Dual purpose handoff station for workpiece polishing machine

Information

  • Patent Grant
  • 6227950
  • Patent Number
    6,227,950
  • Date Filed
    Monday, March 8, 1999
    25 years ago
  • Date Issued
    Tuesday, May 8, 2001
    23 years ago
Abstract
The present invention provides a dual purpose workpiece handoff station for intermediately staging a semiconductor wafer, or other workpiece, being transferred between processing stations in, for example, a Chemical-Mechanical Planarization (CMP) machine. The handoff station includes a workpiece processing surface; such as a polishing pad or buffing pad, defining a plurality of apertures for applying fluids, including water, chemicals, slurry, or vacuum, to the surface of a workpiece. In operation, a workpiece carrier moves a polished wafer from a primary polishing surface to the handoff station, and polishes, buffs, or cleans the wafer in the handoff station by rotating the wafer and oscillating the wafer across the handoff station polishing surface while pressing the wafer thereon.
Description




FIELD OF THE INVENTION




The present invention relates to chemical mechanical polishing of workpieces. In particular, the present invention relates to a workpiece handoff station for staging workpieces between processing stations, the handoff station including a workpiece processing surface.




BACKGROUND ART AND TECHNICAL PROBLEMS




Recent rapid progress in semiconductor device integration demands smaller and smaller wiring patterns or interconnections, and narrower spaces between interconnections which connect active areas. One of the processes available for forming such interconnections is photolithography. Though the photolithographic process can form interconnections that are at most 0.5 microns wide, it requires that surfaces on which pattern images are to be focused by a stepper be as flat as possible because the depth of focus of the optical system is relatively small.




It is therefore necessary to make the surfaces of semiconductor wafers flat for photolithography. One customary way of flattening the surfaces of semiconductor wafers is by Chemical Mechanical Planarization (CMP), which is a process whereby semiconductor wafers are polished with a polishing apparatus.




Conventionally, a CMP polishing apparatus has a turntable and a wafer carrier which rotate at respective individual speeds. A polishing pad is attached to the upper surface of the turntable. A semiconductor wafer seated in the carrier is lowered into engagement with the polishing pad, and clamped between the carrier and the turntable, typically through the exertion of downward force by the carrier. An abrasive grain containing liquid (known as slurry) is deposited onto the polishing pad and retained on the polishing pad. During operation, the carrier exerts a certain pressure on the turntable, and the surface of the semiconductor wafer held against the polishing pad is therefore polished by a combination of chemical polishing and mechanical polishing to a flat mirror finish while the carrier and the turntable are rotated.




The semiconductor wafer that has been polished carries abrasive liquid and ground-off particles attached thereto. Therefore, after polishing, the semiconductor wafer is cleaned and dried in one or more cycles and then housed in a clean storage cassette. If the wafer is not cleaned immediately, the slurry and foreign particles applied to the lower surface of the wafer tend to solidify, becoming very difficult to remove. Also, the known standard cleaning processes, employing, for example, roller brush box type cleaners, are largely ineffective at removing submicron scratches left on the wafer surface by the polishing process.




Thus, additional processing is typically done prior to the wafer cleaning step. For example, a second polish turntable with a second carrier may be employed, using a relatively soft buffing pad in combination with a cleaning chemical, or ultra pure water alone. The buffing process can be effective at removing the residual slurry and buffing out the surface scratches left from the polishing process before cleaning the wafer. However, the effectiveness of the buffing process is also affected by the length of time that slurry sits on the wafer between the polish and buffing process. Unfortunately, adding the buffing process necessitates additional wafer handling and transferring capability, increased tool foot print, and often reduced wafer throughput as a result.




Alternatively, the slurry and surface scratches maybe removed through use of a Hydrofluoric (HF) acid etching process. In such a process, the wafer may be dipped in a bath of the HF acid solution and/or cleaned with an HF solution in a somewhat conventional brush box. However, HF acid poses serious health risks. Compliance with industry safety standards governing the use of HF acid adds substantially to the cost of the equipment and the facility which houses the equipment when employing these techniques.




SUMMARY OF THE INVENTION




It is an object of the present invention to provide a method and apparatus for cleaning post polish slurry residue from the surface of a wafer without allowing time for the residue to significantly solidify.




It is another object of the present invention to provide a method and apparatus for buffing a wafer to remove post polish defects that minimizes the time between polishing and buffing and does not increase tool footprint.




