DNA ENCODING GALANIN GALR2 RECEPTORS AND USES THEREOF

Abstract
This invention provides isolated nucleic acids encoding mammalian galanin receptors, isolated galanin receptor proteins, vectors comprising isolated nucleic acid encoding a mammalian galanin receptor, cells comprising such vectors, antibodies directed to a mammalian galanin receptor, nucleic acid probes useful for detecting nucleic acid encoding a mammalian galanin receptor, antisense oligonucleotides complementary to unique sequences of nucleic acid encoding a mammalian galanin receptor, nonhuman transgenic animals which express DNA encoding a normal or a mutant mammalian galanin receptor, as well as methods of determining binding of compounds to mammalian galanin receptors.
Description


BACKGROUND OF THE INVENTION

[0002] Throughout this application, various references are referred to within parentheses. Disclosures of these publications in their entireties are hereby incorporated by reference into this application to more fully describe the state of the art to which this invention pertains. Full bibliographic citation for these references may be found at the end of this application, preceding the sequence listing and the claims.


[0003] The neuropeptide galanin and its receptors hold great promise as targets for the development of novel therapeutic agents. Galanin is widely distributed throughout the peripheral and central nervous systems and is associated with the regulation of processes such as somatosensory transmission, smooth muscle contractility, hormone release, and feeding (for review, see Bartfai et al., 1993). In the periphery galanin is found in the adrenal medulla, uterus, gastrointestinal tract, dorsal root ganglia (DRG), and sympathetic neurons. Galanin released from sympathetic nerve terminals in the pancreas is a potent regulator of insulin release in several species (Ahrén and Lindskog, 1992; Boyle et al., 1994), suggesting a potential role for galanin in the etiology or treatment of diabetes. High levels of galanin are observed in human and rat anterior pituitary where galanin mRNA levels are potently upregulated by estrogen (Vrontakis et al., 1987; Kaplan et al., 1988). The presence of galanin in the hypothalamic-pituitary-adrenal axis coupled with its potent hormonal effects has led to the suggestion that galanin may play an integral role in the hormonal response to stress (Bartfai et al., 1993).


[0004] Within the CNS galanin-containing cell bodies are found in the hypothalamus, hippocampus, amygdala, basal forebrain, brainstem nuclei, and spinal cord, with highest concentrations of galanin in the hypothalamus and pituitary (Skofitsch and Jacobowitz, 1985; Bennet et al., 1991; Merchenthaler et al., 1993). The distribution of galanin receptors in the CNS generally complements that of galanin peptide, with high levels of galanin binding observed in the hypothalamus, amygdala, hippocampus, brainstem and dorsal spinal cord (Skofitsch et al., 1986; Merchenthaler et al., 1993; see Bartfai et al., 1993). Accordingly, agents modulating the activity of galanin receptors would have multiple potential therapeutic applications in the CNS. One of the most important of these is the regulation of food intake. Galanin injected into the paraventricular nucleus (PVN) of the hypothalamus stimulates feeding in satiated rats (Kyrkouli et al., 1990), an effect which is blocked by the peptide galanin antagonist M40 (Crawley et al., 1993). In freely feeding rats, PVN injection of galanin preferentially stimulates fat-preferring feeding (Tempel et al., 1988); importantly, the galanin antagonist M40 administered alone decreases overall fat intake (Leibowitz and Kim, 1992). These data indicate that specific receptors in the hypothalamus mediate the effects of galanin on feeding behavior, and further suggest that agents acting at hypothalamic galanin receptors may be therapeutically useful in the treatment of human eating disorders.


[0005] Galanin receptors elsewhere in the CNS may also serve as therapeutic targets. In the spinal cord galanin is released from the terminals of sensory neurons as well as spinal interneurons and appears to play a role in the regulation of pain threshold (Wiesenfeld-Hallin et al., 1992). Intrathecal galanin potentiates the anti-nociceptive effects of morphine in rats and produces analgesia when administered alone (Wiesenfeld-Hallin et al., 1993; Post et al., 1988); galanin receptor agonists may therefore be useful as analgesic agents in the spinal cord. Galanin may also play a role in the development of Alzheimer's disease. In the hippocampus galanin inhibits both the release (Fisone et al., 1987) and efficacy (Palazzi et al., 1988) of acetylcholine, causing an impairment of cognitive functions (Sundström et al., 1988). Autopsy samples from humans afflicted with Alzheimer's disease reveal a galaninergic hyperinnervation of the nucleus basalis (Chan-Palay, 1988), suggesting a role for galanin in the impaired cognition characterizing Alzheimer's disease. Together these data suggest that a galanin antagonist may be effective in ameliorating the symptoms of Alzheimer's disease (see Crawley, 1993). This hypothesis is supported by the report that intraventricular administration of the peptide galanin antagonist M35 improves cognitive performance in rats (Ögren et al., 1992). Human galanin receptors thus provide targets for therapeutic intervention in multiple CNS disorders.


[0006] High-affinity galanin binding sites have been characterized in brain, spinal cord, pancreatic islets and cell lines, and gastrointestinal smooth muscle in several mammalian species, and all show similar affinity for 125I-porcine galanin (˜0.5-1 nM). Nevertheless, recent in vitro and in vivo pharmacological studies in which fragments and analogues of galanin were used suggest the existence of multiple galanin receptor subtypes. For example, a galanin binding site in guinea pig stomach has been reported that exhibits high affinity for porcine galanin (3-29) (Gu, et al. 1995), which is inactive at CNS galanin receptors. The chimeric galanin analogue M15 (galantide) acts as antagonist at CNS galanin receptors (Bartfai et al., 1991) but as a full agonist in gastrointestinal smooth muscle (Gu et al., 1993). Similarly, the galanin-receptor ligand M40 acts as a weak agonist in RINm5F insulinoma cells and a full antagonist in brain (Bartfai et al, 1993a). The pharmacological profile of galanin receptors in RINm5F cells can be further distinguished from those in brain by the differential affinities of [D-Tyr 2]- and [D-Phe2]-galanin analogues (Lagny-Pourmir et al., 1989). The chimeric galanin analogue M35 displaces 125I-galanin binding to RINm5F membranes in a biphasic manner, suggesting the presence of multiple galanin receptor subtypes, in this cell line (Gregersen et al., 1993).


[0007] Multiple galanin receptor subtypes may also co-exist within the CNS. Galanin receptors in the dorsal hippocampus exhibit high affinity for Gal (1-15) but not for Gal (1-29) (Hedlund et al., 1992), suggesting that endogenous proteolytic processing may release bioactive fragments of galanin to act at distinct receptors. The rat pituitary exhibits high-affinity binding for 125I-Bolton and Hunter (N-terminus)-labeled galanin(1-29) but not for [125I]Tyr 26-porcine galanin (Wynick et al., 1993), suggesting that the pituitary galanin receptor is a C-terminus-preferring subtype. Spinal cord galanin binding sites, while similar to those in brain, show an affinity for the chimeric peptide antagonist M35 intermediate between the brain and smooth muscle (Bartfai et al., 1991), raising the possibility of further heterogeneity.


[0008] A galanin receptor cDNA was recently isolated by expression cloning from a human Bowes melanoma cell line (Habert-Ortoli et al., 1994). The pharmacological profile exhibited by this receptor is similar to that observed in brain and pancreas, and on that basis the receptor has been termed GALR1. The cloned human GALR1 receptor binds native human, porcine and rat galanin with ˜1 nM affinity (Ki vs. 125I-galanin) and porcine galanin 1-16 at a slightly lower affinity (˜5 nM). Porcine galanin 3-29 does not bind to the receptor. The GALR1 receptor appears to couple to inhibition of adenylate cyclase, with half-maximal inhibition of forskolin-stimulated cAMP production by 1 nM galanin, and maximal inhibition occurring at about 1 μM.


[0009] Recently the rat homologue of GALR1 was cloned from the RIN14B pancreatic cell line (Burgevin, et al., 1995, Parker et al., 1995; Smith et al., in preparation). The pharmacological data reported to date do not suggest substantial differences between the pharmacologic properties of the rat and human GALR1 receptors. Localization studies reveal GALR1 mRNA in rat hypothalamus, ventral hippocampus, brainstem, and spinal cord (Gustafson et al., 1996), regions consistent with roles for galanin in feeding, cognition, and pain transmission. However, GALR1 appears to be distinct from the pituitary and hippocampal receptor subtypes described above.


[0010] The indication of multiple galanin receptor subtypes within the brain underscores the importance of defining galanin receptor heterogeneity at the molecular level in order to develop specific therapeutic agents for CNS disorders. Pharmacological tools capable of distinguishing galanin receptor subtypes in tissue preparations are only beginning to appear. Several high-affinity peptide-based galanin antagonists have been developed and are proving useful in probing the functions of galanin receptors (see Bartfai et al., 1993), but their peptide character precludes practical use as therapeutic agents. In light of galanin's multiple neuroendocrine roles, therapeutic agents targeting a specific disorder must be selective for the appropriate receptor subtype to minimize side effects.


[0011] Accordingly, the cloning of the entire family of galanin receptors for use in target-based drug design programs has been endeavored. The identification of non-peptide agents acting selectively only at specific galanin receptors will be greatly facilitated by the cloning, expression, and characterization of the galanin receptor family.


[0012] The isolation by expression cloning of a novel galanin receptor from a rat hypothalamic cDNA library, as well as its pharmacological characterization in a heterologous expression system is now reported. The data provided demonstrate for the first time the existence of a new galanin receptor subtype, from now on referred to as the GALR2 subtype, or simply, “GALR2.” The cloning of the human homolog of the rat GALR2 receptor is also reported. This discovery provides a novel approach, through the use of heterologous expression systems, to develop subtype selective, high-affinity non-peptide compounds that could serve as therapeutic agents for eating disorders, diabetes, pain, depression, ischemia, and Alzheimer's disease. The presence of both GALR1 and GALR2 in rat hypothalamus suggests that multiple galanin receptors may be involved in the regulation of feeding. Pathophysiological disorders proposed to be linked to galanin receptor activation include eating disorders, diabetes, pain, depression, ischemia, Alzheimer's disease and reproductive disorders. Accordingly, treatment of such disorders may be effected by the administration of GALR2 receptor-selective compounds. The localization of GALR2 receptors in other parts of the rat brain suggests that GALR2 receptors may play a role in cognition, analgesia, sensory processing (olfactory, visual), processing of visceral information, motor coordination, modulation of dopaminergic activity, neuroendocrine function, sleep disorders, migraine, and anxiety.



SUMMARY OF THE INVENTION

[0013] This invention provides an isolated nucleic acid encoding a mammalian GALR2 galanin receptor. This invention further provides a recombinant nucleic acid encoding a mammalian GALR2 galanin receptor.


[0014] This invention further provides an isolated nucleic acid encoding a modified GALR2 receptor, which differs from a GALR2 receptor by having an amino acid(s) deletion, replacement or addition in the third intracellular domain.


[0015] This invention also provides a purified GALR2 receptor protein.


[0016] This invention further provides a nucleic acid probe comprising at least 15 nucleotides, which probe specifically hybridizes with a nucleic acid encoding a GALR2 receptor, wherein the probe has a unique sequence corresponding to a sequence present within one of the two strands of the nucleic acid encoding the GALR2 receptor contained in plasmid K985.


[0017] This invention further provides a nucleic acid probe comprising at least 15 nucleotides, which probe specifically hybridizes with a nucleic acid encoding a GALR2 receptor, wherein the probe has a unique sequence corresponding to a sequence present within one of the two strands of the nucleic acid encoding the GALR2 receptor contained in plasmid K1045.


[0018] This invention also provides a nucleic acid probe comprising at least 15 nucleotides, which probe specifically hybridizes with a nucleic acid encoding a GALR2 receptor, wherein the probe has a unique sequence corresponding to a sequence present within (a) the nucleic acid sequence shown in FIG. 1 or (b) the reverse complement of the nucleic acid sequence shown in FIG. 1.


[0019] This invention also provides a nucleic acid probe comprising at least 15 nucleotides, which probe specifically hybridizes with a nucleic acid encoding a GALR2 receptor, wherein the probe has a unique sequence corresponding to a sequence present within one of the two strands of the nucleic acid encoding the GALR2 receptor contained in plasmid BO29.


[0020] This invention further provides a nucleic acid probe comprising at least 15 nucleotides, which probe specifically hybridizes with a nucleic acid encoding a GALR2 receptor, wherein the probe has a unique sequence corresponding to a sequence present within one of the two strands of the nucleic acid encoding the GALR2 receptor contained in plasmid BO39.


[0021] This invention provides a nucleic acid probe comprising at least 15 nucleotides, which probe specifically hybridizes with a nucleic acid encoding a GALR2 receptor, wherein the probe has a unique sequence corresponding to a sequence present within (a) the nucleic acid sequence shown in FIG. 10 or (b) the reverse complement of the nucleic acid sequence shown in FIG. 10.


[0022] This invention also provides a nucleic acid probe comprising a nucleic acid molecule of at least 15 nucleotides which is complementary to a unique fragment of the sequence of a nucleic acid molecule encoding a GALR2 receptor.


[0023] This invention further provides a nucleic acid probe comprising a nucleic acid molecule of at least 15 nucleotides which is complementary to the antisense sequence of a unique fragment of the sequence of a nucleic acid molecule encoding a GALR2 receptor.


[0024] This invention provides a transgenic nonhuman mammal comprising a homologous recombination knockout of the native GALR2 receptor.


[0025] This invention also provides a process for identifying a chemical compound which specifically binds to a GALR2 receptor which comprises contacting cells containing DNA encoding and expressing on their cell surface the GALR2 receptor, wherein such cells do not normally express the GALR2 receptor, with the compound under conditions suitable for binding, and detecting specific binding of the chemical compound to the GALR2 receptor.


[0026] This invention further provides a process for identifying a chemical compound which specifically binds to a GALR2 receptor which comprises contacting a membrane fraction from a cell extract of cells containing DNA encoding and expressing on their cell surface the GALR2 receptor, wherein such cells do not normally express the GALR2 receptor, with the compound under conditions suitable for binding, and detecting specific binding of the chemical compound to the GALR2 receptor.


[0027] This invention additionally provides a process for determining whether a chemical compound is a GALR2 receptor agonist which comprises contacting cells transfected with and expressing DNA encoding the GALR2 receptor with the compound under conditions permitting the activation of the GALR2 receptor, and detecting an increase in GALR2 receptor activity, so as to thereby determine whether the compound is a GALR2 receptor agonist.


[0028] This invention also provides a process for determining whether a chemical compound is a GALR2 receptor agonist which comprises preparing a cell extract from cells transfected with and expressing DNA encoding the GALR2 receptor, isolating a membrane fraction from the cell extract, contacting the membrane fraction with the compound under conditions permitting the activation of the GALR2 receptor, and detecting an increase in GALR2 receptor activity, so as to thereby determine whether the compound is a GALR2 receptor agonist.


[0029] This invention further provides a process for determining whether a chemical compound is a GALR2 receptor agonist which comprises preparing a cell extract from cells transfected with and expressing DNA encoding the GALR2 receptor, isolating a membrane fraction from the cell extract, separately contacting the membrane fraction with both the chemical compound and GTPγS, and with only GTPγS, under conditions permitting the activation of the GALR2 receptor, and detecting GTPγS binding to the membrane fraction, an increase in GTPγS binding in the presence of the compound indicating that the chemical compound activates the GALR2 receptor.


[0030] This invention provides a process for determining whether a chemical compound is a GALR2 receptor antagonist which comprises contacting cells transfected with and expressing DNA encoding the GALR2 receptor with the compound in the presence of a known GALR2 receptor agonist, under conditions permitting the activation of the GALR2 receptor, and detecting a decrease in GALR2 receptor activity, so as to thereby determine whether the compound is a GALR2 receptor antagonist.


[0031] This invention also provides a process for determining whether a chemical compound is a GALR2 receptor antagonist which comprises preparing a cell extract from cells transfected with and expressing DNA encoding the GALR2 receptor, isolating a membrane fraction from the cell extract, contacting the membrane fraction with the ligand in the presence of a known GALR2 receptor agonist, under conditions permitting the activation of the GALR2 receptor, and detecting a decrease in GALR2 receptor activity, so as to thereby determine whether the compound is a GALR2 receptor antagonist.


[0032] This invention further provides a process involving competitive binding for identifying a chemical compound which specifically binds to a GALR2 receptor which comprises separately contacting cells expressing on their cell surface the GALR2 receptor, wherein such cells do not normally express the GALR2 receptor, with both the chemical compound and a second chemical compound known to bind to the receptor, and with only the second chemical compound, under conditions suitable for binding of both compounds, and detecting specific binding of the chemical compound to the GALR2 receptor, a decrease in the binding of the second chemical compound to the GALR2 receptor in the presence of the chemical compound indicating that the chemical compound binds to the GALR2 receptor.


[0033] This invention provides a process involving competitive binding for identifying a chemical compound which specifically binds to a human GALR2 receptor which comprises separately contacting a membrane fraction from a cell extract of cells expressing on their cell surface the GALR2 receptor, wherein such cells do not normally express the GALR2 receptor, with both the chemical compound and a second chemical compound known to bind to the receptor, and with only the second chemical compound, under conditions suitable for binding of both compounds, and detecting specific binding of the chemical compound to the GALR2 receptor, a decrease in the binding of the second chemical compound to the GALR2 receptor in the presence of the chemical compound indicating that the chemical compound binds to the GALR2 receptor.


[0034] This invention also provides a process for determining whether a chemical compound specifically binds to and activates a GALR2 receptor, which comprises contacting cells producing a second messenger response and expressing on their cell surface the GALR2 receptor, wherein such cells do not normally express the GALR2 receptor, with the chemical compound under conditions suitable for activation of the GALR2 receptor, and measuring the second messenger response in the presence and in the absence of the chemical compound, a change in the second messenger response in the presence of the chemical compound indicating that the compound activates the GALR2 receptor.


[0035] This invention further provides a process for determining whether a chemical compound specifically binds to and activates a GALR2 receptor, which comprises contacting a membrane fraction isolated from a cell extract of cells producing a second messenger response and expressing on their cell surface the GALR2 receptor, wherein such cells do not normally express the GALR2 receptor, with the chemical compound under conditions suitable for activation of the GALR2 receptor, and measuring the second messenger response in the presence and in the absence of the chemical compound, a change in the second messenger response in the presence of the chemical compound indicating that the compound activates the GALR2 receptor.


[0036] This invention also provides a process for determining whether a chemical compound specifically binds to and inhibits activation of a GALR2 receptor, which comprises separately contacting cells producing a second messenger response and expressing on their cell surface the GALR2 receptor, wherein such cells do not normally express the GALR2 receptor, with both the chemical compound and a second chemical compound known to activate the GALR2 receptor, and with only the second chemical compound, under conditions suitable for activation of the GALR2 receptor, and measuring the second messenger response in the presence of only the second chemical compound and in the presence of both the second chemical compound and the chemical compound, a smaller change in the second messenger response in the presence of both the chemical compound and the second chemical compound than in the presence of only the second chemical compound indicating that the chemical compound inhibits activation of the GALR2 receptor.


[0037] This invention further provides a process for determining whether a chemical compound specifically binds to and inhibits activation of a GALR2 receptor, which comprises separately contacting a membrane fraction from a cell extract of cells producing a second messenger response and expressing on their cell surface the GALR2 receptor, wherein such cells do not normally express the GALR2 receptor, with both the chemical compound and a second chemical compound known to activate the GALR2 receptor, and with only the second chemical compound, under conditions suitable for activation of the GALR2 receptor, and measuring the second messenger response in the presence of only the second chemical compound and in the presence of both the second chemical compound and the chemical compound, a smaller change in the second messenger response in the presence of both the chemical compound and the second chemical compound than in the presence of only the second chemical compound indicating that the chemical compound inhibits activation of the GALR2 receptor.


[0038] This invention also provides a method of screening a plurality of chemical compounds not known to bind to a GALR2 receptor to identify a compound which specifically binds to the GALR2 receptor, which comprises


[0039] (a) contacting cells transfected with and expressing DNA encoding the GALR2 receptor with a compound known to bind specifically to the GALR2 receptor;


[0040] (b) contacting the preparation of step (a) with the plurality of compounds not known to bind specifically to the GALR2 receptor, under conditions permitting binding of compounds known to bind the GALR2 receptor;


[0041] (c) determining whether the binding of the compound known to bind to the GALR2 receptor is reduced in the presence of the compounds, relative to the binding of the compound in the absence of the plurality of compounds; and if so


[0042] (d) separately determining the binding to the GALR2 receptor of each compound included in the plurality of compounds, so as to thereby identify the compound which specifically binds to the GALR2 receptor.


