Dual stress memory technique method and related structure

Information

  • Patent Grant
  • 7785950
  • Patent Number
    7,785,950
  • Date Filed
    Thursday, November 10, 2005
    18 years ago
  • Date Issued
    Tuesday, August 31, 2010
    13 years ago
Abstract
A method for providing a dual stress memory technique in a semiconductor device including an nFET and a PFET and a related structure are disclosed. One embodiment of the method includes forming a tensile stress layer over the nFET and a compressive stress layer over the pFET, annealing to memorize stress in the semiconductor device and removing the stress layers. The compressive stress layer may include a high stress silicon nitride deposited using a high density plasma (HDP) deposition method. The annealing step may include using a temperature of approximately 400-1200° C. The high stress compressive silicon nitride and/or the anneal temperatures ensure that the compressive stress memorization is retained in the pFET.
Description
BACKGROUND OF THE INVENTION

1. Technical Field


The invention relates generally to stress memory techniques, and more particularly, to a method of providing a dual stress memory technique and related structure.


2. Background Art


The application of stresses to field effect transistors (FETs) is known to improve their performance. When applied in a longitudinal direction (i.e., in the direction of current flow), tensile stress is known to enhance electron mobility (or n-channel FET (nFET) drive currents) while compressive stress is known to enhance hole mobility (or p-channel FET (pFET) drive currents).


One manner of providing this stress is referred to as stress memorization technique (SMT), which includes applying an intrinsically stressed material (e.g., silicon nitride) over a channel region and annealing to have the stress memorized in, for example, the gate polysilicon or the diffusion regions. The stressed material is then removed. The stress, however, remains and improves electron or hole mobility, which improves overall performance. The anneal is typically provided as part of a dopant activation anneal.


One problem with SMT is that it is applicable only to n-type field effect transistors (nFETs). In particular, while a compressively stressed silicon nitride layer can be formed over a pFET to impart a compressive stress, the stress is removed for the most part by the subsequent and requisite dopant activation anneal. That is, most of the compressive stress is not memorized in the pFET.


In view of the foregoing, there is a need in the art to provide SMT for both nFETs and pFETs.


SUMMARY OF THE INVENTION

A method for providing a dual stress memory technique in a semiconductor device including an nFET and a pFET and a related structure are disclosed. One embodiment of the method includes forming a tensile stress layer over the nFET and a compressive stress layer over the pFET, annealing to memorize stress in the semiconductor device and removing the stress layers. The compressive stress layer may include a high stress silicon nitride deposited using a high density plasma (HDP) deposition method. The annealing step may include using a temperature of approximately 400-1200° C. The high stress compressive silicon nitride and/or the anneal temperatures ensure that the compressive stress memorization is retained in the pFET.


A first aspect of the invention provides a method of providing a dual stress memory technique in a semiconductor device including an nFET and a pFET, the method comprising the steps of: forming a first stress layer over the semiconductor device; forming an etch stop layer over the first stress layer; removing the first stress layer and the etch stop layer over a first one of the nFET and the pFET; forming a second stress layer over the semiconductor device, wherein a stress layer over the pFET includes a compressive stress silicon nitride; annealing to memorize stress in the semiconductor device; and removing the first and second stress layer and the etch stop layer.


A second aspect of the invention provides a method of providing a dual stress memory technique for a semiconductor device including an nFET and a pFET, the method comprising the steps of: forming a tensile stress layer over the nFET and a compressive stress layer over the pFET, wherein the compressive stress layer include a high stress film that retains at least partial compressive stress during a subsequent anneal; annealing to memorize stress in the semiconductor device; and removing the compressive and tensile stress layers.


A third aspect of the invention provides a semiconductor device comprising: an nFET having a tensile stress memorized into a part thereof; and a pFET having a compressive stress memorized into a part thereof.


The illustrative aspects of the present invention are designed to solve the problems herein described and other problems not discussed, which are discoverable by a skilled artisan.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features of this invention will be more readily understood from the following detailed description of the various aspects of the invention taken in conjunction with the accompanying drawings that depict various embodiments of the invention, in which:



FIG. 1 shows a preliminary structure for one embodiment of a method according to the invention.



FIGS. 2-7 show a method according to one embodiment of the invention.





It is noted that the drawings of the invention are not to scale. The drawings are intended to depict only typical aspects of the invention, and therefore should not be considered as limiting the scope of the invention. In the drawings, like numbering represents like elements between the drawings.


DETAILED DESCRIPTION

Turning to the drawings, FIG. 1 shows a preliminary structure for one embodiment of a method of providing a dual stress memory technique (SMT) for a semiconductor device 100. The preliminary structure includes a substrate 102 having an n-type field effect transistor (nFET) 104 and a p-type field effect transistor (pFET) 106 formed thereon. As shown, semiconductor device 100 has completed initial processing such as conventional shallow trench isolation (STI) 110 formation, well implants, gate dielectric 112 formation, gate conductor 114 formation, and extension/halo/source/drain implants for diffusions 116.


