1. Field
This invention relates to ion implantation and, especially, to ion implantation for fabrication of solar cells at high throughput and low defect level.
2. Related Arts
Ion implantation has been used in the manufacture of semiconductors for many years. A typical commercial device has a generally an ion beam that is scanned over the substrate, by either moving the beam, the substrate, or both. In one example a “pencil” beam is scanned in x and y directions over the entire surface of the substrate, while another example uses a “ribbon” beam of width slightly wider than the substrate, so that scanning is done in only one direction to cover the entire substrate. In addition to being very slow, these two systems have inherent problem relating to generation of defects. That is, considering a single point on the substrate, the ion implant from any of these two systems appears to be pulsed, even though the beam is energized continuously. That is, each point on the substrate “sees” the ion beam for a short period, and then “waits” for the next scan of the beam. This causes localized heating, which leads to creation of extended defects due to dynamic self-annealing between scans.
Recently, another method has been proposed for ion implantation, generally referred to as plasma immersion ion implantation, or P3i. In such processing chambers, rather than using a beam of ions, plasma is created above the entire substrate. Then, AC potential, generally in the form of RF power, is coupled to the substrate so as to attract ions from the plasma into the substrate. Consequently, from the substrate perspective, such systems also operate in “pulsed” mode and lead to the same self-annealing problem exhibited by ion-beam based systems.
One type of defects, generally caused by end-of-range damage, presents a consistent problem with traditional ion implantation systems. Self-annealing resulting from the localized heating and subsequent cooling leads to cluster defects that cannot be eliminated during the subsequent anneal step. Accordingly, what is needed in the art is an ion implantation system and method that enables high speed implantation while avoiding defects.
The following summary is included in order to provide a basic understanding of some aspects and features of the invention. This summary is not an extensive overview of the invention and as such it is not intended to particularly identify key or critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present some concepts of the invention in a simplified form as a prelude to the more detailed description that is presented below.
Disclosed embodiments provide ion implantation methods that enable high throughput fabrication of solar cells, while minimizing or eliminating defects. Using various experimentation conditions, it has been shown that the disclosed method is superior to prior art ion implantation method, especially for eliminating defect clusters caused by end-of-range damage.
According to disclosed embodiments, ion implantation is performed using continuous ion implantation at high dose rate. The ion implantation is performed concurrently over the entire surface of the substrate, or the areas chosen for selective ion implantation (e.g., for a selective emitter design). The implant energy may be, for example, 5-100 keV, or more specifically, 20-40 keV, while the dose rate is at the level of, e.g., higher than 1E14 or even higher than 1 E15 ions/cm−2/second, and in some embodiments in the range of 1E14-5E16 ions/cm−2/second. The high dose rate enabled high throughput while fully amorphizing the implanted layer of the substrate. Since the implantation was continuous, no self-annealing occurred and no defect clusters were observed. After anneal, the amorphous layer fully crystalized and no defects clusters were observed.
According to another aspect of the invention, a method for fabrication of solar cell using ion implantation is provided. According to the method, substrate is introduced into an ion implantation chamber. A beam of the ion species is generated, having cross-section that is sufficiently large to cover the entire surface of the substrate. Ions from the beam are continuously accelerated towards the surface of the substrate, so as to continually implant ions into the substrate. The dose rate is designed so as to completely amorphize a designated layer of the substrate. Optionally, further processing is performed, such as the deposition of anti-reflection or encapsulation layer, e.g., silicon nitride layer, and deposition of metallization grid. The substrate is then annealed so as to re-crystallize the amorphous layer and activate the dopant ions that were implanted. According to one embodiment, the anneal step is performed using rapid thermal processing, e.g., at about 600-1000° C. for a few seconds, e.g., 1-20 seconds, or in one specific example for five seconds.