[0043] This invention provides a method of screening a plurality of chemical compounds not known to bind to a GALR2 receptor to identify a compound which specifically binds to the GALR2 receptor, which comprises


[0044] (a) preparing a cell extract from cells transfected with and expressing DNA encoding the GALR2 receptor, isolating a membrane fraction from the cell extract, contacting the membrane fraction with a compound known to bind specifically to the GALR2 receptor;


[0045] (b) contacting the preparation of step (a) with the plurality of compounds not known to bind specifically to the GALR2 receptor, under conditions permitting binding of compounds known to bind the GALR2 receptor;


[0046] (c) determining whether the binding of the compound known to bind to the GALR2 receptor is reduced in the presence of the compounds, relative to the binding of the compound in the absence of the plurality of compounds; and if so


[0047] (d) separately determining the binding to the GALR2 receptor of each compound included in the plurality of compounds, so as to thereby identify the compound which specifically binds to the GALR2 receptor.


[0048] This invention further provides a method of screening a plurality of chemical compounds not known to activate a GALR2 receptor to identify a compound which activates the GALR2 receptor which comprises


[0049] (a) contacting cells transfected with and expressing the GALR2 receptor with the plurality of compounds not known to activate the GALR2 receptor, under conditions permitting activation of the GALR2 receptor;


[0050] (b) determining whether the activity of the GALR2 receptor is increased in the presence of the compounds; and if so


[0051] (c) separately determining whether the activation of the GALR2 receptor is increased by each compound included in the plurality of compounds, so as to thereby identify the compound which activates the GALR2 receptor.


[0052] This invention further provides a method of screening a plurality of chemical compounds not known to activate a GALR2 receptor to identify a compound which activates the GALR2 receptor which comprises


[0053] (a) preparing a cell extract from cells transfected with and expressing DNA encoding the GALR2 receptor, isolating a membrane fraction from the cell extract, contacting the membrane fraction with the plurality of compounds not known to activate the GALR2 receptor, under conditions permitting activation of the GALR2 receptor;


[0054] (b) determining whether the activity of the GALR2 receptor is increased in the presence of the compounds; and if so


[0055] (c) separately determining whether the activation of the GALR2 receptor is increased by each compound included in the plurality of compounds, so as to thereby identify the compound which activates the GALR2 receptor.


[0056] This invention also provides a method of screening a plurality of chemical compounds not known to inhibit the activation of a GALR2 receptor to identify a compound which inhibits the activation of the GALR2 receptor, which comprises


[0057] (a) contacting cells transfected with and expressing the GALR2 receptor with the plurality of compounds in the presence of a known GALR2 receptor agonist, under conditions permitting activation of the GALR2 receptor;


[0058] (b) determining whether the activation of the GALR2 receptor is reduced in the presence of the plurality of compounds, relative to the activation of the GALR2 receptor in the absence of the plurality of compounds; and if so


[0059] (c) separately determining the inhibition of activation of the GALR2 receptor for each compound included in the plurality of compounds, so as to thereby identify the compound which inhibits the activation of the GALR2 receptor.


[0060] This invention further provides a method of screening a plurality of chemical compounds not known to inhibit the activation of a GALR2 receptor to identify a compound which inhibits the activation of the GALR2 receptor, which comprises


[0061] (a) preparing a cell extract from cells transfected with and expressing DNA encoding the GALR2 receptor, isolating a membrane fraction from the cell extract, contacting the membrane fraction with the plurality of compounds in the presence of a known GALR2 receptor agonist, under conditions permitting activation of the GALR2 receptor;


[0062] (b) determining whether the activation of the GALR2 receptor is reduced in the presence of the plurality of compounds, relative to the activation of the GALR2 receptor in the absence of the plurality of compounds; and if so


[0063] (c) separately determining the inhibition of activation of the GALR2 receptor for each compound included in the plurality of compounds, so as to thereby identify the compound which inhibits the activation of the GALR2 receptor.


[0064] This invention also provides a method of modifying feeding behavior of a subject which comprises administering to the subject an amount of a compound which is a GALR2 receptor agonist or antagonist effective to increase or decrease the consumption of food by the subject so as to thereby modify feeding behavior of the subject.


[0065] This invention provides a method for determining whether a compound is a GALR2 antagonist which comprises:


[0066] (a) administering to an animal a GALR2 agonist and measuring the amount of food intake in the animal;


[0067] (b) administering to a second animal both the GALR2 agonist and the compound, and measuring the amount of food intake in the second animal; and


[0068] (c) determining whether the amount of food intake is reduced in the presence of the compound relative to the amount of food intake in the absence of the compound, so as to thereby determine whether the compound is a GALR2 antagonist.


[0069] This invention further provides a method of decreasing feeding behavior of a subject which comprises administering a compound which is a GALR2 receptor antagonist and a compound which is a Y5 receptor antagonist, the amount of such antagonists being effective to decrease the feeding behavior of the subject.


[0070] This invention further provides a method of decreasing nociception in a subject which comprises administering to the subject an amount of a compound which is a GALR2 receptor agonist effective to decrease nociception in the subject.


[0071] This invention provides a method of treating pain in a subject which comprises administering to the subject an amount of a compound which is a GALR2 receptor agonist effective to treat pain in the subject.


[0072] This invention further provides a method of treating Alzheimer's disease in a subject which comprises administering to the subject an amount of a compound which is a GALR2 receptor antagonist effective to treat Alzheimer's disease in the subject.







BRIEF DESCRIPTION OF THE FIGURES

[0073]
FIG. 1 Nucleotide coding sequence of the rat hypothalamic galanin GALR2 receptor (Seq. I.D. No. 7), with partial 5′ and 3′ untranslated sequences. Start (ATG) and stop (TAA) codons are underlined.


[0074]
FIG. 2 Deduced amino acid sequence of the rat hypothalamic galanin GALR2 receptor encoded by the nucleotide sequence shown in FIG. 1 (Seq. I.D. No. 8).


[0075] FIGS. 3A-3C 3A. Diagram of the intron-exon arrangement of the rat GALR2 receptor cDNA contained in plasmid K985. Untranslated regions are indicated by dark hatched segments, and coding region is unmarked except for light gray hatched segments indicating the location of the transmembrane domains of the rat GALR2 receptor. The black segment indicates the location of the intron. 3B. Splice junction sequences of the rat GALR2 receptor. Nucleotide number 1 is located 45 nucleotides upstream of the start codon (Seq. I.D. No. 9). 3C. Intron sequence of rat GALR2 receptor cDNA contained in plasmid K985. Nucleotide number 1 is located 45 nucleotides upstream of the start codon (Seq. I.D. No. 9).


[0076] FIGS. 4A-4C Localization of [125I]galanin binding sites in rat CNS. FIGS. 4A-1 and 4A-4: Distribution of total [125I]galanin binding in coronal sections through the hypothalamus and amygdala. FIGS. 4A-2 and 4A-5: Binding which remains in these areas following incubation with 60 nM [D-Trp2]galanin(1-29). FIGS. 4A-3 and 4A-6: Binding obtained after incubation with 5 μM porcine galanin, which represents the non-specific binding condition. FIG. 4B: FIGS. 4B-1 to 4B8: Higher magnification photomicrographs of the [125I]galanin binding sites in the hypothalamus and amygdala. FIG. 4B-1: Total binding in the paraventricular hypothalamic nucleus (PVN), virtually all of which is removed by 60 nM [D-Trp2]galanin(1-29) (panel 3B). FIGS. 4B-3 and 4B-4: Binding in the ventromedial hypothalamus (VMH), lateral hypothalamus (LH), and zona incerta (ZI). In these regions, some [125I]galanin binding remains after incubation with 60 nM [D-Trp2]galanin(1-29) (FIG. 4B-4). FIGS. 4B-5 and 4B-7: Total binding in the amygdala. After incubation with 60 nM [D-Trp2]galanin(1-29) (panels 5B and 6B), the binding is markedly reduced in the piriform cortex (Pir), and to a lesser extent in the medial nucleus (Me), and central nucleus (Ce). However, the binding in the nucleus of the lateral olfactory tract (LOT) is largely unaffected. FIG. 4C: FIGS. 4C-1 to 4C-6: Distribution of [125I]galanin binding sites in the anterior forebrain (FIGS. 4C-1 and 4C-2) and in the midbrain (FIGS. 4C-4 and 4C-5). FIGS. 4C-1 and 4C-2: In the lateral septum (LS) and insular cortex (CTX), much of the total binding (FIG. 4C-1) is removed by 60 nM [D-Trp2]galanin(1-29) (FIG. 4C-2). FIGS. 4C-4 and 4C-5: Similarly, the total binding observed in the superior colliculus (SC), central gray (CG), and pontine reticular nucleus (PnO) (FIG. 4C-4) is markedly diminished by 60 nM [D-Trp2]galanin(1-29)(FIG. 4C-5). FIGS. 4C-3 and 4C-6: Nonspecific binding observed in adjacent sections through the septum and midbrain. Arc, arcuate nucleus;. Ce, central amygdaloid nucleus; CL, centrolateral thalamic nucleus; LOT, nucleus of the lateral olfactory tract; Me, medial amygdaloid nucleus; Pir, piriform cortex; PVN, paraventricular hypothalamic nucleus; SO, supraoptic nucleus; st, stria terminalis; VMH, ventromedial hypothalamic nucleus; ZI, zona incerta.


[0077]
FIG. 5. Reverse transcriptase PCR (RT-PCR) of rat GALR2 receptor mRNA from various brain regions. The blot was hybridized at high stringency with an oligonucleotide probe corresponding to a portion of the predicted V/VI loop of GALR2. Positive controls are indicated by +'s and represent plasmids containing the indicated inserts. Size standards are indicated at the left in kilobases. Note the additional hybridizing bands intermediate in size between the intron-containing and the intronless product.


[0078] FIGS. 6A-6B. Northern blot analysis of GALR2 receptor mRNA from various rat brain regions.


[0079]

6
A. A Northern blot containing poly A+ RNA (˜5 μg) from six different rat brain regions was hybridized at high stringency with a randomly primed radiolabeled fragment representing the entire rat GALR2 coding region (not including the intron). The autoradiogram represents a four day exposure and reveals a ˜1.8-2.0 kb transcript.


[0080]

6
B. The blot was reprobed with 1B15 (˜1 kb) to confirm that similar amounts of RNA were present in each lane.


[0081] FIGS. 7A-7B. Northern blot analysis of GALR2 receptor mRNA from various rat tissues.


[0082]

7
A. A Northern blot containing poly A+ RNA (˜2 μg) from eight different rat tissues was hybridized at high stringency with a randomly primed radiolabeled fragment representing the entire rat GALR2 coding region (not including the intron). The autoradiogram represents a four day exposure and reveals a single ˜1.8-2.0 kb transcript.


[0083]

7
B. The Northern blot was reprobed for 1B15 (˜1 kb) to confirm that similar amounts of RNA were present in each lane. A second Northern blot (not shown) was also hybridized under the same conditions and showed similar results (Table 3).


[0084] FIGS. 8A-8D. Rat GALR2 receptor autoradiography in COS-7 cells transfected with GALR1 and GALR2 cDNAs. 125I-[D-Trp2]Galanin(1-29) was tested as a selective radioligand for GALR2. Panels represent dark-field photomicrographs (200×) of photoemulsion-dipped slides. 8A: Binding of 3 nM 125-[D-Trp2]Galanin(1-29) to COS-7 cells transiently transfected with GALR2. Note positive binding to cells.


[0085]

8
B: Nonspecific binding of 6 nM 125I-[D-Trp2]Galanin(1-29) in the presence of 300 nM porcine galanin(1-29) to COS-7 cells transiently transfected with GALR2.


[0086]

8
C: Binding of 6 nM 125I-[D-Trp2]Galanin(1-29) to COS-7 cells transiently transfected with GALR1. Note absence of binding to cell profiles; small accumulations of silver grains represent nonspecific nuclear association.


[0087]

8
D: Nonspecific binding of 6 nM 125I-[D-Trp2]Galanin(1-29) in the presence of 600 nM porcine galanin(1-29) to COS-7 cells transiently transfected with GALR1.


[0088] FIGS. 9A-9B. Functional response mediated by LM(tk-) cells stably transfected with the cDNA encoding the rat GALR2 receptor. 9A: Inhibition of cyclic AMP formation: cells were incubated with varying concentrations of porcine galanin(1-29), and 10 μM forskolin for 15 min. at 37° C. Data was normalized taking as 0% the basal levels of cyclic AMP (0.06±0.02 pmol/ml) and 100% the cAMP levels produced by forskolin in the absence of agonist (0.26±0.03 pmol/ml). Data is shown as mean ± standard error of the mean of four independent experiments. 9B: Phosphoinositide metabolism: cells were incubated for 18 hours in the presence of 0.5 μCi [3H]myo-inositol. Eleven different concentrations of porcine galanin(1-29) were added in the presence on 10 mM LiCl. Cells were incubated for 1 hour at 37° C., and [3H]inositol phosphates were isolated and measured.


[0089]
FIG. 10. Nucleotide coding sequence of the human galanin GALR2 receptor (Seq. I.D. No. 29), with partial 5′ and 3′ untranslated sequences. Start (ATG) and stop (TGA) codons are underlined.


[0090]
FIG. 11. Deduced amino acid sequence of the human galanin GALR2 receptor encoded by the nucleotide sequence shown in FIG. 10 (Seq. I.D. No. 30).


[0091] FIGS. 12A-12C. 12A. Diagram of the intron-exon arrangement of the human GALR2 receptor cDNA contained in plasmid BO29. Untranslated regions are indicated by dark hatched segments, and coding region is unmarked except for light gray hatched segments indicating the location of the transmembrane domains of the human GALR2 receptor. The black segment indicates the location of the intron. 12B. Splice junction sequences of the human GALR2 receptor. 12C. Intron sequence of human GALR2 receptor cDNA contained in plasmid BO29 (Seq. I.D. No. 31).


[0092]
FIG. 13. Current response in an oocyte injected with 50 pg of GALR2 mRNA. Holding potential was −80 mV.


[0093]
FIG. 14. Autoradiograph demonstrating hybridization of radiolabeled rGalR2 probe to RNA extracted from rat. The lower band (arrow) represents mRNA coding for the rat GALR2 extracted from tissue indicated at the bottom of the gel. RNA coding for the rat GALR2 is present in: the heart, kidney, hypothalamus, hippocampus, amygdala, spinal cord, and cerebellum. mRNA coding for the rat GALR2 was not detected in RNA extracted from striated muscle or liver.


[0094] FIGS. 15A-15D. Amino acid sequence alignment of the rat GALR2 receptor (top row) (Seq. ID No. 8), human GALR2 receptor (middle row) (Seq. ID No. 29) and rat GALR1 receptor (bottom row) (Seq. ID No. 32). Transmembrane domains (TM 1-7) are indicated by brackets above the sequence.


[0095] FIGS. 16A-16D. Galanin-mediated stimulation of phosphatidylinositol turnover and cyclic AMP inhibition in CHO cells expressing the rat GALR1 and GALR2 receptors. 16A. CHO cell lines expressing the rat GALR1 (24 pmol/mg protein, ▪) or the rat GALR2 (0.5 pmol/mg protein, &Circlesolid;) receptors were evaluated for galanin-dependent inhibition of forskolin-stimulated cAMP accumulation by radioimmunoassay. 16B. The effect of 1 μM porcine galanin on forskolin-stimulated cAMP accumulation was measured in CHO cells expressing the rat GALR1 receptor. Cells were incubated for 18 hrs in the presence (PTX) or absence (Control) of 100 ng/ml pertussis toxin. 16C. The same CHO cell lines expressing rat GALR1 (▪) or rat GALR2 (&Circlesolid;) receptors were evaluated for galanin-dependent stimulation of inositol phosphate accumulation after an 18 hr incubation with [3H]myoinositol. 16D. The effect of 1 μM porcine galanin on the release of [3H]inositol phosphates was measured in CHO cells expressing the rat GALR2 receptor incubated for 18 hrs in the presence (PTX), or absence (Control) of 100 ng/ml pertussis toxin. Values represent the mean ± SEM from three determinations. Data shown are representative of three or more independent experiments.







DETAILED DESCRIPTION OF THE INVENTION

[0096] Throughout this application, the following standard abbreviations are used to indicate specific nucleotide bases:
1C = cytosineA = adenineT = thyrmineG = guanine


[0097] Furthermore, the term “agonist” is used throughout this application to indicate any peptide or non-peptidyl compound which increases the activity of any of the receptors of the subject invention. The term “antagonist” is used throughout this application to indicate any peptide or non-peptidyl compound which decreases the activity of any of the receptors of the subject invention.


[0098] The activity of a G-protein coupled receptor such as a galanin receptor may be measured using any of a variety of functional assays in which activation of the receptor in question results in an observable change in the level of some second messenger system, including but not limited to adenylate cyclase, calcium mobilization, arachidonic acid release, ion channel activity, inositol phospholipid hydrolysis or guanylyl cyclase. Heterologous expression systems utilizing appropriate host cells to express the nucleic acid of the subject invention are used to obtain the desired second messenger coupling. Receptor activity may also be assayed in an oocyte expression system.


[0099] This invention provides an isolated nucleic acid encoding a vertebrate GALR2 receptor. In a separate embodiment, the nucleic acid encodes a mammalian GALR2 receptor. In another embodiment, the nucleic acid encodes a rat GALR2 receptor. In still another embodiment, the nucleic acid encodes a human GALR2 receptor.


[0100] This invention further provides nucleic acid which is degenerate with respect to the DNA comprising the coding sequence of the plasmid K985. This invention also provides nucleic acid which is degenerate with respect to the DNA comprising the coding sequence of the plasmid K1045. This invention further provides nucleic acid which is degenerate with respect to any DNA encoding a GALR2 receptor. In one embodiment, the nucleic acid comprises a nucleotide sequence which is degenerate with respect to the nucleotide sequence described in FIG. 1 (Seq. I.D. No. 1), that is, a nucleotide sequence which is translated into the same amino acid sequence. In another embodiment, the nucleic acid comprises a nucleotide sequence which is degenerate with respect to the nucleotide sequence described in Seq. I.D. No. 9.


[0101] In yet another embodiment, this invention further provides nucleic acid which is degenerate with respect to the DNA comprising the coding sequence of plasmid BO29. In an embodiment, the nucleic acid comprises a nucleotide sequence which is degenerate with respect to the nucleotide sequence described in FIG. 10 (Seq. I.D. No. 29), that is, a nucleotide sequence which is translated into the same amino acid sequence. This invention also provides nucleic acid which is degenerate with respect to the DNA comprising the coding sequence of the plasmid BO39.


[0102] The observation that both the human and rat GALR2 cDNAs contain at least one intron raises the possibility that additional introns could exist in coding or non-coding regions. In addition, spliced form(s) of mRNA may encode additional amino acids either upstream of the currently defined starting methionine or within the coding region. Further, the existence and use of alternative exons is possible, whereby the mRNA may encode different amino acids within the region comprising the exon. In addition, single amino acid substitutions may arise via the mechanism of RNA editing such that the amino acid sequence of the expressed protein is different than that encoded by the original gene (Burns et al., 1996; Chu et al., 1996). Such variants may exhibit pharmacologic properties differing from the receptor encoded by the original gene.


[0103] This invention provides a splice variant of the GALR2 receptors disclosed herein. This invention further provides for alternate translation initiation sites and alternately spliced or edited variants of nucleic acids encoding rat and human GALR2 receptors.


[0104] This invention also encompasses DNAs and cDNAs which encode amino acid sequences which differ from those of the GALR2 galanin receptor, but which should not produce phenotypic changes. Alternatively, this invention also encompasses DNAs, cDNAs, and RNAs which hybridize to the DNA, cDNA, and RNA of the subject invention. Hybridization methods are well known to those of skill in the art.


[0105] The nucleic acids of the subject invention also include nucleic acid molecules coding for polypeptide analogs, fragments or derivatives of antigenic polypeptides which differ from naturally-occurring forms in terms of the identity or location of one or more amino acid residues (deletion analogs containing less than all of the residues specified for the protein, substitution analogs wherein one or more residues specified are replaced by other residues and addition analogs where in one or more amino acid residues is added to a terminal or medial portion of the polypeptides) and which share some or all properties of naturally-occurring forms. These molecules include: the incorporation of codons “preferred” for expression by selected non-mammalian hosts; the provision of sites for cleavage by restriction endonuclease enzymes; and the provision of additional initial, terminal or intermediate DNA sequences that facilitate construction of readily expressed vectors.


[0106] G-protein coupled receptors such as the GALR2 receptors of the present invention are characterized by the ability of an agonist to promote the formation of a high-affinity ternary complex between the agonist, the receptor, and an intracellular G-protein. This complex is formed in the presence of physiological concentrations of GTP, and results in the dissociation of the alpha subunit of the G protein from the beta and gamma subunits of the G protein, which further results in a functional response, i.e., activation of downstream effectors such as adenylyl cyclase or phospholipase C. This high-affinity complex is transient even in the presence of GTP, so that if the complex is destabilized, the affinity of the receptor for agonists is reduced. Thus, if a receptor is not optimally coupled to G protein under the conditions of an assay, an agonist will bind to the receptor with low affinity. In contrast, the affinity of the receptor for an antagonist is normally not significantly affected by the presence or absence of G protein. Functional assays may be used to determine whether a compound binds to the receptor, but may be more time-consuming or difficult to perform than a binding assay. Therefore, it may desirable to produce a receptor which will bind to agonists with high affinity in a binding assay. Examples of modified receptors which bind agonists with high affinity are disclosed in WO 96/14331, which describes neuropeptide Y receptors modified in the third intracellular domain. The modifications may include deletions of 6-13 amino acids in the third intracellular loop. Such deletions preferably end immediately before the polar or charged residue at the beginning of helix six. In one embodiment, the deleted amino acids are at the carboxy terminal portion of the third intracellular domain. Such modified receptors may be produced using methods well-known in the art such as site-directed mutagenesis or recombinant techniques using restriction enzymes.


