This invention relates generally to semiconductor devices, and relates more particularly to semiconductor devices having dual active layers and methods of manufacturing the same.
Thin film transistors are commonly used to power a wide variety of display technologies including liquid crystal displays, electrophoretic displays, organic light emitting diode displays, etc. Many thin film transistors use amorphous silicon as an active layer, but using amorphous silicon can be disadvantageous as a result of the low mobility and low on/off ratio of amorphous silicon. Likewise, the high temperature processing temperatures of amorphous silicon can also be disadvantageous when fabricating flexible displays.
Accordingly, a need or potential for benefit exists for systems and methods for manufacturing the same that allow improved active layer mobility and on/off ratios while permitting reduced temperature processing.
To facilitate further description of the embodiments, the following drawings are provided in which:
For simplicity and clarity of illustration, the drawing figures illustrate the general manner of construction, and descriptions and details of well-known features and techniques may be omitted to avoid unnecessarily obscuring the invention. Additionally, elements in the drawing figures are not necessarily drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help improve understanding of embodiments of the present invention. The same reference numerals in different figures denote the same elements.
The terms “first,” “second,” “third,” “fourth,” and the like in the description and in the claims, if any, are used for distinguishing between similar elements and not necessarily for describing a particular sequential or chronological order. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments described herein are, for example, capable of operation in sequences other than those illustrated or otherwise described herein. Furthermore, the terms “include,” and “have,” and any variations thereof, are intended to cover a non-exclusive inclusion, such that a process, method, system, article, device, or apparatus that comprises a list of elements is not necessarily limited to those elements, but may include other elements not expressly listed or inherent to such process, method, system, article, device, or apparatus.
The terms “left,” “right,” “front,” “back,” “top,” “bottom,” “over,” “under,” and the like in the description and in the claims, if any, are used for descriptive purposes and not necessarily for describing permanent relative positions. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the invention described herein are, for example, capable of operation in other orientations than those illustrated or otherwise described herein.
The terms “couple,” “coupled,” “couples,” “coupling,” and the like should be broadly understood and refer to connecting two or more elements or signals, electrically, mechanically and/or otherwise. Two or more electrical elements may be electrically coupled but not be mechanically or otherwise coupled; two or more mechanical elements may be mechanically coupled, but not be electrically or otherwise coupled; two or more electrical elements may be mechanically coupled, but not be electrically or otherwise coupled. Coupling may be for any length of time, e.g., permanent or semi-permanent or only for an instant.
“Electrical coupling” and the like should be broadly understood and include coupling involving any electrical signal, whether a power signal, a data signal, and/or other types or combinations of electrical signals. “Mechanical coupling” and the like should be broadly understood and include mechanical coupling of all types.
The absence of the word “removably,” “removable,” and the like near the word “coupled,” and the like does not mean that the coupling, etc. in question is or is not removable.
Some embodiments include an electronic device. In many embodiments, the electronic device can comprise a transistor. The transistor can comprise a gate metal layer, a transistor active layer over the gate metal layer, and a source/drain contact layer over the transistor active layer. The source/drain contact layer can comprise a first source/drain contact and a second source/drain contact. In the same or different embodiments, the transistor active layer can comprise a first active layer over the gate metal layer, where the first active layer comprises at least one first metal oxide. In the same or different embodiments, the transistor active layer can comprise a second active layer over the first active layer, where the second active layer comprises at least one second metal oxide. In some embodiments, the first active layer comprises a first conductivity, the second active layer comprises a second conductivity, and the first conductivity is greater than the second conductivity.
Various embodiments include a semiconductor device. In many embodiments, the semiconductor device comprises a substrate, a barrier layer on the substrate, a gate metal layer on the barrier layer, a gate barrier layer on the gate metal layer, a transistor active layer on the gate barrier layer, an etch stop layer on the transistor active layer, a mesa passivation layer on the etch stop layer, and a source/drain contact layer on the mesa passivation layer and the transistor active layer. In the same or different embodiments, the transistor active layer comprises a first active layer on the gate metal layer, where the first active layer comprising at least one first metal oxide. In the same or different embodiments, the transistor active layer comprises a second active layer on the first active layer and between the first active layer and the etch stop layer, where the second active layer comprises at least one second metal oxide. In some embodiments, the first active layer comprises a first conductivity, the second active layer comprises a second conductivity, and the first conductivity is greater than the second conductivity.
Further embodiments include a method of manufacturing a semiconductor device. The method comprises: providing a substrate; providing a gate metal layer over the substrate; providing a first active layer over the gate metal layer, where the first active layer comprises at least one first metal oxide and a first conductivity; providing a second active layer over the first active layer, where the second active layer comprises at least one second metal oxide and a second conductivity less than the first conductivity; and providing a source/drain contact layer over the second active layer.
The term “bowing” as used herein means the curvature of a substrate about a median plane, which is parallel to the top and bottom sides, or major surfaces of the substrate. The term “warping” as used herein means the linear displacement of the surface of a substrate with respect to a z-axis, which is perpendicular to the top and bottom sides, or major surfaces of the substrate. The term “distortion” as used herein means the displacement of a substrate in-plane (i.e., the x-y plane, which is parallel to the top and bottom sides, or major surfaces of the substrate). For example, distortion could include shrinkage in the x-y plane of a substrate and/or expansion in the x-y plane of the substrate.
The term “CTE matched material” as used herein means a material that has a coefficient of thermal expansion (CTE) which differs from the CTE of a reference material by less than about 20 percent (%). Preferably, the CTEs differ by less than about 10%, 5%, 3%, or 1%. As used herein, “polish” can mean to lap and polish a surface or to only lap the surface.
Turning to the drawings,
Method 100 includes a procedure 110 of providing a flexible substrate.
Procedure 110 includes a process 211 of furnishing a flexible substrate. The term “flexible substrate” as used herein means a free-standing substrate comprising a flexible material which readily adapts its shape. In some embodiments, process 211 can include furnishing a flexible substrate with a low elastic modulus. For example, a low elastic modulus can be considered an elastic modulus of less than approximately five GigaPascals (GPa).
In many examples, the flexible substrate is a plastic substrate. For example, flexible substrates can include polyethylene naphthalate (PEN), polyethylene terephthalate (PET), polyethersulfone (PES), polyimide, polycarbonate, cyclic olefin copolymer, or liquid crystal polymer.
