Information
-
Patent Grant
-
6217008
-
Patent Number
6,217,008
-
Date Filed
Tuesday, July 27, 199925 years ago
-
Date Issued
Tuesday, April 17, 200123 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Arent Fox Kintner Plotkin & Kahn
-
CPC
-
US Classifications
Field of Search
US
- 261 341
- 261 35
- 261 37
- 261 71
- 261 641
- 261 54
- 261 691
- 261 692
- 261 DIG 23
- 261 DIG 24
- 261 DIG 38
- 261 DIG 39
- 261 DIG 68
- 261 DIG 83
- 261 DIG 84
- 261 DIG 8
-
International Classifications
-
Abstract
In a diaphragm-type carburetor, a fuel vapor treating chamber is provided in a downstream fuel passage which interconnects a fuel pump operated in response to a pulsation pressure from a pulsation pressure generating source and an inlet bore in a constant-pressure fuel chamber. The fuel vapor treating chamber is located before the inlet bore, and a porous element for finely dividing fuel vapor is placed in the fuel vapor treating chamber. Thus, when a fuel vapor is generated in the fuel discharged from the fuel pump, a large amount of fuel vapor can be prevented from being ejected all at one time from a fuel nozzle by finely dividing the fuel vapor and introducing it along with the fuel into the constant-pressure fuel chamber, it is immediately passed toward the fuel nozzle, whereby the variation in air-fuel ratio of a fuel-air mixture can be suppressed to a very small level.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a diaphragm-type carburetor, and in particular, to an improvement in a diaphragm-type carburetor including a constant-pressure fuel chamber having an outlet bore communicating with a lower end of a fuel nozzle through a fuel jet and a check valve, a fuel pump incorporated in a fuel passage which communicates between an inlet bore in the constant-pressure fuel chamber and a fuel tank for providing fuel for the constant-pressure fuel chamber in response to a pulsation pressure in a pulsation pressure generating source, and a fuel introduction control valve for controlling the introduction of the fuel into the constant-pressure fuel chamber by opening or closing the inlet bore in the constant-pressure fuel chamber. The fuel introduction control valve is provided with a cylindrical valve seat member mounted on an upper wall of the constant-pressure fuel chamber and having the inlet bore in its upper end, and a valve member lifted and lowered within the valve seat member to open and close the inlet bore.
2. Description of the Related Art
A diaphragm-type carburetor is already known, as disclosed, for example, in Japanese Patent Application Laid-Open No. 1-151758.
In such a carburetor, fuel delivered to a constant-pressure fuel chamber by operation of a diaphragm pump is often converted into a large amount of fuel vapor by a pressure pulsation received from the diaphragm pump, heat or vibration received from an engine or the like. When a large amount of fuel vapor is introduced all at one time into the constant-pressure fuel chamber and ejected from the fuel nozzle, the fuel-air ratio of the fuel-air mixture is extremely reduced, thereby causing misoperation of the engine.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to provide a diaphragm-type carburetor of the above-described type, wherein when fuel vapor is generated in the fuel discharged from the diaphragm pump, a large amount of fuel vapor can be prevented from being ejected all at one time from the fuel nozzle by finely dividing the fuel vapor and introducing it along with the fuel, thereby substantially suppressing the variation in fuel-air ratio of a fuel-air mixture.
To achieve the above object, according to a first aspect and feature of the present invention, there is provided a diaphragm-type carburetor comprising a constant-pressure fuel chamber having an outlet bore communicating with a lower end of a fuel nozzle through a fuel jet and a check valve, a fuel pump incorporated in a fuel passage for permitting communication between an inlet bore in the constant-pressure fuel chamber and a fuel tank. The pump pumps fuel into the constant-pressure fuel chamber in response to a pulsation pressure in a pulsation pressure generating source, and a fuel introduction control valve for controlling the introduction of the fuel into the constant-pressure fuel chamber by opening and closing the inlet bore in the constant-pressure fuel chamber. The fuel introduction control valve has a cylindrical valve seat member mounted on an upper wall of the constant-pressure fuel chamber and has the inlet bore at the upper end thereof. A valve member is raised and lowered within the valve seat member to open and close the inlet bore, wherein a fuel vapor treating chamber is provided in the fuel passages for finely dividing fuel vapor at a location before the inlet bore.
