphs, wherein, the direction of transposition of extremum or extrema of said pseudopotential changes the sign, at certain point or certain points of time, at least for a part of the length of the channel.
5. Device according to any one of the preceding paragraphs, wherein, transposition of extremum or extrema of said pseudopotential has oscillating pattern, at least within a part of the length of the channel, at least within a certain interval of time.
6. Device according to any one of the preceding paragraphs, wherein, the pseudopotential is uniform along the length of the channel, at least within a certain interval of time, at least within a certain part of the length of transportation channel.
7. Device according to any one of the preceding paragraphs, wherein, successive extrema, or successive maxima only, or successive minima only, of said pseudopotential, are monotone increasing, at least within a part of the length of the channel, at least within a certain interval of time.
8. Device according to any one of the preceding paragraphs, wherein successive extrema, or successive maxima only, or successive minima only, of said pseudopotential, are monotone decreasing, at least within a part of the length of the channel, at least within a certain interval of time.
9. Device according to any one of the preceding paragraphs, wherein, the value of said pseudopotential in one or more points of local maxima of said pseudopotential varies along the length of the channel, at least within a certain interval of time.
10. Device according to any one of the preceding paragraphs, wherein, the value of said pseudopotential in one or more points of local minima of said pseudopotential varies along the length of the channel, at least within a certain interval of time.
11. Device according to any one of the preceding paragraphs, wherein, additional voltages are applied to electrodes; said voltages being DC voltages, and/or quasi-static voltages, and/or AC voltages, and/or pulsed voltages, and/or high-frequency voltages, thus providing control of radial confinement of charged particles within the channel for transportation of charged particles.
12. Device according to any one of the preceding paragraphs, wherein, additional voltages are applied to electrodes; said voltages being DC voltages, and/or quasi-static voltages, and/or AC voltages, and/or pulsed voltages, and/or high-frequency voltages, thus providing unlocking and/or locking the escape of charged particles through the ends of the channel used for transportation of charged particles.
13. Device according to any one of the preceding paragraphs, wherein, additional voltages are applied to electrodes; said voltages being DC voltages, and/or quasi-static voltages, and/or AC voltages, and/or pulsed voltages, and/or high-frequency voltages, thus providing control of spatial isolation of the packets of charged particles from each other along the length of the channel used for transportation of charged particles.
14. Device according to any one of the preceding paragraphs, wherein, additional voltages are applied to electrodes; said voltages being DC voltages, and/or quasi-static voltages, and/or AC voltages, and/or pulsed voltages, and/or high-frequency voltages, thus providing control of time synchronisation of the transportation of packets of charged particles.
15. Device according to any one of the preceding paragraphs, wherein, additional voltages are applied to electrodes; said voltages being DC voltages, and/or quasi-static voltages, and/or AC voltages, and/or pulsed voltages, and/or high-frequency voltages, thus providing additional control of the transportation of charged particles.
16. Device according to any one of the preceding paragraphs, wherein, additional voltages are applied to electrodes; said voltages being DC voltages, and/or quasi-static voltages, and/or AC voltages, and/or pulsed voltages, and/or high-frequency voltages, thus providing control of the movement of charged particles within the local areas of capture of charged particles.
17. Device according to any one of the preceding paragraphs, wherein, additional voltages are applied to electrodes; said voltages being DC voltages, and/or quasi-static voltages, and/or AC voltages, and/or pulsed voltages, and/or high-frequency voltages, thus providing creation of additional potential or pseudopotential barriers, and/or potential or pseudopotential wells along the channel for transportation of charged particles, at least in one point of the path within said channel, at least within a certain interval of time.
18. Device according to any one of the preceding paragraphs, wherein, said potential or pseudopotential barriers, and/or potential or pseudopotential wells vary with time or travel with time along the transportation channel, at least within a certain interval of time.
19. Device according to any one of the preceding paragraphs, wherein, additional voltages are applied to electrodes; said voltages being DC voltages, and/or quasi-static voltages, and/or AC voltages, and/or pulsed voltages, and/or high-frequency voltages, thus providing creation of additional zones of stability and/or additional zones of instability along the channel for transportation of charged particles, at least in one point of the path within said channel, at least within a certain interval of time.
20. Device according to any one of the preceding paragraphs, wherein, said zones of stability and/or zones of instability vary with time or travel with time along the transportation channel, at least, within a certain interval of time.
21. Device according to any one of the preceding paragraphs, wherein, additional voltages are applied to electrodes; said voltages being DC voltages, and/or quasi-static voltages, and/or AC voltages, and/or pulsed voltages, and/or high-frequency voltages, thus providing selective extraction of charged particles.
22. Device according to any one of the preceding paragraphs, wherein, additional voltages are applied to electrodes; said voltages being DC voltages, and/or quasi-static voltages, and/or AC voltages, and/or pulsed voltages, and/or high-frequency voltages, thus providing control of essential dependence of the motion of charged particles on the mass of charged particles.
23. Device according to any one of the preceding paragraphs, wherein, frequency of the supply voltage applied to electrodes varies, at least within a certain interval of time.