It is still another object of the present invention to provide an alternative solution to HF acid etch for pre-cleaning removal of wafer surface particles and defects without employing a conventional buffing table.




The present invention achieves these objects by providing a dual purpose workpiece handoff station for intermediately staging a semiconductor wafer (or other workpiece) being transferred between processing stations in a CMP machine. The handoff station includes a workpiece processing surface such as a polishing pad or buffing pad which includes a plurality of apertures for applying fluids to the surface of a workpiece. A fluid delivery system is provided for selectively delivering water, chemicals, or slurry, for cleaning and polishing. In addition, the delivery system may provide vacuum for holding a wafer, or nitrogen for wafer blowoff.




In operation, a workpiece carrier moves a polished workpiece from a primary polishing surface to the handoff station, and polishes, buffs, or cleans the workpiece in the handoff station by rotating the workpiece and oscillating the workpiece across the handoff station polishing surface while pressing the workpiece thereon. Cleaning or buffing chemicals may be simultaneously applied to the workpiece. A robot, preferably track mounted, retrieves the wafer from the handoff station and transfers it to a subsequent station, for example to a second primary polish station, or to a cleaning station.




These and other objects, features and advantages of the present invention are specifically set forth in, or will become apparent from, the following detailed description of a preferred embodiment of the invention when read in conjunction with the accompanying drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

depicts a plan view of a polishing apparatus including the dual purpose handoff station of the present invention.





FIG. 2

depicts an exploded perspective view the dual-purpose handoff station of the present invention.





FIG. 3

depicts a cross-section view of the dual-purpose handoff station of FIG.


2


.





FIG. 4

depicts a schematic diagram of the fluid delivery system for the handoff station of the present invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




A polishing apparatus according to the present invention suitable for polishing silicon wafers, or other workpieces, will be described below with reference to

FIGS. 1 through 4

. First referring to

FIG. 1

, a polishing apparatus


10


comprises two generally rectangular polishing modules


12


, and


14


positioned adjacent one another. Each of the polishing modules


12


,


14


include a polishing surface


16


, a wafer carrier


18


movably supported by an arm


20


, and a wafer handoff station


22


. A polishing surface


16


generally comprises a polishing pad


17


positioned atop a support platform


21


. The pad


17


and platform


21


may take any of a variety of suitable known forms, for example, the pad and support platform may be circular as shown in

FIG. 1

, where the pad


17


is fixed for example by adhesive, to the upper surface of a rotatable or non-rotatable platform


21


. In another embodiment, pad


17


may comprise a movable continuous belt which slides across the top of a generally rectangular shaped support platform. Any of a variety of types of polish pads


17


suitable for use with or without slurry may also be utilized in conjunction with platform


21


. For example, polish pad


17


may comprise a two-layer IC-1000/Suba IV stack pad for CMP polishing available from Rodell Inc., a softer buffing type pad, or a slurry-less polishing pad containing fixed abrasive particles.




The arm


20


is suitably configured to provide the required structural support and movement capability for polishing a wafer on the polishing surface


16


, and to move carrier


18


back and forth from the polishing surface


16


to the handoff station


22


. Although depicted as a pivoting arm, any of a variety of suitable configurations providing the required motion and support, such as for example an overhead gantry and track arrangement (not shown) providing x-y motion capability, and the like, may be substituted for arm


20


. The carrier


18


includes a lower wafer holding surface


19


(see FIG.


3


), and is rotatable about a central axis for rotating a wafer


23


during polishing. Polishing modules


12


and


14


may further include a second polish arm


20


(not shown) positioned on the opposite side of polishing surface


16


, also with a corresponding carrier


18


and a second handoff station


22


(also not shown).




The polish modules


12


and


14


may be utilized to perform similar or different types of processes, by for example, varying the type of polishing pad


17


provided, or varyng the type of polishing slurry or other chemical applied thereon. A conventional utilization of polisher


10


involves a primary polish operation at polish module


12


using a CMP primary polish pad


17


with an abrasive polishing slurry, followed by a buffing process at module


14


using a softer pad


17


and deionized water, and finally a cleaning process, preferably including a Hydrofluoric (HF) acid cleaning step. As will be described in greater detail below, the present invention eliminates the second table buff process and HF acid cleaning step, thereby improving utilization of the polisher, tool safety, and wafer throughput.




