Driving assist system for vehicle

Information

  • Patent Grant
  • 9834142
  • Patent Number
    9,834,142
  • Date Filed
    Friday, May 19, 2017
    7 years ago
  • Date Issued
    Tuesday, December 5, 2017
    6 years ago
Abstract
A vehicular driving assist system includes a data processor module that receives and processes image data provided by a plurality of video sensors and sensor data provided by a plurality of non-video sensors. The video sensors include at least five cameras disposed at respective locations of the vehicle and having respective fields of view exterior the vehicle. The data processor module communicates with other vehicle systems via a vehicle bus of the vehicle. Received image data and received sensor data are processed at the data processor module for at least one of (i) object tracking of objects present exterior of the vehicle, (ii) object identification of objects present exterior of the vehicle and (iii) object classification of objects present exterior of the vehicle. Responsive at least in part to processing of image data and sensor data at the data processor module, a driving assistance system of the vehicle is controlled.
Description
FIELD OF THE INVENTION

This invention is directed to a video processor made for a vehicular video system and, more particularly, to a single electronic module which processes images from multiple image capture devices, such as CMOS video cameras, mounted throughout the interior and/or exterior of a vehicle, such as an automobile.


BACKGROUND THE INVENTION

It is known to use multiple video cameras on a vehicle to capture images both interior to the vehicle and exterior to the vehicle. It is also known to process the image outputs of such cameras by a variety of controls in order to display said images to a driver or another occupant of the vehicle, or to utilize the output of a camera in order to generate a control signal for a vehicular accessory, such as a headlamp or windshield wiper. As the number and complexity of camera-based accessories and features grows in a vehicle, there is a need to economically and efficiently process the multiple outputs from a plurality of camera and other sensors in order to perform a plurality of image displays and control functions.


SUMMARY OF THE INVENTION

The present invention is directed to a Video Processor Module (VPM) that is adapted to accept input from several vehicular cameras and optionally from other non-video devices and sensors in or on the vehicle and to process the image outputs therefrom in order to provide a variety of functions and controls. The VPM is preferably further adapted to interface with other vehicle modules via interfaces to the vehicle communication buses, such as via a CAN bus and/or a LIN bus.


A vehicle-based video processor module for a video system of a vehicle, according to an aspect of the invention, includes a video processor circuit, a plurality of electronic sensor interfaces that are operable to receive image output data from a plurality of imaging devices and at least one electronic vehicle interface that is operable to communicate with a vehicle communication bus. The video processor circuit is operable to process the image output data from the plurality of imaging devices into a single database in a standard format.


A vehicle-based video processor module for a video system of a vehicle, according to an aspect of the invention, includes a video processor circuit, a plurality of electronic sensor interfaces that are operable to receive image output data from a plurality of imaging devices and at least one electronic vehicle interface that is operable to communicate with a vehicle communication bus. The video processor circuit is operable to process the image output data from the plurality of imaging devices and to enhance the image output data.


These and other objects, advantages and features of this invention will become apparent upon review of the following specification in conjunction with the drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a top plan view of a vehicle outfitted with a vehicular video system, according to the invention; and



FIG. 2 is a block diagram of a video processor module, according to the invention.





DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring now to the drawings and the illustrative embodiments depicted therein, a vehicle 10 is illustrated in FIG. 1 having a vehicular video system 12, according to the invention. Vehicular video system 12 includes video processor module (VPM) 14, which receives input from a plurality of sensors, generally shown at 16. VPM 14 processes the output data from the plurality of devices and enhances the image output data. Sensors 16 may be imaging devices, such as vehicular cameras, as well as non-imaging devices. An example of a mix of sensors 16 that may be used in vehicular video system 12 includes imaging sensors, forward-facing imaging sensors, rearward-facing imaging sensors, left-side-facing imaging sensors, right-side-imaging sensors, inward-facing cabin-imaging sensors, and the like. Non-video sensors may include a near infrared sensor, a far infrared sensor, a radar sensor such as a Doppler radar sensor, a sonar sensor, a thermal sensor, a night vision sensor such as a multi-pixel bolometer and any other sensors which establish the presence, distance to, position and/or speed of an object. A Doppler radar sensor or side-facing camera may be mounted at an exterior mirror assembly. A forward-facing camera may be mounted at an interior mirror assembly of the vehicle that performs a headlamp control and/or windshield wiper control function. A side lane blind spot and/or lane change system may be provided and the VPM may be adapted to accept data from a variety of other non-video sensors to enhance performance in all visibility situations, such as when driving in fog or other low visibility conditions.


Video processor module 14 includes a video processor circuit 18 and a plurality of electronic sensor interfaces 20 for receiving data from a plurality of sensors 16. In the embodiment illustrated in FIG. 2, electronic interfaces 20 are illustrated as receiving image data output respectively from right-hand-facing and left-hand-facing side cameras, a front-facing camera and a rear-facing camera. The image data may be transmitted across a robust transmission means, such as a fiber-optic cable or a high-density wireless link, or the like. However, electronic interfaces 20 are capable of receiving data from non-imaging sensors as well. Electronic interfaces 20 may be utilized, J1394 Firewire protocol, NTSC protocol, or other standard protocol. Video processor module 14 includes at least one electronic vehicle interface 22 which is operative to interface with a vehicle bus, such as a CAN bus, a LIN bus, or the like.


Video processor circuit 18 includes a core 26 to exchange data with electronic sensor interfaces 20, and a core 28 to exchange data with electronic vehicle interfaces 22. A memory device 24 stores various data such as settings. Video processor circuit 18 includes a camera selection and advanced camera control section 30 for controlling the individual sensor devices and for integrating data from the plurality of sensors, such as by fusing or combining image data from multiple imaging sensors and data from non-imaging sensors. This combined or fused data is preprocessed into a single database in a standard format. Video processor circuit 18 further includes an object-tracking section 32 for tracking objects that are identified and classified by an object classification section 34. Video processor circuit 18 further includes a display section 36 which generates on-screen display signals and a diagnostic section 35 for performing diagnostics.


Having described the components of vehicular video system 12 and their operation, examples of various functions that can be supported with this vehicular video system will be set forth. One set of functions includes features for viewing of a displayed image. Video processor module 14 may be capable of merging of images from a plurality of imaging sensors 16 to provide a panoramic view, which exceeds the field of view of a single camera or allows the image to “wrap” around the vehicle. Video processor module 14 may be further capable of electronic elimination of distortions created by wide-angle lenses used with sensors 16. Video processor module 14 may be capable of superimposing graphics onto a displayed image to provide additional information to the observer.


Another set of functions includes features for sensing using an electronic image. Video processor module 14 may be programmed to be capable of detection with object position, speed and classification to support one or more of the following features:

    • Blind spot detection
    • Lane change aid
    • Adaptive speed control
    • Reverse aid warning
    • Advanced crash warning


      Video processor module 14 may be programmed to be capable of detecting the location of a lane on a road in conjunction with an imaging sensor 16. This capability can support a lane departure-warning feature or autonomous vehicle control. Video processor module 14 may use imaging sensors to establish ambient lighting and detect other vehicles for automatic control of the headlamps (on/off) and high/low beams. Video processor module 14 may have the capability to use imaging sensors to establish ambient lighting and vehicle headlamps for automatic control of electrochromic mirrors. Video processor module 14 may have the capability to detect the presence, position and size of occupants inside the vehicle. Video processor module 14 may have the capability to stabilize an image for viewing or use in sensing algorithms. It should be understood that the listed features and functions are illustrative only. Which of the particular ones that are used for a particular vehicular application may differ from those used for other vehicular applications. Additionally, other features and functions may be identified for video processor module 14 by the skilled artisan.


VPM 14 can be utilized in a variety of applications such as disclosed in commonly assigned U.S. Pat. Nos. 5,670,935; 5,949,331; 6,222,447; 6,201,642; 6,097,023; 5,715,093; 5,796,094 and 5,877,897 and commonly assigned patent applications, Ser. No. 09/793,002 filed Feb. 26, 2001, now U.S. Pat. No. 6,690,268, Ser. No. 09/372,915, filed Aug. 12, 1999, now U.S. Pat. No. 6,396,397, Ser. No. 09/767,939, filed Jan. 23, 2001, now U.S. Pat. No. 6,590,719, Ser. No. 09/776,625, filed Feb. 5, 2001, now U.S. Pat. No. 6,611,202, Ser. No. 09/799,993, filed Mar. 6, 2001, now U.S. Pat. No. 6,538,827, Ser. No. 09/493,522, filed Jan. 28, 2000, now U.S. Pat. No. 6,426,492, Ser. No. 09/199,907, filed Nov. 25, 1998, now U.S. Pat. No. 6,717,610, Ser. No. 08/952,026, filed Nov. 19, 1997,now U.S. Pat. No. 6,498,620, and Ser. No. 09/227,344, filed Jan. 8, 1999, now U.S. Pat. No. 6,302,545, International Publication No. WO 96/38319, published Dec. 5, 1996, and International Publication No. WO 99/23828, published May 14, 1999, the disclosures of which are collectively incorporated herein by reference.


