Hereafter, the embodiments of the present invention will be described with reference to the appended drawings.
The embodiment of the present invention is characterized in that an input means is prepared for a new signal X as indicated in the expression 2 in order to convert the relation of three inputs and four outputs indicated in the expression 1 into the relation of four inputs and four outputs from which a unique solution can be obtained. The input means for a new signal is provided with the function of reading a brightness of a lighting condition around the display apparatus, a taste of a user, a characteristic of a signal to be represented, and so forth as the corresponding numeric values. Those parameters may be used uniquely or as a group. Further, means for converting the numeric value of the input signal into a proper numeric value to be used inside may be also used with the input means. Moreover, the conversion matrix C indicated in the expression 2 is not necessarily the linear coupling relation. It may be any coupling relation of a function, a conversion table, and so forth. The foregoing mechanism makes it possible to actively control the using ratio of the W sub-pixel.
Further, according to the embodiment of the present invention, the relation between the RGBW signal generated for displaying an image and the three primary colors visually sensed by human's eyes is grasped as a system of four inputs and three outputs. Moreover, if the embodiment of the present invention is applied to the liquid crystal display apparatus, the combination of the RGBW liquid crystal panel and the driving signal of the backlight unit is grasped as a system of N inputs and three outputs. The present invention thus has a capability of, for example, calculating the driving signal for reducing the power consumption by using the degree of freedom on the input side appearing in the relation expression.
In the color signal conversion from the input RGB signal to the output RGBW signal, the relation is replaced with the relation of four inputs and four outputs by adding the using ratio of the W sub-pixel as a condition so that a unique solution may be obtained from the four-input and four-output relation. The using ratio of the W sub-pixel is effective in changing the luminance improving characteristic and the color reproducing characteristic on the display. In other words, it is effective in changing the form of a color solid on the display. To describe the effect, at first, the description will be oriented to the color solid.
The display apparatus according to the embodiment of the invention is characterized in that means is provided for actively determining the foregoing conflicting relation between the luminance improving effect and the color reproducing characteristic. For example, the output signal of a brightness sensor for sensing a brightness of the lighting condition around the display apparatus is used for that purpose. In a bright lighting condition, the luminance improving effect is more important, while in a gloomy lighting condition, the color reproducing characteristic is more important. In the brightness of the lighting condition halfway between them, the image quality is continuously changed depending upon the brightness of the lighting condition. As a concrete adjusting item for continuously changing the image quality, the using ratio of the W sub-pixel is controlled.
The form of the color solid to be represented on the display panel is continuously changed depending upon the using ratio of the W sub-pixel. It goes without saying that the chromaticities of the primary colors of the RGB are changed depending upon the using ratio of the W sub-pixel. The additive color mixture is not executed if the primary colors of the RGB are changed. However, since the using ratio of the W sub-pixel is common to each of the RGB sub-pixels, in the condition that the using ratio of the W sub-pixel is fixed, the additive color mixture of the RGB primary colors is allowed to be executed. Hence, the display apparatus according to the embodiment of the invention operates to set the using ratio of the W sub-pixel according to the brightness of the lighting condition, drive the RGB sub-pixels in response to the RGB input signal in the condition of the fixed using ratio, and display the colors supplied by the additive color mixture. The combination of the pixels ranged on the overall display screen thus forms a color image on the screen.
The signal processing circuit is arranged to have a brightness sensor 101 for sensing a brightness of a lighting condition around the display apparatus, a color correcting circuit 102 for color-correcting a RGB signal to be inputted therein, a W generating circuit 103 for selectively executing one of the methods for calculating the W signal, a W generation selecting circuit 104 for selecting the methods for calculating the W signals, a K correcting circuit 105 for adjusting the W signal with an output signal of the brightness sensor as a correction coefficient K, an equalizing circuit 106 for equalizing the signal as keeping the color and the luminance of the RGBW signal generated at the previous stage, and a backlight modulating circuit 107 for calculating a liquid crystal panel driving signal and a backlight unit driving signal from the RGBW signal outputted from the equalizing circuit 106.
Hereafter, the description will be oriented to the operation and the arrangement of each of the foregoing circuits. Since there are many coordinate systems that represent a color signal, plural kinds of signal components are provided about the luminance and the color gamut. For example,
1) In the RGB space, a common component W to each RGB signal and a color saturation component derived by subducting W from each RGB signal,
2) In the HSL space, a brightness component L and a component S that designates color vividness, and
3) In the xyY space, a luminance Y and a chromaticity xy
wherein the RGB space is a space created by the properly defined RGB signal, the HSL space is a space created by H (hue), S (Saturation), and L (lightness), and the xyY space is a space created by a chromaticity xy and Y (luminance).
