1. Field of the Invention
The present invention generally relates to semiconductor substrate processing systems and, more particularly, to matching circuits for matching the impedance of a plurality of RF sources coupled to a single electrode to the impedance of a plasma.
2. Description of the Related Art
Plasma enhanced semiconductor processing chambers are widely used in the manufacture of integrated devices. In most plasma enhanced semiconductor chambers, multiple radio frequency (RF) generators are utilized to form and control the plasma. Some plasma enhanced processing chambers feed RF power from multiple sources to a single electrode that couples the power to the plasma. However, in those embodiments, each RF source generally requires separate feed structures (e.g., separate RF generator, match output, coaxial cables to the electrode, and the like).
Therefore, there is a need for an improved apparatus for semiconductor substrate processing that utilizes a single feed structure to couple RF power from multiple RF sources to an electrode.
So that the manner in which the above recited features, advantages and objects of the present invention are attained and can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to the embodiments thereof which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures.
The present invention generally relates to semiconductor substrate processing in a plasma enhanced semiconductor processing chamber. More specifically, the present invention is a dual frequency, variable shunt matching circuit for coupling two RF sources through a single feed to an electrode in a plasma enhanced semiconductor processing chamber.
The RF sources 104, 106 are independent, frequency-tuned RF generators. The RF sources 104, 106 may be configured to provide RF power to the chamber 102 in any desired frequency to control characteristics of the plasma. Both frequencies may be selected to control the same plasma characteristic or, alternatively, to control different plasma characteristics. For example, in one embodiment, one of the RF sources 104, 106 is capable of providing high frequency power to excite the plasma and dissociate ions in the plasma and the other one of the RF sources 104, 106 is capable of providing low frequency power to modulate the plasma sheath voltage. For example, in one embodiment, the source 104 may be generally capable of generating a frequency in the range of from about 12.8 MHz to about 14.3 MHz at up to 5000 W of either continuous or pulsed power. The source 106 may be generally capable of generating a frequency in the range of from about 1.8 MHz to about 2.2 MHz at up to 5000 W of either continuous or pulsed power. It is contemplated that other frequencies may be employed.
The dual frequency matching circuit 108 generally includes two matching sub-circuits in which the series elements are fixed and in which the shunt elements provide a variable impedance to ground. The matching circuit 108 includes two inputs that are connected to independent frequency tuned RF power sources 104, 106 at two separate frequencies and provides a common RF output to the processing chamber 102. The matching circuit 108 operates to match the impedance of the sources 104, 106 (typically 50 Ω) to that of the processing chamber 102. In one embodiment, the two match sub-circuits are L-type circuits, however, other common match circuit configurations, such as π and T types can be employed.
The generator isolation sub-circuit 206 comprises a ladder topology having three inductors L3, L4 and L5 and three capacitors C5, C6 and C7. This sub-circuit is tuned to block the 2 MHz signal from being coupled to the 13 MHz source. Inductor L5 is coupled across input terminals 214A, 214B. The capacitors C7, C6 and C5 are coupled in series from the input terminal 214A to an input 216A to the 13 MHz tuning circuit 204. The inductors L4 and L3 are respectively coupled in parallel from the junction of capacitors C7 and C6 and capacitors C6 and C5. In one embodiment, the inductors L4 and L5 are about 2 μH and inductor L3 is about 1 μH. The capacitors C6 and C7 are about 400 pF and capacitor L5 is about 800 pF.
Second sub-circuit 204 comprises capacitor C3, inductor L2 and variable capacitor C4. The variable capacitor C4 is shunted across input terminals 216A, 216B from the generator isolation sub-circuit 206 and the inductor L2 and capacitor C3 are connected in series from the input terminals 216A and 216B to the common output terminal 212. In one embodiment, variable capacitor C4 is nominally variable from about 400 pF to about 1200 pF, inductor L2 is about 2.4 μH, and capacitor C3 is about 67 pF.