24. Device according to any one of the preceding paragraphs, wherein, the channel used for transportation of charged particles has a rectilinear orientation.
25. Device according to any one of the preceding paragraphs, wherein, the channel used for transportation of charged particles has a curvilinear orientation.
26. Device according to any one of the preceding paragraphs, wherein, the channel used for transportation of charged particles has variable profile along the length of the channel.
27. Device according to any one of the preceding paragraphs, wherein, the channel used for transportation of charged particles is closed to form a loop or a ring.
28. Device according to any one of the preceding paragraphs, wherein, an additional electrode or electrodes are located in the central part of the channel used for transportation of charged particles.
29. Device according to any one of the preceding paragraphs, wherein, the channel used for transportation of charged particles is subdivided into segments.
30. Device according to any one of the preceding paragraphs, the channel used for transportation of charged particles consists of a series of channels attached to each other, possibly, interfaced by additional zones or devices.
31. Device according to any one of the preceding paragraphs, the channel used for transportation of charged particles is formed by a number of parallel channels for charged particle transportation, at least, in some part of the channel.
32. Device according to any one of the preceding paragraphs, the channel used for transportation of charged particles is split within some part of the channel, into a number of parallel channels.
33. Device according to any one of the preceding paragraphs, wherein, a number of parallel channels for charged particle transportation are connected along some sector thereof, to form a single channel for transportation of charged particles.
34. Device according to any one of the preceding paragraphs, wherein, the channel used for transportation of charged particles contains an area, which performs the function of storage volume for charged particles, the said area located at the inlet to the channel, and/or at the outlet from the channel, and/or inside the channel.
35. Device according to any one of the preceding paragraphs, wherein, the channel used for transportation of charged particles is plugged, at least at either end, at least within a certain interval of time.
36. Device according to any one of the preceding paragraphs, wherein, the channel used for transportation of charged particles has a stopper controlled by electric field, at least at one of the ends.
37. Device according to any one of the preceding paragraphs, wherein, the channel used for transportation of charged particles contains a mirror controlled by electric field, whereas said mirror is placed in the channel used for charged particle transportation, at least at one of the ends.
38. Device according to any one of the preceding paragraphs, containing a device used for inlet of charged particles, located in the channel used for charged particle transportation, whereas said inlet device operates in a continuous mode.
39. Device according to any one of the preceding paragraphs, containing a device used for inlet of charged particles, located in the channel used for charged particle transportation, whereas said inlet device operates in a pulsed mode.
40. Device according to any one of the preceding paragraphs, containing a device used for inlet of charged particles, located in the channel used for charged particle transportation, whereas said inlet device is capable of switching between continuous mode of operation and pulsed mode of operation.
41. Device according to any one of the preceding paragraphs, containing a device used for outlet of charged particles, located in the channel used for charged particle transportation, whereas said outlet device operates in a continuous mode.
42. Device according to any one of the preceding paragraphs, containing a device used for outlet of charged particles, located in the channel used for charged particle transportation, whereas said outlet device operates in a pulsed mode.
43. Device according to any one of the preceding paragraphs, containing a device used for outlet of charged particles, located in the channel used for charged particle transportation, whereas said outlet device is capable of switching between continuous mode of operation and pulsed mode of operation.
44. Device according to any one of the preceding paragraphs, containing a device for generation of charged particles, located in the channel used for charged particle transportation, whereas said generating device operates in a continuous mode.
45. Device according to any one of the preceding paragraphs, containing a device for generation of charged particles, located in the channel used for charged particle transportation, whereas said generating device operates in a pulsed mode.
46. Device according to any one of the preceding paragraphs, containing a device for generation of charged particles, located in the channel used for charged particle transportation, whereas said generating device is capable of switching between continuous mode of operation and pulsed mode of operation.
47. Device according to any one of the preceding paragraphs, wherein, a non-uniform high-frequency electric field within the channel is created by the supply voltages in the form of high-frequency harmonic voltages, and/or periodic non-harmonic high-frequency voltages, and/or high-frequency voltages having frequency spectrum, which contains two or more frequencies, and/or high-frequency voltages having frequency spectrum, which contains an infinite set of frequencies, and/or high-frequency pulsed voltages, whereas said voltages undergo amplitude modulation, or otherwise, a superposition of the said voltages is used.
48. Device according to any one of the preceding paragraphs, wherein, a non-uniform high-frequency electric field within the channel is created by the supply voltages in the form of high-frequency harmonic voltages, and/or periodic non-harmonic high-frequency voltages, and/or high-frequency voltages having frequency spectrum, which contains two or more frequencies, and/or high-frequency voltages having frequency spectrum, which contains an infinite set of frequencies, and/or high-frequency pulsed voltages, whereas said voltages undergo frequency modulation, or otherwise, a superposition of the said voltages is used.
49. Device according to any one of the preceding paragraphs, wherein, a non-uniform high-frequency electric field within the channel is created by the supply voltages in the form of high-frequency harmonic voltages, and/or periodic non-harmonic high-frequency voltages, and/or high-frequency voltages having frequency spectrum, which contains two or more frequencies, and/or high-frequency voltages having frequency spectrum, which contains an infinite set of frequencies, and/or high-frequency pulsed voltages, whereas said voltages undergo phase modulation, or otherwise, a superposition of the said voltages is used.