According to another embodiment of the invention, a method of ion implantation is provided, which can be used for the fabrication of solar cells. According to the embodiment, a substrate is introduced into an ion implantation chamber. The areas of the substrate selected to be implanted are then continuously bombarded with ions, such that the areas are amorphized without possibility of self-annealing. The substrate is annealed in a rapid thermal processing chamber utilizing solid phase epitaxial re-growth.
Aspect of the invention includes a method for fabricating solar cells using ion implantation, comprising: introducing a substrate into an ion implantation chamber; generating a continuous stream of ions to be implanted in the substrate; and directing the stream of ions toward the surface of the substrate to cause continuous ion bombardment of the surface of the substrate to thereby implant ions into the substrate while amorphizing a layer of the substrate.
Further aspects of the invention include a method for ion implantation of a substrate, comprising: introducing a substrate into an ion implantation chamber; generating a continuous stream of ions to be implanted in the substrate; and directing the stream of ions toward the surface of the substrate to cause continuous ion bombardment of the surface of the substrate while preventing self-anneal of the substrate.
Other aspects of the invention include a method for ion implantation of a substrate, comprising: introducing a substrate into an ion implantation chamber; generating a continuous stream of ions to be implanted in the substrate; and directing the stream of ions toward the surface of the substrate to cause continuous ion bombardment of the surface of the substrate to thereby amorphize the entire surface of the substrate simultaneously.
The accompanying drawings, which are incorporated in and constitute a part of this specification, exemplify the embodiments of the present invention and, together with the description, serve to explain and illustrate principles of the invention. The drawings are intended to illustrate major features of the exemplary embodiments in a diagrammatic manner. The drawings are not intended to depict every feature of actual embodiments nor relative dimensions of the depicted elements, and are not drawn to scale.
As can be appreciated, the total dose rate plotted in
Referring now to
Moreover,
In the embodiments described above, the substrate may be annealed using conventional furnace or a rapid thermal process (RTP). In one example, the wafers were annealed in a furnace at temperature of, e.g., 930° C. for about 30 minutes, while using RTP the wafers were annealed at temperatures of 600-1000° C. for about 1-10 second, and in specific examples for 5 seconds. Notably, investigation of a beam-line implanted and conventionally annealed samples showed that an oxide layer was added. Specifically, a Rutherford Backscattering Spectrometry (RBS) showed a broadened silicon peak, indicating residual damage after anneal. Conversely, the RBS plot for RTP annealed wafer according to the disclosed method showed neither oxide nor broadening of silicon peak, indicating that the sample has completely recrystallized.
A target wafer 840 is positioned on the opposite side of the grid plates from the plasma region. In
In the embodiment of
As can be understood from the above, embodiments of the method proceed by introducing a substrate into an ion implanter, generating an ion beam or column of cross-section size sufficiently large to cover the entire area of the substrate, and directing the beam so as to continuously implant ions onto the substrate and amorphize a layer of the substrate. To improve throughput, the substrate is then annealed in an RTP chamber, utilizing the SPER anneal mechanism, wherein the amorphous layer re-crystallizes. This anneal step also activates the dopants that were implanted from the ion beam. According to another embodiment utilized for fabrication of solar cells, after ion implantation further layers of the solar cell are fabricated over the amorphized layer, including a metallization layer. Then the substrate is transferred into the RTP chamber to anneal the metallization layer and the amorphized layer concurrently. That is, the SPER anneal is achieved using the metallization anneal step, so that there is no separate anneal step after the ion implant process.
While this invention has been discussed in terms of exemplary embodiments of specific materials, and specific steps, it should be understood by those skilled in the art that variations of these specific examples may be made and/or used and that such structures and methods will follow from the understanding imparted by the practices described and illustrated as well as the discussions of operations as to facilitate modifications that may be made without departing from the scope of the invention defined by the appended claims.
This application claims priority benefit from U.S. Provisional Patent Application, Ser. No. 61/414,588, filed Nov. 17, 2010, the disclosure of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61414588 | Nov 2010 | US |