Referring to FIG. 2, in one embodiment of the method, a first step includes forming a tensile stress layer 120 over nFET 104 and a compressive stress layer 122 over pFET 106. Both tensile stress layer 120 and compressive stress layer 122 may include intrinsically stressed silicon nitride (Si3N4). In one preferred embodiment, however, compressive stress layer 122 includes a high density plasma (HDP) silicon nitride (Si3N4), i.e., a silicon nitride formed using a high density plasma deposition process. In one preferred embodiment, the compressive stress layer forming step includes performing a HDP deposition of silicon nitride using the following conditions: approximately 50 mTorr of pressure, approximately 200 standard cubic centimeters (sccm) of argon (Ar), approximately 100 sccm of silane (SiH4), approximately 300 sccm of nitrogen (N2), approximately 0-1500 W of radio frequency (RF) bias power and approximately 2000W-4500W of RF source power. Compressive stress layer 122 thus includes a high stress silicon nitride that enables provision of the dual SMT because it allows retention of compressive stress (full or partial) such that the stress is memorized in parts of pFET 106 during the subsequent anneal step, described below.


The forming step may be provided in any number of fashions, only two illustrative embodiments of which will be described herein. FIGS. 3-6 show the two illustrative embodiments. A first optional preliminary step includes, as shown in FIG. 3, forming an etch stop layer 118, e.g., of silicon dioxide (SiO2), (shown in phantom in FIG. 3 only). Next, a first sub-step, shown in FIG. 3, includes forming a first stress layer 130 over semiconductor device 100. As will be described below, first stress layer 130 may be either tensile stress layer 120 (FIG. 2) or compressive stress layer 122 (FIG. 2). As shown in FIG. 3, however, first stress layer 130 includes an intrinsically tensilely stressed silicon nitride. A second sub-step, also shown in FIG. 3, includes forming an etch stop layer 132 over first stress layer 130. Etch stop layer 132 may include any now known or later developed etch stop material such as silicon dioxide (SiO2). Next, as also shown in FIG. 3, first stress layer 130 and etch stop layer 132 are removed over a first one of nFET 104 and pFET 106 (pFET 106 as shown) to expose one of the FETs. The etching 138 may include use of a patterned mask 136 (shown in phantom) and any conventional dry etching chemistry for the materials used. FIG. 4 shows the resulting structure including exposed pFET 106.


Next, as shown in FIG. 5, a second stress layer 140 is formed over semiconductor device 100. As shown, second stress layer 140 is formed over pFET 106 and, hence, includes the above-described high density, compressive stress silicon nitride. In one alternative embodiment, a next step may include removing second stress layer 140 over nFET 104 prior to the annealing step, described below. The removing step may include use of a patterned mask 146 (shown in phantom) and any conventional dry etching 144 for the materials used. FIG. 6 shows the resulting structure. Where second stress layer 140 is not removed, it should be recognized that some degradation of stress imparted by first stress layer 130 may be present, but that this degradation is minimal.


In an alternative embodiment, the above-described steps may be switched. That is, the forming step may include forming a compressive stress layer 122 over semiconductor device 100, forming an etch stop layer 132 over the compressive stress layer, removing compressive stress layer 122 and etch stop layer 132 over nFET 104, and forming a tensile stress layer 120 over semiconductor device 100. As in the above-described embodiment, tensile stress layer 120 may be optionally removed over pFET 106 prior to the annealing step, described below. Where tensile stress layer 120 is not removed, it should be recognized that some degradation of stress imparted by compressive stress layer 122 may be present, but that this degradation is minimal.



FIG. 6 also shows a second step according to one embodiment of the method, which includes annealing 150 to memorize stress in semiconductor device 100. Annealing 150 preferably includes using a temperature of no less than approximately 400° C. and no greater than approximately 1200° C. The anneal temperature is optimized so that device 100 will be able to memorize the stress from stress layers 120, 122, and not lose the compressive stress on parts of pFET 106, which would result in a neutral or tensile stress thereon. For example, one conventional plasma-enhanced chemical vapor deposited (PECVD) compressive silicon nitride, which is formed with approximately −1.8 GPa of stress drops to approximately 0.04 GPa, i.e., a tensile stress, after anneal. In contrast, one embodiment an HDP compressive stress silicon nitride according to the invention is formed with approximately −3.0 GPa, which results in a stress of no less than −100 MPa, thus retaining a compressive stress. In one embodiment, the compressive stress may be in the range of approximately −1 GPa.