In many examples, the flexible substrate can include a coating at one or more sides of the flexible substrate. The coating can improve the scratch resistance of the flexible substrate and/or help prevent outgassing or oligomer crystallization on the surface of the substrate. Moreover, the coating can planarize the side of the flexible substrate over which it is located. The coating also can help decrease distortion. In some examples, the coating is located only at the side of the flexible substrate where the electrical device will be fabricated. In other examples, the coating is at both sides of the flexible substrate. In various embodiments the flexible substrate can be provided pre-planarized. For example, the flexible substrate can be a PEN substrate from DuPont Teijin Films of Tokyo, Japan, sold under the tradename “planarized Teonex® Q65.” In other embodiments, a flexible substrate can be planarized after being provided. For example, method 2700 (
The thickness of the flexible or plastic substrate can be in the range of approximately 25 micrometers (μm) to approximately 300 μm. In the same or different embodiments, the thickness of the flexible or plastic substrate can be in the range of approximately 100 μm to approximately 200 μm.
In some examples, the flexible substrate can be provided by cutting a sheet of a plastic substrate from a roll of the plastic material using a paper cutter or a pair of ceramic scissors. In various examples, after cutting the plastic substrate, the cut sheet is blown clean with a nitrogen gun. In some embodiments of procedure 110, either or both of the cutting and blowing processes can be part of a process 212, described below, instead of being part of process 211.
Procedure 110 of
Process 212 of
In some examples, the flexible substrate can be baked using a vacuum bake process. For example, the temperature in an oven containing the flexible substrate can be ramped up over approximately two to three hours to approximately 160 degrees Celsius (° C.) to approximately 200° C. The flexible substrate can be baked for one hour at approximately 160° C. to approximately 200° C. and at a pressure of approximately one milliTorr (mTorr) to approximately ten mTorr. Then, the temperature in the oven can be lowered to between approximately 90° C. to approximately 115° C., and the flexible substrate can be baked for approximately eight more hours. Other baking processes can be also be used. After the baking process is complete, the flexible substrate can be wiped clean of any residues or chemicals that were baked off.
Subsequently, process 212 of
The protective template can be 50 μm to 15 mm thick and cut to a length of approximately 0.5 m (meters) to approximately 1.5 m. In various embodiments, as part of activity 331, the protective template is folded in half and run through rollers (e.g., a hot roll laminator) to help lock in the fold. A line trace of a carrier substrate can also be made on the back side of the protective sheet as part of activity 331. Additionally, the protective template can be baked at approximately 90° C. to approximately 110° C. for approximately five minutes to approximately ten minutes to help flatten the protective template.
Process 212 of
The protective material prevents scratches and adhesive from covering the planarized surface of the flexible substrate and, thus, reduces defects. In some examples, blue low tack tape (e.g., from Semiconductor Equipment Corporation, part number 18133-7.50) or mylar could be used as the protective material. The protective material can be approximately 25 μm to approximately 100 μm thick. For example, the protective material can be approximately 70 μm thick. In some examples, the protective material is applied by rolling the protective material onto the planarized surface of the flexible substrate using a roller to remove air bubbles between the protective material and the flexible substrate.
Subsequently, process 212 of
If the pressing of the punch cut template cuts completely through the flexible substrate, the flexible substrate is scrapped because the press cut can create cracks in a coating on the flexible substrate that propagate throughout the flexible substrate. After the wafer shape is outlined into the flexible substrate and/or the protective material using the press, the flexible substrate and the protective material are cut simultaneously with each other. In some examples, the flexible substrate and protective material are cut using ceramic scissors approximately one millimeter outside the impression made by the punch cut template.
In some examples, the flexible substrate includes a tab extending from the wafer shape in the flexible substrate and the protective material. The tab can be used to help align the flexible substrate to a carrier substrate when traveling through a laminator in process 217 of
Referring back to
Next, process 212 of
Subsequently, process 212 of
After coupling the flexible substrate to the protective coating, the protective template is then folded over the flexible substrate.
In some examples, only one side of the flexible substrate is attached to the protective template. In other examples, both sides of the flexible substrate are attached to the protective template.
Next, process 212 of
After laminating the flexible substrate and protective template, process 212 is complete. Referring back to
The carrier substrate can include a first surface and a second surface opposite the first surface. In some examples, at least one of the first surface and the second surface has been polished. Polishing the surface that is not subsequently coupled to the flexible substrate improves the ability of a vacuum or air chuck to handle the carrier substrate. Also, polishing the surface that is subsequently coupled to the flexible substrate removes topological features of the surface of the carrier substrate that could cause roughness of the flexible substrate assembly in the z-axis after the coupling with the flexible substrate.
In various embodiments, the carrier substrate comprises at least one of the following: alumina (Al2O3), silicon, low CTE glass, steel, sapphire, barium borosilicate, soda lime silicate, an alkali silicate, or another material that is CTE matched to the flexible substrate. The CTE of the carrier substrate should be matched to the CTE of the flexible substrate. Non-matched CTEs can create stress between the carrier substrate and the flexible substrate.
For example, the carrier substrate could comprise sapphire with a thickness between approximately 0.7 mm and approximately 1.1 mm. The carrier substrate could also comprise 96% alumina with a thickness between approximately 0.7 mm and approximately 1.1 mm. In a different embodiment, the thickness of the 96% alumina is approximately 2.0 mm. In another example, the carrier substrate could be a single crystal silicon wafer with a thickness of at least approximately 0.65 mm. In still a further embodiment, the carrier substrate could comprise stainless steel with a thickness of at least approximately 0.5 mm. In some examples, the carrier substrate is slightly larger than the flexible substrate.
Next, procedure 110 of
In various embodiments, the cross-linking adhesive is a cross-linking acrylic adhesive. In the same or different embodiment, the cross-linking adhesive is a cross-linking pressure sensitive acrylic adhesive or a cross-linking viscoelastic polymer. In some examples, the CTE of the adhesive is very large compared to the CTE of the flexible substrate and the carrier substrate. However, the CTE of the adhesive is not important because the adhesive does not create any stress (i.e., viscoelasticity) between the flexible substrate and carrier substrate because the layer of adhesive is so thin compared to the thickness of the flexible substrate and carrier substrate.
Subsequently, procedure 110 of
For example, the carrier substrate can be coated with the cross-linking adhesive. The carrier substrate and the cross-linking adhesive can be spun to distribute the cross-linking adhesive over a first surface of the carrier substrate. In some embodiments, the cross-linking adhesive is spin coated on the carrier substrate by spinning the carrier substrate with the cross-linking adhesive at approximately 900 rpm (revolutions per minute) to 1100 rpm for approximately 20 seconds to approximately 30 seconds and then spinning the carrier substrate with the cross-linking adhesive at approximately 3400 rpm to approximately 3600 rpm for approximately 10 seconds to 30 seconds. In a different embodiment, the carrier substrate with the cross-linking adhesive is spun at approximately 600 rpm to approximately 700 rpm to coat the surface of the carrier substrate and then spun at approximately 3400 rpm to approximately 3600 rpm to control the thickness of the cross-linking adhesive.