As another space, the XYZ space or the Lab space may be referred, which space is created in consideration of the human's visual characteristic. The present invention is not intended for specifying one of many signal types as described above. The signal components of the luminance (brightness and lightness) and the color reproducing characteristic (color saturation and color gamut) are used in the present invention. The luminance and the color reproducing characteristic of the display screen are managed depending upon the brightness of the lighting condition. To make the description simple, in the following embodiment, the signal component about the luminance is denoted by W. Instead of W, L (Lightness) and Y (Luminance) may be used therefor. Further, it goes without saying that those elements may be mixedly used in the signal processing by preparing means for converting these elements.
The display apparatus according to the embodiment of the invention has a capability of calculating a correction coefficient K for defining the using ratio of the W sub-pixel on the basis of the brightness of the lighting condition around the display apparatus. The brightness sensor to be used for this purpose is a photo sensor manufactured by silicon, CDS (cadmium sulfide) or the like. The output signal from the sensor is analog-to-digital converted into the digital signal and is read. The prepared conversion table is read by using the digital values. This conversion table is used for defining the using ratio K of the W. The function of calculating the correction coefficient K may be prepared as another circuit. As such, the embodiment of the present invention is characterized in that the signal to be represented as an image is actively controlled depending upon the brightness of the lighting condition in order to enhance the image quality on the display screen visually perceived by an observer. In addition, the factor to be used for defining the using ratio K is not limited to the brightness. To describe the merit as the display apparatus, herein, the brightness is exemplarily used. This brightness sensor may be replaced with a switch to be specified by a user.
The color correction included in the present invention will be described herein. Basically, the correction for image quality may be carried out with respect to the RGB signal or any three-color signal converted therefrom. This process may be located at a stage previous to the generation of the W signal.
(A) Maximizing the Color Saturation
In the set color solid, the color saturation is modified so that it may be pasted on the surface of the color solid. If importance is placed on the contrast in the bright lighting condition, the color reproducibility is not so much requested. Hence, what is to be watched is just a hue. Though an input color signal may be placed on any location inside the color solid, the color located inside the color solid is moved to the surface of the color solid. This is effective in that the hue may be more easily watched. The concrete signal processing is executed to convert the RGB signal into a luminance signal, a hue signal and a saturation signal so that the saturation signal is modified into a maximum signal. Herein, the luminance and the hue may be kept at the same value. Then, the modified luminance, hue and saturation signals are re-converted into the RGB signal.
(B) Analysis of Input Data
To expand the input signal described in HTML language in the bitmap format and display an image represented by the input signal, it is possible to determine the color type of the data like characters to be represented on the basis of the codes of the HTML language. Further, it is also possible to determine whether or not a photo or a picture is contained in the input signal on the basis of the file format of JPEG, BMP or the like. That is, the characteristic of the input signal is allowed to be determined without having to expand the input signal in the bitmap format. Moreover, by rewriting the color specifying codes contained in the input signal, it is possible to modify the color of the bitmap expansion of the input signal. Herein, the rewrite of the color specifying code of the HTML is allowed to be properly modified in light of the relation between the RGB signal and the luminance, hue and color saturation. In particular, if the color specifying code designates the combination of the RGB primary colors, it is possible to determine that the input signal does not require the color reproducibility that is required if the code designates the natural image. These operations result in being able to pick up the characteristic data corresponding with the statistical measurement of the image to be displayed.
(C) Monochrome Display
If importance is put on the visibility in a bright lighting condition and the contrast is more important than the colors, the monochrome display is made possible without reproducing the colors. This is executed to convert the inputted RGB signal into the monochrome signal with no color.
(D) User Setting Mode
By preparing any means for prompting a user to enter his or her taste, it is possible to modify the colors. For example, it is possible to slightly shift the red hue.
Each signal of the RGBW is let to take a value of 0 to 1. Each of the RGB is visually different. In the following description, however, they are equivalent to one another. That is, if one of the RGB is replaced with another, no problem takes place in the expression. In addition, the nonlinear characteristic like the gamma characteristic is not treated in the description.
As the condition of W, if all of the RGB are zero, W=0, while if all of the RGB are 1, W=1. For this purpose, lots of methods for calculating W are prepared. The addition of W is changed depending upon the method. The embodiment of the present invention is characterized in that a plurality of operating methods are prepared and means for selecting the operating method is provided. The method for calculating the W signal will be described below.
