DNA-BASED VACCINATION OF RETROVIRAL-INFECTED INDIVIDUALS UNDERGOING TREATMENT

Abstract
This invention provides DNA vaccines for the treatment of patients undergoing retroviral therapy. The vaccines are surprisingly effective at controlling viremia.
Description
BACKGROUND OF THE INVENTION

Antiretroviral therapy (ART) to treat HIV has changed the outlook of HIV infection, since well-managed patients can remain free of symptoms for long periods. However, chronic use of the drugs leads to toxicities and virus resistance. Therapy must be continued indefinitely, since HIV (or SIV in macaques) remaining in pharmacological sanctuaries, rebounds rapidly upon treatment interruption


The administration of nucleic acid-based vaccines, including both naked DNA and viral-based vaccines, to individuals that have undergone ART has been suggested (see, e.g., WO01/08702, WO04/041997). Further, the administration of DNA vaccines in prime boost protocols has been suggested (see, e.g., US application no. 2004/033237; Hel et al., J. Immunol. 169:4778-4787, 2002; Barnett et al., AIDS Res. and Human Retroviruses Volume 14, Supplement 3, 1998, pp. S-299-S-309 and Girard et al., C R Acad. Sci. III 322:959-966, 1999 for reviews). DNA immunization, when used in a boosting protocol with modified vaccinia virus Ankara (MVA) or with a recombinant fowl pox virus (rFPV) in the macaque model, has been shown to induce CTL responses and antibody responses (see, e.g., Hanke et al, J. Virol. 73:7524-7532, 1999; Hanke et al., Immunol. Letters 66:177-181; Robinson et al., Nat. Med. 5:526-534, 1999), but no protection from a viral challenge was achieved in the immunized animals.


DNA immunization followed by administration of another highly attenuated poxvirus has also been tested for the ability to elicit IgG responses, but the interpretation of the results is hampered by the fact that serial challenges were performed (see, e.g., Fuller et al., Vaccine 15:924-926, 1997; Barnett et al., supra). In contrast, in a murine model of malaria, DNA vaccination used in conjunction with a recombinant vaccinia virus was promising in protecting from malaria infection (see, e.g., Sedegah et al., Proc. Natl. Acad. Sci. USA 95:7648-7653, 1998; Schneider et al., Nat. Med. 4:397-402, 1998).


Other prime boost strategies for the treatment of HIV infection are described in WO01/82964, WO04/041997. In these methods, immunogenicity of a recombinant poxvirus-based vaccine is enhanced by administering a nucleic acid, e.g., a DNA plasmid vaccine, to stimulate an immune response to the HIV antigens provided in the poxvirus vaccine, and thereby increase the ability of the recombinant pox virus, e.g., NYVAC or ALVAC, to expand a population of immune cells. Individuals who are treated with such a vaccine regimen may be at risk for infection with the virus or may have already been infected. Such protocols can control viremia for a period of time. However, these protocols rely on the use of DNA plasmid vaccines in conjunction with poxvirus vaccines. DNA plasmid vaccines by themselves have not been previously shown to have the ability to control viremia.


In contrast to intervention during early infection, results have been mixed in chronic infection, and most reports suggest that immune therapy during chronic infection was transiently effective, if at all, in controlling virus load and boosting immune response (see, e.g., Lori, et al., Science 290:1591-1593, 2000; Markowitz, et al., J Infect Dis 186:634-643, 2002; Tryniszewska, et al., J Immunol 169:5347-5357, 2002). Perhaps the most successful protocol reported is the therapeutic dendritic cell vaccination. Treatment of macaque and human APCs in vitro with immunogen and re-infusion in the absence of antiretroviral therapy (see, e.g., Lu, et al., Nat Med 9:27-32, 2003) resulted in long-lasting decrease in virus load. Several indications from the reported immunotherapy studies suggest that restoration of the immune system and perhaps more efficient immunization procedures may improve virus control.


DNA immunization plasmids have been developed that encode fusion proteins that contain a destabilizing amino acid sequence attached to a polypeptide sequence of interest; or that encode secreted fusion proteins, e.g., containing a secretory peptide attached to a polypeptide of interest (see. e.g., WO02/36806). Both of these types of plasmids exhibit increased immunogenicity of the polypeptide of interest that is comprised in the two types of fusion proteins. However, these DNA immunization plasmids have not been tested for their ability to control viremia in subjects that have undergone ART. It is highly desirable that additional methods of virus control and immune restoration are developed. This invention addresses this need.


BRIEF SUMMARY OF THE INVENTION

The invention is based on the discovery of DNA vaccines for the treatment of retrovirus infection that are surprisingly effective at controlling viremia in primates that are receiving or will receive antiretroviral therapy (ART), either alone or in conjunction with other therapeutic vaccines. This vaccination can induce long-lasting virus-specific immune responses, and control viremia post-ART. DNA therapeutic vaccination appears surprisingly effective and, further, shows evidence of triggering a Th1 response with more prominent induction of cellular immune responses.


The invention thus provides a method of treating an individual, preferably a human, infected with a retrovirus, the method comprising: administering a DNA vaccine comprising an expression vector selected from the group consisting of a) an expression vector encoding a fusion protein comprising a degradation polypeptide linked to an immunogenic retrovirus polypeptide or b) an expression vector encoding a secreted fusion protein comprising a secretory polypeptide linked to an immunogenic retrovirus polypeptide; and administering antiretroviral therapy (ART); wherein administration of the DNA vaccine results in control of viremia upon cessation of ART. In preferred embodiments, the DNA vaccine is administered to an individual who is undergoing ART.


In some embodiments, an expression vector encoding a secreted polypeptide is administered in conjunction with an expression vector encoding a fusion polypeptide comprising a destabilizing sequence. In such an embodiment, the antigenic retroviral polypeptide in the secreted polypeptide is often a different antigen than the antigenic polypeptide that is linked to the destabilizing sequence.


In particular embodiments, the destabilizing sequence in the fusion polypeptides that are administered in vaccines can be selected from the group consisting of c-Mos aa1-35, cyclin B aa 10-95, β-catenin aa 19-44, and β-catenin aa 18-47. Often, the destabilizing sequence is β-catenin aa 18-47.


In some embodiments, the secretory polypeptide is MCP-3.


The antigenic polypeptides that can be incorporated into the fusion proteins can be from any retrovirus, e.g., HIV-1, HIV-2, HTLV, SIV, but are often from HIV-1. Most often, the immunogenic retrovirus polypeptide is from an HIV antigen, such as Gag, Env, Pol, Nef, Vpr, Vpu, Vif, Tat, or Rev. In some embodiments, the HIV antigen comprises linked epitopes from HIV antigens, e.g., HIV Gag, Pol, Tat, Rev, or Nef, linked in any order; or linked epitopes of HIV antigens, e.g., Tat, Rev, Env, or Nef, linked in any order. One or more of the HIV genes, e.g., Gag, Env, Pol, Nef, Vpr, Vpu, Vif, Tat, or Rev, is often engineered so that an inactive protein is produced. In some embodiments, the linked epitopes are fusion proteins, such as Gag/Pol fusion proteins. The HIV antigens can be administered in one or more expression vectors, For example, a Gag/Pol fusion protein can be encoded in one expression vector and an Env protein on another expression vector.


The vaccines of the invention can also be administered with a nucleic acid sequence encoding a co-stimulatory molecule, i.e., an adjuvant, such as IL-12 or IL-15. The nucleic acid sequence encoding the co-stimulatory molecule is most often administered at the same time as one or more of the expression vectors of the invention and at the same site. However, this need not necessarily be the case. The vectors may be administered at different sites and/or at different times.


In some embodiments, the expression vector is administered by intramuscular injection. The vaccine can be administered at a single site or multiple sites. Further, combinations of expression vectors can be administered. In some embodiments, an expression vector encoding a secreted fusion protein is administered at a site that is different from the site of administration of an expression vector encoding an antigenic fusion protein comprising a destabilizing polypeptide sequence.


In other embodiments, the method of the invention further comprises at least a second administration of the expression plasmid. Thus, multiple administrations of the same or different expression plasmids is contemplated in the invention.


The invention also provides a method of treating an individual undergoing antiretroviral therapy, the method comprising administering to the individual a DNA vaccine comprising an expression vector selected from the group consisting of a) an expression vector encoding a fusion protein comprising a degradation polypeptide linked to an immunogenic retrovirus polypeptide and/or b) an expression vector encoding a secreted fusion protein comprising a secretory polypeptide linked to an immunogenic retrovirus polypeptide; wherein administration of the DNA vaccine results in lower levels of viremia compared to viremia prior to ART administration upon cessation of ART. The vectors often comprise mutated retroviral genes, e.g., mutated HIV genes that express inactive proteins. For example, gag, pol, nef, tat, may be mutated to inactivate protein function. Such vectors can also be administered with vectors that encode native antigens (or native antigen epitopes) without modifications.


The nucleic acid constructs of the invention for treatment of retroviral infection, e.g., HIV, can be used in conjunction with other therapeutic treatments, including other nucleic acid-based vaccines, such as virus vectors, e.g., poxvirus vectors, retroviral vectors, e.g., lentiviral vectors, adenoviral vectors, adeno-associated viral vectors and the like. Further, other immunogenic formulations can be administered in conjunction with the constructs, including purified protein antigens or inactivated virus particles.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 provides a schematic of immunotherapy of Rhesus macaques chronically infected by SIVmac251. Animals received 3-4 immunizations during therapy and were observed for several months after ART termination.



FIG. 2A and FIG. 2B provide exemplary data showing virus load in plasma of all macaques in the study from infection to end of follow-up period. Thick gray bars indicate the period under ART. (A) 12 animals treated with ART+DNA vaccination (B) control group treated only with ART



FIG. 3 provides exemplary data showing a comparison of virus load before and after ART: (Left) Comparison of average virus load over fixed periods of the 10 weeks preceding and the 13 weeks following ART therapy. Average viremia before and after therapy is shown for ART group (top) and ART+DNA vaccine group (bottom). (Right) Comparison of average virus load for the entire chronic period before therapy, versus the entire period after ART release.



FIG. 4A-FIG. 4C provide exemplary data showing elispot analysis of vaccine-treated and control animals. Elispot analysis for 10 ART+DNA vaccination animals (A, B) and 3 ART only controls (C). Gray and open stacked bars represent Elispot values (right scale) for gag and gp120env, respectively, for the indicated dates. Dotted line indicates virus load (left scale).



FIG. 5 provides exemplary data showing immunological analysis of treated animals. This analysis showed induction of cellular and humoral immune responses after DNA vaccination. FIG. 5A shows the ELISPOT response to gag and env for 10 vaccinated animals, shown as median and quartiles, divided into 4 periods, chronic phase, ART before vaccination, ART and DNA vaccination, and follow-up after drug termination. Antibodies against SIV proteins were measured by Elisa (FIG. 5B). The animals had high antibody levels against SIV. Ab levels were slightly decreased during ART and were not increased during vaccination, whereas after ART termination the antibody levels were increased to higher levels.



FIG. 6 shows exemplary modifications to Vif.



FIG. 7 shows exemplary modifications to Tat.



FIG. 8 shows exemplary modifications to Nef.



FIG. 9 shows exemplary modifications to Pol.



FIG. 10 is a schematic for expression of an exemplary HIV-1 Gag-pol in-frame for a vaccine vector.



FIG. 11 provides a schematic showing the generation of an exemplary Nef-tat-vif-(NTV) fusion protein lacking nef/tat/vif function for use in the vaccine constructs of the invention.



FIG. 12 shows a comparison of wt vs modified SIV pol. The modified SIV pol lacks function.





DETAILED DESCRIPTION OF THE INVENTION
Definitions

A “nucleic acid vaccine” or “DNA vaccine” refers to a vaccine that includes one or more expression vectors, preferably administered as purified DNA, which enters the cells in the body, and is expressed.


A “destabilizing amino acid sequence” or “destabilization sequence” as used herein refers to a sequence that targets a protein for degradation. Such sequences are well known in the art. Typically, the destabilizing sequence targets the protein to the ubiquitin proteosomal degradation pathway. Such sequences are well known in the art. Exemplary sequences are described, e.g., in WO 02/36806.


A “secretory polypeptide” as used herein refers to a polypeptide that comprises a secretion signal that is typically secreted. Typically, a “secretory polypeptide” that is comprised by a fusion protein is an immunostimulatory molecule such as a chemokine or cytokine.


“Viral load” is the amount of virus present in the blood of a patient. Viral load is also referred to as viral titer or viremia. Viral load can be measured in variety of standard ways. In preferred embodiments, the administration of the DNA constructs controls viremia and leads to a greater reduction in viral load.


Introduction

A recurring problem in anti-retroviral therapy is the rebound in viremia when therapy ceases. This invention is based on the discovery that vectors that produce either secreted or intracellularly degraded antigens are surprisingly effective at controlling viremia when administered to ART-treated subjects. These vectors can be used for the treatment of retroviral infection, e.g., for the treatment of HIV infection.


Expression Vectors Encoding Fusion Polypeptides Comprising a Degradation Signal

The nucleic acid vaccines of the invention are typically administered as “naked” DNA, i.e., as plasmid-based vectors. Since the antigens expressed by these DNA vectors are also well expressed in other expression systems, such as recombinant virus vectors, other expression vector systems may also be used either alternatively, or in combination with DNA vectors. These include viral vector systems such as cytomegalovirus, herpes virus, adenovirus, and the like. Such viral vector systems are well known in the art. The constructs of the invention can thus also be administered in viral vectors where the retroviral antigens, e.g., the HIV antigens, are incorporated into the viral genetic material.


Expression vectors encoding a fusion protein comprising a destabilization sequence linked to the immunogenic protein are used in the invention. Such vectors are described, e.g., in WO02/36806. A variety of sequence elements have been found to confer short lifetime on cellular proteins. For example, the amino acid residues present in the N-terminus may destabilize a protein sequence. Another example of destabilizing sequences are so-called PEST sequences, which are abundant in the amino acids Pro, Asp, Glu, Ser, Thr (they need not be in a particular order), and can occur in internal positions in a protein sequence. A number of proteins reported to have PEST sequence elements are rapidly targeted to the 26S proteasome. A PEST sequence typically correlates with a) predicted surface exposed loops or turns and b) serine phosphorylation sites, e.g. the motif S/TP is the target site for cyclin dependent kinases.


Additional destabilization sequences relate to sequences present in the n-terminal region. In particular the rate of ubiquitination, which targets proteins for degradation by the 26S proteasome can be influence by the identity of the N-terminal residue of the protein. Thus, destabilization sequences can also comprise such N-terminal residues, “N-end rule” targeting (see, e.g., Tobery et al., J. Exp. Med. 185:909-920.)


Destabilizing sequences present in particular proteins are well known in the art. Exemplary destabilization sequences include c-myc aa 2-120; cyclin A aa 13-91; Cyclin B aa 13-91; IkBα aa 20-45; β-Catenin aa 9-44; β-Catenin aa 18-447, c-Jun aa1-67; and c-Mos aa1-35; and fragments and variants, of those segments that mediate destabilization. Such fragments can be identified using methodology well known in the art. For example, polypeptide half-life can be determined by a pulse-chase assay that detects the amount of polypeptide that is present over a time course using an antibody to the polypeptide, or to a tag linked to the polypeptide. Exemplary assays are described, e.g., in WO02/36806.


Expression Vectors that Encode Secreted Fusion Proteins


The vaccines of the invention (naked DNA or viral vector-based nucleic acid vaccines) can also encode fusion proteins that include a secretory polypeptide. In some embodiments, the secretory polypeptide is an immunostimulation molecule, such as a chemokine, cytokine, or lymphokine. Exemplary secretory polypeptides include immunostimulatory chemokines such as MCP-3 or IP-10, or cytokines such as GM-CSF, IL-4, or IL-2. Often, secretory fusion proteins employed in the methods here contain MCP-3 amino acid sequences to tissue plasminogen activator sequences. Constructs encoding secretory fusion proteins are disclosed, e.g., in WO02/36806.


Selection of Epitopes

Antigenic polypeptide sequences for provoking an immune response selective for a specific retroviral pathogen are known. With minor exceptions, the following discussion of HIV epitopes/immunogenic polypeptides is applicable to other retroviruses, e.g., SIV, except for the differences in sizes of the respective viral proteins. HIV antigens for a multitude of HIV-1 and HIV-2 isolates, including members of the various genetic subtypes of HIV, are known and reported (see, e.g., Myers et al., Los Alamos Database, Los Alamos National Laboratory, Los Alamos, N. Mex. (1992); the updated version of this data base is online and is incorporated herein by reference (http://hiv-web.lanl.gov/content/index)) and antigens derived from any of these isolates cam be used in the methods of this invention. Immunogenic proteins can be derived from any of the various HIV isolates, including any of the various envelope proteins such as gp120, gp160 and gp41; gag antigens such as p24gag and p55gag, as well as proteins derived from pol, tat, vif, rev, nef, vpr, vpu.


The expression constructs may also contain Rev-independent fragments of genes that retain the desired function (e.g., for antigenicity of Gag or Pol, particle formation (Gag) or enzymatic activity (Pol)), or may also contain Rev-independent variants that have been mutated such the encoded protein loses function. For example, the gene may be modified to mutate an active site of reverse transcriptase or integrase proteins. Rev-independent fragments of gag and env are described, for example, in WO01/46408 and U.S. Pat. Nos. 5,972,596 and 5,965,726. Typically, rev-independent HIV sequences that are modified to eliminate all enzymatic activities of the encoded proteins are used in the constructs of the invention.


A DNA vaccine of the invention can be administered as one or more constructs. For example, a vaccine can comprises an HIV antigen fusion protein where multiple HIV polypeptides, structural and/or regulatory polypeptides or immunogenic epitopes thereof, are administered in a single expression vectors. In other embodiments, the vaccines are administered as multiple expression vectors, or as one or more expression vectors encoding multiple expression units, e.g., discistronic expression vectors.


Anti-Retroviral Therapy

The vaccines are administered to retrovirus-infected individuals, typically HIV-1-infected humans, who are undergoing or have undergone ART therapy.


Antiviral retroviral treatment typically involves the use of two broad categories of therapeutics. They are reverse transcriptase inhibitors and protease inhibitors. There are two type of reverse transcriptase inhibitors: nucleoside analog reverse transcriptase inhibitors and non-nucleoside reverse transcriptase inhibitors. Both types of inhibitors block infection by blocking the activity of the HIV reverse transcriptase, the viral enzyme that translates HIV RNA into DNA which can later be incorporated into the host cell chromosomes.


Nucleoside and nucleotide analogs mimic natural nucleotides, molecules that act as the building blocks of DNA and RNA. Both nucleoside and nucleotide analogs must undergo phosphorylation by cellular enzymes to become active; however, a nucleotide analog is already partially phosphorylated and is one step closer to activation when it enters a cell. Following phosphorylation, the compounds compete with the natural nucleotides for incorporation by HIV's reverse transcriptase enzyme into newly synthesized viral DNA chains, resulting in chain termination.


Examples of anti-retroviral nucleoside analogs are: AZT, ddI, ddC, d4T, and 3TC. Combinations of different nucleoside analogs are also available, for example 3TC in combination with in combination withAZT and (Combivir).


Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are a structurally and chemically dissimilar group of antiretroviral compounds. They are highly selective inhibitors of HIV-1 reverse transcriptase. At present these compounds do not affect other retroviral reverse transcriptase enzymes such as hepatitis viruses, herpes viruses, HIV-2, and mammalian enzyme systems. They are used effectively in triple-therapy regimes. Examples of NNRTIs are Delavirdine and Nevirapine which have been approved for clinical use in combination with nucleoside analogs for treatment of HIV-infected adults who experience clinical or immunologic deterioration. A detailed review can be found in “Nonnucleoside Reverse Transcriptase Inhibitors” AIDS Clinical Care (October 1997) Vol. 9, No. 10, p. 75.


Protease inhibitors are compositions that inhibit HIV protease, which is virally encoded and necessary for the infection process to proceed. Clinicians in the United States have a number of clinically effective proteases to use for treating HIV-infected persons. These include: SAQUINAVIR (Invirase); INDINAVIR (Crixivan); and RITONAVIR (Norvir).


Preparation of Vaccines

In the methods of the invention, the nucleic acid vaccine is directly introduced into the cells of the individual receiving the vaccine regimen. This approach is described, for instance, in Wolff et. al., Science 247:1465 (1990) as well as U.S. Pat. Nos. 5,580,859; 5,589,466; 5,804,566; 5,739,118; 5,736,524; 5,679,647; and WO 98/04720. Examples of DNA-based delivery technologies include, “naked DNA”, facilitated (bupivicaine, polymers, peptide-mediated) delivery, and cationic lipid complexes or liposomes. The nucleic acids can be administered using ballistic delivery as described, for instance, in U.S. Pat. No. 5,204,253 or pressure (see, e.g., U.S. Pat. No. 5,922,687). Using this technique, particles comprised solely of DNA are administered, or in an alternative embodiment, the DNA can be adhered to particles, such as gold particles, for administration.


As is well known in the art, a large number of factors can influence the efficiency of expression of antigen genes and/or the immunogenicity of DNA vaccines. Examples of such factors include the reproducibility of inoculation, construction of the plasmid vector, choice of the promoter used to drive antigen gene expression and stability of the inserted gene in the plasmid. In some embodiments, nucleic acid-based vaccines comprising expression vectors of the invention are viral vectors in which the retroviral antigens for vaccination are included in the viral vector genome.


Any of the conventional vectors used for expression in eukaryotic cells may be used for directly introducing DNA into tissue. Expression vectors containing regulatory elements from eukaryotic viruses are typically used in eukaryotic expression vectors, e.g., CMV, viral LTRs and the like. Typical vectors include those with a human CMV promoter, no splice sites, and a bovine growth hormone polyA site. Exemplary vectors are described in the “Examples” section.


Therapeutic quantities of plasmid DNA can be produced for example, by fermentation in E. coli, followed by purification. Aliquots from the working cell bank are used to inoculate growth medium, and grown to saturation in shaker flasks or a bioreactor according to well known techniques. Plasmid DNA can be purified using standard bioseparation technologies such as solid phase anion-exchange resins. If required, supercoiled DNA can be isolated from the open circular and linear forms using gel electrophoresis or other methods.


Purified plasmid DNA can be prepared for injection using a variety of formulations. The simplest of these is reconstitution of lyophilized DNA in sterile phosphate-buffer saline (PBS). This approach, i.e., “naked DNA,” is particularly suitable for intramuscular (IM) or intradermal (ID) administration.


Assessment of Immunogenic Response

To assess a patient's immune system during and after treatment and to further evaluate the treatment regimen, various parameters can be measured. Measurements to evaluate vaccine response include: antibody measurements in the plasma, serum, or other body fluids; and analysis of in vitro cell proliferation in response to a specific antigen, indicating the function of CD4+ cells. Such assays are well known in the art. For example, for measuring CD4+ T cells, many laboratories measure absolute CD4+ T-cell levels in whole blood by a multi-platform, three-stage process. The CD4+ T-cell number is the product of three laboratory techniques: the white blood cell (WBC) count; the percentage of WBCs that are lymphocytes (differential); and the percentage of lymphocytes that are CD4+ T-cells. The last stage in the process of measuring the percentage of CD4+ T-lymphocytes in the whole-blood sample is referred to as “immunophenotyping by flow cytometry. Systems for measuring CD4+ cells are commercially available. For example Becton Dickenson's FACSCount System automatically measure absolutes CD4+, CD8+, and CD3+ T lymphocytes.


Other measurements of immune response include assessing CD8+ responses. These techniques are well known. CD8+ T-cell responses can be measured, for example, by using tetramer staining of fresh or cultured PBMC (see, e.g., Altman, et al., Proc. Natl. Acad. Sci. USA 90:10330, 1993; Altman, et al., Science 274:94, 1996), or γ-interferon release assays such as ELISPOT assays (see, e.g., Lalvani, et al., J. Exp. Med. 186:859, 1997; Dunbar, et al., Curr. Biol. 8:413, 1998; Murali-Krishna, et al., Immunity 8:177, 1998), or by using functional cytotoxicity assays.


Viral Titer

Viremia is measured by assessing viral titer in a patient. There are a variety of methods of perform this. For example, plasma HIV RNA concentrations can be quantified by either target amplification methods (e.g., quantitative RT polymerase chain reaction [RT-PCR], Amplicor HIV Monitor assay, Roche Molecular Systems; or nucleic acid sequence-based amplification, [NASBA®], NucliSens™ HIV-1 QT assay, Organon Teknika) or signal amplification methods (e.g., branched DNA [bDNA], Quantiplex™ HIV RNA bDNA assay, Chiron Diagnostics). The bDNA signal amplification method amplifies the signal obtained from a captured HIV RNA target by using sequential oligonucleotide hybridization steps, whereas the RT-PCR and NASBA® assays use enzymatic methods to amplify the target HIV RNA into measurable amounts of nucleic acid product. Target HIV RNA sequences are quantitated by comparison with internal or external reference standards, depending upon the assay used.


Administration of vaccine constructs of the invention to individuals undergoing ART controls viremia, e.g., in periods when the patient may stop receiving ART. Controlling viremia refers to lowering of the plasma levels of virus to levels lower than those observed in the period of chronic infection prior to ART, usually to levels to levels one to two logs lower than the set point observed in the period of chronic infection prior to ART. Inclusion of the vaccine constructs described herein results in enhanced control of viremia in comparison to treatment protocols that do not comprise administration of optimized DNA vectors or that do not that encode fusion proteins comprising a destabilization signal/and or secreted fusion proteins.


Administration of DNA Constructs

To maximize the immunotherapeutic effects of DNA vaccines, alternative methods for formulating purified plasmid DNA may be desirable. A variety of methods have been described, and new techniques may become available. Cationic lipids can also be used in the formulation (see, e.g., as described by WO 93/24640; Mannino & Gould-Fogerite, BioTechniques 6(7): 682 (1988); U.S. Pat. No. 5,279,833; WO 91/06309; and Felgner, et al., Proc. Nat'l Acad. Sci. USA 84:7413 (1987). In addition, glycolipids, fusogenic liposomes, peptides and compounds referred to collectively as protective, interactive, non-condensing compounds (PINC) could also be complexed to purified plasmid DNA to influence variables such as stability, intramuscular dispersion, or trafficking to specific organs or cell types.


The administration procedure for DNA is not critical. Vaccine compositions (e.g., compositions containing the DNA expression vectors) can be formulated in accordance with standard techniques well known to those skilled in the pharmaceutical art. Such compositions can be administered in dosages and by techniques well known to those skilled in the medical arts taking into consideration such factors as the age, sex, weight, and condition of the particular patient, and the route of administration.


In therapeutic applications, the vaccines are administered to a patient in an amount sufficient to elicit a therapeutic effect, e.g., a CD8+, CD4+, and/or antibody response to the HIV-1 antigens encoded by the vaccines that at least partially arrests or slows symptoms and/or complications of HIV infection. An amount adequate to accomplish this is defined as “therapeutically effective dose.” Typically, a therapeutically effective dose results in control of virema upon release from ART, i.e., lower levels of viremia after ART cessation compared to viremia observed prior to ART administration. Amounts effective for this use will depend on, e.g., the particular composition of the vaccine regimen administered, the manner of administration, the stage and severity of the disease, the general state of health of the patient, and the judgment of the prescribing physician.


Suitable quantities of DNA vaccine, e.g., plasmid or naked DNA can be about 1 μg to about 100 mg, preferably 0.1 to 10 mg, but lower levels such as 1-10 μg can be employed. For example, an HIV DNA vaccine, e.g., naked DNA or polynucleotide in an aqueous carrier, can be injected into tissue, e.g., intramuscularly or intradermally, in amounts of from 10 μl per site to about 1 ml per site. The concentration of polynucleotide in the formulation is usually from about 0.1 μg/ml to about 20 mg/ml.


The vaccine may be delivered in a physiologically compatible solution such as sterile PBS in a volume of, e.g., one ml. The vaccines may also be lyophilized prior to delivery. As well known to those in the art, the dose may be proportional to weight.


The compositions included in the vaccine regimen can be administered alone, or can be co-administered or sequentially administered with other immunological, antigenic, vaccine, or therapeutic compositions. These include adjuvants, and chemical or biological agent given in combination with, or recombinantly fused to, an antigen to enhance immunogenicity of the antigen. Such other compositions can also include purified antigens from the immunodeficiency virus or a second recombinant vector system that expresses f such antigens and is thus able to produce additional therapeutic compositions. For examples, adjuvant compositions can include expression vectors encoding IL-12 or IL-15 or other biological response modifiers (e.g., cytokines or co-stimulating molecules, further discussed below). Again, co-administration is performed by taking into consideration such known factors as the age, sex, weight, and condition of the particular patient, and, the route of administration.


Compositions that may also be administered with the vaccines include other agents to potentiate or broaden the immune response, e.g., IL-2 or CD40 ligand, which can be administered at specified intervals of time, or continuously administered. For example, IL-2 can be administered in a broad range, e.g., from 10,000 to 1,000,000 or more units. Administration can occur continuously following vaccination.


The vaccines can additionally be complexed with other components such as peptides, polypeptides and carbohydrates for delivery. For example, expression vectors, i.e., nucleic acid vectors that are not contained within a viral particle, can be complexed to particles or beads that can be administered to an individual, for example, using a vaccine gun. Nucleic acid vaccines are administered by methods well known in the art as described in Donnelly et al. (Ann. Rev. Immunol. 15:617-648 (1997)); Felgner et al. (U.S. Pat. No. 5,580,859, issued Dec. 3, 1996); Felgner (U.S. Pat. No. 5,703,055, issued Dec. 30, 1997); and Carson et al. (U.S. Pat. No. 5,679,647, issued Oct. 21, 1997), each of which is incorporated herein by reference. One skilled in the art would know that the choice of a pharmaceutically acceptable carrier, including a physiologically acceptable compound, depends, for example, on the route of administration of the expression vector.


For example, naked DNA or polynucleotide in an aqueous carrier can be injected into tissue, such as muscle, in amounts of from 10 μl per site to about 1 ml per site. The concentration of polynucleotide in the formulation is from about 0.1 μg/ml to about 2 mg/ml.


Vaccines can be delivered via a variety of routes. Typical delivery routes include parenteral administration, e.g., intradermal, intramuscular or subcutaneous routes. Other routes include oral administration, intranasal, and intravaginal routes. In such compositions the nucleic acid vector can be in admixture with a suitable carrier, diluent, or excipient such as sterile water, physiological saline, glucose or the like.


The expression vectors of use for the invention can be delivered to the interstitial spaces of tissues of a patient (see, e.g., Felgner et al., U.S. Pat. Nos. 5,580,859, and 5,703,055). Administration of expression vectors of the invention to muscle is a particularly effective method of administration, including intradermal and subcutaneous injections and transdermal administration. Transdermal administration, such as by iontophoresis, is also an effective method to deliver expression vectors of the invention to muscle. Epidermal administration of expression vectors of the invention can also be employed. Epidermal administration involves mechanically or chemically irritating the outermost layer of epidermis to stimulate an immune response to the irritant (Carson et al., U.S. Pat. No. 5,679,647).