Prior to spin coating, the cross-linking adhesive can be dispensed onto or over a geometric center of the carrier substrate. In a different embodiment, the cross-linking adhesive can be dispensed onto or over the carrier substrate while the carrier substrate is spinning.
The thickness of the cross-linking adhesive over the carrier substrate after the depositing procedure can be between approximately three μm and approximately fifteen μm. In the same or different embodiment, the thickness of the cross-linking adhesive over the carrier substrate after the depositing procedure can be between approximately ten μm and approximately twelve μm.
Procedure 110 of
In other examples, the cross-linking adhesive is not baked. For example, if the cross-linking adhesive does not include any solvents, a bake is not necessary. Moreover, if the cross-linking adhesive is very viscous, solvents may even be added to the cross-linking adhesive to decrease the viscosity before the adhesive is deposited in process 215.
Afterwards, the carrier substrate can be placed on the protective template. The flexible substrate is already coupled to one portion (or half) of the protective template as shown in
Next, procedure 110 of
In some examples, the carrier substrate is coupled to the flexible substrate using the cross-linking adhesive by laminating the flexible substrate assembly between the protective template halves to remove air bubbles between the carrier substrate and the flexible substrate. Laminating the flexible substrate involves first aligning the carrier substrate with the flexible substrate so that, when laminated, the carrier substrate and the flexible substrate are aligned. Then, the aligned structure can be fed through a hot roll laminator, which can be the same laminator of activity 337 of
Also, in various embodiments, the protective material may stick to the protective template when laminated. To avoid this problem, a shield material can be located between the protective template and the protective material before the lamination of activity 337 and/or activity 332. The shield material can be, for example, wax paper. In one embodiment, the shield material is originally coupled to the protective material when acquired from the manufacturer.
In the same or different embodiments, some of the cross-linking adhesive can be squeezed out from between the carrier and flexible substrates during lamination and adhere to the first side or the top of the flexible substrate, particularly because the carrier substrate and the overlying cross-linking adhesive layer is slightly larger than the flexible substrate. The presence of the protective material, however, prevents this problem from occurring. The cross-linking adhesive that squeezes out and adheres to the top of the protective material (instead of the flexible substrate) is inconsequential because the protective material is eventually removed and discarded.
Referring again back to
Process 218 of
Referring again to
Subsequently, process 218 of
Next, process 218 of
Procedure 218 of
In various examples, the cross-linking adhesive is thermally cured during the baking in activity 736. In some examples, the edges of the cross-linking adhesive are UV cured, and the rest of the cross-linking adhesive is thermally cured during the baking of activity 736.
Subsequently, process 218 of
Next, process 218 of
In some examples, the flexible substrate assembly can be baked using a vacuum bake process. For example, the temperature in an oven containing the flexible substrate assembly can be ramped up over two to three hours to approximately 160° C. to approximately 190° C. The flexible substrate assembly can be baked for approximately 50 minutes to 70 minutes at 180° C. and with a pressure of approximately 1 mTorr to approximately 10 mTorr. The temperature in the oven can then be lowered to between approximately 90° C. to 115° C., and the flexible substrate assembly can be baked for approximately seven more hours to approximately nine more hours. Other baking processes can be also be used. After the baking process is complete, the flexible substrate assemblies are cleaned and placed in an oven at approximately 90° C. to 110° C. for a minimum of approximately two hours.
After baking the flexible substrate assembly, process 218 is complete, and therefore, procedure 110 is also complete. Procedure 110, as described herein, and similar procedures can allow fabrication of one or more electrical components on a flexible substrate with zero or at least minimal distortion (e.g. approximately the limits of the sensitivity of an Azores 5200, manufactured by Azores Corporation of Wilmington, Mass.). Prior art methods of fabricating electrical components on the flexible substrate suffer from significant distortion problems that can lead to handling errors, photolithographic alignment errors, and line/layer defects.
Referring back to
Procedure 120 of
Process 1112 in
Referring to
In addition, a patterned metal gate 1353 can be provided over silicon nitride passivation layer 1352. Patterned metal gate 1353 can comprise molybdenum. In some examples, an approximately 0.15 μm layer of molybdenum can be deposited over silicon nitride passivation layer 1352 and then pattern etched to form patterned metal gate 1353. For example, molybdenum can be deposited over silicon nitride passivation layer 1352 by sputtering. In some examples, molybdenum can be deposited using a KDF 744, manufactured by KDF Electronic, Inc., of Rockleigh, N.J. In the same or different examples, patterned metal gate 1353 can be etched using an AMAT 8330, manufactured by Applied Material, Inc. of Santa Clara, Calif.
Subsequently, process 1112 of
Referring to
In some examples, as shown in
With reference to
Also, as an example, silicon nitride IMD layer 1556 can be deposited over a-Si layer 1555 by way of PECVD. In the same or different examples, silicon nitride IMD layer 1556 can be approximately 0.10 μm thick.
In some examples, silicon nitride gate dielectric 1554, a-Si layer 1555, and silicon nitride IMD layer 1556 can all be deposited via PECVD using an AMAT P5000, manufactured by Applied Materials, Inc. of Santa Clara, Calif. In the same or different examples, the temperature at which silicon nitride gate dielectric 1554, a-Si layer 1555, and silicon nitride IMD layer 1556 are deposited onto semiconductor device 1350 is greater than approximately 180° C. For example, the temperature at which silicon nitride gate dielectric 1554, a-Si layer 1555, and silicon nitride IMD layer 1556 are deposited onto semiconductor device 1350 is from approximately 180° C. to approximately 250° C. As an example, the temperature at which silicon nitride gate dielectric 1554, a-Si layer 1555, and silicon nitride IMD layer 1556 are deposited onto semiconductor device 1350 is from approximately 188° C. to approximately 193° C. Furthermore, the deposition of silicon nitride gate dielectric 1554, a-Si layer 1555, and silicon nitride IMD layer 1556 onto semiconductor device 1350 can be done at approximately vacuum.
After silicon nitride gate dielectric 1554, a-Si layer 1555, and silicon nitride IMD layer 1556 are deposited onto semiconductor device 1350, the resulting layers can be etched. For example, silicon nitride can be etched using a 10:1 buffered oxide etch (BOE). In addition, a-Si layer 1555 can be etched using an AMAT 8330. In some examples, silicon nitride IMD layer 1556 and a-Si layer 1555 are etched so that a-Si layer 1555 is exposed, i.e., a-Si layer 1555 is not completely covered by silicon nitride IMD layer 1556.