FIG. 7 shows a third step including removing stress layers 120, 122 and etch stop layer 132. This removing step 148 may include a wet or dry etch, or combination of them; for example, a wet or dry etch to remove etch stop layer 132 and then a wet strip using hot phosphorous acid to remove silicon nitride stress layers. FIG. 7 also shows a semiconductor device 200 according to the invention including an nFET 204 having a tensile stress 260 memorized into a part thereof, e.g., gate conductor 214 and/or diffusion region 216, and a pFET 206 having a compressive stress 262 memorized into a part thereof, e.g., gate conductor 220 and/or diffusion region 222.


The foregoing description of various aspects of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and obviously, many modifications and variations are possible. Such modifications and variations that may be apparent to a person skilled in the art are intended to be included within the scope of the invention as defined by the accompanying claims.

Claims
  • 1. A method of providing a dual stress memory technique in a semiconductor device including an nFET and a pFET, the method comprising: forming a first stress layer over the nFET and the pFET, wherein the first stress layer is an intrinsically compressive stressed layerforming an etch stop layer over the first stress layer;removing the first stress layer and the etch stop layer over the nFETforming a second stress layer over a remaining portion of the first stress layer and the nFET, wherein the second stress layer is a tensilely stressed silicon nitride layer;annealing to memorize stress in the nFET and the pFET, wherein the remaining portion of the first stress layer remains over the pFET during the annealing, and the second stress layer remains over both the nFET and the pFET during the annealing; and;removing the first and second stress layers and the etch stop layer in their entirety, wherein the memorized stress is retained in the nFET and the pFET after the annealing and the removing of the first and second stress layers.
  • 2. The method of claim 1, wherein the compressive stress silicon nitride includes a high density plasma (HDP) silicon nitride.
  • 3. The method of claim 1, further comprising the step of depositing an additional etch stop layer prior to the first stress layer forming step.
  • 4. The method of claim 1, wherein the compressive stress silicon nitride has a magnitude of stress of no less than 100 MPa after the annealing.
  • 5. The method of claim 1, wherein the annealing step includes using a temperature of no less than approximately 400° C. and no greater than approximately 1200° C.
  • 6. The method of claim 1, wherein each stress layer includes silicon nitride.
  • 7. The method of claim 1, wherein the etch stop layer includes silicon dioxide.
  • 8. A method of providing a dual stress memory technique for a semiconductor device including an nFET and a pFET, the method comprising: forming a tensile stress layer over only the nFET and forming a compressive stress layer over the pFET and the tensile stress layer overlying the nFET, wherein the compressive stress layer includes silicon nitride;annealing to memorize stress in the nFET and the pFET, wherein the tensile stress layer remains over only the nFET and the compressive stress layer remains over the pFET and the tensile stress layer overlying the nFET during the annealing; andremoving the compressive and tensile stress layers in their entirety, wherein the memorized stress is retained in the nFET and the pFET after the annealing and the removing of the compressive and tensile stress layers.
  • 9. The method of claim 8, wherein the compressive stress layer forming step includes performing a high density plasma (HDP) deposition of the silicon nitride using the following conditions: approximately 50 mTorr of pressure, approximately 200 standard cubic centimeters (sccm) argon (Ar), approximately 100 sccm of silane (SiH4), approximately 300 sccm of nitrogen (N2), approximately 0-1500 W of radio frequency (RF) bias power and approximately 2000 W-4500 W of RF source power.