For example, VPM 14 can be utilized in a vehicle equipped with a side object detection system utilizing stereoscopic imaging from cameras located in the driver-side exterior mirror assembly and/or in the passenger-side exterior mirror assembly, such as is described in commonly assigned patent application Ser. No. 09/372,915, filed Aug. 12, 1999, now U.S. Pat. No. 6,396,397, the disclosure of which is hereby incorporated herein by reference, and further equipped with a CMOS camera-based headlamp controller as disclosed in commonly assigned U.S. Pat. Nos. 5,796,094 and 6,097,023, the disclosures of which are hereby incorporated herein by reference, and with the various image outputs being processed by the VPM. In this regard, should the vehicle be equipped with high intensity discharge (HID)/gas discharge headlamps (as known in the automotive lighting art), then the VPM can receive the output signal from a forward-facing CMOS camera (preferably mounted at or in the interior rearview mirror assembly and viewing oncoming headlights of approaching vehicles through the front windshield of the vehicle) and the VPM can control the intensity and/or direction of the light beam output from the HID headlamps as a function of the light level of the oncoming approaching headlamps as detected by the interior rearview mirror located forward-facing multipixel CMOS camera-on-a-chip light detector. Preferably, the intensity of the light beam output by the vehicle's HID lamps is inversely proportional to the intensity of the detected oncoming headlamps and, most preferably, the intensity of the HID headlamps is continuously variable inversely proportional to the intensity of the oncoming headlight intensity of approaching vehicles as detected by the forward-facing CMOS camera.


Further, and preferably, the vehicle may be equipped with a mobile cellular phone that is docked into a cell phone cradle system (such as in the CellPort 3000 system available from Cellport Systems Inc. of Boulder, Colo.) to allow a driver to conduct a hands-free telephone call when driving, and to provide the driver the option of undocking the cellular phone as desired in order to use the cellular phone, for example, when the driver departs the vehicle. The cell phone cradle system can include a sound-processing system (preferably including a microphone or microphone array, and such as is disclosed in commonly assigned patent application Ser. No. 09/466,010, filed Dec. 17, 1999, now U.S. Pat. No. 6,420,975, the disclosure of which is hereby incorporated herein by reference, and other accessories, and with the cell cradle providing outputs at least partially processed by the VPM.


The vehicle may also be equipped with a navigational system, such as a global positioning system, and with controls and/or functions of said navigational system being at least partially processed by VPM 14. For a vehicle equipped with a GPS system and with a cell phone cradle (such as the CellPort 3000 system), a control input can be provided in the interior of the vehicle (such as at or on the interior mirror assembly) and/or a voice command control system can be provided whereby when the control input and/or voice command is actuated, a call is initiated to an external service (such as an emergency service of a concierge service or an information service) located remote from the vehicle and wherein the location of the vehicle (as generated by the vehicular navigational system) is automatically transmitted to the external service so that the external service can know the location of the vehicle and so provide assistance, advice and/or directions, and the like, to the driver of that vehicle. Such communication of geographic positional data can be transmitted by telecommunication via a phone network (such as Sprint or MCI or ATT, or the like) in a voice-over-data format allowing the driver to have a conversation with the service provider (and/or with another party) concurrent with the transmission of the vehicle location information to the service provider via telephonic linkage via the docked cell phone (or, optionally, via a BLUETOOTH or similar short-range RF wireless link between a cellular phone in, for example, the pocket of a driver and a cell phone linking/telecommunication/telematic station located, for example, at an interior rearview mirror assembly of the vehicle or in a dashboard or console area of the vehicle) to the external service provider. Preferably, at least some of such processing is handled by VPM 14 and, in particular, when videoconferencing is used.


The present invention can be used in a lane change aid system such as disclosed in a commonly assigned provisional patent application Ser. No. 60/309,022 filed Jul. 31, 2001, and a utility patent application filed concurrently herewith by Schofield for an AUTOMOTIVE LANE CHANGE AID, now U.S. Pat. No. 6,882,287, the disclosures of which are hereby incorporated herein by reference.


Also, a night vision system camera (such as an infrared detecting microbolometer night vision camera or a CMOS/near-IR detecting camera used in conjunction with a near-IR laser source for illumination forward of the vehicle) and an intelligent headlamp controller (such as a forward-facing CMOS video camera that automatically detects approaching vehicles and that dims the headlights of the host vehicle in response) can have their outputs combined/fused in accordance with the present invention to identify objects hazardous to the driver, such as a deer crossing the road ahead of the vehicle as the vehicle travels down a dark road at night. The control can, in response, automatically activate one or both existing headlamps, for example, to flash them or to move from a low-beam state to a high-beam state or to activate an additional headlamp or fog lamp or to adjust headlamps to high beam so that the object may be illuminated for the driver. Current night vision systems may either provide too much information for the driver to usefully assimilate or may distract him/her from attention to the road. The above combination achieved via the fusion system of the present invention allows use of the night vision system/intelligent headlamp controller to automatically provide extra forward illumination at the time required for the driver to take action to avoid a problem, which is the real intent behind the night vision system in the first place. The fusion of these inputs into a single processor achieves optimized nighttime driving safety. Note that a single forward-facing camera can perform both the night vision and intelligent headlamp control functions.


VPM 14 may receive both wired inputs and wireless inputs. For example, a restricted-range RF wireless communication device such as a BLUETOOTH device (housed, for example within an inside mirror or housed elsewhere in the interior cabin such as in an overhead console or a facia/instrumentation panel) can be used as a convenient channel location for the programming or reprogramming of various types of radio-frequency (RF) devices in a vehicle and/or to facilitate the use of RF as a means to program or reprogram non-RF devices to provide drivers with a more complete personalization of a vehicle (e.g., trainable garage door open, memory seat/mirror position, outside mirror position, etc.). This can be used in, for example, rental cars where an RF signal can be provided (such as via an RF transmitter located in the interior mirror assembly or in a windshield electronic accessory module) from a personal display assistant device (PDA) such as a PalmPilot® PDA and thus provide a driver with immediate personalization to include temperature/climate control, radio setting, exterior mirror reflector position and other preferences.


In accordance with U.S. Pat. Nos. 5,949,331 and 6,222,447, incorporated by reference above, a display system of the equipped vehicle displays a synthesized image that visually informs the driver of what is occurring in the area surrounding the equipped vehicle. The displayed image is synthesized from the camera outputs and, preferably, approximates a substantially seamless panoramic view as would be viewed by a single virtual camera located exterior the equipped vehicle.


Changes and modifications in the specifically described embodiments can be carried out without departing from the principles of the invention, which is intended to be limited only by the scope of the appended claims, as interpreted according to the principles of patent law including the doctrine of equivalents.

