The field of the invention is that of semiconductor devices produced on a semiconductor-on-insulator (SeOI) substrate.
Such an SeOI substrate comprises a thin layer of semiconductor material separated from a base substrate by means of a buried insulating layer.
A semiconductor device produced on such a substrate generally has a conducting region produced in the thin layer above the insulating layer, for example a drain region or a source region of an FET transistor, or else an emitter region of a bipolar transistor associated with an FET transistor in order to inject charge into the channel of the FET transistor.
A semiconductor device on an SeOI substrate may also include a conducting region produced in the base substrate beneath the insulating layer, for example a buried back control gate region facing the channel of an FET transistor.
Connections have to be made in order to supply these various types of conducting region. In general, these connections are produced on the front face side of the semiconductor substrate. Thus, there would typically be, for an FET transistor, a word line WL, a bit line BL and a source line SL which are connected to the front control gate region, the drain region and the source region respectively by means of metal connections produced on the front face side.
In general it is desirable to limit the number of metal connections so as to simplify the fabrication of the semiconductor device, especially as regards the lithography operations.
Moreover, it is in general desirable to limit the footprint of the semiconductor device (i.e. the area occupied by the latter). Now, making a connection via the front face inevitably increases the footprint.
Even more generally, it is desirable to simplify as far as possible the production of these connections.
The present invention now satisfies these requirements, by providing a semiconductor device and a process of producing the same.
In one aspect, the invention relates to a semiconductor device provided on a SeOI substrate, wherein the substrate comprises a thin layer of semiconductor material separated from a base substrate by a buried insulating layer, and the device comprises a first conducting region in the thin layer, a second conducting region in the base substrate, and a contact connecting the first region to the second region through the insulating layer.
The invention also relates to a process for fabricating the semiconductor device on a SeOI substrate, wherein the substrate comprises a thin layer of semiconductor material separated from a base substrate by a buried insulating layer, and the device comprises a first conducting region in the thin layer, a second conducting region in the base substrate. The process comprises providing a contact connecting the first region to the second region through the insulating layer.
The features and advantages of the present invention will become more clearly apparent on reading the following detailed description of preferred embodiments thereof, given by way of a non-limiting example and with reference to the appended drawings in which:
As noted, the semiconductor device is produced on a SeOI substrate comprising a thin layer of semiconductor material separated from a base substrate by means of a buried insulating layer, with the device comprising a first conducting region in the thin layer and a second conducting region in the base substrate and a contact connecting the first region to the second region through the insulating layer.
Certain preferred, but non-limiting, features of this device are the following:
the first region, the second region and the contact have a conductivity of the same type;
the first region is a drain region of a transistor and the second region belongs to a buried bit line;
the first region is a source region of a transistor and the second region belongs to a buried source line;
the first region constitutes the emitter of a bipolar transistor and the second region belongs to a buried injection line;
the second region is a back control gate region of a transistor and the first region belongs to a back control gate drive line;
the contact is formed from a metallic interconnect material; and
the first region and the second region have a conductivity of opposite type and the contact has an upper region, the conductivity of which is of the same type as that of the first region, and a lower region, the conductivity of which is of the same type as that of the second region.
According to another aspect, the invention relates to a process for fabricating a semiconductor device on a SeOI substrate comprising a thin layer of semiconductor material separated from a base substrate by means of an insulating layer, the device comprising a first conducting region in the thin layer and a second conducting region in the base substrate, with the process comprising the formation of a contact connecting the first region to the second region through the insulating layer.
Certain preferred, but non-limiting, features of this process are the following:
forming the contact by carrying out the following steps:
the interconnect material is a semiconductor material;
the interconnect material is predoped;
it further includes a step of doping the semiconductor material in the trench;
an upper region and a lower region of the trench are oppositely doped;
the boundary between the upper region and the lower region is located in alignment or level with the insulating layer;
the boundary between the upper region and the lower region is located in alignment or level with the thin layer above the first region; and
the interconnect material is metallic.
The invention now provides, in a simple manner, a line for connection to a semiconductor region of a semiconductor device on an SeOI substrate. More particularly, the invention limits the footprint of the device as well as the use of metal connections.