W=MIN(R, G, B) (A)
The W derived as described above corresponds to a magnitude of a common component of the RGB. If an image is displayed in a sole one of the RGB or the CMY created by two of the RGB, the remaining color signals take a value of 0. Hence, W is equal to zero. The RGBCMY are the colors known as the three primary colors to be used for addition or subtraction. If those colors are displayed, W=0 is met. It means that the vividness of the image is not impaired but the addition of the W is not effective in improving the luminance. The color having the common component to the RGB and located inside the color solid additionally includes the W, so that the luminance may be improved. The effect of improving the luminance through the effect of the W sub-pixel as described above results in making the central portion of the color solid raised. Since the effect of the improving the luminance of the primary color signal cannot be obtained through the luminance of the white signal is made higher, the difference of the brightness is often made noticeable.
W=MAX(R, G, B) (B)
In the display of a sole one of the RGB, the white component is added to the color for the purpose of improving the luminance of the color.
W=(M(MAX(R, G<B)−MIN(R, G, B))+MIN(R, G, B)) (C)
This is an expression derived by combining the foregoing expressions (A) and (B) with each other with a new variable of M=0 to 1. In this expression, if M=0, W=MIN(R, G, B), while if M=1, W=MAX(R, G, B).
W=(⅓)(R+G+B) (D)
The addition of the W component to the RGB primary colors is divided by three. Hence, the addition is multiplied by ⅓.
Additionally,
W=(R G B) (E)
W=(⅓)(RG+GB+BR) (F)
According to the embodiment of the invention, one or more methods for calculating the W component are prepared. If two or more methods are prepared as shown in
The method for generating the W signal may be used by properly switching those methods from one to another on the display screen. As a switching trigger, it is possible to use the analyzed result of the input data to be represented on the screen.
For example, the pixels on the screen are classified into:
1) pixels on which text and graphics are represented,
2) pixels in which color reproducibility is not so important but coloring is indispensable,
3) pixels in which color reproducibility is required.
wherein as to the pixels (1), if the signal processing processor executes the display in the HTML language, the location and the display content of the pixel are determined on the codes described in HTML language without expanding the signal in the bitmap form. Further, as to the photo data or the like, by checking an extension of the data, it is possible to determine the BMP (Bitmap Data) or the JPG (JPEG Compressed Data). Hence, without having to expand the photo data on a memory, the pixel location and the display content may be determined. Based on these determinations, the signal processing is switched as follows. As to the pixels on which text and graphics are represented, the contrast is highlighted, while as to the pixels on which a photo or the like is represented, the color reproducibility is highlighted.
Further, the statistical processing may be also carried out with respect to the image data having been expanded in the bitmap format. As shown in
The signals to be inputted thereto are a W signal and a coefficient K to be used for the using ratio of W. The circuit operates to correct the W signal. K is served as a means for adjusting the calculated using ratio of W and for selecting the color space. This circuit is effective in greatly changing the image quality on the display screen according to the modified K.
The present invention does not use the expression of W=MIN(R, G, B) as it is but uses the expression of W=MIN(R, G, B) derived by multiplying the former expression by the coefficient K. The use of this expression makes it possible to actively control the image quality on the display screen. If K−0, only the RGB pixels are active on the display screen, while if K=1, W becomes maximum if the RGB are all maximum. When the RGB primary colors are displayed on the screen, the luminance is improved through the color saturation becomes slightly lower.
The embodiment of the present invention is characterized in that as shown in
The first layer is a stage at which a sole one of the RGB three primary colors composes the color solid. In the first layer, a triangular prism in which the luminance is changed as keeping the chromaticity of the primary color is formed on the surface of the color solid. In general, the color gamut designates a horizontal section of this triangular prism.
The second layer is a stage at which two of the RGB three primary colors are mixed. The mixture of two of the RGB results in creating the YMC located on the line connecting two primary colors with each other. Three upward triangles (RGY), (GBC) and (BRM) with the YMC as a vertex are created on the surface of the color solid in a manner that the surfaces of the triangular prism may be extended upward. In this stage, the RGB three primary colors are not mixed with one another, so that the color saturation is not made lower.
The third layer is a stage at which each two colors of the triangular YMC are mixed. Each two colors of the YMC and one color of the RGB primary colors are mixed so that three downward triangles (YCG), (CMB) and (MYR) are created on the surface of the color solid. The YMCs of the second and the third layers point to the same point. In this stage of the mixture, the RGB three primary colors are mixed, so that the color saturation is made lower.
The fourth layer is a stage at which each two colors of the YMC located at the vertex of the third layer are mixed. In this layer, a triangular pyramid is created with a triangle created by the YMC as its bottom and the white as its vertex.