The polishing apparatus


10


further includes a conveying unit


24


disposed alongside polishing modules


12


and


14


. Conveying unit


24


includes a wafer handling robot


26


slidably mounted atop a track


28


so as to be movable in the directions indicated by arrows F. Track


28


extends substantially the length of polish modules


12


and


14


, thereby providing robot


26


with access to load cups


22


of both polish modules


12


,


14


. Robot


26


includes an end effector


30


suitably configured to grip a wafer, and extendible in reach a sufficient amount to reach load cups


22


and retrieve or deposit a wafer thereon. End effector


30


may be any of a number of different commercially available types, such as the vacuum gripping type, or edge gripping type. An example of a suitable robot


26


and vacuum gripping type end effector


30


is disclosed in U.S. patent application Ser. No. 08/926,700 assigned to the assignee of this patent application, the relevant parts of which are hereby incorporated by reference.




The polishing apparatus


10


also includes a cleaning section


50


disposed alongside the conveyer module


24


opposite polish modules


12


and


14


. The cleaning section


50


includes a plurality of cleaning modules


52


that may be conventional cleaning devices such as brush scrubbers, spin dryers, and the like, or less conventional devices such as an HF acid etch station. The cleaning modules


52


are interconnected by suitable wafer transport devices such as a water track


54


for providing serial transport of wafers through cleaning modules


52


. Access into cleaning section


50


is provided for robot


26


to deposit a processed wafer onto a wafer-receiving portion


56


of water track


54


.




A front end module


60


positioned at the end of polisher


10


adjacent polish module


12


and cleaning section


50


provides retrieval and storage of dry wafers. The polisher


10


provides for dry-in/dry-out wafer processing, whereby a group of dry unprocessed wafers initially contained in a wafer storage pod


62


are polished, buffed, cleaned, and then returned to the same storage pod


62


. The front end module preferably includes at least three storage pods


62


, and a dry wafer handling robot


64


for transferring wafers to and from pods


62


and to and from the processing modules of the polisher


10


. A preferred well-known and commercially available type of storage pod


62


is the Front Opening Unload Pod (FOUP) type, which provides an enclosed mini-environment for the wafers. The FOUP type pod may be readily attached or detached from the front-end module


60


while providing an airtight seal thereto and maintaining the integrity of the wafer mini-environment. Turning now to

FIGS. 2 and 3

a workpiece handoff station


22


in accordance with the present invention will be described. The workpiece handoff station


22


generally includes a workpiece support platform


80


which sits atop a manifolding plate


82


and body portion


84


, and a polishing pad


88


affixed to the top of platform


80


. The polishing pad


88


may be formed of any suitable material, from soft cloth to a relatively stiff plastic, as required for a particular cleaning, buffing, or polish operation to be performed. The platform


80


and pad


88


include a plurality of co-aligned apertures


92


and


94


for application of pressurized fluids, or vacuum therethrough to an underside of a wafer


21


. The apertures


92


,


94


are connected via the manifolding plate


82


to an arrangement of conduits and valves which are in turn connected to separately accessible sources of pressurized fluids, chemicals, and vacuum. The handoff station also includes three workpiece centering fingers


86


positioned around the perimeter of platform


80


, and associated linkages


90


.




Referring now to the schematic diagram of

FIG. 4

, a preferred piping and valving arrangement is depicted. As indicated, fluid access to load cup


22


is provided by a single main fluid supply conduit


102


. Main fluid conduit


102


is connectable to a variety of fluid or gas sources to facilitate performance of various operations or processes on a wafer. In particular, main conduit


102


is coupled through valves


116


,


118


,


120


,


122


,


124


respectively to a vacuum source


106


, an ultra-pure water source


108


, a gaseous nitrogen source


110


, a liquid chemical source


112


, and an abrasive polishing slurry source


114


. Preferably, an inline pump


126


is provided for pumping either liquid chemical from source


112


or polishing slurry from source


114


, to load cup


22


.




The valves


116


-


124


are independently operable to allow for individually connecting the main conduit


102


to the sources


106


-


14


. Thus for example, simultaneously closing valves


118


-


124


while opening valve


116


, connects load cup


22


through main conduit


102


to the vacuum source


106


only. A different source may then be accessed by closing valve


116


and opening a different selected valve, and so on.




