Field
The present disclosure relates generally to wireless communication system. More specifically the present disclosure related to methods and apparatus for an architecture that provides a dynamically configurable shared scan clock channel that enables maximum use of automated test equipment (ATE) resources during scan chain testing.
Background
Wireless communication devices have become smaller and more powerful as well as more capable. Increasingly users rely on wireless communication devices for mobile phone use as well as email and Internet access. At the same time, devices have become smaller in size. Devices such as cellular telephones, personal digital assistants (PDAs), laptop computers, and other similar devices provide reliable service with expanded coverage areas. Such devices may be referred to as mobile stations, stations, access terminals, user terminals, subscriber units, user equipment, and similar terms.
These wireless communication devices typically use a system-on-chip (SoC) to provide many of the functions of the device. A SoC is an integrated circuit that combines all components of a computer or other electronic system on a single chip. The SoC device may contain digital, analog, mixed-signal, and radio frequency (RF) functions on a single substrate. SoCs are used widely due to their low power consumption.
A SoC may consist of a microcontroller or digital signal processor (DSP) core, memory blocks including a selection of ROM, RAM, EEPROM, and flash memory, as well as timing sources. The timing sources may include oscillators and phase-locked loops (PLL). Peripherals, including counter-timers, real-time timers, and power-on reset generators may also be incorporated. A wide variety of external and internal interfaces including analog-to-digital (ADC), digital-to-analog converters (DAC), voltage regulators and power management circuits are also typically included in a SoC. The desired performance of the end device may result in different mixes of the above functions to be included in the SoC. The SoC also includes a bus system for connecting the various functional blocks.
Testing a SoC may be complex and time consuming. During testing of an SoC a fixed number of clock, scan in, and scan out channels are typically used for scan testing with ATE. All of the hard macros used in this testing are designed for the same number of scan in and scan out operations. Since 90% of the hard macros require only a few of the assigned clock channels, under-utilization of the ATE resources occurs, as many channels are not used. Automated test pattern generation (ATPG) may contribute up to 50% of the total test time.
There is a need in the art for a method and apparatus for reducing ATPG test time, test data volume, and improving use of clock, scan in, and scan out channels.
Embodiments described herein provide a method for testing an electronic device with multiple cores. The method begins when at least one scan is input for scan configuring. A signal having a predetermined number of bits is then input to a decoder. The decoder then outputs at least one assigned test channel based on the output of the decoder. A test control block then switches at least one selected scan in channel to a test control block. A hard macro scan out of channels is then input to a channel maximization device which allocates or re-allocates the channels for testing. Testing proceeds once the channels are allocated.
An additional embodiment provides an apparatus for testing an electronic device having multiple channels. The device includes a programmable scan configuration block for adjusting the number of scan out channels to maximize testing resources and a predetermined bit register in communication with the programmable scan configuration block.
A further embodiment provides an apparatus for testing a device with multiple cores. The apparatus includes means for inputting at least one scan for scan configuring; means for inputting a signal having a predetermined number of bits to a decoder; means for outputting at least one assigned test channel based on the output of the decoder; means for switching at least one selected scan in channel to a test control block; means for inputting hard macro scan out channels to a channel maximization device; and means for testing the electronic device.
Various aspects are now described with reference to the drawings. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of one or more aspects. It may be evident, however, that such aspect(s) may be practiced without these specific details.
As used in this application, the terms “component,” “module,” “system” and the like are intended to include a computer-related entity, such as, but not limited to hardware, firmware, a combination of hardware and software, software, or software in execution. For example, a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program and/or a computer. By way of illustration, both an application running on a computing device and the computing device can be a component. One or more components can reside within a process and/or thread of execution and a component may be localized on one computer and/or distributed between two or more computers. In addition, these components can execute from various computer readable media having various data structures stored thereon. The components may communicate by way of local and/or remote processes such as in accordance with a signal having one or more data packets, such as data from one component interacting with another component in a local system, distributed system, and/or across a network such as the Internet with other systems by way of the signal.
As used herein, the term “determining” encompasses a wide variety of actions and therefore, “determining” can include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure), ascertaining and the like. Also, “determining” can include resolving, selecting choosing, establishing, and the like.
The phrase “based on” does not mean “based only on,” unless expressly specified otherwise. In other words, the phrase “based on” describes both “based only on” and “based at least on.”
Moreover, the term “or” is intended to man an inclusive “or” rather than an exclusive “or.” That is, unless specified otherwise, or clear from the context, the phrase “X employs A or B” is intended to mean any of the natural inclusive permutations. That is, the phrase “X employs A or B” is satisfied by any of the following instances: X employs A; X employs B; or X employs both A and B. In addition, the articles “a” and “an” as used in this application and the appended claims should generally be construed to mean “one or more” unless specified otherwise or clear from the context to be directed to a singular form.