With the above arrangement, when fuel vapor is generated in the fuel discharged from the fuel pump, the fuel vapor is finely divided in the fuel vapor treating chamber and passes through the inlet bore in the valve seat member along with the fuel into the constant-pressure fuel chamber. Therefore, the finely divided fuel vapor passes smoothly into the fuel nozzle along with the fuel without stagnating in the constant-pressure fuel chamber. Thus, the amount of fuel vapor ejected from the fuel nozzle per unit time is relatively small, whereby the reduction in fuel-air ratio of a fuel-air mixture can be suppressed to a small level to ensure the normal operation of the engine.
According to a second aspect and feature of the present invention, a porous element having a large number of pores is placed in the fuel vapor treating chamber.
With the above arrangement, the fuel vapor can be finely divided by a simple structure, wherein the porous element is placed in the fuel vapor treating chamber, and thus, it is possible to provide a diaphragm-type carburetor at a lower cost.
The above and other objects, features and advantages of the invention will become apparent from the following description of the preferred embodiment taken in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a vertical sectional front view of a diaphragm-type carburetor of the present invention.
FIG. 2
is a sectional view taken along a line
2
—
2
in FIG.
1
.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Referring first to
FIG. 1
, a diaphragm-type carburetor C is mounted in a hand-held type engine carried on a portable working machine adapted to be used in all-direction attitudes, such as a mowing-off machine. A carburetor body
1
of the carburetor C includes a horizontal intake passage
2
connected to an intake port (not shown) of the engine, and a bottomed cylindrical valve guide bore
3
extending in a vertical direction perpendicular to the intake passage
2
. A rotary-type throttle valve
4
is rotatably and slidably received in the valve guide bore
3
, and a cap
5
for closing the valve guide bore
3
, is secured to the carburetor body
1
. A spring
6
is mounted under compression between the throttle valve
4
and the cap
5
for biasing the throttle valve
4
toward a bottom of the valve guide bore
3
. The throttle valve
4
has a throttle bore
9
provided so that the area of communication with the intake passage
2
is increased in response to the rotation of the throttle valve
4
in an opening-degree increasing direction.
The throttle valve
4
has a valve stem
4
a
extending through the cap
5
, and an operating arm
7
is secured to the valve stem
4
a
by a sleeve
8
fitted in a hollow in the valve stem
4
a.
A boss
10
is provided in the bottom of the valve guide bore
3
to protrude into the throttle bore
9
, and a fuel nozzle
11
is mounted to the boss
10
and rises in the throttle bore
9
. A needle valve
12
, threadedly mounted in the sleeve
8
, is inserted into the fuel nozzle
11
.
An annular slant
7
a
is formed on a lower surface of the operating arm
7
and the operating arm
7
is supported by a ball
13
mounted on an upper surface of the cap
5
. When the operating arm
7
is rotated in a direction to open the throttle valve
4
, it is pushed up by the ball
13
, and with this pushing, the throttle valve
4
is displaced upwards along with the needle valve
12
against the biasing force of the spring
6
, thereby increasing the opening degree of the fuel nozzle
11
.
A stopper bolt
14
is threadedly mounted in the cap
5
for regulation of advancing and retracting movement, and is adapted to abut against the operating arm
7
to define an idle opening degree of the throttle valve
4
.
A pressure plate
15
, a resilient packing
16
and a bottom plate
17
are coupled to a lower surface of the carburetor body
1
in a sequentially superposed manner. A fuel pipe
21
connected to a fuel tank T is connected to a joint
22
which projects from a lower surface of one side of the bottom plate
17
. An upstream fuel passage
23
a
in carburetor body
1
is connected to the joint
22
, and a pump chamber
29
in a diaphragm-type fuel pump
24
in bottom plate
17
. A downstream fuel passage
23
b
is provided in the carburetor body
1
and connected to the pump chamber
29
, and a constant-pressure fuel chamber
26
is provided in the bottom plate
17
and is connected to the downstream fuel passage
23
b.