Claims
  • 1. A vehicular driving assist system suitable for use in a vehicle, said vehicular driving assist system comprising: a data processor module disposed at a vehicle equipped with said vehicular driving assist system;said data processor module receiving and processing image data provided by a plurality of video sensors disposed at the equipped vehicle;said data processor module receiving and processing sensor data provided by a plurality of non-video sensors disposed at the equipped vehicle;said plurality of non-video sensors comprising a radar sensor;said plurality of video sensors comprising at least five vehicular cameras;said at least five vehicular cameras comprising a first vehicular camera disposed at a driver side of the equipped vehicle;said at least five vehicular cameras comprising a second vehicular camera disposed at a passenger side of the equipped vehicle;said at least five vehicular cameras comprising a third vehicular camera disposed at a rear portion of the equipped vehicle;said at least five vehicular cameras comprising a fourth vehicular camera disposed at a front portion of the equipped vehicle;said at least five vehicular cameras comprising a fifth vehicular camera disposed at an in-cabin side of a windshield of the equipped vehicle and viewing forwardly through the windshield of the equipped vehicle;wherein said first vehicular camera has a first field of view exterior of the equipped vehicle and is operable to capture first image data;wherein said second vehicular camera has a second field of view exterior of the equipped vehicle and is operable to capture second image data;wherein said third vehicular camera has a third field of view exterior of the equipped vehicle and is operable to capture third image data;wherein said fourth vehicular camera has a fourth field of view exterior of the equipped vehicle and is operable to capture fourth image data;wherein said fifth vehicular camera has a fifth field of view exterior of the equipped vehicle and is operable to capture fifth image data;wherein said data processor module receives first image data captured by said first vehicular camera at a first interface;wherein said data processor module receives second image data captured by said second vehicular camera at a second interface;wherein said data processor module receives third image data captured by said third vehicular camera at a third interface;wherein said data processor module receives fourth image data captured by said fourth vehicular camera at a fourth interface;wherein said data processor module receives fifth image data captured by said fifth vehicular camera;wherein said data processor module receives sensor data captured by said plurality of non-video sensors;wherein said data processor module communicates with other vehicle systems via a vehicle bus of the equipped vehicle;wherein received image data and received sensor data are processed at said data processor module for at least one of (i) object tracking of objects present exterior of the equipped vehicle, (ii) object identification of objects present exterior of the equipped vehicle and (iii) object classification of objects present exterior of the equipped vehicle; andwherein, responsive at least in part to processing of image data and sensor data at said data processor module, a driving assistance system of the equipped vehicle is controlled.
  • 2. The vehicular driving assist system of claim 1, wherein, responsive at least in part to processing of image data and sensor data at said data processor module, other vehicles present exterior of the equipped vehicle are detected.
  • 3. The vehicular driving assist system of claim 2, wherein, responsive at least in part to processing at said data processor module of image data captured by said fifth vehicular camera, an edge of a lane on a road along which the equipped vehicle is travelling is detected.
  • 4. The vehicular driving assist system of claim 3, wherein, responsive at least in part to processing at said data processor module of image data captured by said fifth vehicular camera, another vehicle present exterior of the equipped vehicle is detected.
  • 5. The vehicular driving assist system of claim 4, wherein, responsive at least in part to the detection of the other vehicle present exterior of the equipped vehicle, a state of headlamps of the equipped vehicle is controlled.
  • 6. The vehicular driving assist system of claim 1, wherein the driving assistance system of the equipped vehicle provides adaptive speed control of the equipped vehicle.
  • 7. The vehicular driving assist system of claim 1, wherein the driving assistance system of the equipped vehicle provides lane change aid for the equipped vehicle.
  • 8. The vehicular driving assist system of claim 1, wherein the driving assistance system of the equipped vehicle provides advanced crash warning for the equipped vehicle.
  • 9. The vehicular driving assist system of claim 1, wherein the driving assistance system of the equipped vehicle provides blind spot detection for the equipped vehicle.
  • 10. The vehicular driving assist system of claim 1, wherein said data processor module receives first image data captured by said first vehicular camera at said first interface via a vehicle bus of the equipped vehicle, and wherein said data processor module receives second image data captured by said second vehicular camera at said second interface via a vehicle bus of the equipped vehicle, and wherein said data processor module receives third image data captured by said third vehicular camera at said third interface via a vehicle bus of the equipped vehicle, and wherein said data processor module receives fourth image data captured by said fourth vehicular camera at said fourth interface via a vehicle bus of the equipped vehicle.
  • 11. The vehicular driving assist system of claim 1, wherein said data processor module comprises at least one non-video sensor interface configured for communication with at least one non-video sensor of the equipped vehicle.
  • 12. The vehicular driving assist system of claim 11, wherein said data processor module communicates with said at least one non-video sensor via a vehicle bus of the equipped vehicle.
  • 13. The vehicular driving assist system of claim 1, wherein said first vehicular camera is disposed at a driver-side exterior mirror assembly at the driver side of the equipped vehicle, and wherein said second vehicular camera is disposed at a passenger-side exterior mirror assembly at the passenger side of the equipped vehicle.
  • 14. The vehicular driving assist system of claim 1, wherein objects present exterior of the equipped vehicle are tracked based at least in part on processing of image data and sensor data at said data processor module.
  • 15. The vehicular driving assist system of claim 1, wherein an object present exterior of the equipped vehicle is detected, at least in part, via processing of image data at said data processor module.
  • 16. The vehicular driving assist system of claim 15, wherein position of the object present exterior of the equipped vehicle is determined, at least in part, via processing of image data at said data processor module.
  • 17. The vehicular driving assist system of claim 1, wherein said data processor module communicates with other vehicle systems via a CAN vehicle bus of the equipped vehicle.
  • 18. The vehicular driving assist system of claim 1, wherein said data processor module receives fifth image data captured by said fifth vehicular camera at a fifth interface.
  • 19. The vehicular driving assist system of claim 18, wherein said data processor module comprises at least one non-video sensor interface configured for communication with said radar sensor of said plurality of non-video sensors.
  • 20. The vehicular driving assist system of claim 1, wherein said data processor module comprises a video processor chip.
  • 21. The vehicular driving assist system of claim 1, wherein said plurality of non-video sensors comprises a plurality of radar sensors disposed at the equipped vehicle, and wherein said radar sensors are operable to sense radar data, and wherein said data processor module receives radar data sensed by said plurality of radar sensors, and wherein received image data is processed with received radar data at said data processor module, and wherein, responsive at least in part to processing of image data and radar data at said data processor module, the driving assistance system of the equipped vehicle is controlled.
  • 22. The vehicular driving assist system of claim 21, wherein vehicles exterior of the equipped vehicle are tracked based at least in part on processing of captured image data and sensed radar data at said data processor module.
  • 23. The vehicular driving assist system of claim 1, wherein said third vehicular camera disposed at the rear portion of the equipped vehicle is located at or proximate to a longitudinal centerline of the equipped vehicle, and wherein said fourth vehicular camera disposed at the front portion of the equipped vehicle is located at or proximate to the longitudinal centerline of the equipped vehicle.
  • 24. The vehicular driving assist system of claim 1, wherein said data processor module receives and processes data derived from a global positioning system of the equipped vehicle.
  • 25. The vehicular driving assist system of claim 24, wherein, responsive at least in part to processing at said data processor module of data derived from the global positioning system of the equipped vehicle, location of the equipped vehicle is wirelessly transmitted to an external receiver remote from the equipped vehicle.
  • 26. The vehicular driving assist system of claim 1, wherein data processing at said data processor module comprises performance of diagnostics.
  • 27. The vehicular driving assist system of claim 1, wherein the driving assistance system of the equipped vehicle comprises an adaptive speed control system of the equipped vehicle.
  • 28. The vehicular driving assist system of claim 1, wherein said first, second, third and fourth image data image data is processed at said data processor module and, responsive at least in part to said processing of said first, second, third and fourth image data, a synthesized image is output to a display system of the equipped vehicle to visually inform a driver of the equipped vehicle of what is occurring in the area surrounding the equipped vehicle as would be viewed by a single virtual camera located exterior the equipped vehicle.
