1. Technical Field
The present invention relates to a technique for displaying an image in a field-sequential scheme.
2. Related Art
In the technical field of a field-sequential display device, an image problem of the separate perception of a plurality of primary color components (e.g., a red color component, a green color component, and a blue color component) at an edge portion of a moving image arises. When such an image problem occurs, the moving image is represented in mixed colors that are obtained as a result of the mixture of the plurality of these primary color components. The field-sequential display device displays a single-color image of each of these primary color components in a time-divided sequential manner so as to enable an observer to perceive a color image. The above-identified image problem due to primary-color-component separation is hereafter referred to as a “color breakup”.
In an attempt to address such a technical problem, JP-A-2002-169515 discloses a technique that reduces a color breakup by displaying a single-color image of each of a white component and a plurality of color components, both of which are extracted from a plurality of primary color components, in a sequential manner. As another related art, JP-A-2005-316092 discloses a technique that reduces a color breakup by displaying single-color images of colors different from one another in three regions of an image display area. In the above-identified JP-A-2005-316092, these three regions are divided at the interval of predetermined number of rows out of the image display area.
As still another related art, JP-A-2006-243223 teaches a technique that decreases display brightness as the percentage of the number of pixels (i.e., window size) for which high gradation is specified relative to an entire display image increases. In the related art of JP-A-2006-243223, if the gradation of a display image is high when viewed as a whole, the brightness of a display device is decreased so as to reduce power consumption. On the other hand, according to the related technique described in JP-A-2006-243223, the brightness of a display device is increased for an image in which minute high-gradation picture elements are interspersed against a low-gradation background, for example, when an image of a firework is displayed. Since the brightness of the display device is increased when displaying such a type of an image, each of the minute picture elements is displayed in a clear manner.
In the aforementioned related art described in JP-A-2002-169515, the gradation of the single-color image of the white component is significantly higher (which means a significantly higher brightness) than that of the single-color images of other color components especially if the display color of an image is close to white. As a consequence thereof, an observer perceives conspicuous flickers, which is an image problem, because a plurality of single-color images having gradations different from one another are displayed in a sequential manner. In order to address the above-identified problem without any limitation thereto, the invention aims, as a first aspect thereof, to provide a technical solution to the image problem of flickers that are attributable to the displaying of a single-color image of a white component performed by a field-sequential display device.
The invention provides, as the first aspect thereof, a display device that includes: a separating section that generates a separation image signal, which specifies the gradations of a plurality of color components (which is a broad generic concept that means either primary color components or a combination of primary color components and mixed color components) and the gradations of a plurality of white components, from an input image signal, which specifies the gradations of a plurality of primary color components for each of a plurality of pixels; and a displaying section that displays a single-color image corresponding to one of the color components and the white components sequentially on the basis of the generated separation image signal in each of a plurality of subfields allocated in a frame in such a manner that subfields corresponding to each of the plurality of the white components are distanced from each other or one another on a time axis. In the configuration of a display device according to the first aspect of the invention described above, it is preferable that the displaying section should have a liquid crystal device, where the liquid crystal device has an OCB mode liquid crystal that is sealed in a gap formed between a first substrate and a second substrate thereof.
In the configuration of a display device according to the first aspect of the invention described above, since the single-color images of a plurality of white components are displayed in split subfields that are distanced from each other or one another on a time axis, in comparison with a configuration in which a single-color image of a white component is displayed in only one subfield, it is possible to achieve a more suppressed gradation (i.e., brightness) for each of the single-color images of the white components. Therefore, it is possible to reduce flickers due to the displaying of a single-color image of a white component.
In a specific configuration of a display device according to the first aspect of the invention described above, the order of displaying the single-color images of color components and white components is not restrictively specified herein. For example, it is preferable that the displaying section should display a single-color image of a white component in each of subfields that are allocated before and after a plurality of subfields during which single-color images of the plurality of the color components are displayed. As another example thereof, it is preferable that the displaying section should display a single-color image of a white component in a subfield that is interposed at a gap allocated in a plurality of subfields during which single-color images of the plurality of the color components are displayed. With such a preferred configuration, it is possible to make harder for an observer to perceive a color breakup image problem.
In a specific configuration of a display device according to the first aspect of the invention described above, it is preferable that a black image should be displayed during a predetermined time period allocated in a frame. With such a preferred configuration, a color breakup is reduced because it shortens a time period during which single-color images of color components are displayed. In addition thereto, a moving-picture blur is also reduced because it shortens a time period during which single-color images of color components and single-color images of white components are displayed. Herein, “a black image should be displayed” means that the displaying of a color image is suspended. For example, assuming that the displaying section is made up of an illumination device and a liquid display device, a black-image display state refers to an operating condition in which at least one of the following two are executed: the emission of light from the illumination device is suspended (i.e., light off) and/or the transmission factor of each pixel of the liquid crystal device is reduced to the minimum value. In the preferred configuration described above, it is further preferable that a black image should be displayed during the last time period allocated in a frame.
In a specific configuration of a display device according to the first aspect of the invention described above, the displaying section displays a single-color image of at least one white component among the plurality of white components in a subfield that has a sub-field time period longer than that of each of subfields during which the single-color images of the color components are displayed. With the above-described configuration, since a sufficient time period for the displaying of single-color images of color components and single-color images of white components is secured, it is possible to effectively reduce flickers.
In a specific configuration of a display device according to the first aspect of the invention described above, the separating section generates the separation image signal in such a manner that the plurality of color components include but not limited to a mixed color component formed as a result of the mixture of two of the plurality of primary color components with each other. With the above-described configuration, in comparison with a configuration in which single-color images of primary color components are displayed in a successive manner, it becomes harder for a user who observes the display screen thereof to perceive the color-breakup image problem. In a further preferred configuration thereof, a mixed-color-component subfield(s) during which a single-color image of a mixed color component is displayed is interposed between primary-color-component subfields during which single-color images of primary color components are displayed.
The invention provides, as the first aspect thereof, a method for driving a display device, the driving method including: generating a separation image signal, which specifies the gradations of a plurality of color components and the gradations of a plurality of white components, from an input image signal, which specifies the gradations of a plurality of primary color components for each of a plurality of pixels; and commanding the display device to display a single-color image corresponding to one of the color components and the white components sequentially on the basis of the generated separation image signal in each of a plurality of subfields allocated in a frame in such a manner that subfields corresponding to each of the plurality of the white components are distanced from each other or one another on a time axis. The above-described method for driving a display device offers the same advantageous effects as those offered by a display device according to the first aspect of the invention described above.
In the aforementioned related art described in JP-A-2005-316092, three regions that constitute the divided portions of an image display area are arrayed along the column orientation (i.e., vertical direction) only. With such a configuration, it is practically impossible or at best difficult to prevent the occurrence of a color breakup if a visual point of a user who observes the display screen thereof moves in row orientation (i.e., horizontal direction). In order to address the above-identified problem without any limitation thereto, the invention aims, as a second aspect thereof, to provide a technical solution to the image problem of a color breakup that is attributable to the movement of a visual point of an observer during display performed by a field-sequential display device.
The invention provides, as the second aspect thereof, a display device that includes: a displaying section that has an array of a plurality of unit display areas along a first direction and a second direction that intersect with each other; and a controlling section that performs control so that a single-color image of each of a plurality of colors should be displayed sequentially in each of the above-mentioned more than one unit display areas in such a manner that single-color images of the plurality of colors are displayed in each of the unit display areas in a frame. In the configuration of a display device according to the second aspect of the invention described above, since a plurality of unit display areas in each of which a single-color image of each of a plurality of colors is displayed sequentially are arrayed along a first direction and a second direction that intersect with each other, it is possible to prevent the occurrence of a color breakup even when a visual point of an observer moves across a border (or borders) between the unit display areas in either the first direction or the second direction. In the configuration of a display device according to the second aspect of the invention described above, it is preferable that the displaying section should have a liquid crystal device, where the liquid crystal device has an OCB mode liquid crystal that is sealed in a gap formed between a first substrate and a second substrate thereof.
In a specific configuration of a display device according to the second aspect of the invention described above, the plurality of unit display areas make up a rectangular display area as a whole; and the dimension of each of the unit display areas measured along at least one of the first direction and the second direction is not greater than the length of the base of an isosceles triangle that has the vertex angle of 10 degrees and further has the height equal to the length of a short side of the rectangular display area multiplied by six. As a more preferable modified configuration of the above, the dimension of each of the unit display areas measured along at least one of the first direction and the second direction should not be greater than the length of the base of an isosceles triangle that has the vertex angle of 10 degrees and further has the height equal to the length of a short side of the rectangular display area multiplied by three. With either one of these configurations, it is possible to prevent the occurrence of a color breakup due to the movement of a visual point of an observer from one unit display area. In the configuration of a display device according to the second aspect of the invention described above, it is preferable that the number of the unit display areas (and the dimension of each unit display area) should be determined in such a manner that the cycle of single-color image display in the plurality of unit display areas equals a cycle corresponding to a predetermined frame frequency.
In a specific configuration thereof, it is preferable that a display device according to the second aspect of the invention described above should further include an image processing section that generates a separation image signal that specifies the gradation of a white component and the gradations of a plurality of color components from an input image signal that specifies the gradations of a plurality of primary color components for each of a plurality of pixels, wherein the controlling section commands the displaying section to display a single-color image of the white component and a single-color-image of each of the plurality of color components on the basis of the generated separation image signal. With such a preferred configuration, since a single-color image of a white component that is extracted from the display color of a pixel is displayed, it becomes harder for a user who observes the display screen thereof to perceive a color breakup image problem in comparison with a configuration in which single-color images of primary color components only are displayed. Since no color breakup occurs in a white component, considering from the viewpoint of color-breakup reduction only, it is not necessary at all to display a single-color image of a white component in the unit display areas in a sequential manner. Therefore, it is preferable to adopt a configuration in which the controlling section performs control so that a single-color image of each of the plurality of color components should be displayed sequentially in each of the above-mentioned more than one unit display areas whereas a single-color image of the white component should be displayed concurrently in the unit display areas.
In a specific configuration of a display device according to the second aspect of the invention described above, it is preferable that a plurality of white components should be extracted from the display color of a pixel. In such a preferred configuration of a display device according to the second aspect of the invention described above, since the single-color images of a plurality of white components are displayed in split subfields that are distanced from each other or one another on a time axis, in comparison with a configuration in which a single-color image of a white component is displayed in only one subfield, it is possible to achieve a more suppressed gradation (i.e., brightness) for each of the single-color images of the white components. Therefore, it is possible to reduce flickers due to the displaying of a single-color image of a white component.
