The present disclosure relates to eddy current monitoring during chemical mechanical polishing of substrates.
An integrated circuit is typically formed on a substrate (e.g. a semiconductor wafer) by the sequential deposition of conductive, semiconductive or insulative layers on a silicon wafer, and by the subsequent processing of the layers.
One fabrication step involves depositing a filler layer over a non-planar surface, and planarizing the filler layer until the non-planar surface is exposed. For example, a conductive filler layer can be deposited on a patterned insulative layer to fill the trenches or holes in the insulative layer. The filler layer is then polished until the raised pattern of the insulative layer is exposed. After planarization, the portions of the conductive layer remaining between the raised pattern of the insulative layer form vias, plugs and lines that provide conductive paths between thin film circuits on the substrate. In addition, planarization may be used to planarize the substrate surface for lithography.
Chemical mechanical polishing (CMP) is one accepted method of planarization. This planarization method typically requires that the substrate be mounted on a carrier head. The exposed surface of the substrate is placed against a rotating polishing pad. The carrier head provides a controllable load on the substrate to push it against the polishing pad. A polishing liquid, such as slurry with abrasive particles, is supplied to the surface of the polishing pad.
During semiconductor processing, it may be important to determine one or more characteristics of the substrate or layers on the substrate. For example, it may be important to know the thickness of a conductive layer during a CMP process, so that the process may be terminated at the correct time. A number of methods may be used to determine substrate characteristics. For example, optical sensors may be used for in-situ monitoring of a substrate during chemical mechanical polishing. Alternately (or in addition), an eddy current sensing system may be used to induce eddy currents in a conductive region on the substrate to determine parameters such as the local thickness of the conductive region.
In one aspect, a method of chemical mechanical polishing a substrate includes polishing a metal layer on the substrate at a polishing station, monitoring thickness of the metal layer during polishing at the polishing station with an eddy current monitoring system, and halting polishing when the eddy current monitoring system indicates that residue of the metal layer is removed from an underlying layer and a top surface of the underlying layer is exposed.
Implementations may include one or more of the following features. The underlying layer may be a barrier layer. The underlying layer may be a dielectric layer. The eddy current monitoring system may have a resonant frequency greater than 12 MHz, e.g., a resonant frequency between about 14 and 16 MHz. Metal of the metal layer may have a resistivity less than 700 ohm-Angstroms. The metal may be copper, aluminum or tungsten. Polishing of the metal layer may be monitored without an optical monitoring system. Residue of the metal layer may be determined to be removed by detecting a change in the rate of change in magnitude of a signal from the eddy current monitoring system.
In another aspect, a method of chemical mechanical polishing a substrate may include polishing a plurality of metal pillars that project upwardly from a generally planar surface of a substrate, monitoring thickness of the pillars during polishing at the polishing station with an eddy current monitoring system, and halting polishing when the eddy current monitoring system indicates that the pillars are substantially co-planar with the planar surface.
Implementations may include one or more of the following features. The generally planar surface may be a dielectric layer. The eddy current monitoring system may have a resonant frequency greater than 12 MHz. Metal of the pillars may have a resistivity less than 700 ohm-Angstroms. The pillars may be copper. The metal pillars may be determined to be co-planar with the planar surface by detecting a change in the rate of change in magnitude of a signal from the eddy current monitoring system.
Certain implementations can include one or more of the following advantages. The thickness of lower conductance metals, e.g., titanium or cobalt, can be sensed during bulk polishing, permitting closed loop control of carrier head pressure and thus improved within-wafer non-uniformity (WIWNU) and water-to-wafer non-uniformity (WTWNU). The removal of metal residue can be sensed, e.g., for copper residue, and this permits more accurate endpoint control and reduces the need for deliberate overpolishing. The thickness (or conductivity) of metal lines, e.g., copper lines, can be sensed, permitting closed loop control of carrier head pressure to drive to uniform metal line thickness and conductivity, which can provide improved yield. During polishing of metal pillars, e.g., copper pillars, planarization of the pillars can be detected, thus providing endpoint control of the planarization process.
The details of one or more implementations are set forth in the accompanying drawings and the description below. Other aspects, features and advantages will be apparent from the description and drawings, and from the claims.
Like reference symbols in the various drawings indicate like elements.