50. Device according to any one of the preceding paragraphs, wherein, a non-uniform high-frequency electric field within the channel is created by the supply voltages in the form of high-frequency harmonic voltages, and/or periodic non-harmonic high-frequency voltages, and/or high-frequency voltages having frequency spectrum, which contains two or more frequencies, and/or high-frequency voltages having frequency spectrum, which contains an infinite set of frequencies, and/or high-frequency pulsed voltages, whereas the said voltages feature two or more neighbour fundamental frequencies, or otherwise, a superposition of the said voltages is used.
51. Device according to any one of the preceding paragraphs, wherein, a non-uniform high-frequency electric field within the channel is created by the supply voltages in the form of high-frequency harmonic voltages, and/or periodic non-harmonic high-frequency voltages, and/or high-frequency voltages having frequency spectrum, which contains two or more frequencies, and/or high-frequency voltages having frequency spectrum, which contains an infinite set of frequencies, and/or high-frequency pulsed voltages, whereas the said voltages are converted into time-synchronised trains of high-frequency voltages, or otherwise, a superposition of the said voltages is used.
52. Device according to any one of the preceding paragraphs, wherein, a non-uniform high-frequency electric field within the channel is created by the supply voltages in the form of high-frequency voltages, synthesised using a digital method.
53. Device according to any one of the preceding paragraphs, wherein, the aggregate of electrodes represents repetitive electrodes.
54. Device according to any one of the preceding paragraphs, wherein, the aggregate of electrodes represents repetitive cascades of electrodes, whereas configuration of electrodes in an individual cascade is not necessarily periodical.
55. Device according to any one of the preceding paragraphs, wherein, some of the electrodes or all the electrodes can be solid, whereas the other electrodes or a part of the other electrodes are disintegrated to form a periodic string of elements.
56. Device according to any one of the preceding paragraphs, wherein, high-frequency voltages may not be applied to certain electrodes.
57. Device according to any one of the preceding paragraphs, wherein, certain electrodes, or all the electrodes in the aggregate of electrodes have multipole profile.
58. Wherein, certain electrodes, or all the electrodes in the aggregate of electrodes have coarsened multipole profile formed by plane, stepped, piecewise-stepped, linear, piecewise-linear, circular, rounded, piecewise-rounded, curvilinear, piecewise-curvilinear profiles, or by a combination of the said profiles.
59. Device according to any one of the preceding paragraphs, wherein, certain electrodes, or all the electrodes in the aggregate of electrodes, represent thin metallic films deposited on a non-conductive substrates.
60. Device according to any one of the preceding paragraphs, wherein, certain electrodes, or all the electrodes in the aggregate of electrodes are wire and/or mesh, and/or have slits and/or other additional apertures making the said electrodes transparent for gas flow, or enabling reduction of the resistance for the gas flow through the said electrodes.
61. Device according to any one of the preceding paragraphs, wherein, vacuum is created in the channel used for transportation of charged particles.
62. Device according to any one of the preceding paragraphs, wherein, the channel used for charged particle transportation is filled with a neutral gas, and/or (partly) ionised gas.
63. Device according to any one of the preceding paragraphs, wherein, a flow of neutral and/or (partly) ionised gas is created in the channel used for transportation of charged particles.
64. Device according to any one of the preceding paragraphs, wherein, several electrodes or all of the electrodes have slits and/or apertures intended for inlet of charged particles into the device, and/or outlet of charged particles from the device.
65. Device according to any one of the preceding paragraphs, wherein, the gap between the electrodes is used for inlet of charged particles into the device, and/or outlet of charged particles from the device.
66. Device according to any one of the preceding paragraphs, wherein, additional pulsed or stepwise voltages are applied, at least to a part of electrodes, at least within some interval of time; whereas the said voltages enable inlet of charged particles into the device, and/or outlet of charged particles from the device, and/or confinement of charged particles within the device.
Operation of the device is demonstrated using the following examples.