In the preferred configuration of a display device according to the second aspect of the invention described above, the order of displaying the single-color images of color components and white components is not restrictively specified herein. For example, in a specific configuration of a display device according to the second aspect of the invention described above, it is preferable that the displaying section should display a single-color image of a white component in each of subfields that are allocated before and after a plurality of subfields during which single-color images of the plurality of the color components are displayed. As another example thereof, it is preferable that the displaying section should display a single-color image of a white component in a subfield that is interposed at a gap allocated in a plurality of subfields during which single-color images of the plurality of the color components are displayed. With such a preferred configuration, it is possible to make harder for an observer to perceive a color breakup image problem.
In a specific configuration of a display device according to the second aspect of the invention described above, the displaying section displays a single-color image of at least one white component among the plurality of white components in a subfield that has a sub-field time period longer than that of each of subfields during which the single-color images of the color components are displayed. With the above-described configuration, since a sufficient time period for the displaying of single-color images of color components and single-color images of white components is secured, it is possible to effectively reduce flickers.
In a specific configuration of a display device according to the second aspect of the invention described above, it is preferable that a black image should be displayed, or in other words, display should be suspended, during a predetermined time period allocated in a frame. With such a preferred configuration, a color breakup is reduced because it shortens a time period during which single-color images of color components are displayed. In addition thereto, a moving-picture blur is also reduced because it shortens a time period during which single-color images of color components and single-color images of white components are displayed. In the preferred configuration described above, it is further preferable that a black image should be displayed during the last time period allocated in a frame.
In a specific configuration of a display device according to the second aspect of the invention described above, the image processing section generates the separation image signal in such a manner that the plurality of color components include but not limited to a mixed color component formed as a result of the mixture of two of the plurality of primary color components with each other. With the above-described configuration, in comparison with a configuration in which single-color images of primary color components are displayed in a successive manner, it becomes harder for a user who observes the display screen thereof to perceive the color-breakup image problem. In a further preferred configuration thereof, a mixed-color-component subfield(s) during which a single-color image of a mixed color component is displayed is interposed between primary-color-component subfields during which single-color images of primary color components are displayed.
The invention provides, as the second aspect thereof, a method for driving a display device that has an array of a plurality of unit display areas along a first direction and a second direction that intersect with each other, the driving method including: performing control so that a single-color image of each of a plurality of colors should be displayed sequentially in each of the above-mentioned more than one unit display areas in such a manner that single-color images of the plurality of colors are displayed in each of the unit display areas in a frame. The above-described method for driving a display device offers the same advantageous effects as those offered by a display device according to the second aspect of the invention described above.
In the aforementioned related art described in JP-A-2005-316092, display is suspended in other areas during a time period in which a single-color image is displayed in one area. This means that a time period during which a single-color image is displayed in one area does not overlap a time period during which a single-color image is displayed in another area. Therefore, there is a problem that is not addressed by the above-identified patent publication of JP-A-2005-316092 in that it is practically impossible or at best difficult to ensure a sufficient color brightness (i.e., luminosity) of an output image in the image display area viewed as a whole. In order to address the above-identified problem without any limitation thereto, the invention aims, as a third aspect thereof, to provide a technical solution to the image problem of reduced luminosity (i.e., color brightness) in an output image when the image is displayed in each of the regions of the image display area of a field-sequential display device.
The invention provides, as a third aspect thereof, a display device that includes: a displaying section that has a first unit display area and a second unit display area; and a controlling section that performs control so that a single-color image of each of a plurality of colors should be displayed concurrently in the first unit display area and the second unit display area in each of a plurality of subfields allocated in a frame sequentially in such a manner that a single-color image displayed in the first display area and a single-color image displayed in the second display area correspond to colors different from each other in each subfield. In the configuration of a display device according to the third aspect of the invention described above, since the single-color images of colors different from each other are displayed concurrently in the first unit display area and the second unit display area, in comparison with a configuration in which a single-color image is displayed sequentially in each of the display areas, it is possible to ensure the improved luminosity of an output image easily. In the configuration of a display device according to the third aspect of the invention described above, it is preferable that the displaying section should have a liquid crystal device, where the liquid crystal device has an OCB mode liquid crystal that is sealed in a gap formed between a first substrate and a second substrate thereof.
In a specific configuration thereof, it is preferable that a display device according to the third aspect of the invention described above should further include an image processing section that generates a separation image signal that specifies the gradation of a white component and the gradations of a plurality of color components from an input image signal that specifies the gradations of a plurality of primary color components for each of a plurality of pixels, wherein the controlling section commands the displaying section to display a single-color image of the white component and a single-color-image of each of the plurality of color components (i.e., a primary color component and/or a mixed color component obtained as a result of the mixture of the primary color components) on the basis of the generated separation image signal. With the above-described configuration, it is possible to effectively reduce a color breakup because, in addition to the fact that no color breakup occurs in the single-color images of white components, the gradations of color components, which could cause the color-breakup image problem are decreased as a result of the extraction of the white components.
In a specific configuration thereof, it is preferable that a display device according to the third aspect of the invention described above should further include an image processing section that generates a separation image signal that specifies the gradation of a white component and the gradations of a plurality of color components from an input image signal that specifies the gradations of a plurality of primary color components for each of a plurality of pixels, wherein the controlling section performs control so that, for each of the plurality of color components, a single-color image of one color for the first display area and a single-color image of another color different from the abovementioned one color for the second display area should be displayed in each subfield on the basis of the generated separation image signal whereas, for the white component, a single-color image of the white component should be displayed concurrently in the first unit display area and the second unit display area in the same subfield on the basis of the generated separation image signal. In another specific configuration thereof, it is preferable that a display device according to the third aspect of the invention described above should further include an image processing section that generates a separation image signal that specifies the gradation of a white component and the gradations of a plurality of color components from an input image signal that specifies the gradations of a plurality of primary color components for each of a plurality of pixels, wherein the controlling section performs control so that a single-color image of each of the plurality of colors that include the white component and the plurality of color components should be displayed in each subfield on the basis of the generated separation image signal in such a manner that a single-color image displayed in the first display area and a single-color image displayed in the second display area correspond to colors different from each other.
It is preferable that a plurality of white components should be extracted from the display color of a pixel, though not limited thereto. In such a preferred configuration of a display device according to the third aspect of the invention described above, since the single-color images of a plurality of white components are displayed in split subfields that are distanced from each other or one another on a time axis, in comparison with a configuration in which a single-color image of a white component is displayed in only one subfield, it is possible to achieve a more suppressed gradation (i.e., brightness) for each of the single-color images of the white components. Therefore, it is possible to reduce flickers due to the displaying of a single-color image of a white component.
In a specific configuration of a display device according to the third aspect of the invention described above, the displaying section displays a single-color image of at least one white component among the plurality of white components in a subfield that has a sub-field time period longer than that of each of subfields during which the single-color images of the color components are displayed. With the above-described configuration, since a sufficient time period for the displaying of single-color images of color components and single-color images of white components is secured, it is possible to effectively reduce flickers.
In a preferred configuration of a display device according to the third aspect of the invention described above, it is preferable that a black image should be displayed, or in other words, display should be suspended, during a predetermined time period allocated in a frame. With such a preferred configuration, a color breakup is reduced because it shortens a time period during which single-color images of color components are displayed. In addition thereto, a moving-picture blur is also reduced because it shortens a time period during which single-color images of color components and single-color images of white components are displayed. In the preferred configuration described above, it is further preferable that a black image should be displayed during the last time period allocated in a frame.
In a specific configuration of a display device according to the third aspect of the invention described above, the image processing section generates the separation image signal in such a manner that the plurality of color components include but not limited to a mixed color component formed as a result of the mixture of two of the plurality of primary color components with each other. With the above-described configuration, in comparison with a configuration in which single-color images of primary color components are displayed in a successive manner, it becomes harder for a user who observes the display screen thereof to perceive the color-breakup image problem. In a further preferred configuration thereof, a mixed-color-component subfield(s) during which a single-color image of a mixed color component is displayed is interposed between primary-color-component subfields during which single-color images of primary color components are displayed.
In a specific configuration of a display device according to the third aspect of the invention described above, the displaying section has a rectangular display area that is made up of an array of a plurality of unit display areas along a first direction and a second direction that intersect with each other, the plurality of unit display areas including the first unit display area and the second unit display area; and the dimension of each of the unit display areas measured along at least one of the first direction and the second direction is not greater than the length of the base of an isosceles triangle that has the vertex angle of 10 degrees and further has the height equal to the length of a short side of the rectangular display area multiplied by six. As a more preferable modified configuration of the above, the dimension of each of the unit display areas measured along at least one of the first direction and the second direction should not be greater than the length of the base of an isosceles triangle that has the vertex angle of 10 degrees and further has the height equal to the length of a short side of the rectangular display area multiplied by three. With either one of these configurations, it is possible to prevent the occurrence of a color breakup due to the movement of a visual point of an observer from one unit display area.
The invention provides, as the third aspect thereof, a method for driving a display device that has a first unit display area and a second unit display area, the driving method including: performing control so that a single-color image of each of a plurality of colors should be displayed concurrently in the first unit display area and the second unit display area in each of a plurality of subfields allocated in a frame sequentially in such a manner that a single-color image displayed in the first display area and a single-color image displayed in the second display area correspond to colors different from each other in each subfield. The above-described method for driving a display device offers the same advantageous effects as those offered by a display device according to the third aspect of the invention described above.
When a field-sequential display device is applied to the aforementioned related art described in JP-A-2006-243223 according to which the brightness of a display device is controlled in accordance with the lightness/darkness of a display image, an image problem arises when the brightness of the display device is high. That is, the aforementioned color breakup becomes very conspicuous in such a case. In order to address the above-identified problem without any limitation thereto, the invention aims, as a fourth aspect thereof, to provide a technical solution to the image problem of the aforementioned color breakup that occurs when the brightness of the related-art field sequential display device is controlled in accordance with the lightness/darkness of a display image.
The invention provides, as a fourth aspect thereof, a display device that includes: a displaying section that displays an image; an image processing section that generates a separation image signal that specifies the gradation of a white component and the gradations of a plurality of color components from an input image signal that specifies the gradations of a plurality of primary color components for each of a plurality of pixels; a driving section that commands the displaying section to display a single-color image of each of the white component and the plurality of color components in a plurality of subfields allocated in a frame sequentially; and a brightness controlling section that decreases the brightness of display performed by the displaying section as the number of pixels for which high gradation is specified increases in a display image in a frame. In the configuration of a display device according to the fourth aspect of the invention described above, the brightness controlling section controls display brightness. Therefore, it is possible to achieve high-contrast display with reduced power consumption. In addition thereto, since a single-color image of a white component is displayed in the configuration of a display device according to the fourth aspect of the invention described above, it is possible to reduce a color breakup.
In the configuration of a display device according to the fourth aspect of the invention described above, it is preferable that the image processing section should generate the separation image signal that specifies the gradations of the plurality of color components and the gradations of a plurality of white components; and the driving section should command the displaying section to display a single-color image of each of the plurality of color components and the plurality of white components in the plurality of subfields sequentially in such a manner that subfields corresponding to each of the plurality of the white components are distanced from each other or one another on a time axis. In the configuration of a display device according to the fourth aspect of the invention described above, since the single-color images of the plurality of white components are displayed in split subfields that are distanced from each other or one another on a time axis, in comparison with a configuration in which a single-color image of a white component is displayed in only one subfield, it is possible to achieve a more suppressed gradation (i.e., brightness) for each of the single-color images of the white components. Therefore, it is possible to reduce flickers due to the displaying of a single-color image of a white component.