CMP systems can use eddy current monitoring systems to detect thickness of a top metal layer on a substrate. During polishing of the top metal layer, the eddy current monitoring system can determine the thickness of different regions of the metal layer on the substrate. The thickness measurements can be used to adjust processing parameters of the polishing process in real time. For example, a substrate carrier head can adjust the pressure on the backside of the substrate to increase or decrease the polishing rate of the regions of the metal layer. The polishing rate can be adjusted so that the regions of the metal layer are substantially the same thickness after polishing. The CMP system can adjust the polishing rate so that polishing of the regions of the metal layer completes at about the same time. Such profile control can be referred to as real time profile control (RTPC).
One problem with eddy current monitoring is an insufficient signal for accurate thickness determination, which can result in lack of accuracy in endpoint determination and profile control. Without being limited to any particular theory, a factor that contributes to an insufficient signal can include polishing of lower conductivity metals, e.g., cobalt, titanium or titanium nitride.
Signal strength can be improved by proper configuration of the sensor.
By raising the resonant frequency, the signal strength can be increased to perform reliable profile control for metals with a resistivity greater than 700 ohm Angstroms, e.g., greater than 1500 ohm Angstroms. Such metals can include cobalt, titanium, and titanium nitride.
Further, the eddy current monitoring system can also be used to detect removal of metal residue, e.g., residue of higher conductivity metals, e.g., copper, aluminum or tungsten, from the surface of the substrate and exposure of an underlying dielectric layer. features in an underlying layer of the substrate. Further, the eddy current monitoring system can also be used to detect thickness of metal features on the substrate. Such features can include copper, aluminum, or tungsten in trenches, and potentially in pillars. In addition, the eddy current monitoring system can also be used to detect planarization of metal pillars, e.g., pillars of higher conductivity metal, e.g., copper. The resonant frequency can be raised by adjusting parameters including the material of the sensor core, the number of windings of the coil around the center prong, and a capacitance of a capacitor placed on a circuit in parallel with the coil.
Referring to
During a polishing step, a slurry 38 can be supplied to the surface of polishing pad 30 by a slurry supply port or combined slurry/rinse arm 39. If polishing pad 30 is a standard pad, slurry 38 can also include abrasive particles (e.g., silicon dioxide for oxide polishing).
Returning to
Each carrier head 70 is connected by a carrier drive shaft 74 to a carrier head rotation motor 76 (shown by the removal of one quarter of cover 68) so that each carrier head can independently rotate about it own axis. In addition, each carrier head 70 independently laterally oscillates in a radial slot 72 formed in carousel support plate 66. A description of a suitable carrier head 70 can be found in U.S. Pat. No. 7,654,888, the entire disclosure of which is incorporated by reference. In operation, the platen is rotated about its central axis 25, and the carrier head is rotated about its central axis 71 and translated laterally across the surface of the polishing pad.
Returning to
In some implementations, the backing layer 32 includes an aperture above the recess 26. The aperture can have the same width and depth as the recess 26. Alternatively, the aperture can be smaller than the recess 26. A portion 36 of the covering layer 34 can be above the aperture in the backing layer. The portion 36 of the covering layer 34 can prevent the slurry 38 from entering the recess 26. Part of the core 42 can be located in the aperture. For example, the core 42 can include prongs that extent into the aperture. In some implementations, the top of the core 42 does not extend past the bottom surface of the covering layer 34.
In operation the oscillator 50 drives drive coil 49 to generate an oscillating magnetic field that extends through the body of core 42 and into the gap between the prongs of the core. At least a portion of magnetic field extends through thin portion 36 of polishing pad 30 and into substrate 10. If a metal layer is present on substrate 10, oscillating magnetic field generates eddy currents in the metal layer. The eddy currents cause the metal layer to act as an impedance source in parallel with sense coil 46 and capacitor 52. As the thickness of the metal layer changes, the impedance changes, resulting in a change in the Q-factor of sensing mechanism. By detecting the change in the Q-factor of the sensing mechanism, the eddy current sensor can sense the change in the strength of the eddy currents, and thus the change in thickness of metal layer.
An optical monitoring system 140, which can function as a reflectometer or interferometer, can be secured to platen 24 in recess 26, e.g., adjacent the eddy current monitoring system 40. Thus, the optical monitoring system 140 can measure the reflectivity of substantially the same location on the substrate as is being monitored by the eddy current monitoring system 40. Specifically, the optical monitoring system 140 can be positioned to measure a portion of the substrate at the same radial distance from the axis of rotation of the platen 24 as the eddy current monitoring system 40. Thus, the optical monitoring system 140 can sweep across the substrate in the same path as the eddy current monitoring system 40.