The foregoing description has been expanded on the principles. The color solid created by plotting the actual measured values of the display apparatus is often greatly warped. To make the description easier to understand, hence, the model diagram is used for representing the rough form of the color solid.
For example, if the foregoing W calculating method (A) is used, letting W be the common component of the RGB (that is, the minimum value of the RGB), the W sub-pixel is used for representing an image so that the W may be expanded. This expansion corresponds to the vertical extension of the fourth layer of the color solid. This is because the first to the second layers correspond to the color solid area that does not include the common component of the RGB, that is, those layers do not have the W so that no change takes place in the display colors. The third layer is transformed so that both of the layers are connected with each other. In the color solid with the expanded W, no change takes place in the RGB primary colors and the luminance of the color closer to an achromatic color is increased. The change of the form of the color solid caused by the increased W depends upon the method for calculating the W signal. The change of the form of the color solid brings about the change of the image quality on the display screen. The method for generating the W signal and the condition corresponding with the method may be determined as a designing matter.
As described above, the form of the color solid is vertically stretched according to the mixing quantity of the white component. The horizontally cut section of the color solid is stretched in inverse proportional to the vertical stretch. That is, the stretch of the luminance is conflicting with that of the color saturation. However, this conflicting relation is rational if the brightness of the lighting condition around the display apparatus is considered. When a higher luminance is required in a bright lighting condition, the request for color reproducibility is made lower. On the other hand, when the luminance is not so required in a gloomy lighting condition, the color reproducibility is made more important. If the display apparatus is set to have this kind of request for image quality, the change of the form of the color solid meets the request.
To make the description simple, assuming that each of the RGB has the same luminance and the W is a luminance of the RGB three primary colors, the ratio of the maximum luminance of the RGBW is 1:1:1:3. For example, letting the RGB signal be 0.5 and the W signal be 1.0, the total of the display luminance of the RGBW on the display screen is 4.5 and the ratio of the display luminance of each of the RGBW is 1:1:1:6. If an observer watches this display screen, since the display luminance of the W is higher than that of the RGB, the observer visually senses the grainy spots as the W sub-pixels. Hence, the embodiment of the present invention is characterized in that the brightness is made uniform in each of the RGBW by using the metamerism of the foregoing display apparatus for the purpose of dissolving the visually sensed grainy image on the display screen. For example, thus, setting the color signals of the RGBW as 1.35, 1.35, 1.35 and 0.45 respectively, it is possible to make the display luminance ratio of the RGBW 1:1:1:1 as keeping the total of the display luminance as 4.5 and the colors on the display screen. In this example, however, since it is necessary to keep each RGB signal as 1 or more, this setting is not practical. In another exemplary setting, setting the color signals of the RGBW as 1, 1, 1 and 0.5 respectively, it is possible to make the display luminance ratio of the RGBW 1:1:1:1.5 as keeping the total of the display luminance as 4.5 and the colors on the display screen. This setting makes it possible to suppress the difference as compared with the initial set ratio of 1:1:1:6 and make the display luminance ratio of the RGBW uniform, thereby being able to dissolve the visually sensed grainy image on the display screen.
To execute the procedure as described above in a computer, an arrangement shown in
The embodiment of the present invention is characterized in that the display luminances of the RGBW sub-pixels are made uniform by converting the combination of the RGBW signals as keeping the colors and the luminance of the RGBW signals through the use of the property of the metamerism. This makes it possible to dissolve the visually sensed grainy image on the display screen and thereby improve the image quality.
In the foregoing description, the display luminance ratio of the RGBW sub-pixels is made simple. In the actual display apparatus, the ratio may be set on the basis of the measured values. Further, in the display apparatus provided with the sub-pixels of the other wavelength distributions rather than those of the RGB sub-pixels, the same effect can be obtained by executing the same procedure. If the pixels are flashed for a certain length of time, the same idea may hold true to this case. That is, by making the display luminance ratio uniform on the coordinate axis of time and area, it is possible to improve the image quality.
In a case that the liquid crystal panel is composed of the RGBW sub-pixels and the backlight unit is a light source of each color of the RGBW, the degree of freedom in the combination of the colors is further enhanced. The W light source basically provides the same wavelength characteristic as the wavelength obtained by making the RGB light sources luminous at the same time. On the other hand, if the RGB light sources are individually adjusted, the wavelength characteristic may be greatly changed. The wavelength distributions of these light sources do not necessarily coincide with the wavelength distribution of the color filter provided in the liquid crystal panel. Herein, however, to make the description simple, both of them coincide with each other. If they mismatch to each other, the color variation caused by the mismatch may be suppressed on the display screen by correcting the signal for driving the pixels composing the liquid crystal panel.