The invention provides, as another specific configuration of the fourth aspect thereof, a display device that includes: a displaying section that has an array of a plurality of unit display areas; a controlling section that performs control so that a single-color image of each of a plurality of colors should be displayed sequentially in each of the above-mentioned more than one unit display areas in such a manner that single-color images of the plurality of colors are displayed in each of the unit display areas in a frame; and a brightness controlling section that decreases the brightness of display performed by the displaying section as the number of pixels for which high gradation is specified increases in a display image in a frame. With the above-described configuration, it is possible to achieve high-contrast display with reduced power consumption because the brightness controlling section controls display brightness. Since a single-color image of each of a plurality of colors is displayed sequentially in each of the unit display areas, it is possible to prevent the occurrence of a color breakup even when a visual point of an observer moves across a border (or borders) between the unit display areas.
The invention provides, as another specific configuration of the fourth aspect thereof, a display device that includes: a displaying section that has an array of a plurality of unit display areas including a first unit display area and a second unit display area; a driving section that performs control so that a single-color image of each of a plurality of colors should be displayed concurrently in the first unit display area and the second unit display area in each of a plurality of subfields allocated in a frame sequentially in such a manner that a single-color image displayed in the first display area and a single-color image displayed in the second display area correspond to colors different from each other in each subfield; and a brightness controlling section that decreases the brightness of display performed by the displaying section as the number of pixels for which high gradation is specified increases in a display image in a frame. With the above-described configuration, it is possible to achieve high-contrast display with reduced power consumption because the brightness controlling section controls display brightness. Moreover, since the single-color images of colors different from each other are displayed concurrently in the first unit display area and the second unit display area, in comparison with a configuration in which a single-color image is displayed sequentially in each of the display areas, it is possible to ensure the improved luminosity of an output image easily and also to reduce the aforementioned color breakup image problem in an effective manner.
Note that, in the configuration of a display device having the above-described brightness controlling section, judgment-target pixels that are used when making a judgment as to whether the brightness controlling section should decrease display brightness or not may be all pixels of a display image or, alternatively, some pixels thereof that are arrayed in a certain area. Or, in other words, all pixels of a display image may be subjected to a judgment as to whether high gradation is specified for them or not; or alternatively, some thereof that are arrayed in a predetermined area only may be used for such a judgment. It is preferable that the displaying section according to the first, second, and third modes thereof described above should have a liquid crystal device, where the liquid crystal device has an OCB mode liquid crystal that is sealed in a gap formed between a first substrate and a second substrate thereof.
In the configuration of a display device according to the above-described specific examples of the fourth aspect of the invention, it is preferable that the brightness controlling section should control the brightness of display for each of the plurality of unit display areas in such a manner that, as the number of pixels for which high gradation is specified increases in each of the unit display areas, the brightness of display in the unit display area is decreased. With such a configuration, advantageously, it is possible to satisfy both of a reduction in power consumption and enhancement in contrast in a compatible manner depending on the content of an image that is displayed in each of the unit display areas.
In a specific configuration of a display device according to the fourth aspect of the invention described above, the displaying section has a rectangular display area that is made up of an array of a plurality of unit display areas along a first direction and a second direction that intersect with each other; and the dimension of each of the unit display areas measured along at least one of the first direction and the second direction is not greater than the length of the base of an isosceles triangle that has the vertex angle of 10 degrees and further has the height equal to the length of a short side of the rectangular display area multiplied by six. As a more preferable modified configuration of the above, the dimension of each of the unit display areas measured along at least one of the first direction and the second direction should not be greater than the length of the base of an isosceles triangle that has the vertex angle of 10 degrees and further has the height equal to the length of a short side of the rectangular display area multiplied by three. With either one of these configurations, it is possible to prevent the occurrence of a color breakup due to the movement of a visual point of an observer from one unit display area.
Pixels of each of the above-described aspects of the invention are embodied as, for example, electro-optical elements (i.e., electro-optic devices), which change their optical characteristics such as a transmission factor and brightness, though not limited thereto, as a result of a certain electric action, which includes but not limited to the application of an electric field thereto or the supply of an electric current thereto. A typical example of such an electro-optical element is a liquid crystal element, which has liquid crystal sealed between a pair of electrodes thereof. A display device according to any of the above-described aspects of the invention can be applied to a variety of electronic apparatuses.
The invention will be described with reference to the accompanying drawings, wherein like numbers reference like elements.
With reference to the accompanying drawings, exemplary embodiments of the invention are explained below. In the following description, unless otherwise specified, it should be understood that each of the constituent elements of a display device according to an exemplary embodiment of the invention which appears more than one time in this specification has the same operation and function as long as the same reference numeral are consistently assigned thereto.
The illumination device 10 is provided at the back of the liquid crystal device 20. The illumination device 10 illuminates the liquid crystal device 20. The illumination device 10 has a plurality of light-emitting elements 12 and a light-guiding plate 14, the latter of which is configured as an optical waveguide board. The plurality of light-emitting elements 12 is made up of a red light-emitting element 12R, a green light-emitting element 12G, and a blue light-emitting element 12B, which correspond to three primary colors of R (red), G (green), and B (blue), respectively. The optical waveguide board 14 guides light that has been emitted thereto from each of the red light-emitting element 12R, the green light-emitting element 12G, and the blue light-emitting element 12B toward the liquid crystal device 20. The red light-emitting element 12R emits red light, that is, light having a wavelength that corresponds to a red color component. The green light-emitting element 12G outputs green light, that is, light having a wavelength that corresponds to a green color component. The blue light-emitting element 12R outputs blue light, which is light having a wavelength that corresponds to a blue color component. In actual implementation of the invention, a light-reflecting plate and a light-scattering plate are adhered to the light-guiding plate 14 of the image display device 100. In order to simplify explanation, however, these light-reflecting plate and light-scattering plate are omitted from the drawing.
The liquid crystal device 20 has a pair of a first substrate 21 and a second substrate 22. The first substrate 21 and the second substrate 22 are provided so as to face each other. Liquid crystal is sealed in a gap formed between the first substrate 21 and the second substrate 22 that are provided opposite to each other. It should be noted that the liquid crystal is not illustrated in the drawing. It is preferable to adopt a quick-responsive liquid crystal that operates in an OCB (Optically Compensated Bend) mode, though not limited thereto. A plurality of pixel electrodes 24 is arrayed in a matrix pattern on a liquid-crystal-side surface of the second substrate 22. Each of the plurality of pixel electrode 24 corresponds to a pixel of an image. The orientation, that is, alignment, of the liquid crystal that is sandwiched between the first substrate 21 and the second substrate 22 changes in accordance with an electric potential difference (i.e., voltage difference) between each of the pixel electrodes 24 and a counter electrode, the latter of which is provided on a liquid-crystal-side surface of the first substrate 21. Note that the counter electrode is not illustrated in the drawing. With such a configuration, the ratio of the amount of light that is transmitted to the monitoring side of the image display device 100, which is an image display side thereof, to the entire amount of light that is emitted from the illumination device is controlled on a pixel-by-pixel basis. In other words, the transmission factor of each of the plurality of pixel electrodes 24 is individually controlled.
The illumination device 10 and the liquid crystal device 20 function in cooperation with each other so as to display a color image.
The image-processing unit 40 illustrated in
As illustrated in
A non-limiting example of the inputted gradation values of three primary color components, that is, the gradation G1_R of the R component, the gradation G1_G of the G component, and the gradation G1_B of the B component, which are individually specified by the input image signal S1, is illustrated in each of the left “gradation bar-chart” portion (a) of
In the first example of a display color that is illustrated in the left portion (a) of
In a second example of a display color that is illustrated in the left portion (a) of
In the second example of a display color that is illustrated in the left gradation graph of
The controlling unit 50 illustrated in
As illustrated in
The liquid-crystal-device driving circuit 54 controls the transmission factor of liquid crystal corresponding to each of the pixel electrodes 24 in each of the sub-fields SF in accordance with a gradation value specified by a color separation image signal S2 for each of the pixels. That is, the liquid-crystal-device driving circuit 54 supplies an electric potential (i.e., a voltage) that is in accordance with a gradation value specified by a color separation image signal S2 for each of the pixels (hereafter referred to as “data electric potential”) at the beginning of each of the sub-fields SF to each of the pixel electrodes 24 corresponding to the pixel. In each of the sub-fields SF during which the illumination device 10 emits light that corresponds to any one of a plurality of (i.e., three) primary color components or any one of a plurality of white components, a data electric potential is set in accordance with a gradation value specified by a color separation image signal S2 for the above-mentioned (corresponding) one of the plurality of primary color components or the above-mentioned one of the plurality of white components.
To be more specific, in the second sub-field SF2 during which red light is irradiated onto the liquid crystal device 20, the liquid-crystal-device driving circuit 54 supplies a data electric potential that corresponds to the gradation G2_R of the R component of each pixel to the corresponding one of the pixel electrodes 24. In like manner, in the third sub-field SF3 during which green light is irradiated onto the liquid crystal device 20, the liquid-crystal-device driving circuit 54 supplies a data electric potential that corresponds to the gradation G2_G of the G component to each pixel electrode 24, whereas, in the fourth sub-field SF4 during which blue light is irradiated onto the liquid crystal device 20, the liquid-crystal-device driving circuit 54 supplies a data electric potential that corresponds to the gradation G2_B of the B component to each pixel electrode 24. On the other hand, in the first sub-field SF1 during which white light is irradiated onto the liquid crystal device 20, the liquid-crystal-device driving circuit 54 supplies a data electric potential that corresponds to the gradation G2_W1 of the W1 component to each pixel electrode 24. In like manner, in the fifth sub-field SF5 during which white light is irradiated onto the liquid crystal device 20, the liquid-crystal-device driving circuit 54 supplies a data electric potential that corresponds to the gradation G2_W2 of the W2 component to each pixel electrode 24. In the sixth sub-field SF6 during which the illumination device 10 switches light off so that no light should be irradiated onto the liquid crystal device 20, the liquid-crystal-device driving circuit 54 supplies, to each pixel electrode 24, a data electric potential that reduces the transmission factor of liquid crystal to the minimum value (e.g., zero). As a result of data-electric-potential control that is performed by the liquid-crystal-device driving circuit 54 as described above, a single-color image corresponding to each component, which is either one of a plurality of primary color components (R, G, and B) or one of a plurality of white components (W1 and W2), is displayed in the corresponding one of the sub-fields SF. Therefore, as illustrated in
As explained above, in the configuration of the image display device 100 according to the present embodiment of the invention, single-color images that correspond to white components (W1 and W2) as well as single-color images that correspond to primary color components (R, G, and B) are displayed. Therefore, in comparison with a case where single-color images that correspond to primary color components (R, G, and B) only are displayed, which means that no single-color images that correspond to white components (W1 and W2) are displayed, the image display device 100 according to the present embodiment of the invention makes it possible to achieve a greater reduction in the aforementioned color-breakup phenomenon in an image visually perceived by a user who observes the display screen thereof. A detailed explanation as to how the image display device 100 according to the present embodiment of the invention reduces the occurrence of the color-breakup image problem is given below.