[0107] The modified receptors of this invention may be transfected into cells either transiently or stably using methods well-known in the art, examples of which are disclosed herein. This invention also provides for binding assays using the modified receptors, in which the receptor is expressed either transiently or in stable cell lines. This invention further provides for a compound identified using a modified receptor in a binding assay such as the binding assays described herein.


[0108] The nucleic acids described and claimed herein are useful for the information which they provide concerning the amino acid sequence of the polypeptide and as products for the large scale synthesis of the polypeptide by a variety of recombinant techniques. The nucleic acid molecule is useful for generating new cloning and expression vectors, transformed and transfected prokaryotic and eukaryotic host cells, and new and useful methods for cultured growth of such host cells capable of expression of the polypeptide and related products.


[0109] This invention provides an isolated nucleic acid encoding a GALR2 galanin receptor. This invention further provides a recombinant nucleic acid encoding a GALR2 galanin receptor.


[0110] In one embodiment of this invention the isolated nucleic acid is DNA. In an embodiment, the DNA is cDNA. In another embodiment, the DNA is genomic DNA. In still another embodiment, the nucleic acid molecule is RNA. In yet another embodiment of the present invention the nucleic acid molecule is mRNA. Methods for production and manipulation of nucleic acid molecules are well known in the art.


[0111] In an embodiment, the galanin receptor is a vertebrate or a mammalian GALR2 receptor. In another embodiment, the galanin receptor is a rat GALR2 receptor. In another embodiment, the galanin receptor is a human GALR2 receptor. In an embodiment, the isolated nucleic acid encodes a receptor characterized by an amino acid sequence in the transmembrane region, which has a homology of 60% or higher to the amino acid sequence in the transmembrane region of the rat galanin GALR2 receptor and a homology of less than 60% to the amino acid sequence in the transmembrane region of any GALR1 receptor. In one embodiment, the GALR2 receptor is a rat GALR2 receptor. In another embodiment, the GALR2 receptor is a human GALR2 receptor.


[0112] In one embodiment, the GALR2 receptor has substantially the same amino acid sequence as the amino acid sequence encoded by plasmid K985 (ATCC Accession No. 97426). In another embodiment, the GALR2 receptor has the amino acid sequence encoded by the plasmid K985. In still another embodiment, the GALR2 receptor has substantially the same amino acid sequence as the amino acid sequence encoded by the plasmid K1045 (ATCC Accession No. 97778). In yet another embodiment, the GALR2 receptor has the amino acid sequence encoded by the plasmid K1045. Plasmid K1045 comprises an intronless cDNA encoding the rat GALR2 receptor. Plasmid K1045 is further characterized by its lack of native 5′ or 3′ untranslated sequences, such that the plasmid contains only the regulatory elements necessary for expression in mammalian cells (e.g., Kozak consensus sequence) and the coding sequence of the GALR2 receptor.


[0113] This invention provides an isolated nucleic acid encoding a GALR2 receptor having substantially the same amino acid sequence as shown in FIG. 2. In one embodiment, the nucleic acid is DNA. This invention further provides an isolated nucleic acid encoding a rat GALR2 receptor having the amino acid sequence shown in FIG. 2. In another embodiment, the nucleic acid comprises at least an intron. In yet another embodiment, the intron comprises a fragment of the intron sequence shown in FIG. 3C (Seq. I.D. No. 9). In still another embodiment, the nucleic acid comprises alternately spliced nucleic acid transcribed from the nucleic acid contained in plasmid K985. In one embodiment, the alternately spliced nucleic acid is mRNA transcribed from DNA encoding a galanin receptor.


[0114] In one embodiment, the human GALR2 receptor has substantially the same amino acid sequence as the amino acid sequence encoded by plasmid BO29 (ATCC Accession No. 97735). In yet another embodiment, the human GALR2 receptor has the amino acid sequence encoded by the plasmid BO29. In another embodiment, the nucleic acid encoding the human GALR2 receptor comprises an intron. In still another embodiment, the nucleic acid encoding the human GALR2 receptor comprises alternately spliced nucleic acid transcribed from the nucleic acid contained in plasmid BO29. In still another embodiment, the human GALR2 receptor has substantially the same amino acid sequence as the amino acid sequence encoded by plasmid BO39 (ATCC Accession No. 97851). In another embodiment, the human GALR2 receptor has the amino acid sequence encoded by the plasmid BO39. Plasmid BO39 comprises an intronless cDNA encoding the human GALR2 receptor. This invention provides an isolated nucleic acid encoding a GALR2 receptor having substantially the same amino acid sequence as shown in FIG. 11 (Seq. I.D. No. 30). In one embodiment, the nucleic acid is DNA. This invention further provides an isolated nucleic acid encoding a human GALR2 receptor having the amino acid sequence shown in FIG. 11.


[0115] This invention provides an isolated nucleic acid encoding a modified GALR2 receptor, which differs from a GALR2 receptor by having an amino acid(s) deletion, replacement or addition in the third intracellular domain. In one embodiment, the modified GALR2 receptor differs by having a deletion in the third intracellular domain. In another embodiment, the modified GALR2 receptor differs by having an amino acid replacement or addition to the third intracellular domain.


[0116] This invention also provides an isolated galanin GALR2 receptor protein. In one embodiment, the GALR2 receptor protein has the same or substantially the same amino acid sequence as the amino acid sequence encoded by plasmid K985. In another embodiment, the GALR2 receptor protein has the same or substantially the same amino acid sequence as the amino acid sequence encoded by plasmid K1045. In one embodiment, the GALR2 receptor protein has the same or substantially the same amino acid sequence as shown in FIG. 2. In another embodiment, the GALR2 receptor has the amino acid sequence shown in FIG. 2. In still another embodiment, the GALR2 receptor protein has the same or substantially the same amino acid sequence as the amino acid sequence encoded by plasmid BO29. In still another embodiment, the GALR2 receptor protein has the same or substantially the same amino acid sequence as the amino acid sequence encoded by plasmid BO39. In an embodiment, the GALR2 receptor protein has the same or substantially the same amino acid sequence as shown in FIG. 11. In another embodiment, the GALR2 receptor has the amino acid sequence shown in FIG. 11.


[0117] This invention provides a vector comprising the above-described nucleic acid molecule. In one embodiment of the present invention the nucleic acid encodes a rat GALR2 receptor. In a further embodiment of the present invention the nucleic acid encodes a human GALR2 receptor.


[0118] Vectors which comprise the isolated nucleic acid molecule described hereinabove also are provided. Suitable vectors comprise, but are not limited to, a plasmid or a virus. These vectors may be transformed into a suitable host cell to form a host cell expression system for the production of a polypeptide having the biological activity of a galanin GALR2 receptor. Suitable host cells include, for example, neuronal cells such as the glial cell line C6, a Xenopus cell such as an oocyte or melanophore cell, as well as numerous mammalian cells and non-neuronal cells.


[0119] This invention provides the above-described vector adapted for expression in a bacterial cell which further comprises the regulatory elements necessary for expression of the nucleic acid in the bacterial cell operatively linked to the nucleic acid encoding the GALR2 receptor as to permit expression thereof.


[0120] This invention provides the above-described vector adapted for expression in a yeast cell which comprises the regulatory elements necessary for expression of the nucleic acid in the yeast cell operatively linked to the nucleic acid encoding the GALR2 receptor as to permit expression thereof.


[0121] This invention provides the above-described vector adapted for expression in an insect cell which comprises the regulatory elements necessary for expression of the nucleic acid in the insect cell operatively linked to the nucleic acid encoding the GALR2 receptor as to permit expression thereof. In a still further embodiment, the vector is a baculovirus.


[0122] In one embodiment, the vector is adapted for expression in a mammalian cell which comprises the regulatory elements necessary for expression of the nucleic acid in the mammalian cell operatively linked to the nucleic acid encoding the mammalian GALR2 receptor as to permit expression thereof.


[0123] In a further embodiment, the vector is adapted for expression in a mammalian cell which comprises the regulatory elements necessary for expression of the nucleic acid in the mammalian cell operatively linked to the nucleic acid encoding the rat GALR2 receptor as to permit expression thereof.


[0124] In a still further embodiment, the vector is a plasmid.


[0125] In another embodiment, the plasmid is adapted for expression in a mammalian cell which comprises the regulatory elements necessary for expression of the nucleic acid in the mammalian cell operatively linked to the nucleic acid encoding the human GALR2 receptor as to permit expression thereof.


[0126] This invention provides the above-described plasmid adapted for expression in a mammalian cell which comprises the regulatory elements necessary for expression of nucleic acid in a mammalian cell operatively linked to the nucleic acid encoding the mammalian GALR2 receptor as to permit expression thereof.


[0127] This invention provides a plasmid designated K985 (ATCC Accession No. 97426) which comprises the regulatory elements necessary for expression of DNA in a mammalian cell operatively linked to DNA encoding the GALR2 galanin receptor so as to permit expression thereof.


[0128] The plasmid designated K985 was deposited on Jan. 24, 1996, with the American Type Culture Collection (ATCC), 12301 Parklawn Drive, Rockville, Md. 20852, U.S.A. under the provisions of the Budapest Treaty for the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure and was accorded ATCC Accession No. 97426.


[0129] This invention provides a plasmid designated K1045 (ATCC Accession No. 97778) which comprises the regulatory elements necessary for expression of DNA in a mammalian cell operatively linked to DNA encoding the GALR2 galanin receptor so as to permit expression thereof.


[0130] The plasmid designated K1045 was deposited on Oct. 30, 1996, with the American Type Culture Collection (ATCC), 12301 Parklawn Drive, Rockville, Md. 20852, U.S.A. under the provisions of the Budapest Treaty for the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure and was accorded ATCC Accession No. 97426.


[0131] This invention provides a plasmid designated BO29 (ATCC Accession No. 97735) which comprises the regulatory elements necessary for expression of DNA in a mammalian cell operatively linked to DNA encoding the GALR2 galanin receptor as to permit expression thereof.


[0132] The plasmid designated BO29 was deposited on Sep. 25, 1996, with the American Type Culture Collection (ATCC), 12301 Parklawn Drive, Rockville, Md. 20852, U.S.A. under the provisions of the Budapest Treaty for the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure and was accorded ATCC Accession No. 97735.


[0133] This invention provides a plasmid designated BO39 (ATCC Accession No. 97851) which comprises the regulatory elements necessary for expression of DNA in a mammalian cell operatively linked to DNA encoding the GALR2 galanin receptor as to permit expression thereof.


[0134] The plasmid designated BO39 was deposited on Jan. 15, 1997, with the American Type Culture Collection (ATCC), 12301 Parklawn Drive, Rockville, Md. 20852, U.S.A. under the provisions of the Budapest Treaty for the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure and was accorded ATCC Accession No. 97851.


[0135] This invention further provides for any vector or plasmid which comprises modified untranslated sequences, which are beneficial for expression in desired host cells or for use in binding or functional assays. For example, a vector or plasmid with untranslated sequences of varying lengths may express differing amounts of the receptor depending upon the host cell used. In an embodiment, the vector or plasmid comprises the coding sequence of the GALR2 receptor and the regulatory elements necessary for expression in the host cell.


[0136] This invention provides a cell comprising the above-identified plasmid or vector. This invention provides a eukaryotic cell comprising the above-described plasmid or vector. This invention provides a non-mammalian cell comprising the above-described plasmid or vector. This invention also provides a mammalian cell comprising the above-described plasmid or vector. In an embodiment the cell is a Xenopus oocyte or melanophore cell. In an embodiment, the cell is a neuronal cell such as the glial cell line C6. In an embodiment, the mammalian cell is non-neuronal in origin. In an embodiment, the mammalian cell is a COS-7 cell. In another embodiment the mammalian cell is a Chinese hamster ovary (CHO) cell. In another embodiment, the cell is a mouse Y1 cell.


[0137] In still another embodiment, the mammalian cell is a 293 human embryonic kidney cell. In still another embodiment, the mammalian cell is a NI.H-3T3 cell. In another embodiment, the mammalian cell is an LM(tk-) cell. In still another embodiment, the mammalian cell is the LM(tk-) cell designated L-rGALR2-8. This cell line was deposited with the ATCC on Mar. 28, 1996, under the provisions of the Budapest Treaty for the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure, and was accorded ATCC Accession No. CRL-12074. In yet another embodiment, the mammalian cell is the LM(tk-) cell designated L-rGALR2I-4 (which comprises the intronless plasmid K1045). This cell line was deposited with the ATCC on Oct. 30, 1996, under the provisions of the Budapest Treaty for the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure, and was accorded ATCC Accession No. CRL-12223.


[0138] In another embodiment, the mammalian cell is the Chinese hamster ovary (CHO) cell designated C-rGalR2-79. C-rGalR2-79 expresses the rat GALR2 receptor and comprises a plasmid containing the intron within the coding region. This cell line was deposited with the ATCC on Jan. 15, 1997, under the provisions of the Budapest Treaty for the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure, and was accorded ATCC Accession No. CRL-12262.


[0139] In another embodiment, the mammalian cell is the Chinese hamster ovary (CHO) cell designated CHO-hGALR2-264. CHO-hGALR2-264 expresses the human GALR2 receptor and comprises the plasmid BO39. This cell line was deposited with the ATCC on Jul. 22, 1997, under the provisions of the Budapest Treaty for the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure, and was accorded ATCC Accession No. CRL-______.


[0140] This invention also provides an insect cell comprising the above-described vector. In an embodiment, the insect cell is an Sf9 cell. In another embodiment, the insect cell is an Sf21 cell.


[0141] This invention provides a membrane preparation isolated from any of the above-described cells.


[0142] This invention provides a nucleic acid probe comprising at least 15 nucleotides, which probe specifically hybridizes with a nucleic acid encoding a GALR2 receptor, wherein the probe has a unique sequence corresponding to a sequence present within one of the two strands of the nucleic acid encoding the GALR2 receptor contained in plasmid K985.


[0143] This invention further provides a nucleic acid probe comprising at least 15 nucleotides, which probe specifically hybridizes with a nucleic acid encoding a GALR2 receptor, wherein the probe has a unique sequence corresponding to a sequence present within one of the two strands of the nucleic acid encoding the GALR2 receptor contained in plasmid K1045.


[0144] This invention still further provides a nucleic acid probe comprising at least 15 nucleotides, which probe specifically hybridizes with a nucleic acid encoding a GALR2 receptor, wherein the probe has a unique sequence corresponding to a sequence present within (a) the nucleic acid sequence described in FIG. 1 or (b) the reverse complement thereto. This invention also provides a nucleic acid probe comprising at least 15 nucleotides, which probe specifically hybridizes with a nucleic acid encoding a GALR2 receptor, wherein the probe has a unique sequence corresponding to a sequence present within one of the two strands of the nucleic acid encoding the GALR2 receptor contained in plasmid BO29. This invention also provides a nucleic acid probe comprising at least 15 nucleotides, which probe specifically hybridizes with a nucleic acid encoding a GALR2 receptor, wherein the probe has a unique sequence corresponding to a sequence present within one of the two strands of the nucleic acid encoding the GALR2 receptor contained in plasmid BO39.


[0145] This invention provides a nucleic acid probe comprising at least 15 nucleotides, which probe specifically hybridizes with a nucleic acid encoding a GALR2 receptor, wherein the probe has a unique sequence corresponding to a sequence present within (a) the nucleic acid sequence shown in FIG. 10 (Seq. ID No. 29) or (b) the reverse complement to the nucleic acid sequence shown in FIG. 10.


[0146] This invention provides a nucleic acid probe comprising at least 15 nucleotides, which probe specifically hybridizes with a nucleic acid encoding a GALR2 receptor, wherein the probe has a unique sequence corresponding to a sequence present within (a) the nucleic acid sequence shown in FIG. 1 (Seq. I.D. No. 7) or (b) the reverse complement to the nucleic acid sequence shown in FIG. 1 (Seq. I.D. No. 7). In one embodiment, the nucleic acid encoding a GALR2 receptor comprises an intron, the sequence of which intron is described in FIG. 3 (Seq. I.D. No. 9). In another embodiment, the nucleic acid encoding a GALR2 receptor comprises an intron, the sequence of which intron is described in FIG. 12C (Seq. I.D. No. 31).


[0147] This invention further provides a nucleic acid probe comprising a nucleic acid molecule of at least 15 nucleotides which is complementary to a unique fragment of the sequence of a nucleic acid molecule encoding a GALR2 receptor. This invention also provides a nucleic acid probe comprising a nucleic acid molecule of at least 15 nucleotides which is complementary to the antisense sequence of a unique fragment of the sequence of a nucleic acid molecule encoding a GALR2 receptor.


[0148] In one embodiment, the nucleic acid probe is DNA. In another embodiment the nucleic acid probe is RNA. As used herein, the phrase “specifically hybridizing” means the ability of a nucleic acid molecule to recognize a nucleic acid sequence complementary to its own and to form double-helical segments through hydrogen bonding between complementary base pairs.


[0149] This nucleic acid of at least 15 nucleotides capable of specifically hybridizing with a sequence of a nucleic acid encoding the GALR2 galanin receptors can be used as a probe. In a further embodiment of the present invention the nucleic acid probe comprises a nucleic acid molecule of at least 15 nucleotides which is complementary to the antisense sequence of a unique fragment of the sequence of a nucleic acid molecule encoding a GALR2 receptor. Nucleic acid probe technology is well known to those skilled in the art who will readily appreciate that such probes may vary greatly in length and may be labeled with a detectable label, such as a radioisotope or fluorescent dye, to facilitate detection of the probe. DNA probe molecules may be produced by insertion of a DNA molecule which encodes the GALR2 receptor into suitable vectors, such as plasmids or bacteriophages, followed by transforming into suitable bacterial host cells, replication in the transformed bacterial host cells and harvesting of the DNA probes, using methods well known in the art. Alternatively, probes may be generated chemically from DNA synthesizers. RNA probes may be generated by inserting the DNA molecule which encodes the GALR2 galanin receptor downstream of a bacteriophage promoter such as T3, T7 or SP6. Large amounts of RNA probe may be produced by incubating the labeled nucleotides with the linearized fragment where it contains an upstream promoter in the presence of the appropriate RNA polymerase.


[0150] This invention provides an antisense oligonucleotide having a sequence capable of specifically hybridizing to mRNA encoding a GALR2 galanin receptor, so as to prevent translation of the mRNA.


[0151] This invention provides an antisense oligonucleotide having a sequence capable of specifically hybridizing to the genomic DNA molecule encoding a GALR2 receptor.


[0152] This invention provides an antisense oligonucleotide comprising chemical analogues of nucleotides or chemically modified nucleotides.


[0153] This invention provides an antibody capable of binding to a GALR2 receptor. This invention also provides an antibody capable of binding to a rat GALR2 receptor. This invention also provides an antibody capable of binding to a human GALR2 receptor. In an embodiment, the human GALR2 has an amino acid sequence the same or substantially the same as an amino acid sequence encoded by plasmid K985 or an amino acid sequence encoded by plasmid BO29. In another embodiment, the human GALR2 has an amino acid sequence the same or substantially the same as an amino acid sequence encoded by plasmid BO39.


[0154] This invention provides an antibody capable of competitively inhibiting the binding of the antibody to a GALR2 receptor. In one embodiment of the present invention the antibody is a monoclonal antibody.


[0155] This invention provides a monoclonal antibody directed to an epitope of a GALR2 receptor, which epitope is present on the surface of a cell expressing a GALR2 receptor.


[0156] This invention provides a pharmaceutical composition comprising an amount of the oligonucleotide effective to reduce activity of a GALR2 receptor by passing through a cell membrane and binding specifically with mRNA encoding a GALR2 receptor in the cell so as to prevent its translation and a pharmaceutically acceptable carrier capable of passing through a cell membrane. In one embodiment, the oligonucleotide is coupled to a substance which inactivates mRNA. In another embodiment, the substance which inactivates mRNA is a ribozyme.


[0157] This invention provides the above-described pharmaceutical composition, wherein the pharmaceutically acceptable carrier capable of passing through a cell membrane comprises a structure which binds to a receptor specific for a selected cell type and is thereby taken up by cells of the selected cell type.


[0158] This invention provides a pharmaceutical composition comprising an amount of an antagonist effective to reduce the activity of a GALR2 receptor and a pharmaceutically acceptable carrier.


[0159] This invention provides a pharmaceutical composition comprising an amount of an agonist effective to increase activity of a GALR2 receptor and a pharmaceutically acceptable carrier.


[0160] This invention provides the above-described pharmaceutical composition which comprises an amount of the antibody effective to block binding of a ligand to the GALR2 receptor and a pharmaceutically acceptable carrier.