Next, process 1112 of
With reference to
Mesa passivation layer 1757 can be deposited onto semiconductor device 1350 by way of PECVD. As an example, mesa passivation layer 1757 can be approximately 0.10 μm thick. In the same or different examples, mesa passivation layer 1757 can be deposited via PECVD using an AMAT P5000.
Subsequently, process 1112 of
The contact gate etch of the gate contact build region of semiconductor device 1350 can etch away silicon nitride. For example, the contact gate etch can etch away mesa passivation layer 1757 and silicon nitride gate dielectric 1554. In many examples, the metal gate layer 1353 underneath silicon nitride gate dielectric 1554 functions as an etch stop for the etching process. The contact gate etch of the contact gate build region can be performed in a Tegal 903, manufactured by Tegal Corporation of Petaluma, Calif. After the contact gate etch, gate contact 2091 is formed on semiconductor device 1350. Gate contact 2091 is associated with gate contact area 2981 of
The contact a-Si etch of the device build region of semiconductor device 1350 can etch away silicon nitride. For example, the contact a-Si etch can etch away mesa passivation layer 1757 and silicon nitride IMD layer 1556. The silicon nitride layers can be etched using a 10:1 BOE. a-Si layer 1555 under silicon nitride layer 1556 can act as an etch stop for the etching process. After the contact a-Si etch, a-Si contacts 1990 are formed on semiconductor device 1350. a-Si contacts 1990 are associated with a-Si contact areas 2980 of
After activity 1214, process 1112 of
In the example illustrated in
N+ a-Si layer 2159 may be provided by way of PECVD. As an example, N+a-Si layer 2159 can be approximately 0.05 μm thick. In the same or different examples, N+ a-Si layer 2159 can be deposited via PECVD using an AMAT P5000.
As an example, diffusion barrier 2158 can include tantalum (Ta). In the same or different examples, metal layer 2160 can include aluminum (Al). Diffusion barrier 2158 can help prevent movement of atoms from metal layer 2160, such as, for example, Al atoms, from diffusing into N+ a-Si layer 2159, and subsequently a-Si layer 1555. Diffusion barrier 2158 and metal layer 2160 can be deposited over N+ a-Si layer 2159 by way of sputtering. In some examples, diffusion barrier 2158 and metal layer 2160 can be deposited using a KDF 744.
After, N+ a-Si layer 2159, diffusion barrier 2158, and metal layer 2160 have been deposited onto semiconductor device 1350, the three layers are etched. As an example, the three layers can be etched using an AMAT 8330. In some examples, N+ a-Si layer 2159, diffusion barrier 2158, and metal layer 2160 are etched using a single recipe for all three of the layers. As an example, the N+ a-Si layer 2159, diffusion barrier 2158, and metal layer 2160 are etched using boron trichloride (BCl3) with a flow rate of approximately 140 sccm (standard cubic centimeters per minute) and chlorine gas (Cl2) with a flow rate of approximately 10 sccm at a pressure of approximately 20 mTorr for 1 minute and 45 seconds. Next, the Cl2 is increased to 30 sccm, while the pressure is dropped to 10 mTorr for 15 minutes. Next, the BCl3 rate is decreased to 30 sccm, and the pressure is increased to 15 mTorr. Finally, the BCl3 and the Cl2 flow rates are brought to zero, and oxygen (O2) is brought in at 50 seem with a pressure of 50 mTorr for 60 minutes.
In various embodiments, procedure 120 can include a process 1198 of providing a base dielectrically material. The base dielectric material can provide a uniform surface (e.g., a wetting layer) for the spin-on dielectric material (e.g., dielectric layers 2461 (
Subsequently, procedure 120 includes a process 1114 of providing a first dielectric material. The first dielectric material can be provided over the one or more contact elements of process 1113. In some examples, the first dielectric material can be an organic siloxane-based dielectric material, organosiloxane dielectric material, and/or siloxane-based dielectric material. In various embodiments, the first dielectric material can be organic. Using an organic siloxane-based dielectric material can allow for thicker films and more flexible films than with a non-organic siloxane-based dielectric material. In some examples, the first dielectric material can be used as an interlayer dielectric. In the other examples, the first dielectric material can be used as an intralayer dielectric.
Table 1 illustrates properties of an example of a dielectric material that can be used as the first dielectric material in process 1114, according to an embodiment.
As used in Table 1, film thickness refers to the desired thickness of the dielectric material that displays the other properties in the table. Transmittance refers to the percentage of light that is transmitted through the dielectric material. Planarization refers to the degree of planarization (DOP) of the dielectric material. Resistance to plasma induced damage indicates the plasmas that will not damage this film. Adhesion means the dielectric material can be coupled to at least these other materials. Outgassing can refer to outgassing pressure of the dielectric material or the rate at which the dielectric material outgases. Moisture uptake can refer to the rate at which moisture is absorbed by the dielectric material. Dispense tools refers to equipment that can be used to apply the dielectric material.
Table 2 illustrates properties of a second example of a dielectric material that can be used as the first dielectric material in process 1114, according to an embodiment.
As used in Table 2, etch chemistries refers to etch chemistries that can be used to etch the dielectric material. Etch rate is the minimum etch rate of the dielectric material when using the etch chemistries. Feature size refers to the smallest size of an element or feature formed with the dielectric material. Breakdown voltage is the voltage per length at which the dielectric material begins acting as a conductor. Heat resistance is the lowest temperature that the material can withstand before becoming unstable.
Referring to
Subsequently, process 1114 can include an activity 2331 of dispensing the first dielectric material. In some examples, the first dielectric material is dispensed over the substrate while the substrate is spinning at the first predetermined rate. In some examples, the first dielectric material can be dispensed using a syringe. If the substrate is a six inch diameter wafer, approximately 4 mL (milliliters) can be dispensed over the semiconductor device. In some examples, the pressure in the tip of the syringe during dispensing can be approximately 15 kPa. In the same or different embodiment, after the syringe dispenses the first dielectric material, the syringe has suck back pressure of approximately 1 kPa. The suck back pressure of the syringe prevents dripping additional amounts of the first dielectric material from the syringe after the dispensing process is complete. For a 6-in wafer, the dispensing process takes approximately 3 seconds. The semiconductor device is spun at the first predetermined rate until activity 2331 is complete.
In various embodiments, a dynamic dispensing process is used. That is, the substrate is spinning while the first dielectric material is dispensed. In some examples, the first dielectric material is dispensed at the center of the substrate. In other examples, at the beginning of the dispensing process, the syringe is located over the center of the substrate and moves from the center of the substrate to the edge of the substrate at a constant rate of approximately thirty to approximately sixty millimeters per second while the substrate is spinning. In other embodiments, a static dispensing process is used. That is, the substrate is not spun during the dispensing process.