As illustrated in
As illustrated in Each of
The color breakup width CA increases as a time period during which single-color images of primary color components are displayed becomes longer. In comparison with the related-art configuration illustrated in
In addition to the above-described color breakup, since the actual movement of the subject image P differs from the movement of a visual point of a user, the user perceives a blurred outline of the moving subject image P. In the following description, this obscure contour phenomenon is referred to as a “moving-picture blur”. The width CB shown in each of
In the aforementioned related art described in JP-A-2002-169515 according to which a single-color image of a white component that is extracted from a display color specified by an input image signal S1 is displayed in only one sub-field SF unlike the present embodiment of the invention, the gradation of the single-color image of the white component is significantly higher than that of the single-color images of other color components especially if the display color of an image is close to white. For this reason, in the aforementioned related art described in JP-A-2002-169515, an observer perceives conspicuous flickers because single-color images of primary color components each having a low gradation and a single-color image of a white component having a high gradation are displayed in a field-sequential manner. In contrast, in the configuration of the image display device 100 according to the present embodiment of the invention, as has already been explained earlier, if the combined gradation of the pre-separation “white” component (corresponding to W1+W2), or in other words, the minimum value Gmin, contained in a display color specified by the input image signal S1 is greater than the threshold value TH1, the pre-separation white component is split into the first actual white component W1 and the second actual white component W2 at the boundary of the threshold value TH1 in the white extraction process. Then, these split white components are respectively displayed in separate sub-fields SF that are “time-isolated” from each other; specifically, the first white component W1 is displayed in the first sub-field SF1 whereas the second white component W2 is displayed in the fifth sub-field SF5 in the illustrated configuration thereof according to the present embodiment of the invention. Therefore, it is possible to ensure that the gradation (i.e., brightness, or in other words, luminance) of a single-color image of each split white component never exceeds the threshold value TH1. This means that a difference between the gradations of primary-color-component single-color images and the gradations of white-component single-color images is made smaller. Therefore, even in a case where an image having a display color close to white is displayed, the image display device 100 according to the present embodiment of the invention can make flickers substantially less conspicuous in comparison with the aforementioned related art described in JP-A-2002-169515, which is a non-limiting advantage offered by the present embodiment of the invention.
In addition to the above-described factor, how much a user perceives flickers depends also on the cycles of emission of light to the monitoring side (i.e., observer's side) and on the time percentage of the emission of light to the monitoring side in the entire time length of one frame F. In the following description, the frequency of emission of light to the monitoring side is referred to as a “light-emission frequency”, whereas the ratio of the time length of the emission of light to the monitoring side to the entire time length of one frame F is referred to as a “light-emission duty”. As a light-emission frequency and/or a light-emission duty increase, flickers decrease. If the black-image subfield SF6 is inserted in each frame F in order to provide a technical solution to the problem of a motion-picture blur explained above while referring to
Next, an exemplary embodiment A2 of the invention is explained below. In the foregoing exemplary embodiment A1 of the invention, it is explained that a display color specified by the input image signal S1 is separated into a plurality of primary color components and a plurality of white components. In contrast, the image-processing unit 40 of the image display device 100 according to the present embodiment of the invention generates a color separation image signal S2 as a result of the separation of a display color specified by the input image signal S1 into a complementary color component that is formed as a result of the mixture of two primary color components, a plurality of white components, and a primary color component that remains after the mixture of two primary color components. In the following description, the above-described complementary color component that is formed as a result of the mixture of two primary color components is referred to as a “mixed color component”.
In addition to the gradation G2_W1 of the first white component W1 and the gradation G2_W2 of the second white component W2 as well as the gradation G2_R of the R component, the gradation G2_G of the G component, and the gradation G2_B of the B component, which are the same as those specified by the color separation image signal S2 generated by the image-processing unit 40 according to the foregoing embodiment A1 of the invention, the color separation image signal S2 generated by the image-processing unit 40 according to the present embodiment A2 of the invention further specifies the gradation G2_Y of a yellow (Y) component, the gradation G2_C of a cyan (C) component, and the gradation G2_M of a magenta (M) component. Hereafter, the yellow component, the cyan component, and the magenta component may be referred to as a “Y component”, a “C component”, and an “M component”, respectively. The yellow component is the mixed color component obtained as a result of the mixture of the red component and the green component. The cyan component is the mixed color component obtained as a result of the mixture of the green component and the blue component. The magenta component is the mixed color component obtained as a result of the mixture of the blue component and the red component.
A non-limiting example of the inputted gradation values of three primary color components, that is, the gradation G1_R of the R component, the gradation G1_G of the G component, and the gradation G1_B of the B component, which are individually specified by the input image signal S1, is illustrated in each of the left portion (a) of
Then, the image-processing unit 40 sets a gradation value for a mixed color component that is formed as a result of the mixture of two primary color components among all three thereof, where the above-mentioned two primary color components are selected so as not to include the remaining one thereof that has the minimum inputted gradation value Gmin. For example, in a case where the gradation G1_R of the R component is identified as the minimum value Gmin, an example of which is illustrated in the left portion (a) of
On the other hand, in a second example of a display color that is illustrated in the left portion (a) of
Then, as done in the foregoing first example illustrated in
As illustrated in
The mixed-color subfields SF during which single-color images of mixed color components are displayed and the primary-color subfields SF during which single-color images of primary color components are displayed are arrayed in an alternate order. Specifically, as illustrated in
The single-color images of a plurality of white components, that is, the first white component W1 and the second white component W2 in this embodiment of the invention, are displayed in the first sub-field SF1 that is allocated immediately before the color-component subfields SF2 through SF7 during which the single-color images of the primary color components and the mixed color components are displayed and in the eighth sub-field SF8 that is allocated immediately thereafter. In the last sub-field SF9 of each frame F, as done in the foregoing exemplary embodiment A1, a black image K is displayed in all of pixels. In other words, display is suspended in the last sub-field SF9.
The same advantageous effects as those offered by the configuration of the image display device 100 according to the foregoing exemplary embodiment A1 of the invention are offered with the configuration of the image display device 100 according to the present embodiment A2 of the invention. The aforementioned problem of a color breakup is conspicuous especially if the single-color images of a plurality of primary color components are displayed successively on a time axis. In the sub-field configuration of the image display device 100 according to the present embodiment A2 of the invention, as has already been explained above, a mixed-color subfield SF during which the single-color image of a mixed color component is displayed is interposed each between “otherwise adjacent” two primary-color subfields SF during each of which the single-color image of a primary color component is displayed. Therefore, in comparison with the sub-field configuration of the image display device 100 according to the foregoing exemplary embodiment A1 of the invention in which the primary-color subfields SF during each of which the single-color image of a primary color component is displayed are arrayed actually adjacent to each other on a time axis (i.e., follows one after another in a successive manner), it is possible to achieve a further greater reduction in the aforementioned color-breakup phenomenon in an image visually perceived by a user who observes the display screen thereof.
In each of the foregoing exemplary embodiments A1 and A2 of the invention, in order to simplify explanation, it is assumed that the first white component W1 and the second white component W2, that is, two white components only, are extracted from an inputted display color. However, the scope of the invention is not limited to such an exemplary configuration. That is, the number of white components split after the extraction (i.e., separation) thereof may be arbitrary modified. For example, three white components W1, W2, and W3 may be extracted from a display color specified by an input image signal S1. Specifically, if an inputted image signal S1 specifies an inputted display color that is illustrated in the left portion (a) of
As illustrated in
As shown in
The illumination device 10 illustrated in
Each of the area illumination units B of the illumination device 10 has three light-emitting elements 12 and a light-guiding plate 14, the latter of which is configured as an optical waveguide board. These three light-emitting elements 12 are made up of a red light-emitting element 12R, a green light-emitting element 12G, and a blue light-emitting element 12B, which correspond to three primary colors of R, G, and B, respectively. The optical waveguide board 14 guides light that has been emitted thereto from each of the red light-emitting element 12R, the green light-emitting element 12G, and the blue light-emitting element 12B toward the unit display areas A of the liquid crystal device 20. The red light-emitting element 12R emits red light, that is, light having a wavelength that corresponds to a red color component. The green light-emitting element 12G outputs green light, that is, light having a wavelength that corresponds to a green color component. The blue light-emitting element 12R outputs blue light, which is light having a wavelength that corresponds to a blue color component. In actual implementation of the invention, a light-reflecting plate and a light-scattering plate are adhered to the light-guiding plate 14 of the image display device 100. In order to simplify explanation, however, these light-reflecting plate and light-scattering plate are omitted from the drawing.
The illumination device 10 and the liquid crystal device 20 function in cooperation with each other so as to display a color image.
In the illustrated embodiment of the invention, each frame F is time-divided into three sub-fields SF1, SF2, and SF3, which correspond to three primary color components without any redundancy nor duplication among them. The illumination device 10 and the liquid crystal device 20 sequentially display the single-color image of a corresponding primary color component in each of these three sub-fields SF1, SF2, and SF3 that are allocated in the frame F. That is, the illumination device 10 and the liquid crystal device 20 perform so-called field sequential display. A user who observes the display screen of the image display device 100 views these single-color images displayed in the respective sub-fields SF in a sequential manner. As a result thereof, they (i.e., the user) visually perceive a color image that is formed as a mixture of these individual single color components. For this reason, it is not necessary to provide any coloration layer such as a color filter or the like in the configuration of the liquid crystal device 20.
The controlling unit 50 illustrated in
As illustrated in
To be more specific, for example, the liquid-crystal-device driving circuit 54 supplies, to each of the pixel electrodes 24, a data electric potential that is in accordance with a gradation value G1_R specified by an input image signal S1 for the R component of each pixel in the writing time period PW of the first sub-field SF1 during which a single-color image corresponding to the R component is displayed. This operation is called as “R writing”. In like manner, the liquid-crystal-device driving circuit 54 supplies, to each of the pixel electrodes 24, a data electric potential that is in accordance with a gradation value G1_G specified by the input image signal S1 for the G component of each pixel in the writing time period PW of the second sub-field SF2 during which a single-color image corresponding to the G component is displayed. The liquid-crystal-device driving circuit 54 supplies, to each of the pixel electrodes 24, a data electric potential that is in accordance with a gradation value G1_B specified by the input image signal S1 for the B component of each pixel in the writing time period PW of the third sub-field SF3 during which a single-color image corresponding to the B component is displayed. These operations are called as “G writing” and “B writing”, respectively. The transmission factors of liquid crystal that are set during the display time periods P1, P2, and P3 are determined in accordance with the respective data electric potentials that are set for the pixel electrodes 24 during the respective writing time periods PW.