  • 29. The vehicular driving assist system of claim 1, wherein the driving assistance system of the equipped vehicle comprises a side object detection system of the equipped vehicle.
  • 30. The vehicular driving assist system of claim 1, wherein said data processor module comprises a video processor chip, a power supply and memory.
  • 31. A vehicular driving assist system suitable for use in a vehicle, said vehicular driving assist system comprising: a data processor module disposed at a vehicle equipped with said vehicular driving assist system;said data processor module receiving and processing image data provided by a plurality of video sensors disposed at the equipped vehicle;said data processor module receiving and processing sensor data provided by a plurality of non-video sensors disposed at the equipped vehicle;wherein said plurality of non-video sensors comprises a plurality of radar sensors disposed at the equipped vehicle, and wherein said radar sensors are operable to sense radar data;said plurality of video sensors comprising at least five vehicular cameras;said at least five vehicular cameras comprising a first vehicular camera disposed at a driver side of the equipped vehicle;said at least five vehicular cameras comprising a second vehicular camera disposed at a passenger side of the equipped vehicle;said at least five vehicular cameras comprising a third vehicular camera disposed at a rear portion of the equipped vehicle;said at least five vehicular cameras comprising a fourth vehicular camera disposed at a front portion of the equipped vehicle;said at least five vehicular cameras comprising a fifth vehicular camera disposed at an in-cabin side of a windshield of the equipped vehicle and viewing forwardly through the windshield of the equipped vehicle;wherein said first vehicular camera has a first field of view exterior of the equipped vehicle and is operable to capture first image data;wherein said second vehicular camera has a second field of view exterior of the equipped vehicle and is operable to capture second image data;wherein said third vehicular camera has a third field of view exterior of the equipped vehicle and is operable to capture third image data;wherein said fourth vehicular camera has a fourth field of view exterior of the equipped vehicle and is operable to capture fourth image data;wherein said fifth vehicular camera has a fifth field of view exterior of the equipped vehicle and is operable to capture fifth image data;wherein said data processor module receives fifth image data captured by said fifth vehicular camera;wherein said data processor module receives radar data sensed by said plurality of radar sensors;wherein said data processor module communicates with other vehicle systems via a vehicle bus of the equipped vehicle;wherein received image data and received radar data are processed at said data processor module for at least one of (i) object tracking of objects present exterior of the equipped vehicle, (ii) object identification of objects present exterior of the equipped vehicle and (iii) object classification of objects present exterior of the equipped vehicle; andwherein vehicles exterior of the equipped vehicle are tracked based at least in part on processing of captured image data and sensed radar data at said data processor module.
  • 32. The vehicular driving assist system of claim 31, wherein, responsive at least in part to processing at said data processor module of image data captured by said fifth vehicular camera, at least one of (i) an edge of a lane on a road along which the equipped vehicle is travelling is detected and (ii) another vehicle present exterior of the equipped vehicle is detected.
  • 33. The vehicular driving assist system of claim 32, wherein, responsive at least in part to processing at said data processor module of data derived from a global positioning system of the equipped vehicle, location of the equipped vehicle is wirelessly transmitted to an external receiver remote from the equipped vehicle.
  • 34. The vehicular driving assist system of claim 32, wherein said data processor module comprises a power supply and memory, and wherein data processing at said data processor module comprises performance of diagnostics.
  • 35. The vehicular driving assist system of claim 31, wherein received image data and received radar data are processed at said data processor module for adaptive speed control of the equipped vehicle and for at least one of (i) a lane change aid system of the equipped vehicle, (ii) a blind spot detection system of the equipped vehicle and (iii) a side object detection system of the equipped vehicle.
  • 36. A vehicular driving assist system suitable for use in a vehicle, said vehicular driving assist system comprising: a data processor module disposed at a vehicle equipped with said vehicular driving assist system;said data processor module receiving and processing image data provided by a plurality of video sensors disposed at the equipped vehicle;said data processor module receiving and processing sensor data provided by a plurality of non-video sensors disposed at the equipped vehicle;said plurality of non-video sensors comprising a radar sensor;said plurality of video sensors comprising at least five vehicular cameras;said at least five vehicular cameras comprising a first vehicular camera disposed at a driver side of the equipped vehicle;said at least five vehicular cameras comprising a second vehicular camera disposed at a passenger side of the equipped vehicle;said at least five vehicular cameras comprising a third vehicular camera disposed at a rear portion of the equipped vehicle;said at least five vehicular cameras comprising a fourth vehicular camera disposed at a front portion of the equipped vehicle;said at least five vehicular cameras comprising a fifth vehicular camera disposed at an in-cabin side of a windshield of the equipped vehicle and viewing forwardly through the windshield of the equipped vehicle;wherein said first vehicular camera has a first field of view exterior of the equipped vehicle and is operable to capture first image data;wherein said second vehicular camera has a second field of view exterior of the equipped vehicle and is operable to capture second image data;wherein said third vehicular camera has a third field of view exterior of the equipped vehicle and is operable to capture third image data;wherein said fourth vehicular camera has a fourth field of view exterior of the equipped vehicle and is operable to capture fourth image data;wherein said fifth vehicular camera has a fifth field of view exterior of the equipped vehicle and is operable to capture fifth image data;wherein said data processor module receives first image data captured by said first vehicular camera at a first interface;wherein said data processor module receives second image data captured by said second vehicular camera at a second interface;wherein said data processor module receives third image data captured by said third vehicular camera at a third interface;wherein said data processor module receives fourth image data captured by said fourth vehicular camera at a fourth interface;wherein said data processor module receives fifth image data captured by said fifth vehicular camera;wherein said data processor module receives sensor data captured by said plurality of non-video sensors;wherein said data processor module communicates with other vehicle systems via a vehicle bus of the equipped vehicle;wherein an object present exterior of the equipped vehicle is detected, at least in part, via processing of image data and of sensor data at said data processor module;wherein position of the object present exterior of the equipped vehicle is determined, at least in part, via processing of image data and of sensor data at said data processor module; andwherein received image data and received radar data are processed at said data processor module for a side object detection system of the equipped vehicle.
  • 37. The vehicular driving assist system of claim 36, wherein said data processor module comprises at least one non-video sensor interface configured for communication with said radar sensor of said plurality of non-video sensors.
  • 38. The vehicular driving assist system of claim 37, wherein, responsive at least in part to processing at said data processor module of image data captured by said fifth vehicular camera, at least one of (i) another vehicle present exterior of the equipped vehicle is detected and (ii) a state of headlamps of the equipped vehicle is controlled.
  • 39. The vehicular driving assist system of claim 36, wherein said data processor module comprises a power supply and memory.
  • 40. The vehicular driving assist system of claim 39, wherein, responsive at least in part to processing at said data processor module of data derived from a global positioning system of the equipped vehicle, location of the equipped vehicle is wirelessly transmitted to an external receiver remote from the equipped vehicle.
  • 41. The vehicular driving assist system of claim 39, wherein received image data and received radar data are processed at said data processor module for at least one of (i) adaptive speed control of the equipped vehicle, (ii) a lane change aid system of the equipped vehicle and (iii) a blind spot detection system of the equipped vehicle.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/180,645, filed Jun. 13, 2016, now U.S. Pat. No. 9,656,608, which is a continuation of U.S. patent application Ser. No. 14/942,087, filed Nov. 16, 2015, now U.S. Pat. No. 9,376,060, which is a continuation of U.S. patent application Ser. No. 13/800,677, filed Mar. 13, 2013, now U.S. Pat. No. 9,191,574, which is a continuation of U.S. patent application Ser. No. 12/708,079, filed Feb. 18, 2010, now U.S. Pat. No. 8,405,725, which is a continuation of U.S. patent application Ser. No. 10/209,181, filed Jul. 31, 2002, now U.S. Pat. No. 7,697,027, which claims priority from U.S. provisional patent application Ser. No. 60/309,023, filed on Jul. 31, 2001, the disclosure of which is hereby incorporated herein by reference in its entirety.