The liquid crystal display is composed of the sub-pixels, arranged by combining the liquid crystal elements for controlling a light transmittance and the color filters having a wavelength distribution characteristic, and a backlight unit that applies a ray of light to the liquid crystal panel composed of many sub-pixels ranged on the plane. Herein, the quantity of light supplied from each sub-pixel is represented by a product of a quantity of backlight and a light transmittance of liquid crystal, excepting the nonlinear elements such as the gamma characteristic (in order to make the description simple). Though the larger quantity of backlight than a required quantity of light for an image display is in reverse proportion to the liquid crystal transmittance, if the quantity of backlight is fixed, the liquid crystal transmittance is uniquely defined. Hence, it is possible to set the minimum quantity of light required for causing an image display by making the quantity of backlight variable and set such a liquid crystal transmittance as keeping the reverse proportional relation. The display output at this time is not changed. Concretely, by measuring the maximum value of the input signal on the screen, it is possible to set the quantity of backlight so that the maximum value may appear on the screen. Since the quantity of backlight is lower than the maximum light quantity, the power consumption may be reduced.
In the display apparatus provided with the RGBW panel, as described above, the basic principle of the display operation is represented by a product of a backlight quantity and a light transmittance of liquid crystal. Then, by variably setting the backlight quantity, it is possible to reduce the power consumption. However, the RGBW panel to be driven by the present invention does not use the input RGB signal as it is but uses the RGB signal converted according to the using ratio of the W sub-pixel. To set the backlight quantity, therefore, it is impossible to use the maximum value of the input RGB signal on the display screen. In the embodiment of the present invention, when the backlight quantity is fixed (to the maximum value), the operation is executed to measure the RGBW signal calculated on the using ration of the W sub-pixel, detect the maximum value on the display screen, and variably set the backlight quantity so that the maximum value may be displayed on the screen according to the detected result. Hence, if the input RGB signal is constant, the backlight quantity is made variable depending upon the brightness of the lighting condition around the display apparatus. Further, if the brightness of the environment is constant, the backlight quantity is made variable depending upon the input RGB signal.
As shown in
Further, the embodiment of the present invention uses the phenomenon brought about in the display apparatus as the metamerism of the visual sense. Concretely, since the wavelength distribution of the W is overlapped with that of the RGB, a degree of freedom in the combination of the RGBW required for outputting the same color takes place. This degree of freedom is used by the invention. In each pixel, the RGBW signal required for displaying the same color is modified so that the maximum value becomes minimal by using the degree of freedom. Then, the maximum value on the screen is detected and the backlight quantity is set so that the maximum value may appear on the screen.
In the foregoing description, it is assumed that the backlight quantity is made uniform on the screen. Instead, by properly modulating plural light-emitting units composing the backlight unit, it is possible to emit light so that the light is distributed on the screen. That is, it is possible to provide plural areas on the screen and control a light quantity on each area. Further, the light may be emitted so that the wavelength characteristic is distributed. Concretely, if the backlight unit is composed of LEDs, the independent control of the modulation of the light quantity depending on a certain position on the screen or the modulation of the light quantity depending on the wavelength of the RGB or the like may be served as the backlight unit. As described above, by setting the backlight quantity required for displaying an image, it is possible to reduce the power consumption as compared with the constantly lit backlight unit.
In the foregoing description, the W generating circuit 103 is controlled in response to a signal sent from the W generation selecting circuit 104 and the K correcting circuit 105 is controlled in response to a signal sent from the brightness sensor 101. The circuits to be controlled and the control circuits may be properly overlapped with each other. This overlapped arrangement results in increasing the degree of freedom in the control. To describe this,
The signal measuring circuit 108 has a function of measuring a signal characteristic of an input RGB signal and conveying the measured result to the W generation selecting circuit 104 and the K setting circuit 109. At a time, the output signal of the brightness sensor 101 is also conveyed to the W generation selecting circuit 104 and the K setting circuit 109. In this arrangement, the W generation selecting circuit 104 and the K setting circuit 109 are served to generate a control signal for controlling the W generating circuit 103 and the K correcting circuit 105. This control signal includes more information and thus is highly accurate.
As a signal characteristic to be measured by the signal measuring circuit 108, it is possible to use a signal distribution on a certain area (that is, an area a signal occupies), a presence or absence of an edge, frequency components, a color distribution, and so forth.
It should be further understood by those skilled in the art that although the foregoing description has been made on embodiments of the invention, the invention is not limited thereto and various changes and modifications may be made without departing from the spirit of the invention and the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2006-275966 | Oct 2006 | JP | national |