The illumination-device driving circuit 52 illustrated in
A more specific explanation of the above is given now while referring to
Therefore, in each of the display time periods P1, P2, and P3 of each of the sub-fields SF, the single-color image of the corresponding one of three primary color components is displayed in two of the above-described six unit display areas A one of which is not adjacent to the other in the X direction nor in the Y direction in such a manner that the above-mentioned two of the unit display areas A switch over (i.e., change over) from one display time period P to another display time period P in a sequential manner. Specifically, for example, as illustrated in
In the configuration of the image display device 100 according to the present embodiment of the invention, as explained above, single-color images are displayed in the unit display areas A during the sub-fields SF in a sequential manner. With such a configuration, it is possible to effectively prevent the occurrence of the aforementioned color-breakup image problem that is attributable to a difference between the actual movement of a subject image P and the movement of a visual point of a user. For example, it is assumed here that a visual point of a user who observes the display screen thereof moves to the left during the display time period P2 in which a single-color image is displayed in the unit display area A1b. At this point in time, the display of a single-color image in the unit display area A1a, which is the “destination” of the movement of the observer's eyes in the leftward direction from the unit display area A1b, has already been finished. For this reason, s/he (i.e., the observer) perceives no color breakup image problem due to the movement of his/her visual point. As another example, it is assumed here that a visual point of a user who observes the display screen thereof moves downward during the display time period P2 in which a single-color image is displayed in the unit display area A1b. At this point in time, the display of a single-color image in the unit display area A2b, which is the destination of the movement of the user's eyes in the downward direction from the unit display area A1b, has already been finished. For this reason, they (i.e., the user) perceive no color breakup image problem due to the movement of their visual point.
In the foregoing exemplary embodiment B1 of the invention, it is explained that the single-color images of three primary color components are sequentially displayed on the basis of an input image signal S1. In contrast, in the configuration of the image display device 100 according to the present embodiment of the invention, as done in the foregoing exemplary embodiment A1 of the invention, a display color specified by the input image signal S1 is separated into a plurality of primary-color components and a plurality of white components.
The illumination-device driving circuit 52 according to the present embodiment of the invention commands all three of red, green, and blue light-emitting elements 12R, 12G, and 12B provided in each of the area illumination units B to emit light during each of the first, second, and third display time periods of P1, P2, and P3 in each of the first sub-field SF1 and the fifth sub-field SF5. As a result of such light-emission control that is performed by the illumination-device driving circuit 52, white light is irradiated onto the liquid crystal device 20 during each of the first, second, and third display time periods of P1, P2, and P3 in each of the first sub-field SF1 and the fifth sub-field SF5. On the other hand, the illumination-device driving circuit 52 commands all three of the red, green, and blue light-emitting elements 12R, 12G, and 12B provided in each of the area illumination units B not to emit light during the sixth sub-field SF6. Therefore, no light is irradiated onto the liquid crystal device 20 in the sixth sub-field SF6.
As done in the foregoing exemplary embodiment B1 of the invention, the liquid-crystal-device driving circuit 54 according to the present embodiment of the invention supplies a data electric potential that is in accordance with a gradation value specified by a color separation image signal S2 for each of the pixels during the writing time period PW of each of the sub-fields SF to each of the pixel electrodes 24 corresponding to the pixel. More specifically, in the writing time period PW of each of the second, third and fourth sub-fields SF2, SF3, and SF4, the liquid-crystal-device driving circuit 54 supplies, to each of the pixel electrodes 24, a data electric potential that is in accordance with the gradation G2_R of the R component, the gradation G2_G of the G component, and the gradation G2_B of the B component that are specified in the color separation image signal S2 as the separated gradation values of three primary color components. On the other hand, in the writing time period PW of the first sub-field SF1, which is one sub-field during which white light is irradiated onto the liquid crystal device 20, the liquid-crystal-device driving circuit 54 supplies a data electric potential that corresponds to the gradation G2_W1 of the W1 component to each pixel electrode 24. This operation is called as “W1 writing”. In like manner, in the writing time period PW of the fifth sub-field SF5, which is another sub-field during which white light is irradiated onto the liquid crystal device 20, the liquid-crystal-device driving circuit 54 supplies a data electric potential that corresponds to the gradation G2_W2 of the W2 component to each pixel electrode 24. This operation is called as “W2 writing”. In the sixth sub-field SF6 during which the illumination device 10 switches light off so that no light should be irradiated onto the liquid crystal device 20, the liquid-crystal-device driving circuit 54 supplies, to each pixel electrode 24, a data electric potential that reduces the transmission factor of liquid crystal to the minimum value (e.g., zero). This operation is called as “K writing”.
As a result of data-electric-potential control that is performed by the liquid-crystal-device driving circuit 54 as described above, a single-color image corresponding to each of a plurality of primary color components R, G, and B is displayed in the unit display areas A (i.e., two unit display areas A during each display time period P) in a sequential manner when viewed as a whole during the corresponding one of the second, third, and fourth sub-fields SF2, SF3, and SF4 as displayed so during the corresponding one of the first, second, and third sub-fields SF1, SF2, and SF3 in the foregoing exemplary embodiment B1 of the invention. On the other hand, a single-color image corresponding to each of a plurality of white components W1 and W2 is displayed in all of the unit display areas A in a non-sequential manner, that is, at the same time, during the corresponding one of the first sub-field SF1 and the fifth sub-field SF5. For this reason, the length of time period during which a single-color image corresponding to each of the first white component W1 and the second white component W2 is displayed in all of the unit display areas A at the same time during the corresponding one of the first sub-field SF1 (W1) and the fifth sub-field SF5 (W2) is greater than the length of time period during which a single-color image corresponding to each of three primary color components R, G, and B is displayed in the unit display areas A in a sequential manner when viewed as a whole during the corresponding one of the second, third, and fourth sub-fields SF2 (R), SF3 (G), and SF4 (B) because the former is displayed during all three of the display time periods P1, P2, and P3 whereas the latter is displayed during only one of these three display time periods P1, P2, and P3. It should be particularly noted that the sub-fields SF2, SF3, and SF4 during which single-color images that correspond to three primary color components of R, G, and B, respectively are displayed are interposed between the sub-field SF1 during which a single-color image that corresponds to the first white component W1 is displayed and the sub-field SF5 during which a single-color image that corresponds to the second white component W2 is displayed. This means that, because of the presence of a block of the R-component subfield SF2, the G-component subfield SF3, and the B-component subfield SF4 that is interposed therebetween, the W1-component subfield SF1 and the W2-component subfield SF5 are separated (i.e., distanced) from each other on a time axis. In the last sub-field SF6, a black image K is displayed in each pixel.
As explained above, in the configuration of the image display device 100 according to the present embodiment of the invention, since the first white component W1 and the second white component W2 are extracted out of a display color of each pixel, the brightness level of a single-color image of each of three primary color components of R, G, and B becomes lower in comparison with that of the foregoing exemplary embodiment B1 of the invention. No color breakup occurs in the single-color image of a white component. Therefore, in comparison with the configuration of the image display device 100 according to the foregoing exemplary embodiment B1 of the invention in which single-color images that correspond to primary color components R, G, and B only are displayed, which means that no single-color images that correspond to white components W1 and W2 are displayed, the image display device 100 according to the present embodiment of the invention makes it possible to achieve a greater reduction in the aforementioned color-breakup phenomenon in an image visually perceived by a user who observes the display screen thereof. In addition, in the configuration of the image display device 100 according to the present embodiment of the invention, the non-image-display subfield SF6 during which a black K image is displayed is allocated in each frame F in addition to the sub-fields SF2, SF3, and SF4 during which single-color images that correspond to three primary color components of R, G, and B respectively are displayed and the sub-fields SF1 and SF5 during which single-color images that correspond to the first white component W1 and the second white component W2 respectively are displayed. Therefore, in comparison with the configuration of the image display device 100 according to the foregoing exemplary embodiment B1 of the invention in which no black image K is displayed, the image display device 100 according to the present embodiment of the invention makes it possible to achieve a greater reduction in the aforementioned moving-picture blur phenomenon, that is, the visual perception of the blurred outline of a moving subject image P.
Moreover, in the configuration of the image display device 100 according to the present embodiment of the invention, as has already been explained earlier, if the combined gradation of the pre-separation “white” component (corresponding to W1+W2), or in other words, the minimum value Gmin, contained in a display color specified by the input image signal S1 is greater than the threshold value TH1, the pre-separation white component is split into the first actual white component W1 and the second actual white component W2 at the boundary of the threshold value TH1 in the white extraction process. Then, these split white components are respectively displayed in separate sub-fields SF that are “time-isolated” from each other; specifically, the first white component W1 is displayed in the first sub-field SF1 whereas the second white component W2 is displayed in the fifth sub-field SF5 in the illustrated configuration thereof according to the present embodiment of the invention. This means that a difference between the gradations of primary-color-component single-color images and the gradations of white-component single-color images is made smaller. Therefore, in comparison with, for example, the configuration of the aforementioned related art described in JP-A-2002-169515 according to which a single-color image of a white component that is extracted from a display color specified by an input image signal S1 is displayed in only one sub-field SF, the image display device 100 according to the present embodiment of the invention has an advantage in that it can reduce flickers, which is the same non-limiting advantageous effects of the invention as those offered by the image display device 100 according to the foregoing exemplary embodiment A1 of the invention. Furthermore, as is the case with the image display device 100 according to the foregoing exemplary embodiment A1 of the invention, in the configuration of the image display device 100 according to the present embodiment of the invention, it is possible to offset an increase in flickers due to the insertion of a black-image display by a decrease therein achieved by the time-separated display of split white components.