US Referenced Citations (533)
Number Name Date Kind
2632040 Rabinow Mar 1953 A
2827594 Rabinow Mar 1953 A
3947095 Moultrie Mar 1976 A
3985424 Steinacher Oct 1976 A
4037134 Loper Jul 1977 A
4200361 Malvano Apr 1980 A
4214266 Myers Jul 1980 A
4218698 Bart et al. Aug 1980 A
4236099 Rosenblum Nov 1980 A
4247870 Gabel et al. Jan 1981 A
4249160 Chilvers Feb 1981 A
4254931 Aikens Mar 1981 A
4266856 Wainwright May 1981 A
4277804 Robison Jul 1981 A
4281898 Ochiai Aug 1981 A
4288814 Talley et al. Sep 1981 A
4355271 Noack Oct 1982 A
4357558 Massoni et al. Nov 1982 A
4381888 Momiyama May 1983 A
4420238 Felix Dec 1983 A
4431896 Lodetti Feb 1984 A
4443057 Bauer Apr 1984 A
4460831 Oettinger et al. Jul 1984 A
4481450 Watanabe et al. Nov 1984 A
4491390 Tong-Shen Jan 1985 A
4512637 Ballmer Apr 1985 A
4521804 Bendell Jun 1985 A
4529275 Ballmer Jul 1985 A
4529873 Ballmer Jul 1985 A
4532550 Bendell et al. Jul 1985 A
4546551 Franks Oct 1985 A
4549208 Kamejima et al. Oct 1985 A
4571082 Downs Feb 1986 A
4572619 Reininger Feb 1986 A
4580875 Bechtel Apr 1986 A
4600913 Caine Jul 1986 A
4603946 Kato Aug 1986 A
4614415 Hyatt Sep 1986 A
4620141 McCumber et al. Oct 1986 A
4623222 Itoh Nov 1986 A
4626850 Chey Dec 1986 A
4629941 Ellis Dec 1986 A
4630109 Barton Dec 1986 A
4632509 Ohmi Dec 1986 A
4638287 Umebayashi et al. Jan 1987 A
4645975 Meitzler et al. Feb 1987 A
4647161 Muller Mar 1987 A
4653316 Fukuhara Mar 1987 A
4669825 Itoh Jun 1987 A
4669826 Itoh Jun 1987 A
4671615 Fukada Jun 1987 A
4672457 Hyatt Jun 1987 A
4676601 Itoh Jun 1987 A
4690508 Jacob Sep 1987 A
4692798 Seko et al. Sep 1987 A
4697883 Suzuki Oct 1987 A
4701022 Jacob Oct 1987 A
4713685 Nishimura et al. Dec 1987 A
4717830 Botts Jan 1988 A
4727290 Smith Feb 1988 A
4731669 Hayashi et al. Mar 1988 A
4741603 Miyagi May 1988 A
4758883 Kawahara et al. Jul 1988 A
4768135 Kretschmer et al. Aug 1988 A
4772942 Tuck Sep 1988 A
4789904 Peterson Dec 1988 A
4793690 Gahan Dec 1988 A
4817948 Simonelli Apr 1989 A
4820933 Hong Apr 1989 A
4825232 Howdle Apr 1989 A
4838650 Stewart Jun 1989 A
4847772 Michalopoulos et al. Jul 1989 A
4855822 Narendra et al. Aug 1989 A
4859031 Berman et al. Aug 1989 A
4862037 Farber et al. Aug 1989 A
4867561 Fujii et al. Sep 1989 A
4871917 O'Farrell et al. Oct 1989 A
4872051 Dye Oct 1989 A
4881019 Shiraishi et al. Nov 1989 A
4882565 Gallmeyer Nov 1989 A
4886960 Molyneux Dec 1989 A
4891559 Matsumoto et al. Jan 1990 A
4892345 Rachael, III Jan 1990 A
4895790 Swanson et al. Jan 1990 A
4896030 Miyaji Jan 1990 A
4900133 Berman Feb 1990 A
4907870 Brucker Mar 1990 A
4910591 Petrossian et al. Mar 1990 A
4916374 Schierbeek Apr 1990 A
4917477 Bechtel et al. Apr 1990 A
4937796 Tendler Jun 1990 A
4953305 Van Lente et al. Sep 1990 A
4956591 Schierbeek Sep 1990 A
4961625 Wood et al. Oct 1990 A
4967319 Seko Oct 1990 A
4970653 Kenue Nov 1990 A
4971430 Lynas Nov 1990 A
4974078 Tsai Nov 1990 A
4987357 Masaki Jan 1991 A
4987410 Berman et al. Jan 1991 A
4991054 Walters Feb 1991 A
5001558 Burley et al. Mar 1991 A
5003288 Wilhelm Mar 1991 A
5012082 Watanabe Apr 1991 A
5016977 Baude et al. May 1991 A
5027001 Torbert Jun 1991 A
5027200 Petrossian et al. Jun 1991 A
5044706 Chen Sep 1991 A
5050966 Berman Sep 1991 A
5055668 French Oct 1991 A
5059877 Teder Oct 1991 A
5064274 Alten Nov 1991 A
5072154 Chen Dec 1991 A
5075768 Wirtz et al. Dec 1991 A
5086253 Lawler Feb 1992 A
5096287 Kakinami et al. Mar 1992 A
5097362 Lynas Mar 1992 A
5121200 Choi Jun 1992 A
5124549 Michaels et al. Jun 1992 A
5130709 Toyama et al. Jul 1992 A
5148014 Lynam Sep 1992 A
5166681 Bottesch et al. Nov 1992 A
5168378 Black Dec 1992 A
5170374 Shimohigashi et al. Dec 1992 A
5172235 Wilm et al. Dec 1992 A
5172317 Asanuma et al. Dec 1992 A
5177606 Koshizawa Jan 1993 A
5177685 Davis et al. Jan 1993 A
5182502 Slotkowski et al. Jan 1993 A
5184956 Langlais et al. Feb 1993 A
5189561 Hong Feb 1993 A
5193000 Lipton et al. Mar 1993 A
5193029 Schofield Mar 1993 A
5204778 Bechtel Apr 1993 A
5208701 Maeda May 1993 A
5208750 Kurami et al. May 1993 A
5214408 Asayama May 1993 A
5243524 Ishida et al. Sep 1993 A
5245422 Borcherts et al. Sep 1993 A
5253109 O'Farrell Oct 1993 A
5276389 Levers Jan 1994 A
5285060 Larson et al. Feb 1994 A
5289182 Brillard et al. Feb 1994 A
5289321 Secor Feb 1994 A
5305012 Faris Apr 1994 A
5307136 Saneyoshi Apr 1994 A
5309137 Kajiwara May 1994 A
5313072 Vachss May 1994 A
5325096 Pakett Jun 1994 A
5325386 Jewell et al. Jun 1994 A
5329206 Slotkowski et al. Jul 1994 A
5331312 Kudoh Jul 1994 A
5336980 Levers Aug 1994 A
5341437 Nakayama Aug 1994 A
5343206 Ansaldi et al. Aug 1994 A
5351044 Mathur et al. Sep 1994 A
5355118 Fukuhara Oct 1994 A
5359666 Nakayama et al. Oct 1994 A
5374852 Parkes Dec 1994 A
5386285 Asayama Jan 1995 A
5394333 Kao Feb 1995 A
5406395 Wilson et al. Apr 1995 A
5408346 Trissel et al. Apr 1995 A
5410346 Saneyoshi et al. Apr 1995 A
5414257 Stanton May 1995 A
5414461 Kishi et al. May 1995 A
5416313 Larson et al. May 1995 A
5416318 Hegyi May 1995 A
5416478 Morinaga May 1995 A
5424952 Asayama Jun 1995 A
5426294 Kobayashi et al. Jun 1995 A
5430431 Nelson Jul 1995 A
5434407 Bauer et al. Jul 1995 A
5440428 Hegg et al. Aug 1995 A
5444478 Lelong et al. Aug 1995 A
5451822 Bechtel et al. Sep 1995 A
5457493 Leddy et al. Oct 1995 A
5461357 Yoshioka et al. Oct 1995 A
5461361 Moore Oct 1995 A
5469298 Suman et al. Nov 1995 A
5471515 Fossum et al. Nov 1995 A
5475494 Nishida et al. Dec 1995 A
5487116 Nakano et al. Jan 1996 A
5498866 Bendicks et al. Mar 1996 A
5500766 Stonecypher Mar 1996 A
5510983 Iino Apr 1996 A
5515448 Nishitani May 1996 A
5521633 Nakajima et al. May 1996 A
5528698 Kamei et al. Jun 1996 A
5529138 Shaw et al. Jun 1996 A
5530240 Larson et al. Jun 1996 A
5530420 Tsuchiya et al. Jun 1996 A
5535144 Kise Jul 1996 A
5535314 Alves et al. Jul 1996 A
5537003 Bechtel et al. Jul 1996 A
5539397 Asanuma et al. Jul 1996 A
5541590 Nishio Jul 1996 A
5550677 Schofield et al. Aug 1996 A
5555312 Shima et al. Sep 1996 A
5555555 Sato et al. Sep 1996 A
5559695 Daily Sep 1996 A
5568027 Teder Oct 1996 A
5574443 Hsieh Nov 1996 A
5581464 Woll et al. Dec 1996 A
5594222 Caldwell Jan 1997 A
5614788 Mullins Mar 1997 A
5619370 Guinosso Apr 1997 A
5634709 Iwama Jun 1997 A
5638116 Shimoura et al. Jun 1997 A
5642299 Hardin et al. Jun 1997 A