The optical monitoring system 140 includes a light source 144 and a detector 146. The light source generates a light beam 142 which propagates through transparent window section 36 and slurry to impinge upon the exposed surface of the substrate 10. For example, the light source 144 may be a laser and the light beam 142 may be a collimated laser beam. The light laser beam 142 can be projected from the laser 144 at an angle a from an axis normal to the surface of the substrate 10. In addition, if the recess 26 and the window 36 are elongated, a beam expander (not illustrated) may be positioned in the path of the light beam to expand the light beam along the elongated axis of the window. In general, the optical monitoring system functions as described in U.S. Pat. Nos. 6,159,073, and 6,280,289, the entire disclosures of which are incorporated herein by references. In some implementations, the eddy current monitoring system 40 is sensitive enough that the optical monitoring system 140 can be not included.
The CMP apparatus 20 can also include a position sensor 80, such as an optical interrupter, to sense when core 42 and light source 44 are beneath substrate 10. For example, the optical interrupter could be mounted at a fixed point opposite carrier head 70. A flag 82 is attached to the periphery of the platen. The point of attachment and length of flag 82 is selected so that it interrupts the optical signal of sensor 80 while transparent section 36 sweeps beneath substrate 10. Alternately, the CMP apparatus can include an encoder to determine the angular position of platen.
A general purpose programmable digital computer 90 receives the intensity signals from the eddy current sensing system, and the intensity signals from the optical monitoring system. Since the monitoring systems sweep beneath the substrate with each rotation of the platen, information on the metal layer thickness and exposure of the underlying layer is accumulated in-situ and on a continuous real-time basis (once per platen rotation). The computer 90 can be programmed to sample measurements from the monitoring system when the substrate generally overlies the transparent section 36 (as determined by the position sensor). As polishing progresses, the reflectivity or thickness of the metal layer changes, and the sampled signals vary with time. The time varying sampled signals may be referred to as traces. The measurements from the monitoring systems can be displayed on an output device 92 during polishing to permit the operator of the device to visually monitor the progress of the polishing operation.
In operation, the CMP apparatus 20 uses eddy current monitoring system 40 and optical monitoring system 140 to determine when the bulk of the filler layer has been removed and to determine when the underlying stop layer has been substantially exposed. The computer 90 applies process control and endpoint detection logic to the sampled signals to determine when to change process parameter and to detect the polishing endpoint. Possible process control and endpoint criteria for the detector logic include local minima or maxima, changes in slope, threshold values in amplitude or slope, or combinations thereof.
In addition, the computer 90 can be programmed to divide the measurements from both the eddy current monitoring system 40 and the optical monitoring system 140 from each sweep beneath the substrate into a plurality of sampling zones, to calculate the radial position of each sampling zone, to sort the amplitude measurements into radial ranges, to determine minimum, maximum and average measurements for each sampling zone, and to use multiple radial ranges to determine the polishing endpoint, as discussed in U.S. Pat. No. 6,399,501, the entirety of which is incorporated herein by reference.
Computer 90 may also be connected to the pressure mechanisms that control the pressure applied by carrier head 70, to carrier head rotation motor 76 to control the carrier head rotation rate, to the platen rotation motor (not shown) to control the platen rotation rate, or to slurry distribution system 39 to control the slurry composition supplied to the polishing pad. Specifically, after sorting the measurements into radial ranges, information on the metal film thickness can be fed in real-time into a closed-loop controller to periodically or continuously modify the polishing pressure profile applied by a carrier head, as discussed further below.
The back portion 410 of the core 408 can be a generally plate-shape or rectangular box-shaped body, and can have a top face parallel to the top surface of the platen, e.g., parallel to the substrate and the polishing pad during the polishing operation. In some implementations, the long axis of the back portion 410 is perpendicular to a radius of the platen that extends from the axis of rotation of the platen. The long axis of the back portion 410 can be normal to the front face of the back portion 410. The back portion 410 can have a height that is measured normal to the top surface of the platen.
The prongs 412a-c extend from the back portion 410 in a direction normal to a top surface of the back portion 410 and are substantially linear and extend in parallel with each other. Each of the prongs 412a-c can have a long axis along a direction parallel to the top surface of the platen, e.g., parallel to the faces of the substrate and polishing pad during the polishing operation, and are substantially linear and extend in parallel to each other. The long axes of the prongs 412a-c can be normal to the front face of the prongs 412a-c. The long axis of the back portion 410 can extend in the same direction as the long axes of the prongs 412a-c. In some implementations, the long axes of the prongs 412a-c are perpendicular to a radius of the polishing pad that extends from the axis of rotation of the polishing pad. The two outer prongs 412a, 412c are on opposite sides of the middle prong 412a. The space between the each of the outer prongs (e.g., 412a and 412c) and the center prong (e.g., 412b) can be the same, i.e., the outer prongs 412a, 412c can be equidistant from the middle prong 412a.