In the above-described example of the configuration of the image display device 100 according to the present embodiment B2 of the invention, a single-color image that corresponds to the first white component W1 is displayed during each of the first, second, and third display time periods of P1, P2, and P3 of the first sub-field SF1, whereas a single-color image that corresponds to the second white component W2 is displayed during each of the first, second, and third display time periods of P1, P2, and P3 of the fifth sub-field SF5. However, the scope of the invention is not limited to such an exemplary configuration. For example, as illustrated in
It should be noted that the order of displaying single-color images in the unit display areas A is not restrictively specified in the above-described exemplary embodiments B1 and B2 of the invention. That is, the display order thereof may be changed arbitrarily. Although it is explained in the foregoing exemplary embodiment B1 of the invention that a single-color image of the same color component (in the illustrated example, the same primary-color component) is displayed throughout the plurality of unit display areas A in each sub-field SF, a single-color image of different color components may be displayed throughout the plurality of unit display areas A (in a sequential manner) in each sub-field SF as shown in a non-limiting modification example illustrated in
As shown in
The illumination device 10 illustrated in
Each of the area illumination units B of the illumination device 10 has three light-emitting elements 12 and a light-guiding plate 14, the latter of which is configured as an optical waveguide board. These three light-emitting elements 12 are made up of a red light-emitting element 12R, a green light-emitting element 12G, and a blue light-emitting element 12B, which correspond to three primary colors of R, G, and B, respectively. The optical waveguide board 14 guides light that has been emitted thereto from each of the red light-emitting element 12R, the green light-emitting element 12G, and the blue light-emitting element 12B toward the unit display areas A of the liquid crystal device 20. The red light-emitting element 12R emits red light, that is, light having a wavelength that corresponds to a red color component. The green light-emitting element 12G outputs green light, that is, light having a wavelength that corresponds to a green color component. The blue light-emitting element 12R outputs blue light, which is light having a wavelength that corresponds to a blue color component. In actual implementation of the invention, a light-reflecting plate and a light-scattering plate are adhered to the light-guiding plate 14 of the image display device 100. In order to simplify explanation, however, these light-reflecting plate and light-scattering plate are omitted from the drawing.
The illumination device 10 and the liquid crystal device 20 function in cooperation with each other so as to display a color image.
As illustrated in
The controlling unit 50 illustrated in
The controlling unit 50 controls the operations of the illumination device 10 and the liquid crystal device 20 on the basis of the input image signal S1 so that single-color images that correspond to primary color components should be sequentially displayed in the unit display areas A that make up the image display area 25. More specifically, during a set of the sub-fields SF1, SF2, and SF3 that constitutes one frame F, the controlling unit 50 commands single-color images of three primary color components to be displayed sequentially in the plurality of unit display areas A that make up the image display area 25. That is, as illustrated in
In addition, as understood from the above explanation and the drawing, the controlling unit 50 commands single-color images to be displayed in a parallel manner in all unit display areas A in such a manner that the display color of a single-color image that appears in the unit display areas A that belong to one group C differs from the display color of another single-color image that appears in the unit display areas A that belong to another group C in each sub-field SF. Therefore, one unit display area A that displays a single-color image of a certain color component R, G, or B is not adjacent to another unit display area A that displays a single-color image of the same color component R, G, or B as viewed along the X direction nor along the Y direction. If an attention is focused on the sub-fields SF1, SF2, and SF3, such a non-adjacent arrangement can be paraphrased as a sub-field configuration in which, the sequential order of the display colors of single-color images that appear in the unit display areas A that belong to one group C differs from the sequential order of the display colors of single-color images that appear in the unit display areas A that belong to another group C.
For example, as illustrated in
The liquid-crystal-device driving circuit 54 sets the electric potential (i.e., voltage) of each of the pixel electrodes 24, which are arrayed in each of the unit display areas A, at a data electric potential that is in accordance with a gradation value specified by an input image signal S1 for a certain primary color component R, G, or B that should be displayed in the unit display areas A that belong to a certain group in the writing time period PW of each sub-field SF that is allocated at the headmost timeslot portion thereof. For example, in the writing time period PW of the first sub-field SF1, the liquid-crystal-device driving circuit 54 supplies, to each of the pixel electrodes 24 that are arrayed in each of the first-group unit display areas A that belong to the group C1, a data electric potential that is in accordance with a gradation value G1_B specified by an input image signal S1 for the B component. In the same writing time period PW of the first sub-field SF1, the liquid-crystal-device driving circuit 54 supplies, to each of the pixel electrodes 24 that are arrayed in each of the second-group unit display areas A that belong to the group C2, a data electric potential that is in accordance with a gradation value G1_R specified by the input image signal S1 for the R component, whereas the liquid-crystal-device driving circuit 54 supplies, to each of the pixel electrodes 24 that are arrayed in each of the third-group unit display areas A that belong to the group C3, a data electric potential that is in accordance with a gradation value G1_G specified by the input image signal S1 for the G component. In like manner, in the writing time period PW of the second sub-field SF2, the liquid-crystal-device driving circuit 54 supplies, to each of the pixel electrodes 24 that are arrayed in each of the first-group unit display areas A that belong to the group C1, a data electric potential that is in accordance with a gradation value G1_R specified by the input image signal S1 for the R component. In the same writing time period PW of the second sub-field SF2, the liquid-crystal-device driving circuit 54 supplies, to each of the pixel electrodes 24 that are arrayed in each of the second-group unit display areas A that belong to the group C2, a data electric potential that is in accordance with a gradation value G1_G specified by the input image signal S1 for the G component, whereas the liquid-crystal-device driving circuit 54 supplies, to each of the pixel electrodes 24 that are arrayed in each of the third-group unit display areas A that belong to the group C3, a data electric potential that is in accordance with a gradation value G1_B specified by the input image signal S1 for the B component. In the writing time period PW of the third sub-field SF3, the liquid-crystal-device driving circuit 54 supplies, to each of the pixel electrodes 24 that are arrayed in each of the first-group unit display areas A that belong to the group C1, a data electric potential that is in accordance with a gradation value G1_G specified by an input image signal S1 for the G component. In the same writing time period PW of the third sub-field SF3, the liquid-crystal-device driving circuit 54 supplies, to each of the pixel electrodes 24 that are arrayed in each of the second-group unit display areas A that belong to the group C2, a data electric potential that is in accordance with a gradation value G1_B specified by the input image signal S1 for the B component, whereas the liquid-crystal-device driving circuit 54 supplies, to each of the pixel electrodes 24 that are arrayed in each of the third-group unit display areas A that belong to the group C3, a data electric potential that is in accordance with a gradation value G1_R specified by the input image signal S1 for the R component. The transmission factor of liquid crystal, that is, the gradation of a single-color image for each pixel, that is set during each of the sub-fields SF1, SF2, and SF3 is determined in accordance with the data electric potentials that are set for the pixel electrodes 24 during the writing time period PW thereof.
The illumination-device driving circuit 52 illustrated in
Since the controlling unit 50 controls the operations of the illumination device 10 and the liquid crystal device 20 as explained above, single-color images of color components different from one another are displayed in a parallel manner in the unit display areas A that belong to the first, second, and third groups C1, C2, and C3 respectively in each sub-field SF. Therefore, in comparison with the aforementioned related-art configuration described in JP-A-2005-316092 according to which a single-color image is displayed exclusively for each area divided out of the image display area 25, the configuration of the image display device 100 according to the present embodiment of the invention is more advantageous in that it is possible to ensure the enhanced color brightness (i.e., luminosity) of an output image.
In addition, since single-color images of color components different from one another are displayed in a parallel manner in the unit display areas A, which are divided portions of the image display area 25, in the configuration of the image display device 100 according to the present embodiment of the invention, it is possible to achieve a greater reduction in the aforementioned color-breakup phenomenon in an image visually perceived by a user who observes the display screen thereof in comparison with a configuration in which the single-color images of the same color component are displayed in the entire region of the image display area 25 during each sub-field SF of a frame F. It should be noted that such a same-color display configuration is referred to as a “comparative example A” in the following description. A detailed explanation as to how the image display device 100 according to the present embodiment of the invention achieves a greater reduction in the color-breakup image problem is given below.
Each of
If the vector amount of the movement of a visual point during the sub-field SF is smaller than the horizontal dimension of the imaging-target object (i.e., subject image) P, images displayed during the respective sub-fields SF overlap on the retinas of an observer. If the images that overlap each other on the retinas of an observer correspond to color components that differ from each other, the observer perceives a mixed display color at the overlapping portion of the images. In the comparative example A illustrated in
On the other hand, in the configuration of the image display device 100 according to the present embodiment C1 of the invention that is illustrated in
In the foregoing exemplary embodiment C1 of the invention, it is explained that the single-color images of three primary color components are sequentially displayed on the basis of an input image signal S1. In contrast, in the configuration of the image display device 100 according to the present embodiment of the invention, as done in the foregoing exemplary embodiment A1 of the invention, a display color specified by the input image signal S1 is separated into a plurality of primary color components and a plurality of white components. In the following description of the image display device 100 according to the present embodiment C2 of the invention, the same reference numerals are consistently used for constituent elements thereof that have the same operation and function as those described in the foregoing exemplary embodiment C1 of the invention so as to omit any redundant explanation thereof as long as the context allows.
The illumination-device driving circuit 52 according to the present embodiment of the invention commands all three of the red, green, and blue light-emitting elements 12R, 12G, and 12B provided in each of the area illumination units B to emit light in each of the first sub-field SF1 and the fifth sub-field SF5. As a result of such light-emission control that is performed by the illumination-device driving circuit 52, white light is irradiated onto all of the unit display areas A of the liquid crystal device 20 in each of the first sub-field SF1 and the fifth sub-field SF5. On the other hand, the illumination-device driving circuit 52 commands all three of the red, green, and blue light-emitting elements 12R, 12G, and 12B provided in each of the area illumination units B not to emit light during the sixth sub-field SF6. Therefore, no light is irradiated onto the liquid crystal device 20 in the sixth sub-field SF6.
The liquid-crystal-device driving circuit 54 sets the electric potential of each of the pixel electrodes 24, which are arrayed in each of the unit display areas A, at a data electric potential that is in accordance with a gradation value specified by a color separation image signal S2 for a certain primary color component R, G, or B (i.e., in accordance with G2_R, G2_G, or G2_B) that should be displayed in the unit display areas A that belong to a certain group in the writing time period PW of each of the second, third, and fourth sub-field SF2, SF3, and SF4, which is similar to the operation performed in the foregoing exemplary embodiment C1. On the other hand, in the writing time period PW of the first sub-field SF1 during which white light is irradiated onto the liquid crystal device 20, the liquid-crystal-device driving circuit 54 supplies a data electric potential that corresponds to the gradation G2_W1 of the W1 component to each pixel electrode 24. In like manner, in the writing time period PW of the fifth sub-field SF5 during which white light is irradiated onto the liquid crystal device 20, the liquid-crystal-device driving circuit 54 supplies a data electric potential that corresponds to the gradation G2_W2 of the W2 component to each pixel electrode 24. In the sixth sub-field SF6 during which the illumination device 10 switches light off so that no light should be irradiated onto the liquid crystal device 20, the liquid-crystal-device driving circuit 54 supplies, to each pixel electrode 24, a data electric potential that reduces the transmission factor of liquid crystal to the minimum value (e.g., zero).
Since the controlling unit 50 controls the operations of the illumination device 10 and the liquid crystal device 20 as explained above, single-color images of primary color components different from one another are displayed in the unit display areas A that belong to the first, second, and third groups C1, C2, and C3 respectively in each of the second, third, and fourth sub-fields SF2, SF3, and SF4. In addition thereto, since the controlling unit 50 controls the operations of the illumination device 10 and the liquid crystal device 20 as explained above, a single-color image of the first white component W1 is displayed in all of the unit display areas A during the first sub-field SF1 that is allocated immediately before the primary-color-component subfields SF2, SF3, and SF4, whereas a single-color image of the second white component W2 is displayed in all of the unit display areas A during the fifth sub-field SF5 that is allocated immediately after the primary-color-component subfields SF2, SF3, and SF4. In the last sub-field SF6, a black image K is displayed in all of the unit display areas A.