5648835 Uzawa Jul 1997 A
5650944 Kise Jul 1997 A
5660454 Mori et al. Aug 1997 A
5661303 Teder Aug 1997 A
5666028 Bechtel et al. Sep 1997 A
5668663 Varaprasad et al. Sep 1997 A
5670935 Schofield et al. Sep 1997 A
5675489 Pomerleau Oct 1997 A
5677851 Kingdon et al. Oct 1997 A
5680123 Lee Oct 1997 A
5680313 Whittaker et al. Oct 1997 A
5699044 Van Lente et al. Dec 1997 A
5715093 Schierbeek et al. Feb 1998 A
5724187 Varaprasad et al. Mar 1998 A
5724316 Brunts Mar 1998 A
5737226 Olson et al. Apr 1998 A
5757949 Kinoshita et al. May 1998 A
5760826 Nayer Jun 1998 A
5760828 Cortes Jun 1998 A
5760931 Saburi et al. Jun 1998 A
5760962 Schofield et al. Jun 1998 A
5761094 Olson et al. Jun 1998 A
5765116 Wilson-Jones et al. Jun 1998 A
5781437 Wiemer et al. Jul 1998 A
5786722 Schofield et al. Jul 1998 A
5786772 Schofield et al. Jul 1998 A
5790403 Nakayama Aug 1998 A
5790973 Blaker et al. Aug 1998 A
5793308 Rosinski et al. Aug 1998 A
5793420 Schmidt Aug 1998 A
5796094 Schofield et al. Aug 1998 A
5798575 O'Farrell et al. Aug 1998 A
5835255 Miles Nov 1998 A
5837994 Stam et al. Nov 1998 A
5844505 Van Ryzin Dec 1998 A
5844682 Kiyomoto et al. Dec 1998 A
5845000 Breed et al. Dec 1998 A
5848802 Breed et al. Dec 1998 A
5850176 Kinoshita et al. Dec 1998 A
5850254 Takano et al. Dec 1998 A
5867591 Onda Feb 1999 A
5877707 Kowalick Mar 1999 A
5877897 Schofield et al. Mar 1999 A
5878370 Olson Mar 1999 A
5883739 Ashihara et al. Mar 1999 A
5884212 Lion Mar 1999 A
5890021 Onoda Mar 1999 A
5896085 Mori et al. Apr 1999 A
5899956 Chan May 1999 A
5904725 Iisaka et al. May 1999 A
5912980 Hunke Jun 1999 A
5914815 Bos Jun 1999 A
5923027 Stam et al. Jul 1999 A
5929786 Schofield et al. Jul 1999 A
5940120 Frankhouse et al. Aug 1999 A
5949331 Schofield et al. Sep 1999 A
5956181 Lin Sep 1999 A
5959367 O'Farrell et al. Sep 1999 A
5959555 Furuta Sep 1999 A
5963247 Banitt Oct 1999 A
5963749 Nicholson Oct 1999 A
5964822 Alland et al. Oct 1999 A
5971552 O'Farrell et al. Oct 1999 A
5982544 Ogata Nov 1999 A
5986796 Miles Nov 1999 A
5990469 Bechtel et al. Nov 1999 A
5990649 Nagao et al. Nov 1999 A
6001486 Varaprasad et al. Dec 1999 A
6009336 Harris et al. Dec 1999 A
6020704 Buschur Feb 2000 A
6020931 Bilbrey et al. Feb 2000 A
6049171 Stam et al. Apr 2000 A
6052124 Stein et al. Apr 2000 A
6066933 Ponziana May 2000 A
6084519 Coulling et al. Jul 2000 A
6087953 DeLine et al. Jul 2000 A
6091833 Yasui et al. Jul 2000 A
6097023 Schofield et al. Aug 2000 A
6097024 Stam et al. Aug 2000 A
6115651 Cruz Sep 2000 A
6116743 Hoek Sep 2000 A
6124647 Marcus et al. Sep 2000 A
6124886 DeLine et al. Sep 2000 A
6139172 Bos et al. Oct 2000 A
6144022 Tenenbaum et al. Nov 2000 A
6151539 Bergholz et al. Nov 2000 A
6161066 Wright et al. Dec 2000 A
6172613 DeLine et al. Jan 2001 B1
6175164 O'Farrell et al. Jan 2001 B1
6175300 Kendrick Jan 2001 B1
6198409 Schofield et al. Mar 2001 B1
6201642 Bos Mar 2001 B1
6222447 Schofield et al. Apr 2001 B1
6222460 DeLine et al. Apr 2001 B1
6243003 DeLine et al. Jun 2001 B1
6250148 Lynam Jun 2001 B1
6259412 Duroux Jul 2001 B1
6266082 Yonezawa et al. Jul 2001 B1
6266442 Laumeyer et al. Jul 2001 B1
6285393 Shimoura et al. Sep 2001 B1
6285778 Nakajima et al. Sep 2001 B1
6291906 Marcus et al. Sep 2001 B1
6294989 Schofield et al. Sep 2001 B1
6297781 Turnbull et al. Oct 2001 B1
6302545 Schofield et al. Oct 2001 B1
6310611 Caldwell Oct 2001 B1
6313454 Bos et al. Nov 2001 B1
6317057 Lee Nov 2001 B1
6320176 Schofield et al. Nov 2001 B1
6320282 Caldwell Nov 2001 B1
6326613 Heslin et al. Dec 2001 B1
6329925 Skiver et al. Dec 2001 B1
6333759 Mazzilli Dec 2001 B1
6341523 Lynam Jan 2002 B2
6353392 Schofield et al. Mar 2002 B1
6366213 DeLine et al. Apr 2002 B2
6370329 Teuchert Apr 2002 B1
6396397 Bos et al. May 2002 B1
6396408 Drummond et al. May 2002 B2
6411204 Bloomfield et al. Jun 2002 B1
6411328 Franke et al. Jun 2002 B1
6414712 Wanielik et al. Jul 2002 B1
6420975 DeLine et al. Jul 2002 B1
6424273 Gutta et al. Jul 2002 B1
6428172 Hutzel et al. Aug 2002 B1
6430303 Naoi et al. Aug 2002 B1
6433676 DeLine et al. Aug 2002 B2
6433817 Guerra Aug 2002 B1
6442465 Breed et al. Aug 2002 B2
6477464 McCarthy et al. Nov 2002 B2
6485155 Duroux et al. Nov 2002 B1
6497503 Dassanayake et al. Dec 2002 B1
6498620 Schofield et al. Dec 2002 B2
6513252 Schierbeek et al. Feb 2003 B1
6516664 Lynam Feb 2003 B2
6523964 Schofield et al. Feb 2003 B2
6534884 Marcus et al. Mar 2003 B2
6539306 Turnbull Mar 2003 B2
6547133 DeVries, Jr. et al. Apr 2003 B1
6553130 Lemelson et al. Apr 2003 B1
6559435 Schofield et al. May 2003 B2
6570998 Ohtsuka et al. May 2003 B1
6574033 Chui et al. Jun 2003 B1
6578017 Ebersole et al. Jun 2003 B1
6587573 Stam et al. Jul 2003 B1
6589625 Kothari et al. Jul 2003 B1
6590719 Bos Jul 2003 B2
6593565 Heslin et al. Jul 2003 B2
6593698 Stam et al. Jul 2003 B2
6593960 Sugimoto et al. Jul 2003 B1
6594583 Ogura et al. Jul 2003 B2
6611202 Schofield et al. Aug 2003 B2
6611610 Stam et al. Aug 2003 B1
6627918 Getz et al. Sep 2003 B2
6631316 Stam et al. Oct 2003 B2
6631994 Suzuki et al. Oct 2003 B2
6636258 Strumolo Oct 2003 B2
6648477 Hutzel et al. Nov 2003 B2
6650233 DeLine et al. Nov 2003 B2
6650455 Miles Nov 2003 B2
6672731 Schnell et al. Jan 2004 B2
6674562 Miles Jan 2004 B1
6678056 Downs Jan 2004 B2
6678614 McCarthy et al. Jan 2004 B2
6680792 Miles Jan 2004 B2
6690268 Schofield et al. Feb 2004 B2
6700605 Toyoda et al. Mar 2004 B1
6703925 Steffel Mar 2004 B2
6704621 Stein et al. Mar 2004 B1
6710908 Miles et al. Mar 2004 B2
6711474 Treyz et al. Mar 2004 B1
6714331 Lewis et al. Mar 2004 B2
6717610 Bos et al. Apr 2004 B1
6734896 Nobori et al. May 2004 B2
6735506 Breed et al. May 2004 B2
6741377 Miles May 2004 B2
6744353 Sjönell Jun 2004 B2
6757109 Bos Jun 2004 B2
6762867 Lippert et al. Jul 2004 B2
6794119 Miles Sep 2004 B2
6795221 Urey Sep 2004 B1
6801638 Janssen et al. Oct 2004 B1
6802617 Schofield et al. Oct 2004 B2
6806452 Bos et al. Oct 2004 B2
6807287 Hermans Oct 2004 B1
6822563 Bos et al. Nov 2004 B2
6823241 Shirato et al. Nov 2004 B2
6824281 Schofield et al. Nov 2004 B2
6831261 Schofield et al. Dec 2004 B2
6847487 Burgner Jan 2005 B2
6882287 Schofield Apr 2005 B2
6889161 Winner et al. May 2005 B2
6891563 Schofield et al. May 2005 B2
6909753 Meehan et al. Jun 2005 B2