For the electrodes 1, the system of electrodes described above was used, the system consisting of periodic sequence of plane diaphragms with square cross-section (
For the supply voltage, sinusoidal supply with amplitude modulation was used. Periodic sequence of electrodes was subdivided into groups of four electrodes. The first electrodes in each group were supplied with electric voltage +U0 cos(δt)cos(ωt), the second electrodes were supplied with voltage +U0 sin(δt)cos(ωt), the third electrodes were supplied with voltage −U0 cos(δt)cos(ωt), the fourth electrodes were supplied with voltage −U0 sin(δt)cos(ωt). The fundamental frequency of sinusoidal supply was selected to be equal to ω=1 MHz, the frequency of amplitude modulation of sinusoidal supply was selected to be equal to δ=1 kHz, the amplitude of sinusoidal supply was selected to be equal to U0=400 V. The transportation channel was filled with buffer gas, for the buffer gas, nitrogen gas was used (molecular mass 28 amu) at pressure of 2 mTorr (1 Torr=1 mm Hg) and temperature of 300 K. For the charged particles, singly charged ions having the mass of 609 amu were used. As one can see from
For the electrodes 1, the system of electrodes described above was used, the system consisting of periodic sequence of alternating plane diaphragms with rectangular cross-sections (
For the supply voltage, sinusoidal supply with amplitude modulation was used. Periodic sequence of electrodes was subdivided into groups of four electrodes. The first electrodes in each group were supplied with electric voltage +U0 cos(δt)cos(ωt), the second electrodes were supplied with voltage +U0 sin(δt) cos(ωt), the third electrodes were supplied with voltage −U0 cos(δt)cos(ωt), the fourth electrodes were supplied with voltage −U0 sin(δt) cos(ωt). The fundamental frequency of sinusoidal supply was selected to be equal to ω=1 MHz, the frequency of amplitude modulation of sinusoidal supply was selected to be equal to δ=1 kHz, the amplitude of sinusoidal supply was increased up to U0=2000 V (2 kV). The transportation channel was filled with buffer gas, for the buffer gas, nitrogen gas was used (molecular mass 28 amu) at pressure of 2 mTorr and temperature of 300 K. For the charged particles, singly charged ions having the mass of 609 amu, and singly charged ions having the mass of 5000 amu. Amplitude of sinusoidal supply was increased in comparison with example 1, for more efficient manipulation with charged particles of heavier mass. As one can see from
For the electrodes 1, the system of electrodes described above was used, the system consisting of periodic sequence of plane diaphragms, consisting of plane electrodes and providing quadrupole structure of electric field in the section of diaphragm (
For the supply voltage, sinusoidal supply with amplitude modulation was used. The electrodes, designated in
For the electrodes 1, the system of electrodes was used, consisting of periodic sequence of slotted quadrupole-like electrodes and two solid quadrupole-like electrodes, which provides quadrupole structure of electric field in the cross-section of transportation channel (general view of the device is shown in
For the supply voltage, sinusoidal supply with amplitude modulation was used, which was supplied to slotted electrodes, designated in
Embodiments comprise a digital drive method for generation of the high frequency voltage. That is, embodiments comprise digital waveforms. The application of digital drive/waveforms provides for particularly practical implementation compared to alternative methods.
For example, harmonic waveforms may readily and reliably be provided using tuned RF generators. Such devices typically contain a highly tuned resonant LC circuit. Such devices can be used to drive a very well defined capacitive load. However, when such devices are used in combination in embodiments of the present invention, their application benefits from further explanation. The digital drive method introduced above provides for a straight forward method for generating the necessary periodic signals. The digital drive technology is described in U.S. Pat. No. 7,193,207 and the disclosures and methods in U.S. Pat. No. 7,193,207 are incorporated herein by reference. In particular, U.S. Pat. No. 7,193,207 describes digital drive apparatus for ‘driving’ (that means providing periodic waveforms for various mass spectrometer devices such as quadrupole or quadrupole ion trap. U.S. Pat. No. 7,193,207 describes a digital signal generator (programmable impulse device as introduced above) and a switching arrangement, which alternately switches between high and low voltage levels (V1, V2) to generate a rectangular wave drive voltage. The digital signal generator may be controlled via a computer of other means, to control the parameters of the square waveform, such as the frequency and the duty cycle and phase. Furthermore the digital periodic waveform may be terminated at a precise phase. One may also envisage more complex waveforms produce by the digital method by switching arrangement with three or more high voltage switches.
For example the waveform shown in
The application of square waveforms (where the waveforms are not necessarily square ones but can have an arbitrary shape) provided by the digital method and applied to the present invention may be illustrated by the example where the device is formed by a system of electrodes representing a series of plates each having coaxial apertures, as illustrated in
Similar functions may be derived for the phase or frequency modulated methods, or similarly waveforms may be derived where the Archimedes wavelength repeats every 3,5, 6,7, 8,9, 10,11, 12 or more electrodes. That is, any other number of reiterative electrodes, periodical or not. For the device with fixed repeating distance the speed of propagation is determined by parameter a, thus is controlled by the programmable digital signal generator. The application of digitally synthesised waveforms may equally be applied to all electrode structures described herein.
With reference to example 1 and
In embodiments, the device comprises means for preparing ions and extracting ions into a time of flight mass analyser, as discussed above. In particular for extracting ions in an orthogonal direction from the device, the technical advantages of extracting ions directly from a multipole ion guide are described in patent application PCT/GB2012/000248, whose contents are incorporated herein by reference, therein is described an ion guide with at least one extraction region for extracting ions into a direction orthogonal to the axis of the ion guide. The configuration describes therein the advantage of bunching the ions as they propagate the ion guide. The bunching confers the advantage of increased duty cycle and the increased operational scan-rate, and both aspects provide greater sensitivity and dynamic range and thus greater commercial value of the instrumentation compared to prior art ion-trap-ToF hybrid instruments.