To do this, the invention proposes to connect the semiconductor region to another semiconductor region placed in the SeOI substrate on the other side from the insulating layer by providing a contact through the insulating layer.
Thus, when considering a first semiconductor region placed in the thin layer of the SeOI substrate, this first region is connected, by means of a contact through the insulating layer, to an access line formed by a second semiconductor region in the base substrate beneath the buried insulating layer.
Conversely, when considering a first semiconductor region placed in the base substrate, this first region is connected, by means of a contact through the insulating layer, to an access line formed by a second semiconductor region in the thin layer above the buried insulating layer, by means of a contact through the insulating layer.
The first situation relates for example to a first region in the thin layer of the drain-region or source-region type of an FET transistor. The invention therefore makes it possible to bury the bit line BL or the source line SL in the base substrate beneath the insulating layer.
The first situation also relates to a first region in the thin layer of the emitter-region type of a bipolar transistor associated with an FET transistor in order to inject charge into the channel of the FET transistor. The invention therefore makes it possible to bury the injection line IL connected to the emitter region in the base substrate beneath the insulating layer.
The second situation relates for example to a first region in the base substrate of the back control gate region type, placed beneath the insulating layer facing the channel of an FET transistor. The invention therefore makes it possible to access this buried back control gate via the front face of the SeOI substrate with a back control gate drive line.
In the context of the invention, the expression “connection between semiconductor regions” is understood to mean both an ohmic junction between semiconductor regions having a conductivity of the same type and a pn junction between semiconductor regions having conductivities of opposite type.
The insulating layer is for example a buried oxide (BOX) layer, typically an SiO2 layer.
The semiconductor device here is a dynamic random access memory (DRAM) cell. The memory cell comprises an FET transistor having a source S, a drain D1 and a floating channel C1. A gate dielectric layer and a control gate electrode are deposited in sequence above the floating channel C1.
The drain D1 and the source S are preferably in contact with the buried oxide layer so that the FET transistor is fully depleted.
The source S may thus be shared between two adjacent memory cells (it thus also serves as source region for the FET transistor having a drain D2 and a channel C2). Such sharing enables the footprint of a memory cell to be reduced.
The drain D1 is connected to a bit line BL, the source S is connected to a source line SL and the control gate is connected to a word line WL1.
In the context of the embodiment shown in
As shown in
In the context of the embodiment shown in
It should be pointed out that the source line SL may especially be placed so as to connect the source regions together along one row of a memory array, with a contact through the insulating layer provided for each of the source regions. The buried source line SL is thus parallel to the word lines WL1, WL2.
In the context of the embodiment shown in
In the examples shown in
It will be understood that producing access lines with a doped semiconductor material avoids having to use metal connections.
Furthermore, the fact of burying these lines frees up surface on the front face. This architecture is also relatively flexible in so far as a buried access line may extend beneath a plurality of memory cells, a single connection then being necessary for addressing the line and consequently said plurality of cells.
It will also be understood that the buried lines (bit line in
However, the invention also extends to the case in which the first region and the second region are of opposite conductivity. In this situation, the contact enables a p-n junction to be produced.
The contact may therefore have an upper region of the same conductivity type as that of the first region and a lower region of the same conductivity type as that of second region.
In an alternative embodiment, the contact may be produced by means of a material of metallic nature, especially a silicide (for example WSiO2).
It should be noted that although memory transistors have been shown in
Various embodiments of a semiconductor device according to the first aspect of the invention will be described below with reference to
A first semiconductor region 4 is placed in the thin layer 1 above the insulating layer, while a second semiconductor region 5 is placed in the base substrate beneath the insulating layer.
It will be understood that the first and second regions 4, 5 are not necessarily produced before the formation of the interconnect described below, but they may be produced during this formation, or even once the interconnect has been formed.
Referring to
As shown in
The interconnect material may be metallic (for example a silicide: WSiO2). Thus, an ohmic contact is made through the insulating layer between the first region 4 and the second region 5.