Returning now to

FIGS. 2 and 3

, the load cup main fluid supply conduit


102


is connected from the underside of manifolding plate


82


to an array of interconnected open channels


96


formed in the upper surface


83


of plate


82


. The channels


96


are covered by the undersurface of the platform


80


as assembled, thereby forming enclosed fluid passages. Mechanical pilots (not shown) are provided to position platform


80


angularly with respect to manifolding plate


82


such that the channels


96


align with the apertures


92


in platform


80


. An O-ring type gasket


98


is provided between manifolding plate


82


and platform


80


to prevent leakage of fluids therebetween. Thus, pressurized fluid introduced through conduit


102


is distributed evenly through channels


96


and forced upward and out through apertures


92


and


94


for application to a surface of a wafer. Similarly, vacuum may be applied through apertures


92


,


94


, and channels


96


for drawing a wafer


21


down against platform


80


.




Accordingly, a dual purpose workpiece handoff station is provided that serves both as a conventional wafer staging station, and as a wafer buffing, polishing or cleaning station. As a workpiece staging station, load cup


22


may be utilized, for example, to stage a wafer being transferred from the front end module


60


to the polishing surface


16


of polish module


12


. In such a procedure, a wafer is transferred by robot


64


from module


60


to load cup


22


and deposited thereon. The centering fingers


86


are then actuated simultaneously with application of vacuum, to both center the wafer and fix the wafer in load cup


22


. Next, arm


20


and carrier


18


are positioned directly over the load cup


22


and brought into contact with the upper surface of the wafer. The carrier


18


is caused to grip the wafer while, simultaneously, the load cup vacuum is stopped. The wafer is then transported by carrier


18


and arm


20


to polishing surface


16


for processing.




Load cup


22


may also serve as a staging station following wafer processing on polishing surface


16


. As an example of such a procedure, after being polished on polishing surface


16


, a wafer is transported by support arm


20


and carrier


18


to the load cup


22


and deposited thereon. Again, the centering fingers


86


are actuated simultaneously with application of vacuum to center and fix the wafer in load cup


22


. Next, end effector


30


of robot


26


is brought into gripping contact with the wafer while simultaneously stopping the application of the load cup vacuum. The wafer is then removed from load cup


22


, and transported by robot


26


to a desired subsequent station, such as receiving station


56


of cleaner module


50


, or load cup


22


of polishing module


14


. Load cup


22


may also be utilized as a cleaning or buff station to filter process a wafer, intermediate to the above-described conventional handoff procedures. In a first such example, a wafer having been processed with a primary polishing procedure on a polishing surface


16


is transported by support arm


20


and carrier


18


to load cup


22


. The carrier


18


is then lowered to bring the wafer into pressing engagement with the polishing pad


88


. Carrier


18


and the wafer attached thereto are simultaneously rotated about a central axis of carrier


18


, while the carrier is caused to oscillate laterally back and forth across polishing pad


88


. With respect to a pivoted polishing arm configuration such as shown in

FIG. 1

, the lateral oscillatory motion is obtainable by swinging arm


20


back and forth, whereby carrier


18


traces an arcuate path across polishing pad


17


.




At the same time the wafer is being rotated and translated back and forth, fluids may be applied to the undersurface of the wafer through the apertures


94


and


92


. For example, if a cleaning operation or light buff operation is being performed, ultra pure water, or a very dilute liquid chemical solution may be conveniently applied to the wafer. Preferably a softer cleaning or buffing type pad


88


is used in such a process. Alternatively, an abrasive slurry may be applied to the wafer, for example to perform a more aggressive post polish buff operation, or even a second-table type polish operation, preferably followed by application of ultra pure water to rinse slurry residue from the wafer. For such polishing type operations, a stiffer polish pad material is preferable, such as an IC-1000 series pad made by Rodel Industries.




Thus, the load cup of the present invention may be used to perform a buffing, polishing, or cleaning operation typically performed by other polish or buffing tables, or cleaning devices in prior art polishing tools. Accordingly, an advantage of the present invention is that one or more polishing or cleaning devices may be eliminated from a polish tool, thereby reducing tool foot print, weight, and cost. This advantage is of particular significance with regard to the advent of copper interconnect wires in micro-electronic device structures. Two and three table polishing processes have shown promising results in polishing copper layers. Still, standards for maximum allowable overall tool foot print demanded by device manufacturers have not relaxed as a result. Thus, the dual purpose load cup of the present invention provides the capability to perform an additional device polishing step without increasing tool footprint.