Next, process 1114 includes an activity 2332 of ramping-up the speed of the semiconductor device from the first predetermined rate to a second predetermined rate. In some examples, the second predetermined spin rate is between approximately 2000 rpm and approximately 4000 rpm. In the same or different embodiment, the second predetermined rate is approximately 2600 rpm. Spinning the semiconductor device at the second predetermined rate of approximately 2600 rpm for approximately thirty seconds can distribute the first dielectric material with a thickness of approximately two μm over the surface of the semiconductor device. Different thicknesses of the first dielectric material can be achieved by using different second predetermined rates.
Process 1114 can further include an activity 2333 of performing edge bead removal. In some examples, during activities 2331 and 2332, the first dielectric material flows outward due to the centrifugal force toward the edge of the substrate and creates a ridge (i.e., the edge bead) on the top side edge of the semiconductor device. The edge bead, when dried, could flake off and increase defects of the semiconductor device and/or damage the manufacturing equipment. Accordingly, the edge bead is removed in activity 2333. In some examples, the equipment used in activities 2331 and 2332 can include an edge bead removal device. In some examples, a solvent is sprayed on the edge bead to remove the first dielectric material around the edge of the substrate. In some examples, while the semiconductor device is spun at a third predetermined rate, a solvent is sprayed over, for example, approximately five to approximately six millimeters inside the edge of the substrate. In some examples, removing the first dielectric material from the edges of the substrate also helps to ensure that when a second dielectric material is provided over the first dielectric material (process 1117 of
In some examples, cyclohexanone, propylene glycol monomethyl ether acetate (PGMEA), or other edge bead removing solvents can be used. In some examples, the semiconductor device is rotated at a third predetermined rate of approximately 1000 rpm during the edge bead removal process. In some examples, the semiconductor device is spun at the third predetermined rate for approximately thirty seconds, and solvent is sprayed on the bead edge during this time.
Subsequently, process 1114 continues with an activity 2334 of stopping the spinning of the semiconductor device. After the spinning of the semiconductor device is stopped, process 1114 is complete.
Referring back to
In various embodiments, the baking of the semiconductor device is performed using a two bake sequence. The baking process can be performed at atmospheric pressure using a hot plate. Process 1115 can be performed, for example, in a Rite Track 8800.
The first bake is a bake for approximately sixty seconds at approximately 160° C. In an alternative example, the first bake can be an approximately sixty second bake at approximately 150° C. After the first bake is complete, in some examples, the semiconductor device is allowed to cool for approximately thirty seconds before the second bake. The semiconductor device can be allowed to cool at room temperature (and not using a chill plate). The semiconductor device is allowed to cool, in these examples, because the handling system uses polytetrafluoroethylene (e.g., Teflon® material from E. I. du Pont de Nemours and Company of Wilmington, Del.) coated chucks to handle the semiconductor device. Placing a hot semiconductor device on the polytetrafluoroethylene coated chuck can damage the chuck. If other equipment is used, the cooling process can possibly be skipped.
After letting the semiconductor device cool, the semiconductor device can be baked for a second time on a hot plate. In some embodiments, the second bake can be for approximately sixty seconds at a temperature greater than approximately 160° C. because 160° C. is the boiling point of PGMEA. For example, if the first bake was at the 160° C., the second bake can be for approximately sixty seconds at approximately 170° C. If the first bake was at the 150° C., the second bake can be for approximately sixty seconds at approximately 200° C. After the second bake is complete, the semiconductor device can be cooled again for thirty seconds. In other embodiments, other sequences of bakes can be performed.
After the baking is complete, the next process in procedure 120 is a process 1116 of curing the first dielectric material. Curing of the first dielectric material can improve the cross-linking of the first dielectric material. In some examples, the curing can be performed in a convection oven in a nitrogen atmosphere at atmospheric pressure (i.e., approximately one atmosphere).
In various examples, the semiconductor device can be placed in the oven. Afterwards, the temperature in the oven can be ramped-up to approximately 200° C., and the semiconductor device can be baked for approximately one hour at approximately 200° C. The temperature is ramped-up a rate of approximately 1-2° C. per minute to minimize outgassing of the first dielectric material of process 1114. After the bake is complete, the temperature is slowly ramped down (e.g., 1-2° C. per minute) to room temperature.
In another embodiment, a baking procedure with five separate bakes can be used. The first bake can be a bake at approximately 60° C. for approximately ten minutes. The ramp-up time to approximately 60° C. from room temperature is approximately ten minutes. After baking at approximately 60° C., the temperature is ramped-up over approximately thirty-two minutes to approximately 160° C. The semiconductor device is baked for approximately thirty-five minutes at approximately 160° C.
The temperature of the convection oven is then increased to approximately 180° C. over approximately ten minutes after the 160° C. bake. The semiconductor device is baked for approximately twenty minutes at approximately 180° C.
After baking at 180° C., the temperature is ramped-up over approximately fifty minutes to approximately 200° C. The semiconductor device is baked for approximately sixty minutes at approximately 200° C. Finally, in this bake procedure, the temperature in the oven is ramped-down to approximately 60° C. over approximately seventy minutes. The semiconductor device is baked for approximately ten minutes at approximately 60° C. After baking is complete, the semiconductor device is allowed to cool to approximately room temperature before proceeding with procedure 120 of
Subsequently, procedure 120 includes a process 1117 of providing a second dielectric material. In some examples, providing the second dielectric material can include depositing the second dielectric material over the organosiloxane dielectric layer (i.e., the first dielectric material of process 1114). In some examples, the second dielectric material can comprise silicon nitride. In the same or different examples, the second dielectric material can include silicon oxynitride (SiOxNy), silicon oxide, and/or silicon dioxide (SiO2). In some examples, a low temperature PECVD process can be used to deposit the second dielectric material. In some examples, as part of providing the second dielectric material, the first dielectric material is capped by the second dielectric material. In some examples, the edges of the first dielectric material can be capped by the second dielectric material so the first dielectric material is not exposed to any subsequent oxygen (O2) plasma ashings. Oxygen plasma ashings can degrade the first dielectric material in some examples.
The second dielectric material can be deposited with a thickness of approximately 0.1 μm to approximately 0.2 μm. The second dielectric material can be deposited to protect the first dielectric material from later etches.