6917693 Kiridena et al. Jul 2005 B1
6946978 Schofield Sep 2005 B2
6953253 Schofield et al. Oct 2005 B2
6968736 Lynam Nov 2005 B2
6975775 Rykowski et al. Dec 2005 B2
7004593 Weller et al. Feb 2006 B2
7004606 Schofield Feb 2006 B2
7005974 McMahon et al. Feb 2006 B2
7035433 Mihara et al. Apr 2006 B1
7038577 Pawlicki et al. May 2006 B2
7046448 Burgner May 2006 B2
7062300 Kim Jun 2006 B1
7065432 Moisel et al. Jun 2006 B2
7085637 Breed et al. Aug 2006 B2
7092548 Laumeyer et al. Aug 2006 B2
7113867 Stein Sep 2006 B1
7116246 Winter et al. Oct 2006 B2
7123168 Schofield Oct 2006 B2
7133661 Hatae et al. Nov 2006 B2
7149613 Stam et al. Dec 2006 B2
7151996 Stein Dec 2006 B2
7167796 Taylor et al. Jan 2007 B2
7190882 Gammenthaler Mar 2007 B2
7195381 Lynam et al. Mar 2007 B2
7202776 Breed Apr 2007 B2
7224324 Quist et al. May 2007 B2
7227459 Bos et al. Jun 2007 B2
7227611 Hull et al. Jun 2007 B2
7249860 Kulas et al. Jul 2007 B2
7253723 Lindahl et al. Aug 2007 B2
7255451 McCabe et al. Aug 2007 B2
7311406 Schofield et al. Dec 2007 B2
7325934 Schofield et al. Feb 2008 B2
7325935 Schofield et al. Feb 2008 B2
7338177 Lynam Mar 2008 B2
7339149 Schofield et al. Mar 2008 B1
7344261 Schofield et al. Mar 2008 B2
7360932 Uken et al. Apr 2008 B2
7370983 DeWind et al. May 2008 B2
7375803 Bamji May 2008 B1
7380948 Schofield et al. Jun 2008 B2
7388182 Schofield et al. Jun 2008 B2
7402786 Schofield et al. Jul 2008 B2
7423248 Schofield et al. Sep 2008 B2
7423821 Bechtel et al. Sep 2008 B2
7425076 Schofield et al. Sep 2008 B2
7459664 Schofield et al. Dec 2008 B2
7526103 Schofield et al. Apr 2009 B2
7541743 Salmeen et al. Jun 2009 B2
7561181 Schofield et al. Jul 2009 B2
7565006 Stam et al. Jul 2009 B2
7566851 Stein et al. Jul 2009 B2
7605856 Imoto Oct 2009 B2
7616781 Schofield et al. Nov 2009 B2
7619508 Lynam et al. Nov 2009 B2
7633383 Dunsmoir et al. Dec 2009 B2
7639149 Katoh Dec 2009 B2
7655894 Schofield et al. Feb 2010 B2
7676087 Dhua et al. Mar 2010 B2
7697027 McMahon et al. Apr 2010 B2
7720580 Higgins-Luthman May 2010 B2
7755668 Johnston et al. Jul 2010 B1
7786898 Stein et al. Aug 2010 B2
7792329 Schofield et al. Sep 2010 B2
7843451 Lafon Nov 2010 B2
7855778 Yung et al. Dec 2010 B2
7859565 Schofield et al. Dec 2010 B2
7877175 Higgins-Luthman Jan 2011 B2
7881496 Camilleri Feb 2011 B2
7914187 Higgins-Luthman et al. Mar 2011 B2
7930160 Hosagrahara et al. Apr 2011 B1
7991522 Higgins-Luthman Aug 2011 B2
7994462 Schofield et al. Aug 2011 B2
8017898 Lu et al. Sep 2011 B2
8064643 Stein et al. Nov 2011 B2
8082101 Stein et al. Dec 2011 B2
8095310 Taylor et al. Jan 2012 B2
8098142 Schofield et al. Jan 2012 B2
8164628 Stein et al. Apr 2012 B2
8203440 Schofield et al. Jun 2012 B2
8222588 Schofield et al. Jul 2012 B2
8224031 Saito Jul 2012 B2
8233045 Luo et al. Jul 2012 B2
8254635 Stein et al. Aug 2012 B2
8314689 Schofield et al. Nov 2012 B2
8324552 Schofield et al. Dec 2012 B2
8378851 Stein et al. Feb 2013 B2
8386114 Higgins-Luthman Feb 2013 B2
8405725 McMahon et al. Mar 2013 B2
8452055 Stein et al. May 2013 B2
8553088 Stein et al. Oct 2013 B2
9187028 Higgins-Luthman Nov 2015 B2
9376060 McMahon et al. Jun 2016 B2
9656608 McMahon et al. May 2017 B2
20020003571 Schofield et al. Jan 2002 A1
20020005778 Breed Jan 2002 A1
20020015047 Okada et al. Feb 2002 A1
20020113873 Williams Aug 2002 A1
20030103142 Hitomi et al. Jun 2003 A1
20030137586 Lewellen Jul 2003 A1
20030222982 Hamdan et al. Dec 2003 A1
20040164228 Fogg et al. Aug 2004 A1
20050219852 Stam et al. Oct 2005 A1
20050237385 Kosaka et al. Oct 2005 A1
20060018511 Stam et al. Jan 2006 A1
20060018512 Stam et al. Jan 2006 A1
20060050018 Hutzel et al. Mar 2006 A1
20060091813 Stam et al. May 2006 A1
20060103727 Tseng May 2006 A1
20060250501 Wildmann et al. Nov 2006 A1
20070024724 Stein et al. Feb 2007 A1
20070104476 Yasutomi et al. May 2007 A1
20070109406 Schofield et al. May 2007 A1
20070120657 Schofield et al. May 2007 A1
20070242339 Bradley Oct 2007 A1
20080043099 Stein et al. Feb 2008 A1
20080147321 Howard et al. Jun 2008 A1
20080192132 Bechtel et al. Aug 2008 A1
20080266396 Stein Oct 2008 A1
20090113509 Tseng et al. Apr 2009 A1
20090160987 Bechtel et al. Jun 2009 A1
20090190015 Bechtel et al. Jul 2009 A1
20090256938 Bechtel et al. Oct 2009 A1
20120045112 Lundblad et al. Feb 2012 A1
20120069185 Stein Mar 2012 A1
20120200707 Stein et al. Aug 2012 A1
20120314071 Rosenbaum et al. Dec 2012 A1
20130141580 Stein et al. Jun 2013 A1
20130147957 Stein Jun 2013 A1
Foreign Referenced Citations (70)
Number Date Country
2931368 Feb 1981 DE
3248511 Jul 1984 DE
4107965 Sep 1991 DE
4124654 Jan 1993 DE
0202460 Nov 1986 EP
0830267 Mar 1988 EP
0353200 Jan 1990 EP
0527665 Feb 1991 EP
0416222 Mar 1991 EP
0426503 May 1991 EP
0450553 Oct 1991 EP
0492591 Jul 1992 EP
0513476 Nov 1992 EP
0361914 Feb 1993 EP
0605045 Jul 1994 EP
0640903 Mar 1995 EP
0697641 Feb 1996 EP
0788947 Aug 1997 EP
1074430 Feb 2001 EP
1115250 Jul 2001 EP
2241085 Mar 1975 FR
2585991 Feb 1987 FR
2673499 Sep 1992 FR
934037 Aug 1963 GB
2137573 Oct 1984 GB
2244187 Nov 1991 GB
2327823 Feb 1999 GB
5539843 Mar 1980 JP
S5539843 Mar 1980 JP
S58110334 Jun 1983 JP
58209635 Dec 1983 JP
59114139 Jul 1984 JP
6079889 May 1985 JP
6080953 May 1985 JP
S6216073 Apr 1987 JP
6272245 May 1987 JP
62122487 Jun 1987 JP
62122844 Jun 1987 JP
S62-131837 Jun 1987 JP
6414700 Jan 1989 JP
01123587 May 1989 JP
H1168538 Jul 1989 JP
361192 Mar 1991 JP
03099952 Apr 1991 JP
04239400 Nov 1991 JP
04114587 Apr 1992 JP
H04-127280 Apr 1992 JP
3151829 Jan 1993 JP
0577657 Mar 1993 JP
05050883 Mar 1993 JP
05213113 Aug 1993 JP
06107035 Apr 1994 JP
6227318 Aug 1994 JP
06267304 Sep 1994 JP
06276524 Sep 1994 JP
06295601 Oct 1994 JP
07004170 Jan 1995 JP
0732936 Feb 1995 JP
0747878 Feb 1995 JP
07052706 Feb 1995 JP
0769125 Mar 1995 JP
07105496 Apr 1995 JP
2630604 Jul 1997 JP
10076881 Mar 1998 JP
200274339 Mar 2002 JP
2003-083742 Mar 2003 JP
20041658 Jan 2004 JP
WO1994019212 Feb 1994 WO
WO1996021581 Jul 1996 WO
WO1996038319 Dec 1996 WO
Non-Patent Literature Citations (51)
Entry
Achler et al., “Vehicle Wheel Detector using 2D Filter Banks,” IEEE Intelligent Vehicles Symposium of Jun. 2004.
Behringer et al., “Simultaneous Estimation of Pitch Angle and Lane Width from the Video Image of a Marked Road,” pp. 966-973, Sep. 12-16, 1994.