The eddy current sensing system 400 includes a coil 422 and a capacitor 424 in parallel. The coil 422 can be coupled with the core 408 (e.g., the coil 422 can be wrapped around the center coil 412b). Together the coil 422 and the capacitor 424 can form an LC resonant tank. In operation, a current generator 426 (e.g., a current generator based on a marginal oscillator circuit) drives the system at the resonant frequency of the LC tank circuit formed by the coil 422 (with inductance L) and the capacitor 424 (with capacitance C). The current generator 426 can be designed to maintain the peak to peak amplitude of the sinusoidal oscillation at a constant value. A time-dependent voltage with amplitude V0 is rectified using a rectifier 428 and provided to a feedback circuit 430. The feedback circuit 430 determines a drive current for current generator 426 to keep the amplitude of the voltage V0 constant. For such a system, the magnitude of the drive current can be proportional to the conducting film thickness. Marginal oscillator circuits and feedback circuits are further described in U.S. Pat. Nos. 4,000,458, and 7,112,960 which are incorporated by reference.
The current generator 426 can feed current to the LC resonant tank in order for the frequency to remain the same. The coil 422 can generate an oscillating magnetic field 432, which may couple with a conductive region 406 of the substrate (e.g., the substrate 10). When the conductive region 406 is present, the energy dissipated as eddy currents in the substrate can bring down the amplitude of the oscillation. The current generator 426 can feed more current to the LC resonant tank to keep the amplitude constant. The amount of additional current fed by the current generator 426 can be sensed and can be translated into a thickness measurement of the conductive region 406.
In some implementations, a change in Q-factor may be determined by measuring an amplitude of current in the sense coil as a function of time, for a fixed drive frequency and drive amplitude. An eddy current signal may be rectified using a rectifier 418, and the amplitude monitored via an output 420. Alternately, a change in Q-factor may be determined by measuring an phase difference between the drive signal and the sense signal as a function of time.
The eddy current monitoring system 400 can be used to measure the thickness of a conductive layer on a substrate. In some implementations, an eddy current monitoring system with a higher signal strength, a higher signal to noise ratio and/or improved spatial resolution and linearity may be desired. For example, in RTPC applications, obtaining desired cross-wafer uniformity may require an improved eddy current sensing system.
The eddy current monitoring system 400 can provide enhanced signal strength, signal to noise ratio, enhanced linearity, and enhanced stability. Additional benefits may be obtained by providing an eddy current sensing system with improved signal strength. Improved signal strength may be particularly beneficial for RTPC. Obtaining high resolution wafer profile information allows for more accurate adjustment of processing parameters, and thus may enable fabrication of devices with smaller critical dimensions (CDs).
In general, the in-situ eddy current monitoring system 400 is constructed with a resonant frequency of about 50 kHz to 20 MHz, e.g., between about 10 and 20 MHz, e.g., between about 14 and 16 MHz. For example, for the eddy current monitoring system 400 shown in
The first prong 504b has a width W1, the second prong 504a has a width W2, and the third prong 504c has a width W3. The widths W2 and W3 can be the same. For example, the prongs 504a and 504c can have a width of 0.75 mm. The width of prong 504b, or W1, can be twice the width of either prong 504a or 504c, or 1.5 mm. The first prong 504b and the second prong 504a are a separated by a distance S1, and the first prong 504b and the third prong 504c are a distance S2 apart. In some implementations, the distances S1 and S2 are the same and the second prong 504a and the third prong 504c are the same distance from the center prong 504b. For example, both the distances S1 and S2 can be about 2 mm.
Each of the prongs 504a-c has a height Hp, which is the distance that the prongs 504a-c extends from the back portion 502 of the core 500. The height Hp can be greater than the widths W1, W2, and W3. In some implementations, the height Hp is the same as the distances S1 and S2 separating the prongs 504a-c. In particular, the height Hp can be 2 mm. The back portion 502 has a height Hb. The height Hb can be the same as the distance S1 or the distance S2 or the height Hp, e.g., 2 mm.
