This invention relates to double-diffused metal-oxide-semiconductor (DMOS) transistors and, in particular, to a technique for forming floating trenches proximate to DMOS transistors for improved performance of the DMOS transistors, including increased breakdown voltage.
Deep trench isolation is commonly used in many bipolar and BiCMOS process technologies. It offers significant die size reduction over junction-isolated processes, as described in the following references: 1) Strachan et al, “A Trench-Isolated Power BiCMOS Process with Complementary High Performance Bipolars”, pp. 41-44, BCTM 2002; and 2) Parthasrathy et al, “A 0.25 um CMOS Based 70V Smart Power Technology with Deep Trench for High-Voltage Isolation”, pp. 459-462, IEDM, 2002, all incorporated herein by reference.
The trench is typically formed as a ring surrounding the entire transistor.
High-side lateral DMOS (LDMOS) transistor performance in a trench-isolated process is significantly improved by the layout technique discussed herein. In a DMOS transistor, a gate overlaps a drain drift region. The technique utilizes two opposing floating trenches, with the transistor in-between, with each trench having a potential determined by the capacitive coupling between the drain bias voltage and the p-substrate bias (e.g., 0 volts). At a normal operating drain bias voltage, the potentials on the trenches completely pinch the gate/drift overlap area, where breakdown often occurs for a LDMOS.
Methods of suppressing trench sidewall leakage from a parasitic MOSFET, as a result of incorporation of the floating trench, are also discussed.
This layout technique not only provides higher device breakdown and lower on-resistance, but also offers better hot-carrier and Safe-Operating-Area (SOA) device reliability. The floating trenches may also be applied to a vertical DMOS (VDMOS) with similar benefits.
a is a cross-sectional view of a prior art LDMOS transistor.
b illustrates the edge of the depletion region in the device of
c illustrates the edge of the depletion region in the device of
a shows a simulation of the edge of the depletion region and the region of high impact ionization at a gate bias of 0 volt and a 40V drain-to-source bias for the device of
b shows a simulation of the edge of the depletion region and the region of high impact ionization at a gate bias of Vt+1V and a 25V drain-to-source bias for the device of
a is a top down view of one embodiment of the invention showing floating trenches running along rows of DMOS transistors in a two-dimensional array of DMOS transistor that are connected in parallel to form a single power DMOS transistor.
b is a partial cross-section of
c is a partial cross-section of
a is a simulation of a cross-section along line 4c-4c of
b illustrates the depletion region edges in
c illustrates the depletion region edges in
d is a graph of the capacitive coupling ratio of the drain voltage to the floating trench voltage, where opposing floating trenches sandwich the transistor.
e illustrates the merging of the space charge regions (the depletion regions) below the gate at the operating drain bias voltage.
a is a top view of a DMOS transistor and trench layout where a more heavily-doped and deeper p-type junction is added in the p-body contact to reduce resistance so as to prevent turning on the lateral parasitic NPN bipolar transistor.
b is a partial cross-section of the device of
c is a partial cross-section of the device of
Elements labeled with the same numerals in the various figures are the same or similar.
The embodiments of the present invention utilize floating trenches in the layout of a DMOS transistor, as opposed to only forming the trench as a ring surrounding the entire transistor, to achieve a higher breakdown voltage and lower on-resistance. The DMOS transistor may be a lateral (LDMOS) or vertical DMOS (VDMOS) transistor. The invention also improves the LDMOS or VDMOS device Safe-Operating-Area (SOA) and reliability. The trenches are relatively easy to integrate into existing processes and are cost effective.
A DMOS transistor, discussed in more detail later, is typically formed of a two-dimensional array of transistors connected in parallel. The individual DMOS transistors are arranged in rows and columns. In one embodiment, a trench is formed between rows of the individual DMOS transistors in the array. An increase in breakdown voltage for the DMOS transistors sandwiched between floating trenches occurs due to the field shaping caused by opposing floating field plates (poly-filled trenches) where the potential on the field plates is the result of capacitive coupling.
Since device reliability (safe-operating-area and hot-carrier lifetime) for a lateral DMOS (LDMOS) transistor is more challenging than for a vertical DMOS (VDMOS) transistor, a LDMOS transistor will be used to demonstrate the field-shaping performed using the present invention, although the invention also applies to VDMOS transistors.
a shows the cross-section of a high-side NLDMOS transistor. A positive voltage applied to the gate 18 creates a channel at the surface of the p-body 20 so that carriers flow from the n+ source 22 to the n+ drain 24 through the n-type drift region (n-epi 27 and n-well 28). A thin gate oxide (not shown) and a field oxide layer 30 insulate the gate 18 from the silicon. The drift region (n-epi and n-well) is separated from the p-substrate 32 by an n+ buried layer (NBL) 34.