The vaccines can also be formulated for administration via the nasal passages. Formulations suitable for nasal administration, wherein the carrier is a solid, include a coarse powder having a particle size, for example, in the range of about 10 to about 500 microns which is administered in the manner in which snuff is taken, i.e., by rapid inhalation through the nasal passage from a container of the powder held close up to the nose. Suitable formulations wherein the carrier is a liquid for administration as, for example, nasal spray, nasal drops, or by aerosol administration by nebulizer, include aqueous or oily solutions of the active ingredient. For further discussions of nasal administration of AIDS-related vaccines, references are made to the following patents, U.S. Pat. Nos. 5,846,978, 5,663,169, 5,578,597, 5,502,060, 5,476,874, 5,413,999, 5,308,854, 5,192,668, and 5,187,074.


The vaccines can be incorporated, if desired, into liposomes, microspheres or other polymer matrices (see, e.g., Felgner et al., U.S. Pat. No. 5,703,055; Gregoriadis, Liposome Technology, Vols. I to III (2nd ed. 1993). Liposomes, for example, which consist of phospholipids or other lipids, are nontoxic, physiologically acceptable and metabolizable carriers that are relatively simple to make and administer. Liposomes include emulsions, foams, micelles, insoluble monolayers, liquid crystals, phospholipid dispersions, lamellar layers and the like.


Liposome carriers can serve to target a particular tissue or infected cells, as well as increase the half-life of the vaccine. In these preparations the vaccine to be delivered is incorporated as part of a liposome, alone or in conjunction with a molecule which binds to, e.g., a receptor prevalent among lymphoid cells, such as monoclonal antibodies which bind to the CD45 antigen, or with other therapeutic or immunogenic compositions. Thus, liposomes either filled or decorated with a desired immunogen of the invention can be directed to the site of lymphoid cells, where the liposomes then deliver the immunogen(s).


Liposomes for use in the invention are formed from standard vesicle-forming lipids, which generally include neutral and negatively charged phospholipids and a sterol, such as cholesterol. The selection of lipids is generally guided by consideration of, e.g., liposome size, acid lability and stability of the liposomes in the blood stream. A variety of methods are available for preparing liposomes, as described in, e.g., Szoka, et al., Ann. Rev. Biophys. Bioeng. 9:467 (1980), U.S. Pat. Nos. 4,235,871, 4,501,728, 4,837,028, and 5,019,369.


EXAMPLES
Example
Administration of DNA Vaccines to ART-Treated Macaques Controls Viremia upon Release from ART

The following example shows the ability of DNA vaccination during antiretroviral therapy to decrease virus replication in macaques chronically infected with highly pathogenic SIVmac251. In this example, animals were treated with a combination of three drugs and vaccinated with combinations of vectors expressing SIV antigens. Vaccinated animals showed a boost in cellular immune responses. After release from therapy, the virus load and immune response of the immunized animals were compared to animals treated only with ART. The mean viral load for the 10 weeks before ART was compared to the mean virus load for the 13 weeks following ART termination. Vaccinated animals showed significant drops in viremia and persistence of cellular immune responses at high levels compared to controls, indicating a benefit from DNA therapeutic vaccination. The vaccine regimen and results were performed and analyzed as follows.


Thirty one Indian rhesus macaques (Macaca mulatta) in four groups were studied. All Rhesus macaques were infected with pathogenic SIVmac251 via the mucosal route. These groups were:


Group 1 (group v1), (n=9) previously naïve, infected animals received DNA vaccine during ART.


Group 2 (group v2), (n=6) previously vaccinated, infected animals also received DNA vaccine during ART.


Group 3 (group c1), (n=12) previously naïve infected animals received ART only.


Group 4, (group c2) (n=4) previously vaccinated, infected animals received ART only.


Animals in groups 1 and 3 were previously naïve, infected with SIVmac251. Animals in groups 2 and 4 were previously vaccinated with SIV DNA vectors, infected by SIVmac251 as part of another study and recycled for this immunotherapy study. Animals had been infected for period varying from 15 to 70 weeks prior to the start of antiretroviral treatment (ART). Animals were treated with a combination of three antiretroviral drugs effective against SIVmac (PMPA, stavudine, ddI) for approximately 20 weeks. Drug dosage was as follows: PMPA, 20 mg/kg SC SID; ddI, 5 mg/kg IV SID; Stavudine, 1.2 mg/kg PO BID.


The animals in groups 1 and 2 received in addition 3 or four DNA vaccinations, usually at week 8, 12, and 16 of treatment, as indicated in FIG. 1. These vaccinations consisted of combinations of optimized expression vectors for SIV antigens, including antigens which are further modified for efficient secretion and uptake by antigen presenting cells (antigen fusions to MCP3 chemokine) or modified for more efficient intracellular degradation (antigen fusions to a Catenin peptide, CATE).


Animals were vaccinated via the intramuscular route with a total of 8 mg of plasmids. DNAs were injected separately or in groups in PBS in several different sites. Animals 56 and 57 (group 1), and 920, 922, 923, 628 (group 2) received together with the SIV DNAs 2 mg of an IL-15 producing plasmid in citrate buffer containing bupivacaine. Animals 926 and 626 (group 2) received together with the SIV DNAs 2 mg of an IL-12 producing plasmid in citrate buffer containing bupivacaine. The bioactive IL-12 or IL-15 produced by these plasmids was included as a molecular adjuvant in an effort to further enhance the effects of DNA vaccination.


The animals were treated in smaller groups over a period of 3 years, as they became available from other studies. Of the 31 treated animals, eight were excluded from the primary statistical analysis. Five of these animals (3 in the vaccine group, 2 controls) were excluded because they did not control virus for at least ⅓ of the period during ART. The remaining three animals were excluded because they had undetectable viremia before ART initiation. The primary statistical analysis described herein was therefore performed in 23 animals, of which 12 received ART plus vaccination during therapy, and 11 received only ART and were used as the control group (Table 1, FIG. 2).


Table 1 shows a list of the animals indicating the length of time of infection (median=24 weeks), ART treatment (median=20 weeks) and post-ART follow-up period (median=40 weeks), the types and amounts of DNA used, the number of immunizations and the animal haplotypes. All animals showed a benefit during ART by decreasing virus load to below the cut-off value for the assay for at least ⅓ of the time during ART. Animals were kept in ART for at least 20 weeks, except for some animals that showed signals of drug toxicities, for which ART was terminated earlier (965, 968, 926, 626). The animals were studied during and after ART by measuring viral loads in plasma and anti-SIV responses by Elispot and antibody assays. Viral load in plasma was monitored by analysis of RNA as described (Romano, et al., J. Virol. Methods 86:61-70, 2000; Suryanarayana, et al., AIDS Res Hum Retroviruses 14:183-189, 1998).









TABLE 1







History and treatment of the animals in the immunotherapy study.






















post-


total






prior
infection

ART
DNA vectors

amount of
time of


group

prophylactic
till ART,
ART,
followup
used,
Cytokine
DNA,
immunization,


#
animal#
vaccination
weeks
weeks
weeks
SIVmac239
DNA
mg/animal
weeks in ART
HAPLOTYPE




















v1
795L

29
23
33
gag, env

7.5
8, 10, 13, 17
A01-A11-B017


v1
797L

29
23
34
gag, env

7.5
8, 10, 13, 17
A01-A02-B01-w201


v1
538L

15
20
93
gag, env, RTNV

10
2, 6, 10, 14
A01-B01


v1
539L

15
20
59
gag, env, RTNV

10
2, 6, 10, 14
A08-B03-w201


v1
965L

20
13
90
gag, env, RTNV

10
2, 6, 10
A11-B01


v1
968L

20
14
74
gag, env, RTNV

10
2, 6, 10, 14
B01


v1
 57M

34
20
40
gag, env, poINTV
IL-15
10
9, 13, 17
A11-B01-B03-B17


v2
920L
Y
34
20
70
gag, env, poINTV
IL-15
10
9, 13, 17
A02-A11-w201


v2
923L
Y
34
20
70
gag, env, poINTV
IL-15
10
9, 13, 17
B03-B17-w201-0401/06


v2
922L
Y
34
20
19
gag, env, poINTV
IL-15
10
9, 13, 17
w201


v2
926L
Y
70
19
35
gag, env, poINTV
IL-12
10.1
8, 12, 16
A02-B17-w201


v2
626
Y
70
19
35
gag, env, poINTV
IL-12
10.1
8, 12, 16
A01-A08


c1
882L

16
25
41




*


c1
890L

16
25
49




*


c1
909L

16
25
49




*


c1
208M

16
25
49




*


c1
3077

24
34
36




*


c1
3139

24
34
36




*


c1
3116

24
34
36




*


c1
3143

24
34
36




*


c2
921L
Y
34
20
45




A01-0401/06


c2
924L
Y
34
20
14




w201


c2
925L
Y
34
20
14




neg





24
20
40
(=median)





Stars indicate animals known to be negative for MamuA*01.


neg, negative for all examined haplotypes.







FIG. 2 shows the measurements of virus loads in plasma from initial infection to the end of follow-up period for all animals. During ART, an assay with a cutoff value of 20,000 RNA copies/ml was used, and the values below the cutoff were assigned the value of 10,000. Most of the samples below cutoff during the other periods were analyzed, if available in sufficient quantity, by more sensitive assays having cutoff values of 2,000 and 100 RNA copies/ml of plasma. After release from therapy, virus rebound rapidly in the majority of the animals. The vaccinated animals (FIG. 2A) showed evidence of virus suppression, since the virus decreased dramatically few weeks after ART termination, despite initial rebound(s). Seven of the 12 vaccinated animals showed significant long-term benefit in the levels of viremia; five of these suppressed virus at levels close to or below detection level for several months. In contrast, virus loads in most of the control animals returned to levels similar to those prior to therapy (FIG. 2B). The inability of ART alone to induce long-lasting benefits in virus load seen in this study is in agreement with the experience of other investigators in macaques and also with the results in humans, where therapy termination results in general in virus rebound at levels similar to the chronic state of viremia prior to ART.


For statistical comparisons, the (log 10 transformed) average viremia during the 10 weeks immediately preceding ART and during the first 13 weeks of follow-up, available for all animals in the study, was determined. The change in average viremia was used as a measure of the effects of vaccination.


The comparison of the change in viremia for the vaccine and control groups is shown in FIG. 3. All animals in the vaccine group showed lower average viremia after ART release, compared to the chronic phase. The mean difference in the log-base 10 transformed virus load measurements for each animal (mean VL after ART minus mean VL before ART) was −0.93 for the combined vaccination group and −0.28 for the combined control group (FIG. 4). The difference was highly statistically significant across the two groups (P=0.001 with a Wilcoxon rank sum test).


Five of the animals in the vaccine group (see Table 1, animals 920, 922, 923, 926 and 626) and three in the control group (animals 921, 924 and 925) were prophylactically vaccinated with SIV gag and env DNA vectors before SIV infection, as part of previous studies. To analyze any effects of the prophylactic DNA vaccination on immunotherapy outcome, the previously vaccinated animals in the vaccine and control groups were compared to the rest of the animals in their corresponding group. An interaction between the previous vaccination and only therapeutic vaccination was test for using 2-way analysis of variance. There was no evidence for interaction (P=0.97), suggesting that the benefit derived by therapeutic vaccination is not affected by previous prophylactic vaccination. Therefore, combining the previously vaccinated animals in the two groups of therapeutically vaccinated and controls, was appropriate. In addition, if only the animals without any previous treatment or prophylactic vaccination (7 vaccines and 8 controls) are considered, the results are also significant, indicating that therapeutic vaccination provides a benefit.


It is evident from FIG. 2 that several animals had initial rebounds of virus after ART release, followed by periods of decreased viral loads. This subsequent decrease could indicate attempts of the immune system to control the virus. Therefore, the concern was that comparisons of viremia for relatively short periods of time may misrepresent the long-term effects of immunotherapy. On the other hand, some previous work has suggested that the benefits of immunotherapy may be transient. To study this, additional analyses including the longer follow-up available for these animals were performed. The differences in virus load using the entire chronic and release period on all 23 animals (FIG. 3, Right) was evaluated. In this analysis, each animal has a different follow-up time as indicated in FIG. 2. In this comparison, the mean difference in virus load was −1.05 log-base 10 for the combined vaccination group and −0.068 for the combined control group. This difference was statistically significant (P=0.0004 with a Wilcoxon rank sum test). Control of viremia for long periods of time after an initial virus rebound immediately following ART termination explains the bigger difference found upon analyzing the entire available periods of chronic SIV infection and post-ART for all animals.


Immunological Analysis

Immunological analysis was performed for 10/12 ART+DNA animals and 3/11 ART animals. This analysis showed induction of cellular and humoral immune responses after DNA vaccination. IFN-gamma production from PBMC stimulated by overlapping peptide pools (15 mers overlapping by 11) for gag and gp120env (FIG. 4) was measured. FIG. 5A shows the ELISPOT response to gag and env for 10 vaccinated animals, shown as median and quartiles, divided into 4 periods, chronic phase, ART before vaccination, ART and DNA vaccination, and follow-up after drug termination. ELISPOT numbers decrease immediately upon drug treatment, as expected from the low virus load, and immediately increase upon vaccination. Antibodies against SIV proteins were measured by Elisa. The animals had high antibody levels against SIV (reciprocal titers 105-106). Ab levels were not increased during vaccination, were slightly decreased during ART, whereas after ART termination the antibody levels were increased to higher levels (FIG. 5B).


The mean and peak Elispot values for gag were compared using a Wilcoxon signed rank test during the first period of ART treatment prior to, and the period during therapeutic vaccination. There was an overall increase during therapeutic vaccination (median difference=255.8, 1st quartile=115.7 and 3rd quartile: 479.5); P-value=0.001. Similar trends were detected using peak measurements (P=0.001).


Animals Receiving DNA Vectors Expressing in Addition IL-12 or IL-15

As shown in Table 1, some animals in this study received DNA vectors expressing biologically active macaque IL-12 or IL-15. This showed that the DNA vectors for these cytokines were safe for animals infected with SIV, since no adverse effects were observed. This is similar to the conclusions obtained in non-SIV infected animals, including neonate macaques. The levels of Elispot responses for the animals receiving IL-15 were similar. Comparison of the decrease in viremia for the animals receiving IL-15 DNA versus the animals that did not, showed no statistical differences (P=0.64 and P=0.79 for mean and peak gag responses, respectively). Since defects in IL-12 and IL-15 have been shown in HIV infected people, inclusion of IL-12 or IL-15 can be beneficial when used in therapeutic vaccination procedures.


The differences in virus load of all 31 treated animals without excluding any animal that completed the ART period, using the entire chronic and release period, was also analyzed. As in the analysis performed with the 23 animals, supra, there is no interaction between previous vaccination and just immunotherapy, allowing the combination of animals in two groups. The mean difference for vaccine was 0.97 and for the control group 0.26. The difference between groups was highly significant (P=0.002) using Wilcoxon rank sum test (data not shown).


For the above comparisons conducted ANCOVA (analysis of covariance) was also conducted adjusting for differences in chronic viral load between the groups. For all three analyses above of the 23 as well as the 31 animals, the vaccine group was different from control after adjusting for average log transformed chronic VL levels (P<0.001 for all analyses).


To verify that vaccination previous to SIV infection and enrollment in the exemplary therapeutic vaccination protocol described in this example did not affect the outcome of the study, an additional comparison excluding all previously vaccinated animals was conducted. Even upon exclusion of all animals that were vaccinated as part of previous studies before SIV infection and comparison of the 7 remaining vaccines (mean Difference in log 10 Virus Load (DVL)=1.10) to the naïve group (mean DVL=−0.07), the results were significant (P=0.002, using Wilcoxon rank sum test, data not shown).


Therefore, we conclude that DNA vaccination during ART resulted in virus control after release from ART for prolonged periods of time (months). The majority of the animals appear to benefit from this immunization, and the average benefit is estimated between 0.65 and 1 log 10decrease in virus load compared to the control group.


A number of alternative statistical analyses were run to verify that these results are not affected by treatment variations or exclusion criteria. These included additional viral load analyses using ANCOVA: For Area Under Curve (AUC) analyses: we compared differences in the standardized AUC (log scale) between chronic and release periods. These analyses were done using complete follow-up on each animal. For 23 animal analysis, we found highly significant differences between vaccinated and non-vaccinated animals (P=0.003). Also significant differences using 31 animals (P=0.007).


SUMMARY

In summary, all the analyses show that, relative to the SIV infection period, post-therapy viral load is substantially lower in therapeutically DNA vaccinated animals compared with un-vaccinated animals. Chronically infected animals, unable to control viremia on their own, do so upon ART and DNA vaccination. A number of animals were able to fully suppress viremia close to the detection limits of the assay. These included both previously prophylactically vaccinated as well as naïve animals. ART alone did not give any evidence of permanent virus decrease, in agreement with data from several studies on Therapy Interruption in monkeys and humans.


The animals that were studied were of diverse background as shown by the haplotype data (Table 1) and were unable to suppress virus replication prior to treatment. The data presented herein above suggested that ART alone was not able to produce a lasting decrease in chronic virus loads after release, in agreement with other studies. The decrease in virus load seen in vaccinated animals suggests that ART and vaccination had an important positive effect on the immune system. Interestingly, the virus rebounds upon termination of ART, and it is further suppressed after some weeks, presumably by the immune system. In agreement with this, the cellular immune responses measured by ELISPOT agree with the notion that virus rebound leads to increased CTL activity and elimination of the infected cells. In several animals showing low virus loads high Elispot numbers against gag and env proteins were maintained. This is in contrast to the expected decrease in the level of immune responses upon a decrease in viremia, and suggests that the immune system of the therapeutically immunized animals has reached a different steady state. This observation is reflected in the negative correlation of viral load with Elispot values seen during the release period.


Not to be bound by theory, it may be hypothesized that the previously prophylactic vaccinated animals have a healthier immune system and could respond to the therapeutic vaccination more effectively than non-vaccinated animals. The analysis described in this example failed to show any significant difference between the two groups. Analysis of the animals that did not receive any vaccination prior to SIVmac251 infection (7 vaccines and 8 controls) resulted in the same conclusion, i.e., the vaccines showed a statistically significant drop in viremia compared to the controls. Therefore, the benefit of immunotherapy did not depend on previous prophylactic vaccination.


Exemplary Constructs of the Invention:

“Gag” refers to DNA sequences encoding the Gag protein, which generates components of the virion core; “Pro” denotes “protease”. The protease, reverse transcriptase, and integrase genes comprise the “pol” gene.


“MCP3” in these constructs denotes MCP-3 amino acids 33-109 linked to IP-10 secretory peptide (alternatively, it can be linked to its own natural secretory peptide or any other functional secretory signal, e.g., the tissue plasminogen activator (tPA) signal peptide; “CATE” denotes β-catenin aino acids 18-47.


Construction of Vectors Encoding Fusion Proteins Comprising Destabilizing Sequences:

In order to design “Gag-destabilized” constructs, a literature search for characterized sequences able to target proteins to the ubiquitin-proteasome degradation pathway gave the following, not necessarily representative, list:


c-Myc aa 2-120


Cyclin A aa 13-91

Cyclin B aa 13-91 (*10-95 in vectors in examples herein)


IkBα aa20-45


β-Catenin aa 19-44 (aa18-47 in vectors in examples herein)


c-Jun aa 1-67


c-Mos aa 1-35


Exemplary 30 aa of β-catenin destabilization sequence (amino acids 18-47):











RKAAVSHWQQQSYLDSGTHSGATTTAPSLS







β-catenin (18-47) added at the N terminus of HIV antigens with initiator AUG Met:











MRKAAVSHWQQQSYLDSGIHSGATTTAPSLS






In some embodiments, the gag p37 and p55 plasmids may have the same p37 and p55 gag sequences disclosed in the patents containing INS-gag sequences (see, e.g., U.S. Pat. No. 5,972,596 and U.S. Pat. No. 5,965,726).


Exemplary SIV constructs are provided below. All plasmids have CMV promoter and BGH poly adenylation signal, the kan resistant gene for growth in E. coli. The pol genes (protease, RT, int) are mutated to render them inactive. SIV inactivating mutations were analagous to the mutations in HIV pol set forth in FIG. 11. A comparison of wt vs. modified SIV pol is provided in FIG. 14.









Plasmid pSIVgagDX:



lower case, underlined: CMV promoter;


italics: BGH polyadenylation signal


Gag gene: 770-2302





(1)cctggccattgcatacgttgtatccatatcataatatgtacatttatattggctcatgtcca






acattaccgccatgttgacattgattattgactagttattaatagtaatcaatacggggtcatta







gttcatagcccatatatggagttccgcgttacataacttacggtaaatggcccgcctggctgacc







gcccaacgacccccgcccattgacgtcaataatgacgtatgttcccatagtaacgccaataggga







ctttccattgacgtcaatgggtggagtatttacggtaaactgcccacttggcagtacatcaagtg







tatcatatgccaagtacgccccctattgacgtcaatgacggtaaatggcccgcctggcattatgc







ccagtacatgaccttatgggactttcctacttggcagtacatctacgtattagtcatcgctatta







ccatggtgatgcggttttggcagtacatcaatgggcgtggatagcggtttgactcacggggattt







ccfaagtccaccccattgacgtcaatgggagtttgtttggcaccaaaatcaacgggactttccaa







aatgtcgtaacaactccgccccattgacgcaaatgggcggtaggcgtgtacggtgggaggtctat







ataagcagagctcgtttagtgaaccgtcagatcgcctggagacgccatccacgctgttttgacct







ccatagaagacaccgggaccgatccagcctccgcgggcgcgCGTCGACAGAGAGATGGGCGTGAG






AAACTCCGTCTTGTCAGGGAAGAAAGCAGATGAATTAGAAAAAATTAGGCTACGACCCTAACGGA





AAGAAAAAGTACATGTTGAAGCATGTAGTATGGGCAGCAAATGAATTAGATAGATTTGGATTAGC





AGAAAGCCTGTTGGAGAACAAAGAAGGATGTCAAAAAATACTTTCGGTCTTAGCTCCATTAGTGC





CAACAGGCTCAGAAAATTTAAAAAGCCTTTATAATACTGTCTGCGTCATCTGGTGCATTCACGCA





GAAGAGAAAGTGAAACACACTGAGGAAGCAAAACAGATAGTGCAGAGACACCTAGTGGTGGATAA





CAGGAACCACCGAAACCATGCCGAAGACCTCTCGACCAACAGCACCATCTAGCGGCAGAGGAGGA





AACTACCCAGTACAGCAGATCGGTGGCAACTACGTCCACCTGCCACTGTCCCCGAGAACCCTGAA





CGCTTGGGTCAAGCTGATCGAGGAGAAGAAGTTCGGAGCAGAAGTAGTGCCAGGATTCCAGGCAC





TGTCAGAAGGTTGCACCCCCTACGACATCAACCAGATGCTGAACTGCGTTGGAGACCATCAGGCG





GCTATGCAGATCATCCGTGACATCATCAACGAGGAGGCTGCAGATTGGGACTTGCAGCACCCACA





ACCAGCTCCACAACAAGGACAACTTAGGGAGCCGTCAGGATCAGACATCGCAGGAACCACCTCCT





CAGTTGACGAACAGATCCAGTGGATGTACCGTCAGCAGAACCCGATCCCAGTAGGCAACATCTAC





CGTCGATGGATCCAGCTGGGTCTGCAGAAATGCGTCCGTATGTACAACCCGACCAACATTCTAGA





TGTAAAACAAGGGCCAAAAGAGCCATTTCAGAGCTATGTAGACAGGTTCTACAAAAGTTTAAGAG





CAGAACAGACAGATGCAGCAGTAAAGAATTGGATGACTCAAACACTGCTGATTCAAAATGCTAAC





CCAGATTGCAAGCTAGTGCTGAAGGGGCTGGGTGTGAATCCCACCCTAGAAGAAATGCTGACGGC





TTGTCAAGGAGTAGGGGGGCCGGGACAGAAGGCTAGATTAATGGCAGAAGCCCTGAAAGAGGCCC





TCGCACCAGTGCCAATCCCTTTTGCAGCAGCCCAACAGAGGGGACCAAGAAAGCCAATTAAGTGT





TGGAATTGTGGGAAAGAGGGACACTCTGCAAGGCAATGCAGAGCCCCAAGAAGACAGGGATGCTG





GAAATGTGGAAAAATGGACCATGTTATGGCCAAATGCCCAGACAGACAGGCGGGTTTTTTAGGCC





TTGGTCCATGGGGAAAGAAGCCCCGCAATTTCCCCATGGCTCAAGTGCATCAGGGGCTGATGCCA





ACTGCTCCCCCAGAGGACCCAGCTGTGGATCTGCTAAAGAACTACATGCAGTTGGGCAAGCAGCA





GAGAGAAAAGCAGAGAGAAAGCAGAGAGAAGCCTTACAAGGAGGTGACAGAGGATTTGCTGCACC





TCAATTCTCTCTTTGGAGGAGACCAGTAGGAATCGAGCTCGGTACGATCCACCCCTCCCCCGTGC






CTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCG







CATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGCACAGCAAGGGGGAGGA







TTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGGTACCCAGGTGCTGAAGA







ATTGACCCGGTTCCTCCTGGGCCAGAAAGAAGCAGGCACATCCCCTTCTCTGTGACACACCCTGT







CCACGCCCCTGGTTCTTAGTTCCAGCCCCACTCATAGGACACTCATAGCTCAGGAGGGCTCCGCC







TTCAATCCCACCCGCTAAAGTACTTGGAGCGGTCTCTCCCTCCCTCATCAGCCCACCAAACCAAA







CCTAGCCTCCAAGAGTGGGAAGAAATTAAAGCAAGATAGGCTATTAAGTGCAGAGGGAGAGAAAA







TGCCTCCAACATGTGAGGAAGTAATGAGAGAAATCATAGAATTTCTTCCGCTTCCTCGCTCACTG






ACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGG





TTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAG





GAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACA





AAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCC





CCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTT





TCTCCCTTCGGGAAGCGTGGCGCTTTCTCAATGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGG





TCGTTCGCTCCAALGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATC





CGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTG





GTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGIAAGTGGTGGCCTAA





CTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGJAAGCCAGTTACCTTCGGA





AAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAAAAAACCACCGCTGGTAGCGGTGGTTTTTTTG





TTTGCAAGCAGCAGATTACGCGCAGAAAJAAAGGATCTCAAAGAAGATCCTTTGATCTTTTCTAC





GGGGTCTGACGCTCAGTGGAACGAAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAG





GATCTTCACCTAGATCCTTTTAAAATTAAAAATGAAGTTTTAATCAATCTAAAGTATATATGAGT





AAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATT





TCGTTCATCCATAGTTGCCTGACTCCGGGGGGGGGGGGCGCTGAGGTCTGCCTCGTGAAGAAGGT





GTTGCTGACTCATACCAGGCCTGAATTAATCGCCCCATCATCCAGCCAGAAAGTGAGGGAGCCAC





GGTTGATGAGAGCTTTGTTGTAGGTGGACCAGTTGGTGATTTTGAACTTTTGCTTTGCCACGGAA





CGGTCTGCGTTGTCGGGAAGATGCGTGATCTGATCCTTCAACTCAGCAAGTTCGATTTATTCAAC





AAAAAGCCGCCGTCCCGTCAAGCTCATCGAGCATCAAATGAAACTGCAATTTATTCATATCAGGA





TTATCAATACCATATTTTTGAAAGCCGTTTCTGTAAATGAAAGGAGAAAAAACTCACCGAGGCAG





TTCCATAGGATGGCAAGATCCTGGTATCGGTCTGCGATTCCGACTCGTCCAACATCAAATACAAC





CTATTAATTTCCCCTCGTCAAAAATAAGGTTATCAAGTGAGAAAATCACCATGAGTGACGACTGA





ATCCGGTGAGAAAAAATGGCAAAAGCTTATGCATTTCTTTCCAGACTTGTTCAACAGGCCAGCCA





TTACGCTCGTCATCAATCACTCGCATCAACCAAACCGTTATTCATTCGTGATTGCGCCTGAGCGA





GACGAAAAAAATACGCGATCGCTGTTAAAAGGACAATTACAAACAGGAATCGAATGCAACCGGCG





CAGGAACACTGCCAGGTTTTCCCGGGGATCGCAGTGGTGAGTAACCATGCATCATCAGGAGTACG





GATAAATGCTTGATGGTCGGAAGAGGCATAAATTCCGTCAGCCAGTTTAGTCTGACCATCTCATC





TGTAACATCATTGGCAACGCTACCTTTGCCATGTTTCAGAAACAACTCTGGCGCATCGGGCTTCC





CATACAATCGATAGATTGTCGCACCTGATTGCCCGACATTATCGCGAGCCCATTTATACCCATAT





TCAGCATCCATGTTGGAATTTAATCGCGGCCTCGAGCAAGACGTTTCCCGTTGAATATGGCTCAT





AACACCCCTTGTATTACTGTTTATGTAAGCAGACAGTTTTATTGTTCATGATGATATATTTTTAT





CTTGTGCAATGTAACATCAGAGATTTTGAGACACAACGTGGCTTTCCCCCCCCCCCCATTATTGA





AGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACA





AATAGGGGTTCCGCGCACATTTCCCCGAAA&AAGTGCCACCTGACGTCTAAGAAACCATTATTAT





CATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTCGCGCGTTTCGGTGATG





ACGGTGAAAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAAAGCGGA





TGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTA





ACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAAATACCGCACAG





ATGCGTAAGGAGAAAATACCGCATCAGATTGGCTATTGG (5558)