As explained above, in the configuration of the image display device 100 according to the present embodiment of the invention, since the first white component W1 and the second white component W2 are extracted out of a display color of each pixel, the brightness level of a single-color image of each of three primary color components of R, G, and B becomes lower in comparison with that of the foregoing exemplary embodiment C1 of the invention. Since no color breakup occurs in the single-color image of a white component, taken in combination with the above-described decreased (i.e., suppressed) brightness level of a single-color image of each of three primary color components of R, G, and B, the image display device 100 according to the present embodiment of the invention makes it possible to achieve a greater reduction in the aforementioned color-breakup image problem in an image visually perceived by a user who observes the display screen thereof in comparison with the image display device 100 according to the foregoing exemplary embodiment C1 of the invention in which single-color images that correspond to primary color components R, G, and B only are displayed, which means that no single-color images that correspond to white components W1 and W2 are displayed. In addition, in the configuration of the image display device 100 according to the present embodiment of the invention, the non-image-display subfield SF6 during which a black K image is displayed is allocated in each frame F in addition to the sub-fields SF2, SF3, and SF4 during which single-color images that correspond to three primary color components of R, G, and B are displayed in a parallel manner and the sub-fields SF1 and SF5 during which single-color images that correspond to the first white component W1 and the second white component W2 respectively are displayed. Therefore, in comparison with the configuration of the image display device 100 according to the foregoing exemplary embodiment C1 of the invention in which no black image K is displayed, the image display device 100 according to the present embodiment of the invention makes it possible to achieve a greater reduction in the aforementioned moving-picture blur phenomenon, that is, the visual perception of the blurred outline of a moving subject image P.
Moreover, in the configuration of the image display device 100 according to the present embodiment of the invention, as has already been explained earlier, if the combined gradation of the pre-separation “white” component (corresponding to W1+W2), or in other words, the minimum value Gmin, contained in a display color specified by the input image signal S1 is greater than the threshold value TH1, the pre-separation white component is split into the first actual white component W1 and the second actual white component W2 at the boundary of the threshold value TH1 in the white extraction process. Then, these split white components are respectively displayed in separate sub-fields SF that are “time-isolated” from each other; specifically, the first white component W1 is displayed in the first sub-field SF1 whereas the second white component W2 is displayed in the fifth sub-field SF5 in the illustrated configuration thereof according to the present embodiment of the invention. This means that a difference between the gradations of primary-color-component single-color images and the gradations of white-component single-color images is made smaller. Therefore, in comparison with, for example, the configuration of the aforementioned related art described in JP-A-2002-169515 according to which a single-color image of a white component that is extracted from a display color specified by an input image signal S1 is displayed in only one sub-field SF, the image display device 100 according to the present embodiment of the invention has an advantage in that it can reduce flickers, which is the same non-limiting advantageous effects of the invention as those offered by the image display device 100 according to the foregoing exemplary embodiment A1 of the invention. Furthermore, as is the case with the image display device 100 according to the foregoing exemplary embodiment A1 of the invention, in the configuration of the image display device 100 according to the present embodiment of the invention, it is possible to offset an increase in flickers due to the insertion of a black-image display by a decrease therein achieved by the time-separated display of split white components.
Next, an exemplary embodiment C3 of the invention is explained below. In the foregoing exemplary embodiment C2 of the invention, it is explained that a single-color image of the first white component W1 is displayed in the first sub-field SF1 whereas a single-color image of the second white component W2 is displayed in the fifth sub-field SF5. This means that each of a single-color image of the first white component W1 and a single-color image of the second white component W2 is displayed in a dedicated or discreet white-component subfield (SF1 and SF5) that is isolated from primary-color-component subfields (SF2, SF3, and SF4). In contrast, in the configuration of the image display device 100 according to the present embodiment C3 of the invention, both of single-color images that correspond to three primary color components and single-color images that correspond to a plurality of white components are displayed without any isolation between primary-color-component subfields and white-component subfields in a plurality of unit display areas A in a parallel manner in each of sub-fields SF on the basis of a color separation image signal S2 that is generated by the image-processing unit 40.
The same advantageous effects as those offered by the configuration of the image display device 100 according to the foregoing exemplary embodiment C2 of the invention are offered with the configuration of the image display device 100 according to the present embodiment C3 of the invention. In the foregoing exemplary embodiment C2 of the invention, the primary-color-component subfields SF2, SF3, and SF4 during which single-color images of primary color components are displayed are arrayed in a successive manner on a time axis. In contrast, in the sub-field configuration according to the present embodiment C3 of the invention, the display of single-color images of primary color components does not succeed in the unit display areas A of each group C because the display of at least one of single-color images of white components is interposed therebetween on the time axis. As has already been explained above, the aforementioned problem of a color breakup is conspicuous especially if the single-color images of a plurality of primary color components are displayed successively on a time axis. In this respect, with the configuration of the image display device 100 according to the present embodiment of the invention, advantageously, it becomes harder for a user who observes the display screen thereof to perceive the aforementioned color-breakup image problem in comparison with the configuration of the image display device 100 according to the foregoing exemplary embodiment C2 of the invention in which the primary-color-component subfields SF2, SF3, and SF4 during which single-color images of primary color components are displayed are arrayed in a successive manner on a time axis.
As has already been explained earlier while referring to
A judgment as to whether (A) a single-color image that corresponds to a certain white component is displayed in a dedicated or discreet white-component subfield that is isolated from primary-color-component subfields as explained in the foregoing exemplary embodiment C2 of the invention or (B) both of single-color images that correspond to three primary color components and a single-color image that corresponds to a certain white component are displayed without any isolation between primary-color-component subfields and the white-component subfield as explained in the foregoing exemplary embodiment C3 of the invention can be made on an individual-decision basis for each of a plurality of white components that are extracted from a display color specified by an input image signal S1. For example, as illustrated in
The illumination device 10 and the liquid crystal device 20 function in cooperation with each other so as to display a color image.
As illustrated in
The controlling unit 50 illustrated in
Next, the configuration of the brightness-level controlling unit 60 and the operation thereof, which is shown in
As illustrated in the flowchart of
In the next step, the coefficient calculation sub-unit 62 calculates an index value IB on the basis of the total sum IA calculated in the preceding step SA1 (step SA2). The index value IB is a value that indicates the degrees of lightness and darkness of an image in a frame F. The ratio of the total sum (IA) to a predetermined value (mS), which is mathematically expressed as IA/mS, is preferably adopted as the index value IB. For example, the predetermined value mS is a total sum value IS that is obtained under an assumption that the maximum value of the gradation (G0) is specified for all pixels of a display image. The maximum gradation value is a gradation that corresponds to white display. That is, the total sum value (IS) is calculated as the result of multiplying the total number of pixels by the maximum value of the gradation G0. As illustrated in
Referring back to
The illumination-device driving circuit 52 illustrated in
In the following description, a comparative study on the occurrence of the aforementioned color breakup image problem is conducted between the configuration of the image display device 100 according to the present embodiment D1 of the invention and a configuration in which the single-color images of primary color components only are displayed in each sub-field SF without extracting white components from an input display color. It should be noted that such a primary-color-only-display configuration is referred to as a “comparative example B” in the following description. Each of
If the vector amount of the movement of a visual point during the sub-field SF is substantially equal to or smaller than the horizontal dimension of the imaging-target object (i.e., subject image) P, as illustrated in
The brightness curve CL shown in
In a configuration such as that of the aforementioned related art described in JP-A-2002-169515 according to which a single-color image of a white component that is extracted from a display color specified by an input image signal S1 is displayed in only one sub-field SF unlike the present embodiment of the invention, the gradation of the single-color image of the white component is significantly higher than that of the single-color images of other color components especially if the display color of an image is close to white. In addition, the brightness of the illumination device 10 is relatively high when a white subject image P having a relatively small size is displayed. Therefore, the gradation of the single-color image of the white component becomes very high for these reasons. Consequently, in the aforementioned related art described in JP-A-2002-169515, an observer perceives conspicuous flickers because single-color images of primary color components each having a low gradation and a single-color image of a white component having a high gradation are displayed in a field-sequential manner. In the configuration of the image display device 100 according to the present embodiment of the invention, as has already been explained earlier, if the combined gradation of the pre-separation “white” component (corresponding to W1+W2), or in other words, the minimum value Gmin, contained in a display color specified by the input image signal S1 is greater than the threshold value TH1, the pre-separation white component is split into the first actual white component W1 and the second actual white component W2 at the boundary of the threshold value TH1 in the white extraction process. Then, these split white components are respectively displayed in separate sub-fields SF that are “time-isolated” from each other; specifically, the first white component W1 is displayed in the first sub-field SF1 whereas the second white component W2 is displayed in the fifth sub-field SF5 in the illustrated configuration thereof according to the present embodiment of the invention. This means that a difference between the gradations of primary-color-component single-color images and the gradations of white-component single-color images is made smaller. Therefore, in comparison with the configuration of the aforementioned related art described in JP-A-2002-169515, the image display device 100 according to the present embodiment of the invention has an advantage in that it can reduce flickers, which is the same non-limiting advantageous effects of the invention as those offered by the image display device 100 according to the foregoing exemplary embodiment A1 of the invention. Furthermore, as is the case with the image display device 100 according to the foregoing exemplary embodiment A1 of the invention, in the configuration of the image display device 100 according to the present embodiment of the invention, it is possible to offset an increase in flickers due to the insertion of a black-image display by a decrease therein achieved by the time-separated display of split white components.
Next, an exemplary embodiment D2 of the invention is explained below. In the configuration of the image display device 100 according to the present embodiment D2 of the invention, as done in the foregoing exemplary embodiment B1 of the invention, a single-color image of the same color component is displayed sequentially in the plurality of unit display areas A in each sub-field SF, or as a modification thereof, a single-color image of different color components is displayed sequentially therein. With such a configuration, it is possible to effectively prevent the occurrence of the aforementioned color-breakup image problem that is attributable to a difference between the actual movement of a subject image P and the movement of a visual point of a user.
The brightness-level controlling unit 60 controls the display brightness of each of the plurality of unit display areas A in the same manner as done in the preceding embodiment D1 of the invention. More specifically, the coefficient calculation sub-unit 62 sets, for each of the plurality of unit display areas A, a correction coefficient K in such a manner that an index value IB that was calculated on the basis of the gradation value G0 of each of pixels arrayed in the unit display area A and the actual brightness LM of an area illumination unit B of the illumination device 10 that corresponds to (i.e., is provided opposite to) the unit display area A satisfy a predetermined relationship that is expressed as a brightness curve CL.