[0161] As used herein, “pharmaceutically acceptable carriers” means any of the standard pharmaceutically acceptable carriers. Examples include, but are not limited to, phosphate buffered saline, physiological saline, water and emulsions, such as oil/water emulsions.


[0162] This invention provides a transgenic nonhuman mammal expressing DNA encoding a GALR2 receptor.


[0163] This invention provides a transgenic nonhuman mammal comprising a homologous recombination knockout of the native GALR2 receptor.


[0164] This invention provides a transgenic nonhuman mammal whose genome comprises antisense DNA complementary to DNA encoding a GALR2 receptor so placed as to be transcribed into antisense mRNA which is complementary to mRNA encoding a GALR2 receptor and which hybridizes to mRNA encoding a GALR2 receptor thereby reducing its translation.


[0165] This invention provides the above-described transgenic nonhuman mammal, wherein the DNA encoding a GALR2 receptor additionally comprises an inducible promoter.


[0166] This invention provides the transgenic nonhuman mammal, wherein the DNA encoding a GALR2 receptor additionally comprises tissue specific regulatory elements.


[0167] In an embodiment, the transgenic nonhuman mammal is a mouse.


[0168] Animal model systems which elucidate the physiological and behavioral roles of GALR2 receptor are produced by creating transgenic animals in which the activity of the GALR2 receptor is either increased or decreased, or the amino acid sequence of the expressed GALR2 receptor is altered, by a variety of techniques. Examples of these techniques include, but are not limited to: 1) Insertion of normal or mutant versions of DNA encoding a GALR2 receptor, by microinjection, electroporation, retroviral transfection or other means well known to those skilled in the art, into appropriate fertilized embryos in order to produce a transgenic animal or 2) Homologous recombination of mutant or normal, human or animal versions of these genes with the native gene locus in transgenic animals to alter the regulation of expression or the structure of these GALR2 receptor sequences. The technique of homologous recombination is well known in the art. It replaces the native gene with the inserted gene and so is useful for producing an animal that cannot express native GALR2 receptors but does express, for example, an inserted mutant GALR2 receptor, which has replaced the native GALR2 receptor in the animal's genome by recombination, resulting in underexpression of the transporter. Microinjection adds genes to the genome, but does not remove them, and so is useful for producing an animal which expresses its own and added GALR2 receptors, resulting in overexpression of the GALR2 receptors.


[0169] One means available for producing a transgenic animal, with a mouse as an example, is as follows: Female mice are mated, and the resulting fertilized eggs are dissected out of their oviducts. The eggs are stored in an appropriate medium such as M2 medium. DNA or cDNA encoding a GALR2 receptor is purified from a vector by methods well known in the art. Inducible promoters may be fused with the coding region of the DNA to provide an experimental means to regulate expression of the trans-gene. Alternatively, or in addition, tissue specific regulatory elements may be fused with the coding region to permit tissue-specific expression of the trans-gene. The DNA, in an appropriately buffered solution, is put into a microinjection needle (which may be made from capillary tubing using a pipet puller) and the egg to be injected is put in a depression slide. The needle is inserted into the pronucleus of the egg, and the DNA solution is injected. The injected egg is then transferred into the oviduct of a pseudopregnant mouse (a mouse stimulated by the appropriate hormones to maintain pregnancy but which is not actually pregnant), where it proceeds to the uterus, implants, and develops to term. As noted above, microinjection is not the only method for inserting DNA into the egg cell, and is used here only for exemplary purposes.


[0170] This invention provides a process for identifying a chemical compound which specifically binds to a GALR2 receptor which comprises contacting cells containing DNA encoding and expressing on their cell surface the GALR2 receptor, wherein such cells do not normally express the GALR2 receptor, with the compound under conditions suitable for binding, and detecting specific binding of the chemical compound to the GALR2 receptor.


[0171] This invention further provides a process for identifying a chemical compound which specifically binds to a GALR2 receptor which comprises contacting a membrane fraction from a cell extract of cells containing DNA encoding and expressing on their cell surface the GALR2 receptor, wherein such cells do not normally express the GALR2 receptor, with the compound under conditions suitable for binding, and detecting specific binding of the chemical compound to the GALR2 receptor.


[0172] This invention also provides a method for determining whether a chemical compound can specifically bind to a GALR2 receptor which comprises contacting cells transfected with and expressing DNA encoding the GALR2 receptor with the compound under conditions permitting binding of compounds to such receptor, and detecting the presence of any such compound specifically bound to the GALR2 receptor, so as to thereby determine whether the compound specifically binds to the GALR2 receptor.


[0173] This invention provides a method for determining whether a chemical compound can specifically bind to a GALR2 receptor which comprises preparing a cell extract from cells transfected with and expressing DNA encoding the GALR2 receptor, isolating a membrane fraction from the cell extract, contacting the membrane fraction with the compound under conditions permitting binding of compounds to such receptor, and detecting the presence of the compound specifically bound to the GALR2 receptor, so as to thereby determine whether the compound specifically binds to the GALR2 receptor.


[0174] In one embodiment, the GALR2 receptor is a mammalian GALR2 receptor. In another embodiment, the GALR2 receptor is a rat GALR2 receptor. In still another embodiment, the GALR2 receptor has the same or substantially the same amino acid sequence as that encoded by plasmid K985, or plasmid K1045. In still another embodiment, the GALR2 receptor has the same or substantially the same amino acid sequence as the amino acid sequence shown in FIG. 2 (Seq. I.D. No. 8). In yet another embodiment, the GALR2 receptor has the amino acid sequence shown in FIG. 2 (Seq. I.D. No. 8).


[0175] In another embodiment, the GALR2 receptor is a human GALR2 receptor. In still another embodiment, the human GALR2 receptor has the same or substantially the same amino acid sequence as the amino acid sequence encoded by plasmid BO29 or plasmid BO39. In yet another embodiment, the GALR2 receptor has the same or substantially the same amino acid sequence as the amino acid sequence shown in FIG. 11 (Seq. I.D. No. 30). In another embodiment, the GALR2 receptor has the amino acid sequence shown in FIG. 11 (Seq. I.D. No. 30).


[0176] This invention provides a process for determining whether a chemical compound is a GALR2 receptor agonist which comprises contacting cells transfected with and expressing DNA encoding the GALR2 receptor with the compound under conditions permitting the activation of the GALR2 receptor, and detecting an increase in GALR2 receptor activity, so as to thereby determine whether the compound is a GALR2 receptor agonist.


[0177] This invention provides a process for determining whether a chemical compound is a GALR2 receptor agonist which comprises preparing a cell extract from cells transfected with and expressing DNA encoding the GALR2 receptor, isolating a membrane fraction from the cell extract, contacting the membrane fraction with the compound under conditions permitting the activation of the GALR2 receptor, and detecting an increase in GALR2 receptor activity, so as to thereby determine whether the compound is a GALR2 receptor agonist.


[0178] This invention provides a process for determining whether a chemical compound is a GALR2 receptor agonist which comprises preparing a cell extract from cells transfected with and expressing DNA encoding the GALR2 receptor, isolating a membrane fraction from the cell extract, separately contacting the membrane fraction with both the chemical compound and GTPγS, and with only GTPγS, under conditions permitting the activation of the GALR2 receptor, and detecting GTPγS binding to the membrane fraction, an increase in GTPγS binding in the presence of the compound indicating that the chemical compound activates the GALR2 receptor.


[0179] In one embodiment, the GALR2 receptor is a mammalian GALR2 receptor. In another embodiment, the GALR2 receptor is a rat GALR2 receptor. In still another embodiment, the GALR2 receptor has the same or substantially the same amino acid sequence as that encoded by plasmid K985, or plasmid K1045. In still another embodiment, the GALR2 receptor has the same or substantially the same amino acid sequence as the amino acid sequence shown in FIG. 2 (Seq. I.D. No. 8). In yet another embodiment, the GALR2 receptor has the amino acid sequence shown in FIG. 2 (Seq. I.D. No. 8).


[0180] In another embodiment, the GALR2 receptor is a human GALR2 receptor. In still another embodiment, the human GALR2 receptor has the same or substantially the same amino acid sequence as the amino acid sequence encoded by plasmid BO29 or plasmid BO39. In yet another embodiment, the GALR2 receptor has the same or substantially the same amino acid sequence as the amino acid sequence shown in FIG. 11 (Seq. I.D. No. 30). In another embodiment, the GALR2 receptor has the amino acid sequence shown in FIG. 11 (Seq. I.D. No. 30).


[0181] This invention provides a process for determining whether a chemical compound is a GALR2 receptor antagonist which comprises contacting cells transfected with and expressing DNA encoding the GALR2 receptor with the compound in the presence of a known GALR2 receptor agonist, such as galanin, under conditions permitting the activation of the GALR2 receptor, and detecting a decrease in GALR2 receptor activity, so as to thereby determine whether the compound is a GALR2 receptor antagonist.


[0182] This invention provides a process for determining whether a chemical compound is a GALR2 receptor antagonist which comprises preparing a cell extract from cells transfected with and expressing DNA encoding the GALR2 receptor, isolating a membrane fraction from the cell extract, contacting the membrane fraction with the ligand in the presence of a known GALR2 receptor agonist, such as galanin, under conditions permitting the activation of the GALR2 receptor, and detecting a decrease in GALR2 receptor activity, so as to thereby determine whether the compound is a GALR2 receptor antagonist.


[0183] In one embodiment, the GALR2 receptor is a mammalian GALR2 receptor. In another embodiment, the GALR2 receptor is a rat GALR2 receptor. In still another embodiment, the GALR2 receptor has the same or substantially the same amino acid sequence as that encoded by plasmid K985, or plasmid K1045. In still another embodiment, the GALR2 receptor has the same or substantially the same amino acid sequence as the amino acid sequence shown in FIG. 2 (Seq. I.D. No. 8). In yet another embodiment, the GALR2 receptor has the amino acid sequence shown in FIG. 2 (Seq. I.D. No. 8).


[0184] In another embodiment, the GALR2 receptor is a human GALR2 receptor. In still another embodiment, the human GALR2 receptor has the same or substantially the same amino acid sequence as the amino acid sequence encoded by plasmid BO29 or plasmid BO39. In yet another embodiment, the GALR2 receptor has the same or substantially the same amino acid sequence as the amino acid sequence shown in FIG. 11 (Seq. I.D. No. 30). In another embodiment, the GALR2 receptor has the amino acid sequence shown in FIG. 11 (Seq. I.D. No. 30).


[0185] In an embodiment of the above-described methods, the cell is an insect cell. In another embodiment, the cell is a mammalian cell. In a further embodiment, the cell is non-neuronal in origin. In still further embodiments, the non-neuronal cell is a COS-7 cell, 293 human embryonic kidney cell, NIH-3T3 cell, a CHO cell, or LM(tk-) cell. In yet another embodiment of any of the processes of this invention the cell is the LM(tk-) cell L-rGALR2-8 (ATCC Accession No. CRL-12074), the LM(tk-) cell L-rGALR2I-4 (ATCC Accession No. CRL-12223, or the CHO cell C-rGalR2-79 (ATCC Accession No. CRL-12262). In another embodiment of this invention the cell is the CHO cell CHO-hGALR2-264 (ATCC Accession No. CRL-______).


[0186] In any of the above-described processes, receptor activity may be measured by assaying the binding of GTP gamma S (GTPγS) to membranes. GTPγS binding precedes the second messenger response of a G-protein coupled receptor such as the GALR2 receptors of the present invention, providing a means of measuring activation of a receptor which is independent of second messenger responses.


[0187] This invention provides a compound determined by the above-described processes. In one embodiment of the above-described processes, the compound is not previously known to bind to a GALR2 receptor.


[0188] This invention provides a GALR2 agonist determined by the above-described processes. This invention also provides a GALR2 antagonist determined by the above-described processes.


[0189] This invention provides a pharmaceutical composition which comprises an amount of a GALR2 receptor agonist effective to increase activity of a GALR2 receptor and a pharmaceutically acceptable carrier.


[0190] This invention provides a pharmaceutical composition which comprises an amount of a GALR2 receptor antagonist effective to reduce activity of a GALR2 receptor and a pharmaceutically acceptable carrier.


[0191] In further embodiments of the above-described processes, the agonist or antagonist is not previously known to bind to a GALR2 receptor.


[0192] This invention provides a process involving competitive binding for identifying a chemical compound which specifically binds to a GALR2 receptor, which comprises separately contacting cells expressing on their cell surface the GALR2 receptor, wherein such cells do not normally express the GALR2 receptor, with both the chemical compound and a second chemical compound known to bind to the receptor, and with only the second chemical compound, under conditions suitable for binding of both compounds, and detecting specific binding of the chemical compound to the GALR2 receptor, a decrease in the binding of the second chemical compound to the GALR2 receptor in the presence of the chemical compound indicating that the chemical compound binds to the GALR2 receptor.


[0193] This invention further provides a process involving competitive binding for identifying a chemical compound which specifically binds to a human GALR2 receptor, which comprises separately contacting a membrane fraction from a cell extract of cells expressing on their cell surface the GALR2 receptor, wherein such cells do not normally express the GALR2 receptor, with both the chemical compound and a second chemical compound known to bind to the receptor, and with only the second chemical compound, under conditions suitable for binding of both compounds, and detecting specific binding of the chemical compound to the GALR2 receptor, a decrease in the binding of the second chemical compound to the GALR2 receptor in the presence of the chemical compound indicating that the chemical compound binds to the GALR2 receptor.


[0194] This invention further provides a process for determining whether a chemical compound specifically binds to and activates a GALR2 receptor, which comprises contacting cells producing a second messenger response and expressing on their cell surface the GALR2 receptor, wherein such cells do not normally express the GALR2 receptor, with the chemical compound under conditions suitable for activation of the GALR2 receptor, and measuring the second messenger response in the presence and in the absence of the chemical compound, a change in the second messenger response in the presence of the chemical compound indicating that the compound activates the GALR2 receptor.


[0195] This invention further provides a process for determining whether a chemical compound specifically binds to and activates a GALR2 receptor, which comprises contacting a membrane fraction from a cell extract of cells producing a second messenger response and expressing on their cell surface the GALR2 receptor, wherein such cells do not normally express the GALR2 receptor, with the chemical compound under conditions suitable for activation of the GALR2 receptor, and measuring the second messenger response in the presence and in the absence of the chemical compound, a change in the second messenger response in the presence of the chemical compound indicating that the compound activates the GALR2 receptor.


[0196] In one embodiment of the above processes, the second messenger response comprises adenylate cyclase activity and the change in second messenger response is a decrease in adenylate cyclase activity. In one embodiment, adenylate cyclase activity is determined by measurement of cyclic AMP levels.


[0197] In another embodiment of the above processes, the second messenger response comprises arachidonic acid release and the change in second messenger response is an increase in arachidonic acid levels.


[0198] In another embodiment of the above processes, the second messenger response comprises intracellular calcium levels and the change in second messenger response is an increase in intracellular calcium levels.


[0199] In a still further embodiment of the above processes, the second messenger response comprises inositol phospholipid hydrolysis and the change in second messenger response is an increase in inositol phospholipid hydrolysis.


[0200] This invention further provides a process for determining whether a chemical compound specifically binds to and inhibits activation of a GALR2 receptor, which comprises separately contacting cells producing a second messenger response and expressing on their cell surface the GALR2 receptor, wherein such cells do not normally express the GALR2 receptor, with both the chemical compound and a second chemical compound known to activate the GALR2 receptor, and with only the second compound, under conditions suitable for activation of the GALR2 receptor, and measuring the second messenger response in the presence of only the second chemical compound and in the presence of both the second chemical compound and the chemical compound, a smaller change in the second messenger response in the presence of both the chemical compound and the second chemical compound than in the presence of only the second chemical compound indicating that the chemical compound inhibits activation of the GALR2 receptor.


[0201] This invention further provides a process for determining whether a chemical compound specifically binds to and inhibits activation of a GALR2 receptor, which comprises separately contacting a membrane fraction from a cell extract of cells producing a second messenger response and expressing on their cell surface the GALR2 receptor, wherein such cells do not normally express the GALR2 receptor, with both the chemical compound and a second chemical compound known to activate the GALR2 receptor, and with only the second chemical compound, under conditions suitable for activation of the GALR2 receptor, and measuring the second messenger response in the presence of only the second chemical compound and in the presence of both the second chemical compound and the chemical compound, a smaller change in the second messenger response in the presence of both the chemical compound and the second chemical compound than in the presence of only the second chemical compound indicating that the chemical compound inhibits activation of the GALR2 receptor.


[0202] In one embodiment of the above processes, the second messenger response comprises adenylate cyclase activity and the change in second messenger response is a smaller decrease in the level of adenylate cyclase activity in the presence of both the chemical compound and the second chemical compound than in the presence of only the second chemical compound. In one embodiment, adenylate cyclase activity is determined by measurement of cyclic AMP levels.


[0203] In another embodiment of the above processes the second messenger response comprises arachidonic acid release, and the change in second messenger response is a smaller increase in arachidonic acid levels in the presence of both the chemical compound and the second chemical compound than in the presence of only the second chemical compound.


[0204] In another embodiment of the above processes the second messenger response comprises intracellular calcium levels, and the change in second messenger response is a smaller increase in intracellular calcium levels in the presence of both the chemical compound and the second chemical compound than in the presence of only the second chemical compound.


[0205] In yet another embodiment of the above processes, the second messenger response comprises inositol phospholipid hydrolysis, and the change in second messenger response is a smaller increase in inositol phospholipid hydrolysis in the presence of both the chemical compound and the second chemical compound than in the presence of only the second chemical compound.


[0206] In an embodiment of any of the above processes, the GALR2 receptor is a mammalian GALR2 receptor. In another embodiment of the above processes, the GALR2 receptor is a rat GALR2 receptor or a human GALR2 receptor. In still another embodiment of the above processes, the GALR2 receptor has the same or substantially the same amino acid sequence as encoded by the plasmid K985 ATCC Accession No. 97426), or plasmid K1045 (ATCC Accession No. 97778). In a still further embodiment of the above processes, the GALR2 receptor has the same or substantially the same amino acid sequence as that shown in FIG. 2 (Seq. ID No. 8). In another embodiment of the above processes, the GALR2 receptor has the same or substantially the same amino acid sequence as the amino acid sequence encoded by the plasmid BO29 (ATCC Accession No. 97735) or the plasmid BO39 (ATCC Accession No. 97851). In a still further embodiment of the above processes, the GALR2 receptor has the same or substantially the same amino acid sequence as that shown in FIG. 11 (Seq. ID No. 30).


[0207] In an embodiment of any of the above processes, the cell is an insect cell. In another embodiment of any of the above processes, the cell is a mammalian cell. In still further embodiments, the cell is nonneuronal in origin.


[0208] In another embodiment of the above processes, the nonneuronal cell is a COS-7 cell, Chinese hamster ovary (CHO) cell, 293 human embryonic kidney cell, NIH-3T3 cell, a mouse Y1 cell or LM(tk-) cell. In still further embodiments, nonneuronal cell is the LM(tk-) cell designated L-rGALR2-8 (ATCC Accession No. CRL-12074), the LM(tk-) cell L-rGALR2I-4 (ATCC Accession No. CRL-12223, or the CHO cell C-rGalR2-79 (ATCC Accession No. CRL-12262). In another embodiment, the cell is the CHO cell CHO-hGALR2-264 (ATCC Accession No. CRL-______).


[0209] This invention further provides a compound determined by any of the above processes. In another embodiment, the compound is not previously known to bind to a GALR2 receptor.


[0210] This invention provides a method of screening a plurality of chemical compounds not known to bind to a GALR2 receptor to identify a compound which specifically binds to the GALR2 receptor, which comprises (a) contacting cells transfected with and expressing DNA encoding the GALR2 receptor with a compound known to bind specifically to the GALR2 receptor; (b) contacting the preparation of step (a) with the plurality of compounds not known to bind specifically to the GALR2 receptor, under conditions permitting binding of compounds known to bind the GALR2 receptor; (c) determining whether the binding of the compound known to bind to the GALR2 receptor is reduced in the presence of the compounds, relative to the binding of the compound in the absence of the plurality of compounds; and if so (d) separately determining the binding to the GALR2 receptor of each compound included in the plurality of compounds, so as to thereby identify the compound which specifically binds to the GALR2 receptor.


[0211] This invention provides a method of screening a plurality of chemical compounds not known to bind to a GALR2 receptor to identify a compound which specifically binds to the GALR2 receptor, which comprises (a) preparing a cell extract from cells transfected with and expressing DNA encoding the GALR2 receptor, isolating a membrane fraction from the cell extract, contacting the membrane fraction with a compound known to bind specifically to the GALR2 receptor; (b) contacting the preparation of step (a) with the plurality of compounds not known to bind specifically to the GALR2 receptor, under conditions permitting binding of compounds known to bind the GALR2 receptor; (c) determining whether the binding of the compound known to bind to the GALR2 receptor is reduced in the presence of the compounds, relative to the binding of the compound in the absence of the plurality of compounds; and if so (d) separately determining the binding to the GALR2 receptor of each compound included in the plurality of compounds, so as to thereby identify the compound which specifically binds to the GALR2 receptor.