The various illustrative logical blocks, modules, and circuits described in connection with the present disclosure may be implemented or performed with a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other programmable logic device, discrete gate or transistor logic, discrete hardware components or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core or any other such configuration.
The steps of a method or algorithm described in connection with the present disclosure may be embodied directly in hardware, in a software module executed by a processor or in a combination of the two. A software module may reside in any form of storage medium that is known in the art. Some examples of storage media that may be used include RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, a CD-ROM, and so forth. A software module may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs and across multiple storage media. A storage medium may be coupled to a processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor.
The methods disclosed herein comprise one or more steps or actions for achieving the described method. The method steps and/or actions may be interchanged with one another without departing from the scope of the claims. In other words, unless a specific order of steps or actions is specified, the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
The functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored as one or more instructions on a computer-readable medium. A computer-readable medium may be any available medium that can be accessed by a computer. By way of example, and not limitation, a computer-readable medium may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage, or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer. Disk and disc, as used herein, includes compact disk (CD), laser disk, optical disc, digital versatile disk (DVD), floppy disk, and Blu-ray® disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers.
Software or instructions may also be transmitted over a transmission medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of transmission medium.
Further, it should be appreciated that modules and/or other appropriate means for performing the methods and techniques described herein, such as those illustrated by
Embodiments described herein relate to an architecture for test input and test output configuration logic using a programmable scan configuration block (PSCB). The PSCB controls clock channel direction in testing mode. The embodiments provide for re-using unused ATE test channels and resources when hard macros are being tested. This reduces test time, possibly by 30%-40%, and also reduces test volume without sacrificing result quality. The PSCB reuses unused clock channels to design the hard macro scans in accordance with test requirements. In operation, the PSCB is programmed with the desired number of channels needed on scan in and on scan out. The PSCB uses a smart XOR, which operates on the output logic. On the input side, the scan in inputs are fanned out. On the output side the smart XOR logic allows the highest number of scan out operations. The XOR ties unused input signals to 0. The PSCB is a reconfigurable block that re-purposes the unused clock channels, thus allowing better compression testing while reducing test time. The PSCB permits design of hard macro scans in accordance with the particular design requirements of the hard macros contained in the SoC. Further embodiments provides for parallel core testing.
Testing may also involve testing hard macros (HM). A hard macro is a custom block that is used in digital logic. A hard macro may be fixed in size. Hard macros may be stored in memory, which carries a dedicated single function. In many cases, hard macros for specific custom functions may be included within a SoC and these must be tested during memory built-in testing (MBIST) and other device functionality testing. Embodiments described herein reuse unused tester channels or other testing resources during HM testing. This allows for significant reduction in reducing the time needed to generate automated test patterns created by automated test pattern generators.
A SoC is an integrated circuit that combines all components of a computer or other electronic system on a single chip. It may contain digital, analog, mixed-signal, and radio frequency (RF) functions. A SoC may consist of: a microcontroller or digital signal processor (DSP) core; memory blocks, including a selection of read-only memory (ROM), random access memory (RAM), electrically erasable programmable read-only memory (a type of non-volatile memory), and flash memory; timing sources including oscillators and phase-locked loops (PLL); peripherals including counter-timers, real-time timers, and power-on or reset generators; external interfaces; analog interfaces including analog to digital converters (ADC), digital to analog converters (DAC); voltage regulators; and power management circuits. A bus connects these blocks within the SoC.
Direct memory access (DMA) controllers route data directly between external interfaces and memory, bypassing the processor core, thus increasing data throughput. DMA controllers are used because they allow certain hardware systems to access the main system memory (RAM) independently of the CPU and as a result improve data processing speed.
Many SoCs incorporate an Acorn Risc Machine (ARM) proprietary process into their architecture. A reduced instruction set computing (RISC) device may be used as a building block within a larger and more complex device, such as a SoC. The ARM processors may be configured for various environments. A RISC based design means that ARM processors require significantly fewer transistors than a complex instruction set computing (CISC) device, such as those found in most personal computers. This approach results in lower cost, less heat production, and less power consumed. As a result, ARM processors are used extensively in portable devices such as wireless devices and tablet, as well as in embedded systems. ARM processors use a simpler design with more efficient multi-core central processing units (CPU).
An ARM processor core may support a 32-bit address space and use 32-bit arithmetic. Instructions for ARM cores often use 32-bit wide fixed length instructions, however, some versions support a variable length instruction set that uses 32-bit and 16-bit wide instruction sets for improved code density. In many cases, a SoC will use the standard ARM processor core and will use a 32-bit address space and 32-bit arithmetic. However, some SoCs allow for a reduction in memory size by blowing a fuse. This process of reducing memory size by blowing a fuse is known as de-featuring. As an example, in one SoC core, the cache may be reduced from 1 MB to 512 KB during the manufacturing process. This allows a simple memory size reduction without the time and expense of a redesign.