The interconnect material is preferably a semiconductor material, typically the same material as that of the thin layer of the SeOI substrate.
Taking for example an SOI substrate, amorphous or polycrystalline silicon is deposited on the surface of the SOI substrate in order to fill the trench.
Alternatively, an atomic layer of silicon may be deposited by ALD (atomic layer deposition).
Next, a lithography mask is positioned on the surface of SeOI substrate, the mask covering the regions that it is desired to retain. A material deposited in the regions not covered is then etched (cf.
As a variant (cf.
The deposited material is preferably doped. Thus, when the regions to be connected are both of n+-type conductivity (cf.
It should be noted that the method may therefore require two passes: one for filling certain trenches with n+-Si and the other for filling other trenches with p+-Si. It is then preferable to use a lithography mask in order to avoid any risk of a short circuit. In this regard, it should be noted that making metallic interconnects requires only one filling pass.
As a variant, the material may be doped subsequently. When the two regions to be connected have the same conductivity type, the regions of the trench which are lying in the first region, in the insulating layer and in the second region are then doped with the same type.
In the case shown in
The invention also extends to the case shown in
It should also be noted that if the trench is filled with undoped semiconductor material, it is also possible to carry out an annealing operation so that the dopants from the first region 4 and from the second region 5 diffuse back into the contact. The level of doping of the first region 4 and of the second region 5 must therefore be initially very high (of the order of 1020) in order to take into account the dilution of this level of doping towards the contact. If the regions 4 and 5 have the same polarity, ohmic contact is created. In contrast, if the regions 4 and 5 are oppositely doped, a diode is created. It should be understood that the diode thus created makes it possible in particular to associate a bipolar transistor with a memory cell (cf.
Number | Date | Country | Kind |
---|---|---|---|
10 50244 | Jan 2010 | FR | national |
Number | Name | Date | Kind |
---|---|---|---|
4169233 | Haraszti | Sep 1979 | A |
5028810 | Castro et al. | Jul 1991 | A |
5306530 | Strongin et al. | Apr 1994 | A |
5325054 | Houston | Jun 1994 | A |
5455791 | Zaleski et al. | Oct 1995 | A |
5557231 | Yamaguchi et al. | Sep 1996 | A |
5608223 | Hirokawa et al. | Mar 1997 | A |
5646900 | Tsukude et al. | Jul 1997 | A |
5753923 | Mera et al. | May 1998 | A |
5844845 | Tahara | Dec 1998 | A |
5869872 | Asai et al. | Feb 1999 | A |
5889293 | Rutten et al. | Mar 1999 | A |
6043536 | Numata et al. | Mar 2000 | A |
6063686 | Masuda et al. | May 2000 | A |
6072217 | Burr | Jun 2000 | A |
6108264 | Takahashi et al. | Aug 2000 | A |
6141269 | Shiomi et al. | Oct 2000 | A |
6258650 | Sunouchi | Jul 2001 | B1 |
6300218 | Cohen et al. | Oct 2001 | B1 |
6352882 | Assaderaghi et al. | Mar 2002 | B1 |
6372600 | Desko et al. | Apr 2002 | B1 |