In
In order to understand the effect, an NLDMOS device is simulated using a 2D simulator to identify the breakdown location with Vgs=0V as shown in
Breakdown and Specific On-Resistance Enhancement
A floating trench in a trench isolated technology is utilized in the invention to improve high-side LDMOS breakdown voltage and to minimize on-resistance. A top view of a device layout embodiment is shown in
Implementation in the example of
The floating trench 60 poly running between the rows of transistors is efficiently capacitive coupled to the drain 48 and p-substrate 56 bias in three-dimensional space. The voltage difference between the drain 48 and the floating trench 60 poly due to coupling will induce a space-charge-region (SCR) in the n-epi 54 drift region. The depletion width increases with increasing drain-to-source bias. With the right spacing between trenches 60, the SCR from the opposing trenches 60 will merge at a high drain bias and completely pinch the n-drift/gate overlap region where breakdown often occurs for LDMOS devices. Such “right” spacing can easily be determined by simulation and depends on the device dimensions, coupling ratio, and bias voltages. The high drain bias is typically close to (below or at) the maximum voltage expected by the designer to be used for the device where breakdown is an issue. Such maximum voltage is usually specified in the data sheet for the transistor. In such case, the electric field under the gate (typically doped polysilicon) makes a transition from having a convex curvature to having a concave field (by expanding the depletion region near the gate), due to the absence of an accumulation layer in the n-drift region under the gate. This field-shaping effect improves the breakdown performance of the device, but the degree of improvement can only be quantified with complex 3D simulation.
A simplified 2D simulation is shown in
With any positive bias applied to the poly gate, an accumulation (electron) layer is formed in the n-epi 72 under the gate, pushing the depletion region edge towards the edge of the p-body junction 70 as shown in
The potential on the floating trench 68 poly in response to the drain bias is rather insensitive to poly resistivity and doping concentration. It could be p+ doped, undoped, or n+ doped poly. The coupling ratio, however, is a strong function of the n-epi 72 resistivity, which is often used as the collector of an NPN transistor in a Power BiCMOS technology. The higher the doping, the lower the device on-resistance, and the stronger the capacitive coupling between the trench and the drain. The exact coupling ratio depends on the relative capacitance of the trench to the n-epi region and the trench to the p-substrate. Trench-to-trench spacing (between trenches parallel to the rows of DMOS transistors in the array) has to be carefully selected in order to completely deplete the n-drift/gate overlap region at the highest drain bias for breakdown enhancement. The degree of field shaping is also a function of the trench-to-component spacing. The smaller the spacing, the stronger the effect. But, too small a distance will induce trench stress-defect leakage in the transistor. Experimental results show no noticeable stress-induced leakage until active device region is moved <0.1 um close to trench. A reasonable spacing here would range from 0.5 um to 2 um, beyond which the coupling efficiency is substantially reduced.
The spacing between two opposing trenches is the key design parameter for high breakdown voltage; it can not be too wide to lose the field-shaping effect. The depletion regions from floating trenches have to merge under n-drift/gate overlap area at or slightly below the highest operating drain voltage. This spacing, however, depends on a number of parameters, one of them being the operating voltage for the device. Trench liner oxide thickness varies for devices with different voltage-ratings, and this thickness is part of the equation that determines the spacing. As mentioned in the previous paragraph, coupling ratio depends on the relative capacitance of the trench to the n-epi region and the trench to the p-substrate, where the capacitance is further determined by the liner oxide thickness and its dielectric constant (e.g., 3.9 for silicon dioxide SiO2). The coupling can further be manipulated with different dielectric materials with different dielectric constants (e.g., 7.5 for Si3N4, and 4-7.5 for oxynitride).
But, the primary factor in determining proper trench spacing is the drift epi resistivity, since it not only affects the coupling ratio but also determines the width of trench depletion in the drift epi region. Higher resistivity results in less coupling of n-epi to floating poly, but trench depletion is allowed to expend further if the same potential were applied on floating poly (or vice versa). For a device operating at <40V with 650 Å liner oxide, n-epi resistivity of 9 ohm-cm, and p-substrate epi of 28 ohm-cm, the spacing between floating trenches can vary from 8 um to 15 um for the technique to work.
The on-resistance of a LDMOS is often dominated by the low-resistive drain extension region (e.g., the n-well 51 in
This enhanced breakdown technique also works for a p-channel lateral or vertical DMOS transistor.
Methods of Suppressing Trench Sidewall Leakage
For a high-side LDMOS, where the drain is isolated from the p-substrate by the NBL as shown in
As shown in
Device Reliability (SOA and Hot-Carrier) Improvement
It is well known that Safe-Operating-Area (SOA) for a lateral power DMOS is limited by the parasitic NPN bipolar action. Forward bias Vbe (emitter/base voltage) trigger voltage is caused by the voltage drop between the p-body in the channel and the p-body contact that is a result of hole current from impact ionization. As shown in the top layout view of
The above trench layout is also applicable to a vertical DMOS. In one example, the n+ drain region on the surface is connected to the NBL by an n+ sinker. Other types of VDMOS transistors are also suitable.
While particular embodiments of the present invention have been shown and described, it would be obvious to those skilled in the art that changes and modifications may be made without departing from this invention in its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.
This application claims the benefit of provisional application 60/684,401, filed May 24, 2005, entitled “DMOS Transistor with a Poly-Filled Deep Trench for Improved Performance.”
Number | Date | Country | |
---|---|---|---|
60684401 | May 2005 | US |