[0212] In an embodiment of the present invention the GALR2 receptor is a mammalian GALR2 receptor. In one embodiment of the above-described methods, the GALR2 receptor is a rat GALR2 receptor. In another embodiment, the GALR2 receptor has the same or substantially the same amino acid sequence as the amino acid sequence shown in FIG. 2 (Seq. I.D. No. 8). In yet another embodiment, the GALR2 receptor has the amino acid sequence shown in FIG. 2 (Seq. I.D. No. 8). In another embodiment, the GALR2 receptor is a human GALR2 receptor. In still another embodiment, the GALR2 receptor has the same or substantially the same amino acid sequence as the amino acid sequence encoded by plasmid BO29 or plasmid BO39. In another embodiment, the GALR2 receptor has the same or substantially the same amino acid sequence as the amino acid sequence shown in FIG. 11 (Seq. I.D. No. 30). In yet another embodiment, the GALR2 receptor has the amino acid sequence shown in FIG. 11 (Seq. I.D. No. 30).


[0213] This invention provides a method of screening a plurality of chemical compounds not known to activate a GALR2 receptor to identify a compound which activates the GALR2 receptor which comprises (a) contacting cells transfected with and expressing the GALR2 receptor with the plurality of compounds not known to activate the GALR2 receptor, under conditions permitting activation of the GALR2 receptor; (b) determining whether the activity of the GALR2 receptor is increased in the presence of the compounds; and if so (c) separately determining whether the activation of the GALR2 receptor is increased by each compound included in the plurality of compounds, so as to thereby identify the compound which activates the GALR2 receptor.


[0214] This invention provides a method of screening a plurality of chemical compounds not known to activate a GALR2 receptor to identify a compound which activates the GALR2 receptor which comprises (a) preparing a cell extract from cells transfected with and expressing DNA encoding the GALR2 receptor, isolating a membrane fraction from the cell extract, contacting the membrane fraction with the plurality of compounds not known to activate the GALR2 receptor, under conditions permitting activation of the GALR2 receptor; (b) determining whether the activity of the GALR2 receptor is increased in the presence of the compounds; and if so (c) separately determining whether the activation of the GALR2 receptor is increased by each compound included in the plurality of compounds, so as to thereby identify the compound which activates the GALR2 receptor.


[0215] In an embodiment of the above-described methods, the GALR2 receptor is a rat GALR2 receptor. In still another embodiment, the GALR2 receptor has the same or substantially the same amino acid sequence as the amino acid sequence shown in FIG. 2 (Seq. I.D. No.8). In yet another embodiment, the GALR2 receptor has the amino acid sequence shown in FIG. 2 (Seq. I.D. No. 8). In another embodiment, the GALR2 receptor is a human GALR2 receptor. In still another embodiment, the GALR2 receptor has the same or substantially the same amino acid sequence as the amino acid sequence encoded by plasmid BO29 or plasmid BO39. In another embodiment, the GALR2 receptor has the same or substantially the same amino acid sequence as the amino acid sequence shown in FIG. 11 (Seq. I.D. No. 30). In yet another embodiment, the GALR2 receptor has the amino acid sequence shown in FIG. 11 (Seq. I.D. No. 30).


[0216] This invention provides a method of screening a plurality of chemical compounds not known to inhibit the activation of a GALR2 receptor to identify a compound which inhibits the activation of the GALR2 receptor, which comprises (a) contacting cells transfected with and expressing the GALR2 receptor with the plurality of compounds in the presence of a known GALR2 receptor agonist, under conditions permitting activation of the GALR2 receptor; (b) determining whether the activation of the GALR2 receptor is reduced in the presence of the plurality of compounds, relative to the activation of the GALR2 receptor in the absence of the plurality of compounds; and if so (c) separately determining the inhibition of activation of the GALR2 receptor for each compound included in the plurality of compounds, so as to thereby identify the compound which inhibits the activation of the GALR2 receptor.


[0217] This invention provides a method of screening a plurality of chemical compounds not known to inhibit the activation of a GALR2 receptor to identify a compound which inhibits the activation of the GALR2 receptor, which comprises (a) preparing a cell extract from cells transfected with and expressing DNA encoding the GALR2 receptor, isolating a membrane fraction from the cell extract, contacting the membrane fraction with the plurality of compounds in the presence of a known GALR2 receptor agonist, under conditions permitting activation of the GALR2 receptor; (b) determining whether the activation of the GALR2 receptor is reduced in the presence of the plurality of compounds, relative to the activation of the GALR2 receptor in the absence of the plurality of compounds; and if so (c) separately determining the inhibition of activation of the GALR2 receptor for each compound included in the plurality of compounds, so as to thereby identify the compound which inhibits the activation of the GALR2 receptor.


[0218] In an embodiment of the above-described methods, the GALR2 receptor is a rat GALR2 receptor. In another embodiment, the GALR2 receptor has the same or substantially the same amino acid sequence as the amino acid sequence shown in FIG. 2 (Seq. I.D. No. 8). In yet another embodiment, the GALR2 receptor has the amino acid sequence shown in FIG. 2 (Seq. I.D. No. 8). In another embodiment, the GALR2 receptor is a human GALR2 receptor. In still another embodiment, the GALR2 receptor has the same or substantially the same amino acid sequence as the amino acid sequence encoded by plasmid BO29 or plasmid BO39. In another embodiment, the GALR2 receptor has the same or substantially the same amino acid sequence as the amino acid sequence shown in FIG. 11 (Seq. I.D. No. 30). In yet another embodiment, the GALR2 receptor has the amino acid sequence shown in FIG. 11 (Seq. I.D. No. 30).


[0219] In one embodiment of any of the above-described methods, the activation of the GALR2 receptor is determined by a second messenger assay. In an embodiment, the second messenger assay measures adenylate cyclase activity. In other embodiments, the second messenger is cyclic AMP, intracellular calcium, or arachidonic acid, an inositol phopholipid or phosphoinositol lipid metabolite.


[0220] In one embodiment, receptor activity may be measured by assaying the binding of GTP gamma S (GTPγS) to membranes. In another embodiment, receptor activity may be measured by assaying changes in MAP kinase phosphorylation.


[0221] This invention further provides a method of measuring GALR2 receptor activation in an oocyte expression system such as a Xenopus oocyte or melanophore. In an embodiment, receptor activation is determined by measurement of ion channel activity. In another embodiment, receptor activation is measured by aequorin luminescence.


[0222] Expression of genes in Xenopus oocytes is well known in the art (A. Coleman, Transcription and Translation: A Practical Approach (B. D. Hanes, S. J. Higgins, eds., pp 271-302, IRL Press, Oxford, 1984; Y. Masu et al., Nature 329:21583-21586, 1994) and is performed using microinjection of native mRNA or in vitro synthesized mRNA into frog oocytes. The preparation of in vitro synthesized mRNA can be performed by various standard techniques (J. Sambrook et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1989) including using T7 polymerase with the mCAP RNA capping kit (Stratagene).


[0223] In a further embodiment of the invention, the cell is a mammalian cell. In another embodiment of the invention, the mammalian cell is non-neuronal in origin. In still further embodiments of the invention, the non-neuronal cell is a COS-7 cell, a 293 human embryonic kidney cell, a mouse Y1 cell, a LM(tk-) cell, a CHO cell, or an NIH-3T3 cell. In an embodiment of the invention, the nonneuronal cell is the LM(tk-) cell designated L-rGALR2-8 (ATCC Accession No. CRL-12074), the LM(tk-) cell L-rGALR2I-4 (ATCC Accession No. CRL-12223, or the CHO cell C-rGalR2-79 (ATCC Accession No. CRL-12262). In another embodiment, the cell is the CHO cell CHO-hGALR2-264 (ATCC Accession No. CRL-______).


[0224] This invention provides a pharmaceutical composition comprising a compound identified by the above-described methods and a pharmaceutically acceptable carrier.


[0225] In an embodiment of the above-described methods, the cell is non-neuronal in origin. In a further embodiment, the non-neuronal cell is a COS-7 cell, CHO cell, 293 human embryonic kidney cell, NIH-3T3 cell, a mouse Y1 cell or LM(tk-) cell.


[0226] In one embodiment of the above-described methods, the compound is not previously known.


[0227] This invention provides a GALR2 receptor agonist detected by the above-described methods. This invention provides a GALR2 receptor antagonist detected by the above-described methods. In an embodiment the cell is a non-mammalian cell, for example, a Xenopus oocyte or melanophore. In another embodiment the cell is a neuronal cell, for example, a glial cell line such as C6. In an embodiment, the cell is non-neuronal in origin. In a further embodiment, the cell is a Cos-7 or a CHO cell, a 293 human embryonic kidney cell, an LM(tk-) cell or an NIH-3T3 cell. In an embodiment of the invention, the LM(tk-) cell is the cell designated L-rGALR2-8 (ATCC Accession No. CRL-12074), the LM(tk-) cell L-rGALR2I-4 (ATCC Accession No. CRL-12223, or the CHO cell C-rGalR2-79 (ATCC Accession No. CRL-12262). In another embodiment, the cell is the CHO cell CHO-hGALR2-264 (ATCC Accession No. CRL-______).


[0228] This invention provides a pharmaceutical composition comprising a drug candidate identified by the above-described methods and a pharmaceutically acceptable carrier.


[0229] This invention provides a method of detecting expression of a GALR2 receptor by detecting the presence of mRNA coding for the GALR2 receptor which comprises obtaining total mRNA from a cell or tissue sample and contacting the mRNA so obtained with the above-described nucleic acid probe under hybridizing conditions, detecting the presence of mRNA hybridized to the probe, and thereby detecting the expression of the GALR2 receptor by the cell or in the tissue.


[0230] This invention provides a method of treating an abnormality in a subject, wherein the abnormality is alleviated by administering to the subject an amount of a GALR2 selective compound, effective to treat the abnormality. Abnormalities which may be treated include cognitive disorder, pain, sensory disorder (olfactory, visual), motor coordination abnormality, motion sickness, neuroendocrine disorders, sleep disorders, migraine, Parkinson's disease, hypertension, heart failure, convulsion/epilepsy, traumatic brain injury, diabetes, glaucoma, electrolyte imbalances, respiratory disorders (asthma, emphysema), depression, reproductive disorders, gastric and intestinal ulcers, gastroesophageal reflux disorder, gastric hypersecretion, gastrointestinal motility disorders (diarrhea), inflammation, immune disorders, and anxiety. In one embodiment the compound is an agonist. In another embodiment the compound is an antagonist.


[0231] This invention provides a method of treating an abnormality in a subject, wherein the abnormality is alleviated by the inhibition of a GALR2 receptor which comprises administering to a subject an effective amount of the above-described pharmaceutical composition effective to decrease the activity of the GALR2 receptor in the subject, thereby treating the abnormality in the subject. In an embodiment, the abnormality is obesity. In another embodiment, the abnormality is bulimia.


[0232] This invention provides a method of treating an abnormality in a subject wherein the abnormality is alleviated by the activation of a GALR2 receptor which comprises administering to a subject an effective amount of the above-described pharmaceutical composition effective to activate the GALR2 receptor in the subject. In an embodiment, the abnormal condition is anorexia.


[0233] In another embodiment, the compound binds selectively to a GALR2 receptor. In yet another embodiment, the compound binds to the GALR2 receptor with an affinity greater than ten-fold higher than the affinity with which the compound binds to a GALR1 receptor. In a still further embodiment, the compound binds to the GALR2 receptor with an affinity greater than ten-fold higher than the affinity with which the compound binds to a GALR3 receptor.


[0234] This invention provides a method of detecting the presence of a GALR2 receptor on the surface of a cell which comprises contacting the cell with the above-described antibody under conditions permitting binding of the antibody to the receptor, detecting the presence of the antibody bound to the cell, and thereby detecting the presence of a GALR2 receptor on the surface of the cell.


[0235] This invention provides a method of determining the physiological effects of varying levels of activity of GALR2 receptors which comprises producing a transgenic nonhuman mammal whose levels of GALR2 receptor activity are varied by use of an inducible promoter which regulates GALR2 receptor expression.


[0236] This invention provides a method of determining the physiological effects of varying levels of activity of GALR2 receptors which comprises producing a panel of transgenic nonhuman mammals each expressing a different amount of GALR2 receptor.


[0237] This invention provides a method for identifying an antagonist capable of alleviating an abnormality wherein the abnormality is alleviated by decreasing the activity of a GALR2 receptor comprising administering a compound to the above-described transgenic nonhuman mammal and determining whether the compound alleviates the physical and behavioral abnormalities displayed by the transgenic nonhuman mammal as a result of overactivity of a GALR2 receptor, the alleviation of the abnormality identifying the compound as an antagonist.


[0238] This invention provides an antagonist identified by the above-described methods. This invention provides a pharmaceutical composition comprising an antagonist identified by the above-described methods and a pharmaceutically acceptable carrier.


[0239] This invention provides a method of treating an abnormality in a subject wherein the abnormality is alleviated by decreasing the activity of a GALR2 receptor which comprises administering to a subject an effective amount of the above-described pharmaceutical composition, thereby treating the abnormality.


[0240] This invention provides a method for identifying an agonist capable of alleviating an abnormality in a subject wherein the abnormality is alleviated by increasing the activity of a GALR2 receptor comprising administering a compound to a transgenic nonhuman mammal and determining whether the compound alleviates the physical and behavioral abnormalities displayed by the transgenic nonhuman mammal, the alleviation of the abnormality identifying the compound as an agonist.


[0241] This invention provides an agonist identified by the above-described methods.


[0242] This invention provides a pharmaceutical composition comprising an agonist identified by the above-described methods and a pharmaceutically acceptable carrier.


[0243] This invention provides a method for treating an abnormality in a subject wherein the abnormality is alleviated by increasing the activity of a GALR2 receptor which comprises administering to a subject an effective amount of the above-described pharmaceutical composition, thereby treating the abnormality.


[0244] This invention provides a method for diagnosing a predisposition to a disorder associated with the activity of a specific human GALR2 receptor allele which comprises: (a) obtaining DNA of subjects suffering from the disorder; (b) performing a restriction digest of the DNA with a panel of restriction enzymes; (c) electrophoretically separating the resulting DNA fragments on a sizing gel; (d) contacting the resulting gel with a nucleic acid probe capable of specifically hybridizing with a unique sequence included within the sequence of a nucleic acid molecule encoding a human GALR2 receptor and labelled with a detectable marker; (e) detecting labelled bands which have hybridized to DNA encoding a human GALR2 receptor labelled with a detectable marker to create a unique band pattern specific to the DNA of subjects suffering from the disorder; (f) preparing DNA obtained for diagnosis by steps a-e; and (g) comparing the unique band pattern specific to the DNA of subjects suffering from the disorder from step e and the DNA obtained for diagnosis from step f to determine whether the patterns are the same or different and to diagnose thereby predisposition to the disorder if the patterns are the same.


[0245] In an embodiment, a disorder associated with the activity of a specific human GALR2 receptor allele is diagnosed. In another embodiment, the above-described method may be used to identify a population of patients having a specific GALR2 receptor allele, in which population the disorder may be alleviated by administering to the subjects a GALR2-selective compound.


[0246] This invention provides a method of preparing the purified GALR2 receptor which comprises: (a) inducing cells to express GALR2 receptor; (b) recovering the receptor from the induced cells; and (c) purifying the receptor so recovered.


[0247] This invention provides a method of preparing a purified GALR2 receptor which comprises: (a) inserting nucleic acid encoding the GALR2 receptor in a suitable vector; (b) introducing the resulting vector in a suitable host cell; (c) placing the resulting cell in suitable condition permitting the production of the isolated GALR2 receptor; (d) recovering the receptor produced by the resulting cell; and (e) purifying the receptor so recovered.


[0248] This invention provides a method of modifying feeding behavior of a subject which comprises administering to the subject an amount of a compound which is a galanin receptor agonist or antagonist effective to increase or decrease the consumption of food by the subject so as to thereby modify feeding behavior of the subject. In one embodiment, the compound is a GALR2 receptor antagonist and the amount is effective to decrease the consumption of food by the subject. In another embodiment the compound is administered in combination with food.


[0249] In yet another embodiment the compound is a GALR2 receptor agonist and the amount is effective to increase the consumption of food by the subject. In a still further embodiment, the compound is administered in combination with food. In other embodiments the subject is a vertebrate, a mammal, a human or a canine.


[0250] In one embodiment, the compound binds selectively to a GALR2 receptor. In another embodiment, the compound binds to the GALR2 receptor with an affinity greater than ten-fold higher than the affinity with which the compound binds to a GALR1 receptor. In another embodiment, the compound binds to the GALR2 receptor with an affinity greater than ten-fold higher than the affinity with which the compound binds to a GALR3 receptor. In yet another embodiment, the compound binds to the GALR2 receptor with an affinity greater than one hundred-fold higher than the affinity with which the compound binds to a GALR1 receptor. In another embodiment, the compound binds to the GALR2 receptor with an affinity greater than one hundred-fold higher than the affinity with which the compound binds to a GALR3 receptor.


[0251] This invention provides a method for determining whether a chemical compound is a GALR2 antagonist which comprises: (a) administering to an animal a GALR2 agonist and measuring the amount of food intake in the animal; (b) administering to a second animal both the GALR2 agonist and the chemical compound, and measuring the amount of food intake in the second animal; and (c) determining whether the amount of food intake is reduced in the presence of the chemical compound relative to the amount of food intake in the absence of the compound, so as to thereby determine whether the compound is a GALR2 antagonist.


[0252] This invention further provides a method of screening a plurality of chemical compounds to identify a chemical compound which is a GALR2 antagonist which comprises: (a) administering to an animal a GALR2 agonist and measuring the amount of food intake in the animal; (b) administering to a second animal the GALR2 agonist and at least one chemical compound of the plurality of compounds, and measuring the amount of food intake in the animal; (c) determining whether the amount of food intake is reduced in the presence of at least one chemical compound of the plurality of chemical compounds relative to the amount of food intake in the absence of at least one of the compounds, and if so; (d) separately determining whether each chemical compound is a GALR2 antagonist according to the method described above, so as to thereby determine if the chemical compound is a GALR2 antagonist. In one embodiment the GALR2 agonist is [D-Trp]2-galanin(1-29). In another embodiment the animal is a non-human mammal. In a further embodiment, the animal is a rodent.


[0253] In one embodiment, the above process further comprises determining whether the compound selectively binds to the GALR2 receptor relative to another galanin receptor. In another embodiment, the determination whether the compound selectively binds to the GALR2 receptor comprises: (a) determining the binding affinity of the compound for the GALR2 receptor and for such other galanin receptor; and (b) comparing the binding affinities so determined, the presence of a higher binding affinity for the GALR2 receptor than for such other galanin receptor indicating that the compound selectively binds to the GALR2 receptor. In an embodiment, the other galanin receptor is a GALR1 receptor. In another embodiment, the other galanin receptor is a GALR3 receptor.


[0254] This invention provides a process for determining whether a compound selectively activates the GALR2 receptor relative to another galanin receptor.


[0255] This invention provides a process for determining whether a compound selectively activates the GALR2 receptor relative to another galanin receptor, wherein the determination whether the compound selectively activates the GALR2 receptor comprises: (a) determining the potency of the compound for the GALR2 receptor and for such other galanin receptor; and (b) comparing the potencies so determined, the presence of a higher potency for the GALR2 receptor than for such other galanin receptor indicating that the compound selectively activates the GALR2 receptor. In an embodiment, such other galanin receptor is a GALR1 receptor. In another embodiment, such other galanin receptor is a GALR3 receptor.


[0256] This invention provides a process for determining whether a compound selectively inhibits the activation of the GALR2 receptor relative to another galanin receptor.


[0257] This invention provides a process for determining whether a compound selectively inhibits the activation of the GALR2 receptor relative to another galanin recpetor, wherein the determination whether the compound selectively inhibits the activation of the GALR2 receptor comprises: (a) determining the decrease in the potency of a known galanin receptor agonist for the GALR2 receptor in the presence of the compound, relative to the potency of the agonist in the absence of the compound; (b) determining the decrease in the potency of the agonist for such other galanin receptor in the presence of the compound, relative to the potency of the agonist in the absence of the compound; and (c) comparing the decrease in potencies so determined, the presence of a greater decrease in potency for the GALR2 receptor than for such other galanin receptor indicating that the compound selectively inhibits the activation of the GALR2 receptor. In an embodiment, such other galanin receptor is a GALR1 receptor. In another embodiment, such other galanin receptor is a GALR3 receptor.


[0258] This invention provides a method of decreasing feeding behavior of a subject which comprises administering a compound which is a GALR2 receptor antagonist and a compound which is a Y5 receptor antagonist, the amount of such antagonists being effective to decrease the feeding behavior of the subject. In one embodiment, the GALR2 antagonist and the Y5 antagonist are administered in combination. In another embodiment, the GALR2 antagonist and the Y5 antagonist are administered once. In another embodiment, the GALR2 antagonist and the Y5 antagonist are administered separately. In still another embodiment, the GALR2 antagonist and the Y5 antagonist are administered once. In another embodiment, the galanin receptor antagonist is administered for about 1 week to 2 weeks. In another embodiment, the Y5 receptor antagonist is administered for about 1 week to 2 weeks.