6476462 | Shimizu et al. | Nov 2002 | B2 |
6498057 | Christensen et al. | Dec 2002 | B1 |
6611023 | En et al. | Aug 2003 | B1 |
6790713 | Horch | Sep 2004 | B1 |
6825524 | Ikehashi et al. | Nov 2004 | B1 |
7109532 | Lee et al. | Sep 2006 | B1 |
7112997 | Liang et al. | Sep 2006 | B1 |
7447104 | Leung | Nov 2008 | B2 |
7449922 | Ricavy | Nov 2008 | B1 |
20010038299 | Afghahi et al. | Nov 2001 | A1 |
20010047506 | Houston | Nov 2001 | A1 |
20020036321 | Nii | Mar 2002 | A1 |
20020105277 | Tomita et al. | Aug 2002 | A1 |
20020114191 | Iwata et al. | Aug 2002 | A1 |
20020185684 | Campbell et al. | Dec 2002 | A1 |
20030001658 | Matsumoto | Jan 2003 | A1 |
20040002185 | Takahashi | Jan 2004 | A1 |
20040108532 | Forbes | Jun 2004 | A1 |
20040146701 | Taguchi | Jul 2004 | A1 |
20040197970 | Komatsu | Oct 2004 | A1 |
20050077566 | Zheng et al. | Apr 2005 | A1 |
20050110078 | Shino | May 2005 | A1 |
20050255666 | Yang | Nov 2005 | A1 |
20050276094 | Yamaoka et al. | Dec 2005 | A1 |
20060013028 | Sarin et al. | Jan 2006 | A1 |
20060013042 | Forbes et al. | Jan 2006 | A1 |
20060035450 | Frank et al. | Feb 2006 | A1 |
20060220085 | Huo et al. | Oct 2006 | A1 |
20060226463 | Forbes | Oct 2006 | A1 |
20060267064 | Rosner et al. | Nov 2006 | A1 |
20060291321 | Leung | Dec 2006 | A1 |
20070029596 | Hazama | Feb 2007 | A1 |
20070029620 | Nowak | Feb 2007 | A1 |
20070063284 | Kawahara et al. | Mar 2007 | A1 |
20070075366 | Hamamoto | Apr 2007 | A1 |
20070076467 | Yamaoka et al. | Apr 2007 | A1 |
20070139072 | Yamaoka et al. | Jun 2007 | A1 |
20070152736 | Itoh et al. | Jul 2007 | A1 |
20070158583 | Cho | Jul 2007 | A1 |
20070171748 | Mukhopadhyay et al. | Jul 2007 | A1 |
20070241388 | Yamamoto et al. | Oct 2007 | A1 |
20070298549 | Jurczak et al. | Dec 2007 | A1 |
20080042187 | Hwang | Feb 2008 | A1 |
20080111199 | Kim et al. | May 2008 | A1 |
20080116939 | Takizawa | May 2008 | A1 |
20080144365 | Yamaoka et al. | Jun 2008 | A1 |
20080173916 | Nishihara | Jul 2008 | A1 |
20080203403 | Kawahara et al. | Aug 2008 | A1 |
20080251848 | Borot et al. | Oct 2008 | A1 |
20080253159 | Kajigaya | Oct 2008 | A1 |
20090003105 | Itoh et al. | Jan 2009 | A1 |
20090010056 | Kuo et al. | Jan 2009 | A1 |
20090086535 | Ferrant et al. | Apr 2009 | A1 |
20090096011 | Hong et al. | Apr 2009 | A1 |
20090096036 | Ishigaki et al. | Apr 2009 | A1 |
20090096936 | Hamada et al. | Apr 2009 | A1 |
20090101940 | Barrows et al. | Apr 2009 | A1 |
20090111223 | Wiatr et al. | Apr 2009 | A1 |
20090121269 | Caillat et al. | May 2009 | A1 |
20090310431 | Saito | Dec 2009 | A1 |
20100032761 | Ding et al. | Feb 2010 | A1 |
20100035390 | Ding et al. | Feb 2010 | A1 |
20100079169 | Kim et al. | Apr 2010 | A1 |
20100117684 | Kim et al. | May 2010 | A1 |
Number | Date | Country |
---|---|---|
0 475 280 | Mar 1992 | EP |
1 081 748 | Mar 2001 | EP |
1 095 407 | May 2001 | EP |
1 199 745 | Apr 2002 | EP |
1 233 454 | Aug 2002 | EP |
1 357 603 | Oct 2003 | EP |
1 744 364 | Jan 2007 | EP |
2 925 223 | Jun 2009 | FR |
04-225276 | Aug 1992 | JP |
04-280469 | Oct 1992 | JP |
04345064 | Dec 1992 | JP |
08255846 | Oct 1996 | JP |
09-232537 | Sep 1997 | JP |
09232446 | Sep 1997 | JP |