The next process in procedure 120 is a process 1118 of providing a mask over the second dielectric material. The mask applied in process 1118 can be an etch mask for an etching activity of process 1119 of
In some examples, process 1118 can include applying a patterned photoresist over the siloxane-based dielectric layer (i.e., the first dielectric material of process 1114) or patterning a mask over the organic siloxane-based dielectric (i.e., the first dielectric material of process 1114). Similarly, process 1118 can include providing a patterned mask over the organosiloxane dielectric layer (i.e., the first dielectric material of process 1114).
In some examples, the mask covers one or more portions of the first dielectric material and the second dielectric material that are not to be etched. The mask can be provided with a thickness such that the mask is not etched through during the etching process of process 1119 of
In some examples, the mask comprises photoresist. In some examples, the photoresist can be AZ Electronic Materials MiR 900 Photoresist, manufactured by AZ Materials of Luxembourg, Luxembourg. In some examples, the photoresist is coated over the second dielectric material using the Rite Track 8800. For example, the semiconductor device can be vapor primed and spin-coated with the mask (e.g., the photoresist). After coating the semiconductor device, the semiconductor device is baked at approximately 105° C. for approximately sixty seconds.
Next, the semiconductor device is aligned to the correct position with a template and exposed to UV (ultraviolet) light to transfer the mask image from the template to the mask. After exposing the mask, the semiconductor device is baked for approximately ninety seconds at approximately 110° C. The mask is then developed using an approximately ninety second puddle with standard development chemicals to remove the portions of the photoresist that were not exposed to the UV light.
After the development is completed, the last portion of providing the mask over the second dielectric material is performing a photoresist reflow process on the mask. Photoresist reflow is the process of heating the mask after the photoresist has been developed to cause the photoresist to become at least semi-liquid and flow.
In some examples, the semiconductor device is baked at approximately 140° C. for approximately sixty seconds. This photoresist reflow process will decrease the sharpness of the edges of the mask, and thus, when etched in process 1119 of
Next, procedure 120 includes a process 1119 of etching the base dielectric material, the first dielectric material, and the second dielectric material. The base dielectric material, the first dielectric material, and the second dielectric material are etched to create vias in the base dielectric material, the first dielectric material, and the second dielectric material.
In some examples, the base dielectric material, the first dielectric material, and the second dielectric material are etched in the same process using the same etch mask. In other examples, the first dielectric material is etched in a first process, and the second dielectric is etched in a second process, and the base dielectric is etched in a third process.
In these other examples, a mask can be applied to the base dielectric material; the base dielectric material can be etched; and the mask can be removed before the first dielectric material is provided in process 1114 of
In many embodiments, the base dielectric material, the first dielectric material, and the second dielectric material are plasma etched. In the same of different embodiments, the base dielectric material, the first dielectric material, and the second dielectric material are reactive ion etched (RIE). In some examples, the base dielectric material, the first dielectric material, and the second dielectric material are etched with a fluorine-based etchant. In some examples, the etchant can be trifluoromethane (CHF3), sulfur hexafluoride (SF6), or other fluorine-based etchants.
In some examples where there is no base dielectric material (i.e., process 1198 is skipped), the first material can be the organosiloxane dielectric material described previously, and the second material can be silicon nitride. In these examples, the first dielectric material and the second dielectric material can be RIE etched with sulfur hexafluoride (SF6) for approximately four minutes. If sulfur hexafluoride is used as the etchant, the etching can be performed in a plasma chamber with a 1:2 ratio of sulfur hexafluoride to oxygen (O2).
The etch rate of the sulfur hexafluoride for the first dielectric material and the second dielectric material are approximately the same (i.e., approximately 0.5 μm per minute). The etch rate of the second dielectric material, however, is marginally greater than the first dielectric material. In some example, the pressure in the plasma chamber during etching is approximately 50 mTorr to approximately 400 mTorr. The RIE etch can be performed in a Tegal 901, manufactured by Tegal Corporation of Petaluma, Calif.
The second dielectric material can be etched before the first dielectric material; the first dielectric material can be etched before the base dielectric material. In many examples, the metal layer underneath the base dielectric material functions as an etch stop for the etching process. If sulfur hexafluoride is used as the etchant, the metal layer can be aluminum. In this embodiment, the metal layer cannot be molybdenum or tantalum because sulfur hexafluoride etches these two metals. In a different embodiment, the metal layer can include molybdenum and/or tantalum if the etch for the overlying second dielectric layer is a timed etch.
A buffered oxide etch (BOE) and chlorine based etchants cannot be used in some examples because they do not etch the first dielectric material when it comprises an organosiloxane dielectric material.
Referring again to
The ashing can be performed at a pressure of no greater than approximately 300 mTorr. Oxygen (O2) can flow through in the chamber during the ashing process at a rate of approximately 50 sccm. In various examples, the ashing procedure can be performed in a Tegal 901. After ashing the mask, the semiconductor device can be rinsed with deionized water and spin dried. In some examples, the rinsing can be performed in a quick dump rinser, and the drying can be performed in a spin rinse dryer.
In other examples, a wet strip can be used to remove the photoresist. In some embodiments, an N-methylpyrrolidinone (NMP) based stripper can be used.
The next process in procedure 120 of
As an example,
ITO layer 2565 can be deposited over second metal layer 2564. ITO layer 2565 can comprise indium tin oxide and can be approximately 0.05 μm thick. In some examples, ITO layer can be deposited by sputtering using a KDF 744.
In some examples, second metal layer 2564 is pattern etched. Then ITO layer 2565 can be deposited onto second metal layer 2564 and then pattern etched. As an example, second metal layer 2564 and ITO layer 2565 can be etched using an AMAT 8330.
After process 1121, procedure 120 is complete. With reference to
Turning to another embodiment,
Referring to
Method 2700 can continue with a procedure 2712 of providing a first dielectric material. In some examples, the first dielectric material can be similar or identical to second dielectric material 2462 of
The next procedure in method 2700 is a procedure 2713 of providing a second dielectric material. The second dielectric material can be similar or identical to the first dielectric material 2461 of
Method 2700 continues with a procedure 2714 of baking the second dielectric material. In some examples, procedure 2714 can be similar or identical to process 1115 of
Subsequently, method 2700 includes a procedure 2715 of curing the second dielectric material. In some examples, procedure 2715 can be similar or identical to process 1116 of
In other examples, a different baking procedure with five separate bakes in a convection oven can be used. The first bake can be a bake at approximately 40° C. for approximately ten minutes. The ramp-up time from room temperature to approximately 40° C. is approximately two minutes. After baking at 40° C., the temperature is ramped-up over approximately thirty-two minutes to approximately 160° C. Then, the flexible substrate is baked for approximately thirty-five minutes at approximately 160° C.