The illumination-device driving circuit 52 controls the operation of the light-emitting element 12 (i.e., 12R, 12G, and 12B) of each of the area illumination units B in such a manner that the brightness of the area illumination unit B corresponding to the unit display area A increases as the correction coefficient K calculated for the unit display area A by the brightness-level controlling unit 60 increases. That is, the brightness of the area illumination unit B of the illumination device 10 increases as the number of pixels for which high gradation is specified decreases in an image displayed in the unit display area A corresponding to the area illumination unit B. With the above-described configuration, the image display device 100 according to the present embodiment D2 of the invention makes it possible to achieve high-contrast display while reducing power consumption thereof.
Despite the fact that the controlling of the brightness of each of the area illumination units B of the illumination device 10 on the basis of the brightness curve CL could be a cause for making a color breakup more conspicuous, the image display device 100 according to the present embodiment D2 of the invention is still capable of effectively suppressing the aforementioned color-breakup phenomenon in an image visually perceived by a user who observes the display screen thereof thanks to the sequential displaying of a single-color image of the same color component in the plurality of unit display areas A in each sub-field SF, or as a modification thereof, thanks to the sequential displaying of a single-color image of different color components therein, which is the same non-limiting advantageous effects of the present embodiment of the invention as those offered by the image display device 100 according to the foregoing exemplary embodiment B1 of the invention. Moreover, since display brightness is controlled for each of the unit display areas A in the configuration of the image display device 100 according to the present embodiment D2 of the invention, it is possible to satisfy both of a reduction in power consumption and a reduction in the occurrence of the color-breakup image problem in a compatible manner depending on the content of an image that is displayed in each of the unit display areas A.
Next, an exemplary embodiment D3 of the invention is explained below. In the configuration of the image display device 100 according to the present embodiment D3 of the invention, as done in the foregoing exemplary embodiment C1 of the invention, single-color images of color components different from one another are displayed in the unit display areas A, which are divided portions of the image display area 25. Therefore, the image display device 100 according to the present embodiment D3 of the invention makes it possible to achieve a greater reduction in the aforementioned color-breakup phenomenon in an image visually perceived by a user who observes the display screen thereof in comparison with a configuration in which the single-color images of the same color component are displayed in the entire region of the image display area 25 during each sub-field SF of a frame F.
The brightness-level controlling unit 60 controls the display brightness of each of the plurality of unit display areas A, that is, the brightness of each of the plurality of area illumination units B, in the same manner as done in the preceding embodiment D2 of the invention. That is, the brightness of the area illumination unit B of the illumination device 10 increases as the number of pixels for which high gradation is specified decreases in an image displayed in the unit display area A corresponding to the area illumination unit B. With the above-described configuration, the image display device 100 according to the present embodiment D3 of the invention makes it possible to achieve high-contrast display while reducing power consumption thereof. Despite the fact that the controlling of the brightness of each of the area illumination units B of the illumination device 10 on the basis of the brightness curve CL could be a cause for making a color breakup more conspicuous, the image display device 100 according to the present embodiment D3 of the invention is still capable of effectively suppressing the aforementioned color-breakup phenomenon in an image visually perceived by a user who observes the display screen thereof thanks to the parallel displaying of single-color images of color components different from one another in the unit display areas A, which is the same non-limiting advantageous effects of the present embodiment of the invention as those offered by the image display device 100 according to the foregoing exemplary embodiment C1 of the invention. Moreover, since display brightness is controlled for each of the unit display areas A in the configuration of the image display device 100 according to the present embodiment D3 of the invention, it is possible to satisfy both of a reduction in power consumption and a reduction in the occurrence of the color-breakup image problem in a compatible manner depending on the content of an image that is displayed in each of the unit display areas A.
Next, the determination of an appropriate size of each unit display area A in the foregoing exemplary embodiments B1, B2, C1, C2, D2, and D3 of the invention is explained below.
If the dimension of each of the unit display areas A having the same size as those of others is determined as described above, the moving amount of a line of sight of an observer never exceeds 10° in each one of the unit display areas A. Therefore, advantageously, it is possible to effectively prevent the occurrence of the aforementioned color-breakup image problem while avoiding any excessive heightening of a frame frequency. Rephrasing the above, with such a size determination, if the moving amount of a line of sight of an observer exceeds 10°, it follows that a visual point of the observer moves to another unit display area A. Therefore, in combination with the above-described configuration of the invention according to which single-color images are displayed in the unit display areas A during the respective sub-fields SF in a sequential manner, the unit-display-area size determination described herein makes it possible to suppress the aforementioned color-breakup image problem in each image visually perceived by a user who observes the display screen thereof.
It should be noted that a method for determining the size of the unit display area A is not limited to a specific example described above. For example, the number M of the unit display areas A that belong to each of the afore-mentioned first image display sub-area G1 and the afore-mentioned second image display sub-area G2 may be determined from the viewpoint of a color breakup reduction. As shown in
On the other hand, it is assumed here that the image display area 25 is divided into the M number of the unit display areas A as viewed along the X direction. It is further assumed that an N-speed display is performed. In order to simplify explanation, the writing time period PW of each sub-field SF is ignored. Then, the time length of each of the display time periods P1, P2, and P3 thereof is expressed as approximately T/3NM. Therefore, if T/3NP takes the same value as T/3NM, it is possible to make the time length of each of the display time periods P1, P2, and P3 thereof equal to the time length thereof under the NP-speed display as a result of the division of the image display area 25 into the M number of the unit display areas A as viewed along the X direction. Thus, the number of divisions M that makes it possible to overcome a color breakup image problem is calculated by means of the following mathematical formula: M=NP/N. That is, the X-dimension of the unit display area A is mathematically expressed as 1/M of the X-dimension of the image display area 25. As explained above, it is possible to effectively prevent the occurrence of a color-breakup image problem by calculating the number of divisions (and thus the size of each thereof) of the unit display areas A in such a manner that the cycle of single-color image display in the unit display area A equals a cycle corresponding to the NP-speed display (i.e., a cycle corresponding to a predetermined frame frequency), which constitutes a non-limiting alternative method of the unit-display-area size determination described herein.
Various kinds of changes, modifications, adaptations, variations, improvements, or the like may be made on the specific examples of the exemplary embodiments of the invention described above. Non-limiting variation examples thereof are described below. Note that any two or more of the following variation examples/modes can be combined with each other or one another.
In each of the foregoing exemplary embodiments of the invention, it is assumed that each of the sub-fields SF that make up a frame F has the same time length as that of others. However, the scope of the invention is not limited to such an exemplary configuration. That is, the time length of each sub-field SF may be changed arbitrarily. For example, the time length of a black sub-field SF during which a black (K) image is displayed may be set at a value greater than the time length of other sub-fields SF, which is explained below as a first variation mode 1. As another variation example thereof, the time length of a first white sub-field SF during which a single-color image corresponding to a first white component W1 is displayed and/or the time length of a second white sub-field SF during which a single-color image corresponding to a second white component W2 is displayed may be set at a value greater than the time length of other sub-fields SF, which is explained below as a second variation mode 2. These variation modes are explained in detail below.
Disadvantageously, however, flickers become more conspicuous to the eyes of an observer if the time length of the black sub-field SF6 during which a black image K is displayed is set at an excessively great value. For this reason, the time length of the black sub-field SF6 should be set at a time-percentage value smaller than 50% of each frame F. More preferably, the time length of the black sub-field SF6 should be set at a time-percentage value smaller than 30% thereof. On the contrary, if a higher priority should be given to a reduction in flickers due to the display of a black (K) image, it is preferable to adopt a configuration in which the time length of the black sub-field SF6 is equal to that of other sub-fields SF1-SF5. Or, in order to reduce flickers, the black sub-field SF6 can be omitted. In the explanation of the first variation mode 1 given above, the lengthening of the black K sub-field SF is applied to the foregoing exemplary embodiment A1 illustrated in
In the explanation of the second variation mode 2 given above while referring to
In each of the foregoing exemplary embodiments of the invention (especially, in the embodiments B1, B2, C1, C2, D1, D2, and D3), the display color of each of the pixels may be separated into a plurality of color components and a plurality of white components, where the color components include a mixed color component (cyan, magenta, or yellow), as done in the foregoing exemplary embodiment A2 of the invention.
In each of the foregoing exemplary embodiments of the invention (especially, in the embodiments A1, A2, B2, and C2), it is explained that the single-color images of white components W1 and W2 are displayed in white sub-fields SF allocated immediately before and after color sub-fields SF during which single-color images of color components, which means either primary color components or a combination of primary color components and mixed color components, are displayed. Notwithstanding the foregoing, the sequential order of these white sub-fields SF and color sub-fields SF may be arbitrarily modified. As a non-limiting modification example thereof, as illustrated in
In each of the foregoing exemplary embodiments of the invention, it is explained that the illumination-device driving circuit 52 controls the illumination device 10 so as not to emit light in the last sub-field SF of each frame F. In addition thereto, in this last sub-field SF, the liquid-crystal-device driving circuit 54 supplies, to each pixel electrode 24, a data electric potential that reduces the transmission factor of liquid crystal to the minimum value. The aforementioned black (K) image is displayed, or in other words, display is suspended, as a result of the combination thereof. However, the scope of the invention is not limited to such an exemplary configuration. For example, either one of these may be performed in the last black sub-field SF. The black image K may be displayed at the first sub-field SF of each frame F. It should be noted that, in the above-described preferable exemplary configurations of the invention, the position of black sub-field allocated in each frame F and the display method of a black image K are not restrictively specified as long as display is suspended during a certain time period in the frame. As the word “preferable” suggests, such a black sub-field during which a black image K is displayed may be omitted.
In each of the foregoing exemplary embodiments of the invention, it is explained that the light-emitting elements 12 (12R, 12G, and 12B) corresponding to respective primary color components are driven (i.e., operated) in combination of any two thereof so as to emit mixed-color light and/or in combination of all three thereof so as to emit white light onto the liquid crystal device 20. However, the scope of the invention is not limited to such an exemplary configuration. For example, the illumination device 10 may be provided with, in addition to primary-color-component light-emitting elements, mixed-color-component light-emitting elements and a white-component light-emitting element.
Next, an explanation is given below of a few non-limiting examples of a variety of electronic apparatuses to which an image display device according to an exemplary embodiment of the invention is applicable. Each of
Among a variety of electronic apparatuses to which the display device according to the present invention is applicable are, other than the specific examples illustrated in
The entire disclosure of Japanese Patent Application Nos: 2007-107798, filed Apr. 17, 2007, 2007-107799, filed Apr. 17, 2007, 2007-107800, filed Apr. 17, 2007 and 2007-107801, filed Apr. 17, 2007 are expressly incorporated by reference herein.
Number | Date | Country | Kind |
---|---|---|---|
2007-107798 | Apr 2007 | JP | national |
2007-107799 | Apr 2007 | JP | national |
2007-107800 | Apr 2007 | JP | national |
2007-107801 | Apr 2007 | JP | national |