An embodiment of PCT/GB2012/000248 is reproduced in
PCT/GB2012/000248 further teaches that advantage of passing the ion guide through an region of elevated pressure that is located upstream and prior to an at least one extraction region. This arrangement is useful because the ions are preferably delivered cool into the extraction region, that is low energy and low energy spread of the ions, and preferably in or close to thermal equilibrium to the containing buffer gas, however, the pressure in the extraction region, in contradiction, is advantageously low, and preferable lower than 1×10−3 mbar, so as to avoid scattering of ions with the buffer gas atoms during acceleration from the extraction region. Such scattering results in the undesirable loss of resolving power and mass accuracy in the ToF analyser. However, this pressure is not consistent with the pressure need to provide effective cooling, which is preferable higher than 1×10−2 mbar.
Returning to an embodiment described in PCT/GB2012/000248 the extraction region of the ion guide has preferably a separate voltage supply means for effecting radial ion trapping, that is separate from the voltage supply means dedicated to other segments of the ion guide, this feature allows ions to be retained in other parts of the on guide at the same time as ions are removed from the extraction region. As noted above, an embodiment of PCT/GB2012/000248 is reproduced in
Both the above prior art devices exhibit the following limitation: although ions may be moved to a region of high pressure where efficient cooling may take place, and subsequently or progressively move ions to a second region of lower pressure, the static voltages (U.S. Pat. No. 5,652,427), or quasi-static (PCT/GB2012/000248) voltages necessarily re-introduce additional energy to the transported ions, that is transporting ions along the ion guide requires their acceleration in the axial direction, some of which is also redirected to lateral energy. Another document relating to orthogonal extraction of ions into ToF is GB2391697B. This document describes an ion guide that receives ions and traps them within axial trapping regions and translates them along the axial length of said ion guide and ions are then released from said one or more axial trapping regions so that ions exit said ion guide in a substantially pulsed manner to an ion detector which is substantially phase locked to the pulses of ions emerging from the exit of the ion guide. Therein is described only quasi-static voltage means for transporting ions, and as in U.S. Pat. No. 5,652,427 there in only described a means for pulsing ions that is external to the ion guide, inherent in this design is the need for phase locking to the external device to the exiting ion bunches. Whereas in embodiments of the present invention ions are ejected from the ion guide. This is a distinct advantage as there is no requirement for phase locking to an external ion detector or ToF analyser.
Thus embodiments of the present invention overcome the problem of the prior art and provide a means to transport ions at constant velocity, resulting in cool ions bunch when viewed in the lateral direction.
Indeed simulation shows ions that have reached thermal equilibrium with the buffer gas maybe transported without increasing of the energy or energy spread of the ions in the lateral direction. Thus by cooling the buffer gas, for example to liquid nitrogen or liquid helium temperatures, ions may be transported with very low effective temperature. Thus embodiments comprise a device for use in mass spectrometer applications (e.g. in a mass spectrometer) for delivering ions in/to a low pressure region in a cooled state. Wherein suitably the pressure is lower than 5×10−3 mbar, preferably lower than 1×10−3 mbar and further preferably lower than 5×10−4 mbar.
Alternatively the device may be used to transport ions from low pressure region into a higher pressure region, at least where the buffer gas flow is characterised by molecular flow, that is where the quantity L/λ is <0.01, where L is the dimension of the of guide and λ is the mean free path of the gas atoms between collisions.
Accordingly, embodiments comprise a device for conveying ions from a gas pressure region into to a vacuum region, and still furthermore and in combination as a device, in particular, that can encompass several stages of differential pumping; in that way, the pressure of gas can vary essentially along the length of said device, and optionally injecting of ions into the mentioned device at higher pressure as compared with the ion outlet area of the mentioned device, furthermore in the device, in the course of operation thereof within the structure of the physical instrument under consideration, equalisation of kinetic energies of charged particles can take place, due to collisions and energy exchange between charged particles and neutral gas molecules and still furthermore and in combination, the device can be used, in particular, for the pulsed injection of ions into a mass analyser operating in a pulsed mode.
By way of specific example we describe a detailed ion optic simulation. The embodiment of the device as shown in
In a second simulation a pressure gradient was imposed such that ions pass from high pressure of 2.6×10−2 mbar to lower pressure of 2.6×10−5 mbar, thus spanning three orders of magnitude of pressure. In this cases ion bunches were effective transported as discrete bunches and also without increase in the recorded lateral energy spread of ions.
In embodiments the invention can be used to deliver ions to a time of flight mass analyser as described above and in PCT/GB2012/000248, but overcoming the limitations so that ions maybe delivered in cooler to the extraction region than in the prior art, and additionally at a lower pressure within the extraction regions. These two distinctions provide for greater resolving power from the ToF analyser. Furthermore the invention provides for all necessary pulsed voltages for effective operation and high duty cycle and high scan speed as described within PCT/GB2012/000248. Thus in general the current invention provides a device for manipulations with charged particles, containing a series of electrodes located so as to form a channel used for transportation of charged particles; a power supply unit to provide supply voltages to be applied to said electrodes for the purpose of creation of a non-uniform high-frequency electric field within said channel; pseudopotential of said field having one or more local extrema along the length of said channel for transportation of charged particles, at least within a certain interval of time; whereas at least one of said extrema of the pseudopotential is transposed with time, at least within a certain interval of time, at least within a part of the length of the channel used for transportation of charged particles, and wherein: the supply voltages are in the form of periodic non-harmonic high-frequency voltages synthesised using a digital method, or otherwise, a superposition of the said voltages and wherein additional voltages are applied to electrodes; said voltages being DC voltages, and/or quasi-static voltages, and/or AC voltages, and/or pulsed voltages, and/or high-frequency voltages, thus providing control of time synchronisation of the transportation of packets of charged particles. Wherein the device maybe further configured so that the injection of ions into the device can takes place at a higher pressure compared to the ion outlet region. And wherein the device is further configured to be time-synchronised with the operation of a device for detection of charged particles. And wherein the device is configured at least one point along its length to extract charged particles in the direction orthogonal or slanting with respect to the direction of charged particle transportation.