A coil 506 can be wound around the center prong 504b. The coil can be coupled with a capacitor, such as the capacitor 416. In implementations of eddy current monitoring systems such as the system 400, separate sense and drive coils can be used. In some implementations, a coil such as the coil 506 may be litz wire (woven wire constructed of individual film insulated wires bunched or braided together in a uniform pattern of twists and length of lay), which may be less lossy than solid wire for the frequencies commonly used in eddy current sensing.
In some implementations, the coil 506 can be wrapped around a portion of the center prong 504b and not the entire prong 504b. For example, the coil 506 can be wrapped around an outer portion of the center prong 504b. The coil 506 may not touch an inner portion of the center prong 504b. The inner portion can be closer to the back portion 502 than the outer portion.
Although the configuration of
As explained above, the length L of the core 602 is greater than its width W. That is, the aspect ratio L/W is greater than one. Different values for L, W, and L/W may be used for different implementations. For example, W may range from a fraction of a millimeter to more than a centimeter, while L may range from about a millimeter (for smaller values of W) to ten centimeters or greater.
In a particular implementation, W is between about a millimeter and about ten millimeters, while L is between about one centimeter to about five centimeters. More particularly, the core 602 may be about seven millimeters wide, with each protrusion being about a millimeter in width and with each space between adjacent protrusions being about two millimeters. The length may be about twenty millimeters. The height may be about four millimeters and may be increased if desired to allow for more coil turns. Of course, the values given here are exemplary; many other configurations are possible.
In some implementations, the long axis of a core may not be exactly perpendicular to a radius of a substrate. However, a core may still provide improved resolution over available core geometries, particularly near the wafer edge.
Initially, referring to
As shown in
Referring to
Referring to
With the improved sensitivity of the eddy current sensor, closed-loop control of the pressure applied can be performed by the different chambers of the carrier head with greater reliability at thinner metal layer thicknesses for metals with lower resistivity, e.g., copper, aluminum, and tungsten. For such metals, the predetermined thickness level can be below 200 Angstroms, e.g., below 50 Angstroms, e.g., down to clearing detection or substantial removal of the metal layer.
In addition, the eddy current sensor can be used to detect whether there is metal residue remaining on the substrate and whether the underlying layer, e.g., an underlying barrier layer or underlying dielectric layer, has been completely exposed. Residue is metal of the metal layer still remaining over the underlying layer when the underlying layer has been substantially exposed, e.g., small unconnected spots of metal over the underlying layer (but not in the trench). This permits more accurate endpoint control and reduces the need for deliberate overpolishing. The metal residue can be residue of a metal with a resistivity less than 700 ohm Angstroms, e.g., copper, aluminum or tungsten. In some implementations, the metal is copper and the underlying layer is a barrier layer, e.g., Ti, TiN or TaN. In some implementations, the metal is a barrier layer metal, e.g., Ti, TiN or TaN, and the underlying layer is a dielectric layer. In such a case, the metal residue can be residue of a barrier layer metal with a resistivity greater than 700 ohm.
Referring to
As the substrate continues to be polished, the signal received indicates a thickness of a metal feature 1010 in an underlying layer 1012. The eddy current monitoring system can be used to continue polishing the layer 1012 and the metal feature 1010 until a predetermined thickness of the metal feature 1010 remains.
Referring to
In some implementations, an overlying layer on top of the layer with metal features can first be cleared before polishing the layer with metal features, as described with reference to
In some implementations, the process 1200 can be used for pillar planarization, as described above with reference to
The eddy current and optical monitoring systems can be used in a variety of polishing systems. Either the polishing pad, or the carrier head, or both can move to provide relative motion between the polishing surface and the substrate. The polishing pad can be a circular (or some other shape) pad secured to the platen, a tape extending between supply and take-up rollers, or a continuous belt. The polishing pad can be affixed on a platen, incrementally advanced over a platen between polishing operations, or driven continuously over the platen during polishing. The pad can be secured to the platen during polishing, or there can be a fluid bearing between the platen and polishing pad during polishing. The polishing pad can be a standard (e.g., polyurethane with or without fillers) rough pad, a soft pad, or a fixed-abrasive pad. Rather than tuning when the substrate is absent, the drive frequency of the oscillator can be tuned to a resonant frequency with a polished or unpolished substrate present (with or without the carrier head), or to some other reference.
Although illustrated as positioned in the same hole, the optical monitoring system 140 can be positioned at a different location on the platen than the eddy current monitoring system 40. For example, the optical monitoring system 140 and eddy current monitoring system 40 could be positioned on opposite sides of the platen, so that they alternately scan the substrate surface.
A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.