  • 10. The method of claim 8, wherein the annealing step includes using a temperature of no less than approximately 400° C. and no greater than approximately 1200 ° C.
  • 11. The method of claim 8, wherein the tensile stress layer includes silicon nitride.
  • 12. The method of claim 8, wherein the forming step includes: forming the tensile stress layer over the nFET and the pFET;forming an etch stop layer over the tensile stress layer;removing the tensile stress layer and the etch stop layer over the pFET; andforming the compressive stress layer over a remaining portion of the tensile stress layer and the pFET.
  • 13. The method of claim 12, wherein the etch stop layer includes silicon dioxide.
US Referenced Citations (102)
Number Name Date Kind
3602841 McGroddy Aug 1971 A
4665415 Esaki et al. May 1987 A
4853076 Tsaur et al. Aug 1989 A
4855245 Neppl et al. Aug 1989 A
4952524 Lee et al. Aug 1990 A
4958213 Eklund et al. Sep 1990 A
5006913 Sugahara et al. Apr 1991 A
5060030 Hoke et al. Oct 1991 A
5081513 Jackson et al. Jan 1992 A
5108843 Ohtaka et al. Apr 1992 A
5134085 Gilgen et al. Jul 1992 A
5310446 Konishi et al. May 1994 A
5354695 Leedy Oct 1994 A
5371399 Burroughes et al. Dec 1994 A
5391510 Hsu et al. Feb 1995 A
5459346 Asakawa et al. Oct 1995 A
5471948 Burroughes et al. Dec 1995 A
5557122 Shrivastava et al. Sep 1996 A
5561302 Candelaria Oct 1996 A
5565697 Asakawa et al. Oct 1996 A
5571741 Leedy Nov 1996 A
5592007 Leedy Jan 1997 A
5592018 Leedy Jan 1997 A
5670798 Schetzina Sep 1997 A
5679965 Schetzina Oct 1997 A
5683934 Candelaria Nov 1997 A
5840593 Leedy Nov 1998 A
5861651 Brasen et al. Jan 1999 A
5880040 Sun et al. Mar 1999 A
5940716 Jin et al. Aug 1999 A
5940736 Brady et al. Aug 1999 A
5946559 Leedy Aug 1999 A
5960297 Saki Sep 1999 A
5989978 Peidous Nov 1999 A
6008126 Leedy Dec 1999 A
6025280 Brady et al. Feb 2000 A
6046464 Schetzina Apr 2000 A
6066545 Doshi et al. May 2000 A
6090684 Ishitsuka et al. Jul 2000 A
6107143 Park et al. Aug 2000 A
6117722 Wuu et al. Sep 2000 A
6133071 Nagai Oct 2000 A
6165383 Chou Dec 2000 A
6221735 Manley et al. Apr 2001 B1
6228694 Doyle et al. May 2001 B1
6246095 Brady et al. Jun 2001 B1
6255169 Li et al. Jul 2001 B1
6261964 Wu et al. Jul 2001 B1
6265317 Chiu et al. Jul 2001 B1
6274444 Wang Aug 2001 B1
6281532 Doyle et al. Aug 2001 B1
6284623 Zhang et al. Sep 2001 B1
6284626 Kim Sep 2001 B1
6319794 Akatsu et al. Nov 2001 B1
6361885 Chou Mar 2002 B1
6362082 Doyle et al. Mar 2002 B1
6368931 Kuhn et al. Apr 2002 B1
6372291 Hua et al. Apr 2002 B1
6403486 Lou Jun 2002 B1
6403975 Brunner et al. Jun 2002 B1
6406973 Lee Jun 2002 B1
6461936 von Ehrenwall Oct 2002 B1
6476462 Shimizu et al. Nov 2002 B2
6483171 Forbes et al. Nov 2002 B1
6493497 Ramdani et al. Dec 2002 B1
6498358 Lach et al. Dec 2002 B1
6501121 Yu et al. Dec 2002 B1
6506652 Jan et al. Jan 2003 B2
6509618 Jan et al. Jan 2003 B2
6521964 Jan et al. Feb 2003 B1
6531369 Ozkan et al. Mar 2003 B1
6531740 Bosco et al. Mar 2003 B2
6621392 Volant et al. Sep 2003 B1
6635506 Volant et al. Oct 2003 B2
6717216 Doris et al. Apr 2004 B1
6831292 Currie et al. Dec 2004 B2
6881665 Tsui et al. Apr 2005 B1
20010009784 Ma et al. Jul 2001 A1
20020063292 Armstrong et al. May 2002 A1
20020074598 Doyle et al. Jun 2002 A1
20020086472 Roberds et al. Jul 2002 A1
20020086497 Kwok Jul 2002 A1
20020090791 Doyle et al. Jul 2002 A1
20030032261 Yeh et al. Feb 2003 A1
20030040158 Saitoh Feb 2003 A1
20030057184 Yu et al. Mar 2003 A1
20030067035 Tews et al. Apr 2003 A1
20040029323 Shimizu et al. Feb 2004 A1
20040113174 Chidambarrao et al. Jun 2004 A1
20050093059 Belyansky et al. May 2005 A1
20050093081 Belyansky et al. May 2005 A1
20050156208 Lin et al. Jul 2005 A1
20050194596 Chan et al. Sep 2005 A1
20050199958 Chen et al. Sep 2005 A1
20060091471 Frohberg et al. May 2006 A1
20060148270 Lu et al. Jul 2006 A1
20060228848 Chan et al. Oct 2006 A1
20070010073 Chen et al. Jan 2007 A1
20070018252 Zhu Jan 2007 A1
20070040225 Yang Feb 2007 A1
20070075360 Chang et al. Apr 2007 A1
20070105299 Fang et al. May 2007 A1
Foreign Referenced Citations (3)
Number Date Country
64-76755 Mar 1989 JP
132585 Jun 2007 SG
151256 Apr 2009 SG
Related Publications (1)
Number Date Country
20070105299 A1 May 2007 US