Testing the SoCs is an important part of the manufacturing process. Automated test equipment (ATE) is used to perform tests on a device, known as the device under test (DUT) using automation to quickly perform measurements and evaluate test results. An ATE may be a simple computer-controlled digital multimeter, or may be a more complex system with many test instruments capable of testing and diagnosing faults in SoCs. ATE systems are designed to reduce the amount of test time needed to verify that a particular electronic device functions correctly, or to quickly find the faults before the device is installed in an end product, such as a wireless device. An ATE system may consist of a master controller (often a computer) that synchronizes one or more capture instruments.
Register transfer level (RTL) is a design abstraction which models a synchronous digital circuit in terms of the flow of digital signals between hardware registers and logical operations performed on those signals. RTL abstraction may be used in hardware design description languages, such as Verilog, and VHDL to create high-level representations of a circuit, from which lower-level representations and ultimately actual wiring can be derived. RTL focuses on describing the flow of signals between registers.
RTL is used in the logic design phase of the SoC design cycle. An RTL description may be converted to a gate-level description of the circuit by a logic synthesis tool. The synthesis results are then used by placement and routing tools to create a physical layout. Logic simulation tools may use a design's RTL description to verify its correctness. When the RTL logic insertion must be re-done during a redesign, the MBIST logic testing flow must also be redesigned, significantly increasing costs. The configuration of the MBIST logic should be in accordance with the memory configuration for the test to be successful.
The ARM processor 104 interfaces with peripheral bridge 140, which also provides input and output interface with the system controller 110. The peripheral bridge communicates with multiple components using an application peripheral bus (APB) 142. An internal bus 138 operates in conjunction with the peripheral bridge 140 to communicate with additional devices within the SoC 100. The internal bus 138 may be an application specific bus (ASP) or an application handling bus (AHB). Memory controller 140 interfaces with ARM processor 104 using internal bus 138. The memory controller 140 also communicates with the external bus interface (EBI) 146. Memory controller 140 is also in communication with static random access memory (SRAM) 148, and flash memory 150. Flash memory 150 is in communication with flash programmer 154. The memory controller 144 is also in communication with peripheral data controller 152. Additional application specific logic 156 communicates with the internal bus 138 and may also have external connections. A second PIO 158 provides communication with an Ethernet medium access control (MAC) 160. The second PIO 158 also communicates with a universal asynchronous receiver/transmitter 162, a serial peripheral interface (SPI) 164, a two wire interface 166, and an analog to digital converter 168. These devices and interfaces connect through internal bus 138 with a controller area network bus (CAN) 170, a universal serial bus (USB) devices 172, a pulse width modulator (PWM) controller 174, a synchro serial controller 176, and a timer/counter 178. These devices, CAN 170, USB device 172, PWM controller 174, synchro serial controller 176 and timer/counter 178 interface with third PIO 180, which provides external input and output. While these elements are typical of many SoCs, other devices may be incorporated, and some may not be included.
Each output from an OR gate described above is also tied to an input into test control block 436. Test control block 436 receives the input clocks 450 and the hard macro shared scan ins 452. Within test control block 436 AND gates 438, 440442, and 446 act as switches. In the case of AND gates 438 and 442 and inverter or NOT gate is used to switch the data line to one of the outputs. For AND gate 430 inverter 454 switches the data line, and for AND gate 442 inverter 444 provides the switching function. Test control block 436 is driven by the clock GPIO input buffer which is shared as scan ins. Test control block 436 provides outputs to the output of OR gates 424-434. After this process the output is a logic high state for decoder outputs Q1, Q2, and Q3. These logic values of 1 are driven low by the inverters within the test control block 436. The action of the PSCB 210 is to re-allocate unused clocks as needed based on the information input to the three-bit JDR 208.
CF=(no. of flops)/(chain length*no. of external scan channels)
Chain length=(no. of flops)/(compression*no. of external scan channels) With an increase in the number of available external channels, as is depicted in
Test time=chain length*no. of patterns.
This is shown in
It is understood that the specific order or hierarchy of blocks in the processes disclosed is an illustration of exemplary approaches. Based upon design preferences, it is understood that the specific order or hierarchy of blocks in the processes may be rearranged. The accompanying method claims present elements of the various blocks in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more.” Unless specifically stated otherwise, the term “some” refers to one or more. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for.”
It is to be understood that the claims are not limited to the precise configuration and components illustrated above. Various modifications, changes and variations may be made in the arrangement, operation and details of the systems, methods, and apparatus described herein without departing from the scope of the claims.