In embodiments, the device is used within (suitably forms part of) the structure of a cell for fragmentation of ions, wherein, the fragmentation of ions is caused by injecting of ions into said device with sufficiently high kinetic energy. The device overcomes a well understood problem of collision cell operation standing for several years, which can be explained by means of the following example: In quantitative analysis of known analytes, for example drug samples, one knows the species, under investigation, and the analysis seeks to find out how much of that drug exists relating to a particular circumstance. In such cases on uses a calibration standard at a constant concentration to provide a relative measure of the concentration of the drug under analysis. Frequently analysts use a Deuterated analogue of the drug as the calibration standard, that is a function group has Deuteron atoms instead of Hydrogen atoms. In such cases the analyte and the calibrant have a parent mass that differs by for example 2 Da, but both have a common fragment ion when the ions when the ions are submitted for analysis by MS2. MS2 analysis may be used in preference to MS1 for superior sensitivity and specivity. As the two species are chemically identical they co-elute from an LC column, and thus enter the mass spectrometer at the same time. In the case the physical instrument under consideration is a Triple quadrupole (QqQ) or a quadrupole ToF (Q-ToF). In either case the quadrupole is made to select or transmit the analyte and the calibrant precursor sequentially, typically switching periodically back and forth between the two ions for example at a rate of 50 or 100 or even 200 times a second, or in some cases preferably higher. The problem relates to the transit times of the fragment ions through the collision cell body once formed and after the energetic injection of the parent ion. Due to the high pressure within the collision cell, at least some fragment ions can be cooled to thermal energies and spend several 10 s or even 100 s of milli seconds to pass through the device and in the absence of any propelling means, and in some cased become trapped for considerably longer time. The detrimental effect is that the mass spectrometer measured the incorrect concentration because some calibrant ions are mistaken for analyte ions.
There are already several methods to address this problem, for example, in U.S. Pat. No. 6,111,250 a DC gradient is introduced by various means between the entrance and exit of the collision cell so as to keep fragment ions moving through the device and limiting residence time. U.S. Pat. No. 6,800,846 teaches the use of a transient DC applied to segmented rods to overcome the same problem using a different method. There are also other methods employed such as RF gradients, inclined rods, auxiliary rods, all aimed to reduce the transit times of fragment.
Embodiments of the present invention address the same problem, and provide additional improvement in performance: In preferred embodiments the device is used within the structure of the inlet intermediate device, within the structure of the of the collision cell and within the structure of the outlet intermediate device, hereafter referred as region 1, region 2 and region 3. The capabilities and features of the device hereto described, allow ions to be transmitted within bunches through all three regions of the said device. Fragmentation of the parent ions, is provided in the normal way, that is by injecting of ions into said device, that is from region 1 into region 2 with sufficiently high kinetic energy, resulting in excitation of internal energy of ions through multiple collisions with buffer has atoms. In another view a DC potential is applied between region 1 and region 2. Such a process is commonly known as Collision Induced Dissociation (CID). By application of the features of the present invention the bunches of parent ions propagate into the device confined within discrete bunches and the resulting fragment (or daughter ions) remain within the same propagating bunch as the parent they were derived from and without mixing with ions from the proceeding or proceeding bunches, where the confinement of ions can be realised due to aspects of the claimed device as previously described. Wherein suitably the device provides that the time interval between successive packets of charged particles may be matched to the time intervals required by anoutput device to perform further processing, to avoid losses of the charged particles. For the output device, one can use a device, which performs analysis of charged particles (for example, time-of-flight mass spectrometer or RF ion trap).
Further advantages may be understood with respect to the prior art, for example the speed of propagation of the Archimedean wave as it passes through the device may be suitably slowed, such that daughter ions are suitable cooled to gain or regain thermal equilibrium with the buffer gas, before transmission to the lower pressure region 3, and for onward processing or detection, a feature not available in any prior art device, for the reasons explained elsewhere. Thus the flexibility of the current invention provides physical simplification, for example the length of the device, and thus the physical size not only of the device itself, but the associated structure of the physical instrument. The reduction in the length also provides a reduction in the multiple of pressure and length, it may be made optionally lower than is possible in prior art device. See U.S. Pat. No. 5,248,875 for reference to the importance of this parameter.