Protein SIV p57gag


M G V R N S V L S G K K A D E L E K R L R A N G K K K Y M L K H V





V W A A N E L D R F G L A E S L L E N K E G C Q K L S V L A A L V





A T G S E N L K S L Y N T V C V W C H A E E K V K H T E E A K Q V





Q R H L V V E T G T T E T M A K T S R A T A A S S G R G G N Y A V





Q Q G G N Y V H L A L S A R T L N A W V K L E E K K F G A E V V A





G F Q A L S E G C T A Y D N Q M L N C V G D H Q A A M Q R D N E E





A A D W D L Q H A Q A A A Q Q G Q L R E A S G S D A G T T S S V D





E Q Q W M Y R Q Q N A A V G N Y R R W Q L G L Q K C V R M Y N A T





N L D V K Q G A K E A F Q S Y V D R F Y K S L R A E Q T D A A V K





N W M T Q T L L Q N A N A D C K L V L K G L G V N A T L E E M L T





A C Q G V G G A G Q K A R L M A E A L K E A L A A V A A F A A A Q





Q R G A R K A K C W N C G K E G H S A R Q C R A A R R Q G C W K C





G K M D H V M A K C A D R Q A G F L G L G A W G K K A R N F A M A





Q V H Q G L M A T A A A E D A A V D L L K N Y M Q L G K Q Q R E K





Q R E S R E K A Y K E V T E D L L H L N S L F G G D Q •





pCATESVgagDX gene: 758-2395


CCTGGCCATTGCATACGTTGTATCCATATCATAJLTATGTACATTTATATTGGCTCATGTCCAAC





ATTACCGCCATGTTGACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATTAG





TTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCG





CCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGAC





TTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGT





ATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCC





CAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTAC





CATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTC





CAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCA





AAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTA





TATAAGCAGAGCTCGTTTAGTGAACCGTCAGATCGCCTGGAGACGCCATCCACGCTGTTTTGACC





TCCATAGAAGACACCGGGACCGATCCAGCCTCCGCGGGCGCGCATGAGAAAAGCGGCTGTTAGTC





ACTGGCAGCAGCAGTCTTACCTGGACTCTGGAATCCATTCTGGTGCCACTACCACAGCTCCTTCT





CTGAGTgctagcgcaggagcaGGCGTGAGAAACTCCGTCTTGTCAGGGAAGAAAGCAGATGAATT





AGAAAAAATTAGGCTACGACCCAACGGAAAGAAAAAGTACATGTTGAAGCATGTAGTATGGGCAG





CAAATGAATTAGATAGATTTGGATTAGCAGAAAGCCTGTTGGAGAACAAAGAAGGATGTCAAAAA





ATACTTTCGGTCTTAGCTCCATTAGTGCCAACAGGCTCAGAAAATTTAAAAAGCCTTTATAATAC





TGTCTGCGTCATCTGGTGCATTCACGCAGAAGAGAAAGTGAAACACACTGAGGAAGCAAAACAGA





TAGTGCAGAGACACCTAGTGGTGGAAACAGGAACCACCGAAACCATGCCGAAGACCTCTCGACCA





ACAGCACCATCTAGCGGCAGAGGAGGAAACTACCCAGTACAGCAGATCGGTGGCAACTACGTCCA





CCTGCCACTGTCCCCGAGAACCCTGAACGCTTGGGTCAAGCTGATCGAGGAGAAGAAGTTCGGAG





CAGAAGTAGTGCCAGGATTCCAGGCACTGTCAGAAGGTTGCACCCCCTACGACATCAACCAGATG





CTGAACTGCGTTGGAGACCATCAGGCGGCTATGCAGATCATCCGTGACATCATCAACGAGGAGGC





TGCAGATTGGGACTTGCAGCACCCACAACCAGCTCCACAACAAGGACAACTTAGGGAGCCGTCAG





GATCAGACATCGCAGGAACCACCTCCTCAGTTGACGAACAGATCCAGTGGATGTACCGTCAGCAG





AACCCGATCCCAGTAGGCAACATCTACCGTCGATGGATCCAGCTGGGTCTGCAGAAATGCGTCCG





TATGTACAACCCGACCAACATTCTAGATGTAAAACAAGGGCCAAAAGAGCCATTTCAGAGCTATG





TAGACAGGTTCTACAAAAGTTTAAGAGCAGAACAGACAGATGCAGCAGTAAAGAATTGGATGACT





CAAACACTGCTGATTCAAAATGCTAACCCAGATTGCAAGCTAGTGCTGAAGGGGCTGGGTGTGAA





TCCCACCCTAGAAGAAATGCTGACGGCTTGTCAAGGAGTAGGGGGGCCGGGACAGAAGGCTAGAT





TAATGGCAGAAGCCCTGAAAGAGGCCCTCGCACCAGTGCCAATCCCTTTTGCAGCAGCCCAACAG





AGGGGACCAAGAAAGCCAATTAAGTGTTGGAATTGTGGGAAAGAGGGACACTCTGCAAGGCAATG





CAGAGCCCCAAGAAGACAGGGATGCTGGAAATGTGGAAAAATGGACCATGTTATGGCCAAATGCC





CAGACAGACAGGCGGGTTTTTTAGGCCTTGGTCCATGGGGAAAGAAGCCCCGCAATTTCCCCATG





GCTCAAGTGCATCAGGGGCTGATGCCAACTGCTCCCCCAGAGGACCCAGCTGTGGATCTGCTAAA





GAACTACATGCAGTTGGGCAAGCAGCAGAGAGAAAAGCAGAGAGAAAGCAGAGAGAAGCCTTACA





AGGAGGTGACAGAGGATTTGCTGCACCTCAATTCTCTCTTTGGAGGAGACCAGTAGGAATTctga





TACGATCCAGATCTGCTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCT





TCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCA





TTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGCACAGCAAGGGGGAGGATT





GGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGGTACCCAGGTGCTGAAGAAT





TGACCCGGTTCCTCCTGGGCCAGAAAGAAGCAGGCACATCCCCTTCTCTGTGACACACCCTGTCC





ACGCCCCTGGTTCTTAGTTCCAGCCCCACTCATAGGACACTCATAGCTCAGGAGGGCTCCGCCTT





CAATCCCACCCGCTAAAGTACTTGGAGCGGTCTCTCCCTCCCTCATCAGCCCACCAAACCAAACC





TAGCCTCCAAGAGTGGGAAGAAATTAAAGCAAGATAGGCTATTAAGTGCAGAGGGAGAGAAAATG





CCTCCAACATGTGAGGAAGTAATGAGAGAAATCATAGAATTTCTTCCGCTTCCTCGCTCACTGAC





TCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTT





ATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGA





ACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAA





AATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCC





TGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTC





TCCCTTCGGGAAGCGTGGCGCTTTCTCAATGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTC





GTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGG





TAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTA





ACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTAC





GGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAG





AGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGC





AGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGAC





GCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCAC





CTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGT





CTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCC





ATAGTTGCCTGACTCCGGGGGGGGGGGGCGCTGAGGTCTGCCTCGTGAAGAAGGTGTTGCTGACT





CATACCAGGCCTGAATCGCCCCATCATCCAGCCAGAAAGTGAGGGAGCCACGGTTGATGAGAGCT





TTGTTGTAGGTGGACCAGTTGGTGATTTTGAACTTTTGCTTTGCCACGGAACGGTCTGCGTTGTC





GGGAAGATGCGTGATCTGATCCTTCAACTCAGCAAAAGTTCGATTTATTCAACAAAGCCGCCGTC





CCGTCAAGTCAGCGTAATGCTCTGCCAGTGTTACAACCAATTAACCAATTCTGATTAGAAAAACT





CATCGAGCATCAAATGAAACTGCAATTTATTCATATCAGGATTATCAATACCATATTTTTGAAAA





AGCCGTTTCTGTAATGAAGGAGAAAACTCACCGAGGCAGTTCCATAGGATGGCAAGATCCTGGTA





TCGGTCTGCGATTCCGACTCGTCCAACATCAATACAACCTATTAATTTCCCCTCGTCAAAAATAA





GGTTATCAAGTGAGAAATCACCATGAGTGACGACTGAATCCGGTGAGAATGGCAAAAGCTTATGC





ATTTCTTTCCAGACTTGTTCAACAGGCCAGCCATTACGCTCGTCATCAAAATCACTCGCATCAAC





CAAACCGTTATTCATTCGTGATTGCGCCTGAGCGAGACGAAATACGCGATCGCTGTTAAAAGGAC





AATTACAAACAGGAATCGAATGCAACCGGCGCAGGAACACTGCCAGCGCATCAACAATATTTTCA





CCTGAATCAGGATATTCTTCTAATACCTGGAATGCTGTTTTCCCGGGGATCGCAGTGGTGAGTAA





CCATGCATCATCAGGAGTACGGATAAAATGCTTGATGGTCGGAAGAGGCATAAATTCCGTCAGCC





AGTTTAGTCTGACCATCTCATCTGTAACATCATTGGCAACGCTACCTTTGCCATGTTTCAGAAAC





AACTCTGGCGCATCGGGCTTCCCATACAATCGATAGATTGTCGCACCTGATTGCCCGACATTATC





GCGAGCCCATTTATACCCATATAAAATCAGCATCCATGTTGGAATTTAATCGCGGCCTCGAGCAA





GACGTTTCCCGTTGAATATGGCTCATAACACCCCTTGTATTACTGTTTATGTAAGCAGACAGTTT





TATTGTTCATGATGATATATTTTTATCTTGTGCAATGTAACATCAGAGATTTTGAGACACAACGT





GGCTTTCCCCCCCCCCCCATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATA





TTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACC





TGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCT





TTCGTCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTC





ACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGG





CGGGTGTCGGGGCTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGC





GGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGATTGGCTATTGG (5646)





protein:


M R K A A V S H W Q Q Q S Y L D S G H S G A T T T A A S L S


(CATE)





A S A G A (linker)





G V R N S V L S G K K A D E L E K R L R A N G K K K Y M L K





H V V W A A N E L D R F G L A E S L L E N K E G C Q K L S V





L A A L V A T G S E N L K S L Y N T V C V J W C H A E E K V





K H T E E A K Q V Q R H L V V E T G T T E T M A K T S R A T





A A S S G R G G N Y A V Q Q L G G N Y V H L A L S A R T L N





A W V K L E E K K F G A E V V A G F Q A L S E G C T A Y D N





Q M L N C V G D H Q A A M Q R D N E E A A D W D L Q H A Q A





A A Q Q G Q L R E A S G S D A G T T S S V D E Q Q W M Y R Q





Q N A A V G N Y R R W Q L G L Q K C V R M Y N A T N L D V K





Q G A K E A F Q S Y V D R F Y K S L R A E Q T D A A V K N W





M T Q T L L Q N A N A D C K L V L K G L G V N A T L E E M L





T A C Q G V G G A G Q K A R L M A E A L K E A L A A V A A F





A A A Q Q R G A R K A K C W N C G K E G H S A R Q C R A A R





R Q G C W K C G K M D H V M A K C A D R Q A G F L G L G A W





G K K A R N F A M A Q V H Q G L M A T A A A E D A A V D L L





K N Y M Q L G K Q Q R E K Q R E S R E K A Y K E V T E D L L





H L N S L F G G D Q • (p57gag)





pCMVMCA3p39gene: 758-2176


(1)CCTGGCCATTGCATACGTTGTATCCATATCATAATATGTACATTTATATTGGCTCATGTCCA





ACATTACCGCCATGTTGACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATT





AGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGAC





CGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGG





ACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGT





GTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATG





CCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATT





ACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATT





TCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTC





CAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTC





TATATAAGCAGAGCTCGTTTAGTGAACCGTCAGATCGCCTGGAGACGCCATCCACGCTGTTTTGA





CCTCCATAGAAGACACCGGGACCGATCCAGCCTCCGCGGGCGCGCATGAACCCAAGTGCTGCCGT





CATTTTCTGCCTCATCCTGCTGGGTCTGAGTGGGACTCAAGggatcctcgaCATGGCGCAACCGG





TAGGTATAAACACAAGCACAACCTGTTGCTATCGTTTCATAAATAAAAAGATACCGAAGCAACGT





CTGGAAAGCTATCGCCGTACCACTTCTAGCCACTGTCCGCGTGAAGCTGTTATATTCAAAACGAA





ACTGGATAAGGAGATCTGCGCCGACCCTACACAGAAATGGGTTCAGGACTTTATGAAGCACCTGG





ATAAAAAGACACAGACGCCGAAACTGGCTAGCGCAGGAGCAGGCGTGAGAAACTCCGTCTTGTCA





GGGAAGAAAGCAGATGAATTAGAAAAAATTAGGCTACGACCCAACGGAAAGAAAAAGTACATGTT





GAAGCATGTAGTATGGGCAGCAAATGAATTAGATAGATTTGGATTAGCAGAAAGCCTGTTGGAGA





ACAAAGAAGGATGTCAAAAAATACTTTCGGTCTTAGCTCCATTAGTGCCAACAGGCTCAGAAAAT





TTAAAAAGCCTTTATAATACTGTCTGCGTCATCTGGTGCATTCACGCAGAAGAGAAAGTGAAACA





CACTGAGGAAGCAAAACAGATAGTGCAGAGACACCTAGTGGTGGAAACAGGAACCACCGAAACCA





TGCCGAAGACCTCTCGACCAACAGCACCATCTAGCGGCAGAGGAGGAAACTACCCAGTACAGCAG





ATCGGTGGCAACTACGTCCACCTGCCACTGTCCCCGAGAACCCTGAACGCTTGGGTCAAGCTGAT





CGAGGAGAAGAAGTTCGGAGCAGAAGTAGTGCCAGGATTCCAGGCACTGTCAGAAGGTTGCACCC





CCTACGACATCAACCAGATGCTGAACTGCGTTGGAGACCATCAGGCGGCTATGCAGATCATCCGT





GACATCATCAACGAGGAGGCTGCAGATTGGGACTTGCAGCACCCACAACCAGCTCCACAACAAGG





ACAACTTAGGGAGCCGTCAGGATCAGACATCGCAGGAACCACCTCCTCAGTTGACGAACAGATCC





AGTGGATGTACCGTCAGCAGAACCCGATCCCAGTAGGCAACATCTACCGTCGATGGATCCAGCTG





GGTCTGCAGATTTGCGTCCGTATGTACAACCCGACCAACATTCTAGATGTAAAACAAGGGCCAAA





AGAGCCATTTCAGAGCTATGTAGACAGGTTCTACAAAAGTTTAAGAGCAGAACAGACAGATGCAG





CAGTAAAGAATTGGATGACTCAAACACTGCTGATTCAAAATGCTAACCCAGATTGCAAGCTAGTG





CTGAAGGGGCTGGGTGTGAATCCCACCCTAGAAGAAATGCTGACGGCTTGTCAAGGAGTAGGGGG





GCCGGGACAGAAGGCTAGATTAATGGAATTCTGATACGATCCaGATCTGCTGTGCCTTCTAGTTG





CCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTG





TCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGG





GGTGGGGTGGGGCAGCACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGC





GGTGGGCTCTATGGGTACCCAGGTGCTGAAGAATTGACCCGGTTCCTCCTGGGCCAGAAAGAAGC





AGGCACATCCCCTTCTCTGTGACACACCCTGTCCACGCCCCTGGTTCTTAGTTCCAGCCCCACTC





ATAGGACACTCATAGCTCAGGAGGGCTCCGCCTTCAATCCCACCCGCTAAAGTACTTGGAGCGGT





CTCTCCCTCCCTCATCAGCCCACCAAACCAAACCTAGCCTCCAAGAGTGGGAAGAAATTAAAGCA





AGATAGGCTATTAAGTGCAGAGGGAGAGAAAATGCCTCCAACATGTGAGGAAGTAATGAGAGAAA





TCATAGAATTTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAG





CGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAG





AACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTT





CCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACC





CGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCG





ACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCAATG





CTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAAC





CCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGA





CACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGG





TGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCT





GCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACC





ACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCA





AGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGA





TTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTT





AAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGC





ACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCGGGGGGGGGGGGCGC





TGAGGTCTGCCTCGTGAAGAAGGTGTTGCTGACTCATACCAGGCCTGAATCGCCCCATCATCCAG





CCAGAAAGTGAGGGAGCCACGGTTGATGAGAGCTTTGTTGTAGGTGGACCAGTTGGTGATTTTGA





ACTTTTGCTTTGCCACGGAACGGTCTGCGTTGTCGGGAAGATGCGTGATCTGATCCTTCAACTCA





GCAAAAGTTCGATTTATTCAACAAAGCCGCCGTCCCGTCAAGTCAGCGTAATGCTCTGCCAGTGT





TACAACCAATTAACCAATTCTGATTAGAAAAACTCATCGAGCATCAAATGAAACTGCAATTTATT





CATATCAGGATTATCAATACCATATTTTTGAAAAAGCCGTTTCTGTAATGAAGGAGAAAACTCAC





CGAGGCAGTTCCATAGGATGGCAAGATCCTGGTATCGGTCTGCGATTCCGACTCGTCCAACATCA





ATACAACCTATTAATTTCCCCTCGTCAAAAATAAGGTTATCAAGTGAGAAATCACCATGAGTGAC





GACTGAATCCGGTGAGAATGGCAAAAGCTTATGCATTTCTTTCCAGACTTGTTCAACAGGCCAGC





CATTACGCTCGTCATCAAAATCACTCGCATCAACCAAACCGTTATTCATTCGTGATTGCGCCTGA





GCGAGACGAAGCAGGAACACTGCCAGCGCATCAACAATATTTTCACCTGAATCAGGATATTCTTC





TAATACCTGGAATGCTGTTTTCCCGGGGATCGCAGTGGTGAGTAACCATGCATCATCAGGAGTAC





GGATAAAATGCTTGATGGTCGGAAGAGGCATAAATTCCGTCAGCCAGTTTAGTCTGACCATCTCA





TCTGTAACATCATTGGCAACGCTACCTTTGCCATGCCTGATTGCCCGACATTATCGCGAGCCCAT





TTATACCCATATAAAAATCAGCATCCATGTTGGAATTTAATCGCGGCCTCGAGC&AGACGTTTCC





CGTTGAATATGGCTCATAACACCCCTTGTATTACTGTTTATGTAAGCAGACAGTTTTATTGTTCA





TGATGATATATTTTTATCTTGTGCAJAATGTAACATCAGAGATTTTGAGACACAACGTGGCTTTC





CCCCCCCCCCCATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACAAAAAGTGCC





ACCTGACGTCTAAGAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCC





CTTTCGTCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGG





TCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTT





GGCGGGTGTCGGGGCTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATAT





GCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAAATACCGCATCAGATTGGCTATTGG


(5418)





protein:


M N A S A A V F C L L L G L S G T Q (IP10)





G L D (linker)





M A Q A V G N T S T T C C Y R F N K K A K Q R L E S Y R R T T S S





H C A R E A V F K T K L D K E C A D A T Q K W V Q D F M K H L D K





K T Q T A K L (MCP3)





A S A G A (linker)





G V R N S V L S G K K A D E L E K R L R A N G K K K Y M L K H V V





W A A N E L D R F G L A E S L L E N K E G C Q K L S V L A A L V A





T G S E N L K S L Y N T V C V W C H A E E K V K H T E E A K Q V Q





R H L V V E T G T T E T M A K T S R P T A P S S G R G G N Y A V Q





Q I G G N Y V H L P L S P R T L N A W V K L I E E K K F G A E V V





A G F Q A L S E G C T A Y D N Q M L N C V G D H Q A A M Q R D N E





E A A D W D L Q H A Q A A A Q Q G Q L R E A S G S D A G T T S S V





D E Q Q W M Y R Q Q N A A V G N Y R R W Q L G L Q K C V R M Y N A





T N L D V K Q G A K E A F Q S Y V D R F Y K S L R A E Q T D A A V





K N W M T Q T L L Q N A N A D C K L V L K G L G V N A T L E E M L





T A C Q G V G G A G Q K A R L M E F • (SIVp39gag)





pCMV SIV CATEpolNTV gene: 769-5655


(1)CCTGGCCATTGCATACGTTGTATCCATATCATAAATATGTACATTTATATTGGCTCATGTCC





AACATTACCGCCATGTTGACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCAT





TAGTTCATAGCCCATATATGGAGTTCCGCGTTACATJAACTTACGGTAAATGGCCCGCCTGGCTG





ACCGCCCAACGACCCCCGCCCATTGACGTATGGGTGGAGTATTTACGGTAAAACTGCCCACTTGG





CAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCJAATGACGGTAAATGGCC





CGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTAT





TAGTCATCGCTATTACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTT





GACTCACGGGGATTTCCAAAAAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACC





AAAATCAACGGGACTTTCCKAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGC





GTGTACGGTGGGAGGTCTATATAAGCAGAGCTCGTTTAGTGAACCGTCAGATCGCCTGGAGACGC





CATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCCGCGGGCGCGCGTC





GACAAGAAATGAGAAAAGCGGCTGTTAGTCACTGGCAGCAGCAGTCTTACCTGGACTCTGGAATC





CATTCTGGTGCCACTACCACAGCTCCTTCTCTGAGTGCTAGCGCAGGAGCATACCCCTACGACGT





GCCCGACTACGCCAGCCTGGGGGCCCATCGGGAGGCGTTGCAGGGGGGAGATCGGGGGTTCGCGG





CGCCGCAGTTCTCGCTGTGGCGGCGGCCGGTCGTCACTGCGCATATTGAGGGACAGCCGGTAGAG





GTATTGCTGGCGGCAGCGGCGGATGATTCGATTGTAACGGGAJLTAGAGTTGGGTCCGCATTATA





CCCCGAAGATAGTAGGGGGGATCGGGGGGTTTATCAATACGAAAGAGTAcAAJAATGTAGAGATA





GAGGTTTTGGGCAAACGGATTAAJAAGGGACGATCATGACAGGGGACACCCCGATTAACATCTTT





GGTCGGATAACTTGCTTATAACGGCGCTGGGGATGTCGCTTAAACTTTCCCATAGCGAAAGTAGA





GCCTGTAAAAGTCGCCTTGAAGCCGGGAAAAGGATGGACCGAAATTGAAGCAGTGGCCGTTGTCA





AAAGAGAAGATAGTTGCGTTGCGGGAGATCTGTGAGAAGATGGAGAAGGATGGACAGTTGGAGGA





GGCGCCCCCGACCAATCCATACAACACCCCCACATTCGCGATCAAGAAGAAGGATAAGAACAAGT





GGCGGATGCTGATAGACTTTCGGGAGTTGAATCGGGTCACGCAGGACTTTACGGAGGTCCAATTG





GGAATACCGCACCCGGCGGGACTAGCGAAACGGAAACGGATTACGGTACTGGATATAGGTGATGC





GTACTTCTCCATACCGCTTGATGAGGAGTTTCGGCAGTACACGGCCTTTACGCTTCCGTCAGTAA





ACAACGCGGAGCCGGGGAAGCGATACATATATAAGGTTCTGCCGCAGGGATGGAAGGGGTCGCCG





GCCATCTTCCAATACACGATGCGGCATGTGCTAGAGCCCTTCCGGAAGGCGAATCCGGATGTGAC





CTTGGTCCAGTATATGGCGGCGATCTTGATAGCGTCGGACCGGACGGACCTGGAGCATGACCGGG





TAGTTCTTCAGTCGAAGGAGCTCTTGAATAGCATAGGGTTTTCGACCCCGGAGGAGAAATTCCAA





AAAGATCCCCCGTTTCAATGGATGGGGTACGAGTTGTGGCCGACGAAATGGAAGTTGCAAAAGAT





AGAGTTGCCGCAACGGGAGACCTGGACAGTGAATGATATACAGAAGCTTGTAGGAGTACTTAATT





GGGCGGCTCAAATATATCCGGGTATAAAAACCAAACATCTCTGTCGGTTGATTCGGGGAAAAATG





ACGCTAACGGAGGAGGTTCAGTGGACGGAGATGGCGGAGGCAGAGTATGAGGAGAACAAGATCAT





CCTCTCGCAGGAGCAAGAGGGATGTTATTACCAAGAGGGCAAGCCGTTGGAGGCCACGGTAATCA





AGTCGCAGGACAATCAGTGGTCGTATAAGATCCACCAAGAGGACAAGATCCTGAAAGTAGGAAAG





TTCGCGAAGATCAAGAACACGCATACCAACGGAGTGCGGCTACTTGCGCATGTAATACAGAAAAT





AGGAAAGGAGGCGATAGTGATCTGGGGACAGGTCCCGAAATTCCACCTTCCGGTTGAGAAGGATG





TATGGGAGCAGTGGTGGACGGACTATTGGCAAGTAACCTGGATACCGGAGTGGGACTTTATCTCG





ACGCCGCCGCTAGTACGGCTTGTCTTCAATCTAGTGAAGGACCCGATAGAGGGAGAGGAGACCTA





TTATACGGATGGATCGTGTAACAAGCAGTCGAAAGAGGGGAAAGCGGGATATATCACGGATCGGG





GCAAAGACAAAGTAAAAGTGCTTGAGCAGACGACGAATCAACAAGCGGCGTTGGAGGCGTTTCTC





ATGGCGTTGACGGACTCGGGGCCAAAGGCGAACATCATCGTAGACTCGCAGTACGTCATGGGAAT





CATCACGGGATGCCCGACGGAGTCGGAGAGCCGGCTAGTCAACCAAATCATCGAGGAGATGATCA





AGAAGTCGGAGATATATGTAGCGTGGGTACCGGCGCACAAAGGTATAGGAGGAAACCAAGAGATA





GACCACCTAGTTTCGCAAGGGATTAGACAAGTTCTCTTCTTGGAGAAGATAGAGCCGGCGCAAGA





GGAGCATGATAAATACCATTCGAATGTAAAAGAGTTGGTATTCAAATTCGGACTTCCCCGGATAG





TGGCCCGGCAGATAGTAGACACCTGTGATAAATGTCATCAGAAAGGAGAGGCGATACATGGGCAG





GCGAACTCGGATCTAGGGACTTGGCAAATGGCGTGTACCCATCTAGAGGGAAAGATCATCATAGT





TGCGGTACATGTAGCGTCGGGATTCATAGAAGCGGAGGTAATTCCGCAAGAGACGGGACGGCAGA





CGGCGCTATTCCTGTTGAAATTGGCGGGCAGATGGCCTATTACGCATCTACACACGGCGAATGGT





GCGAACTTTGCGTCGCAAGAAGTAAAGATGGTTGCGTGGTGGGCGGGGATAGAGCACACCTTTGG





GGTACCGTACAATCCGCAGTCGCAGGGAGTAGTGGCGGCGATGAACCACCACCTGAAGAACCAAA





TCGATCGGATCAGGGAGCAAGCGAACTCAGTAGAGACCATAGTATTGATGGCGGTTCATTGCATG





AACTTCAAGCGGCGGGGAGGAATAGGGGATATGACGCCGGCGGAGCGGTTGATTAACATGATCAC





GACGGAGCAAGAGATCCAATTCCAACAATCGAAGAACTCGAAGTTCAAGAACTTTCGGGTCTATT





ACCGGGAGGGCCGGGATCAACTGTGGAAGGGACCCGGAGAGCTATTGTGGAAAGGGGAGGGAGCG





GTCATCTTGAAAGTAGGGACGGACATTAAGGTAGTACCCCGGCGGAAGGCGAAGATCATCAAGGA





TTATGGAGGAGGAAAAGAGGTGGATAGCTCGTCCCACATGGAGGATACCGGAGAGGCGCGGGAGG





TGGCACGCGTCGCGGCCGCGGCTATCTCCATGAGGCGGTCCAGGCCGTCTGGGGATCTGCGACAG





AGACTCTTGCGGGCGCGTGGGGAGACTTATGGGAGACTCTTAGGAGAGGTGGAAGATGGATACTC





GCAATCCCCAGGAGGATTAGACAAGGGCTTGAGCTCACTCTCGTGCGAGGGACAGAAGTACAACC





AGGGGCAGTACATGAACACTCCATGGAGAAACCCCGCTGAAGAGCGGGAGAAGTTGGCGTACCGG





AAGCAGAACATGGACGACATCGACGAGGAGGACGACGACTTAGTCGGGGTCTCAGTGCGGCCGAA





GGTCCCCCTACGGACGATGTCGTACAAGTTGGCGATAGACATGTCGCACTTCATCAAGGAGAAGG





GGGGACTGGAGGGGATCTACTACTCGGCGCGGCGGCACCGCATCCTCGACATCTACCTCGAGAAG





GAGGAGGGCATCATCCCGGACTGGCAGGACTACACCTCAGGACCAGGAATCAGATATCCAAAGAC





GTTCGGCTGGCTCTGGAAGCTCGTCCCTGTAAACGTCTCGGACGAGGCGCAGGAGGACGAGGAGC





ACTACCTCATGCATCCGGCGCAAACTTCCCAGTGGGATGACCCTTGGGGAGAGGTTCTAGCATGG





AAGTTTGATCCAACTCTGGCCTACACTTATGAGGCATATGTTAGATACCCAGAAGAGTTTGGAAG





CAAGTCAGGCCTGTCAGAGGAAGAGGTTAGAAGAAGGCTAACCGCAAGAGGCCTTCTTAACATGG





CTGACAAGAAGGAAACTCGCGGCGCCGAGACACCCTTGAGGGAGCAGGAGAACTCATTAGAATCC





TCCAACGAGCGCTCTTCATGCATTTCAGAGGCGGATGCATCCACTCCAGAATCGGCCAACCTGGG





GGAGGAAATCCTCTCTCAGCTATACCGCCCTCTCGAGGCGTGCTACAACACGTGCTACTGCAAGA





AGTGCTGCTACCACTGCCAGTTCTGCTTCCTTAAAAAGGGCCTGGGGATCTGCTACGAGCAGTCG





CGAAAGCGGCGGCGGACGCCGAAGAAGGCGAAGGCGAACACGTCGTCGGCGTCGAACAACAGACC





CATATCCAACAGGACCCGGCACTGCCAACCAGAGAAGGCAAAGAAAGAGACGGTGGAGAAGGCGG





TGGCAACAGCTCCTGGCCTTGGCAGAGGATCCGAGGAGGAAAAGAGGTGGATCGCAGTTCCCACG





TGGAGGATACCGGAGAGGCTAGAGAGGTGGCATAGCCTCATAAAGTACCTGAAGTACAAGACGAA





GGACCTCCAGAAGGTCTGCTATGTGCCCCACTTCAAAAGTCGGATGGGCATGGTGGACCTGCAGC





AGAGTCATCTTCCCCCTACAAGAOGGAAGCCACTTGGAGGTCCAGGGGTACTGGCACTTGACGCC





GGAGAAGGGGTGGCTCTCGACGTACGCGGTGCGGATCACCTGGTACTCGAAGAACTTCTGGACGG





ATGTCACGCCGAACTATGCGGACATCTTGCTGCATAGCACTTACTTCCCTTGCTTTACGGCGGGA





GAAGTGAGAAGGGCCATCAGGGGAGAGCAACTGCTGTCGTGCTGCCGGTTCCCGCGGGCGCACAA





GTACCAGGTACCGAGCCTACAGTACTTGGCGCTGAAGGTCGTCAGCGACGTCAGATCCCAGGGGG





AGAACCCCACCTGGAAGCAGTGGCGGCGGGACAACCGGAGAGGCCTTCGAATGGCGAAGCAGAAC





TCGCGGGGAGATAAGCAGCGGGGCGGTAAACCACCTACCAAGGGAGCGAACTTCCCGGGTTTGGC





AAAGGTCTTGGGAATACTGGCAGTTAACTGAGAATTCGATCCAGATCTGCTGTGCCTTCTAGTTG





CCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTG





TCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGG





GGTGGGGTGGGGCAGCACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGC





GGTGGGCTCTATGGGTACCCAGGTGCTGAAGAATTGACCCGGTTCCTCCTGGGCCAGAAAGAAGC





AGGCACATCCCCTTCTCTGTGACACACCCTGTCCACGCCCCTGGTTCTTAGTTCCAGCCCCACTC





ATAGGACACTCATAGCTCAGGAGGGCTCCGCCTTCAATCCCACCCGCTAAAGTACTTGGAGCGGT





CTCTCCCTCCCTCATCAGCCCACCAAACCAAAAACCTAGCCTCCAAGAGTGGGAAGAAATTAAAG





CAAGATAGGCTATTAAGTGCAGAGGGAGAGAAAATGCCTCCAACATGTGAGGAAGTAATGAGAGA





AATCATAGAATTTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCG





AGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAA





AGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTT





TTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAA





CCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTC





CGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCAA





TGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGA





ACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAA





GACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGC





GGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTAT





CTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAJAAAAAAGAGTTGGTAGCTCTTGATCCGGCAA





ACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAGGATCT





CJAAGAAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAA





AGGGATTTTGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTT





GCCTGACTCCGGGGGGGGGGGGCGCTGAGGTCTGCCTCGTGJAAGJAAGGTGTTGCTGACTCATA





CCAGGCCTGAATCGCCCCATCATCCAGCCAGAAAJAAAGTGAGGGAGCCACGGTTGATGAGAGCT





TTGTTGTAGGTGGACCAGTTGGTGATTTTGAACTTTTGCTTTGCCACGGAACGGTCTGCGTTGTC





GGGAAGATGCGTGATCTGATCCTTCAACTCAGCAAAAGTTCGATTTATTCAACAGCCGCCGTCCC





GTCAAGTCAGCGTAATGCTCTGCCAGTGTTACAACCAATTAACCAATTCTGATTAGAAAAAACTC





ATCGAGCATCAAATGAAACTGCAATTTATTCATATCAGGATTATCAATACCATATTTTTGAAAAA





GCCGTTTCTGTAATGAAGGAGAAAACTCACCGAGGCAGTTCCATAGGATGGTAATTTCCCCTCGT





CAATAAGGTTATCJAAGTGAGAAAATCACCATGAGTGACGCAGGCCAGCCATTACGCTCGTCATC





AAATCACTCGCATCAACCAAACCGTTATTCATTCGTGATTGCGCCTGAGCGAGACGATACGCGAT





CGCTGTTJAAAAAGGACAATTACAAACAGGAATCGATGCAACCGGCGCAGGAAACACTGCCAGCG





CATCAACGGATCGCAGTGGTGAGTAACCATGCATCATCAGGAGTACGGATAAAATGCTTGATGGT





CGGAAGAGGCATAAATTCCGTCAGCCAGTTTAGTCTGACCATCTCATCTGTAACATCATTGGCAA





CGCTACCTTTGCCATGTTTCAGAA&AAACAACTCTGGCGCATCGGGCTTCCCATACAATCGATAG





ATTGTCGCACCTGATTGCCCGACATTATCGCGAGGCAAGACGTTTCCCGTTGAATATGGCTCATA





ACACCCCTTGTATTACTGTTTATGTAAGCAGACAGTTTTATTGTTCATGATGATATATTTTTATC





TTGTGCAATGTJAACATCAGAGATTTTGAGACACAACGTGGCTTTCCCCCCCCCCCCATTATTGA





AGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAATAAACAAAT





AGGGGTTCCGCGCACATTTCCCCGAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACA





TTAACCTATAAA4ATAGGCGTATCACGAGGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGGTGA





AAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCA





GACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCA





TCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAG





AAAATACCGCATCAGATTGGCTATTGG (8900)





protein:


M R K A A V S H W Q Q Q S Y L D S G H S G A T T T A A S L S


(CATE)





A S A G A (linker)





Y A Y D V A D Y A S L (HA epitope)





G A R R E A L Q G G D R G F A A (pol ORF)





A Q F S L W R R A V V T A H E G Q A V E V L L A A A A D D S V T G





E L G A H Y T A K V G G G G F N T K E Y K N V E E V L G K R K G T





M T G D T A N F G R N L L T A L G M S L N F A J A K V E A V K V A





L K A G K D G A K L K Q W A L S K E K V A L R E C E K M E K D G Q





L E E A A A T N A Y N T A T F A K K K D K N K W R M L D F R E L N





R V T Q D F T E V Q L G J A H A A G L A K R K R T V L D G D A Y F





S A L D E E F R Q Y T A F T L A S V N N A E A G K R Y Y K V L A Q





G W K G S A A F Q Y T M R H V L E A F R K A N A D V T L V Q Y M A





A L A S D R T D L E H D R V V L Q S K E L L N S G F S T A E E K F





Q K D A A F Q W M G Y E L W A T K W K L Q K E L A Q R E T W T V N





D Q K L V G V L N W A A Q Y A G K T K H L C R L R G K M T L T E E





V Q W T E M A E A E Y E E N K J L S Q E Q E G C Y Y Q E G K A L E





A T V K S Q D N Q W S Y K H Q E D K L K V G K F A K J K N T H T N





G V R L L A H V Q K G K E A V W G Q V A K F H L A V E K D V W E Q





W W T D Y W Q V T W A E W D F S T A A L V R L V F N L V K D A E G





E E T Y Y T D G S C N K Q S K E G K A G Y T D R G K D K V K V L E





Q T T N Q Q A A L E A F L M A L T D S G A K A N V D S Q Y V M G I





I T G C A T E S E S R L V N Q E E M K K S E Y V A W V A A H K G G





G N Q E D H L V S Q G R Q V L F L E K E A A Q E E H D K Y H S N V





K E L V F K F G L A R V A R Q V D T C D K C H Q K G E A H G Q A N





S D L G T W Q M A C T H L E G K V A V H V A S G F E A E V A Q E T





G R Q T A L F L L K L A G R W A T H L H T A N G A N F A S Q E V K





M V A W W A G E H T F G V A Y N A Q S Q G V V A A M N H H L K N Q





D R R E Q A N S V E T V L M A V H C M N F K R R G G G D M T A A E





R L N M T T E Q E Q F Q Q S K N S K F K N F R V Y Y R E G R D Q L





W K G A G E L L W K G E G A V L K V G T D K V V A R R K A K K D Y





G G G K E V D S S S H M E D T G E A R E V A (pol)





R V A A A (linker)





A S M R R S R A S G D L R Q R L L R A R G E T Y G R L L G E V E D





G Y S Q S A G G L D K G L S S L S C E G Q K Y N Q G Q Y M N T A W





R N A A E E R E K L A Y R K Q N M D D D E E D D D L V G V S V R A





K V A L R T M S Y K L A D M S H F K E K G G L E G I Y Y S A R R H





R L D Y L E K E E G A D W Q D Y T S G P G I R Y A K T F G W L W K





L V A V N V S D E A Q E D E E H Y L M H P A Q T S Q W D D A W G E





V L A W K F D A T L A Y T Y E A Y V R Y A E E F G S K S G L S E E





E V R R R L T A R G L L N M A D K K E T R G A E T A L R E Q E N S





L E S S N E R S S C S E A D A S T P E S A N L G E E L S Q L Y R A





L E A C Y N T C Y C K K C C Y H C Q F C F L K K G L G C Y E Q S R





K R R R T A K K A K A N T S S A S N N R A S N R T R H C Q A E K A





K K E T V E K A V A T A P G L G R G S E E E K R W A V A T W R A E





R L E R W H S L K Y L K Y K T K D L Q K V C Y V A H F K V G W A W





W T C S R V F P L Q E G S H L E V Q G Y W H L T A E K G W L S T Y





A V R T W Y S K N F W T D V T A N Y A D L L H S T Y F A C F T A G





E V R R A I R G E Q L L S C C R F A R A H K Y Q V A S L Q Y L A L





K V V S D V R S Q G E N A T W K Q W R R D N R R G L R M A K Q N S





R G D K Q R G G K A A T K G A N F A G L A K V L G L A V N •


(NefTatVif)


Note:


pol has mutations to inactivate Protease, RT, Int
















Comparison wildtype pol versus mutant pol (SIVmac239)



















Query:
1
PQFSLWRRPVVTAHIEGQPVEVLLDTGADDSIVTGIELGPHYTPKIVGGIGGFINTKEYK
60





PQFSLWRRPVVTAHIEGQPVEVLL   ADDSIVTGIELGPHYTPKIVGGIGGFINTKEYK


Sbjct:
1
PQFSLWRRPVVTAHIEGQPVEVLLAAAADDSIVTGIELGPHYTPKIVGGIGGFINTKEYK
60





Query:
61
NVEIEVLGKRIKGTIMTGDTPINIFGRNLLTALGMSLNFPIAKVEPVKVALKPGKDGPKL
120




NVEIEVLGKRIKGTIMTGDTPINIFGRNLLTALGMSLNFPIAKVEPVKVALKPGKDGPKL


Sbjct:
61
NVEIEVLGKRIKGTIMTGDTPINIFGRNLLTALGMSLNFPIAKVEPVKVALKPGKDGPKL
120





Query:
121
KQWPLSKEKIVALREICEKMEKDGQLEEAPPTNPYNTPTFAIKKKDKNKWRMLIDFRELN
180




KQWPLSKEKIVALREICEKMEKDGQLEEAPPTNPYNTPTFAIKKKDKNKWRMLIDFRELN


Sbjct:
121
KQWPLSKEKIVALREICEKMEKDGQLEEAPPTNPYNTPTFAIKKKDKNKWRMLIDFRELN
180





Query:
181
RVTQDFTEVQLGIPHPAGLAKRKRITVLDIGDAYFSIPLDEEFRQYTAFTLPSVNNAEPG
240




RVTQDFTEVQLGIPHPAGLAKRKRITVLDIGDAYFSIPLDEEFRQYTAFTLPSVNNAEPG


Sbjct:
181
RVTQDFTEVQLGIPHPAGLAKRKRITVLDIGDAYFSIPLDEEFRQYTAFTLPSVNNAEPG
240





Query:
241
KRYIYKVLPQGWKGSPAIFQYTMRHVLEPFRKANPDVTLVQYMDDILIASDRTDLEHDRV
300




KRYIYKVLPQGWKGSPAIFQYTMRHVLEPFRKANPDVTLVQYM  ILIASDRTDLEHDRV


Sbjct:
241
KRYIYKVLPQGWKGSPAIFQYTMRHVLEPFRKANPDVTLVQYMAAILIASDRTDLEHDRV
300





Query:
301
VLQSKELLNSIGFSTPEEKFQKDPPFQWMGYELWPTKWKLQKIELPQRETWTVNDIQKLV
360




VLQSKELLNSIGFSTPEEKFQKDPPFQWMGYELWPTKWKLQKIELPQRETWTVNDIQKLV


Sbjct:
301
VLQSKELLNSIGFSTPEEKFQKDPPFQWMGYELWPTKWKLQKIELPQRETWTVNDIQKLV
360





Query:
361
GVLNWAAQIYPGIKTKHLCRLIRGKMTLTEEVQWTEMAEAEYEENKIILSQEQEGCYYQE
420




GVLNWAAQIYPGIKTKHLCRLIRGKMTLTEEVQWTEMAEAEYEENKIILSQEQEGCYYQE


Sbjct:
361
GVLNWAAQIYPGIKTKHLCRLIRGKMTLTEEVQWTEMAEAEYEENKIILSQEQEGCYYQE
420





Query:
421
GKPLEATVIKSQDNQWSYKIHQEDKILKVGKFAKIKNTHTNGVRLLAHVIQKIGKEAIVI
480




GKPLEATVIKSQDNQWSYKIHQEDKILKVGKFAKIKNTHTNGVRLLAHVIQKIGKEAIVI


Sbjct:
421
GKPLEATVIKSQDNQWSYKIHQEDKILKVGKFAKIKNTHTNGVRLLAHVIQKIGKEAIVI
480





Query:
481
WGQVPKFHLPVEKDVWEQWWTDYWQVTWIPEWDFISTPPLVRLVFNLVKDPIEGEETYYT
540




WGQVPKFHLPVEKDVWEQWWTDYWQVTWIPEWDFISTPPLVRLVFNLVKDPIEGEETYYT


Sbjct:
481
WGQVPKFHLPVEKDVWEQWWTDYWQVTWIPEWDFISTPPLVRLVFNLVKDPIEGEETYYT
540





Query:
541
DGSCNKQSKEGKAGYITDRGKDKVKVLEQTTNQQAELEAFLMALTDSGPKANIIVDSQYV
600




DGSCNKQSKEGKAGYITDRGKDKVKVLEQTTNQQAELEAFLMALTDSGPKANIIVDSQYV


Sbjct:
541
DGSCNKQSKEGKAGYITDRGKDKVKVLEQTTNQQAELEAFLMALTDSGPKANIIVDSQYV
600





Query:
601
MGIITGCPTESESRLVNQIIEEMIKKSEIYVAWVPAHKGIGGNQEIDHLVSQGIRQVLFL
660




MGIITGCPTESESRLVNQIIEEMIKKSEIYVAWVPAHKGIGGNQEIDHLVSQGIRQVLFL


Sbjct:
601
MGIITGCPTESESRLVNQIIEEMIKKSEIYVAWVPAHKGIGGNQEIDHLVSQGIRQVLFL
660





Query:
661
EKIEPAQEEHDKYHSNVKELVFKFGLPRIVARQIVDTCDKCHQKGEAIHGQANSDLGTWQ
720




EKIEPAQEEHDKYHSNVKELVFKFGLPRIVARQIVDTCDKCHQKGEAIHGQANSDLGTWQ


Sbjct:
661
EKIEPAQEEHDKYHSNVKELVFKFGLPRIVARQIVDTCDKCHQKGEAIHGQANSDLGTWQ
720





Query:
721
MDCTHLEGKIIIVAVHVASGFIEAEVIPQETGRQTALFLLKLAGRWPITHLHTDNGANFA
780




M CTHLEGKIIIVAVHVASGFIEAEVIPQETGRQTALFLLKLAGRWPITHLHT NGANFA


Sbjct:
721
MACTHLEGKIIIVAVHVASGFIEAEVIPQETGRQTALFLLKLAGRWPITHLHTANGANFA
780





Query:
781
SQEVKMVAWWAGIEHTFGVPYNPQSQGVVEAMNHHLKNQIDRIREQANSVETIVLMAVHC
840




SQEVKMVAWWAGIEHTFGVPYNPQSQGVVEAMNHHLKNQIDRIREQANSVETIVLMAVHC


Sbjct:
781
SQEVKMVAWWAGIEHTFGVPYNPQSQGVVEAMNHHLKNQIDRIREQANSVETIVLMAVHC
840





Query:
841
MNFKRRGGIGDMTPAERLINMITTEQEIQFQQSKNSKFKNFRVYYREGRDQLWKGPGELL
900




MNFKRRGGIGDMTPAERLINMITTEQEIQFQQSKNSKFKNFRVYYREGRDQLWKGPGELL


Sbjct:
841
MNFKRRGGIGDMTPAERLINMITTEQEIQFQQSKNSKFKNFRVYYREGRDQLWKGPGELL
900





Query:
901
WKGEGAVILKVGTDIKVVPRRKAKIIKDYGGGKEVDSSSHMEDTGEAREVA
951




WKGEGAVILKVGTDIKVVPRRKAKIIKDYGGGKEVDSSSHMEDTGEAREVA


Sbjct:
901
WKGEGAVILKVGTDIKVVPRRKAKIIKDYGGGKEVDSSSHMEDTGEAREVA
951

















59S_CMV_CATESVenvi gene: 780-3452



CGATGATATCCATTGCATACGTTGTATCTATATCATAATATGTACATTTATATTGGCTCATGTCCA





ATATGACCGCCATGTTGACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATTA





GTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCG





CCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACT





TTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTAT





CATATGCCAAGTCCGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAG





TACATGACCTTACGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATG





GTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGT





CTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGT





CGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGC





AGAGCTCGTTTAGTGAACCGTCAGATCGCCTGGAGACGCCATCCACGCTGTTTTGACCTCCATAGA





AGACACCGGGACCCGATCCAGCCTCCGCGGGCGCGCGTCGAGGAATTCAAGAAATGAGAAAAGCGG





CTGTTAGTCACTGGCAGCAGCAGTCTTACCTGGACTCTGGAATCCATTCTGGTGCCACTACCACAG





CTCCTTCTCTGAGTATCTGCAGCCTGTACGTCACGGTCTTCTACGGCGTACCAGCTTGGAGGAATG





CGACAATTCCCCTCTTTTGTGCAACCAAGAATAGGGATACTTGGGGAACAACTCAGTGCCTACCGG





ACAACGGGGACTACTCGGAGGTGGCCCTGAACGTGACGGAGAGCTTCGACGCCTGGAACAACACGG





TCACGGAGCAGGCGATCGAGGACGTGTGGCAGCTGTTCGAGACCTCGATCAAGCCGTGCGTCAAGC





TGTCCCCGCTCTGCATCACGATGCGGTGCAACAAGAGCGAGACGGATCGGTGGGGGCTGACGAAGT





CGATCACGACGACGGCGTCGACCACGTCGACGACGGCGTCGGCGAAAGTGGACATGGTCAACGAGA





CCTCGTCGTGCATCGCCCAGGACAACTGCACGGGCCTGGAGCAGGAGCAGATGATCAGCTGCAAGT





TCAACATGACGGGGCTGAAGCGGGACAAGAAGAAGGAGTACAACGAGACGTGGTACTCGGCGGACC





TGGTGTGCGAGCAGGGGAACAACACGGGGAACGAGTCGCGGTGCTACATGAACCACTGCAACACGT





CGGTGATCCAGGAGTCGTGCGACAAGCACTACTGGGACGCGATCCGGTTCCGGTACTGCGCGCCGC





CGGGCTACGCGCTGCTGCGGTGCAACGACACGAACTACTCGGGCTTCATGCCGAAATGCTCGAAGG





TGGTGGTCTCGTCGTGCACGAGGATGATGGAGACGCAGACCTCGACGTGGTTCGGCTTCAACGGGA





CGCGGGCGGAGAACCGGACGTACATCTACTGGCACGGGCGGGACAACCGGACGATCATCTCGCTGA





ACAAGTACTACAACCTGACGATGAAGTGCCGGCGGCCGGGCAACAAGACGGTGCTCCCGGTCACCA





TCATGTCGGGGCTGGTGTTCCACTCGCAGCCGATCAACGACCGGCCGAAGCAGGCGTGGTGCTGGT





TCGGGGGGAAGTGGAAGGACGCGATCAAGGAGGTGAAGCAGACCATCGTCAAGCACCCCCGCTACA





CGGGGACGAACAACACGGACAAGATCAACCTGACGGCGCCGGGCGGGGGCGATCCGGAAGTTACCT





TCATGTGGACJAAJLTTGCAGAGGAGAGTTCCTCTACTGCAAGATGAACTGGTTCCTGAACTGGGT





GGAGGACAGGAACACGGCAGAACCAGAAGCCGAAGGAGCAGCACAAGCGGAACTACGTGCCGTGCC





ACATTCGGCAGATCATCAACACGTGGCACAAAGTGGGCAAGAACGTGTACCTGCCGCCGAGGGAGG





GCGACCTCACGTGCAACTCCACGGTGACCTCCCTCATCGCGAAAAACATCGACTGGATCGACGGCA





ACCAGACGAACATCACCATGTCGGCGGAGGTGGCGGAGCTGTACCGGCTGGAGCTGGGGGACTACA





AGCTGGTGGAGATCACGCCGATCGGCCTGGCCCCCACCGATGTGAAGCGCTACACGACCGGGGGGA





CGTCGCGGAACAAGCGGGGGGTCTTCGTCCTGGGGTTCCTGGGGTTCCTCGCGACGGCGGGGTCGG





CJAATGGGAGCCGCCAGCCTGACCCTCACGGCACAGTCCCGACTTTATTGGCTGGGATCGTCCAAC





AACAGCAGCAGCTGCTGGACGTGGTCAAGAGGCAGCAGGAGCTGCTGCGGCTGACCGTCTGGGGCA





CGAAGAACCTCCAGACGAGGGTCACGGCCATCGAGAAGTACCTGAAGGACCAGGCGCAGCTGAACG





CGTGGGGCTGTGCGTTTCGACAAGTCTGCCACACGACGGTCCCGTGGCCGAACGCGTCGCTGACGC





CGAAGTGGAACAACGAGACGTGGCAGGAGTGGGAGCGGAAGGTGGACTTCCTGGAGGAGAACATCA





CGGCCCTCCTGGAGGAGGCGCAGATCCAGCAGGAGAAGAACATGTACGAGCTGCJAAJAAGCTGAA





CAGCTGGGACGTGTTCGGCJAAJAACTGGTTCGACCTGGCGTCGTGGATCAAGTACATCCAGTACG





GCGTGTACATCGTGGTGGGGGTGATCCTGCTGCGGATCGTGATCTACATCGTCCAGATGCTGGCGA





AAGCTGCGGCAGGGCTATAGGCCAGTGTTCTCTTCCCCACCCTCTTATTTCCAACAAACCCATATC





CAAACAAGACCCGGCGCTGCCGACCCGGGAGGGCAAGGAGCGGGACGGCGGGGAGGGCGGCGGCAA





CAGCTCCTGGCCGTGGCAGATCGAGTACATCCACTTTCTTATTCGTCAGCTTATTAGACTCCTGAC





GTGGCTGTTCAGTAACTGTAGGACTCTGCTGTCGAGGGTGTACCAGATCCTCCAGCCGATCCTCCA





GCGGCTCTCGGCGACCCTCCAGAGGATTCGGGAGGTCCTCCGGACGGAGCTGACCTACCTCCAGTA





CGGGTGGAGCTATTTCCACGAGGCGGTCCAGGCCGTCTGGCGGTCGGCGACGGAGACGCTGGCGGG





CGCGTGGGGCGACCTGTGGGAGACGCTGCGGCGGGGCGGCCGGTGGATACTCGCGATCCCCCGGCG





GATCAGGCAGGGGCTGGAGCTCACGCTCCTGTGATAAGATATCGGATCCGCCCGGGCTAGAGCGGC





CACTCGAGAGGCGCGCCGAGCTCGCTGATCAGCCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGT





TGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATA





AATGAGGMAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAG





GACAGCAAGGGGGAGGATGGGAAGACAATAGCAGGCATGCTGGGGAATTTAAATGGGGGCGCTGAG





GTCTGCCTCGTGAAGAAGGTGTTGCTGACTCATACCAGGCCTGAATCGCCCCATCATCCAGCCAGA





AAGTGAGGGAGCCACGGTTGATGAGAGCTTTGTTGTAGGTGGACCAGTTGGTGATTTTGAACTTTT





GCTTTGCCACGGAACGGTCTGCGTTGTCGGGAAGATGCGTGATCTGATCCTTCAACTCAGCAAAAG





TTCGATTTATTCAACAAAGCCGCCGTCCCGTCAAGTCAGCGTAATGCTCTGCCAGTGTTACAACCA





ATTAACCAATTCTGCGTTCAAAATGGTATGCGTTTTGACACATCCACTATATATCCGTGTCGTTCT





GTCCACTCCTGAATCCCATTCCAGAAATTCTCTAGCGATTCCAGAAGTTTCTCAGAGTCGGAAAGT





TGACCAGACATTACGAACTGGCACAGATGGTCATAACCTGAAGGAAGATCTGATTGCTTAACTGCT





TCAGTTAAGACCGACGCGCTCGTCGTATAACAGATGCGATGATGCAGACCAATCAACATGGCACCT





GCCATTGCTACCTGTACAGTCAAGGATGGTAGAAATGTTGTCGGTCCTTGCACACGAATATTACGC





CATTTGCCTGCATATTCAAACAGCTCTTCTACGATAAGGGCACAAATCGCATCGTGGAACGTTTGG





GCTTCTACCGATTTAGCAGTTTGATACACTTTCTCTAAGTATCCACCTGAATCATAAATCGGCAAA





ATAGAGAAAAATTGACCATGTGTAAGCGGCCAATCTGATTCCACCTGAGATGCATAATCTAGTAGA





ATCTCTTCGCTATCAAAATTCACTTCCACCTTCCACTCACCGGTTGTCCATTCATGGCTGAACTCT





GCTTCCTCTGTTGACATGACACACATCATCTCAATATCCGAATACGGACCATCAGTCTGACGACCA





AGAGAGCCATAAACACCAATAGCCTTAACATCATCCCCATATTTATCCAATATTCGTTCCTTAATT





TCATGAACAATCTTCATTCTTTCTTCTCTAGTCATTATTATTGGTCCGTTCATAACACCCCTTGTA





TTACTGTTTATGTAAGCAGACAGTTTTATTGTTCATGATGATATATTTTTATCTTGTGCAATGTAA





CATCAGAGATTTTGAGACACAACGTGGCTTTCCCCGGCCCATGACCAAAATCCCTTAACGTGAGTT





TTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCT





GCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCA





AGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCT





TCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCT





GCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAG





ACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTT





GGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCC





CGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGA





GCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCG





TCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTT





ACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGT





GGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAG





CGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGG





TATTTCACACCGCATATGGTGCACTcTCAGTAcpAATCTGCTCTGATGCCGCATAGTTAAGCCAGT





ATCTGCTCCCTGCTTGTGTGTTGGAGGTCGCTGAGTAGTGCGCGAGCAAAATTTAAGCTACAACAA





GGCAAGGCTTGACCGACAATTGCATGAAGAATCTGCTTAGGGTTAGGCGTTTTGCGCTGCTTCGCG





ATGTACGGGCCAGATATAGCCGCGGCATCG (6022)





protein:


M R K A A V S H W Q Q Q S Y L D S G H S G A T T T A A S L S


(CATE)





I C S (linker)





L Y V T V F Y G V A A W R N A T A L F C A T K N R D T W G T T Q C





L A D N G D Y S E V A L N V T E S F D A W N N T V T E Q A E D V W





Q L F E T S K A C V K L S A L C T M R C N K S E T D R W G L T K S





T T T A S T T S T T A S A K V D M V N E T S S C A Q D N C T G L E





Q E Q M S C K F N M T G L K R D K K K E Y N E T W Y S A D L V C E





Q G N N T G N E S R C Y M N H C N T S V Q E S C D K H Y W D A R F





R Y C A A A G Y A L L R C N D T N Y S G F M A K C S K V V V S S C





T R M M E T Q T S T W F G F N G T R A E N R T Y Y W H G R D N R T





S L N K Y Y N L T M K C R R A G N K T V L A V T M S G L V F H S Q





A N D R A K Q A W C W F G G K W K D A K E V K Q T V K H A R Y T G





T N N T D K J N L T A A G G G D A E V T F M W T N C R G E F L Y C





K M N W F L N W V E D R N T A N Q K A K E Q H K R N Y V A C H R Q





N T W H K V G K N V Y L A A R E G D L T C N S T V T S L A N D W D





G N Q T N T M S A E V A E L Y R L E L G D Y K L V E T A G L A A T





D V K R Y T T G G T S R N K R G V F V L G F L G F L A T A G S A M





G A A S L T L T A Q S R T L L A G V Q Q Q Q Q L L D V V K R Q Q E





L L R L T V W G T K N L Q T R V T A E K Y L K D Q A Q L N A W G C





A F R Q V C H T T V A W A N A S L T A K W N N E T W Q E W E R K V





D F L E E N T A L L E E A Q Q Q E K N M Y E L Q K L N S W D V F G





N W F D L A S W K Y Q Y G V Y V V G V L L R V Y V Q M L A K L R Q





G Y R A V F S S A A S Y F Q Q T H Q Q D A A L A T R E G K E R D G





G E G G G N S S W A W Q E Y H F L R Q L R L L T W L F S N C R T L





L S R V Y Q L Q A L Q R L S A T L Q R R E V L R T E L T Y L Q Y G





W S Y F H E A V Q A V W R S A T E T L A G A W G D L W E T L R R G





G R W L A A R R R Q G L E L T L L • (env)