10125064 | May 1998 | JP |
2000196089 | Jul 2000 | JP |
2004303499 | Oct 2004 | JP |
2001-0011793 | Feb 2001 | KR |
WO 9966559 | Dec 1999 | WO |
WO 2007060145 | May 2007 | WO |
WO 2008134688 | Nov 2008 | WO |
WO 2009013422 | Jan 2009 | WO |
WO 2009028065 | Mar 2009 | WO |
WO 2009077538 | Jun 2009 | WO |
WO 2009085865 | Jul 2009 | WO |
WO 2009104060 | Aug 2009 | WO |
WO 2010007478 | Jan 2010 | WO |
Entry |
---|
English Translation for JP 04-280469. |
U.S. Appl. No. 12/793,553, filed Jun. 3, 2010. |
U.S. Appl. No. 12/793,515, filed Jun. 3, 2010. |
U.S. Appl. No. 12/789,100, filed May 27, 2010. |
U.S. Appl. No. 12/961,293, filed Dec. 6, 2010. |
John Barth et al., “A 500MHz Random Cycle 1.5ns-Latency, SOI Embedded DRAM Macro Featuring a 3T Micro Sense Amplifier”, ISSCC 2007/Session 27/DRAM and eRAM /27.1, IEEE International Solid-State Circuits Conference, Digest of Technical Papers, pp. 486-487 and p. 617 (2007). |
John Barth et al., “A 45nm SOI Embedded DRAM Macro for POWER7™ 32MB On-Chip L3 Cache”, ISSCC 2010/Session 19/High-Performance Embedded Memory/19.1, IEEE International Solid-State Circuits Conference, Digest of Technical Papers, pp. 342-344 (2010). |
Paul Beckett, XP-002579039, “Performance Characteristics of a Nanoscale Double-gate Reconfigurable Array”, Proc. of SPIE, vol. 7268, pp. 72680E-1-72680E-12 (2008). |
I. Hassoune et al. “Double-gate MOSFET Based Reconfigurable Cells”, The Institution of Engineering and Technology, Electronics Letters, vol. 43, No. 23, 3 pages (2007). |
K. Cheng, et al., “Extremely Thin SOI (ETSOI) CMOS with Record Low Variability for Low Power System-on-Chip Applications”, IBM Research at Albany Nanotech, pp. 3.2.1-3.2.4( 2009). |
P.J. Klim et al, “A 1 MB Cache Subsystem Prototype With 1.8 ns Embedded DRAMs in 45 nm SOI CMOS”, IEEE, Journal of Solid-State Circuits, vol. 44, No. 4, pp. 1216-1226 (2009). |
K. J. Kuhn, “Variation in 45nm and Implications for 32nm and Beyond”, Intel, 2009 2nd International CMOS Variability Conference—London, pp. 1-86. |
Choi Hoon, et al., XP-002579041, Improved Current Drivability With Back-Gate Bias for Elevated Source and Drain Structured FD-SOI SiGe MOSFET, Microelectronic Engineering, vol. 86, pp. 2165-2169 (2009). |
D.E. Ioannou, et al. “Opposite-Channel-Based Injection of Hot-Carriers in SOI MOSFET's: Physics and Applications” IEEE Transactions on Electron Devices, vol. 45, No. 5, pp. 1147-1154 (1998). |
K. Itoh, et al., “Impact of FD-SOI on Deep-Sub-100-nm CMOS LSIs—A View of Memory Designers” Central Research Laboratory, Tokyo, Japan, 2 pages. |
M. Mizukami, et al., “Depletion-type Cell-Transistor of 23 nm Cell Size on Partial SOI Substrate for NAND Flash Memory,” Extended Abstracts of the 2009 International Conference on Solid State Devices and Materials, Sendai, pp. 865-866 (2009). |
M. Matsumiya, et al., “A 15-ns 16-Mb CMOS SRAM With Interdigitated Bit-Line Architecture,” IEEE Journal of Solid-State Circuits, vol. 27, No. 11, pp. 1497-1503 (1992). |
S. Mukhopadhyay, et al., “A Novel High-Performance and Robust Sense Amplifier Using Independent Gate Control in Sub-50-nm Double-Gate MOSFET,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 14, No. 2, pp. 183-192 (2006). |