[0259] In yet another embodiment, the GALR2 antagonist and the Y5 antagonist are administered alternately. In another embodiment, the GALR2 antagonist and the Y5 antagonist are administered repeatedly. In a still further embodiment, the galanin receptor antagonist is administered for about 1 week to 2 weeks. In another embodiment, the Y5 receptor antagonist is administered for about 1 week to 2 weeks.


[0260] This invention also provides a method as described above, wherein the compound is administered in a pharmaceutical composition comprising a sustained release formulation.


[0261] This invention provides a method of decreasing nociception in a subject which comprises administering to the subject an amount of a compound which is a GALR2 receptor agonist effective to decrease nociception in the subject.


[0262] This invention provides a method of treating pain in a subject which comprises administering to the subject an amount of a compound which is a GALR2 receptor agonist effective to treat pain in the subject.


[0263] This invention provides a method of treating Alzheimer's disease in a subject which comprises administering to the subject an amount of a compound which is a galanin receptor antagonist effective to treat the subject's Alzheimer's disease. In one embodiment, the galanin receptor antagonist is a GALR2 receptor antagonist and the amount of the compound is effective to treat the subject's Alzheimer's disease.


[0264] This invention provides a method of producing analgesia in a subject which comprises administering to the subject an amount of a compound which is a galanin receptor agonist effective to produce analgesia in the subject.


[0265] In another embodiment, the galanin receptor agonist is a GALR2 receptor agonist and the amount of the compound is effective to produce analgesia in the subject.


[0266] This invention will be better understood from the Experimental Details which follow. However, one skilled in the art will readily appreciate that the specific methods and results discussed are merely illustrative of the invention as described more fully in the claims which follow thereafter.


[0267] Experimental Details


[0268] Materials and Methods


[0269] Construction and Screening of a Rat Hypothalamus cDNA Library


[0270] Total RNA was prepared from rat hypothalami by a modification of the guanidine thiocyanate method (Chirgwin, 1979). Poly A+ RNA was purified using a FastTrack kit (Invitrogen Corp., San Diego, Calif.). Double stranded (ds) cDNA was synthesized from 4.6 μg of poly A+ RNA according to Gubler and Hoffman (1983) with minor modifications. The resulting cDNA was ligated to BstXI/EcoRI adaptors (Invitrogen Corp.) and the excess adaptors removed by exclusion column chromatography. High molecular weight fractions of size-selected ds-cDNA were ligated in pEXJ.T7 (an Okayama and Berg expression vector modified from pcEXV (Miller & Germain, 1986) to contain BstXI and other additional restriction sites and a T7 promoter (Stratagene) and electroporated in E. coli MC 1061 (Gene Pulser, Biorad). A total of 3×106 independent clones with a mean insert size of 2.2 kb were generated. The library was plated on agar plates (Ampicillin selection) in 584 primary pools of ˜5,000 independent clones. After 18 hours amplification, the bacteria from each pool were scraped, resuspended in 4 mL of LB media and 0.75 mL processed for plasmid purification (QIAwell-96 ultra, Qiagen, Inc., Chatsworth, Calif.). Aliquots of each bacterial pool were stored at −85° C. in 20% glycerol.


[0271] To screen the library, COS-7 cells were plated in slide chambers (Lab-Tek) in Dulbecco's modified Eagle medium (DMEM) supplemented with 10% calf serum, 100 U/mL of penicillin, 100 ug/mL streptomycin, 2 mM L-glutamine (DMEM-C) and grown at 37° C. in a humidified 5% CO2 atmosphere for 24 hours before transfection. Cells were transfected with miniprep DNA prepared from the primary pools (˜4,500 cfu/pool) of the rat hypothalamus cDNA library using a modification of the DEAE-dextran method (Warden & Thorne, 1968). Pools containing GALR1 were identified by PCR prior to screening and were omitted from the primary screen. The galanin binding assay was carried out after 48 hours. Cells were rinsed twice with phosphate-buffered saline (PBS) then incubated with 1 nM 125I-porcine galanin (NEN; specific activity ˜2200 Ci/mmol) in 20 mM HEPES-NaOH, pH 7.4, containing 1.26 mM CaCl2, 0.81 mM MgSO4, 0.44 mM KH2PO4, 5.4 mM KCl, 10 mM NaCl, 0.1% BSA, and 0.1% bacitracin for one hour at room temperature. After rinsing and fixation in 2.5% glutaraldehyde, slides were rinsed in PBS, air-dried, and dipped in photoemulsion (Kodak, NTB-2). After a 3-4 day exposure slides were developed in Kodak D19 developer, fixed, and coverslipped (Aqua-Mount, Lerner Laboratories), then inspected for positive cells by brightfield microscopy (Leitz Laborlux, 25× magnification). One pool with positive cells, (J126) was subdivided and rescreened repeatedly until a single colony was isolated that conferred galanin binding. The 3.8 kb cDNA is preferably sequenced on both strands using Sequenase (US Biochemical, Cleveland, Ohio) according to the manufacturer. Nucleotide and peptide sequence analyses are performed using the Wisconsin Package (GCG, Genetics Computer group, Madison, Wis.) or PC/GENE (Intelligenetics, Mountain View, Calif.).


[0272] PCR Methodology


[0273] PCR reactions were carried out in 20 μL volumes using Taq Polymerase (Boehringer Mannheim, Indianapolis, Ind.) in a buffer containing 10 mM Tris-HCl, pH 8.3, 50 mM KCl, 1.5 mM MgCl2 0.01% gelatin, 0.2 mM each dNTP, and 1 μM each PCR primer. To prescreen library pools for GALR1, two GALR1 primer sets were used (KS-1177/1178 and KS-1311/1313, see below) to determine whether GALR1 was present in original bacterial stocks of each library pool. PCR was carried out for 40 cycles of 94° C./2 min, 68° C./2 min, 72° C./3 min. Pools positive for GALR1 by PCR were eliminated from the library screen.


[0274] To confirm that the purified cDNA conferring galanin binding was distinct from GALR1, the isolated clone representing pool J126-10-334 (K985) was subjected to PCR analysis using three GALR1 primer sets representing different regions of GALR1. The nucleotide sequences of the primer sets are shown below:


[0275] KS-1177: 5′-TGG GCA ACA GCC TAG TGA TCA CCG -3′ (Seq. I.D. No. 1) Nucleotides 146-169 of human GALR1 coding region, forward primer.


[0276] KS-1178: 5′-CTG CTC CCA GCA GAA GGT CTG GTT -3′ (Seq. I.D. No. 2) Nucleotides 547-570 of human GALR1 coding region, reverse primer.


[0277] KS-1311: 5′-CCT CAG TGA AGG GAA TGG GAG CGA -3′ (Seq. I.D. No. 3) Nucleotides 21-44 of rat GALR1 coding region, forward primer.


[0278] KS-1313: 5′-CTC ATT GCA AAC ACG GCA CTT GAA CA -3′ (Seq. I.D. No. 4) Nucleotides 944-969 of rat GALR1 coding region, reverse primer.


[0279] KS-1447: 5′-CTT GCT TGT ACG CCT TCC GGA AGT -3′ (Seq. I.D. No. 5) Nucleotides 920-943 of rat GALR1 coding region, reverse primer.


[0280] KS-1448: 5′-GAG AAC TTC ATC ACG CTG GTG GTG -3′ (Seq. I.D. No. 6). Nucleotides 91-114 of rat GALR1 coding region, forward primer.


[0281] Generation of Human GALR2 PCR Product


[0282] Human genomic DNA (1 μg; 12 different lots from Promega and Clontech) were amplified in 50 μl PCR reaction mixtures using the Expand Long Template PCR System (as supplied and described by the manufacturer, Boehringer Mannheim) and 1 μM of primers, using a program consisting of 40 cycles of 94° C. for 2 min, 60° C. for 2 min, and 68° C. for 3 min, with a pre- and post-incubation of 95° C. for 5 min and 68° C. for 10 min, respectively. PCR primers for hGALR2 were designed against rGALR2 sequence: forward primer NS525 in the fourth transmembrane domain, and reverse primer NS526 in the sixth transmembrane domain. The PCR products were run on a 0.8% low-melting agarose gel. The single ≈300 bp fragment from 3 different lots were isolated, purified by phenol extraction and subjected to sequencing using the T7 Sequenase PCR product sequencing kit (Amersham). Sequence was analyzed using the Wisconsin Package (GCG, Genetics Computer Group, Madison, Wis.).


[0283] 5′ and 3′ RACE Analysis of Human GALR2


[0284] 5′ and 3′ RACE (rapid analysis of cDNA ends) were performed on human brain and human lung RNAs (Clontech), respectively, using a Marathon cDNA Amplification Kit (Clontech). Total RNA was poly A+ selected using a FastTrack mRNA Isolation Kit (Invitrogen Corp., San Diego, Calif.). For 5′ RACE, double stranded (ds) cDNA was synthesized from 1 μg Poly A+ RNA using BB 153, a reverse primer from the 5′ end of the sixth transmembrane domain of hGALR2 from the PCR fragment described above. Adaptor ligation and nested PCR were performed according to the Marathon cDNA Amplification protocol using Advantage KlenTaq Polymerase (Clontech). The initial PCR reaction was performed on 1 μl of a 50 fold dilution of the ligated cDNA using the supplier's Adaptor Primer 1 and BB 154, a reverse primer from the fifth transmembrane domain of the hGALR2 PCR product above. One μl of this initial PCR reaction was re-amplified using the Adaptor Primer 2 and NS 563, a reverse primer just upstream from BB154. The conditions for PCR were 30 sec at 94° C., 4 min at 72° C. for 5 cycles, 30 sec at 94° C., 4 min at 70° C. for 5 cycles, 20 sec at 94° C., 4 min at 68° C. for 25 cycles, with a pre- and post-incubation of 1 min at 94° C. and 7 min at 68° C. respectively. A 600 base pair fragment from the nested PCR was isolated from a 1% TAE gel using a GENECLEAN III kit (BIO 101, Vista, Calif.) and sequenced using AmpliTaq DNA Polymerase, FS (Perkin Elmer). The sequence was run on an ABI PRISM 377 DNA Sequencer and analyzed using the Wisconsin Package (GCG, Genetics Computer Group, Madison, Wis.). For 3′ RACE, double stranded (ds) cDNA was synthesized from 1 μg Poly A+ RNA using the cDNA synthesis primer CDS supplied with the Marathon cDNA Amplification Kit (Clontech). PCR conditions for 3′ RACE were similar to 5′ RACE except that BB166 and BB167, forward primers from the fifth transmembrane domain of the hGALR2 PCR fragment described above, were used in place of BB154 and NS563, respectively. A 500 base pair fragment from the nested PCR was isolated from a 1% TAE gel using a GENECLEAN III kit (BIO 101, Vista, Calif.) and sequenced as above.


[0285] Construction and Screening of a Human Heart cDNA Library


[0286] Poly A+ RNA was purified from human heart RNA (Clontech) using a FastTrack kit (Invitrogen, Corp.). DS-cDNA was synthesized from 8 μg of poly A+ RNA according to Gubler and Hoffman (1983) with minor modifications. The resulting cDNA was ligated to BstXI adaptors (Invitrogen, Corp.) and the excess adaptors removed by exclusion column chromatography. High molecular weight fractions of size-selected ds-cDNA were ligated in PEXJ.BS, an Okayama and Berg expression vector modified from pcEXV (Miller and Germain, 1986) to contain BstXI and other additional restriction sites. A total of 4.45×106 independent clones with a mean insert size of 2.5 kb were generated. The library was plated on agar plates (Ampicillin selection) in 127 primary pools; 50 pools with 37,500 independent clones, 51 pools with 25,000 clones and 26 pools with 50,000 clones. Glycerol stocks of the primary pools were combined in 16 superpools of 8 and screened for hGALR2 by PCR using primers BB153 and BB169, a forward primer from the second intracellular domain of hGALR2 identified in the 5′ RACE fragment above. PCR was performed with the Expand Long Template PCR System (Boehringer Mannheim) under the following conditions: 1 min at 94° C., 4 min at 68° C. for 40 cycles, with a pre- and post-incubation of 5 min at 95° C. and 7 min at 68° C., respectively. Primary pools from positive superpools were screened by PCR and then primary pool 169 was subdivided and screened by PCR. One positive subpool, 69-11, was subdivided into 20 pools of 1200 clones plated on agar plates (ampicillin selection) Colonies were transferred to nitrocellulose membranes (Schleicher and Schuell, Keene, N.H.), denatured in 0.4 N NaOH, 1.5 M NaCl, renatured in 1M Tris, 1.5 M NaCl, and UV cross-linked. Filters were hybridized overnight at 40° C. in a buffer containing 50% formamide, 5× SSC, 7 mM TRIS, 1× Denhardt's solution and 25 μg/ml salmon sperm DNA (Sigma Chemical Co.) and 106 cpm/ml of KS1567, an oligonucleotide probe from the 3′ end of the fifth transmembrane domain of hGALR2, labeled with γ-32P[ATP] (6000Ci/mmol, NEN) using polynucleotide kinase (Boehringer Mannheim). Filters were washed 2×15 minutes at room temperature in 2× SSC, 0.1% SDS, 2×15 minutes at 50° C. in 0.1× SSC, 0.1% SDS, and exposed to XAR X-ray film (Kodak) for 3 days. Colonies which appeared to hybridize were re-screened by PCR using primers BB167 and BB170, a reverse primer from the COOH terminus of hGlR2 identified by the 3′ RACE fragment above. PCR was performed with the Expand Long Template PCR System (Boehringer Mannheim) under the following conditions: 1 min at 94° C., 2 min at 58° C., 2 min at 68° C. for 28 cycles, with a pre- and post-incubation of 5 min at 95° C. and 7 min at 68° C. respectively. One positive colony, 69-11-5 was amplified overnight in 10 ml LB media and processed for plasmid purification using a standard alkaline lysis miniprep procedure followed by a PEG precipitation. To ensure that 69-11-5 was a single colony, it was amplified for 3 hours in 3 ml of LB media and then 1 μl of a 1:100 dilution was plated on an agar plate. Twenty colonies were screened by PCR using primers BB167 and BB170 using the same conditions as above, except that 25 cycles were used instead of 28. One positive single colony, 69-11-5-3, designated BO29, was amplified overnight in 10 ml of TB media and processed for plasmid purification. Vector-anchored PCR was performed on BO29 using the Expand Long Template PCR System (Boehringer Mannheim) to determine the orientation and size of the insert. BB173 and BB172, forward and reverse vector primers, respectively, were used with primers BB169 and BB153. The conditions for PCR were 1 min at 94° C., 4 min at 68° C. for 36 cycles, with a pre- and post-incubation of 5 min at 95° C. and 7 min at 68° C. respectively. BO29 is preferably sequenced on both strands using AmpliTaq DNA Polymerase, FS (Perkin Elmer). The sequence is run on an ABI PRISM 377 DNA Sequencer and analyzed using the Wisconsin Package (GCG, Genetics Computer Group, Madison, Wis.).


[0287] To test the ability of 69-11-5 to confer galanin binding, COS-7 cells were plated in slide chambers (Lab-Tek) in Dulbecco's modified Eagle medium (DMEM) supplemented with 10% calf serum, 100U/ml of penicillin, 100 μg/ml streptomycin, 2 mM L-glutamine (DMEM-c) and grown at 37° C. in a humidified 5% CO2 atmosphere for 24 hours before transfection. Cells were transfected with 1 μg of miniprep DNA from 69-11-5 or vector control using a modification of the DEAE-dextran method (Warden and Thorne, 1968). 48 hours after transfection, cells were rinsed with phosphate-buffered saline (PBS) then incubated with 1 nM 125I-rat galanin (NEN; specific activity ˜2200 Ci/mmol) and 2 nM 125I-porcine galanin (NEN; specific activity ˜2200 Ci/mmol) in 20 mM HEPES-NaOH, pH 7.4, containing 1.26 mM CaCl2, 0.81 mM MgSO4, 0.44 mM KH2PO4, 5.4 mM KCl, 10 mM NaCl, 0.1% BSA, and 0.1% bacitracin for one hour at room temperature. After rinsing and fixation in 2.5% glutaraldehyde, slides were rinsed in PBS, air-dried, and dipped in photoemulsion (Kodak, NTB-2). After a 4-day exposure, slides were developed in Kodak D19 developer, fixed, and coverslipped (Aqua-Mount, Lerner Laboratories), then inspected for positive cells by brightfield microscopy (Leitz Laborlux, 25× magnification). To test the ability of the single clone BO29 to confer galanin binding, BO29 or control vector were transfected into COS-7 cells for testing of 125I galanin as described above, with the exception that after fixation, binding of 125galanin to cells on the slide was detected using an 125probe (Mini-Instruments, Ltd., Essex, England). The signal from BO29 transfected cells was compared with the signal from control vector transfected cells.