Because of the close proximity of the load cup


22


to the polish surface


17


, a wafer may be transported to the load cup


22


relatively quickly after polishing, as compared to prior art devices. Thus, the time between the polish operation on the main polish table


16


and the secondary operation performed in the load cup


22


is also reduced as compared to prior devices. For example, in a typical pnor art polishing tool, the wafer is transported by the carrier to a staging location after the initial polishing process. The staging location may be a single fixed cup or a number of cups on an indexing table of the type typically used in conjunction with multiple head polishers. In the case of an indexing table, the wafer stays in its cup until the index table has indexed completely around and all the cups contain a polished wafer. Next, the polished wafer, or wafers, are retrieved from the staging station and carried to a second staging station adjacent a second polishing or buffing table. Finally, a carrier at the second polishing table picks up the wafer from the second staging station and moves it to the second polishing surface for further work.




The dual purpose load cup of the present invention greatly reduces the time between the first polishing process and a second operation performed on the wafer by eliminating the above described intermediate wafer handling steps. Thus, a wafer is transported directly from a polishing operation to a subsequent polish, clean, or buff operation by a single motion of carrier arm


20


. An immediately apparent advantage realized by such a direct wafer transfer is the associated reduction of overall process time, and the corresponding increase in wafer throughput. Also as a direct result, the amount of time that polishing slurry residue is left sitting on the wafer surface is minimized. It is desirable to remove slurry residue as quickly as practical from a polished wafer because the longer it remains, the more it tends to set-up and the harder it is to remove. Thus in accordance with the present invention, the polishing slurry residue from a first polishing process may be advantageously removed from the surface of the wafer by a clean or buff process in the dual purpose load cup before it can begin to significantly set-up and adhere to the wafer.




It is also desirable to control or reduce the amount of time the device structure formed on the wafer is exposed to reactive chemicals in the slurry residue. In particular, copper interconnect wires are highly susceptible to corrosion from extended exposure to slurry residue. Accordingly, another advantage of the present invention is that the corrosive effects of slurry residue on copper wires of a polished device structure may be arrested by a subsequent cleaning of buff process in a more timely manner than possible with prior art polishing tools. It will be appreciated by one skilled in the art that a similar situation exists following a buff process in which certain reactive chemicals are utilized which may cause damage to the device structure if left sitting too long. In such a case, the present invention allows for quickly neutralizing the buffing chemicals with a subsequent cleaning operation before any significant damage to the device occurs.




It is further desirable to initiate a post polish buff process as quickly as possible to maximize the effectiveness of the buff process in removing defects left by the prior polishing process. Buffing processes in prior art polishing equipment have generally proved to be unsatisfactory at removing polishing defects. Accordingly, another advantage of the present invention is that the effectiveness of the buffing process is greatly improved by initiating the buffing process at the earliest opportunity after polish. As a result, the need for an HF acid process in the cleaning step for removing surface defects is substantially reduced or eliminated. Consequently, tool complexity is reduced and operator safety is greatly improved.




The following example illustrates the effectiveness of the dual purpose handoff station at removing particles from the surface of a semiconductor wafer. An experiment was performed wherein a 200 mm diameter unpatterned semiconductor wafer was cleaned by a conventional scrubbing process, and then buffed by a process simulating the process of the present invention. Measurements were taken of the clean wafer before and after the buff process to determine the number of particles present on the surface of the wafer at both times. All particle measurements were performed with a Tencor brand particle counting machine, model no. xxxxxxx.




The buffing process was performed on a Model no. SS-136 silicon wafer polishing machine, manufactured and sold by SpeedFam Ltd. of Japan. The SS-136 machine was operated in a such a way as to simulate the buffing process of the present invention by causing the wafer carrier to simultaneously rotate and oscillate while pressing the wafer against a fixed buffing pad. The process parameters for the experimental buffing process were as follows:





















Carrier rotational velocity:




60 rpm







Carrier down force:




30 pounds







Oscillation radius:




 1 inch







Oscillation pattern:




eliptical







Buffing time:




30 seconds







Buffing fluid:




deionized water















The wafer was pre-measured using the Tencor machine taking care to minimize handling of the wafer and maintain the cleaned condition, and post-measured after the above-described buffing process. A comparison of the pre and post measurements showed that after the buffing process there were on average 94 less particles (negative adders) of size greater than 0.2×10−6 m. present on the wafer than were detected by the pre-measurement. Particle count reductions of approximately 50 to 100 less particles are achievable by buffing similarly cleaned wafers using conventional second table buffing processes. Thus, the above described experiment demonstrates that the buffing process of the present invention provides buffing performance at least equivalent to that of conventional buffing processes.