Typically, in the current state of the art technology for impedance matching, either the series and shunt elements are varied, or the elements are fixed and the source frequency is varied to achieve an impedance match between a source and the load (e.g., the plasma). Where the series and shunt elements are varied, the elements responsible for matching one of the source frequencies can impact the load impedance seen by the elements responsible for matching the other source frequency. For example,
The design of the present invention, however, as discussed above with reference to
For example,
Examples of plasma enhanced semiconductor processing chambers that may be adapted to benefit from the present invention include, but are not limited to, the eMax™, MXP®, and ENABLER™ processing chambers, all available from Applied Materials, Inc. of Santa Clara, Calif. The eMax™ processing chamber is described in U.S. Pat. No. 6,113,731, issued Sep. 5, 2000 to Shan et al. The MXP® processing chamber is described in U.S. Pat. No. 5,534,108, issued Jul. 9, 1669 to Qian et al., and U.S. Pat. No. 5,674,321, issued Oct. 7, 1997 to Pu et al. The ENABLER™ processing chamber is described in U.S. Pat. No. 6,528,751, issued Mar. 4, 2003 to Hoffman et al. Each of these above-mentioned patents are hereby incorporated by reference in their entireties.
The electrostatic chuck 526 is driven by a DC power supply 520 to develop an electrostatic force that holds the substrate on the chuck surface. The cathode 527 is coupled to a pair of RF bias sources 104, 106 through a dual frequency, variable shunt matching circuit 108. The bias sources 104, 106 are generally capable of producing an RF signal having a frequency of from about 50 kHz to about 14.2 MHz and a power of between about 0 and about 5000 Watts. The dual frequency, variable shunt matching circuit 108 matches the impedance of the sources 104, 106 to the plasma impedance. A single feed 114 couples energy from both sources to the support pedestal 516.
The gas inlet 532 may comprise one or more nozzles or a showerhead. The gas inlet 532 may comprise a plurality of gas distribution zones such that various gases—which, when ignited, form a plasma 510—can be supplied to the chamber body 502 using a specific gas distribution gradient. The gas inlet 532 may form an upper electrode 528 that opposes the support pedestal 516.
In operation, a substrate 514 is disposed in the processing chamber 500 and held to the support pedestal 516 by the electrostatic chuck 526. A process gas is introduced into the chamber body 502 through the gas inlet 532 by the gas source 508. A vacuum pump, not shown, maintains the pressure inside the chamber body 502 at operating pressures—typically between about 10 mTorr to about 20 Torr.
The RF source 104 provides about 5000 W of RF voltage at 13.56 MHz to the cathode 527 through the dual frequency, variable shunt matching circuit 108, thereby exciting the gas inside the chamber body 502 and forming a plasma 510. The RF source 106 provides about 5000 W of RF voltage at a frequency of about 2 MHz to the cathode 527 through the dual frequency, variable shunt matching circuit 108. The RF source 106 provides bias power that both self-biases the substrate and modulates the plasma sheath. After a period of time, or the detection of a specific endpoint, the plasma is extinguished.
While the foregoing is directed to the illustrative embodiment of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application claims the benefit of U.S. Provisional Application No. 60/530,807 filed Dec. 18, 2003, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4579618 | Celestino et al. | Apr 1986 | A |
4585516 | Corn et al. | Apr 1986 | A |
5273610 | Thomas et al. | Dec 1993 | A |
5383019 | Farrell et al. | Jan 1995 | A |
5472564 | Nakamura et al. | Dec 1995 | A |
5512130 | Barna et al. | Apr 1996 | A |
5556501 | Collins et al. | Sep 1996 | A |
5689215 | Richardson et al. | Nov 1997 | A |
5889252 | Williams et al. | Mar 1999 | A |
6089181 | Suemasa et al. | Jul 2000 | A |
6252354 | Collins et al. | Jun 2001 | B1 |
6259334 | Howald | Jul 2001 | B1 |
6354240 | DeOrnellas et al. | Mar 2002 | B1 |
6642149 | Suemasa et al. | Nov 2003 | B2 |
6887339 | Goodman et al. | May 2005 | B1 |
20020041160 | Barnes et al. | Apr 2002 | A1 |
20020046989 | Blonigan et al. | Apr 2002 | A1 |
20030054647 | Suemasa et al. | Mar 2003 | A1 |
Number | Date | Country |
---|---|---|
0553704 | Aug 1992 | EP |
0840350 | May 1998 | EP |
1 215 710 | Aug 2002 | EP |
06243992 | Sep 1994 | JP |
08097199 | Apr 1996 | JP |
2003-073836 | Mar 2003 | JP |
WO 03043061 | May 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20050133163 A1 | Jun 2005 | US |
Number | Date | Country | |
---|---|---|---|
60530807 | Dec 2003 | US |