72S pCMV CATESIVenv CATE-env gene: 775-3447


(1)CCTGGCCATTGCATACGTTGTATCCATATCATAATATGTACATTTATATTGGCTCATGTCCAA





CATTACCGCCATGTTGACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATTAG





TTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGC





CCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTT





TCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATC





ATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGT





ACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGG





TGATGCGGTTTTGGCAGTACATCAATGGGCGTGGTAGCGGTTTGACTCACGGGGATTTCCAAGTCT





CCACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCG





TAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAG





AGCTCGTTTAGTGAACCGTCAGATCGCCTGGAGACGCCATCCACGCTGTTTTGACCTCCATAGAAG





ACACCGGGACCGATCCAGCCTCCGCGGGCGCGCGTCGAGGAATTCAAGAAATGAGAAAAGCGGCTG





TTAGTCACTGGCAGCAGCAGTCTTACCTGGACTCTGGAATCCATTCTGGTGCCACTACCACAGCTC





CTTCTCTGAGTATCTGCAGCCTGTACGTCACGGTCTTCTACGGCGTACCAGCTTGGAGGAATGCGA





CAATTCCCCTCTTTTGTGCAACCAAGAATAGGGATACTTGGGGAACAACTCAGTGCCTACCGGACA





ACGGGGACTACTCGGAGGTGGCCCTGAACGTGACGGAGAGCTTCGACGCCTGGAACAACACGGTCA





CGGAGCAGGCGATCGAGGACGTGTGGCAGCTGTTCGAGACCTCGATCAAGCCGTGCGTCAAGCTGT





CCCCGCTCTGCATCACGATGCGGTGCAACAAGAGCGAGACGGATCGGTGGGGGCTGACGAAGTCGA





TCACGACGACGGCGTCGACCACGTCGACGACGGCGTCGGCGAAAGTGGACATGGTCAACGAGACCT





CGTCGTGCATCGCCCAGGACAACTGCACGGGCCTGGAGCAGGAGCAGATGATCAGCTGCAAGTTCA





ACATGACGGGGCTGAAGCGGGACAAGAAGAJLGGAGTACAACGAGACGTGGTACTCGGCGGACCTG





GTGTGCGAGCAGGGGAACAACACGGGGAACGAGTCGCGGTGCTACATGAACCACTGCAACACGTCG





GTGATCCAGGAGTCGTGCGACAAGCACTACTGGGACGCGATCCGGTTCCGGTACTGCGCGCCGCCG





GGCTACGCGCTGCTGCGGTGCAACGACACGAACTACTCGGGCTTCATGCCGAAATGCTCGAAGGTG





GTGGTCTCGTCGTGCACGAGGATGATGGAGACGCAGACCTCGACGTGGTTCGGCTTCAACGGGACG





CGGGCGGAGAACCGGACGTACATCTACTGGCACGGGCGGGACAACCGGACGATCATCTCGCTGAAC





AAGTACTACAACCTGACGATGAAGTGCCGGCGGCCGGGCAACAAGACGGTGCTCCCGGTCACCATC





ATGTCGGGGCTGGTGTTCCACTCGCAGCCGATCAACGACCGGCCGAAGCAGGCGTGGTGCTGGTTC





GGGGGGAAGTGGAAGGACGCGATCAAGGAGGTGAAGCAGACCATCGTCAAGCACCCCCGCTACACG





GGGACGAACAACACGGACAAGATCAACCTGACGGCGCCGGGCGGGGGCGATCCGGAAGTTACCTTC





ATGTGGACAAATTGCAGAGGAGAGTTCCTCTACTGCAAGATGAACTGGTTCCTGAACTGGGTGGAG





GACAGGAACACGGCGAACCAGAAGCCGAAGGAGCAGCACAAGCGGAACTACGTGCCGTGCCACATT





CGGCAGATCATCAACACGTGGCACAAAGTGGGCAAGAACGTGTACCTGCCGCCGAGGGAGGGCGAC





CTCACGTGCAACTCCACGGTGACCTCCCTCATCGCGAACATCGACTGGATCGACGGCAACCAGACG





AACATCACCATGTCGGCGGAGGTGGCGGAGCTGTACCGGCTGGAGCTGGGGGACTACAAGCTGGTG





GAGATCACGCCGATCGGCCTGGCCCCCACCGATGTGAAGCGCTACACGACCGGGGGGACGTCGCGG





AACAAGCGGGGGGTCTTCGTCCTGGGGTTCCTGGGGTTCCTCGCGACGGCGGGGTCGGCAATGGGA





GCCGCCAGCCTGACCCTCACGGCACAGTCCCGAACTTTATTGGCTGGGATCGTCCAACAACAGCAG





CAGCTGCTGGACGTGGTCAAGAGGCAGCAGGAGCTGCTGCGGCTGACCGTCTGGGGCACGAAGAAC





CTCCAGACGAGGGTCACGGCCATCGAGAAGTACCTGAAGGACCAGGCGCAGCTGAACGCGTGGGGC





TGTGCGTTTCGACAAGTCTGCCACACGACGGTCCCGTGGCCGAACGCGTCGCTGACGCCGAAGTGG





AACAACGAGACGTGGCAGGAGTGGGAGCGGAAGGTGGACTTCCTGGAGGAGAACATCACGGCCCTC





CTGGAGGAGGCGCAGATCCAGCAGGAGAAGAACATGTACGAGCTGCAAAAGCTGAACAGCTGGGAC





GTGTTCGGCAACTGGTTCGACCTGGCGTCGTGGATCAAGTACATCCAGTACGGCGTGTACATCGTG





GTGGGGGTGATCCTGCTGCGGATCGTGATCTACATCGTCCAGATGCTGGCGAAGCTGCGGCAGGGC





TATAGGCCAGTGTTCTCTTCCCCACCCTCTTATTTCCAACAAACCCATATCCAACAAGACCCGGCG





CTGCCGACCCGGGAGGGCAAGGAGCGGGACGGCGGGGAGGGCGGCGGCAACAGCTCCTGGCCGTGG





CAGATCGAGTACATCCACTTTCTTATTCGTCAGCTTATTAGACTCCTGACGTGGCTGTTCAGTAAC





TGTAGGACTCTGCTGTCGAGGGTGTACCAGATCCTCCAGCCGATCCTCCAGCGGCTCTCGGCGACC





CTCCAGAGGATTCGGGAGGTCCTCCGGACGGAGCTGACCTACCTCCAGTACGGGTGGAGCTATTTC





CACGAGGCGGTCCAGGCCGTCTGGCGGTCGGCGACGGAGACGCTGGCGGGCGCGTGGGGCGACCTG





TGGGAGACGCTGCGGCGGGGCGGCCGGTGGATACTCGCGATCCCCCGGCGGATCAGGCAGGGGCTG





GAGCTCACGCTCCTGTGATAAGATATCGGATCTGCTGTGCCTTCTAGTTGCCAGCCATCTGTTGTT





TGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAAT





GAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGCAC





AGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGGTACC





CAGGTGCTGAAGAATTGACCCGGTTCCTCCTGGGCCAGAAAGAAGCAGGCACATCCCCTTCTCTGT





GACACACCCTGTCCACGCCCCTGGTTCTTAGTTCCAGCCCCACTCATAGGACACTCATAGCTCAGG





AGGGCTCCGCCTTCAATCCCACCCGCTAAAGTACTTGGAGCGGTCTCTCCCTCCCTCATCAGCCCA





CCAAACCAAACCTAGCCTCCAAGAGTGGGAAGAAATTAAAGCAAGATAGGCTATTAAGTGCAGAGG





GAGAGAAAATGCCTCCAACATGTGAGGAAGTAATGAGAGAAATCATAGAATTTCTTCCGCTTCCTC





GCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGT





AATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAA





GGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCA





TCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTT





TCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGC





CTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCAATGCTCACGCTGTAGGTATCTCAGTTCGGTGTA





GGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATC





CGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGG





TAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTA





CGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAG





AGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCA





GCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGC





TCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTA





GATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGA





CAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGT





TGCCTGACTCCGGGGGGGGGGGGCGCTGAGGTCTGCCTCGTGAAGAAGGTGTTGCTGACTCATACC





AGGCCTGAATCGCCCCATCATCCAGCCAGAAAGTGAGGGAGCCACGGTTGATGAGAGCTTTGTTGT





AGGTGGACCAGTTGGTGATTTTGAACTTTTGCTTTGCCACGGAACGGTCTGCGTTGTCGGGAAGAT





GCGTGATCTGATCCTTCAACTCAGCAAAAGTTCGATTTATTCAACAAAGCCGCCGTCCCGTCAAGT





CAGCGTAATGCTCTGCCAGTGTTACAACCAATTAACCAATTCTGATTAGAAAAACTCATCGAGCAT





CAAATGAAACTGCAATTTATTCATATCAGGATTATCAATACCATATTTTTGAAAAAGCCGTTTCTG





TAATGAAGGAGAAAACTCACCGAGGCAGTTCCATAGGATGGCAAGATCCTGGTATCGGTCTGCGAT





TCCGACTCGTCCAACATCAATACAACCTATTAATTTCCCCTCGTCAAAAATAAGGTTATCAAGTGA





GAAATCACCATGAGTGACGACTGAATCCGGTGAGAATGGCAAAAGCTTATGCATTTCTTTCCAGAC





TTGTTCAACAGGCCAGCCATTACGCTCGTCATCAAAATCACTCGCATCAACCAAACCGTTATTCAT





TCGTGATTGCGCCTGAGCGAGACGAAATACGCGATCGCTGTTAAAAGGACAATTACAAACAGGAAT





CGAATGCAACCGGCGCAGGAACACTGCCAGCGCATCAACAATATTTTCACCTGAATCAGGATATTC





TTCTAATACCTGGAATGCTGTTTTCCCGGGGATCGCAGTGGTGAGTAACCATGCATCATCAGGAGT





ACGGATAAAATGCTTGATGGTCGGAAGAGGCATAAATTCCGTCAGCCAGTTTAGTCTGACCATCTC





ATCTGTAACATCATTGGCAACGCTACCTTTGCCATGTTTCAGAAACAACTCTGGCGCATCGGGCTT





CCCATACAATCGATAGATTGTCGCACCTGATTGCCCGACATTATCGCGAGCCCATTTATACCCATA





TAAATCAGCATCCATGTTGGAATTTAATCGCGGCCTCGAGCAAGACGTTTCCCGTTGAATATGGCT





CATAACACCCCTTGTATTACTGTTTATGTAAGCAGACAGTTTTATTGTTCATGATGATATATTTTT





ATCTTGTGCAATGTAACATCAGAGATTTTGAGACACAACGTGGCTTTCCCCCCCCCCCCATTATTG





AAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACA





AATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCAT





GACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGG





TGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAG





CAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATGCGGC





ATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAG





AAAATACCGCATCAGATTGGCTATTGG (6690)





CATE-env protein:


M R K A A V S H W Q Q Q S Y L D S G H S G A T T T A A S L S


(CATE)





I C S (linker)





Env SIVmac239:


L Y V T V F Y G V A A W R N A T A L F C A T K N R D T W G T T Q C





L A D N G D Y S E V A L N V T E S F D A W N N T V T E Q A E D V W





Q L F E T S K A C V K L S A L C T M R C N K S E T D R W G L T K S





T T T A S T T S T T A S A K V D M V N E T S S C A Q D N C T G L E





Q E Q M S C K F N M T G L K R D K K K E Y N E T W Y S A D L V C E





Q G N N T G N E S R C Y M N H C N T S V Q E S C D K H Y W D A R F





R Y C A A A G Y A L L R C N D T N Y S G F M A K C S K V V V S S C





T R M M E T Q T S T W F G F N G T R A E N R T Y Y W H G R D N R T





S L N K Y Y N L T M K C R R A G N K T V L A V T M S G L V F H S Q





A N D R A K Q A W C W F G G K W K D A K E V K Q T V K H A R Y T G





T N N T D K N L T A A G G G D A E V T F M W T N C R G E F L Y C K





M N W F L N W V E D R N T A N Q K A K E Q H K R N Y V A C H R Q N





T W H K V G K N V Y L A A R E G D L T C N S T V T S L A N D W D G





N Q T N T M S A E V A E L Y R L E L G D Y K L V E T A G L A A T D





V K R Y T T G G T S R N K R G V F V L G F L G F L A T A G S A M G





A A S L T L T A Q S R T L L A G V Q Q Q Q Q L L D V V K R Q Q E L





L R L T V W G T K N L Q T R V T A E K Y L K D Q A Q L N A W G C A





F R Q V C H T T V A W A N A S L T A K W N N E T W Q E W E R K V D





F L E E N T A L L E E A Q Q Q E K N M Y E L Q K L N S W D V F G N





W F D L A S W K Y Q Y G V Y V V G V L L R V Y V Q M L A K L R Q G





Y R A V F S S A A S Y F Q Q T H Q Q D A A L A T R E G K E R D G G





E G G G N S S W A W Q E Y H F L R Q L R L L T W L F S N C R T L L





S R V Y Q L Q A L Q R L S A T L Q R R E V L R T E L T Y L Q Y G W





S Y F H E A V Q A V W R S A T E T L A G A W G D L W E T L R R G G





R W L A A R R R Q G L E L T L L





pCMV MCP3 SVenv gene: 775-3660


(1)CCTGGCCATTGCATACGTTGTATCCATATCATAATATGTACATTTATATTGGCTCATGTCCAA





CATTACCGCCATGTTGACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATTAG





TTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGC





CCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTT





TCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATC





ATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGT





ACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGG





TGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTC





TCCACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTC





GTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCA





GAGCTCGTTTAGTGAACCGTCAGATCGCCTGGAGACGCCATCCACGCTGTTTTGACCTCCATAGAA





GACACCGGGACCGATCCAGCCTCCGCGGGCGCGCGTCGAGGAATTCAAGAAATGAACCCAAGTGCT





GCCGTCATTTTCTGCCTCATCCTGCTGGGTCTGAGTGGGACTCAAGGGATCCTCGACATGGCGCAA





CCGGTAGGTATAAACACAAGCACAACCTGTTGCTATCGTTTCATAAATAAAAAGATACCGAAGCAA





CGTCTGGAAAGCTATCGCCGTACCACTTCTAGCCACTGTCCGCGTGAAGCTGTTATATTCAAAACG





AAACTGGATAAGGAGATCTGCGCCGACCCTACACAGAAATGGGTTCAGGACTTTATGAAGCACCTG





GATAAAAAGACACAGACGCCGAAACTGATCTGCAGCCTGTACGTCACGGTCTTCTACGGCGTACCA





GCTTGGAGGAATGCGACAATTCCCCTCTTTTGTGCAACCAAGAATAGGGATACTTGGGGAACAACT





CAGTGCCTACCGGACAACGGGGACTACTCGGAGGTGGCCCTGAACGTGACGGAGAGCTTCGACGCC





TGGAACAACACGGTCACGGAGCAGGCGATCGAGGACGTGTGGCAGCTGTTCGAGACCTCGATCAAG





CCGTGCGTCAAGCTGTCCCCGCTCTGCATCACGATGCGGTGCAACAAGAGCGAGACGGATCGGTGG





GGGCTGACGAAGTCGATCACGACGACGGCGTCGACCACGTCGACGACGGCGTCGGCGAAAGTGGAC





ATGGTCAACGAGACCTCGTCGTGCATCGCCCAGGACAACTGCACGGGCCTGGAGCAGGAGCAGATG





ATCAGCTGCAAGTTCAACATGACGGGGCTGAAGCGGGACAAGAAGAAGGAGTACAACGAGACGTGG





TACTCGGCGGACCTGGTGTGCGAGCAGGGGAACAACACGGGGAACGAGTCGCGGTGCTACATGAAC





CACTGCAACACGTCGGTGATCCAGGAGTCGTGCGACAAGCACTACTGGGACGCGATCCGGTTCCGG





TACTGCGCGCCGCCGGGCTACGCGCTGCTGCGGTGCAACGACACGAACTACTCGGGCTTCATGCCG





AAATGCTCGAAGGTGGTGGTCTCGTCGTGCACGAGGATGATGGAGACGCAGACCTCGACGTGGTTC





GGCTTCAACGGGACGCGGGCGGAGAACCGGACGTACATCTACTGGCACGGGCGGGACAACCGGACG





ATCATCTCGCTGAACAAGTACTACAACCTGACGATGAAGTGCCGGCGGCCGGGCAACAAGACGGTG





CTCCCGGTCACCATCATGTCGGGGCTGGTGTTCCACTCGCAGCCGATCAACGACCGGCCGAAGCAG





GCGTGGTGCTGGTTCGGGGGGAAGTGGAAGGACGCGATCAAGGAGGTGAAGCAGACCATCGTCAAG





CACCCCCGCTACACGGGGACGAACAACACGGACAAGATCAACCTGACGGCGCCGGGCGGGGGCGAT





CCGGAAGTTACCTTCATGTGGACAAATTGCAGAGGAGAGTTCCTCTACTGCAAGATGAACTGGTTC





CTGAACTGGGTGGAGGACAGGAACACGGCGAACCAGAAGCCGAAGGAGCAGCACAAGCGGAACTAC





GTGCCGTGCCACATTCGGCAGATCATCAACACGTGGCACAAAGTGGGCAAGAACGTGTACCTGCCG





CCGAGGGAGGGCGACCTCACGTGCAACTCCACGGTGACCTCCCTCATCGCGAACATCGACTGGATC





GACGGCAACCAGACGAACATCACCATGTCGGCGGAGGTGGCGGAGCTGTACCGGCTGGAGCTGGGG





GACTACAAGCTGGTGGAGATCACGCCGATCGGCCTGGCCCCCACCGATGTGAAGCGCTACACGACC





GGGGGGACGTCGCGGAACAAGCGGGGGGTCTTCGTCCTGGGGTTCCTGGGGTTCCTCGCGACGGCG





GGGTCGGCAATGGGAGCCGCCAGCCTGACCCTCACGGCACAGTCCCGAACTTTATTGGCTGGGATC





GTCCAACAACAGCAGCAGCTGCTGGACGTGGTCAAGAGGCAGCAGGAGCTGCTGCGGCTGACCGTC





TGGGGCACGAAGAACCTCCAGACGAGGGTCACGGCCATCGAGAAGTACCTGAAGGACCAGGCGCAG





CTGAACGCGTGGGGCTGTGCGTTTCGACAAGTCTGCCACACGACGGTCCCGTGGCCGAACGCGTCG





CTGACGCCGAAGTGGAACAACGAGACGTGGCAGGAGTGGGAGCGGAAGGTGGACTTCCTGGAGGAG





AACATCACGGCCCTCCTGGAGGAGGCGCAGATCCAGCAGGAGAAGAACATGTACGAGCTGCAAAAG





CTGAACAGCTGGGACGTGTTCGGCAACTGGTTCGACCTGGCGTCGTGGATCAAGTACATCCAGTAC





GGCGTGTACATCGTGGTGGGGGTGATCCTGCTGCGGATCGTGATCTACATCGTCCAGATGCTGGCG





AAGCTGCGGCAGGGCTATAGGCCAGTGTTCTCTTCCCCACCCTCTTATTTCCAACAAACCCATATC





CAACAAGACCCGGCGCTGCCGACCCGGGAGGGCAAGGAGCGGGACGGCGGGGAGGGCGGCGGCAAC





AGCTCCTGGCCGTGGCAGATCGAGTACATCCACTTTCTTATTCGTCAGCTTATTAGACTCCTGACG





TGGCTGTTCAGTAACTGTAGGACTCTGCTGTCGAGGGTGTACCAGATCCTCCAGCCGATCCTCCAG





CGGCTCTCGGCGACCCTCCAGAGGATTCGGGAGGTCCTCCGGACGGAGCTGACCTACCTCCAGTAC





GGGTGGAGCTATTTCCACGAGGCGGTCCAGGCCGTCTGGCGGTCGGCGACGGAGACGCTGGCGGGC





GCGTGGGGCGACCTGTGGGAGACGCTGCGGCGGGGCGGCCGGTGGATACTCGCGATCCCCCGGCGG





ATCAGGCAGGGGCTGGAGCTCACGCTCCTGTGATAAGATATCGGATCTGCTGTGCCTTCTAGTTGC





CAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTC





CTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGT





GGGGTGGGGCAGCACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTG





GGCTCTATGGGTACCCAGGTGCTGAAGAATTGACCCGGTTCCTCCTGGGCCAGAAAGAAGCAGGCA





CATCCCCTTCTCTGTGACACACCCTGTCCACGCCCCTGGTTCTTAGTTCCAGCCCCACTCATAGGA





CACTCATAGCTCAGGAGGGCTCCGCCTTCAATCCCACCCGCTAAAGTACTTGGAGCGGTCTCTCCC





TCCCTCATCAGCCCACCAAACCAAACCTAGCCTCCAAGAGTGGGAAGAAATTAAAGCAAGATAGGC





TATTAAGTGCAGAGGGAGAGAAAATGCCTCCAACATGTGAGGAAGTAATGAGAGAAATCATAGAAT





TTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGC





TCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGC





AAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCG





CCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATA





AAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTAC





CGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCAATGCTCACGCTGTAGGTA





TCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGA





CCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAJLCCCGGTAAGACACGACTTATCGCCAC





TGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGA





AGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAG





TTACCTTCGGAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTT





TTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTAC





GGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAG





GATCTTCACCTAGATCCTTTTAAATTAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAA





ACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGT





TCATCCATAGTTGCCTGACTCCGGGGGGGGGGGGCGCTGAGGTCTGCCTCGTGAAGAAAGGTGTTG





CTGACTCATACCAGGCCTGAATCGCCCCATCATCCAGCCAGAAAGTGAGGGAGCCACGGTTGATGA





GAGCTTTGTTGTAGGTGGACCAGTTGGTGATTTTGAACTTTTGCTTTGCCACGGAACGGTCTGCGT





TGTCGGGAAGATGCGTGATCTGATCCTTCAACTCAGCAAAAGTTCGATTTATTCAACAAAGCCGCC





GTCCCGTCAAGTCAGCGTAATGCTCTGCCAGTGTTACAACCAATTAACCAATTCTGATTAGAAAAA





CTCATCGAGCATCAAATGAAACTGCAATTTATTCATATCAGGATTATCAATACCATATTTTTGAAA





AAGCCGTTTCTGTAATGAAGGAGAAAACTCACCGAGGCAGTTCCATAGGATGGCAAGATCCTGGTA





TCGGTCTGCGATTCCGACTCGTCCAACATCAATACAACCTATTAATTTCCCCTCGTCAAAAATAAG





GTTATCAAGTGAGAAATCACCATGAGTGACGACTGAATCCGGTGAGAATGGCAAAAGCTTATGCAT





TTCTTTCCAGACTTGTTCAACAGGCCAGCCATTACGCTCGTCATCAAAATCACTCGCATCAACCAA





ACCGTTATTCATTCGTGATTGCGCCTGAGCGAGACGAAATACGCGATCGCTGTTAAAAGGACAATT





ACAAACAGGAATCGAATGCAACCGGCGCAGGAACACTGCCAGCGCATCAACAATATTTTCACCTGA





ATCAGGATATTCTTCTAATACCTGGAATGCTGTTTTCCCGGGGATCGCAGTGGTGAGTAACCATGC





ATCATCAGGAGTACGGATAAAATGCTTGATGGTCGGAAGAGGCATAAATTCCGTCAGCCAGTTTAG





TCTGACCATCTCATCTGTAACATCATTGGCAACGCTACCTTTGCCATGTTTCAGAAACAACTCTGG





CGCATCGGGCTTCCCATACAATCGATAGATTGTCGCACCTGATTGCCCGACATTATCGCGAGCCCA





TTTATACCCATATAAATCAGCATCCATGTTGGAATTTAATCGCGGCCTCGAGCAAGACGTTTCCCG





TTGAATATGGCTCATAACACCCCTTGTATTACTGTTTATGTAAGCAGACAGTTTTATTGTTCATGA





TGATATATTTTTATCTTGTGCAATGTAACATCAGAGATTTTGAGACACAACGTGGCTTTCCCCCCC





CCCCCATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTA





GAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAAC





CATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTCGCGCGTTT





CGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGC





GGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCT





TAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAG





ATGCGTAAGGAGAAAATACCGCATCAGATTGGCTATTGG (6903)





protein:


M N A S A A V F C L L L G L S G T Q (IP10)





G I L D (linker)





M A Q A V G N T S T T C C Y R F N K K A K Q R L E S Y R R T T S S





H C A R E A V F K T K L D K E C A D A T Q K W V Q D F M K H L D K





K T Q T A K L (MCP3)





I C S (linker)





L Y V T V F Y G V A A W R N A T A L F C A T K N R D T W G T T Q C





L A D N G D Y S E V A L N V T E S F D A W N N T V T E Q A E D V W





Q L F E T S K A C V K L S A L C T M R C N K S E T D R W G L T K S





T T T A S T T S T T A S A K V D M V N E T S S C A Q D N C T G L E





Q E Q M S C K F N M T G L K R D K K K E Y N E T W Y S A D L V C E





Q G N N T G N E S R C Y M N H C N T S V Q E S C D K H Y W D A R F





R Y C A A A G Y A L L R C N D T N Y S G F M A K C S K V V V S S C





T R M M E T Q T S T W F G F N G T R A E N R T Y Y W H G R D N R T





L S L N K Y Y N L T M K C R R A G N K T V L A V T M S G L V F H S





Q A N D R A K Q A W C W F G G K W K D A K E V K Q T V K H A R Y T





G T N N T D K N L T A A G G G D A E V T F M W T N C R G E F L Y C





K M N W F L N W V E D R N T A N Q K A K E Q H K R N Y V A C H R Q





N T W H K V G K N V Y L A A R E G D L T C N S T V T S L A N D W D





G N Q T N T M S A E V A E L Y R L E L G D Y K L V E T A J G L A A





T D V K R Y T T G G T S R N K R G V F V L G F L G F L A T A G S A





M G A A S L T L T A Q S R T L L A G V Q Q Q Q Q L L D V V K R Q Q





E L L R L T V W G T K N L Q T R V T A E K Y L K D Q A Q L N A W G





C A F R Q V C H T T V A W A N A S L T A K W N N E T W Q E W E R K





V D F L E E N T A L L E E A Q Q Q E K N M Y E L Q K L N S W D V F





G N W F D L A S W K Y Q Y G V Y V V G V L L R V Y V Q M L A K L R





Q G Y R A V F S S A A S Y F Q Q T H Q Q D A A L A T R E G K E R D





G G E G G G N S S W A W Q E Y H F L R Q L R L L T W L F S N C R T





L L S R V Y Q L Q A L Q R L S A T L Q R R E V L R T E L T Y L Q Y





G W S Y F H E A V Q A V W R S A T E T L A G A W G D L W E T L R R





G G R W I L A I P R R I R Q G L E L T L L • (SIVmac239env)





Plasmid CMVtPAenvmac239


CCTGGCCATTGCATACGTTGTATCCATATCATAATATGTACATTTATATTGGCTCATGTCCAACAT





TACCGCCATGTTGACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTC





ATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCA





ACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCC





ATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATA





TGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACA





TGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGA





TGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCC





ACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTA





ACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAG





CTCGTTTAGTGAACCGTCAGATCGCCTGGAGACGCCATCCACGCTGTTTTGACCTCCATAGAAGAC





ACCGGGACCGATCCAGCCTCCGCGGGCGCGCGTCGAGGAAAATTCAAGAAATGGATGCAATGAAGA





GAGGGCTCTGCTGTGTGCTGCTGCTGTGTGGAGCAGTCTTCGTTTCGCCCAGCCAGGAAATCCATG





CCCGATTCAGAAGAGGAGCCAGATCTATCTGCAGCCTGTACGTCACGGTCTTCTACGGCGTACCAG





CTTGGAGGAATGCGACAATTCCCCTCTTTTGTGCAACCAAGAATAGGGATACTTGGGGAACAAAAC





TCAGTGCCTACCGGACAACGGGGACTACTCGGAGGTGGCCCTGAACGTGACGGAGAGCTTCGACGC





CTGGAJLCAACACGGTCACGGAGCAGGCGATCGAGGACGTGTGGCAGCTGTTCGAGACCTCGATCA





AGCCGTGCGTCAAGCTGTCCCCGCTCTGCATCACGATGCGGTGCAACAAGAGCGAGACGGATCGGT





GGGGGCTGACGAAGTCGATCACGACGACGGCGTCGACCACGTCGACGACGGCGTCGGCGAAAGTGG





ACATGGTCAACGAGACCTCGTCGTGCATCGCCCAGGACAACTGCACGGGCCTGGAGCAGGAGCAGA





TGATCAGCTGCAAGTTCAACATGACGGGGTGAAGCGGGACAAGAAGAAGGAGTACAACGAGACGTG





GTACTCGGCGGACCTGGTGTGCGAGCAGGGGAACAAACACGGGGAACGAGTCGCGGTGCTACATGA





ACCACTGCAACACGTCGGTGATCCAGGAGTCGTGCGACAAGCACTACTGGGACGCGATCCGGTTCC





GGTACTGCGCGCCGCCGGGCTACGCGCTGCTGCGGTGCAACGACACGAACTACTCGGGCTTCATGC





CGAAATGCTCGAAGGTGGTGGTCTCGTCGTGCACGAGGATGATGGAGACGCAGACCTCGACGTGGT





TCGGCTTCAACGGGACGCGGGCGGAGAACCGGACGTACATCTACTGGCACGGGCGGGACAACCGGA





CGATCATCTCGCTGAACAAGTACTACAACCTGACGATGAAGTGCCGGCGGCCGGGCAACAAGACGG





TGCTCCCGGTCACCATCATGTCGGGGCTGGTGTTCCACTCGCAGCCGATCAACGACCGGCCGAAGC





AGGCGTGGTGCTGGTTCGGGGGGAAGTGGAAGGACGCGATCAAGGAGGTGAAGCAGACCATCGTCA





AGCACCCCCGCTACACGGGGACGAACAACACGGACAAGATCMAACCTGACGGCGCCGGGCGGGGGC





GATCCGGAAGTTACCTTCATGTGGACAAATTGCAGAGGAGAGTTCCTCTACTGCAAGATGAACTGG





TTCCTGAACTGGGTGGAGGACAGGAACACGGCGAACCAGAAGCCGAAGGAGCAGCACAAGCGGAAC





TACGTGCCGTGCCACATTCGGCAGATCATCAACACGTGGCACAAAGTGGGCAAGAACGTGTACCTG





CCGCCGAGGGAGGGCGACCTCACGTGCAACTCCACGGTGACCTCCCTCATCGCGJAACATCGACTG





GATCGACGGCAACCAGACGAACATCACCATGTCGGCGGAGGTGGCGGAGCTGTACCGGCTGGAGCT





GGGGGACTACAAGCTGGTGGAGATCACGCCGATCGGCCTGGCCCCCACCGATGTGAAGCGCTACAC





GACCGGGGGGACGTCGCGGAACAAGCGGGGGGTCTTCGTCCTGGGGTTCCTGGGGTTCCTCGCGAC





GGCGGGGTCGGCAATGGGAGCCGCCAGCCTGACCCTCACGGCACAGTCCCGAACTTTATTGGCTGG





GATCGTCCAACAACAGCAGCAGCTGCTGGACGTGGTCAAGAGGCAGCAGGAGCTGCTGCGGCTGAC





CGTCTGGGGCACGAAGAACCTCCAGACGAGGGTCACGGCCATCGAGAAGTACCTGAAGGACCAGGC





GCAGCTGAACGCGTGGGGCTGTGCGTTTCGACAAGTCTGCCACACGACGGTCCCGTGGCCGAACGC





GTCGCTGACGCCGAAGTGGAACAACGAGACGTGGCAGGAGTGGGAGCGGAAGGTGGACTTCCTGGA





GGAGAACATCACGGCCCTCCTGGAGGAGGCGCAGATCCAGCAGGAGAAGAACATGTACGAGCTGCA





AAAGCTGAACAGCTGGGACGTGTTCGGCAACTGGTTCGACCTGGCGTCGTGGATCAAGTACATCCA





GTACGGCGTGTACATCGTGGTGGGGGTGATCCTGCTGCGGATCGTGATCTACATCGTCCAGATGCT





GGCGAAGCTGCGGCAGGGCTATAGGCCAGTGTTCTCTTCCCCACCCTCTTATTTCCAACAAACCCA





TATCCAACAAGACCCGGCGCTGCCGACCCGGGAGGGCAAGGAGCGGGACGGCGGGGAGGGCGGCGG





CAACAGCTCCTGGCCGTGGCAGATCGAGTACATCCACTTTCTTATTCGTCAGCTTATTAGACTCCT





GACGTGGCTGTTCAGTAACTGTAGGACTCTGCTGTCGAGGGTGTACCAGATCCTCCAGCCGATCCT





CCAGCGGCTCTCGGCGACCCTCCAGAGGATTCGGGAGGTCCTCCGGACGGAGCTGACCTACCTCCA





GTACGGGTGGAGCTATTTCCACGAGGCGGTCCAGGCCGTCTGGCGGTCGGCGACGGAGACGCTGGC





GGGCGCGTGGGGCGACCTGTGGGAGACGCTGCGGCGGGGCGGCCGGTGGATACTCGCGATCCCCCG





GCGGATCAGGCAGGGGCTGGAGCTCACGCTCCTGTGATAAGATATCGGATCTGCTGTGCCTTCTAG





TTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCAC





TGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGG





GGGTGGGGTGGGGCAGCACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGC





GGTGGGCTCTATGGGTACCCAGGTGCTGAAGAATTGACCCGGTTCCTCCTGGGCCAGAAAGAAGCA





GGCACATCCCCTTCTCTGTGACACACCCTGTCCACGCCCCTGGTTCTTAGTTCCAGCCCCACTCAT





AGGACACTCATAGCTCAGGAGGGCTCCGCCTTCAATCCCACCCGCTAAAGTACTTGGAGCGGTCTC





TCCCTCCCTCATCAGCCCACCAAACCAAACCTAGCCTCCAAGAGTGGGAAGAAATTAAAGCAAGAT





AGGCTATTAAGTGCAGAGGGAGAGAAAATGCCTCCAACATGTGAGGAAGTAATGAGAGAAATCATA





GAATTTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTAT





CAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGT





GAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGC





TCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGAC





TATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGC





TTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCAATGCTCACGCTGTA





GGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGC





CCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGC





CACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCT





TGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGC





CAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTG





GTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCT





TTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTAT





CAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAJLAGTATA





TATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGT





CTATTTCGTTCATCCATAGTTGCCTGACTCCGGGGGGGGGGGGCGCTGAGGTCTGCCTCGTGAAGA





AGGTGTTGCTGACTCATACCAGGCCTGAATCGCCCCATCATCCAGCCAGAAAGTGAGGGAGCCACG





GTTGATGAGAGCTTTGTTGTAGGTGGACCAGTTGGTGATTTTGAACTTTTGCTTTGCCACGGAACG





GTCTGCGTTGTCGGGAAGATGCGTGATCTGATCCTTCAACTCAGCAAAAGTTCGATTTATTCAACA





AAGCCGCCGTCCCGTCAAGTCAGCGTAATGCTCTGCCAGTGTTACAACCAATTAACCAATTCTGAT





TAGAAAAACTCATCGAGCATCAAATGAAACTGCAATTTATTCATATCAGGATTATCAATACCATAT





TTTTGAAAAAGCCGTTTCTGTAATGAAGGAGAAAACTCACCGAGGCAGTTCCATAGGATGGCAAGA





TCCTGGTATCGGTCTGCGATTCCGACTCGTCCAACATCAATACAACCTATTAATTTCCCCTCGTCA





AAAATAAGGTTATCAAGTGAGAAATCACCATGAGTGACGACTGAATCCGGTGAGAATGGCAAAAGC





TTATGCATTTCTTTCCAGACTTGTTCAACAGGCCAGCCATTACGCTCGTCATCAAAATCACTCGCA





TCAACCAAACCGTTATTCATTCGTGATTGCGCCTGAGCGAGACGAAATACGCGATCGCTGTTAAAA





GGACAATTACAAACAGGAATCGAATGCAACCGGCGCAGGAACACTGCCAGCGCATCAACAATATTT





TCACCTGAATCAGGATATTCTTCTAATACCTGGAATGCTGTTTTCCCGGGGATCGCAGTGGTGAGT





AACCATGCATCATCAGGAGTACGGATAAAATGCTTGATGGTCGGAAGAGGCATAAATTCCGTCAGC





CAGTTTAGTCTGACCATCTCATCTGTAACATCATTGGCAACGCTACCTTTGCCATGTTTCAGAAAC





AACTCTGGCGCATCGGGCTTCCCATACAATCGATAGATTGTCGCACCTGATTGCCCGACATTATCG





CGAGCCCATTTATACCCATATAAATCAGCATCCATGTTGGAATTTAATCGCGGCCTCGAGCAAGAC





GTTTCCCGTTGAATATGGCTCATAACACCCCTTGTATTACTGTTTATGTAAGCAGACAGTTTTATT





GTTCATGATGATATATTTTTATCTTGTGCAATGTAACATCAGAGATTTTGAGACACAACGTGGCTT





TCCCCCCCCCCCCATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAA





TGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTC





TAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTC





GCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGT





CTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGG





GGCTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATA





CCGCACAGATGCGTAAGGAGAAAATACCGCATCAGATTGGCTATTGG





tPA-env gene:


ATGGATGCAATGAAGAGAGGGCTCTGCTGTGTGCTGCTGCTGTGTGGAGCAGTCTTCGTTTCGCCC





AGCCAGGAAATCCATGCCCGATTCAGAAGAGGAGCCAGATCTATCTGCAGCCTGTACGTCACGGTC





TTCTACGGCGTACCAGCTTGGAGGAATGCGACAATTCCCCTCTTTTGTGCAACCAAGAATAGGGAT





ACTTGGGGAACAACTCAGTGCCTACCGGACAACGGGGACTACTCGGAGGTGGCCCTGAACGTGACG





GAGAGCTTCGACGCCTGGAACAACACGGTCACGGAGCAGGCGATCGAGGACGTGTGGCAGCTGTTC





GAGACCTCGATCAAGCCGTGCGTCAAGCTGTCCCCGCTCTGCATCACGATGCGGTGCAACAAGAGC





GAGACGGATCGGTGGGGGCTGACGAAGTCGATCACGACGACGGCGTCGACCACGTCGACGACGGCG





TCGGCGAAAGTGGACATGGTCAACGAGACCTCGTCGTGCATCGCCCAGGACAACTGCACGGGCCTG





GAGCAGGAGCAGATGATCAGCTGCAAGTTCAACATGACGGGGCTGAAGCGGGACAAGAAGAAGGAG





TACAACGAGACGTGGTACTCGGCGGACCTGGTGTGCGAGCAGGGGAACAACACGGGGAACGAGTCG





CGGTGCTACATGAACCACTGCAACACGTCGGTGATCCAGGAGTCGTGCGACAAGCACTACTGGGAC





GCGATCCGGTTCCGGTACTGCGCGCCGCCGGGCTACGCGCTGCTGCGGTGCAACGACACGAACTAC





TCGGGCTTCATGCCGAAAATGCTCGAAGGTGGTGGTCTCGTCGTGCACGAGGATGATGGAGACGCA





GACCTCGACGTGGTTCGGCTTCAACGGGACGCGGGCGGAGAACCGGACGTACATCTACTGGCACGG





GCGGGACAACCGGACGATCATCTCGCTGAACAAGTACTACAACCTGACGATGAAGTGCCGGCGGCC





GGGCAACAAGACGGTGCTCCCGGTCACCATCATGTCGGGGCTGGTGTTCCACTCGCAGCCGATCAA





CGACCGGCCGAAGCAGGCGTGGTGCTGGTTCGGGGGGAAGTGGAAGGACGCGATCAAGGAGGTGAA





GCAGACCATCGTCAAGCACCCCCGCTACACGGGGACGAACAACACGGACAAGATCAACCTGACGGC





GCCGGGCGGGGGCGATCCGGAAGTTACCTTCATGTGGACAAATTGCAGAGGAGAGTTCCTCTACTG





CAAGATGAACTGGTTCCTGAACTGGGTGGAGGACAGGAAAACACGGCGAACCAGAAGCCGAAGGAG





CAGCACAAGCGGAACTACGTGCCGTGCCACATTCGGCAGATCATCAACACGTGGCACAAAGTGGGC





AAGAACGTGTACCTGCCGCCGAGGGAGGGCGACCTCACGTGCAACTCCACGGTGACCTCCCTCATC





GCGAACATCGACTGGATCGACGGCAACCAGACGAACATGACCATGTCGGCGGAGGTGGCGGAGCTG





TACCGGCTGGAGCTGGGGGACTACAAGCTGGTGGAGATCACGCCGATCGGCCTGGCCCCCACCGAT





GTGAAGCGCTACACGACCGGGGGGACGTCGCGGAACAAAGCGGGGGGTCTTCGTCCTGGGGTTCCT





GGGGTTCCTCGCGACGGCGGGGTCGGCAATGGGAGCCGCCAGCCTGACCCTCACGGCACAGTCCCG





AACTTTATTGGCTGGGATCGTCCAACAACAGCAGCAGCTGCTGGACGTGGTCAAGAGGCAGCAGGA





GCTGCTGCGGCTGACCGTCTGGGGCACGAAGAACCTCCAGACGAGGGTCACGGCCATCGAGAAGTA





CCTGAAGGACCAGGCGCAGCTGAACGCGTGGGGCTGTGCGTTTCGACAAGTCTGCCACACGACGGT





CCCGTGGCCGAACGCGTCGCTGACGCCGAAGTGGAACAACGAGACGTGGCAGGAGTGGGAGCGGAA





GGTGGACTTCCTGGAGGAGAACATCACGGCCCTCCTGGAGGAGGCGCAGATCCAGCAGGAGAAGAA





CATGTACGAGCTGCAAAAGCTGAACAGCTGGGACGTGTTCGGCAACTGGTTCGACCTGGCGTCGTG





GATCAAGTACATCCAGTACGGCGTGTACATCGTGGTGGGGGTGATCCTGCTGCGGATCGTGATCTA





CATCGTCCAGATGCTGGCGAAGCTGCGGCAGGGCTATAGGCCAGTGTTCTCTTCCCCACCCTCTTA





TTTCCAACAAACCCATATCCAACAAGACCCGGCGCTGCCGACCCGGGAGGGCAAGGAGCGGGACGG





CGGGGAGGGCGGCGGCAACAGCTCCTGGCCGTGGCAGATCGAGTACATCCACTTTCTTATTCGTCA





GCTTATTAGACTCCTGACGTGGCTGTTCAGTAACTGTAGGACTCTGCTGTCGAGGGTGTACCAGAT





CCTCCAGCCGATCCTCCAGCGGCTCTCGGCGACCCTCCAGAGGATTCGGGAGGTCCTCCGGACGGA





GCTGACCTACCTCCAGTACGGGTGGAGCTATTTCCACGAGGCGGTCCAGGCCGTCTGGCGGTCGGC





GACGGAGACGCTGGCGGGCGCGTGGGGCGACCTGTGGGAGACGCTGCGGCGGGGCGGCCGGTGGAT





ACTCGCGATCCCCCGGCGGATCAGGCAGGGGCTGGAGCTCACGCTCCTGTGA





tPA-env protein


M D A M K R G L C C V L L L C G A V F V S A S Q E H A R F R R G A





R S (tPA)





C S (linker)





L Y V T V F Y G V A A W R N A T A L F C A T K N R D T W G T T Q C





L A D N G D Y S E V A L N V T E S F D A W N N T V T E Q A E D V W





Q L F E T S K A C V K L S A L C T M R C N K S E T D R W G L T K S





T T T A S T T S T T A S A K V D M V N E T S S C A Q D N C T G L E





Q E Q M S C K F N M T G L K R D K K K E Y N E T W Y S A D L V C E





Q G N N T G N E S R C Y M N H C N T S V Q E S C D K H Y W D A R F





R Y C A A A G Y A L L R C N D T N Y S G F M A K C S K V V V S S C





T R M M E T Q T S T W F G F N G T R A E N R T Y Y W H G R D N R T





S L N K Y Y N L T M K C R R A G N K T V L A V T M S G L V F H S Q





A N D R A K Q A W C W F G G K W K D A K E V K Q T V K H A R Y T G





T N N T D K N L T A A G G G D A E V T F M W T N C R G E F L Y C K





M N W F L N W V E D R N T A N Q K A K E Q H K R N Y V A C H R Q N





T W H K V G K N V Y L A A R E G D L T C N S T V T S L A N D W D G





N Q T N T M S A E V A E L Y R L E L G D Y K L V E L T A G L A A T





D V K R Y T T G G T S R N K R G V F V L G F L G F L A T A G S A M





G A A S L T L T A Q S R T L L A G V Q Q Q Q Q L L D V V K R Q Q E





L L R L T V W G T K N L Q T R V T A E K Y L K D Q A Q L N A W G C





A F R Q V C H T T V A W A N A S L T A K W N N E T W Q E W E R K V





D F L E E N T A L L E E A Q Q Q E K N M Y E L Q K L N S W D V F G





N W F D L A S W K Y Q Y G V Y V V G V L L R V Y V Q M L A K L R Q





G Y R A V F S S A A S Y F Q Q T H Q Q D A A L A T R E G K E R D G





G E G G G N S S W A W Q E Y H F L R Q L R L L T W L F S N C R T L





L S R V Y Q L Q A L Q R L S A T L Q R R E V L R T E L T Y L Q Y G





W S Y F H E A V Q A V W R S A T E T L A G A W G D L W E T L R R G





G R W L A A R R R Q G L E L T L L • (SIVmac239 env)





pCMV MCP3p39 (STY) gene: 769-2199


(1)CCTGGCCATTGCATACGTTGTATCCATATCATAATATGTACATTTATATTGGCTCATGTCCAA





CATTACCGCCATGTTGACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATTAG





TTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGC





CCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTT





TCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATC





ATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGT





ACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGG





TGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTC





TCCACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTC





GTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCA





GAGCTCGTTTAGTGAACCGTCAGATCGCCTGGAGACGCCATCCACGCTGTTTTGACCTCCATAGAA





GACACCGGGACCGATCCAGCCTCCGCGGGCGCGCGTCGACAAGAAATGAACCCAAGTGCTGCCGTC





ATTTTCTGCCTCATCCTGCTGGGTCTGAGTGGGACTCAAGGGATCCTCGACATGGCGCAACCGGTC





GGGATCAACACGAGCACGACCTGCTGCTACCGGTTCATCAACAAGAAGATCCCGAAGCAACGTCTG





GAAAGCTATCGCCGGACCACGTCGAGCCACTGCCCGCGGGAGGCGGTTATCTTCAAGACGAAGCTG





GACAAGGAGATCTGCGCCGACCCGACGCAGAAGTGGGTTCAGGACTTCATGAAGCACCTGGATAAG





AAGACGCAGACGCCGAAGCTGGCTAGCGCAGGAGCAGGCGTGCGGAACTCCGTCTTGTCGGGGAAG





AAAGCGGATGAGTTGGAGAAAATTCGGCTACGGCCCAACGGGAAGAAGAAGTACATGTTGAAGCAT





GTAGTATGGGCGGCGAATGAGTTGGATCGGTTTGGATTGGCGGAGAGCCTGTTGGAGAACAAAGAG





GGATGTCAGAAGATCCTTTCGGTCTTGGCGCCGTTGGTGCCGACGGGCTCGGAGAACTTGAAGAGC





CTCTACAACACGGTCTGCGTCATCTGGTGCATTCACGCGGAAGAGAAAGTGAAACACACGGAGGAA





GCGAAACAGATAGTGCAGCGGCACCTAGTGGTGGAAACGGGAACCACCGAAACCATGCCGAAGACC





TCGCGGCCGACGGCGCCGTCGAGCGGCAGGGGAGGAAACTACCCGGTACAGCAGATCGGTGGCAAC





TACGTCCACCTGCCGCTGTCCCCGCGGACCCTGAACGCGTGGGTCAAGCTGATCGAGGAGAAGAAG





TTCGGAGCGGAGGTAGTGCCGGGATTCCAGGCGCTGTCGGAAGGTTGCACCCCCTACGACATCAAC





CAGATGCTGAACTGCGTTGGAGACCATCAGGCGGCGATGCAGATCATCCGGGACATCATCAACGAG





GAGGCGGCGGATTGGGACTTGCAGCACCCGCAACCGGCGCCGCAACAAGGACAACTTCGGGAGCCG





TCGGGATCGGACATCGCGGGAACCACCTCCTCGGTTGACGAACAGATCCAGTGGATGTACCGGCAG





CAGAACCCGATCCCAGTAGGCAACATCTACCGGCGGTGGATCCAGCTGGGTCTGCAGAAATGCGTC





CGTATGTACAACCCGACCAACATTCTAGATGTAAAACAAGGGCCAAAGGAGCCGTTCCAGAGCTAC





GTCGACCGGTTCTACAAGTCGCTGCGGGCGGAGCAGACGGACGCGGCGGTCAAGAACTGGATGACG





CAGACGCTGCTGATCCAGAACGCGAACCCAGATTGCAAGCTAGTGCTGAAGGGGCTGGGTGTGAAT





CCCACCCTAGAAGAAATGCTGACGGCTTGTCAAGGAGTAGGGGGGCCGGGACAGAAGGCTAGATTA





ATGGGGGCCCATGCGGCCGCGTAGGAATTCGATCCAGATCTGCTGTGCCTTCTAGTTGCCAGCCAT





CTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCT





AATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGG





GGCAGCACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTA





TGGGTACCCAGGTGCTGAAGAATTGACCCGGTTCCTCCTGGGCCAGAAAGAAGCAGGCACATCCCC





TTCTCTGTGACACACCCTGTCCACGCCCCTGGTTCTTAGTTCCAGCCCCACTCATAGGACACTCAT





AGCTCAGGAGGGCTCCGCCTTCAATCCCACCCGCTAAAGTACTTGGAGCGGTCTCTCCCTCCCTCA





TCAGCCCACCAAACCAAACCTAGCCTCCAAGAGTGGGAAGAAATTAAAGCAAGATAGGCTATTAAG





TGCAGAGGGAGAGAAAATGCCTCCAACATGTGAGGAAGTAATGAGAGAAATCATAGAATTTCTTCC





GCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCA





AAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGKAAGAACATGTGAGCAAAAGGC





CAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCT





GACGAGCATCACAAAAJAJJCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGAT





ACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGAT





ACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCAATGCTCACGCTGTAGGTATCTCA





GTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCT





GCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAG





CAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGT





GGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCT





TCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTG





TTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGG





GGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGA





TCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAA





CTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTT





CATCCATAGTTGCCTGACTCCGGGGGGGGGGGGCGCTGAGGTCTGCCTCGTGAAGAAGGTGTTGCT





GACTCATACCAGGCCTGAATCGCCCCATCATCCAGCCAGAAAGTGAGGGAGCCACGGTTGATGAGA





GCTTTGTTGTAGGTGGACCAGTTGGTGATTTTGAACTTTTGCTTTGCCACGGAACGGTCTGCGTTG





TCGGGAAGATGCGTGATCTGATCCTTCAACTCAGCAAAAGTTCGATTTATTCAACAAAGCCGCCGT





CCCGTCAAGTCAGCGTAATGCTCTGCCAGTGTTACAACCAATTAACCAATTCTGATTAGAAAAACT





CATCGAGCATCAAATGAAACTGCAATTTATTCATATCAGGATTATCAATACCATATTTTTGAAAAA





GCCGTTTCTGTAATGAAGGAGAAAACTCACCGAGGCAGTTCCATAGGATGGCAAGATCCTGGTATC





GGTCTGCGATTCCGACTCGTCCAACATCAATACAACCTATTAATTTCCCCTCGTCAAAAATAAGGT





TATCAAGTGAGAAATCACCATGAGTGACGACTGAATCCGGTGAGAATGGCAAAAGCTTATGCATTT





CTTTCCAGACTTGTTCAACAGGCCAGCCATTACGCTCGTCATCAAAATCACTCGCATCAACCAAAC





CGTTATTCATTCGTGATTGCGCCTGAGCGAGACGAAATACGCGATCGCTGTTAAAAGGACAATTAC





AAACAGGAATCGAATGCAACCGGCGCAGGAACACTGCCAGCGCATCAACAATATTTTCACCTGAAT





CAGGATATTCTTCTAATACCTGGAATGCTGTTTTCCCGGGGATCGCAGTGGTGAGTAACCATGCAT





CATCAGGAGTACGGATAAAATGCTTGATGGTCGGAAGAGGCATAAATTCCGTCAGCCAGTTTAGTC





TGACCATCTCATCTGTAACATCATTGGCAACGCTACCTTTGCCATGTTTCAGAAACAACTCTGGCG





CATCGGGCTTCCCATACAATCGATAGATTGTCGCACCTGATTGCCCGACATTATCGCGAGCCCATT





TATACCCATATAAATCAGCATCCATGTTGGAATTTAATCGCGGCCTCGAGCAAGACGTTTCCCGTT





GAATATGGCTCATAACACCCCTTGTATTACTGTTTATGTAAGCAGACAGTTTTATTGTTCATGATG





ATATATTTTTATCTTGTGCAATGTAACATCAGAGATTTTGAGACACAACGTGGCTTTCCCCCCCCC





CCCATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGA





AAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCA





TTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTCGCGCGTTTCG





GTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGG





ATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTA





ACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGAT





GCGTAAGGAGAAAATACCGCATCAGATTGGCTATTGG (5444)





protein:


M N A S A A V F C L L L G L S G T Q (MCP3)





G L D (linker)





M A Q A V G N T S T T C C Y R F N K K A K Q R L E S Y R R T T S S





H C A R E A V F K T K L D K E C A D A T Q K W V Q D F M K H L D K





K T Q T A K L A S A G A G V R N S V L S G K K A D E L E K R L R A





N G K K K Y M L K H V V W A A N E L D R F G L A E S L L E N K E G





C Q K L S V L A A L V A T G S E N L K S L Y N T V C V W C H A E E





K V K H T E E A K Q V Q R H L V V E T G T T E T M A K T S R A T A





A S S G R G G N Y A V Q Q G G N Y V H L A L S A R T L N A W V K L





E E K K F G A E V V A G F Q A L S E G C T A Y D N Q M L N C V G D





H Q A A M Q R D N E E A A D W D L Q H A Q A A A Q Q G Q L R E A S





G S D A G T T S S V D E Q Q W M Y R Q Q N A A V G N Y R R W Q L G





L Q K C V R M Y N A T N J L D V K Q G A K E A F Q S Y V D R F Y K





S L R A E Q T D A A V K N W M T Q T L L Q N A N A D C K L V L K G





L G V N A T L E E M L T A C Q G V G G A G Q K A R L M G A H A A





A • (gag)






Exemplary HIV Constructs:

In some embodiments, the sequences are modified, e.g., to inactivate the protein or to align to conserved epitopes, such as CTL epitopes, to generate conserve epitopes. Exemplary modified HIV proteins are shown in FIGS. 8-11.


The following terminology is used with reference to the exemplary HIV constructs, the sequences of which are provided herein. All the genes are expressed from the CMV promoter and have BHG polyadenylation signal using the same or similar vectors as described for SIV.


p37M1-10(gag) is the native N term portion of gag


CATEp37M1-10 is the CATE-p37gag fusion protein


MCP3p37M1-10 is the MCP3-p37gag fusion protein


CATEenv is the CATE-env fusion protein'


tPAenv is the tPA-env fusion


MCP3env is the MCP3env fusion


HIVgagpol is the gag-pol fusion protein


polNefTatVif is a fusion protein, all components are inactive—sequence comparisons for vif, tat, nef, and pol are shown in FIGS. 8-11. In some embodiments, these proteins are readily fused to CATE signals in recombinant fusion proteins. Schematics of changes in HIV-1 gagpol fusions and generation of Nef-tat-vif (NTV) fusion protein lacking nef/tat/vif function are shown in FIGS. 12 and 13. In FIG. 12, gagpol fusion protein or pol have the indicated mutations known to inactivate the function of protease, RT and integrase. In FIG. 13, Neftatvif has the mutations known to inactivate the individual proteins. All mutated constructs were tested for protein activity and shown to be inactive.


The following provides exemplary HIV gene and protein sequences used in vaccine constructs of the invention.










CATEp37gag(HIV)



ATGAGAAAAGCGGCTGTTAGTCACTGGCAGCAACAGTCTTACCTGGACTCTGGAATCCATTCTGG





TGCCACTACCACAGCTCCTTCTCTGAGTGTCGACAGAGAGATGGGTGCGAGAGCGTCAGTATTAA





GCGGGGGAGAATTAGATCGATGGGAAAAAATTCGGTTAAGGCCAGGGGGAAAGAAGAAGTACAAG





CTAAAGCACATCGTATGGGCAAGCAGGGAGCTAGAACGATTCGCAGTTAATCCTGGCCTGTTAGA





AACATCAGAAGGCTGTAGACAAATACTGGGACAGCTACAACCATCCCTTCAGACAGGATCAGAGG





AGCTTCGATCACTATACAACACAGTAGCAACCCTCTATTGTGTGCACCAGCGGATCGAGATCAAG





GACACCAAGGAAGCTTTAGACAAGATAGAGGAAGAGCAAAACAAGTCCAAGAAGAAGGCCCAGCA





GGCAGCAGCTGACACAGGACACAGCAATCAGGTCAGCCAAAATTACCCTATAGTGCAGAACATCC





AGGGGCAAATGGTACATCAGGCCATATCACCTAGAACTTTAAATGCATGGGTAAAAGTAGTAGAA





GAGAAGGCTTTCAGCCCAGAAGTGATACCCATGTTTTCAGCATTATCAGAAGGAGCCACCCCACA





GGACCTGAACACGATGTTGAACACCGTGGGGGGACATCAAGCAGCCATGCAAATGTTAAAAGAGA





CCATCAATGAGGAAGCTGCAGAATGGGATAGAGTGCATCCAGTGCATGCAGGGCCTATTGCACCA





GGCCAGATGAGAGAACCAAGGGGAAGTGACATAGCAGGAACTACTAGTACCCTTCAGGAACAAAT





AGGATGGATGACAAATAATCCACCTATCCCAGTAGGAGAGATCTACAAGAGGTGGATAATCCTGG





GATTGAACAAGATCGTGAGGATGTATAGCCCTACCAGCATTCTGGACATAAGACAAGGACCAAAG





GAACCCTTTAGAGACTATGTAGACCGGTTCTATAAAACTCTAAGAGCTGAGCAAGCTTCACAGGA





GGTAAAAAATTGGATGACAGAAACCTTGTTGGTCCAAAATGCGAACCCAGATTGTAAGACCATCC





TGAAGGCTCTCGGCCCAGCGGCTACACTAGAAGAAATGATGACAGCATGTCAGGGAGTAGGAGGA





CCCGGCCATAAGGCAAGAGTTTTGTAG





polypeptide:


M R K A A V S H W Q Q Q S Y L D S G I H S G A T T T A P S L S V D





R E M G A R A S V L S G G E L D R W E K I R L R P G G K K K Y K L





K H L V W A S R E L E R F A V N P G L L E T S E G C R Q I L G Q L





Q P S L Q T G S E E L R S L Y N T V A T L Y C V H Q R I E I K D T





K E A L D K I E E E Q N K S K K K A Q Q A A A D T G H S N Q V S Q





N Y P I V Q N I Q G Q M V H Q A I S P R T L N A W V K V V E E K A





F S P E V I P M F S A L S E G A T P Q D L N T M L N T V G G H Q A





A M Q M L K E T I N E E A A E W D R V H P V H A G P I A P G Q M R





E P R G S D I A G T T S T L Q E Q L G W M T N N P P I P V G E I Y





K R W I I L G L N K I V R M Y S P T S J L D I R Q G P K E P F R D





Y V D R F Y K T L R A E Q A S Q E V K N W M T E T L L V Q N A N P





D C K T I L K A L G P A A T L E E M M T A C Q G V G G P G H K A R





V L





PolNTV (HIV)


CCTCAGATCACGCTCTGGCAGCGGCCGCTCGTCACAATAAAGATCGGGGGGCAACTCAAGGAGGC





GCTGCTCGCGGACGACACGGTCTTGGAGGAGATGTCGTTGCCGGGGCGGTGGAAGCCGAAGATGA





TCGGGGGGATCGGGGGCTTCATCAAGGTGCGGCAGTACGACCAGATCCTCATCGAGATCTGCGGG





CACAAGGCGATCGGGACGGTCCTCGTCGGCCCGACGCCGGTCAACATCATCGGGCGGAACCTGTT





GACCCAGATCGGCTGCACCTTGAACTTCCCCATCAGCCCTATTGAGACGGTGCCCGTGAAGTTGA





AGCCGGGGATGGACGGCCCCAAGGTCAAGCAATGGCCATTGACGGAGGAGAAGATCAAGGCCTTA





GTCGAAATCTGTACAGAGATGGAGAAGGAAGGGAAGATCAGCAAGATCGGGCCTGAGAACCCCTA





CAACACTCCAGTCTTCGCAATCAAGAAGAAGGACAGTACCAAGTGGAGAAAGCTGGTGGACTTCA





GAGAGCTGAACAAGAGAACTCAGGACTTCTGGGAAGTTCAGCTGGGCATCCCACATCCCGCTGGG





TTGAAGAAGAAGAAGTCAGTGACAGTGCTGGATGTGGGTGATGCCTACTTCTCCGTTCCCTTGGA





CGAGGACTTCAGGAAGTACACTGCCTTCACGATACCTAGCATCAACAACGAGACACCAGGCATCC





GCTACCAGTACAACGTGCTGCCACAGGGATGGAAGGGATCACCAGCCATCTTTCAATCGTCGATG





ACCAAGATCCTGGAGCCCTTCCGCAAGGGAAAACCCAGACATCGTGATCTATCAGCTCTACGTAG





GAAGTGACCTGGAGATCGGGCAGCACAGGACCAAGATCGAGGAGCTGAGACAGCATCTGTTGAGG





TGGGGACTGACCACACCAGACAAGAAGCACCAGAAGGAACCTCCCTTCCTGTGGATGGGCTACGA





ACTGCATCCTGACAAGTGGACAGTGCAGCCCATCGTGCTGCCTGAGAAGGACAGCTGGACTGTGA





ACGACATACAGAAGCTCGTGGGCAAGTTGAACTGGGCAAGCCAGATCTACCCAGGCATCAAAGTT





AGGCAGCTGTGCAAGCTGCTTCGAGGAAACCAAAGGCACTGACAGAAGTGATCCCACTGACAGAG





GAAGCAGAGCTAGAACTGGCAGAGAACCGAGAGATCCTGAAGGAGCCAGTACATGGAGTGTACTA





CGACCCAAGCAAGGACCTGATCGCAGAGATCCAGAAGCAGGGGCAAGGCCAATGGACCTACCAAT





CTACCAGGAGCCCTTCAAGAACCTGAAGACAGGCAAGTACGCAAGGATGAGGGGTGCCCACACCA





ACGATGTGAAGCAGCTGACAGAGGCAGTGCAGAAGATCACCACAGAGAGCATCGTGATCTGGGGC





AAGACTCCCAAGTTCAAGCTGCCCATACAGAAGGAGACATGGGAGACATGGTGGACCGAGTACTG





GCAAGCCACCTGGATCCCTGAGTGGGAGTTCGTGAACACCCCTCCCTTGGTGAAAACTGTGGTAT





CAGCTGGAGAAGGAACCCATCGTGGGAGCAGAGACCTTCTACGTGGATGGGGCAGCCAACAGGGA





GACCAAGCTGGGCAAGGCAGGCTACGTGACCAACCGAGGACGACAGALAAGTGGTGACCCTGACT





GACACCACCAACCAGAAGACTCTGCAAGCCATCTACCTAGCTCTGCAAGACAGCGGACTGGAAGT





GAACATCGTGACAGACTCACAGTACGCACTGGGCATCATCCAAGCACAACCAGACCAATCCGAGT





CAGAGCTGGTGAACCAGATCATCGAGCAGCTGATCAAGAAGGAGAAAGTGTACCTGGCATGGGTC





CCGGCGCACAAGGGGATCGGGGGGAACGAGCAGGTCGACAAGTTGGTCTCGGCGGGGATCCGGAA





GGTGCTGTTCCTGGACGGGATCGATAAGGCCCAAGATGAACATGAGAAGTACCACTCCAACTGGC





GCGCTATGGCCAGCGACTTCAACCTGCCGCCGGTCGTCGCAAAAGAGATCGTCGCCAGCTGCGAC





AAGTGCCAGCTCAAGGGGGAGGCCATGCACGGGCAAGTCGACTGCAGTCCGGGGATCTGGCAGCT





GTGCACGCACCTGGAGGGGAGGTGATCCTGGTCGCGGTCCACGTCGCCAGCGGGTATATCGAGGC





GGAGGTCATCCCGGCTGAGACGGGGCAGGAGACGGCGTACTTCCTCTTGAAGCTCGCGGGGCGGT





GGCCGGTCAAGACGATCCACACGAACGGGAGCAACTTCACGGGGGCGACGGTCAAGGCCGCCTGT





TGGTGGGCGGGAATCAAGCAGGAATTTGGAATTCCCTACAATCCCCAATCGCAAGGAGTCGTGAG





CATGAACAJLGGAGCTGAAGAAGATCATCGGACAAAGGGATCAGGCTGAGCACCTGAAGACAGCA





GTGCAGATGGCAGTGTTCATCCACAACTTCAAAAGAAAAGGGGGGATTGGGGGGTACAGTGCGGG





GGAACGGATCGTGGACATCATCGCCACCGACATCCAAACCAAGGAGCTGCAGAAGCAGATCACCA





AGATCCAGAACTTCCGGGTGTACTACCGCGACAGCCGCAACCCACTGTGGAAGGGACCAGCAAAG





CTCCTCTGGAAGGGAGAGGGGGCAGTGGTGATCCAGGACAACAGTGACATCAAAGTGGTGCCAAG





GCGCAAGGCCAAGATCATCCGCGACTATGGAAAACAGATGGCAGGGGATGATTGTGTGGCAAGTA





GACAGGATGAGGATGGCGCCGCTAGCAAGTGGTCGAAGTCGTCGGTGATCGGGTGGCCGACTGTT





CGGGAGCGGATGCGGCGGGCGGAGCCGGCGGCGGATCGGGTGGGAGCGGCGTCGCGGGACCTTGA





GAAGCACGGGGCGATCACGTCGAGCAACACGGCGGCGACGAATGCGGCGTGTGCCTGGCTAGAGG





CGCAAGAGGAGGAGGAAGTGGGTTTTCCGGTCACGCCGCAGGTCCCGCTTCGGCCGATGACGTAC





AAGGCAGCGGTCGACCTCAGCCACTTCCTCAAGGAGAAGGGGGGACTGGAGGGGCTCATCCACTC





CCAGCGGCGGCAGGACATCCTTGACCTGTGGATCTACCACACACAAGGCTACTTCCCGGATTGGC





AGAACTACACGCCGGGGCCGGGGGTCCGGTATCCGCTGACCTTTGGATGGTGCTACAAGCTAGTA





CCGGTTGAGCCGGATAAGATCGAGGAGGCCAACAAGGGAGAGAACACCAGCTTGTTGCACCCTGT





GAGCCTGCATGGAATGGATGACCCGGAGCGGGAGGTGCTTGAGTGGCGGTTTGACAGCCGCCTAG





CGTTTCATCACGTGGCCCGAGAGCTGCATCCGGAGTACTTCAAGAACTGCGGATCCGAGCCAGTA





GATCCTAGACTAGAGCCCTGGAAGCATCCAGGATCGCAGCCGAAGACGGCGTGCACCAACTGCTA





CTGCAAGAAGTGCTTCCACCAGGTCTGCTTCATGACGAAGGCCTTGGGCATCTCCTATGGCCGGA





AGAAGCGGAGACAGCGACGAAGAGCTCATCAGAACTCGCAGACGCACCAGGCGTCGCTATCGAAG





CAACCCACCTCCCAATCCCGAGGGGACCCGACAGGCCCGAAGGAATCGAAGAAGGAGGTGGAGAG





AGAGACAGAGACAGATCCGTTCGACTGGTCTAGAGAGAACCGGTGGCAGGTGATGATTGTGTGGC





AGGTCGACCGGATGCGGATTCGGACGTGGAAGTCGCTTGTCAAGCACCACATGTACATCTCGGGG





AAGGCGAAGGGGTGGTTCTACCGGCACCACTATGAGTCGACGCACCCGCGGATCTCGTCGGAGGT





CCACATCCCGCTAGGGGACGCGAAGCTTGTCATCACGACGTACTGGGGTCTGCATACGGGAGAGC





GGGACTGGCATTTGGGTCAGGGAGTCTCCATAGAGTGGAGGAAAAAGCGGTATAGCACGCAAGTA





GACCCGGACCTAGCGGACCAGCTAATCCACCTGTACTACTTCGACTCGTTCTCGGAGTCGGCGAT





ACGGAATACCATCCTTGGGCGGATCGTTTCGCCGCGGAGTGAGTATCAAGCGGGGCACAACAAGG





TCGGGTCGCTACAGTACTTGGCGCTCGCGGCGTTGATCACGCCGAAGCAGATAAAGCCGCCGTTG





CCGTCGGTTACGAAACTGACGGAGGACCGGTGGAACAAGCCCCAGAAGACCAAGGGCCACCGGGG





GAGCCACACAATGAACGGGCACGTTAACTAG





protein:


M P Q I T L W Q R P L V T I K I G G Q L K E A L L A D D T V L E E





M S L P G R W K P K M I G G I G G F I K V R Q Y D Q I L I E I C G





H K A I G T V L V G P T P V N I I G R N L L T Q I G C T L N F P I





S P I E T V P V K L K P G M D G P K V K Q W P L T E E K I K A L V





E I C T E M E K E G K J S K I G P E N P Y N T P V F A I K K K D S





T K W R K L V D F R E L N K R T Q D F W E V Q L G I P H P A G L K





K K K S V T V L D V G D A Y F S V P L D E D F R K Y T A F T I P S





I N N E T P G I R Y Q Y N V L P Q G W K G S P A I F Q S S M T K I





L E P F R K Q N P D I V I Y Q L Y V G S D L E I G Q H R T K I E E





L R Q H L L R W G L T T P D K K H Q K E P P F L W M G Y E L H P D





K W T V Q P I V L P E K D S W T V N D I Q K L V G K L N W A S Q I





Y P G I K V R Q L C K L L R G T K A L T E V I P L T E E A E L E L





A E N R E I L K E P V H G V Y Y D P S K D L I A E I Q K Q G Q G Q





W T Y Q I Y Q E P F K N L K T G K Y A R M R G A H T N D V K Q L T





E A V Q K I T T E S I V I W G K T P K F K L P I Q K E T W E T W W





T E Y W Q A T W I P E W E F V N T P P L V K L W Y Q L E K E P I V





G A E T F Y V D G A A N R E T K L G K A G Y V T N R G R Q K V V T





L T D T T N Q K T L Q A I Y L A L Q D S G L E V N I V T D S Q Y A





L G I I Q A Q P D Q S E S E L V N Q I I E Q L I K K E K V Y L A W





V P A H K G I G G N E Q V D K L V S A G I R K V L F L D G I D K A





Q D E H E K Y H S N W R A M A S D F N L P P V V A K E I V A S C D





K C Q L K G E A M H G Q V D C S P G I W Q L C T H L E G K V J L V





A V H V A S G Y L E A E V I P A E T G Q E T A Y F L L K L A G R W





P V K T I H T N G S N F T G A T V K A A C W W A G I K Q E F G I P





Y N P Q S Q G V V S M N K E L K K I I G Q R D Q A E H L K T A V Q





M A V F I H N F K R K G G I G G Y S A G E R I V D I I A T D J Q T





K E L Q K Q I T K J Q N F R V Y Y R D S R N P L W K G P A K L L W





K G E G A V V I Q D N S D I K V V P R R K A K I I R D Y G K Q M A





G D D C V A S R Q D E D (pol)





G A A S (linker)





K W S K S S V I G W P T V R E R M R R A E P A A D R V G A A S R D





L E K H G A I T S S N T A A T N A A C A W L E A Q E E E E V G F P





V T P Q V P L R P M T Y K A A V D L S H F L K E K G G L E G L I H





S Q R R Q D I L D L W I Y H T Q G Y F P D W Q N Y T P G P G V R Y





P L T F G W C Y K L V P V E P D K I E E A N K G E N T S L L H P V





S L H G M D D P E R E V L E W R F D S R L A F H H V A R E L H P E





Y F K N C (nef)





G S (linker)





E P V D P R L E P W K H P G S Q P K T A C T N C Y C K K C F H Q V





C F M T K A L G I S Y G R K K R R Q R R R A H Q N S Q T H Q A S L





S K Q P T S Q S R G D P T G P K E S K K E V E R E T E T D P F D W





(tat)





S R (linker)





E N R W Q V M I V W Q V D R M R I R T W K S L V K H H M Y I S G K





A K G W F Y R H H Y E S T H P R I S S E V H I P L G D A K L V I T





T Y W G L H T G E R D W H L G Q G V S I E W R K K R Y S T Q V D P





D L A D Q L I H L Y Y F D S F S E S A I R N T I L G R I V S P R S





E Y Q A G H N K V G S L Q Y L A L A A L I T P K Q I K P P L P S V





T K L T E D R W N K P Q K T K G H R G S H T M N G H (vif)





V N • (linker)





tPAenv (HIV)


ATGGATGCAATGAAGAGAGGGCTCTGCTGTGTGCTGCTGCTGTGTGGAGCAGTCTTCGTTTCGCC





CAGCCAGGAAATCCATGCCCGATTCAGAAGAGGAGCCAGATCTATCTGCAGCGCCGAGGAGAAGC





TGTGGGTCACGGTCTATTATGGCGTGCCCGTGTGGAAAGAGGCAACCACCACGCTATTCTGCGCC





TCCGACGCCAAGGCACATCATGCAGAGGCGCACAACGTCTGGGCCACGCATGCCTGTGTACCCAC





GGACCCTAACCCCCAAGAGGTGATCCTGGAGAACGTGACCGAGAAGTACAACATGTGGAAAAATA





ACATGGTAGACCAGATGCATGAGGATATAATCAGTCTATGGGATCAAAGCCTAAAGCCATGTGTA





AAACTAACCCCCCTCTGCGTGACGCTGAATTGCACCAACGCGACGTATACGAATAGTGACAGTAA





GAATAGTACCAGTAATAGTAGTTTGGAGGACAGTGGGAAAGGAGACATGAACTGCTCGTTCGATG





TCACCACCAGCATCGACAAGAAGAAGAAGACGGAGTATGCCATCTTCGACAAGCTGGATGTAATG





AATATAGGAAATGGAAGATATACGCTATTGAATTGTAACACCAGTGTCATTACGCAGGCCTGTCC





AAAGATGTCCTTTGAGCCAATTCCCATACATTATTGTACCCCGGCCGGCTACGCGATCCTGAAGT





GCAACGACAATAAGTTCAATGGAACGGGACCATGTACGAATGTCAGCACGATACAATGTACGCAT





GGAATTAAGCCAGTAGTGTCGACGCAACTGCTGCTGAACGGCAGCCTGGCCGAGGGAGGAGAGGT





AATAATTCGGTCGGAGAACCTCACCGACAACGCCAAGACCATAATAGTACAGCTCAAGGAACCCG





TGGAGATCAACTGTACGAGACCCAACAACAACACCCGAAAGAGCATACATATGGGACCAGGAGCA





GCATTTTATGCAAGAGGAGAGGTAATAGGAGATATAAGACAAGCACATTGCAACATTAGTAGAGG





AAGATGGAATGACACTTTGAAACAGATAGCTAAAAAGCTGCGCGAGCAGTTTAACAAGACCATAA





GCCTTAACCAATCCTCGGGAGGGGACCTAGAGATTGTAATGCACACGTTTAATTGTGGAGGGGAG





TTTTTCTACTGTAACACGACCCAGCTGTTCAACAGCACCTGGAATGAGAATGATACGACCTGGAA





TAATACGGCAGGGTCGAATAACAATGAGACGATCACCCTGCCCTGTCGCATCAAGCAGATCATAA





ACAGGTGGCAGGAAGTAGGAAAAGCAATGTATGCCCCTCCCATCAGTGGCCCGATCAACTGCTTG





TCCAACATCACCGGGCTATTGTTGACGAGAGATGGTGGTGACAACAATAATACGATAGAGACCTT





CAGACCTGGAGGAGGAGATATGAGGGACAACTGGAGGAGCGAGCTGTACAAGTACAAGGTAGTGA





GGATCGAGCCATTGGGAATAGCACCCACCAAGGCAAAGAGAAGAGTGGTGCAAAGAGAGAAAAGA





GCAGTGGGAATAGGAGCTATGTTCCTTGGGTTCTTGGGAGCAGCAGGAAGCACTATGGGCGCAGC





GTCGGTGACCCTTACCGTGCAAGCTCGCCTGCTGCTGTCGGGTATAGTGCAACAGCAAAACAACC





TCCTCCGCGCAATCGAAGCCCAGCAGCATCTGTTGCAACTCACGGTCTGGGGCATCAAGCAGCTC





CAGGCTAGAGTCCTTGCCATGGAGCGTTATCTGAAAGACCAGCAACTTCTTGGGATTTGGGGTTG





CTCGGGAAAACTCATTTGCACCACGAATGTGCCTTGGAACGCCAGCTGGAGCAACAAGTCCCTGG





ACAAGATTTGGCATAACATGACCTGGATGGAGTGGGACCGCGAGATCGACAACTACACGAAATTG





ATATACACCCTGATCGAGGCGTCCCAGATCCAGCAGGAGAAGAATGAGCAAGAGTTGTTGGAGTT





GGATTCGTGGGCGTCGTTGTGGTCGTGGTTTGACATCTCGAAATGGCTGTGGTATATAGGAGTAT





TCATAATAGTAATAGGAGGTTTGGTAGGTTTGAAAATAGTTTTTGCTGTACTTTCGATAGTAAAT





CGAGTTAGGCAGGGATACTCGCCATTGTCATTTCAAACCCGCCTCCCAGCCCCGCGGGGACCCGA





CAGGCCCGAGGGCATCGAGGAGGGAGGCGGCGAGAGAGACAGAGACAGATCCGATCAATTGGTGA





CGGGATTCTTGGCACTCATCTGGGACGATCTGCGGAGCCTGTGCCTCTTCTCTTACCACCGCCTG





CGCGACCTGCTCCTGATCGTGGCGAGGATCGTGGAGCTTCTGGGACGCAGGGGGTGGGAGGCCCT





GAAGTACTGGTGGAACCTCCTGCAATATTGGATTCAGGAGCTGAAGAACAGCGCCGTTAGTCTGC





TGAACGCTACCGCTATCGCCGTGGCGGAAGGAACCGACAGGATTATAGAGGTAGTACAAAGGATT





GGTCGCGCCATCCTCCATATCCCCCGCCGCATCCGCCAGGGCTTGGAGAGGGCTTTGCTATAA





protein:


M D A M K R G L C C V L L L C G A V F V S P S Q E I H A R F R R G





A R S (tPA)





I C S (linker)





A E E K L W V T V Y Y G V P V W K E A T T T L F C A S D A K A H H





A E A H N V W A T H A C V P T D P N P Q E V I L E N V T E K Y N M





W K N N M V D Q M H E D I I S L W D Q S L K P C V K L T P L C V T





L N C T N A T Y T N S D S K N S T S N S S L E D S G K G D M N C S





F D V T T S I D K K K K T E Y A I F D K L D V M N I G N G R Y T L





L N C N T S V I T Q A C P K M S F E P I P I H Y C T P A G Y A I L





K C N D N K F N G T G P C T N V S T I Q C T H G I K P V V S T Q L





L L N G S L A E G G E V I I R S E N L T D N A K T I I V Q L K E P





V E I N C T R P N N N T R K S I H M G P G A A F Y A R G E V I G D





I R Q A H C N I S R G R W N D T L K Q I A K K L R E Q F N K T I S





L N Q S S G G D L E I V M H T F N C G G E F F Y C N T T Q L F N S





T W N E N D T T W N N T A G S N N N E T I T L P C R I K Q I I N R





W Q E V G K A M Y A P P I S G P I N C L S N I T G L L L T R D G G





D N N N T I E T F R P G G G D M R D N W R S E L Y K Y K V V R I E





P L G I A P T K A K R R V V Q R E K R A V G I G A M F L G F L G A





A G S T M G A A S V T L T V Q A R L L L S G I V Q Q Q N N L L R A





I E A Q Q H L L Q L T V W G I K Q L Q A R V L A M E R Y L K D Q Q





L L G I W G C S G K L I C T T N V P W N A S W S N K S L D K I W H





N M T W M E W D R E I D N Y T K L I Y T L I E A S Q I Q Q E K N E





Q E L L E L D S W A S L W S W F D I S K W L W Y I G V F I I V L G





G L V G L K I V F A V L S I V N R V R Q G Y S P L S F Q T R L P A





P R G P D R P E G I E E G G G E R D R D R S D Q L V T G F L A L I





W D D L R S L C L F S Y H R L R D L L L I V A R I V E L L G R R G





W E A L K Y W W N L L Q Y W I Q E L K N S A V S L L N A T A I A V





A E G T D R I I E V V Q R I G R A I L H I P R R I R Q G L E R A L





L • (env)





MCP3 HIVenv


ATGAACCCAAGTGCTGCCGTCATTTTCTGCCTCATCCTGCTGGGTCTGAGTGGGACTCAAGGGAT





CCTCGACATGGCGCAACCGGTAGGTATAAACACAAGCACAACCTGTTGCTATCGTTTCATAAATA





AAAAGATACCGAAGCAACGTCTGGAAAGCTATCGCCGTACCACTTCTAGCCACTGTCCGCGTGAA





GCTGTTATATTCAAAACGAAACTGGATAAGGAGATCTGCGCCGACCCTACACAGAAATGGGTTCA





GGACTTTATGAAGCACCTGGATAAAAAGACACAGACGCCGAAACTGATCTGCAGCGCCGAGGAGA





AGCTGTGGGTCACGGTCTATTATGGCGTGCCCGTGTGGAAAGAGGCAACCACCACGCTATTCTGC





GCCTCCGACGCCAAGGCACATCATGCAGAGGCGCACAACGTCTGGGCCACGCATGCCTGTGTACC





CACGGACCCTAACCCCCAAGAGGTGATCCTGGAGAACGTGACCGAGAAGTACAACATGTGGAAAA





ATAACATGGTAGACCAGATGCATGAGGATATAATCAGTCTATGGGATCAAAGCCTAAAGCCATGT





GTAAAACTAACCCCCCTCTGCGTGACGCTGAATTGCACCAACGCGACGTATACGAATAGTGACAG





TAAGAATAGTACCAGTAATAGTAGTTTGGAGGACAGTGGGAAAGGAGACATGAACTGCTCGTTCG





ATGTCACCACCAGCATCGACAAGAAGAAGAAGACGGAGTATGCCATCTTCGACAAGCTGGATGTA





ATGAATATAGGAAATGGAAGATATACGCTATTGAATTGTAACACCAGTGTCATTACGCAGGCCTG





TCCAAAGATGTCCTTTGAGCCAATTCCCATACATTATTGTACCCCGGCCGGCTACGCGATCCTGA





AGTGCAACGACAATAAGTTCAATGGAACGGGACCATGTACGAATGTCAGCACGATACAATGTACG





CATGGAATTAAGCCAGTAGTGTCGACGCAACTGCTGCTGAACGGCAGCCTGGCCGAGGGAGGAGA





GGTAATAATTCGGTCGGAGAACCTCACCGACAACGCCAAGACCATAATAGTACAGCTCAAGGAAC





CCGTGGAGATCAACTGTACGAGACCCAACAACAACACCCGAAAGAGCATACATATGGGACCAGGA





GCAGCATTTTATGCAAGAGGAGAGGTAATAGGAGATATAAGACAAGCACATTGCAACATTAGTAG





AGGAAGATGGAATGACACTTTGAAACAGATAGCTAAAAAGCTGCGCGAGCAGTTTAACAAGACCA





TAAGCCTTAACCAATCCTCGGGAGGGGACCTAGAGATTGTAATGCACACGTTTAATTGTGGAGGG





GAGTTTTTCTACTGTAACACGACCCAGCTGTTCAACAGCACCTGGAATGAGAATGATACGACCTG





GAATAATACGGCAGGGTCGAATAACAATGAGACGATCACCCTGCCCTGTCGCATCAAGCAGATCA





TAAACAGGTGGCAGGAAGTAGGAAAAGCAATGTATGCCCCTCCCATCAGTGGCCCGATCAACTGC





TTGTCCAACATCACCGGGCTATTGTTGACGAGAGATGGTGGTGACAACAATAATACGATAGAGAC





CTTCAGACCTGGAGGAGGAGATATGAGGGACAACTGGAGGAGCGAGCTGTACAAGTACAAGGTAG





TGAGGATCGAGCCATTGGGAATAGCACCCACCAAGGCAAAGAGAAGAGTGGTGCAAAGAGAGAAA





AGAGCAGTGGGAATAGGAGCTATGTTCCTTGGGTTCTTGGGAGCAGCAGGAAGCACTATGGGCGC





AGCGTCGGTGACCCTTACCGTGCAAGCTCGCCTGCTGCTGTCGGGTATAGTGCAACAGCAAAACA





ACCTCCTCCGCGCAATCGAAGCCCAGCAGCATCTGTTGCAACTCACGGTCTGGGGCATCAAGCAG





CTCCAGGCTAGAGTCCTTGCCATGGAGCGTTATCTGAAAGACCAGCAACTTCTTGGGATTTGGGG





TTGCTCGGGAAAACTCATTTGCACCACGAATGTGCCTTGGAACGCCAGCTGGAGCAACAAGTCCC





TGGACAAGATTTGGCATAACATGACCTGGATGGAGTGGGACCGCGAGATCGACAACTACACGAAA





TTGATATACACCCTGATCGAGGCGTCCCAGATCCAGCAGGAGAAGAATGAGCAAGAGTTGTTGGA





GTTGGATTCGTGGGCGTCGTTGTGGTCGTGGTTTGACATCTCGAAATGGCTGTGGTATATAGGAG





TATTCATAATAGTAATAGGAGGTTTGGTAGGTTTGAAAATAGTTTTTGCTGTACTTTCGATAGTA





AATCGAGTTAGGCAGGGATACTCGCCATTGTCATTTCAAACCCGCCTCCCAGCCCCGCGGGGACC





CGACAGGCCCGAGGGCATCGAGGAGGGAGGCGGCGAGAGAGACAGAGACAGATCCGATCAATTGG





TGACGGGATTCTTGGCACTCATCTGGGACGATCTGCGGAGCCTGTGCCTCTTCTCTTACCACCGC





CTGCGCGACCTGCTCCTGATCGTGGCGAGGATCGTGGAGCTTCTGGGACGCAGGGGGTGGGAGGC





CCTGAAGTACTGGTGGAACCTCCTGCAATATTGGATTCAGGAGCTGAAGAACAGCGCCGTTAGTC





TGCTGAACGCTACCGCTATCGCCGTGGCGGAAGGAACCGACAGGATTATAGAGGTAGTACAAAGG





ATTGGTCGCGCCATCCTCCATATCCCCCGCCGCATCCGCCAGGGCTTGGAGAGGGCTTTGCTATA





A





protein:


M N P S A A V I F C L I L L G L S G T Q G I L D M A Q P V G I N T





S T T C C Y R F I N K K I P K Q R L E S Y R R T T S S H C P R E A





V I F K T K L D K E I C A D P T Q K W V Q D F M K H L D K K T Q T





P K L I C S A E E K L W V T V Y Y G V P V W K E A T T T L F C A S





D A K A H H A E A H N V W A T H A C V P T D P N P Q E V I L E N V





T E K Y N M W K N N M V D Q M H E D I I S L W D Q S L K P C V K L





T P L C V T L N C T N A T Y T N S D S K N S T S N S S L E D S G K





G D M N C S F D V T T S I D K K K K T E Y A I F D K L D V M N I G





N G R Y T L L N C N T S V I T Q A C P K M S F E P I P I H Y C T P





A G Y A I L K C N D N K F N G T G P C T N V S T I Q C T H G I K P





V V S T Q L L L N G S L A E G G E V I I R S E N L T D N A K T I I





V Q L K E P V E I N C T R P N N N T R K S I H M G P G A A F Y A R





G E V I G D I R Q A H C N I S R G R W N D T L K Q I A K K L R E Q





F N K T I S L N Q S S G G D L E I V M H T F N C G G E F F Y C N T





T Q L F N S T W N E N D T T W N N T A G S N N N E T I T L P C R I





K Q I I N R W Q E V G K A M Y A P P I S G P I N C L S N I T G L L





L T R D G G D N N N T I E T F R P G G G D M R D N W R S E L Y K Y





K V V R I E P L G I A P T K A K R R V V Q R E K R A V G I G A M F





L G F L G A A G S T M G A A S V T L T V Q A R L L L S G I V Q Q Q





N N L L R A I E A Q Q H L L Q L T V W G I K Q L Q A R V L A M E R





Y L K D Q Q L L G I W G C S G K L I C T T N V P W N A S W S N K S





L D K I W H N M T W M E W D R E I D N Y T K L I Y T L I E A S Q I





Q Q E K N E Q E L L E L D S W A S L W S W F D I S K W L W Y I G V





F I I V I G G L V G L K I V F A V L S J V N R V R Q G Y S P L S F





Q T R L P A P R G P D R P E G I E E G G G E R D R D R S D Q L V T





G F L A L I W D D L R S L C L F S Y H R L R D L L L I V A R I V E





L L G R R G W E A L K Y W W N L L Q Y W I Q E L K N S A V S L L N





A T A I A V A E G T D R I I E V V Q R I G R A I L H I P R R I R Q





G L E R A L L •





CATEenv(HIV)


ATGAGAAAAGCGGCTGTTAGTCACTGGCAGCAGCAGTCTTACCTGGACTCTGGAATCCATTCTGG





TGCCACTACCACAGCTCCTTCTCTGAGTATCTGCAGCGCCGAGGAGAAGCTGTGGGTCACGGTCT





ATTATGGCGTGCCCGTGTGGAAAGAGGCAACCACCACGCTATTCTGCGCCTCCGACGCCAAGGCA





CATCATGCAGAGGCGCACAACGTCTGGGCCACGCATGCCTGTGTACCCACGGACCCTAACCCCCA





AGAGGTGATCCTGGAGAACGTGACCGAGAAGTACAACATGTGGAAAATAACATGGTAGACCAGAT





GCATGAGGATATAATCAGTCTATGGGATCAAAGCCTAAAGCCATGTGTMAACTAACCCCCCTCTG





CGTGACGCTGAATTGCACCAACGCGACGTATACGAATAGTGACAGTAAGAATAGTACCAGTAATA





GTAGTTTGGAGGACAGTGGGAAAGGAGACATGAACTGCTCGTTCGATGTCACCACCAGCATCGAC





AAAAGAAGAAGAAAGACGGAGTATGCCATCTTCGACAAGCTGGATGTAATGAATATAGGAAAAAT





GGAAGATATACGCTATTGAATTGTAACACCAGTGTCATTACGCAGGCCTGTCCAAAQATGTCCTT





TGAGCCAATTCCCATACATTATTGTACCCCGGCCGGCTACGCGATCCTGAAGTGCAACGACAATA





AGTTCAATGGAACGGGACCATGTACGAATGTCAGCACGATACAATGTACGCATGGAATTAAGCCA





GTAGTGTCGACGCAACTGCTGCTGAACGGCAGCCTGGCCGAGGGAGGAGAGGTAATAATTCGGTC





GGAGACCTCACCGACAACGCCAAGACCATAATAGTACAGCTCAAGGAACCCGTGGAGATCAACTG





TACGAGACCCAACAACAACACCCGAAAGAGCATACATATGGGACCAGGAGCAGCATTTTATGCAA





GAGGAGAGGTAATAGGAGATATAAGACAAGCACATTGCAACATTAGTAGAGGAAGATGGAATGAC





ACTTTGAAACAGATAGCTAAAAAGCTGCGCGAGCAGTTTAACAAGACCATAAGCCTTAACCAATC





CTCGGGAGGGGACCTAGAGATTGTPAAGCACACGTTTAATTGTGGAGGGGAGTTTTTCTACTGTA





ACACGACCCAGCTGTTCPCAGCACCTGGAATGAGAATGATACGACCTGGAATAATACGGCAGGGT





CGAATAACAATGAGACGATCACCCTGCCCTGTCGCATCAAGCAGATCATAAACAGGTGGCAGGAA





GTAGGAAAGCAATGTATGCCCCTCCCATCAGTGGCCCGATCAACTGCTTGTCCAACATCACCGGG





CTATTGTTGACGAGAGATGGTGGTGACAACAATAATACGATAGAGACCTTCAGACCTGGAGGAGG





AGATATGAGGGACAAAACTGGAGGAGCGAGCTGTACAAGTACAAGGTAGTGAGGATCGAGCCATT





GGGAATAGCACCCACCAAGGCAAAGAGAAGAGTGGTGCAAAGAGAGAAAAGAGCAGTGGGAATAG





GAGCTATGTTCCTTGGGTTCTTGGGAGCAGCAGGAAGCACTATGGGCGCAGCGTCGGTGACCCTT





ACCGTGCAAGCTCGCCTGCTGCTGTCGGGTATAGTGCAACAGCAAAACAACCTCCTCCGCGCAAT





CGAAGCCCAGCAGCATCTGTTGCAACTCACGGTCTGGGGCATCAAGCAGCTCCAGGCTAGAGTCC





TTGCCATGGAGCGTTATCTGAAAGACCAGCAATTTCTTGGGATTTGGGGTTGCTCGGGAACTCAT





TTGCACCACGAATGTGCCTTGGAACGCCAGCTGGAGCAACAAGTCCCTGGACAAGATTTGGCATA





ACATGACCTGGATGGAGTGGGACCGCGAGATCGACAACTACACGAAATTGATATACACCCTGATC





GAGGCGTCCCAGATCCAGCAGGAGAAGAATGAGCAAGAGTTGTTGGAGTTGGATTCGTGGGCGTC





GTTGTGGTCGTGGTTTGACATCTCGAAATGGCTGTGGTATATAGGAGTATTCATAATAGTAATAG





GAGGTTTGGTAGGTTTGMAATAGTTTTTGCTGTACTTTCGATAGTAAATCGAGTTAGGCAGGGAT





ACTCGCCATTGTCATTTCAAACCCGCCTCCCAGCCCCGCGGGGACCCGACAGGCCCGAGGGCATC





GAGGAGGGAGGCGGCGAGAGAGACAGAGACAGATCCGATCAATTGGTGACGGGATTCTTGGCACT





CATCTGGGACGATCTGCGGAGCCTGTGCCTCTTCTCTTACCACCGCCTGCGCGACCTGCTCCTGA





TCGTGGCGAGGATCGTGGAGCTTCTGGGACGCAGGGGGTGGGAGGCCCTGAAGTAGTCTGCTGAA





CGCTACCGCTATCGCCGTGGCGGAAGGAACCGACAGGATCGTTAGTCTGCTGAACGCTACCGCTA





TCGCCGTGGCGGAAAAGGAACCGACAGGATTATAGAGGTAGTACAAAGGATTGGTCGCGCCATCC





TCCATATCCCCCGCCGCATCCGCCAGGGCTTGGAGAGGGCTTTGCTATAA





protein:


M R K A A V S H W Q Q Q S Y L D S G I H S G A T T T A P S L S I C





S A E E K L W V T V Y Y G V P V W K E A T T T L F C A S D A K A H





H A E A H N V W A T H A C V P T D P N P Q E V I L E N V T E K Y N





M W K N N M V D Q M H E D I I S L W D Q S L K P C V K L T P L C V





T L N C T N A T Y T N S D S K N S T S N S S L E D S G K G D M N C





S F D V T T S I D K K K K T E Y A I F D K L D V M N I G N G R Y T





L L N C N T S V I T Q A C P K M S F E P I P I H Y C T P A G Y A I





L K C N D N K F N G T G P C T N V S T I Q C T H G I K P V V S T Q





L L L N G S L A E G G E V I I R S E N L T D N A K T I I V Q L K E





P V E I N C T R P N N N T R K S I H M G P G A A F Y A R G E V I G





D I R Q A H C N I S R G R W N D T L K Q I A K K L R E Q F N K T I





S L N Q S S G G D L E I V M H T F N C G G E F F Y C N T T Q L F N





S T W N E N D T T W N N T A G S N N N E T I T L P C R I K Q I I N





R W Q E V G K A M Y A P P I S G P I N C L S N I T G L L L T R D G





G D N N N T I E T F R P G G G D M R D N W R S E L Y K Y K V V R I





E P L G I A P T K A K R R V V Q R E K R A V G I G A M F L G F L G





A A G S T M G A A S V T L T V Q A R L L L S G I V Q Q Q N N L L R





A I E A Q Q H L L Q L T V W G I K Q L Q A R V L A M E R Y L K D Q





Q L L G I W G C S G K L I C T T N V P W N A S W S N K S L D K I W





H N M T W M E W D R E I D N Y T K L I Y T L I E A S Q I Q Q E K N





E Q E L L E L D S W A S L W S W F D I S K W L W Y I G V F I I V I





G G L V G L K I V F A V L S I V N R V R Q G Y S P L S F Q T R L P





A P R G P D R P E G I E E G G G E R D R D R S D Q L V T G F L A L





I W D D L R S L C L F S Y H R L R D L L L I V A R I V E L L G R R





G W E A L K Y W W N L L Q Y W I Q E L K N S A V S L L N A T A I A





V A E G T D R I I E V V Q R I G R A I L H I P R R I R Q G L E R A





L L •





PMCP3p37M1-10


ATGAACCCAAGTGCTGCCGTCATTTTCTGCCTCATCCTGCTGGGTCTGAGTGGGACTCAAGGGAT





CCTCGACATGGCGCAACCGGTAGGTATAAACACAAGCACAACCTGTTGCTATCGTTTCATAAATA





AAAAGATACCGAAGCAACGTCTGGAAAGCTATCGCCGTACCACTTCTAGCCACTGTCCGCGTGAA





GCTGTTATATTCAAAACGAAACTGGATAAGGAGATCTGCGCCGACCCTACACAGAAATGGGTTCA





GGACTTTATGAAGCACCTGGATAAAAAGACACAGACGCCGAAACTGGCTAGCGCAGGAGCAGGTG





CGAGAGCGTCAGTATTAAGCGGGGGAGAATTAGATCGATGGGAAAAAATTCGGTTAAGGCCAGGG





GGAAAGAAGAAGTACAAGCTAAAGCACATCGTATGGGCAAGCAGGGAGCTAGAACGATTCGCAGT





TAATCCTGGCCTGTTAGAAACATCAGAAGGCTGTAGACAAATACTGGGACAGCTACAACCATCCC





TTCAGACAGGATCAGAGGAGCTTCGATCACTATACAACACAGTAGCAACCCTCTATTGTGTGCAC





CAGCGGATCGAGATCAAGGACACCAAGGAAGCTTTAGACAAGATAGAGGAAGAGCAAAACAAGTC





CAAGAAGAAGGCCCAGCAGGCAGCAGCTGACACAGGACACAGCAATCAGGTCAGCCAAAATTACC





CTATAGTGCAGAACATCCAGGGGCAAATGGTACATCAGGCCATATCACCTAGAACTTTAAATGCA





TGGGTAAAAGTAGTAGAAGAGAAGGCTTTCAGCCCAGAAGTGATACCCATGTTTTCAGCATTATC





AGAAGGAGCCACCCCACAGGACCTGAACACGATGTTGAACACCGTGGGGGGACATCAAGCAGCCA





TGCAAATGTTAAAAGAGACCATCAATGAGGAAGCTGCAGAATGGGATAGAGTGCATCCAGTGCAT





GCAGGGCCTATTGCACCAGGCCAGATGAGAGAACCAAGGGGAAGTGACATAGCAGGAACTACTAG





TACCCTTCAGGAACAAATAGGATGGATGACAAATAATCCACCTATCCCAGTAGGAGAGATCTACA





AGAGGTGGATAATCCTGGGATTGAACAAGATCGTGAGGATGTATAGCCCTACCAGCATTCTGGAC





ATAAGACAAGGACCAAAGGAACCCTTTAGAGACTATGTAGACCGGTTCTATAAAACTCTAAGAGC





TGAGCAAGCTTCACAGGAGGTAAAAAATTGGATGACAGAAACCTTGTTGGTCCAAAATGCGAACC





CAGATTGTAAGACCATCCTGAAGGCTCTCGGCCCAGCGGCTACACTAGAAGAAATGATGACAGCA





TGTCAGGGAGTAGGAGGACCCGGCCATAAGGCAAGAGTTTTGGAATTCTGA





protein:


M N P S A A V I F C L I L L G L S G T Q (MCP3)





G I L D (linker)





M A Q P V G I N T S T T C C Y R F I N K K I P K Q R L E S Y R R T





T S S H C P R E A V I F K T K L D K E I C A D P T Q K W V Q D F M





K H L D K K T Q T P K L A S A G A G A R A S V L S G G E L D R W E





K I R L R P G G K K K Y K L K H I V W A S R E L E R F A V N P G L





L E T S E G C R Q I L G Q L Q P S L Q T G S E E L R S L Y N T V A





T L Y C V H Q R I E J K D T K E A L D K J E E E Q N K S K K K A Q





Q A A A D T G H S N Q V S Q N Y P I V Q N I Q G Q M V H Q A I S P





R T L N A W V K V V E E K A F S P E V I P M F S A L S E G A T P Q





D L N T M L N T V G G H Q A A M Q M L K E T I N E E A A E W D R V





H P V H A G P I A P G Q M R E P R G S D I A G T T S T L Q E Q I G





W M T N N P P I P V G E I Y K R W I I L G L N K I V R M Y S P T S





I L D I R Q G P K E P F R D Y V D R F Y K T L R A E Q A S Q E V K





N W M T E T L L V Q N A N P D C K T I L K A L G P A A T L E E M M





T A C Q G V G G P G H K A R V L E F • (p37gag)





p37M1-10 (HIV)


ATGGGTGCGAGAGCGTCAGTATTAAGCGGGGGAGAATTAGATCGATGGGAAAAAATTCGGTTAAG





GCCAGGGGGAAAGAAGAAGTACAAGCTAAAGCACATCGTATGGGCAAGCAGGGAGCTAGAACGAT





TCGCAGTTAATCCTGGCCTGTTAGAAACATCAGAAGGCTGTAGACAAATACTGGGACAGCTACAA





CCATCCCTTCAGACAGGATCAGAGGAGCTTCGATCACTATACAACACAGTAGCAACCCTCTATTG





TGTGCACCAGCGGATCGAGATCAAGGACACCAAGGAAGCTTTAGACAAGATAGAGGAAGAGCAAA





ACAAGTCCAAGAAGAAGGCCCAGCAGGCAGCAGCTGACACAGGACACAGCAAATCAGGTCAGCCA





AAATTACCCTATAGTGCAGAACATCCAGGGGCAAATGGTACATCAGGCCATATCACCTAGAACTT





TAAATGCATGGGTAAAAGTAGTAGAAGAGAAGGCTTTCAGCCCAGAAGTGATACCCATGTTTTCA





GCATTATCAGAAGGAGCCACCCCACAGGACCTGAACACGATGTTGAACACCGTGGGGGGACATCA





AGCAGCCATGCAAATGTTAAAAGAGACCATCAATGAGGAAGCTGCAGAATGGGATAGAGTGCATC





CAGTGCATGCAGGGCCTATTGCACCAGGCCAGATGAGAGAACCAAGGGGAAGTGACATAGCAGGA





ACTACTAGTACCCTTCAGGAACAAATAGGATGGATGACAAATAATCCACCTATCCCAGTAGGAGA





GATCTACAAGAGGTGGATAATCCTGGGATTGAACAAGATCGTGAGGATGTATAGCCCTACCAGCA





TTCTGGACATAAGACAAGGACCAAAGGAACCCTTTAGAGACTATGTAGACCGGTTCTATAAAACT





CTAAGAGCTGAGCAAGCTTCACAGGAGGTAAAAAATTGGATGACAGAAACCTTGTTGGTCCAAAA





ATGCGAACCCAGATTGTAAGACCATCCTGAAGGCTCTCGGCCCAGCGGCTACACTAGAAGAAATG





ATGACAGCATGTCAGGGAGTAGGAGGACCCGGCCATAAGGCAAGAGTTTTGTAG





protein:


M G A R A S V L S G G E L D R W E K I R L R P G G K K K Y K L K H





I V W A S R E L E R F A V N P G L L E T S E G C R Q I L G Q L Q P





S L Q T G S E E L R S L Y N T V A T L Y C V H Q R J E I K D T K E





A L D K I E E E Q N K S K K K A Q Q A A A D T G H S N Q V S Q N Y





P I V Q N I Q G Q M V H Q A I S P R T L N A W V K V V E E K A F S





P E V I P M F S A L S E G A T P Q D L N T M L N T V G G H Q A A M





Q M L K E T I N E E A A E W D R V H P V H A G P I A P G Q M R E P





R G S D I A G T T S T L Q E Q I G W M T N N P P I P V G E I Y K R





W I I L G L N K I V R M Y S P T S I L D I R Q G P K E P F R D Y V





D R F Y K T L R A E Q A S Q E V K N W M T E T L L V Q N A N P D C





K T I L K A L G P A A T L E E M M T A C Q G V G G P G H K A R V





L •





HIV gagpol


ATGGGTGCGAGAGCGTCAGTATTAAGCGGGGGAGAATTAGATCGATGGGAAAAAATTCGGTTAAG





GCCAGGGGGAAAGAAGAAGTACAAGCTAAAGCACATCGTATGGGCAAGCAGGGAGCTAGAACGAT





TCGCAGTTAATCCTGGCCTGTTAGAAACATCAGAAGGCTGTAGACAAATACTGGGACAGCTACAA





CCATCCCTTCAGACAGGATCAGAGGAGCTTCGATCACTATACAACACAGTAGCAACCCTCTATTG





TGTGCACCAGCGGATCGAGATCAAGGACACCAAGGAAGCTTTAGACAAGATAGAGGAAGAGCAAA





ACAAGTCCAAGAAGAAGGCCCAGCAGGCAGCAGCTGACACAGGACACAGCAATCAGGTCAGCCAA





AATTACCCTATAGTGCAGAACATCCAGGGGCAAATGGTACATCAGGCCATATCACCTAGAACTTT





AAATGCATGGGTAAAAGTAGTAGAAGAGAAGGCTTTCAGCCCAGAAGTGATACCCATGTTTTCAG





CATTATCAGAAGGAGCCACCCCACAGGACCTGAACACGATGTTGAACACCGTGGGGGGACATCAA





GCAGCCATGCAAATGTTAAAAGAGACCATCAATGAGGAAGCTGCAGAATGGGATAGAGTGCATCC





AGTGCATGCAGGGCCTATTGCACCAGGCCAGATGAGAGAACCAAGGGGAAGTGACATAGCAGGAA





CTACTAGTACCCTTCAGGAACAAATAGGATGGATGACAAATAATCCACCTATCCCAGTAGGAGAG





ATCTACAAGAGGTGGATAATCCTGGGATTGAACAAGATCGTGAGGATGTATAGCCCTACCAGCAT





TCTGGACATAAGAcALAGGACCAAAGGAACCCTTTAGAGACTATGTAGACCGGTTCTATAAAACT





CTAAGAGCTGAGCAAGCTTCACAGGAGGTAAAAATTGGATGACAGAAACCTTGTTGGTCCAAAAA





ATGCGAACCCAGATTGTAAGACCATCCTGAAGGCTCTCGGCCCAGCGGCTACACTAGAAGAAATG





ATGACAGCATGTCAGGGAGTAGGAGGACCCGGCCATAAAGGCAAAGAGTTTTGGCCGAGGCGATG





AGCCAGGTGACGAACTCGGCGACCATAATGATGCAGAGAGGCAACTTCCGGAACCAGCGGAAGAT





CGTCAAGTGCTTCAATTGTGGCAAAGAAGGGCACACCGCCAGGAACTGCCGGGCCCCCCGGAAGA





AGGGCTGCTGGAAGTGCGGGAAGGAGGGGCACCAGATGAAGGACTGCACGGAGCGGCAGGCGAAC





TTCCTGGGGAAGATATGGCCGAGTTACAAGGGAAGACCCGACCGGCAGGGGACGGTGTCGTTCAA





CTTCCCTCAGATCACGCTCTGGCAGCGGCCGCTCGTCACATAAAGATCGGGGGGCAACTCAAGGA





GGCGCTGCTCGCGGACGACACGGTCTTGGAGGAGATGTCGTTGCCGGGGCGGTGGAAGCCGAAGA





TGATCGGGGGGATCGGGGGCTTCATCAAGGTGCGGCAGTACGACCAGATCCTCATCGAGATCTGC





GGGCACAAGGCGATCGGGACGGTCCTCGTCGGCCCGACGCCGGTCAACATCATCGGGCGGAACCT





GTTGACCCAGATCGGCTGCACCTTGAACTTCCCCATCAGCCCTATTGAGACGGTGCCCGTGAAGT





TGAAGCCGGGGATGGACGGCCCCAAGGTCAAAGCAATGGCCATTGACGGAGGAGAAGATCAAGGC





CTTAGTCGAAATCTGTACAGAGATGGAGAAGGAAGGGAAGATCAGCAAGATCGGGCCTGAGAACC





CCTACAACACTCCAGTCTTCGCAATCAAGAAGAAGGACAGTACCAAGTGGAGAAAGCTGGTGGAC





TTCAGAGAGCTGAACAAGAGAACTCAGGACTTCTGGGAAGTTCAGCTGGGCATCCCACATCCCGC





TGGGTTGAAGAAGAAGAAGTCAGTGACAGTGCTGGATGTGGGTGATGCCTACTTCTCCGTTCCCT





TGGACGAGGACTTCAGGAAGTACACTGCCTTCACGATACCTAGCATCAACAACGAGACACCAGGC





ATCCGCTACCAGTACAACGTGCTGCCACAGGGATGGAAGGGATCACCAGCCATCTTTCAATCGTC





GATGACCAAGATCCTGGAGCCCTTCCGCAAGCAAAACCCAGACATCGTGATCTATCAGCTCTACG





TAGGAAGTGACCTGGAGATCGGGCAGCACAGGACCAAGATCGAGGAGCTGAGACAGCATCTGTTG





AGGTGGGGACTGACCACACCAGACAAGAAAGCACCAGAAGGACCTCCCTTCCTGTGGATGGGCTA





CGAACTGCATCCTGACAAGTGGACAGTGCAGCCCATCGTGCTGCCTGAGAAGGACAGCTGGACTG





TGAACGACATACAGAAGCTCGTGGGCAAGTTGAACTGGGCAAGCCAGATCTACCCAGGCATCAAA





GTTAGGCAGCTGTGCAAGCTGCTTCGAGGAACCAAGGCACTGACAGAAGTGATCCCACTGACAGA





GGAAGCAGAGCTAGAACTGGCAGAGAACCGAGAGATCCTGAAGGAGCCAGTACATGGAGTGTACT





ACGACCCAAGCAAGGACCTGATCGCAGAGATCCAGAAGCAGGGGCAAGGCCATGGACCTACCAAA





TCTACCAGGAGCCCTTCAAGAACCTGAAGACAGGCAAGTACGCAAGGATGAGGGGTGCCCACACC





AACGATGTGAAGCAGCTGACAGAGGCAGTGCAGAAGATCACCACAGAGAGCATCGTGATCTGGGG





CAAGACTCCCAAGTTCAAGCTGCCCATACAGAAGGAGACATGGGAGACATGGTGGACCGAGTACT





GGCAAGCCACCTGGATCCCTGAGTGGGAGTTCGTGAACACCCCTCCCTTGGTGAAACTGTGGTAT





CAGCTGGAGAAGGAACCCATCGTGGGAGCAGAGACCTTCTACGTGGATGGGGCAGCCAACAGGGA





GACCAAGCTGGGCAAGGCAGGCTACGTGACCAACCGAGGACGACAGAAAGTGGTGACCCTGACTG





ACACCACCAACCAGAAGACTCTGCAAGCCATCTACCTAGCTCTGCAAGACAGCGGACTGGAAGTG





AACATCGTGACAGACTCACAGTACGCACTGGGCATCATCCAAGCACAACCAGACCAATCCGAGTC





AGAGCTGGTGAACCAGATCATCGAGCAGCTGATCAAGAAGGAGAAAGTGTACCTGGCATGGGTCC





CGGCGCACAAGGGGATCGGGGGGAACGAGCAGGTCGACAAGTTGGTCTCGGCGGGGATCCGGAAG





GTGCTGTTCCTGGACGGGATCGATAAGGCCCAAGATGAACATGAGAAGTACCACTCCAACTGGCG





CGCTATGGCCAGCGACTTCAACCTGCCGCCGGTCGTCGCGAAGGAGATCGTCGCCAGCTGCGACA





AGTGCCAGCTCAAGGGGGAGGCCATGCACGGGCAAGTCGACTGCAGTCCGGGGATCTGGCAGCTG





TGCACGCACCTGGAGGGGAAGGTGATCCTGGTCGCGGTCCACGTCGCCAGCGGGTATATCGAGGC





GGAGGTCATCCCGGCTGAGACGGGGCAGGAGACGGCGTACTTCCTCTTGAAGCTCGCGGGGCGGT





GGCCGGTCAAGACGATCCACACGAACGGGAGCAACTTCACGGGGGCGACGGTCAAGGCCGCCTGT





TGGTGGGCGGGAATCAAGCAGGAATTTGGAATTCCCTACAATCCCCAATCGCAAGGAGTCGTGAG





CATGAACAAGGAGCTGAAGAAGATCATCGGACAAAGGGATCAGGCTGAGCACCTGAAGACAGCAG





TGCAGATGGCAGTGTTCATCCACAACTTCAAAAGAAAAGGGGGGATTGGGGGGTACAGTGCGGGG





GAACGGATCGTGGACATCATCGCCACCGACATCCAAACCAAGGAGCTGCAGAAGCAGATCACCAA





GATCCAGAACTTCCGGGTGTACTACCGCGACAGCCGCAACCCACTGTGGAAGGGACCAGCAAAGC





TCCTCTGGAAGGGAGAGGGGGCAGTGGTGATCCAGGACAACAGTGACATCAAAGTGGTGCCAAGG





CGCAAGGCCAAGATCATCCGCGACTATGGAAAACAGATGGCAGGGGATGATTGTGTGGCAAGTAG





ACAGGATGAGGATGGCGCCTAG





Protein:


M G A R A S V L S G G E L D R W E K I R L R P G G K K K Y K L K H





I V W A S R E L E R F A V N P G L L E T S E G C R Q I L G Q L Q P





S L Q T G S E E L R S L Y N T V A T L Y C V H Q R I E I K D T K E





A L D K I E E E Q N K S K K K A Q Q A A A D T G H S N Q V S Q N Y





P I V Q N I Q G Q M V H Q A I S P R T L N A W V K V V E E K A F S





P E V I P M F S A L S E G A T P Q D L N T M L N T V G G H Q A A M





Q M L K E T I N E E A A E W D R V H P V H A G P I A P G Q M R E P





R G S D I A G T T S T L Q E Q I G W M T N N P P I P V G E I Y K R





W I I L G L N K I V R M Y S P T S I L D I R Q G P K E P F R D Y V





D R F Y K T L R A E Q A S Q E V K N W M T E T L L V Q N A N P D C





K T I L K A L G P A A T L E E M M T A C Q G V G G P G H K A R V L





A E A M S Q V T N S A T I M M Q R G N F R N Q R K I V K C F N C G





K E G H T A R N C R A P R K K G C W K C G K E G H Q M K D C T E R





Q A N F L G K I W P S Y K G R P D R Q G T V S F N F P Q I T L W Q





R P L V T I K I G G Q L K E A L L A D D T V L E E M S L P G R W K





P K M I G G I G G F I K V R Q Y D Q I L I E I C G H K A I G T V L





V G P T P V N I I G R N L L T Q I G C T L N F P I S P I E T V P V





K L K P G M D G P K V K Q W P L T E E K I K A L V E I C T E M E K





E G K J S K I G P E N P Y N T P V F A I K K K D S T K W R K L V D





F R E L N K R T Q D F W E V Q L G I P H P A G L K K K K S V T V L





D V G D A Y F S V P L D E D F R K Y T A F T I P S I N N E T P G I





R Y Q Y N V L P Q G W K G S P A I F Q S S M T K I L E P F R K Q N





P D I V I Y Q L Y V G S D L E I G Q H R T K I E E L R Q H L L R W





G L T T P D K K H Q K E P P F L W M G Y E L H P D K W T V Q P I V





L P E K D S W T V N D I Q K L V G K L N W A S Q I Y P G I K V R Q





L C K L L R G T K A L T E V I P L T E E A E L E L A E N R E I L K





E P V H G V Y Y D P S K D L I A E I Q K Q G Q G Q W T Y Q I Y Q E





P F K N L K T G K Y A R M R G A H T N D V K Q L T E A V Q K I T T





E S I V I W G K T P K F K L P I Q K E T W E T W W T E Y W Q A T W





I P E W E F V N T P P L V K L W Y Q L E K E P I V G A E T F Y V D





G A A N R E T K L G K A G Y V T N R G R Q K V V T L T D T T N Q K





T L Q A I Y L A L Q D S G L E V N I V T D S Q Y A L G I I Q A Q P





D Q S E S E L V N Q I I E Q L I K K E K V Y L A W V P A H K G I G





G N E Q V D K L V S A G I R K V L F L D G I D K A Q D E H E K Y H





S N W R A M A S D F N L P P V V A K E I V A S C D K C Q L K G E A





M H G Q V D C S P G I W Q L C T H L E G K V I L V A V H V A S G Y





I E A E V I P A E T G Q E T A Y F L L K L A G R W P V K T I H T N





G S N F T G A T V K A A C W W A G I K Q E F G I P Y N P Q S Q G V





V S M N K E L K K I I G Q R D Q A E H L K T A V Q M A V F I H N F





K R K G G I G G Y S A G E R I V D I I A T D I Q T K E L Q K Q I T





K I Q N F R V Y Y R D S R N P L W K G P A K L L W K G E G A V V I





Q D N S D I K V V P R R K A K I I R D Y G K Q M A G D D C V A S R





Q D E D G A •





CATEp37gag(HIV)


ATGAGAAAAGCGGCTGTTAGTCACTGGCAGCAACAGTCTTACCTGGACTCTGGAATCCATTCTGG





TGCCACTACCACAGCTCCTTCTCTGAGTGTCGACAGAGAGATGGGTGCGAGAGCGTCAGTATTAA





GCGGGGGAGAATTAGATCGATGGGAAAAAATTCGGTTAAGGCCAGGGGGAAAGAAGAAGTACAAG





CTAAAGCACATCGTATGGGCAAGCAGGGAGCTAGAACGATTCGCAGTTAATCCTGGCCTGTTAGA





AACATCAGAAGGCTGTAGACAAATACTGGGACAGCTACAACCATCCCTTCAGACAGGATCAGAGG





AGCTTCGATCACTATACAACACAGTAGCAACCCTCTATTGTGTGCACCAGCGGATCGAGATCAAG





GACACCAAGGAAGCTTTAGACAAGATAGAGGAAGAGCAAAACAAGTCCAAGAAGAAGGCCCAGCA





GGCAGCAGCTGACACAGGACACAGCAATCAGGTCAGCCAAAATTACCCTATAGTGCAGAACATCC





AGGGGCAAATGGTACATCAGGCCATATCACCTAGAACTTTAAATGCATGGGTAAAAGTAGTAGAA





GAGAAGGCTTTCAGCCCAGAAGTGATACCCATGTTTTCAGCATTATCAGAAGGAGCCACCCCACA





GGACCTGAACACGATGTTGAACACCGTGGGGGGACATCAAGCAGCCATGCAAATGTTAAAAGAGA





CCATCAATGAGGAAGCTGCAGAATGGGATAGAGTGCATCCAGTGCATGCAGGGCCTATTGCACCA





GGCCAGATGAGAGAACCAAGGGGAAGTGACATAGCAGGAACTACTAGTACCCTTCAGGAACAAAT





AGGATGGATGACAAATAATCCACCTATCCCAGTAGGAGAGATCTACAAGAGGTGGATAATCCTGG





GATTGAACAAGATCGTGAGGATGTATAGCCCTACCAGCATTCTGGACATAAGACAAGGACCAAAG





GAACCCTTTAGAGACTATGTAGACCGGTTCTATAAAACTCTAAGAGCTGAGCAAGCTTCACAGGA





GGTAAAAAATTGGATGACAGAAACCTTGTTGGTCCAAAATGCGAACCCAGATTGTAAGACCATCC





TGAAGGCTCTCGGCCCAGCGGCTACACTAGAAGAAATGATGACAGCATGTCAGGGAGTAGGAGGA





CCCGGCCATAAGGCAAGAGTTTTGTAG





protein:


M R K A A V S H W Q Q Q S Y L D S G I H S G A T T T A P S L S V D





R E M G A R A S V L S G G E L D R W E K I R L R P G G K K K Y K L





K H L V W A S R E L E R F A V N P G L L E T S E G C R Q I L G Q L





Q P S L Q T G S E E L R S L Y N T V A T L Y C V H Q R I E I K D T





K E A L D K I E E E Q N K S K K K A Q Q A A A D T G H S N Q V S Q





N Y P I V Q N I Q G Q M V H Q A I S P R T L N A W V K V V E E K A





F S P E V I P M F S A L S E G A T P Q D L N T M L N T V G G H Q A





A M Q M L K E T I N E E A A E W D R V H P V H A G P I A P G Q M R





E P R G S D I A G T T S T L Q E Q I G W M T N N P P I P V G E I Y





K R W I I L G L N K I V R M Y S P T S I L D I R Q G P K E P F R D





Y V D R F Y K T L R A E Q A S Q E V K N W M T E T L L V Q N A N P





D C K T I L K A L G P A A T L E E M M T A C Q G V G G P G H K A R





V L •






The above examples are provided to illustrate the invention but not to limit its scope. Other variants of the invention will be readily apparent to one of ordinary skill in the art and are encompassed by the appended claims.


All publications, patents, accession numbers, and patent applications cited herein are hereby incorporated by reference for all purposes.

Claims
  • 1. A method of treating an individual infected with a retrovirus, the method comprising: administering a DNA vaccine comprising an expression vector selected from the group consisting of a) an expression vector encoding a fusion protein comprising a degradation polypeptide linked to an immunogenic retrovirus polypeptide or b) an expression vector encoding a secreted fusion protein comprising a secretory polypeptide linked to an immunogenic retrovirus polypeptide; andadministering antiretroviral therapy (ART);wherein administration of the DNA vaccine results in control of viremia upon cessation of ART.
  • 2. The method of claim 1, wherein the DNA vaccine is administered to the individual while the individual is undergoing ART.
  • 3. The method of claim 1, wherein the expression vector encodes a fusion protein comprising a degradation polypeptide linked to an immunogenic retrovirus polypeptide.
  • 4. The method of claim 3, further comprising a step of administering an expression vector that encodes a fusion protein comprising a secretory polypeptide.
  • 5. The method of claim 4, wherein the fusion protein comprising a secretory polypeptide has an immunogenic polypeptide that is different from the immunogenic polypeptide included in the fusion protein comprising a degradation polypeptide linked to an immunogenic polypeptide.
  • 6. The method of claim 4, wherein the expression vector that encodes the fusion protein comprising the secretory polypeptide is concurrent with the expression vector encoding a fusion protein comprising a degradation polypeptide
  • 7. The method of claim 1, wherein the degradation polypeptide is selected from the group consisting of c-Mos aa1-35, cyclin B aa 10-95, β-catenin aa 19-44, and β-catenin aa 18-47.
  • 8. The method of claim 7, wherein the degradation polypeptide is a degradation signal from β-catenin.
  • 9. The method of claim 8, wherein the degradation signal from β-catenin is linked to a human immunodeficienty (HIV) gag polypeptide.
  • 10. The method of claim 8, wherein the degradation signal from β-catenin is linked to an HIV env polypeptide.
  • 11. The method of claim 1, wherein the immunogenic retrovirus polypeptide is an HIV antigen.
  • 12. The method of claim 11, wherein the HIV antigen is selected from the group consisting of Gag, Env, Pol, Nef, Vpr, Vpu, Vif, Tat, and Rev.
  • 13. The method of claim 12, wherein the HIV antigen comprises linked epitopes of HIV Gag, Env, Tat, Rev, and Nef, said epitopes linked in any order; or linked epitopes of Gag, Env, Pol, Tat, and Nef, said epitopes linked in any order.
  • 14. The method of claim 13, wherein the HIV antigen is linked to a β-catenin degradation signal.
  • 15. The method of claim 12, wherein the HIV antigen is linked to a secretory polypeptide.
  • 16. The method of claim 12, wherein the HIV antigen comprises linked epitopes of gag, env, rev, tat, nef and vif; or linked epitopes of gag, env, pol, nef, tat, and vif.
  • 17. The method of claim 16, wherein the HIV antigen is linked to a β-catenin degradation signal.
  • 18. The method of claim 1, further comprising administering a nucleic acid sequence encoding an adjuvant.
  • 19. The method of claim 18, wherein the adjuvant is IL-12 or IL-15.
  • 20. The method of claim 1, wherein the expression vector is administered by intramuscular injection.
  • 21. The method of claim 1, further comprising at least a second administration of the expression plasmid.
  • 22. The method of claim 1, wherein the secretory polypeptide is MCP-3.
  • 23. The method of claim 22, wherein the MCP-3 is joined to an immunogenic retroviral polypeptide that is an HIV antigen.
  • 24. The method of claim 23, wherein the HIV antigen is selected from the group consisting of Gag, Env, Pol, Nef, Vpr, Vpu, Vif, Tat, and Rev.
  • 25. The method of claim 24, wherein the HIV polypeptide is from gag.
  • 26. A method of treating an individual undergoing antiretroviral therapy, the method comprising: administering to the individual a DNA vaccine comprising an expression vector selected from the group consisting of a) an expression vector encoding a fusion protein comprising a degradation polypeptide linked to an immunogenic retrovirus polypeptide and b) an expression vector encoding a secreted fusion protein comprising a secretory polypeptide linked to an immunogenic retrovirus polypeptide; wherein administration of the DNA vaccine results in control of viremia upon cessation of ART.
  • 27. The method of claim 26, wherein the immunogenic retrovirus polypeptide is an HIV antigen.
  • 28. The method of claim 26, wherein the degradation polypeptide is selected from the group consisting of c-Mos aa1-35, cyclin B aa 10-95, β-catenin aa 19-44, and β-catenin aa 18-47.
  • 29. The method of claim 26, wherein the secretory polypeptide is MCP-3 or the tissue plasminogen activator (tPA) signal peptide.
  • 30. The method of claim 26, wherein the degradation polypeptide is β-catenin 18-47 and the secretory polypeptide is MCP-3 or the tPA signal peptide.
  • 31. The method of claim 30, wherein the degradation polypeptide fusion protein comprises HIV Gag and HIV Pol.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims benefit of U.S. provisional application No. 60/586,539, filed Jul. 9, 2004, which application is incorporated by reference herein.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2005/024498 7/11/2005 WO 00 12/1/2008
Provisional Applications (1)
Number Date Country
60586539 Jul 2004 US