Various modifications and alterations of the above described dual purpose load cup in addition to those already described will be apparent to those skilled in the art. For example, although the invention has been described generally in terms of processing semiconductor wafers, it is to be appreciated that the invention may be utilized with equal benefit for processing other workpieces, such as for example magnetic disks. Accordingly, the foregoing detailed description of the preferred embodiment of the invention should be considered exemplary in nature and not as limiting to the scope and spirit of the invention as set forth in the following claims.



Claims
  • 1. An apparatus for polishing a surface of a workpiece, comprising:a first workpiece polishing surface for polishing a surface of a workpiece pressed thereon; a workpiece handoff station having a second workpiece processing surface for additionally polishing said surface of said workpiece pressed thereon; and a workpiece carrier for transporting said workpiece directly from said first polishing surface to said handoff station and into contact with said second polishing surface.
  • 2. The apparatus of claim 1 further comprising a first workpiece handling device for accessing a workpiece in said handoff station.
  • 3. The apparatus of claim 2 wherein said workpiece handling device comprises a moveably mounted robot.
  • 4. The apparatus of claim 1 wherein said second processing surface comprises a pad positioned atop a workpiece support platform.
  • 5. The apparatus of claim 4, wherein said pad comprises a relatively soft buffing pad.
  • 6. The apparatus of claim 1, wherein said second workpiece processing surface defines a plurality of fluid apertures extending therethrough.
  • 7. The apparatus of claim 6 wherein said apertures are in fluid communication with a vacuum source operable to draw air through said apertures to vacuum-hold a workpiece.
  • 8. The apparatus of claim 6 wherein said apertures are in fluid communication with a pressurized fluid source operable to flow a fluid through said apertures and passages and against the surface of a workpiece contacting said second processing surface.
  • 9. The apparatus of claim 8 wherein said fluid comprises a liquid chemical formulation.
  • 10. The apparatus of claim 9 wherein said chemical formulation comprises water.
  • 11. The apparatus of claim 8 wherein said fluid comprises an abrasive slurry.
  • 12. The apparatus of claim 6, further comprising a plurality of fluid sources and a plurality of corresponding valves, said valves being operable to selectively connect said apertures to at least one of said fluid sources.
  • 13. The apparatus of claim 6, further comprising:a vacuum source; at least one pressurized fluid source; and a valve operable to selectively independently connect at least one of said at least one pressurized fluid source and said vacuum source to said apertures.
  • 14. The apparatus of claim 1 wherein said carrier is generally circular in shape and rotatable about an axis perpendicular to said second processing surface while maintaining said workpiece in pressing contact with said second processing surface.
  • 15. The apparatus of claim 14, wherein said carrier is movable laterally in a direction parallel to said second processing surface while maintaining said workpiece in pressing contact thereon.
  • 16. The apparatus of claim 15, wherein said second processing surface is wide enough to accommodate said relative lateral motion without said workpiece overhanging an edge of said second processing surface.
  • 17. The apparatus of claim 1 further including centering means for centering a workpiece resting on said second processing surface.
US Referenced Citations (10)
Number Name Date Kind
4141180 Gill, Jr. et al. Feb 1979
5246525 Sato Sep 1993
5643053 Shendon Jul 1997
5738574 Tolles et al. Apr 1998
5797789 Tanaka et al. Aug 1998
5830045 Togawa et al. Nov 1998
5876271 Oliver Mar 1999
5934984 Togawa et al. Aug 1999
5964646 Kassir et al. Oct 1999
6050884 Togawa et al. Apr 2000
Foreign Referenced Citations (5)
Number Date Country
0 761 387 A1 Mar 1997 EP
0 774 323 A2 May 1997 EP
0 792 721 A1 Sep 1997 EP
0 842 738 A2 Nov 1997 EP
WO 9926763 Jun 1999 WO