[0288] Primers and Probes Used


Claims
  • 1. An isolated nucleic acid encoding a GALR2 receptor.
  • 2. The nucleic acid of claim 1, wherein the nucleic acid is DNA.
  • 3. The DNA of claim 2, wherein the DNA is cDNA.
  • 4. The DNA of claim 2, wherein the DNA is genomic DNA.
  • 5. The nucleic acid of claim 1, wherein the nucleic acid is RNA.
  • 6. The nucleic acid of claim 1, wherein the nucleic acid encodes a vertebrate GALR2 receptor.
  • 7. The nucleic acid of claim 1, wherein the nucleic acid encodes a mammalian GALR2 receptor.
  • 8. The nucleic acid of claim 1, wherein the nucleic acid encodes a rat GALR2 receptor.
  • 9. The nucleic acid of claim 1, wherein the nucleic acid encodes a human GALR2 receptor.
  • 10. The nucleic acid of claim 7, wherein the nucleic acid encodes a receptor characterized by an amino acid sequence in the transmembrane region which has a homology of 60% or higher to the amino acid sequence in the transmembrane region of the rat GALR2 receptor and a homology of less than 60% to the amino acid sequence in the transmembrane region of any GALR1 receptor.
  • 11. The nucleic acid of claim 7, wherein the nucleic acid encodes a mammalian GALR2 receptor which has substantially the same amino acid sequence as does the GALR2 receptor encoded by the plasmid K985 (ATCC Accession No. 97426).
  • 12. The nucleic acid of claim 8, wherein the nucleic acid encodes a rat GALR2 receptor which has an amino acid sequence encoded by the plasmid K985 (ATCC Accession No. 97426).
  • 13. The nucleic acid of claim 7, wherein the nucleic acid encodes a mammalian GALR2 receptor which has substantially the same amino acid sequence as does the GALR2 receptor encoded by the plasmid K1045 (ATCC Accession No. 97778).
  • 14. The nucleic acid of claim 8, wherein the nucleic acid encodes a rat GALR2 receptor which has an amino acid sequence encoded by the plasmid K1045 (ATCC Accession No. 97778).
  • 15. The nucleic acid of claim 8, wherein the nucleic acid encodes a rat GALR2 receptor which has substantially the same amino acid sequence as that shown in FIG. 2.
  • 16. The nucleic acid of claim 8, wherein the nucleic acid encodes a rat GALR2 receptor which has the amino acid sequence shown in FIG. 2.
  • 17. The nucleic acid of claim 7, wherein the nucleic acid encodes a mammalian GALR2 receptor which has substantially the same amino acid sequence as does the GALR2 receptor encoded by the plasmid BO29 (ATCC Accession No. 97735).
  • 18. The nucleic acid of claim 9, wherein the nucleic acid encodes a human GALR2 receptor which has an amino acid sequence encoded by the plasmid BO29 (ATCC Accession No. 97735).
  • 19. The nucleic acid of claim 7, wherein the nucleic acid encodes a mammalian GALR2 receptor which has substantially the same amino acid sequence as does the GALR2 receptor encoded by the plasmid BO39 (ATCC Accession No. 97851).
  • 20. The nucleic acid of claim 9, wherein the nucleic acid encodes a human GALR2 receptor which has an amino acid sequence encoded by the plasmid BO39 (ATCC Accession No. 97851).
  • 21. The nucleic acid of claim 9, wherein the nucleic acid encodes a human GALR2 receptor which has substantially the same amino acid sequence as that shown in FIG. 11.
  • 22. The nucleic acid of claim 9, wherein the nucleic acid encodes a human GALR2 receptor which has the amino acid sequence shown in FIG. 11.
  • 23. An isolated nucleic acid encoding a modified GALR2 receptor, which differs from a GALR2 receptor by having an amino acid(s) deletion, replacement or addition in the third intracellular domain.
  • 24. The nucleic acid of claim 23, wherein the modified GALR2 receptor differs from a GALR2 receptor by having a deletion in the third intracellular domain.
  • 25. The nucleic acid of claim 23, wherein the modified GALR2 receptor differs from a GALR2 receptor by having a replacement or addition in the third intracellular domain.
  • 26. A purified GALR2 receptor protein.
  • 27. A vector comprising the nucleic acid of claim 1.
  • 28. A vector comprising the nucleic acid of either of claims 8 or 9.
  • 29. A vector of claim 27 adapted for expression in a bacterial cell which comprises the regulatory elements necessary for expression of the nucleic acid in the bacterial cell operatively linked to the nucleic acid encoding a GALR2 receptor as to permit expression thereof.
  • 30. A vector of claim 27 adapted for expression in a yeast cell which comprises the regulatory elements necessary for expression of the nucleic acid in the yeast cell operatively linked to the nucleic acid encoding a GALR2 receptor as to permit expression thereof.
  • 31. A vector of claim 27 adapted for expression in an insect cell which comprises the regulatory elements necessary for expression of the nucleic acid in the insect cell operatively linked to the nucleic acid encoding the GALR2 receptor as to permit expression thereof.
  • 32. A vector of claim 31 which is a baculovirus.
  • 33. A vector of claim 27 adapted for expression in a mammalian cell which comprises the regulatory elements necessary for expression of the nucleic acid in the mammalian cell operatively linked to the nucleic acid encoding a GALR2 receptor as to permit expression thereof.
  • 34. A vector of claim 27 wherein the vector is a plasmid.
  • 35. The plasmid of claim 34 designated K985 (ATCC Accession No. 97426).
  • 36. The plasmid of claim 34 designated K1045 (ATCC Accession No. 97778).
  • 37. The plasmid of claim 34 designated BO29 (ATCC Accession No. 97735).
  • 38. The plasmid of claim 34 designated BO39 (ATCC Accession No. 97851).
  • 39. A cell comprising the vector of claim 27.
  • 40. A cell of claim 39, wherein the a non-mammalian cell.
  • 41. A cell of claim 40, wherein the non-mammalian cell is a Xenopus oocyte cell or a Xenopus melanophore cell.
  • 42. A cell of claim 39, wherein the cell is a mammalian cell.
  • 43. A mammalian cell of claim 42, wherein the cell is a COS-7 cell, a 293 human embryonic kidney cell, a NIH-3T3 cell, a LM(tk-) cell or a CHO cell.
  • 44. The LM(tk-) cell of claim 43 designated L-rGALR2-8 (ATCC Accession No. CRL-12074).
  • 45. The LM(tk-) cell of claim 43 designated L-rGALR2I-4 (ATCC Accession No. CRL-12223).
  • 46. The CHO cell of claim 43 designated C-rGalR2-79 (ATCC Accession No. CRL-12262).
  • 47. The CHO cell of claim 43 designated CHO-hGALR2-264 (ATCC Accession No. CRL-______).
  • 48. An insect cell comprising the vector of claim 31.
  • 49. An insect cell of claim 48, wherein the insect cell is an Sf9 cell.
  • 50. An insect cell of claim 48, wherein the insect cell is an Sf21 cell.
  • 51. A membrane preparation isolated from the cell of either of claims 39 or 48.
  • 52. A nucleic acid probe comprising at least 15 nucleotides, which probe specifically hybridizes with a nucleic acid encoding a GALR2 receptor, wherein the probe has a unique sequence corresponding to a sequence present within one of the two strands of the nucleic acid encoding the GALR2 receptor contained in plasmid K985.
  • 53. A nucleic acid probe comprising at least 15 nucleotides, which probe specifically hybridizes with a nucleic acid encoding a GALR2 receptor, wherein the probe has a unique sequence corresponding to a sequence present within one of the two strands of the nucleic acid encoding the GALR2 receptor contained in plasmid K1045.
  • 54. A nucleic acid probe comprising at least 15 nucleotides, which probe specifically hybridizes with a nucleic acid encoding a GALR2 receptor, wherein the probe has a unique sequence corresponding to a sequence present within (a) the nucleic acid sequence shown in FIG. 1 or (b) the reverse complement of the nucleic acid sequence shown in FIG. 1.
  • 55. A nucleic acid probe comprising at least 15 nucleotides, which probe specifically hybridizes with a nucleic acid encoding a GALR2 receptor, wherein the probe has a unique sequence corresponding to a sequence present within one of the two strands of the nucleic acid encoding the GALR2 receptor contained in plasmid BO29.
  • 56. A nucleic acid probe comprising at least 15 nucleotides, which probe specifically hybridizes with a nucleic acid encoding a GALR2 receptor, wherein the probe has a unique sequence corresponding to a sequence present within one of the two strands of the nucleic acid encoding the GALR2 receptor contained in plasmid BO39.
  • 57. A nucleic acid probe comprising at least 15 nucleotides, which probe specifically hybridizes with a nucleic acid encoding a GALR2 receptor, wherein the probe has a unique sequence corresponding to a sequence present within (a) the nucleic acid sequence shown in FIG. 10 or (b) the reverse complement of the nucleic acid sequence shown in FIG. 10.
  • 58. The nucleic acid probe of any one of claims 52, 53, 54, 55, 56 or 57, wherein the nucleic acid is DNA.
  • 59. The nucleic acid probe of any one of claims 52, 53, 54, 55, 56 or 57 wherein the nucleic acid is RNA.
  • 60. A nucleic acid probe comprising a nucleic acid molecule of at least 15 nucleotides which is complementary to a unique fragment of the sequence of a nucleic acid molecule encoding a GALR2 receptor.
  • 61. A nucleic acid probe comprising a nucleic acid molecule of at least 15 nucleotides which is complementary to the antisense sequence of a unique fragment of the sequence of a nucleic acid molecule encoding a GALR2 receptor.
  • 62. An antisense oligonucleotide having a sequence capable of specifically hybridizing to the mRNA of claim 5, so as to prevent translation of the mRNA.
  • 63. An antisense oligonucleotide having a sequence capable of specifically hybridizing to the genomic DNA of claim 4.
  • 64. An antisense oligonucleotide of either of claims 62 or 63, wherein the oligonucleotide comprises chemically modified nucleotides or nucleotide analogues.
  • 65. An antibody capable of binding to a GALR2 receptor encoded by the nucleic acid of claim 1.
  • 66. The antibody of claim 65, wherein the GALR2 receptor is a human GALR2 receptor.
  • 67. An antibody capable of competitively inhibiting the binding of the antibody of claim 65 to a GALR2 receptor.
  • 68. An antibody of claim 65, wherein the antibody is a monoclonal antibody.
  • 69. A monoclonal antibody of claim 68 directed to an epitope of a GALR2 receptor present on the surface of a GALR2 receptor expressing cell.
  • 70. A pharmaceutical composition comprising an amount of the oligonucleotide of claim 62 capable of passing through a cell membrane effective to reduce expression of a GALR2 receptor and a pharmaceutically acceptable carrier capable of passing through a cell membrane.
  • 71. A pharmaceutical composition of claim 70, wherein the oligonucleotide is coupled to a substance which inactivates mRNA.
  • 72. A pharmaceutical composition of claim 71, wherein the substance which inactivates mRNA is a ribozyme.
  • 73. A pharmaceutical composition of claim 70, wherein the pharmaceutically acceptable carrier comprises a structure which binds to a receptor on a cell capable of being taken up by the cells after binding to the structure.
  • 74. A pharmaceutical composition of claim 73, wherein the pharmaceutically acceptable carrier is capable of binding to a receptor which is specific for a selected cell type.
  • 75. A pharmaceutical composition which comprises an amount of the antibody of claim 65 effective to block binding of a ligand to the GALR2 receptor and a pharmaceutically acceptable carrier.
  • 76. A transgenic nonhuman mammal expressing DNA encoding a GALR2 receptor of claim 1.
  • 77. A transgenic nonhuman mammal comprising a homologous recombination knockout of the native GALR2 receptor.
  • 78. A transgenic nonhuman mammal whose genome comprises antisense DNA complementary to DNA encoding a GALR2 receptor of claim 1 so placed as to be transcribed into antisense mRNA which is complementary to mRNA encoding a GALR2 receptor and which hybridizes to mRNA encoding a GALR2 receptor, thereby reducing its translation.
  • 79. The transgenic nonhuman mammal of claim 76 or 77, wherein the DNA encoding a GALR2 receptor additionally comprises an inducible promoter.
  • 80. The transgenic nonhuman mammal of claim 76 or 78, wherein the DNA encoding a GALR2 receptor additionally comprises tissue specific regulatory elements.
  • 81. A transgenic nonhuman mammal of any one of claims 76, 77 or 78, wherein the transgenic nonhuman mammal is a mouse.
  • 82. A process for identifying a chemical compound which specifically binds to a GALR2 receptor which comprises contacting cells containing DNA encoding and expressing on their cell surface the GALR2 receptor, wherein such cells do not normally express the GALR2 receptor, with the compound under conditions suitable for binding, and detecting specific binding of the chemical compound to the GALR2 receptor.
  • 83. A process for identifying a chemical compound which specifically binds to a GALR2 receptor which comprises contacting a membrane fraction from a cell extract of cells containing DNA encoding and expressing on their cell surface the GALR2 receptor, wherein such cells do not normally express the GALR2 receptor, with the compound under conditions suitable for binding, and detecting specific binding of the chemical compound to the GALR2 receptor.
  • 84. The process of claim 82 or 83, wherein the GALR2 receptor is a mammalian GALR2 receptor.
  • 85. The process of claim 82 or 83, wherein the GALR2 receptor has substantially the same amino acid sequence as encoded by the plasmid K985 (ATCC Accession No. 97426).
  • 86. The process of claim 82 or 83, wherein the GALR2 receptor has substantially the same amino acid sequence as that shown in FIG. 2 (Seq. ID No. 8).
  • 87. The process of claim 82 or 83, wherein the GALR2 receptor has substantially the same amino acid sequence as encoded by the plasmid BO29 (ATCC Accession No. 97735).
  • 88. The process of claim 82 or 83, wherein the GALR2 receptor has substantially the same amino acid sequence as that shown in FIG. 11 (Seq. ID No. 30).
  • 89. The method of any one of claims 82, 83, 84, 85, 86, 87 or 88, wherein the compound is not previously known to bind to a GALR2 receptor.
  • 90. A compound determined by the method of claim 89.
  • 91. A process for determining whether a chemical compound is a GALR2 receptor agonist which comprises contacting cells transfected with and expressing DNA encoding the GALR2 receptor with the compound under conditions permitting the activation of the GALR2 receptor, and detecting an increase in GALR2 receptor activity, so as to thereby determine whether the compound is a GALR2 receptor agonist.
  • 92. A process for determining whether a chemical compound is a GALR2 receptor agonist which comprises preparing a cell extract from cells transfected with and expressing DNA encoding the GALR2 receptor, isolating a membrane fraction from the cell extract, contacting the membrane fraction with the compound under conditions permitting the activation of the GALR2 receptor, and detecting an increase in GALR2 receptor activity, so as to thereby determine whether the compound is a GALR2 receptor agonist.
  • 93. A process for determining whether a chemical compound is a GALR2 receptor agonist which comprises preparing a cell extract from cells transfected with and expressing DNA encoding the GALR2 receptor, isolating a membrane fraction from the cell extract, separately contacting the membrane fraction with both the chemical compound and GTPγS, and with only GTPγS, under conditions permitting the activation of the GALR2 receptor, and detecting GTPγS binding to the membrane fraction, an increase in GTPγS binding in the presence of the compound indicating that the chemical compound activates the GALR2 receptor.
  • 94. The process of any one of claims 91, 92 or 93, wherein the GALR2 receptor is a mammalian GALR2 receptor.
  • 95. The process of any one of claims 91 or 92, wherein the GALR2 receptor has substantially the same amino acid sequence as encoded by the plasmid K985 (ATCC Accession No. 97426).
  • 96. The process of claim 91 or 92, wherein the GALR2 receptor has substantially the same amino acid sequence as that shown in FIG. 2 (Seq. ID No. 8).
  • 97. The process of claim 91 or 92, wherein the GALR2 receptor has substantially the same amino acid sequence as encoded by the plasmid BO29 (ATCC Accession No. 97735).
  • 98. The process of claim 91 or 92, wherein the GALR2 receptor has substantially the same amino acid sequence as that shown in FIG. 11 (Seq. ID No. 30).
  • 99. A process for determining whether a chemical compound is a GALR2 receptor antagonist which comprises contacting cells transfected with and expressing DNA encoding the GALR2 receptor with the compound in the presence of a known GALR2 receptor agonist, under conditions permitting the activation of the GALR2 receptor, and detecting a decrease in GALR2 receptor activity, so as to thereby determine whether the compound is a GALR2 receptor antagonist.
  • 100. A process for determining whether a chemical compound is a GALR2 receptor antagonist which comprises preparing a cell extract from cells transfected with and expressing DNA encoding the GALR2 receptor, isolating a membrane fraction from the cell extract, contacting the membrane fraction with the ligand in the presence of a known GALR2 receptor agonist, under conditions permitting the activation of the GALR2 receptor, and detecting a decrease in GALR2 receptor activity, so as to thereby determine whether the compound is a GALR2 receptor antagonist.
  • 101. The process of claim 99 or 100, wherein the GALR2 receptor is a mammalian GALR2 receptor.
  • 102. The process of claim 99 or 100, wherein the GALR2 receptor has substantially the same amino acid sequence as encoded by the plasmid K985 (ATCC Accession No. 97426).
  • 103. The process of claim 99 or 100, wherein the GALR2 receptor has substantially the same amino acid sequence as that shown in FIG. 2 (Seq. ID No. 8).
  • 104. The process of claim 99 or 100, wherein the GALR2 receptor has substantially the same amino acid sequence as encoded by the plasmid BO29 (ATCC Accession No. 97735).
  • 105. The process of claim 99 or 100, wherein the GALR2 receptor has substantially the same amino acid sequence as that shown in FIG. 11 (Seq. ID No. 30).
  • 106. The process of any one of claims 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104 or 105, wherein the cell is an insect cell.
  • 107. The process of any one of claims 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104 or 105, wherein the cell is a mammalian cell.
  • 108. The process of claim 107, wherein the cell is nonneuronal in origin.
  • 109. The process of claim 108, wherein the nonneuronal cell is a COS-7 cell, 293 human embryonic kidney cell, CHO cell, NIH-3T3 cell or LM(tk-) cell.
  • 110. The process of claim 108, wherein the nonneuronal cell is the LM(tk-) cell designated L-rGALR2-8 (ATCC Accession No. CRL-12074).
  • 111. The process of claim 108, wherein the nonneuronal cell is the LM(tk-) cell designated L-rGALR2I-4 (ATCC Accession No. CRL-12223).
  • 112. The process of claim 108, wherein the nonneuronal cell is the CHO cell designated C-rGalR2-79 (ATCC Accession No. CRL-12262).
  • 113. The process of claim 107 wherein the compound is not previously known to bind to a GALR2 receptor.
  • 114. A compound determined by the process of claim 113.
  • 115. A pharmaceutical composition which comprises an amount of a GALR2 receptor agonist determined by the process of any one of claims 91, 92 or 93 effective to increase activity of a GALR2 receptor and a pharmaceutically acceptable carrier.
  • 116. A pharmaceutical composition of claim 115, wherein the GALR2 receptor agonist is not previously known.
  • 117. A pharmaceutical composition which comprises an amount of a GALR2 receptor antagonist determined by the process of claim 99 or 100 effective to reduce activity of a GALR2 receptor and a pharmaceutically acceptable carrier.
  • 118. A pharmaceutical composition of claim 117, wherein the GALR2 receptor antagonist is not previously known.
  • 119. A process involving competitive binding for identifying a chemical compound which specifically binds to a GALR2 receptor which comprises separately contacting cells expressing on their cell surface the GALR2 receptor, wherein such cells do not normally express the GALR2 receptor, with both the chemical compound and a second chemical compound known to bind to the receptor, and with only the second chemical compound, under conditions suitable for binding of both compounds, and detecting specific binding of the chemical compound to the GALR2 receptor, a decrease in the binding of the second chemical compound to the GALR2 receptor in the presence of the chemical compound indicating that the chemical compound binds to the GALR2 receptor.
  • 120. A process involving competitive binding for identifying a chemical compound which specifically binds to a human GALR2 receptor which comprises separately contacting a membrane fraction from a cell extract of cells expressing on their cell surface the GALR2 receptor, wherein such cells do not normally express the GALR2 receptor, with both the chemical compound and a second chemical compound known to bind to the receptor, and with only the second chemical compound, under conditions suitable for binding of both compounds, and detecting specific binding of the chemical compound to the GALR2 receptor, a decrease in the binding of the second chemical compound to the GALR2 receptor in the presence of the chemical compound indicating that the chemical compound binds to the GALR2 receptor.
  • 121. A process for determining whether a chemical compound specifically binds to and activates a GALR2 receptor, which comprises contacting cells producing a second messenger response and expressing on their cell surface the GALR2 receptor, wherein such cells do not normally express the GALR2 receptor, with the chemical compound under conditions suitable for activation of the GALR2 receptor, and measuring the second messenger response in the presence and in the absence of the chemical compound, a change in the second messenger response in the presence of the chemical compound indicating that the compound activates the GALR2 receptor.
  • 122. A process for determining whether a chemical compound specifically binds to and activates a GALR2 receptor, which comprises contacting a membrane fraction isolated from a cell extract of cells producing a second messenger response and expressing on their cell surface the GALR2 receptor, wherein such cells do not normally express the GALR2 receptor, with the chemical compound under conditions suitable for activation of the GALR2 receptor, and measuring the second messenger response in the presence and in the absence of the chemical compound, a change in the second messenger response in the presence of the chemical compound indicating that the compound activates the GALR2 receptor.
  • 123. A process for determining whether a chemical compound specifically binds to and inhibits activation of a GALR2 receptor, which comprises separately contacting cells producing a second messenger response and expressing on their cell surface the GALR2 receptor, wherein such cells do not normally express the GALR2 receptor, with both the chemical compound and a second chemical compound known to activate the GALR2 receptor, and with only the second chemical compound, under conditions suitable for activation of the GALR2 receptor, and measuring the second messenger response in the presence of only the second chemical compound and in the presence of both the second chemical compound and the chemical compound, a smaller change in the second messenger response in the presence of both the chemical compound and the second chemical compound than in the presence of only the second chemical compound indicating that the chemical compound inhibits activation of the GALR2 receptor.
  • 124. A process for determining whether a chemical compound specifically binds to and inhibits activation of a GALR2 receptor, which comprises separately contacting a membrane fraction from a cell extract of cells producing a second messenger response and expressing on their cell surface the GALR2 receptor, wherein such cells do not normally express the GALR2 receptor, with both the chemical compound and a second chemical compound known to activate the GALR2 receptor, and with only the second chemical compound, under conditions suitable for activation of the GALR2 receptor, and measuring the second messenger response in the presence of only the second chemical compound and in the presence of both the second chemical compound and the chemical compound, a smaller change in the second messenger response in the presence of both the chemical compound and the second chemical compound than in the presence of only the second chemical compound indicating that the chemical compound inhibits activation of the GALR2 receptor.
  • 125. The process of claim 121 or 122, wherein the second messenger response comprises arachidonic acid release and the change in second messenger response is an increase in arachidonic acid levels.
  • 126. The process of claim 121 or 122, wherein the second messenger response comprises intracellular calcium levels and the change in second messenger response is an increase in intracellular calcium levels.
  • 127. The process of claim 121 or 122, wherein the second messenger response comprises inositol phospholipid hydrolysis and the change in second messenger response is an increase in inositol phospholipid hydrolysis.
  • 128. The process of claim 123 or 124, wherein the second messenger response comprises arachidonic acid release and the change in second messenger response is a smaller increase in the level of arachidonic acid in the presence of both the chemical compound and the second chemical compound than in the presence of only the second chemical compound.