The diaphragm-type fuel pump
24
has a diaphragm
27
which is formed by a portion of packing
16
. An operating chamber
28
and the pump
29
chamber faced by upper and lower surfaces of the diaphragm
27
, are formed on the carburetor body
1
and the bottom plate
17
, respectively. An intake valve
30
utilizing a portion of the packing
16
, and a fuel filter
31
located upstream of the intake valve
30
, are mounted in the upstream fuel passage
23
a,
and a discharge valve
32
likewise utilizing a portion of the packing
16
, is mounted in the downstream fuel passage
23
b.
The operating chamber
28
communicates with a pulsation pressure generating source P, e.g., the inside of a crank chamber or an intake pipe through a conduit
34
.
As shown in
FIGS. 1 and 2
, a fuel introduction control valve
35
is mounted in the constant-pressure fuel chamber
26
for controlling the introduction of fuel from the downstream fuel passage
23
b
into the constant-pressure fuel chamber
26
. The fuel introduction control valve
35
is comprised of a cylindrical valve seat member
37
mounted on the bottom plate
17
on one side of the constant-pressure fuel chamber
26
, so that an inlet bore
36
in an upper end wall faces the downstream fuel passage
23
b.
A valve member
38
is vertically movably received in the valve seat member
37
to open and close the inlet bore
36
, and an operating lever
40
which is swingably carried on a support shaft
39
, is supported on the bottom plate
17
with one end engaged with a lower end of the valve member
38
. A valve spring
41
biases the operating lever
40
in a direction to close the valve member
38
, and a diaphragm
42
is mounted on a lower surface of the bottom plate
17
so as to form a bottom surface of the constant-pressure fuel chamber
26
. A urging element
42
a
is mounted at a central portion of the diaphragm
42
to abut against the other end of the operating lever
40
for movement away from such other end. The diaphragm
42
has a peripheral edge fastened to the bottom plate
17
along with a cover
43
which covers the diaphragm
42
. The cover
43
is provided with an air vent
44
for applying atmospheric pressure to a lower surface of the diaphragm
42
.
A fuel vapor treating chamber
51
is provided in the downstream fuel passage
23
b
at a location short of the inlet bore
36
of the valve seat member
37
, and a porous element
52
having a large number of pores is placed in the fuel vapor treating chamber
51
. The porous element
52
is formed of a material having a resistance to gasoline, such as a foamed resin having open cells or a sintered material.
A fuel well
45
is defined in the bottom plate
17
and is located above the other end of the constant-pressure fuel chamber
26
. The fuel well
45
communicates at its lower portion with the constant-pressure fuel chamber
26
through an outlet bore
47
and at its upper portion with a lower end of the fuel nozzle
11
through a check valve
48
and a fuel jet
49
.
Further, a bypass passage
50
is provided in the bottom plate
17
and passes above the constant-pressure fuel chamber
26
to permit the lower end of the valve seat member
37
to communicate with the fuel well
45
.
The operation of the embodiment will be described below.
When the engine is operated, a pulsation pressure in the pulsation pressure generating source P is applied to the operating chamber
28
in the fuel pump
24
to vibrate the diaphragm
27
. When the diaphragm
27
is flexed toward the operating chamber
28
, the pump chamber
29
is increased in volume, thereby pumping fuel in the fuel tank T through the intake valve
30
and the upstream fuel passage
23
a.
When the diaphragm
27
is flexed toward the pump chamber
29
, the pump chamber
29
is reduced in volume, thereby delivering the fuel therein toward the downstream fuel passage
23
b
through the discharge valve
32
.
In this case, if the fuel in the constant-pressure fuel chamber
26
does not reach a defined amount, the diaphragm
42
is displaced upwards under the action of the atmospheric pressure to swing the operating lever
40
in a clockwise direction as viewed in
FIG. 1
against the biasing force of the valve spring
41
, thereby pulling down the valve member
38
to open the inlet bore
36
. Therefore, the fuel in the downstream fuel passage
23
b
is introduced into the constant-pressure fuel chamber
26
. When the fuel introduced into the constant-pressure fuel chamber
26
reaches the defined amount, the diaphragm
42
is lowered to pull the urging element
42
a
away from the operating lever
40
. Then, the operating lever
40
pushes up the valve member
38
by the action of the biasing force of the valve spring
41
, thereby closing the inlet bore
36
. Thus, the introduction of the fuel into the constant-pressure fuel chamber
26
is stopped. In this manner, the defined amount of fuel is constantly stored in the constant-pressure fuel chamber
26
during operation of the engine and passes through the outlet bore
47
to fill the fuel well
45
.