S. Mukhopadhyay, et al., “Design of High Performance Sense Amplifier Using Independent Gate Control in Sub-50nm Double-Gate MOSFET,” Computer Society, Proceedings of the Sixth International Symposium on Quality Electronic Design (ISQED'05), The British Library, IEEE Xplore, 6 pages, (2010). |
P. Nasalski, et al.“An Innovative sub-32nm SRAM Voltage Sense Amplifier in Double-Gate CMOS Insensitive to Process Variations and Transistor Mismatch” The 15th IEEE International Conference on Electronics, Circuits and Systems, pp. 554-557, (ICECS 2008). |
P. Nasalski, et al.“SRAM Voltage and Current Sense Amplifiers in sub-32nm Double-Gate CMOS Insensitive to Process Variations and Transistor Mismatch” IEEE, The British Library, IEEE Xplore, pp. 3170-3173 (2009). |
T. Ohtou, et al. “Threshold-Voltage Control of AC Performance Degradation-Free FD SOI MOSFET With Extremely Thin BOX Using Variable Body-Factor Scheme”, IEEE Transactions on Electron Devices, vol. 54, No. 2, pp. 301-307, (2007). |
K. Roy, et al. “Double-Gate SOI Devices for Low-Power and High-Performance Applications,” IEEE Computer Society, The British Library, IEEE Xplore, 8 pages, (2006). |
R. Tsuchiya, et al., “Silicon on Thin BOX: A New Paradigm of the CMOSFET for Low-Power and High-Performance Application Featuring Wide-Range Back-Bias Control” 2004 IEEE, 4 pages. |
R. Tsuchiya, et al., “Controllable Inverter Delay and Suppressing Vth Fluctuation Technology in Silicon on Thin BOX Featuring Dual Black-Gate Bias Architecture,” Central Research Laboratory, Tokyo, Japan, IEEE, pp. 475-478 (2007). |
Wilhelmus A. M. Van Noije, et al., XP-002579040, “Advanced CMOS Gate Array Architecture Combining “Gate Isolation” and Programmable Routing Channels,” IEEE Journal of Solid-State Circuits, Special Papers, vol. SC-20, No. 2, pp. 469-480 (1985). |
M. Yamaoka, et al., “SRAM Circuit With Expanded Operating Margin and Reduced Stand-By Leakage Current Using Thin-BOX FD-SOI Transistors,” IEEE Journal of Solid-State Circuits, vol. 41, No. 11, pp. 2366-2372 (2006). |
European Search Report Application No. EP 10 29 0217 dated Sep. 15, 2010. |
U.S. Appl. No. 12/886,421, filed Sep. 20, 2010. |
U.S. Appl. No. 12/942,754, filed Nov. 9, 2010. |
European Search Report Application No. EP 10290181.6 dated Jan. 14, 2011. |
U.S. Appl. No. 13/007,483, filed Jan. 14, 2011. |
U.S. Appl. No. 13/013,580, filed Jan. 25, 2011. |
U.S. Appl. No. 12/880,806, filed Sep. 13, 2010. |
U.S. Appl. No. 12/898,230, filed Oct. 5, 2010. |
U.S. Appl. No. 12/946,135, filed Nov. 15, 2010. |
U.S. Appl. No. 12/974,916, filed Dec. 21, 2010. |
U.S. Appl. No. 12/974,822, filed Dec. 21, 2010. |
U.S. Appl. No. 13/039,167, filed Mar. 2, 2011. |
European Search Report Application No. EP 09290838.3 dated Feb. 16, 2010. |
M. Yamaoka, et al., “Dynamic-Vt Dual-Power-Supply SRAM Cell using D2G-SOI for Low-Power SoC Application,” IEEE International SOI conference, Oct. 2004, pp. 109-111 (2004). |
Ulicki, Bob et al., “De-Myth-tifying” the SOI Floating Body Effect, SOI Industry Consortium, pp. 2-7 (2009). |
Number | Date | Country | |
---|---|---|---|
20110169090 A1 | Jul 2011 | US |