Borenstein et al., “Where am I? Sensors and Method for Mobile Robot Positioning”, University of Michigan, Apr. 1996, pp. 2, 125-128.
Bow, Sing T., “Pattern Recognition and Image Preprocessing (Signal Processing and Communications)”, CRC Press, Jan. 15, 2002, pp. 557-559.
Broggi et al., “Automatic Vehicle Guidance: The Experience of the ARGO Vehicle”, World Scientific Publishing Co., 1999.
Broggi et al., “Multi-Resolution Vehicle Detection using Artificial Vision,” IEEE Intelligent Vehicles Symposium of Jun. 2004.
Brown, A Survey of Image Registration Techniques, vol. 24, ACM Computing Surveys, pp. 325-376, 1992.
Burger et al., “Estimating 3-D Egomotion from Perspective Image Sequences”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, No. 11, pp. 1040-1058, Nov. 1990.
Burt et al., A Multiresolution Spline with Application to Image Mosaics, ACM Transactions on Graphics, vol. 2. No. 4, pp. 217-236, Oct. 1983.
Cucchiara et al., Vehicle Detection under Day and Night Illumination, 1999.
Dickmanns et al., “A Curvature-based Scheme for Improving Road Vehicle Guidance by Computer Vision,” University of Bundeswehr München, 1986.
Dickmanns et al., “Recursive 3-D road and relative ego-state recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, No. 2, Feb. 1992.
Dickmanns et al.; “An integrated spatio-temporal approach to automatic visual guidance of autonomous vehicles,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 20, No. 6, Nov./Dec. 1990.
Dickmanns, “4-D dynamic vision for intelligent motion control”, Universitat der Bundeswehr Munich, 1991.
Donnelly Panoramic Vision™ on Renault Talisman Concept Car at Frankfort Motor Show, PR Newswire, Frankfort, Germany Sep. 10, 2001.
Ericsson Press Release —Jun. 5, 2000.
Franke et al., “Autonomous driving approaches downtown”, Intelligent Systems and Their Applications, IEEE 13 (6), 40-48, Nov./Dec. 1999.
Greene et al., Creating Raster Omnimax Images from Multiple Perspective Views Using the Elliptical Weighted Average Filter, IEEE Computer Graphics and Applications, vol. 6, No. 6, pp. 21-27, Jun. 1986.
Honda Worldwide, “Honda Announces a Full Model Change for the Inspire.” Jun. 18, 2003.
IEEE 100—The Authoritative Dictionary of IEEE Standards Terms, 7th Ed. (2000).
Japanese Article “Television Image Engineering Handbook, The Institute of Television Engineers of Japan”, Jan. 17, 1981.
Kan et al., “Model-based vehicle tracking from image sequences with an application to road surveillance,” Purdue University, XP000630885, vol. 35, No. 6, Jun. 1996.
Kastrinaki et al., “A survey of video processing techniques for traffic applications”.
Kluge et al., “Representation and Recovery of Road Geometry in YARF,” Carnegie Mellon University, pp. 114-119.
Koller et al., “Binocular Stereopsis and Lane Marker Flow for Vehicle Navigation: Lateral and Longitudinal Control,” University of California, Mar. 24, 1994.
Kuhnert, “A vision system for real time road and object recognition for vehicle guidance,” in Proc. SPIE Mobile Robot Conf, Cambridge, MA, Oct. 1986, pp. 267-272.
Malik et al., “A Machine Vision Based System for Guiding Lane-change Maneuvers,” Sep. 1995.
Mei Chen et al., AURORA: A Vision-Based Roadway Departure Warning System, The Robotics Institute, Carnegie Mellon University, published Aug. 9, 1995.
Morgan et al., “Road edge tracking for robot road following: a real-time implementation,” vol. 8, No. 3, Aug. 1990.
Nathan, Digital Video Data Handling, NASA JPL Tech Report 32-877, Pasadena, CA, Jan. 5, 1966.
Parker (ed.), McGraw-Hill Dictionary of Scientific and Technical Terms Fifth Edition (1993).
Philomin et al., “Pedestrain Tracking from a Moving Vehicle”.
Porter et al., “Compositing Digital Images,” Computer Graphics (Proc. Siggraph), vol. 18, No. 3, pp. 253-259, Jul. 1984.
Pratt, “Digital Image Processing, Passage—ED.3”, John Wiley & Sons, US, Jan. 1, 2001, pp. 657-659, XP002529771.
Sahli et al., “A Kalman Filter-Based Update Scheme for Road Following,” IAPR Workshop on Machine Vision Applications, pp. 5-9, Nov. 12-14, 1996.
Sun et al., “On-road vehicle detection using optical sensors: a review”.
Szeliski, Image Mosaicing for Tele-Reality Applications, DEC Cambridge Research Laboratory, CRL 94/2, May 1994.
Tokimaru et al., “CMOS Rear-View TV System with CCD Camera”, National Technical Report vol. 34, No. 3, pp. 329-336, Jun. 1988 (Japan).
Toyota Motor Corporation, “Present and future of safety technology development at Toyota.” 2004.
Tsugawa et al., “An automobile with artificial intelligence,” in Proc. Sixth IJCAI, 1979.
Turk et al., “VITS-A Vision System for Autonomous Land Vehicle Navigation,” IEEE, 1988.
Van Leeuwen et al., “Motion Estimation with a Mobile Camera for Traffic Applications”, IEEE, US, vol. 1, Oct. 3, 2000, pp. 58-63.
Van Leeuwen et al., “Motion Interpretation for In-Car Vision Systems”, IEEE, US, vol. 1, Sep. 30, 2002, p. 135-140.
Van Leeuwen et al., “Real-Time Vehicle Tracking in Image Sequences”, IEEE, US, vol. 3, May 21, 2001, pp. 2049-2054, XP010547308.
Van Leeuwen et al., “Requirements for Motion Estimation in Image Sequences for Traffic Applications”, IEEE, US, vol. 1, May 24, 1999, pp. 145-150, XP010340272.
Vellacott, Oliver, “CMOS in Camera,” IEE Review, pp. 111-114 (May 1994).
Vlacic et al. (Eds), “Intelligent Vehicle Tecnologies, Theory and Applications”, Society of Automotive Engineers Inc., edited by SAE International, 2001.
Wang et al., CMOS Video Cameras, article, 1991, 4 pages, University of Edinburgh, UK.
Wolberg, “A Two-Pass Mesh Warping Implementation of Morphing,” Dr. Dobb's Journal, No. 202, Jul. 1993.
Wolberg, Digital Image Warping, IEEE Computer Society Press, 1990.
Zheng et al., “An Adaptive System for Traffic Sign Recognition,” IEEE Proceedings of the Intelligent Vehicles '94 Symposium, pp. 165-170 (Oct. 1994).
Related Publications (1)
Number Date Country
20170259739 A1 Sep 2017 US
Provisional Applications (1)
Number Date Country
60309023 Jul 2001 US
Continuations (5)
Number Date Country
Parent 15180645 Jun 2016 US
Child 15599583 US
Parent 14942087 Nov 2015 US
Child 15180645 US
Parent 13800677 Mar 2013 US
Child 14942087 US
Parent 12708079 Feb 2010 US
Child 13800677 US
Parent 10209181 Jul 2002 US
Child 12708079 US