The electrode structure of each region maybe selected from general types shown and previously described in
Another preferred embodiment is shown in
When electrodes are formed from the type shown in
In further embodiments, the device is used as (suitably is, or is part of) an ion-ion reaction cell. Features of the present invention may be advantageously applied to existing methods of ion-ion reaction cells providing additional improved characteristics and solving problems of prior art ETD devices. The most common method of ion fragmentation involving ion-ion reactions is that of Electron Transfer Dissociation (ETD). ETD is particularly applied to the fragmentation of protein and peptide ions. This method provides advantages in the field of protein sequencing as the fragmentation mechanism is largely independent of the amino acid sequence. ETD was previously implemented in commercial mass spectrometers, its implementation within an adapted Linear Ion Trap instrument is described within [John E. P. Syka et al., PNAS, vol. 101, No. 26, pp. 9528-9533]. Therein a method to trap positive (analyte) and negative (reactant) ions is described within a Linear Ion Trap (LIT) mass spectrometer. Confinement along the axis is achieved by establishing pseudo potential barriers in the end segments of the device. A reaction time of 10 ms or more is needed for the reaction to fully take place, that is for the generation of the product ions from the parent analyte ions. For this reason the implementation of ETD as described by Syka, is not suitable for application to high throughput mass spectrometers of the Q-ToF or QqQ configuration. These issues were addressed in part by EP1956635, where analyte ions and reactant ions are transmitted together in bunches by moving pseudo potential wells. Essentially, reactions take place as the ion bunches are moving along the ion guide, the resultant fragment ions thus delivered for analysis on arrival at a downstream mass analyser. This invention in principle provides the possibility to implement the ETD method with the Q-ToF or QqQ device without reduction in throughput or sensitivity, and is able to preserve the time order in which ion bunches entered the device, and thus may preserve chromatographic resolution when the physical instrument is to be employed in LCMS applications. All details for effective implementation are not taught within EP1956635. There is described therein a device those structure is limited to a plurality of electrodes each having a circular hole opened therein, and the method of providing the moving pseudo potential wells is limited to amplitude modulated sinusoidal RF waveforms.
EP1956635 does not teach methods to introduce ions of both polarity to the device with high efficiency, or to match the ETD device to the proceeding device, the output intermediate device, nor to time synchronize to an output device, nor does it teach the most practical methods for its implementation. The generalised methods taught by the present invention and devices described may be applied to provide a high throughput ETD method applicable for a wide range of devices and instrument formats. The present invention provides methods for overcoming the limitations within EP1956635. In principle any reaction time may be accommodated in the high throughput device by proper choice of the device length and the speed of propagation of the pseudo potential wells through the device. The requirements of the output device may also dictate the length of the device with regard the frequency of operation of the output intermediate device. For example, if the reaction time is 50 ms and the output devices has a frequency of operation of 1000 Hz, then there must be 50 bunches simultaneously transmitting at any one time. Thus for a wavelength of the Archimedean wave fixed at 40 mm, at total length in the prior art device would be 40×50 mm or 2 m in length, which in practice is much too long. As one aspect of the current invention is to provide for variation of the repetition distance of ion bunches within the device as they propagate. Thus in the currently discussed application of ETD the separation of the ion bunched can be spaced at the entrance and exit regions for the effective matching to the requirements of intermediate input and output devices, but may be made significantly smaller in the central region such that the overall device length may be reduced, that means that ion bunches would move slower but would become more closed space along the axis and thus the residence time may be maximised for a given device length. Similarly the frequency of the Archimedean waveform could alternatively be adjusted, that is reduced in the central portion. Alternatively in the case long reaction times must be accommodated in a high throughput device, an curved or semi-circular ion guide of the form illustrated in
An important application Archimedean device is the transport of ions through viscous gases, define by pressures that give rise to the quantity L/λ>0.01, where L is the dimension of the of guide and λ is the mean free path. By particular example the device may be applied/used to transporting ions from the interface region of high pressure ion sources, or in the transporting of ions to, from and within analytical devices operating under viscous flow conditions such as ion mobility or differential ion mobility devices. There will be several apparent advantages of those skilled in the art. One apparent advantage, compared to prior art methods, is in the transport of fragile ions, such as those commonly encountered in organic mass spectrometer. These molecular ions forced to move through gas media by electrical field may readily fragment due to increasing of their internal energy. Prior art systems attempting to focus ions by static localized in space fields, particularly in the interface region between chambers of differing pressures. Such focusing schemes subjected them to short impulse forces, and the voltages that may be applied is limited by the onset of fragmentation of the transported molecular ions. In contract the current device may apply a continuous field to accomplish the focusing and thus may achieve high transport efficiency at lower field strength and thus reduce fragmentation than prior art devices