The temperature of the convection oven is then increased to approximately 180° C. over approximately ten minutes after the 160° C. bake. The flexible substrate is baked for approximately twenty minutes at approximately 180° C.
After baking at 180° C., the temperature is ramped-up over approximately fifty minutes to approximately 230° C. Alternatively, the temperature is ramped-up at approximately 2° C. per minute to approximately 230° C. The flexible substrate is baked for approximately fifteen hours at approximately 230° C.
Finally, in this bake procedure, the temperature in the oven is ramped-down to approximately 60° C. over approximately eighty-five minutes. The flexible substrate is baked for approximately ten minutes at approximately 60° C. After baking is complete, the flexible substrate is allowed to cool to approximately room temperature before proceeding with method 2700 of
Method 2700 continues with a procedure 2716 of providing a third dielectric material. In some examples, the third dielectric material can be deposited with a thickness of approximately 0.2 μm to approximately 0.4 μm. In some examples, the third dielectric material can be an approximately 0.3 μm thick layer of silicon nitride. After depositing the third dielectric material, the flexible substrate can be in-situ baked for approximately five minutes at approximately 180° C. In some examples, the third dielectric material can be similar or identical to nitride passivation layer 1352 of
After providing the third dielectric layer, method 2700 is complete. The resulting semiconductor device (2850 of
Returning to the drawings,
Referring now to
Referring now back to
Referring now back to
In various embodiments, procedure 3103 can comprise process 4901 of depositing the gate metal layer over and/or on the substrate. Procedure 3103 can comprise process 4902 of depositing and developing a first photoresist layer over the gate metal layer. Procedure 3103 can comprise process 4903 of etching the gate metal layer with a first etchant while using the first photoresist layer as a first etch mask.
In many embodiments, an electronic device (not shown) includes one or more of semiconductor device 3200, among other components. In many embodiments, semiconductor device 3200 comprises a transistor or a thin film transistor. In the same or different embodiments, the electronic device can comprise a display, and the display comprises the semiconductor device(s)/transistor(s). In the same or different embodiments, the display can comprise any of a liquid crystal display, an electrophoretic display, or an organic light emitting diode (OLED) display.
In various examples, semiconductor device 3200 can comprise an effective saturation mobility of 18.6 cm2/V-s and a threshold voltage shift of 2.2 volts or less under positive and negative gate bias direct current (DC) stress for 10,000 seconds. In other examples, semiconductor device 3200 can be processed at temperatures at or below approximately 200 degrees Celsius.
Referring to
In various embodiments, substrate 3208 can comprise a rigid substrate and/or a flexible substrate. In some embodiments, substrate 3208 can be similar or identical to substrate 450 (
In many embodiments, barrier layer 3209 can comprise a first dielectric material. The first dielectric material can comprise silicon dioxide and/or silicon nitride. In the same or different embodiments, barrier layer 3209 can be similar or identical to passivation layer 1352 (
In many embodiments, gate metal layer 3202 can comprise one or more of molybdenum, aluminum, tantalum, chromium, or tungsten. In the same or different embodiments, gate metal layer 3202 can be similar or identical to patterned metal gate 1353 (
Referring now back to
Referring now back to
Procedure 3105 of
In some embodiments, process 3401 can comprise (a) positioning the substrate inside of a vacuum chamber and (b) sputtering inside of the vacuum chamber a target material comprising at least one of indium oxide, zinc oxide, gallium oxide, tin oxide, hafnium oxide, or aluminum oxide with a first feed gas comprising argon. In some embodiments, the first feed gas can comprise nitrogen in addition to or instead of argon.
Procedure 3105 of
In some embodiments, process 3402 can comprise (a) combining oxygen with the first feed gas to a form a second feed gas comprising argon and two percent oxygen by volume and (b) sputtering inside of the vacuum chamber the target material with the second feed gas inside of the vacuum chamber. In various embodiments, process 3402 can occur directly after process 3401. For example, process 3402 can be conducted such that oxygen provided in process 3402 is simply added to the first feed gas such that process 3401 transitions directly into process 3402.
In many embodiments, process 3401 and/or process 3402 can occur at a pressure of greater than or equal to approximately 10 milliTorr and less than or equal to approximately 20 milliTorr. In the same or different embodiments, process 3401 and/or process 3402 can occur at a pressure of approximately 16 milliTorr. In the same or different embodiments, process 3401 and/or process 3402 can occur at a temperature of greater than or equal to approximately 25 degrees Celsius and less than or equal to approximately 39 degrees Celsius.
Procedure 3105 of
Procedure 3105 of
In some embodiments, process 3403 and process 3404 can be conducted after process 3401 and can be repeated after process 3402. In the same or different embodiments, the second photoresist and/or the second etchant can be the same for both instances in which process 3403 and process 3404 are conducted, respectively, or one or both can be different. In other embodiments, process 3403 and process 3404 can be conducted only after completing both process 3401 and process 3402.
In many examples, using oxides and different conductivities for first active layer 4706 and/or second active layer 4707 can improve mobility, on/off current ratio, and stability over active layers comprised of amorphous silicon. The result can be smaller semiconductor devices and increased display resolutions.
In many embodiments, the at least one first metal oxide can comprise one or more of indium oxide, zinc oxide, gallium oxide, tin oxide, hafnium oxide, or aluminum oxide, in equal or unequal proportions to one another. For example, in some embodiments, the at least one first metal oxide can comprise approximately sixty percent zinc oxide and approximately forty percent indium oxide. In other examples, the at least one first metal oxide can comprise indium oxide, gallium oxide, and zinc oxide in equal proportions to each other. In various embodiments, the at least one second metal oxide can comprise the at least one first metal oxide. In the same or different embodiments, where the at least one second metal oxide comprises the at least one first metal oxide, the at least one second metal oxide may comprise the constituent compounds/elements of the at least one first metal oxide but comprise different proportions of the constituent compounds/elements, or the at least one second metal oxide may comprise both the constituent compounds/elements and the relative proportions of the constituent compounds/elements of the at least one first metal oxide. In other embodiments, the at least one second metal oxide can be different from the at least one first metal oxide, the at least one second metal oxide comprising at least one different constituent compound/element than the at least one first metal oxide and/or different proportions of the at least one second metal oxide relative to the proportions of the at least one first metal oxide (e.g., where the at least one first metal oxide comprises approximately sixty percent zinc oxide and approximately forty percent indium oxide and the at least one second metal oxide comprises indium oxide, gallium oxide, and zinc oxide in equal proportions to each other, or vice versa). In other examples, the differences can be far more subtle such as where both the at least one second metal oxide and the at least one first metal oxide comprise zinc oxide and indium oxide but the at least one second metal oxide has a ratio of zinc oxide to indium oxide of approximately 60:40 and the at least one first metal oxide has a ratio of zinc oxide to indium oxide of approximately 59:41.