  • 129. The process of claim 123 or 124, wherein the second messenger response comprises intracellular calcium levels, and the change in second messenger response is a smaller increase in the intracellular calcium levels in the presence of both the chemical compound and the second chemical compound than in the presence of only the second chemical compound.
  • 130. The process of claim 123 or 124, wherein the second messenger response comprises inositol phospholipid hydrolysis, and the change in second messenger response is a smaller increase in inositol phospholipid hydrolysis in the presence of both the chemical compound and the second chemical compound than in the presence of only the second chemical compound.
  • 131. A process of any one of claims 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129 or 130, wherein the GALR2 receptor is a mammalian GALR2 receptor.
  • 132. The process of claim 131, wherein the GALR2 receptor has substantially the same amino acid sequence as encoded by the plasmid K985 ATCC Accession No. 97426).
  • 133. The process of claim 131, wherein the GALR2 receptor has substantially the same amino acid sequence as that shown in FIG. 2 (Seq. ID No. 8).
  • 134. The process of claim 131, wherein the GALR2 receptor has substantially the same amino acid sequence as encoded by the plasmid BO29 (ATCC Accession No. 97735).
  • 135. The process of claim 131, wherein the GALR2 receptor has substantially the same amino acid sequence as that shown in FIG. 11 (Seq. ID No. 30).
  • 136. The process of any one of claims 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134 or 135, wherein the cell is an insect cell.
  • 137. The process of any one of claims 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134 or 135, wherein the cell is a mammalian cell.
  • 138. The process of claim 137, wherein the mammalian cell is nonneuronal in origin.
  • 139. The process of claim 138, wherein the nonneuronal cell is a COS-7 cell, 293 human embryonic kidney cell, CHO cell, NIH-3T3 cell or LM(tk-) cell.
  • 140. The process of claim 138, wherein the nonneuronal cell is the LM(tk-) cell designated L-rGALR2-8 (ATCC Accession No. CRL-12074).
  • 141. The process of claim 138, wherein the nonneuronal cell is the LM(tk-) cell designated L-rGALR2I-4 (ATCC Accession No. CRL-12223).
  • 142. The process of claim 138, wherein the nonneuronal cell is the CHO cell designated C-rGalR2-79 (ATCC Accession No. CRL-12262).
  • 143. The process of claim 137, wherein the compound is not previously known to bind to a GALR2 receptor.
  • 144. A compound determined by the process of claim 143.
  • 145. A pharmaceutical composition which comprises an amount of a GALR2 receptor agonist determined by the process of any one of claims 121, 122, 125, 126, or 127 effective to increase activity of a GALR2 receptor and a pharmaceutically acceptable carrier.
  • 146. A pharmaceutical composition of claim 145, wherein the GALR2 receptor agonist is not previously known.
  • 147. A pharmaceutical composition which comprises an amount of a GALR2 receptor antagonist determined by the process of any one of claims 123, 124, 128, 129 or 130 effective to reduce activity of a GALR2 receptor and a pharmaceutically acceptable carrier.
  • 148. A pharmaceutical composition of claim 147, wherein the GALR2 receptor antagonist is not previously known.
  • 149. A method of screening a plurality of chemical compounds not known to bind to a GALR2 receptor to identify a compound which specifically binds to the GALR2 receptor, which comprises (a) contacting cells transfected with and expressing DNA encoding the GALR2 receptor with a compound known to bind specifically to the GALR2 receptor; (b) contacting the preparation of step (a) with the plurality of compounds not known to bind specifically to the GALR2 receptor, under conditions permitting binding of compounds known to bind the GALR2 receptor; (c) determining whether the binding of the compound known to bind to the GALR2 receptor is reduced in the presence of the compounds, relative to the binding of the compound in the absence of the plurality of compounds; and if so (d) separately determining the binding to the GALR2 receptor of each compound included in the plurality of compounds, so as to thereby identify the compound which specifically binds to the GALR2 receptor.
  • 150. A method of screening a plurality of chemical compounds not known to bind to a GALR2 receptor to identify a compound which specifically binds to the GALR2 receptor, which comprises (a) preparing a cell extract from cells transfected with and expressing DNA encoding the GALR2 receptor, isolating a membrane fraction from the cell extract, contacting the membrane fraction with a compound known to bind specifically to the GALR2 receptor; (b) contacting the preparation of step (a) with the plurality of compounds not known to bind specifically to the GALR2 receptor, under conditions permitting binding of compounds known to bind the GALR2 receptor; (c) determining whether the binding of the compound known to bind to the GALR2 receptor is reduced in the presence of the compounds, relative to the binding of the compound in the absence of the plurality of compounds; and if so (d) separately determining the binding to the GALR2 receptor of each compound included in the plurality of compounds, so as to thereby identify the compound which specifically binds to the GALR2 receptor.
  • 151. A method of claim 149 or 150, wherein the GALR2 receptor is a mammalian GALR2 receptor.
  • 152. A method of screening a plurality of chemical compounds not known to activate a GALR2 receptor to identify a compound which activates the GALR2 receptor which comprises (a) contacting cells transfected with and expressing the GALR2 receptor with the plurality of compounds not known to activate the GALR2 receptor, under conditions permitting activation of the GALR2 receptor; (b) determining whether the activity of the GALR2 receptor is increased in the presence of the compounds; and if so (c) separately determining whether the activation of the GALR2 receptor is increased by each compound included in the plurality of compounds, so as to thereby identify the compound which activates the GALR2 receptor.
  • 153. A method of screening a plurality of chemical compounds not known to activate a GALR2 receptor to identify a compound which activates the GALR2 receptor which comprises (a) preparing a cell extract from cells transfected with and expressing DNA encoding the GALR2 receptor, isolating a membrane fraction from the cell extract, contacting the membrane fraction with the plurality of compounds not known to activate the GALR2 receptor, under conditions permitting activation of the GALR2 receptor; (b) determining whether the activity of the GALR2 receptor is increased in the presence of the compounds; and if so (c) separately determining whether the activation of the GALR2 receptor is increased by each compound included in the plurality of compounds, so as to thereby identify the compound which activates the GALR2 receptor.
  • 154. A method of claim 152 or 153, wherein the GALR2 receptor is a mammalian GALR2 receptor.
  • 155. A method of screening a plurality of chemical compounds not known to inhibit the activation of a GALR2 receptor to identify a compound which inhibits the activation of the GALR2 receptor, which comprises (a) contacting cells transfected with and expressing the GALR2 receptor with the plurality of compounds in the presence of a known GALR2 receptor agonist, under conditions permitting activation of the GALR2 receptor; (b) determining whether the activation of the GALR2 receptor is reduced in the presence of the plurality of compounds, relative to the activation of the GALR2 receptor in the absence of the plurality of compounds; and if so (c) separately determining the inhibition of activation of the GALR2 receptor for each compound included in the plurality of compounds, so as to thereby identify the compound which inhibits the activation of the GALR2 receptor.
  • 156. A method of screening a plurality of chemical compounds not known to inhibit the activation of a GALR2 receptor to identify a compound which inhibits the activation of the GALR2 receptor, which comprises (a) preparing a cell extract from cells transfected with and expressing DNA encoding the GALR2 receptor, isolating a membrane fraction from the cell extract, contacting the membrane fraction with the plurality of compounds in the presence of a known GALR2 receptor agonist, under conditions permitting activation of the GALR2 receptor; (b) determining whether the activation of the GALR2 receptor is reduced in the presence of the plurality of compounds, relative to the activation of the GALR2 receptor in the absence of the plurality of compounds; and if so (c) separately determining the inhibition of activation of the GALR2 receptor for each compound included in the plurality of compounds, so as to thereby identify the compound which inhibits the activation of the GALR2 receptor.
  • 157. A method of any one of claims 91, 92, 93, 99, 100, 152, 153, 155, or 156, wherein activation of the GALR2 receptor is determined by a second messenger assay.
  • 158. The method of claim 157, wherein the second messenger is arachidonic acid, intracellular calcium, or an inositol phospholipid.
  • 159. A method of claim 155 or 156, wherein the GALR2 receptor is a mammalian GALR2 receptor.
  • 160. A method of any one of claims 149, 150, 152, 153, 155, or 156, wherein the cell is a mammalian cell.
  • 161. A method of claim 160, wherein the mammalian cell is non-neuronal in origin.
  • 162. The method of claim 161, wherein the non-neuronal cell is a COS-7 cell, a 293 human embryonic kidney cell, a CHO cell, a LM(tk-) cell or an NIH-3T3 cell.
  • 163. A pharmaceutical composition comprising a compound identified by the method of claim 152 and a pharmaceutically acceptable carrier.
  • 164. A pharmaceutical composition comprising a compound identified by the method of claim 155 and a pharmaceutically acceptable carrier.
  • 165. A method of detecting expression of a GALR2 receptor by detecting the presence of mRNA coding for the GALR2 receptor which comprises obtaining total mRNA from the cell and contacting the mRNA so obtained with the nucleic acid probe of any one of claims 52, 53, 54, 55, 56, 57 or 61 under hybridizing conditions, detecting the presence of mRNA hybridized to the probe, and thereby detecting the expression of the GALR2 receptor by the cell.
  • 166. A method of treating an abnormality in a subject, wherein the abnormality is alleviated by the inhibition of a GALR2 receptor which comprises administering to a subject an effective amount of the pharmaceutical composition of any one of claims 117, 118, or 164 effective to decrease the activity of the GALR2 receptor in the subject, thereby treating the abnormality in the subject.
  • 167. The method of claim 166, wherein the abnormality is obesity or bulimia.
  • 168. A method of treating an abnormality in a subject wherein the abnormality is alleviated by the activation of a GALR2 receptor which comprises administering to a subject an effective amount of the pharmaceutical composition of any one of claims 115, 116, or 163 effective to activate the GALR2 receptor in the subject.
  • 169. The method of claim 168, wherein the abnormal condition is anorexia.
  • 170. The method of claim 166 or 168, wherein the compound binds selectively to a GALR2 receptor.
  • 171. The method of claim 170, wherein the compound binds to the GALR2 receptor with an affinity greater than ten-fold higher than the affinity with which the compound binds to a GALR1 receptor.
  • 172. The method of claim 170, wherein the compound binds to the GALR2 receptor with an affinity greater than ten-fold higher than the affinity with which the compound binds to a GALR3 receptor.
  • 173. A method of detecting the presence of a GALR2 receptor on the surface of a cell which comprises contacting the cell with the antibody of claim 65 under conditions permitting binding of the antibody to the receptor, detecting the presence of the antibody bound to the cell, and thereby detecting the presence of a GALR2 receptor on the surface of the cell.
  • 174. A method of determining the physiological effects of varying levels of activity of GALR2 receptors which comprises producing a transgenic nonhuman mammal of claim 80 whose levels of GALR2 receptor activity are varied by use of an inducible promoter which is regulates GALR2 receptor expression.
  • 175. A method of determining the physiological effects of varying levels of activity of GALR2 receptors which comprises producing a panel of transgenic nonhuman mammals of claim 79 each expressing a different amount of GALR2 receptor.
  • 176. A method for identifying an antagonist capable of alleviating an abnormality wherein the abnormality is alleviated by decreasing the activity of a GALR2 receptor comprising administering a compound to the transgenic nonhuman mammal of any one of claims 76, 79, 80, or 81, and determining whether the compound alleviates the physical and behavioral abnormalities displayed by the transgenic nonhuman mammal as a result of overactivity of a GALR2 receptor, the alleviation of the abnormality identifying the compound as an antagonist.
  • 177. An antagonist identified by the method of claim 176.
  • 178. A pharmaceutical composition comprising an antagonist identified by the method of claim 174 and a pharmaceutically acceptable carrier.
  • 179. A method of treating an abnormality in a subject wherein the abnormality is alleviated by decreasing the activity of a GALR2 receptor which comprises administering to a subject an effective amount of the pharmaceutical composition of claim 178, thereby treating the abnormality.
  • 180. A method for identifying an agonist capable of alleviating an abnormality in a subject wherein the abnormality is alleviated by increasing the activity of a GALR2 receptor comprising administering a compound to the transgenic nonhuman mammal of any one of claims 76, 79, 80, or 81, and determining whether the compound alleviates the physical and behavioral abnormalities displayed by the transgenic nonhuman mammal, the alleviation of the abnormality identifying the compound as an agonist.
  • 181. An agonist identified by the method of claim 180.
  • 182. A pharmaceutical composition comprising an agonist identified by the method of claim 180 and a pharmaceutically acceptable carrier.
  • 183. A method for treating an abnormality in a subject wherein the abnormality is alleviated by increasing the activity of a GALR2 receptor which comprises administering to a subject an effective amount of the pharmaceutical composition of claim 182, thereby treating the abnormality.
  • 184. A method for diagnosing a predisposition to a disorder associated with the activity of a specific human GALR2 receptor allele which comprises: a. obtaining DNA of subjects suffering from the disorder; b. performing a restriction digest of the DNA with a panel of restriction enzymes; c. electrophoretically separating the resulting DNA fragments on a sizing gel; d. contacting the resulting gel with a nucleic acid probe capable of specifically hybridizing with a unique sequence included within the sequence of a nucleic acid molecule encoding a human GALR2 receptor and labelled with a detectable marker; e. detecting labelled bands which have hybridized to the DNA encoding a human GALR2 receptor of claim 9 labelled with a detectable marker to create a unique band pattern specific to the DNA of subjects suffering from the disorder; f. preparing DNA obtained for diagnosis by steps a-e; and g. comparing the unique band pattern specific to the DNA of subjects suffering from the disorder from step e and the DNA obtained for diagnosis from step f to determine whether the patterns are the same or different and to diagnose thereby predisposition to the disorder if the patterns are the same.
  • 185. The method of claim 184, wherein a disorder associated with the activity of a specific human GALR2 receptor allele is diagnosed.
  • 186. A method of preparing the purified GALR2 receptor of claim 26, which comprises: a. inducing cells to express GALR2 receptor; b. recovering the receptor from the induced cells; and c. purifying the receptor so recovered.
  • 187. A method of preparing the purified GALR2 receptor of claim 26, which comprises: a. inserting nucleic acid encoding the GALR2 receptor in a suitable vector; b. introducing the resulting vector in a suitable host cell; c. placing the resulting cell in suitable condition permitting the production of the isolated GALR2 receptor; d. recovering the receptor produced by the resulting cell; and e. purifying the receptor so recovered.
  • 188. A method of modifying feeding behavior of a subject which comprises administering to the subject an amount of a compound which is a GALR2 receptor agonist or antagonist effective to increase or decrease the consumption of food by the subject so as to thereby modify feeding behavior of the subject.
  • 189. The method of claim 188, wherein the compound is a GALR2 receptor antagonist and the amount is effective to decrease the consumption of food by the subject.
  • 190. The method of claim 188 or 189, wherein the compound is administered in combination with food.
  • 191. The method of claim 188, wherein the compound is a GALR2 receptor agonist and the amount is effective to increase the consumption of food by the subject.
  • 192. The method of claim 188 or 191, wherein the compound is administered in combination with food.
  • 193. The method of claim 188 or 191, wherein the compound binds selectively to a GALR2 receptor.
  • 194. The method of claim 193, wherein the compound binds to the GALR2 receptor with an affinity greater than ten-fold higher than the affinity with which the compound binds to a GALR1 receptor.
  • 195. The method of claim 193, wherein the compound binds to the GALR2 receptor with an affinity greater than ten-fold higher than the affinity with which the compound binds to a GALR3 receptor.
  • 196. The method of claim 193, wherein the compound binds to the GALR2 receptor with an affinity greater than one hundred-fold higher than the affinity with which the compound binds to a GALR1 receptor.
  • 197. The method of claim 193, wherein the compound binds to the GALR2 receptor with an affinity greater than one hundred-fold higher than the affinity with which the compound binds to a GALR3 receptor.
  • 198. The method of claim 188, wherein the subject is a vertebrate, a mammal, a human or a canine.
  • 199. A method for determining whether a compound is a GALR2 antagonist which comprises: (a) administering to an animal a GALR2 agonist and measuring the amount of food intake in the animal; (b) administering to a second animal both the GALR2 agonist and the compound, and measuring the amount of food intake in the second animal; and (c) determining whether the amount of food intake is reduced in the presence of the compound relative to the amount of food intake in the absence of the compound., so as to thereby determine whether the compound is a GALR2 antagonist.
  • 200. A method of screening a plurality of compounds to identify a compound which is a GALR2 antagonist which comprises: (a) administering to an animal a GALR2 agonist and measuring the amount of food intake in the animal; (b) administering to a second animal the GALR2 agonist and at least one compound of the plurality of compounds and measuring the amount of food intake in the animal; (c) determining whether the amount of food intake is reduced in the presence of at least one compound of the plurality relative to the amount of food intake in the absence of at least one compound of the plurality, and if so; (d) separately determining whether each compound is a GALR2 antagonist according to the method of claim 134, so as to thereby identify a compound which is a GALR2 antagonist.
  • 201. The method of claim 199 or 200, wherein the GALR2 agonist is [D-Trp]2-galanin(1-29).
  • 202. The method of either of claims 199 or 200 wherein the animal is a non-human mammal.
  • 203. The method of claim 202, wherein the mammal is a rodent.
  • 204. A process of claim 82 or 83, which further comprises determining whether the compound selectively binds to the GALR2 receptor relative to another galanin receptor.
  • 205. The process of claim 204, wherein the determination whether the compound selectively binds to the GALR2 receptor comprises: (a) determining the binding affinity of the compound for the GALR2 receptor and for such other galanin receptor; and (b) comparing the binding affinities so determined, the presence of a higher binding affinity for the GALR2 receptor than for such other galanin receptor indicating that the compound selectively binds to the GALR2 receptor.
  • 206. A process of claim 204, wherein such other galanin receptor is a GALR1 receptor.
  • 207. A process of claim 204, wherein such other galanin receptor is a GALR3 receptor.
  • 208. A process of any one of claims 91, 92 or 93, which further comprises determining whether the compound selectively activates the GALR2 receptor relative to another galanin receptor.
  • 209. The process of claim 208, wherein the determination whether the compound selectively activates the GALR2 receptor comprises: (a) determining the potency of the compound for the GALR2 receptor and for such other galanin receptor; and (b) comparing the potencies so determined, the presence of a higher potency for the GALR2 receptor than for such other galanin receptor indicating that the compound selectively receptor is a GALR1 receptor.
  • 210. A process of claim 209, wherein such other galanin receptor is a GALR1 receptor.
  • 211. A process of claim 209, wherein such other galanin receptor is a GALR3 receptor.
  • 212. A process of claim 99 or 100, which further comprises determining whether the compound selectively inhibits the activation of the GAL2 receptor relative to another galanin receptor.
  • 213. The process of claim 212, wherein the determination whether the compound selectively inhibits the activation of the GALR2 receptor comprises: (a) determining the decrease in the potency of a known galanin receptor agonist for the GALR2 receptor in the presence of the compound, relative to the potency of the agonist in the absence of the compound; (b) determining the decrease in the potency of the agonist for such other galanin receptor in the presence of the compound, relative to the potency of the agonist in the absence of the compound; and (c) comparing the decrease in potencies so determined, the presence of a greater decrease in potency for the GALR2 receptor than for such other galanin receptor indicating that the compound selectively inhibits the activation of the GALR2 receptor.
  • 214. A process of claim 213, wherein such other galanin receptor is a GALR1 .
  • 215. A process of claim 213, wherein such other galanin receptor is a GALR3 receptor.
  • 216. A method of decreasing feeding behavior of a subject which comprises administering a compound which is a GALR2 receptor antagonist and a compound which is a Y5 receptor antagonist, the amount of such antagonists being effective to decrease the feeding behavior of the subject.
  • 217. The method of claim 216, wherein the GALR2 antagonist and the Y5 antagonist are administered in combination.
  • 218. The method of claim 216, wherein the GALR2 antagonist and the Y5 antagonist are administered once.
  • 219. The method of claim 216, wherein the GALR2 antagonist and the Y5 antagonist are administered separately.
  • 220. The method of claim 219, wherein the GALR2 antagonist and the Y5 antagonist are administered once.
  • 221. The method of claim 219, wherein the galanin receptor antagonist is administered for about 1 week to 2 weeks.
  • 222. The method of claim 219, wherein the Y5 receptor antagonist is administered for about 1 week to 2 weeks.
  • 223. The method of claim 219, wherein the GALR2 antagonist and the Y5 antagonist are administered alternately.
  • 224. The method of claim 223, wherein the GALR2 antagonist and the Y5 antagonist are administered repeatedly.
  • 225. A method of claim 223 or 224, wherein the galanin receptor antagonist is administered for about 1 week to 2 weeks.
  • 226. A method of claim 223 or 224, wherein the Y5 receptor antagonist is administered for about 1 week to 2 weeks.
  • 227. A method of any one of claims 216, 217, 218, or 219, wherein the compound is administered in a pharmaceutical composition comprising a sustained release formulation.
  • 228. A method of decreasing nociception in a subject which comprises administering to the subject an amount of a compound which is a GALR2 receptor agonist effective to decrease nociception in the subject.
  • 229. A method of treating pain in a subject which comprises administering to the subject an amount of a compound which is a GALR2 receptor agonist effective to treat pain in the subject.
  • 230. A method of treating Alzheimer's disease in a subject which comprises administering to the subject an amount of a compound which is a GALR2 receptor antagonist effective to treat Alzheimer's disease in the subject.
Parent Case Info

[0001] This application is a continuation-in-part of PCT/US97/01301, filed Jan. 24, 1997, which is a continuation-in-part in the U.S. of U.S. Ser. No. 08/721,837, filed Sep. 27, 1996, which is a continuation-in-part of U.S. Ser. No. 08/626,685 and U.S. Ser. No. 08/626,046, both filed Apr. 1, 1996, which are continuations-in-part of U.S. Ser. No. 08/590,494, filed Jan. 24, 1996, the contents of which are hereby incorporated by reference.

Continuation in Parts (5)
Number Date Country
Parent PCT/US97/01301 Jan 1997 US
Child 08899112 Jul 1997 US
Parent 08721837 Sep 1996 US
Child PCT/US97/01301 Jan 1997 US
Parent 08626685 Apr 1996 US
Child 08721837 Sep 1996 US
Parent 08626046 Apr 1996 US
Child 08721837 Sep 1996 US
Parent 08590494 Jan 1996 US
Child 08626046 Apr 1996 US