The following passage teaches the parameters relating an Archimedean device that must be considered to transport ions in bunches taking into account the gas flow and viscosity. The following examples illustrate the correct parameter in use independent of gas pressure and flow velocity. While for low gas pressures the gas media performs the cooling of ions and nearly does not influence their transitional movement, for higher gas pressures this is not so. Let us first consider the transportation in a motionless gas. With reasonably good approximation the ion movement in a gas media can be represented by the effective Stokes' force (or drag force) proportional to the difference between the ion velocity and gas velocity. For the motionless gas media the only velocity is the ion's velocity induced by the Archimedean wave with the pseudopotential Ū(z,t)=(qURF2/4mL2ω2)cos2(z/L−t/T), where URF is the amplitude of the amplitude-modulated RF voltages applied to the electrodes, L is the characteristic length between the electrodes and between the local Archimedean wells, ω is the frequency of the RF voltages, T is the characteristic time of the amplitude modulation which controls the characteristic time of the Archimedean wave shift, q is the ion's charge, m is the ion's mass, z is the coordinate along the axis, t is time (
The following figures correspond to the model simulations performed in normalized coordinates. It is most informative to illustrate the behavior in normalized coordinates because in this way it is possible to separate the important characteristic features of the movement from the unimportant ones. By introducing the normalized variables x=Ld·X, y=Ld·Y, z=Ld·Z, U=Lu·u, t=Lt·τ, Vx=Lx·vx, Vy=Lv·vy, Vz=Lv·vz, γ=Lg·g, where Ld, Lu, Lt, Lg, etc., are some scaling coefficients and X, Y, Z, u, τ, vx, vy, vz, g, etc., are the corresponding dimensionless variables, in particular, for the Archimedean wave described by the pseudopotential Ū(z,t)=(qURF2/4mL2ω2)cos2(z/L−t/T), where URF is the amplitude of the amplitude-modulated RF voltages applied to the electrodes, L is the characteristic length between the electrodes and between the local Archimedean wells, ω is the frequency of the RF voltages, T is the characteristic time of the amplitude modulation which controls the characteristic time of the Archimedean wave shift, q is the ion's charge, m is the ion's mass, z is the coordinate along the axis, t is time, it is useful to select the scaling coefficients like Lt=T/2π, Ld=L/2π, Lu=mL2/qT2, Lv=L/T, Lg=2πm/T.
In this case the voltages applied to the electrodes are represented as ±uRF cos(2πτ)cos(Ωτ+φ), ±uRF sin(2πτ)cos(Ωτ+φ) where uRF is the dimensionless voltage applied to the electrodes and Ω=ωT/2π=vT is the dimensionless RF circular frequency, the Archimedean wave is represented as ū0 cos2(2π(Z−τ)), where ū0˜(uRF2/4Ω2) is the dimensionless pseudopotential amplitude, etc. In particular, the dimensionless equations of motion are represented as {umlaut over (X)}=−(∂u/∂X)−g({dot over (X)}−vx), Ÿ=−(∂u/∂Y)−g({dot over (Y)}−vy), {umlaut over (Z)}=−(∂u/∂Z)−g(Ż−vz) and the motion depends on dimensionless values uRF, Ω, g, vx, vy, vz only. This enables scaling of geometrical sizes and/or to scale the amplitudes and frequency of the RF voltages applied to the electrodes, and or the A-wave velocity in a wide range.
The following examples are illustrated for the simplified case where γ=q/K where mobility data is widely available both theoretically and experimentally. This limits the present treatment to values of ratio of electrical field strength to number density to <20 Townsends. More general the viscosity should be considered as by γ(w)≈const1+const2·w where w=√{square root over (({dot over (x)}−Vx)2+({dot over (y)}−Vy)2+(ż−Vz)2)} is the relative velocity between the ion and the gas flow. However, limitation is not important for the purpose of current teaching. The invention is not limited to constant viscosity region, but may expanded to more general case where γ(w) is dependent on the relative velocity between the ion and the gas flow. Further aspects of the invention will become apparent by way of example
Similar effect happens when there is a gas flow that forces the ions to move with its velocity (due to gas viscosity) while the Archimedean wave tries to synchronize the ion movement with its own velocity. The Archimedean wave Ū(z,t)=(qURF2/4mL2ω2)cos2(z/L−t/T) here is the same as that in the previous example; however, here we are looking for the retarding force at the leading edge of the wave (
The following figures illustrate this effect.
These examples demonstrate that for transporting ions in bunches defined bunches using an Archimedean wave the Archimedean wave properties should be chosen according to the gas viscosity and the gas velocity, this is important when the Archimedean ion guide is used to transport the ions from the high pressure region to the low pressure region (or to the vacuum region), may be by passing several stages of the differential pumping. The same examples demonstrate that when the parameters of the Archimedean wave are controlled correctly, the Archimedean effect exists and can be utilized effectively for high pressure transporting of ions, even when there is a flowing gas.
Furthermore in embodiments the device is used in (suitably is part of or is) an interface for transportation of charged particles from gas-filled ion sources into mass analyser, and in the case of its application in an interface for transportation of charged particles into mass analyser, and in particular, when the device transports through several stages of differential pumping, and wherein the parameters of Archimedean wave are adjusted in at least some of one or more said stages, so as to maintain bunched ion transport in all of one or mare stages.
Number | Date | Country | Kind |
---|---|---|---|
2011119286 | May 2011 | RU | national |
2011119296 | May 2011 | RU | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/058310 | 5/4/2012 | WO | 00 | 11/1/2013 |