On the other hand, in the intake passage
2
and the throttle bore
9
, a negative pressure is produced around the fuel nozzle
11
. The fuel in the fuel well
45
rises sequentially in the check valve
48
, the fuel jet
49
and the fuel nozzle
11
and ejected into the throttle bore
9
by the action of such negative pressure. The ejected fuel is drawn into the engine, while being mixed with air passed through the intake passage
2
and the throttle bore
9
to produce a fuel-air mixture. The amount of fuel-air mixture into the engine is regulated by increasing or decreasing the opening degree of the throttle valve
4
.
When the fuel delivered from the fuel pump
24
into the downstream fuel passage
23
b
is subjected to a pressure pulsation caused by the vibration of the diaphragm, heat or vibration from the engine or the like, thereby generating fuel vapor, the fuel vapor is finely divided along with the fuel by the large number of pores in the porous element
52
in the fuel vapor treating chamber
51
and then introduced through the inlet bore
36
in the valve seat member
37
, along with the fuel, into the constant-pressure fuel chamber
26
. Therefore, the finely divided fuel vapor passes smoothly from the outlet
47
into the fuel well
45
along with the fuel without stagnating in the constant-pressure fuel chamber.
Particularly, in the illustrated embodiment, the lower end of the valve seat member
37
communicates with the fuel well
45
through the bypass passage
50
extending above the constant-pressure fuel chamber
26
. Therefore, when the fuel vapor passes through the valve seat member
37
, it immediately rises up in the bypass passage
50
to enter the fuel well
45
. Thus, the fuel vapor is ejected from the fuel nozzle
11
along with the fuel in the fuel well
45
. Therefore, the amount of fuel vapor ejected per unit time from the fuel nozzle
11
is very small and the fuel-air ratio of the fuel-air mixture varies only slightly and hence, the normal operation of the engine can be ensured.
The construction for finely dividing the fuel vapor at the location short of the inlet bore
36
in the valve seat member
37
is a simple construction wherein the porous element
52
is placed in the fuel vapor treating chamber
51
, leading to a very small increase in cost.
Although the embodiment of the present invention has been described in detail, it will be understood that the present invention is not limited to the above-described embodiment, and various modifications in design may be made without departing from the spirit and scope of the invention defined in claims. For example, the throttle valve
4
may be constructed into a butterfly type.
Claims
- 1. A diaphragm carburetor comprising a constant-pressure fuel chamber having an outlet bore and an inlet bore, a fuel nozzle, a fuel jet and a check valve, said fuel chamber communicating at said outlet bore with a lower end of said fuel nozzle through said fuel jet and check valve, a fuel passage communicating between said inlet bore in said constant-pressure fuel chamber and a fuel tank, a fuel pump communicating with said fuel passage for pumping fuel into said constant-pressure fuel chamber in response to a pulsation pressure from a pulsation pressure generating source, and a fuel introduction control valve for controlling the introduction of the fuel into said constant-pressure fuel chamber by opening and closing said inlet bore of said constant-pressure fuel chamber, said fuel introduction control valve having a cylindrical valve seat member mounted on an upper wall of said constant-pressure fuel chamber and having said inlet bore at an upper end thereof, and a valve member raised and lowered within said valve seat member to open and close said inlet bore, whereina fuel vapor treating chamber is provided in said fuel passage for finely dividing fuel vapor at a location before said inlet bore.
- 2. A diaphragm carburetor according to claim 1, wherein a porous element having a large number of pores is placed in said fuel vapor treating chamber.
Priority Claims (1)
Number |
Date |
Country |
Kind |
10-212210 |
Jul 1998 |
JP |
|
US Referenced Citations (8)
Foreign Referenced Citations (1)
Number |
Date |
Country |
1-151758 |
Jun 1989 |
JP |