In many embodiments, transistor active layer 3505 can be greater than or equal to approximately 40 nanometers thick and less than or equal to approximately 60 nanometers thick. In further embodiments, transistor active layer 3505 can be approximately 50 nanometers thick. In the same or different embodiments, first active layer 4706 can be greater than or equal to approximately 5 nanometers thick and less than or equal to approximately 40 nanometers thick. In further embodiments, first active layer 4706 can be greater than or equal to approximately 5 nanometers thick and less than or equal to approximately 20 nanometers thick. Accordingly, in many embodiments, where first active layer 4706 is, for example, 25 nanometers thick, second active layer 4707 can be approximately 25 nanometers thick. In further examples, where first active layer 4706 is 40 nanometers thick, second active layer 4707 can be approximately 10 nanometers thick.
In many embodiments, first active layer 4706 comprises a first conductivity. For example, the first conductivity can be approximately 0.002 Ohm-centimeters. In the same or different embodiments, second active layer 4707 comprises a second conductivity. For example, the second conductivity can be greater than or equal to approximately 10 ohm-centimeters and less than or equal to approximately 200 ohm-centimeters. In various embodiments, the first conductivity is greater than the second conductivity. In other embodiments, the first conductivity is less than the second conductivity.
Referring now back to
Referring to
Referring again to
Referring again to
Referring now back to
Referring to
In many embodiments, method 3100 can comprise procedure 3108 of conducting one or more post-mesa passivation layer etches, similar or identical to activity 1214 (
Referring now back to
Referring to
Referring to
Referring now back to
In one embodiment,
In another embodiment different from the embodiment illustrated in
Although the invention has been described with reference to specific embodiments, it will be understood by those skilled in the art that various changes can be made without departing from the spirit or scope of the invention. Accordingly, the disclosure of embodiments is intended to be illustrative of the scope of the invention and is not intended to be limiting. It is intended that the scope of the invention shall be limited only to the extent required by the appended claims. To one of ordinary skill in the art, it will be readily apparent that the semiconductor device and its methods of providing the semiconductor device discussed herein may be implemented in a variety of embodiments, and that the foregoing discussion of certain of these embodiments does not necessarily represent a complete description of all possible embodiments. Rather, the detailed description of the drawings, and the drawings themselves, disclose at least one preferred embodiment, and may disclose alternative embodiments. For example, except for their respective active layers, semiconductor devices 1350 (
All elements claimed in any particular claim are essential to the embodiment claimed in that particular claim. Consequently, replacement of one or more claimed elements constitutes reconstruction and not repair. Additionally, benefits, other advantages, and solutions to problems have been described with regard to specific embodiments. The benefits, advantages, solutions to problems, and any element or elements that may cause any benefit, advantage, or solution to occur or become more pronounced, however, are not to be construed as critical, required, or essential features or elements of any or all of the claims, unless such benefits, advantages, solutions, or elements are expressly stated in such claim.
Moreover, embodiments and limitations disclosed herein are not dedicated to the public under the doctrine of dedication if the embodiments and/or limitations: (1) are not expressly claimed in the claims; and (2) are or are potentially equivalents of express elements and/or limitations in the claims under the doctrine of equivalents.
This application is a continuation application of PCT Application No. PCT/US12/32388, filed Apr. 5, 2012, and this application is a continuation-in-part application of U.S. patent application Ser. No. 13/298,451, filed Nov. 17, 2011. PCT Application No. PCT/US12/32388 claims the benefit of U.S. Provisional Application No. 61/472,992, filed Apr. 7, 2011. Further, PCT Application No. PCT/US12/32388 is a continuation-in-part application of U.S. patent application Ser. No. 13/298,451, and U.S. patent application Ser. No. 13/298,451 is a continuation of PCT Application No. PCT/US10/36569, filed May 28, 2010. PCT Application No. PCT/US10/36569 claims the benefit of U.S. Provisional Application No. 61/182,464, filed May 29, 2009, and U.S. Provisional Application No. 61/230,051, filed Jul. 30, 2009. Meanwhile, PCT Application No. PCT/US10/36569 is a continuation-in-part application of (a) PCT Application No. PCT/US09/66114, filed Nov. 30, 2009, which claims priority to U.S. Provisional Application No. 61/119,303, filed Dec. 2, 2008; (b) PCT Application No. PCT/US09/66111, filed Nov. 30, 2009, which claims priority to U.S. Provisional Application No. 61/119,248, filed Dec. 2, 2008; and (c) PCT Application No. PCT/US09/66259, filed Dec. 1, 2009. PCT Application No. PCT/US09/66259 claims the benefit of: (i) U.S. Provisional Application No. 61/119,217, filed Dec. 2, 2008; (ii) U.S. Provisional Application No. 61/182,464; and (iii) U.S. Provisional Application No. 61/230,051. PCT Application No. PCT/US12/32388, U.S. patent application Ser. No. 13/298,451, U.S. Provisional Application No. 61/472,992, PCT Application No. PCT/US10/36569, U.S. Provisional Application No. 61/182,464, U.S. Provisional Application No. 61/230,051, PCT Application No PCT/US09/66114, U.S. Provisional Application No. 61/119,303, PCT Application No PCT/US09/66111, U.S. Provisional Application No. 61/119,248, PCT Application No PCT/US09/66259, and U.S. Provisional Application No. 61/119,217 are incorporated herein by reference in their entirety.
This invention was made with government support under W911NF-04-2-0005 awarded by the Army Research Office. The government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
61472992 | Apr 2011 | US | |
61182464 | May 2009 | US | |
61230051 | Jul 2009 | US | |
61119303 | Dec 2008 | US | |
61119248 | Dec 2008 | US | |
61119217 | Dec 2008 | US | |
61182464 | May 2009 | US | |
61230051 | Jul 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US12/32388 | Apr 2012 | US |
Child | 14029502 | US | |
Parent | PCT/US10/36569 | May 2010 | US |
Child | 13298451 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13298451 | Nov 2011 | US |
Child | PCT/US12/32388 | US | |
Parent | 13298451 | Nov 2011 | US |
Child | 13298451 | US | |
Parent | PCT/US09/66114 | Nov 2009 | US |
Child | PCT/US10/36569 | US | |
Parent | PCT/US09/66111 | Nov 2009 | US |
Child | PCT/US10/36569 | US | |
Parent | PCT/US09/66259 | Dec 2009 | US |
Child | PCT/US10/36569 | US |